1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * mm/mmap.c
4 *
5 * Written by obz.
6 *
7 * Address space accounting code <alan@lxorguk.ukuu.org.uk>
8 */
9
10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11
12 #include <linux/kernel.h>
13 #include <linux/slab.h>
14 #include <linux/backing-dev.h>
15 #include <linux/mm.h>
16 #include <linux/mm_inline.h>
17 #include <linux/shm.h>
18 #include <linux/mman.h>
19 #include <linux/pagemap.h>
20 #include <linux/swap.h>
21 #include <linux/syscalls.h>
22 #include <linux/capability.h>
23 #include <linux/init.h>
24 #include <linux/file.h>
25 #include <linux/fs.h>
26 #include <linux/personality.h>
27 #include <linux/security.h>
28 #include <linux/hugetlb.h>
29 #include <linux/shmem_fs.h>
30 #include <linux/profile.h>
31 #include <linux/export.h>
32 #include <linux/mount.h>
33 #include <linux/mempolicy.h>
34 #include <linux/rmap.h>
35 #include <linux/mmu_notifier.h>
36 #include <linux/mmdebug.h>
37 #include <linux/perf_event.h>
38 #include <linux/audit.h>
39 #include <linux/khugepaged.h>
40 #include <linux/uprobes.h>
41 #include <linux/notifier.h>
42 #include <linux/memory.h>
43 #include <linux/printk.h>
44 #include <linux/userfaultfd_k.h>
45 #include <linux/moduleparam.h>
46 #include <linux/pkeys.h>
47 #include <linux/oom.h>
48 #include <linux/sched/mm.h>
49 #include <linux/ksm.h>
50
51 #include <linux/uaccess.h>
52 #include <asm/cacheflush.h>
53 #include <asm/tlb.h>
54 #include <asm/mmu_context.h>
55 #include <linux/hck/lite_hck_jit_memory.h>
56
57 #define CREATE_TRACE_POINTS
58 #include <trace/events/mmap.h>
59
60 #include "internal.h"
61
62 #ifdef CONFIG_MEM_PURGEABLE
63 #define MAP_PURGEABLE 0x04 /* purgeable memory */
64 #define MAP_USEREXPTE 0x08 /* userspace extension page table */
65 #endif
66
67 #ifndef arch_mmap_check
68 #define arch_mmap_check(addr, len, flags) (0)
69 #endif
70
71 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
72 const int mmap_rnd_bits_min = CONFIG_ARCH_MMAP_RND_BITS_MIN;
73 const int mmap_rnd_bits_max = CONFIG_ARCH_MMAP_RND_BITS_MAX;
74 int mmap_rnd_bits __read_mostly = CONFIG_ARCH_MMAP_RND_BITS;
75 #endif
76 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
77 const int mmap_rnd_compat_bits_min = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MIN;
78 const int mmap_rnd_compat_bits_max = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MAX;
79 int mmap_rnd_compat_bits __read_mostly = CONFIG_ARCH_MMAP_RND_COMPAT_BITS;
80 #endif
81
82 static bool ignore_rlimit_data;
83 core_param(ignore_rlimit_data, ignore_rlimit_data, bool, 0644);
84
85 static void unmap_region(struct mm_struct *mm, struct ma_state *mas,
86 struct vm_area_struct *vma, struct vm_area_struct *prev,
87 struct vm_area_struct *next, unsigned long start,
88 unsigned long end, unsigned long tree_end, bool mm_wr_locked);
89
vm_pgprot_modify(pgprot_t oldprot, unsigned long vm_flags)90 static pgprot_t vm_pgprot_modify(pgprot_t oldprot, unsigned long vm_flags)
91 {
92 return pgprot_modify(oldprot, vm_get_page_prot(vm_flags));
93 }
94
95 /* Update vma->vm_page_prot to reflect vma->vm_flags. */
vma_set_page_prot(struct vm_area_struct *vma)96 void vma_set_page_prot(struct vm_area_struct *vma)
97 {
98 unsigned long vm_flags = vma->vm_flags;
99 pgprot_t vm_page_prot;
100
101 vm_page_prot = vm_pgprot_modify(vma->vm_page_prot, vm_flags);
102 if (vma_wants_writenotify(vma, vm_page_prot)) {
103 vm_flags &= ~VM_SHARED;
104 vm_page_prot = vm_pgprot_modify(vm_page_prot, vm_flags);
105 }
106 /* remove_protection_ptes reads vma->vm_page_prot without mmap_lock */
107 WRITE_ONCE(vma->vm_page_prot, vm_page_prot);
108 }
109
110 /*
111 * Requires inode->i_mapping->i_mmap_rwsem
112 */
__remove_shared_vm_struct(struct vm_area_struct *vma, struct file *file, struct address_space *mapping)113 static void __remove_shared_vm_struct(struct vm_area_struct *vma,
114 struct file *file, struct address_space *mapping)
115 {
116 if (vma->vm_flags & VM_SHARED)
117 mapping_unmap_writable(mapping);
118
119 flush_dcache_mmap_lock(mapping);
120 vma_interval_tree_remove(vma, &mapping->i_mmap);
121 flush_dcache_mmap_unlock(mapping);
122 }
123
124 /*
125 * Unlink a file-based vm structure from its interval tree, to hide
126 * vma from rmap and vmtruncate before freeing its page tables.
127 */
unlink_file_vma(struct vm_area_struct *vma)128 void unlink_file_vma(struct vm_area_struct *vma)
129 {
130 struct file *file = vma->vm_file;
131
132 if (file) {
133 struct address_space *mapping = file->f_mapping;
134 i_mmap_lock_write(mapping);
135 __remove_shared_vm_struct(vma, file, mapping);
136 i_mmap_unlock_write(mapping);
137 }
138 }
139
140 /*
141 * Close a vm structure and free it.
142 */
remove_vma(struct vm_area_struct *vma, bool unreachable)143 static void remove_vma(struct vm_area_struct *vma, bool unreachable)
144 {
145 might_sleep();
146 if (vma->vm_ops && vma->vm_ops->close)
147 vma->vm_ops->close(vma);
148 if (vma->vm_file)
149 fput(vma->vm_file);
150 mpol_put(vma_policy(vma));
151 if (unreachable)
152 __vm_area_free(vma);
153 else
154 vm_area_free(vma);
155 }
156
vma_prev_limit(struct vma_iterator *vmi, unsigned long min)157 static inline struct vm_area_struct *vma_prev_limit(struct vma_iterator *vmi,
158 unsigned long min)
159 {
160 return mas_prev(&vmi->mas, min);
161 }
162
163 /*
164 * check_brk_limits() - Use platform specific check of range & verify mlock
165 * limits.
166 * @addr: The address to check
167 * @len: The size of increase.
168 *
169 * Return: 0 on success.
170 */
check_brk_limits(unsigned long addr, unsigned long len)171 static int check_brk_limits(unsigned long addr, unsigned long len)
172 {
173 unsigned long mapped_addr;
174
175 mapped_addr = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED);
176 if (IS_ERR_VALUE(mapped_addr))
177 return mapped_addr;
178
179 return mlock_future_ok(current->mm, current->mm->def_flags, len)
180 ? 0 : -EAGAIN;
181 }
182 static int do_brk_flags(struct vma_iterator *vmi, struct vm_area_struct *brkvma,
183 unsigned long addr, unsigned long request, unsigned long flags);
SYSCALL_DEFINE1(brk, unsigned long, brk)184 SYSCALL_DEFINE1(brk, unsigned long, brk)
185 {
186 unsigned long newbrk, oldbrk, origbrk;
187 struct mm_struct *mm = current->mm;
188 struct vm_area_struct *brkvma, *next = NULL;
189 unsigned long min_brk;
190 bool populate = false;
191 LIST_HEAD(uf);
192 struct vma_iterator vmi;
193
194 if (mmap_write_lock_killable(mm))
195 return -EINTR;
196
197 origbrk = mm->brk;
198
199 #ifdef CONFIG_COMPAT_BRK
200 /*
201 * CONFIG_COMPAT_BRK can still be overridden by setting
202 * randomize_va_space to 2, which will still cause mm->start_brk
203 * to be arbitrarily shifted
204 */
205 if (current->brk_randomized)
206 min_brk = mm->start_brk;
207 else
208 min_brk = mm->end_data;
209 #else
210 min_brk = mm->start_brk;
211 #endif
212 if (brk < min_brk)
213 goto out;
214
215 /*
216 * Check against rlimit here. If this check is done later after the test
217 * of oldbrk with newbrk then it can escape the test and let the data
218 * segment grow beyond its set limit the in case where the limit is
219 * not page aligned -Ram Gupta
220 */
221 if (check_data_rlimit(rlimit(RLIMIT_DATA), brk, mm->start_brk,
222 mm->end_data, mm->start_data))
223 goto out;
224
225 newbrk = PAGE_ALIGN(brk);
226 oldbrk = PAGE_ALIGN(mm->brk);
227 if (oldbrk == newbrk) {
228 mm->brk = brk;
229 goto success;
230 }
231
232 /* Always allow shrinking brk. */
233 if (brk <= mm->brk) {
234 /* Search one past newbrk */
235 vma_iter_init(&vmi, mm, newbrk);
236 brkvma = vma_find(&vmi, oldbrk);
237 if (!brkvma || brkvma->vm_start >= oldbrk)
238 goto out; /* mapping intersects with an existing non-brk vma. */
239 /*
240 * mm->brk must be protected by write mmap_lock.
241 * do_vma_munmap() will drop the lock on success, so update it
242 * before calling do_vma_munmap().
243 */
244 mm->brk = brk;
245 if (do_vma_munmap(&vmi, brkvma, newbrk, oldbrk, &uf, true))
246 goto out;
247
248 goto success_unlocked;
249 }
250
251 if (check_brk_limits(oldbrk, newbrk - oldbrk))
252 goto out;
253
254 /*
255 * Only check if the next VMA is within the stack_guard_gap of the
256 * expansion area
257 */
258 vma_iter_init(&vmi, mm, oldbrk);
259 next = vma_find(&vmi, newbrk + PAGE_SIZE + stack_guard_gap);
260 if (next && newbrk + PAGE_SIZE > vm_start_gap(next))
261 goto out;
262
263 brkvma = vma_prev_limit(&vmi, mm->start_brk);
264 /* Ok, looks good - let it rip. */
265 if (do_brk_flags(&vmi, brkvma, oldbrk, newbrk - oldbrk, 0) < 0)
266 goto out;
267
268 mm->brk = brk;
269 if (mm->def_flags & VM_LOCKED)
270 populate = true;
271
272 success:
273 mmap_write_unlock(mm);
274 success_unlocked:
275 userfaultfd_unmap_complete(mm, &uf);
276 if (populate)
277 mm_populate(oldbrk, newbrk - oldbrk);
278 return brk;
279
280 out:
281 mm->brk = origbrk;
282 mmap_write_unlock(mm);
283 return origbrk;
284 }
285
286 #if defined(CONFIG_DEBUG_VM_MAPLE_TREE)
validate_mm(struct mm_struct *mm)287 static void validate_mm(struct mm_struct *mm)
288 {
289 int bug = 0;
290 int i = 0;
291 struct vm_area_struct *vma;
292 VMA_ITERATOR(vmi, mm, 0);
293
294 mt_validate(&mm->mm_mt);
295 for_each_vma(vmi, vma) {
296 #ifdef CONFIG_DEBUG_VM_RB
297 struct anon_vma *anon_vma = vma->anon_vma;
298 struct anon_vma_chain *avc;
299 #endif
300 unsigned long vmi_start, vmi_end;
301 bool warn = 0;
302
303 vmi_start = vma_iter_addr(&vmi);
304 vmi_end = vma_iter_end(&vmi);
305 if (VM_WARN_ON_ONCE_MM(vma->vm_end != vmi_end, mm))
306 warn = 1;
307
308 if (VM_WARN_ON_ONCE_MM(vma->vm_start != vmi_start, mm))
309 warn = 1;
310
311 if (warn) {
312 pr_emerg("issue in %s\n", current->comm);
313 dump_stack();
314 dump_vma(vma);
315 pr_emerg("tree range: %px start %lx end %lx\n", vma,
316 vmi_start, vmi_end - 1);
317 vma_iter_dump_tree(&vmi);
318 }
319
320 #ifdef CONFIG_DEBUG_VM_RB
321 if (anon_vma) {
322 anon_vma_lock_read(anon_vma);
323 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
324 anon_vma_interval_tree_verify(avc);
325 anon_vma_unlock_read(anon_vma);
326 }
327 #endif
328 i++;
329 }
330 if (i != mm->map_count) {
331 pr_emerg("map_count %d vma iterator %d\n", mm->map_count, i);
332 bug = 1;
333 }
334 VM_BUG_ON_MM(bug, mm);
335 }
336
337 #else /* !CONFIG_DEBUG_VM_MAPLE_TREE */
338 #define validate_mm(mm) do { } while (0)
339 #endif /* CONFIG_DEBUG_VM_MAPLE_TREE */
340
341 /*
342 * vma has some anon_vma assigned, and is already inserted on that
343 * anon_vma's interval trees.
344 *
345 * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the
346 * vma must be removed from the anon_vma's interval trees using
347 * anon_vma_interval_tree_pre_update_vma().
348 *
349 * After the update, the vma will be reinserted using
350 * anon_vma_interval_tree_post_update_vma().
351 *
352 * The entire update must be protected by exclusive mmap_lock and by
353 * the root anon_vma's mutex.
354 */
355 static inline void
anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma)356 anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma)
357 {
358 struct anon_vma_chain *avc;
359
360 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
361 anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root);
362 }
363
364 static inline void
anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma)365 anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma)
366 {
367 struct anon_vma_chain *avc;
368
369 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
370 anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root);
371 }
372
count_vma_pages_range(struct mm_struct *mm, unsigned long addr, unsigned long end)373 static unsigned long count_vma_pages_range(struct mm_struct *mm,
374 unsigned long addr, unsigned long end)
375 {
376 VMA_ITERATOR(vmi, mm, addr);
377 struct vm_area_struct *vma;
378 unsigned long nr_pages = 0;
379
380 for_each_vma_range(vmi, vma, end) {
381 unsigned long vm_start = max(addr, vma->vm_start);
382 unsigned long vm_end = min(end, vma->vm_end);
383
384 nr_pages += PHYS_PFN(vm_end - vm_start);
385 }
386
387 return nr_pages;
388 }
389
__vma_link_file(struct vm_area_struct *vma, struct address_space *mapping)390 static void __vma_link_file(struct vm_area_struct *vma,
391 struct address_space *mapping)
392 {
393 if (vma->vm_flags & VM_SHARED)
394 mapping_allow_writable(mapping);
395
396 flush_dcache_mmap_lock(mapping);
397 vma_interval_tree_insert(vma, &mapping->i_mmap);
398 flush_dcache_mmap_unlock(mapping);
399 }
400
vma_link(struct mm_struct *mm, struct vm_area_struct *vma)401 static int vma_link(struct mm_struct *mm, struct vm_area_struct *vma)
402 {
403 VMA_ITERATOR(vmi, mm, 0);
404 struct address_space *mapping = NULL;
405
406 vma_iter_config(&vmi, vma->vm_start, vma->vm_end);
407 if (vma_iter_prealloc(&vmi, vma))
408 return -ENOMEM;
409
410 vma_start_write(vma);
411
412 vma_iter_store(&vmi, vma);
413
414 if (vma->vm_file) {
415 mapping = vma->vm_file->f_mapping;
416 i_mmap_lock_write(mapping);
417 __vma_link_file(vma, mapping);
418 i_mmap_unlock_write(mapping);
419 }
420
421 mm->map_count++;
422 validate_mm(mm);
423 return 0;
424 }
425
426 /*
427 * init_multi_vma_prep() - Initializer for struct vma_prepare
428 * @vp: The vma_prepare struct
429 * @vma: The vma that will be altered once locked
430 * @next: The next vma if it is to be adjusted
431 * @remove: The first vma to be removed
432 * @remove2: The second vma to be removed
433 */
init_multi_vma_prep(struct vma_prepare *vp, struct vm_area_struct *vma, struct vm_area_struct *next, struct vm_area_struct *remove, struct vm_area_struct *remove2)434 static inline void init_multi_vma_prep(struct vma_prepare *vp,
435 struct vm_area_struct *vma, struct vm_area_struct *next,
436 struct vm_area_struct *remove, struct vm_area_struct *remove2)
437 {
438 memset(vp, 0, sizeof(struct vma_prepare));
439 vp->vma = vma;
440 vp->anon_vma = vma->anon_vma;
441 vp->remove = remove;
442 vp->remove2 = remove2;
443 vp->adj_next = next;
444 if (!vp->anon_vma && next)
445 vp->anon_vma = next->anon_vma;
446
447 vp->file = vma->vm_file;
448 if (vp->file)
449 vp->mapping = vma->vm_file->f_mapping;
450
451 }
452
453 /*
454 * init_vma_prep() - Initializer wrapper for vma_prepare struct
455 * @vp: The vma_prepare struct
456 * @vma: The vma that will be altered once locked
457 */
init_vma_prep(struct vma_prepare *vp, struct vm_area_struct *vma)458 static inline void init_vma_prep(struct vma_prepare *vp,
459 struct vm_area_struct *vma)
460 {
461 init_multi_vma_prep(vp, vma, NULL, NULL, NULL);
462 }
463
464
465 /*
466 * vma_prepare() - Helper function for handling locking VMAs prior to altering
467 * @vp: The initialized vma_prepare struct
468 */
vma_prepare(struct vma_prepare *vp)469 static inline void vma_prepare(struct vma_prepare *vp)
470 {
471 if (vp->file) {
472 uprobe_munmap(vp->vma, vp->vma->vm_start, vp->vma->vm_end);
473
474 if (vp->adj_next)
475 uprobe_munmap(vp->adj_next, vp->adj_next->vm_start,
476 vp->adj_next->vm_end);
477
478 i_mmap_lock_write(vp->mapping);
479 if (vp->insert && vp->insert->vm_file) {
480 /*
481 * Put into interval tree now, so instantiated pages
482 * are visible to arm/parisc __flush_dcache_page
483 * throughout; but we cannot insert into address
484 * space until vma start or end is updated.
485 */
486 __vma_link_file(vp->insert,
487 vp->insert->vm_file->f_mapping);
488 }
489 }
490
491 if (vp->anon_vma) {
492 anon_vma_lock_write(vp->anon_vma);
493 anon_vma_interval_tree_pre_update_vma(vp->vma);
494 if (vp->adj_next)
495 anon_vma_interval_tree_pre_update_vma(vp->adj_next);
496 }
497
498 if (vp->file) {
499 flush_dcache_mmap_lock(vp->mapping);
500 vma_interval_tree_remove(vp->vma, &vp->mapping->i_mmap);
501 if (vp->adj_next)
502 vma_interval_tree_remove(vp->adj_next,
503 &vp->mapping->i_mmap);
504 }
505
506 }
507
508 /*
509 * vma_complete- Helper function for handling the unlocking after altering VMAs,
510 * or for inserting a VMA.
511 *
512 * @vp: The vma_prepare struct
513 * @vmi: The vma iterator
514 * @mm: The mm_struct
515 */
vma_complete(struct vma_prepare *vp, struct vma_iterator *vmi, struct mm_struct *mm)516 static inline void vma_complete(struct vma_prepare *vp,
517 struct vma_iterator *vmi, struct mm_struct *mm)
518 {
519 if (vp->file) {
520 if (vp->adj_next)
521 vma_interval_tree_insert(vp->adj_next,
522 &vp->mapping->i_mmap);
523 vma_interval_tree_insert(vp->vma, &vp->mapping->i_mmap);
524 flush_dcache_mmap_unlock(vp->mapping);
525 }
526
527 if (vp->remove && vp->file) {
528 __remove_shared_vm_struct(vp->remove, vp->file, vp->mapping);
529 if (vp->remove2)
530 __remove_shared_vm_struct(vp->remove2, vp->file,
531 vp->mapping);
532 } else if (vp->insert) {
533 /*
534 * split_vma has split insert from vma, and needs
535 * us to insert it before dropping the locks
536 * (it may either follow vma or precede it).
537 */
538 vma_iter_store(vmi, vp->insert);
539 mm->map_count++;
540 }
541
542 if (vp->anon_vma) {
543 anon_vma_interval_tree_post_update_vma(vp->vma);
544 if (vp->adj_next)
545 anon_vma_interval_tree_post_update_vma(vp->adj_next);
546 anon_vma_unlock_write(vp->anon_vma);
547 }
548
549 if (vp->file) {
550 i_mmap_unlock_write(vp->mapping);
551 uprobe_mmap(vp->vma);
552
553 if (vp->adj_next)
554 uprobe_mmap(vp->adj_next);
555 }
556
557 if (vp->remove) {
558 again:
559 vma_mark_detached(vp->remove, true);
560 if (vp->file) {
561 uprobe_munmap(vp->remove, vp->remove->vm_start,
562 vp->remove->vm_end);
563 fput(vp->file);
564 }
565 if (vp->remove->anon_vma)
566 anon_vma_merge(vp->vma, vp->remove);
567 mm->map_count--;
568 mpol_put(vma_policy(vp->remove));
569 if (!vp->remove2)
570 WARN_ON_ONCE(vp->vma->vm_end < vp->remove->vm_end);
571 vm_area_free(vp->remove);
572
573 /*
574 * In mprotect's case 6 (see comments on vma_merge),
575 * we are removing both mid and next vmas
576 */
577 if (vp->remove2) {
578 vp->remove = vp->remove2;
579 vp->remove2 = NULL;
580 goto again;
581 }
582 }
583 if (vp->insert && vp->file)
584 uprobe_mmap(vp->insert);
585 validate_mm(mm);
586 }
587
588 /*
589 * dup_anon_vma() - Helper function to duplicate anon_vma
590 * @dst: The destination VMA
591 * @src: The source VMA
592 * @dup: Pointer to the destination VMA when successful.
593 *
594 * Returns: 0 on success.
595 */
dup_anon_vma(struct vm_area_struct *dst, struct vm_area_struct *src, struct vm_area_struct **dup)596 static inline int dup_anon_vma(struct vm_area_struct *dst,
597 struct vm_area_struct *src, struct vm_area_struct **dup)
598 {
599 /*
600 * Easily overlooked: when mprotect shifts the boundary, make sure the
601 * expanding vma has anon_vma set if the shrinking vma had, to cover any
602 * anon pages imported.
603 */
604 if (src->anon_vma && !dst->anon_vma) {
605 int ret;
606
607 vma_assert_write_locked(dst);
608 dst->anon_vma = src->anon_vma;
609 ret = anon_vma_clone(dst, src);
610 if (ret)
611 return ret;
612
613 *dup = dst;
614 }
615
616 return 0;
617 }
618
619 /*
620 * vma_expand - Expand an existing VMA
621 *
622 * @vmi: The vma iterator
623 * @vma: The vma to expand
624 * @start: The start of the vma
625 * @end: The exclusive end of the vma
626 * @pgoff: The page offset of vma
627 * @next: The current of next vma.
628 *
629 * Expand @vma to @start and @end. Can expand off the start and end. Will
630 * expand over @next if it's different from @vma and @end == @next->vm_end.
631 * Checking if the @vma can expand and merge with @next needs to be handled by
632 * the caller.
633 *
634 * Returns: 0 on success
635 */
vma_expand(struct vma_iterator *vmi, struct vm_area_struct *vma, unsigned long start, unsigned long end, pgoff_t pgoff, struct vm_area_struct *next)636 int vma_expand(struct vma_iterator *vmi, struct vm_area_struct *vma,
637 unsigned long start, unsigned long end, pgoff_t pgoff,
638 struct vm_area_struct *next)
639 {
640 struct vm_area_struct *anon_dup = NULL;
641 bool remove_next = false;
642 struct vma_prepare vp;
643
644 vma_start_write(vma);
645 if (next && (vma != next) && (end == next->vm_end)) {
646 int ret;
647
648 remove_next = true;
649 vma_start_write(next);
650 ret = dup_anon_vma(vma, next, &anon_dup);
651 if (ret)
652 return ret;
653 }
654
655 init_multi_vma_prep(&vp, vma, NULL, remove_next ? next : NULL, NULL);
656 /* Not merging but overwriting any part of next is not handled. */
657 VM_WARN_ON(next && !vp.remove &&
658 next != vma && end > next->vm_start);
659 /* Only handles expanding */
660 VM_WARN_ON(vma->vm_start < start || vma->vm_end > end);
661
662 /* Note: vma iterator must be pointing to 'start' */
663 vma_iter_config(vmi, start, end);
664 if (vma_iter_prealloc(vmi, vma))
665 goto nomem;
666
667 vma_prepare(&vp);
668 vma_adjust_trans_huge(vma, start, end, 0);
669 vma->vm_start = start;
670 vma->vm_end = end;
671 vma->vm_pgoff = pgoff;
672 vma_iter_store(vmi, vma);
673
674 vma_complete(&vp, vmi, vma->vm_mm);
675 return 0;
676
677 nomem:
678 if (anon_dup)
679 unlink_anon_vmas(anon_dup);
680 return -ENOMEM;
681 }
682
683 /*
684 * vma_shrink() - Reduce an existing VMAs memory area
685 * @vmi: The vma iterator
686 * @vma: The VMA to modify
687 * @start: The new start
688 * @end: The new end
689 *
690 * Returns: 0 on success, -ENOMEM otherwise
691 */
vma_shrink(struct vma_iterator *vmi, struct vm_area_struct *vma, unsigned long start, unsigned long end, pgoff_t pgoff)692 int vma_shrink(struct vma_iterator *vmi, struct vm_area_struct *vma,
693 unsigned long start, unsigned long end, pgoff_t pgoff)
694 {
695 struct vma_prepare vp;
696
697 WARN_ON((vma->vm_start != start) && (vma->vm_end != end));
698
699 if (vma->vm_start < start)
700 vma_iter_config(vmi, vma->vm_start, start);
701 else
702 vma_iter_config(vmi, end, vma->vm_end);
703
704 if (vma_iter_prealloc(vmi, NULL))
705 return -ENOMEM;
706
707 vma_start_write(vma);
708
709 init_vma_prep(&vp, vma);
710 vma_prepare(&vp);
711 vma_adjust_trans_huge(vma, start, end, 0);
712
713 vma_iter_clear(vmi);
714 vma->vm_start = start;
715 vma->vm_end = end;
716 vma->vm_pgoff = pgoff;
717 vma_complete(&vp, vmi, vma->vm_mm);
718 return 0;
719 }
720
721 /*
722 * If the vma has a ->close operation then the driver probably needs to release
723 * per-vma resources, so we don't attempt to merge those if the caller indicates
724 * the current vma may be removed as part of the merge.
725 */
is_mergeable_vma(struct vm_area_struct *vma, struct file *file, unsigned long vm_flags, struct vm_userfaultfd_ctx vm_userfaultfd_ctx, struct anon_vma_name *anon_name, bool may_remove_vma)726 static inline bool is_mergeable_vma(struct vm_area_struct *vma,
727 struct file *file, unsigned long vm_flags,
728 struct vm_userfaultfd_ctx vm_userfaultfd_ctx,
729 struct anon_vma_name *anon_name, bool may_remove_vma)
730 {
731 /*
732 * VM_SOFTDIRTY should not prevent from VMA merging, if we
733 * match the flags but dirty bit -- the caller should mark
734 * merged VMA as dirty. If dirty bit won't be excluded from
735 * comparison, we increase pressure on the memory system forcing
736 * the kernel to generate new VMAs when old one could be
737 * extended instead.
738 */
739 if ((vma->vm_flags ^ vm_flags) & ~VM_SOFTDIRTY)
740 return false;
741 if (vma->vm_file != file)
742 return false;
743 if (may_remove_vma && vma->vm_ops && vma->vm_ops->close)
744 return false;
745 if (!is_mergeable_vm_userfaultfd_ctx(vma, vm_userfaultfd_ctx))
746 return false;
747 if (!anon_vma_name_eq(anon_vma_name(vma), anon_name))
748 return false;
749 return true;
750 }
751
is_mergeable_anon_vma(struct anon_vma *anon_vma1, struct anon_vma *anon_vma2, struct vm_area_struct *vma)752 static inline bool is_mergeable_anon_vma(struct anon_vma *anon_vma1,
753 struct anon_vma *anon_vma2, struct vm_area_struct *vma)
754 {
755 /*
756 * The list_is_singular() test is to avoid merging VMA cloned from
757 * parents. This can improve scalability caused by anon_vma lock.
758 */
759 if ((!anon_vma1 || !anon_vma2) && (!vma ||
760 list_is_singular(&vma->anon_vma_chain)))
761 return true;
762 return anon_vma1 == anon_vma2;
763 }
764
765 /*
766 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
767 * in front of (at a lower virtual address and file offset than) the vma.
768 *
769 * We cannot merge two vmas if they have differently assigned (non-NULL)
770 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
771 *
772 * We don't check here for the merged mmap wrapping around the end of pagecache
773 * indices (16TB on ia32) because do_mmap() does not permit mmap's which
774 * wrap, nor mmaps which cover the final page at index -1UL.
775 *
776 * We assume the vma may be removed as part of the merge.
777 */
778 static bool
can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags, struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff, struct vm_userfaultfd_ctx vm_userfaultfd_ctx, struct anon_vma_name *anon_name)779 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
780 struct anon_vma *anon_vma, struct file *file,
781 pgoff_t vm_pgoff, struct vm_userfaultfd_ctx vm_userfaultfd_ctx,
782 struct anon_vma_name *anon_name)
783 {
784 if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx, anon_name, true) &&
785 is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
786 if (vma->vm_pgoff == vm_pgoff)
787 return true;
788 }
789 return false;
790 }
791
792 /*
793 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
794 * beyond (at a higher virtual address and file offset than) the vma.
795 *
796 * We cannot merge two vmas if they have differently assigned (non-NULL)
797 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
798 *
799 * We assume that vma is not removed as part of the merge.
800 */
801 static bool
can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags, struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff, struct vm_userfaultfd_ctx vm_userfaultfd_ctx, struct anon_vma_name *anon_name)802 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
803 struct anon_vma *anon_vma, struct file *file,
804 pgoff_t vm_pgoff, struct vm_userfaultfd_ctx vm_userfaultfd_ctx,
805 struct anon_vma_name *anon_name)
806 {
807 if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx, anon_name, false) &&
808 is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
809 pgoff_t vm_pglen;
810 vm_pglen = vma_pages(vma);
811 if (vma->vm_pgoff + vm_pglen == vm_pgoff)
812 return true;
813 }
814 return false;
815 }
816
817 /*
818 * Given a mapping request (addr,end,vm_flags,file,pgoff,anon_name),
819 * figure out whether that can be merged with its predecessor or its
820 * successor. Or both (it neatly fills a hole).
821 *
822 * In most cases - when called for mmap, brk or mremap - [addr,end) is
823 * certain not to be mapped by the time vma_merge is called; but when
824 * called for mprotect, it is certain to be already mapped (either at
825 * an offset within prev, or at the start of next), and the flags of
826 * this area are about to be changed to vm_flags - and the no-change
827 * case has already been eliminated.
828 *
829 * The following mprotect cases have to be considered, where **** is
830 * the area passed down from mprotect_fixup, never extending beyond one
831 * vma, PPPP is the previous vma, CCCC is a concurrent vma that starts
832 * at the same address as **** and is of the same or larger span, and
833 * NNNN the next vma after ****:
834 *
835 * **** **** ****
836 * PPPPPPNNNNNN PPPPPPNNNNNN PPPPPPCCCCCC
837 * cannot merge might become might become
838 * PPNNNNNNNNNN PPPPPPPPPPCC
839 * mmap, brk or case 4 below case 5 below
840 * mremap move:
841 * **** ****
842 * PPPP NNNN PPPPCCCCNNNN
843 * might become might become
844 * PPPPPPPPPPPP 1 or PPPPPPPPPPPP 6 or
845 * PPPPPPPPNNNN 2 or PPPPPPPPNNNN 7 or
846 * PPPPNNNNNNNN 3 PPPPNNNNNNNN 8
847 *
848 * It is important for case 8 that the vma CCCC overlapping the
849 * region **** is never going to extended over NNNN. Instead NNNN must
850 * be extended in region **** and CCCC must be removed. This way in
851 * all cases where vma_merge succeeds, the moment vma_merge drops the
852 * rmap_locks, the properties of the merged vma will be already
853 * correct for the whole merged range. Some of those properties like
854 * vm_page_prot/vm_flags may be accessed by rmap_walks and they must
855 * be correct for the whole merged range immediately after the
856 * rmap_locks are released. Otherwise if NNNN would be removed and
857 * CCCC would be extended over the NNNN range, remove_migration_ptes
858 * or other rmap walkers (if working on addresses beyond the "end"
859 * parameter) may establish ptes with the wrong permissions of CCCC
860 * instead of the right permissions of NNNN.
861 *
862 * In the code below:
863 * PPPP is represented by *prev
864 * CCCC is represented by *curr or not represented at all (NULL)
865 * NNNN is represented by *next or not represented at all (NULL)
866 * **** is not represented - it will be merged and the vma containing the
867 * area is returned, or the function will return NULL
868 */
vma_merge(struct vma_iterator *vmi, struct mm_struct *mm, struct vm_area_struct *prev, unsigned long addr, unsigned long end, unsigned long vm_flags, struct anon_vma *anon_vma, struct file *file, pgoff_t pgoff, struct mempolicy *policy, struct vm_userfaultfd_ctx vm_userfaultfd_ctx, struct anon_vma_name *anon_name)869 struct vm_area_struct *vma_merge(struct vma_iterator *vmi, struct mm_struct *mm,
870 struct vm_area_struct *prev, unsigned long addr,
871 unsigned long end, unsigned long vm_flags,
872 struct anon_vma *anon_vma, struct file *file,
873 pgoff_t pgoff, struct mempolicy *policy,
874 struct vm_userfaultfd_ctx vm_userfaultfd_ctx,
875 struct anon_vma_name *anon_name)
876 {
877 struct vm_area_struct *curr, *next, *res;
878 struct vm_area_struct *vma, *adjust, *remove, *remove2;
879 struct vm_area_struct *anon_dup = NULL;
880 struct vma_prepare vp;
881 pgoff_t vma_pgoff;
882 int err = 0;
883 bool merge_prev = false;
884 bool merge_next = false;
885 bool vma_expanded = false;
886 unsigned long vma_start = addr;
887 unsigned long vma_end = end;
888 pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
889 long adj_start = 0;
890
891 /*
892 * We later require that vma->vm_flags == vm_flags,
893 * so this tests vma->vm_flags & VM_SPECIAL, too.
894 */
895 if (vm_flags & VM_SPECIAL)
896 return NULL;
897
898 /* Does the input range span an existing VMA? (cases 5 - 8) */
899 curr = find_vma_intersection(mm, prev ? prev->vm_end : 0, end);
900
901 if (!curr || /* cases 1 - 4 */
902 end == curr->vm_end) /* cases 6 - 8, adjacent VMA */
903 next = vma_lookup(mm, end);
904 else
905 next = NULL; /* case 5 */
906
907 if (prev) {
908 vma_start = prev->vm_start;
909 vma_pgoff = prev->vm_pgoff;
910
911 /* Can we merge the predecessor? */
912 if (addr == prev->vm_end && mpol_equal(vma_policy(prev), policy)
913 && can_vma_merge_after(prev, vm_flags, anon_vma, file,
914 pgoff, vm_userfaultfd_ctx, anon_name)) {
915 merge_prev = true;
916 vma_prev(vmi);
917 }
918 }
919
920 /* Can we merge the successor? */
921 if (next && mpol_equal(policy, vma_policy(next)) &&
922 can_vma_merge_before(next, vm_flags, anon_vma, file, pgoff+pglen,
923 vm_userfaultfd_ctx, anon_name)) {
924 merge_next = true;
925 }
926
927 /* Verify some invariant that must be enforced by the caller. */
928 VM_WARN_ON(prev && addr <= prev->vm_start);
929 VM_WARN_ON(curr && (addr != curr->vm_start || end > curr->vm_end));
930 VM_WARN_ON(addr >= end);
931
932 if (!merge_prev && !merge_next)
933 return NULL; /* Not mergeable. */
934
935 if (merge_prev)
936 vma_start_write(prev);
937
938 res = vma = prev;
939 remove = remove2 = adjust = NULL;
940
941 /* Can we merge both the predecessor and the successor? */
942 if (merge_prev && merge_next &&
943 is_mergeable_anon_vma(prev->anon_vma, next->anon_vma, NULL)) {
944 vma_start_write(next);
945 remove = next; /* case 1 */
946 vma_end = next->vm_end;
947 err = dup_anon_vma(prev, next, &anon_dup);
948 if (curr) { /* case 6 */
949 vma_start_write(curr);
950 remove = curr;
951 remove2 = next;
952 if (!next->anon_vma)
953 err = dup_anon_vma(prev, curr, &anon_dup);
954 }
955 } else if (merge_prev) { /* case 2 */
956 if (curr) {
957 vma_start_write(curr);
958 err = dup_anon_vma(prev, curr, &anon_dup);
959 if (end == curr->vm_end) { /* case 7 */
960 remove = curr;
961 } else { /* case 5 */
962 adjust = curr;
963 adj_start = (end - curr->vm_start);
964 }
965 }
966 } else { /* merge_next */
967 vma_start_write(next);
968 res = next;
969 if (prev && addr < prev->vm_end) { /* case 4 */
970 vma_start_write(prev);
971 vma_end = addr;
972 adjust = next;
973 adj_start = -(prev->vm_end - addr);
974 err = dup_anon_vma(next, prev, &anon_dup);
975 } else {
976 /*
977 * Note that cases 3 and 8 are the ONLY ones where prev
978 * is permitted to be (but is not necessarily) NULL.
979 */
980 vma = next; /* case 3 */
981 vma_start = addr;
982 vma_end = next->vm_end;
983 vma_pgoff = next->vm_pgoff - pglen;
984 if (curr) { /* case 8 */
985 vma_pgoff = curr->vm_pgoff;
986 vma_start_write(curr);
987 remove = curr;
988 err = dup_anon_vma(next, curr, &anon_dup);
989 }
990 }
991 }
992
993 /* Error in anon_vma clone. */
994 if (err)
995 goto anon_vma_fail;
996
997 if (vma_start < vma->vm_start || vma_end > vma->vm_end)
998 vma_expanded = true;
999
1000 if (vma_expanded) {
1001 vma_iter_config(vmi, vma_start, vma_end);
1002 } else {
1003 vma_iter_config(vmi, adjust->vm_start + adj_start,
1004 adjust->vm_end);
1005 }
1006
1007 if (vma_iter_prealloc(vmi, vma))
1008 goto prealloc_fail;
1009
1010 init_multi_vma_prep(&vp, vma, adjust, remove, remove2);
1011 VM_WARN_ON(vp.anon_vma && adjust && adjust->anon_vma &&
1012 vp.anon_vma != adjust->anon_vma);
1013
1014 vma_prepare(&vp);
1015 vma_adjust_trans_huge(vma, vma_start, vma_end, adj_start);
1016
1017 vma->vm_start = vma_start;
1018 vma->vm_end = vma_end;
1019 vma->vm_pgoff = vma_pgoff;
1020
1021 if (vma_expanded)
1022 vma_iter_store(vmi, vma);
1023
1024 if (adj_start) {
1025 adjust->vm_start += adj_start;
1026 adjust->vm_pgoff += adj_start >> PAGE_SHIFT;
1027 if (adj_start < 0) {
1028 WARN_ON(vma_expanded);
1029 vma_iter_store(vmi, next);
1030 }
1031 }
1032
1033 vma_complete(&vp, vmi, mm);
1034 khugepaged_enter_vma(res, vm_flags);
1035 return res;
1036
1037 prealloc_fail:
1038 if (anon_dup)
1039 unlink_anon_vmas(anon_dup);
1040
1041 anon_vma_fail:
1042 vma_iter_set(vmi, addr);
1043 vma_iter_load(vmi);
1044 return NULL;
1045 }
1046
1047 /*
1048 * Rough compatibility check to quickly see if it's even worth looking
1049 * at sharing an anon_vma.
1050 *
1051 * They need to have the same vm_file, and the flags can only differ
1052 * in things that mprotect may change.
1053 *
1054 * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
1055 * we can merge the two vma's. For example, we refuse to merge a vma if
1056 * there is a vm_ops->close() function, because that indicates that the
1057 * driver is doing some kind of reference counting. But that doesn't
1058 * really matter for the anon_vma sharing case.
1059 */
anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b)1060 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b)
1061 {
1062 return a->vm_end == b->vm_start &&
1063 mpol_equal(vma_policy(a), vma_policy(b)) &&
1064 a->vm_file == b->vm_file &&
1065 !((a->vm_flags ^ b->vm_flags) & ~(VM_ACCESS_FLAGS | VM_SOFTDIRTY)) &&
1066 b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT);
1067 }
1068
1069 /*
1070 * Do some basic sanity checking to see if we can re-use the anon_vma
1071 * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
1072 * the same as 'old', the other will be the new one that is trying
1073 * to share the anon_vma.
1074 *
1075 * NOTE! This runs with mmap_lock held for reading, so it is possible that
1076 * the anon_vma of 'old' is concurrently in the process of being set up
1077 * by another page fault trying to merge _that_. But that's ok: if it
1078 * is being set up, that automatically means that it will be a singleton
1079 * acceptable for merging, so we can do all of this optimistically. But
1080 * we do that READ_ONCE() to make sure that we never re-load the pointer.
1081 *
1082 * IOW: that the "list_is_singular()" test on the anon_vma_chain only
1083 * matters for the 'stable anon_vma' case (ie the thing we want to avoid
1084 * is to return an anon_vma that is "complex" due to having gone through
1085 * a fork).
1086 *
1087 * We also make sure that the two vma's are compatible (adjacent,
1088 * and with the same memory policies). That's all stable, even with just
1089 * a read lock on the mmap_lock.
1090 */
reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b)1091 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b)
1092 {
1093 if (anon_vma_compatible(a, b)) {
1094 struct anon_vma *anon_vma = READ_ONCE(old->anon_vma);
1095
1096 if (anon_vma && list_is_singular(&old->anon_vma_chain))
1097 return anon_vma;
1098 }
1099 return NULL;
1100 }
1101
1102 /*
1103 * find_mergeable_anon_vma is used by anon_vma_prepare, to check
1104 * neighbouring vmas for a suitable anon_vma, before it goes off
1105 * to allocate a new anon_vma. It checks because a repetitive
1106 * sequence of mprotects and faults may otherwise lead to distinct
1107 * anon_vmas being allocated, preventing vma merge in subsequent
1108 * mprotect.
1109 */
find_mergeable_anon_vma(struct vm_area_struct *vma)1110 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
1111 {
1112 MA_STATE(mas, &vma->vm_mm->mm_mt, vma->vm_end, vma->vm_end);
1113 struct anon_vma *anon_vma = NULL;
1114 struct vm_area_struct *prev, *next;
1115
1116 /* Try next first. */
1117 next = mas_walk(&mas);
1118 if (next) {
1119 anon_vma = reusable_anon_vma(next, vma, next);
1120 if (anon_vma)
1121 return anon_vma;
1122 }
1123
1124 prev = mas_prev(&mas, 0);
1125 VM_BUG_ON_VMA(prev != vma, vma);
1126 prev = mas_prev(&mas, 0);
1127 /* Try prev next. */
1128 if (prev)
1129 anon_vma = reusable_anon_vma(prev, prev, vma);
1130
1131 /*
1132 * We might reach here with anon_vma == NULL if we can't find
1133 * any reusable anon_vma.
1134 * There's no absolute need to look only at touching neighbours:
1135 * we could search further afield for "compatible" anon_vmas.
1136 * But it would probably just be a waste of time searching,
1137 * or lead to too many vmas hanging off the same anon_vma.
1138 * We're trying to allow mprotect remerging later on,
1139 * not trying to minimize memory used for anon_vmas.
1140 */
1141 return anon_vma;
1142 }
1143
1144 /*
1145 * If a hint addr is less than mmap_min_addr change hint to be as
1146 * low as possible but still greater than mmap_min_addr
1147 */
round_hint_to_min(unsigned long hint)1148 static inline unsigned long round_hint_to_min(unsigned long hint)
1149 {
1150 hint &= PAGE_MASK;
1151 if (((void *)hint != NULL) &&
1152 (hint < mmap_min_addr))
1153 return PAGE_ALIGN(mmap_min_addr);
1154 return hint;
1155 }
1156
mlock_future_ok(struct mm_struct *mm, unsigned long flags, unsigned long bytes)1157 bool mlock_future_ok(struct mm_struct *mm, unsigned long flags,
1158 unsigned long bytes)
1159 {
1160 unsigned long locked_pages, limit_pages;
1161
1162 if (!(flags & VM_LOCKED) || capable(CAP_IPC_LOCK))
1163 return true;
1164
1165 locked_pages = bytes >> PAGE_SHIFT;
1166 locked_pages += mm->locked_vm;
1167
1168 limit_pages = rlimit(RLIMIT_MEMLOCK);
1169 limit_pages >>= PAGE_SHIFT;
1170
1171 return locked_pages <= limit_pages;
1172 }
1173
file_mmap_size_max(struct file *file, struct inode *inode)1174 static inline u64 file_mmap_size_max(struct file *file, struct inode *inode)
1175 {
1176 if (S_ISREG(inode->i_mode))
1177 return MAX_LFS_FILESIZE;
1178
1179 if (S_ISBLK(inode->i_mode))
1180 return MAX_LFS_FILESIZE;
1181
1182 if (S_ISSOCK(inode->i_mode))
1183 return MAX_LFS_FILESIZE;
1184
1185 /* Special "we do even unsigned file positions" case */
1186 if (file->f_mode & FMODE_UNSIGNED_OFFSET)
1187 return 0;
1188
1189 /* Yes, random drivers might want more. But I'm tired of buggy drivers */
1190 return ULONG_MAX;
1191 }
1192
file_mmap_ok(struct file *file, struct inode *inode, unsigned long pgoff, unsigned long len)1193 static inline bool file_mmap_ok(struct file *file, struct inode *inode,
1194 unsigned long pgoff, unsigned long len)
1195 {
1196 u64 maxsize = file_mmap_size_max(file, inode);
1197
1198 if (maxsize && len > maxsize)
1199 return false;
1200 maxsize -= len;
1201 if (pgoff > maxsize >> PAGE_SHIFT)
1202 return false;
1203 return true;
1204 }
1205
1206 /*
1207 * The caller must write-lock current->mm->mmap_lock.
1208 */
do_mmap(struct file *file, unsigned long addr, unsigned long len, unsigned long prot, unsigned long flags, vm_flags_t vm_flags, unsigned long pgoff, unsigned long *populate, struct list_head *uf)1209 unsigned long do_mmap(struct file *file, unsigned long addr,
1210 unsigned long len, unsigned long prot,
1211 unsigned long flags, vm_flags_t vm_flags,
1212 unsigned long pgoff, unsigned long *populate,
1213 struct list_head *uf)
1214 {
1215 struct mm_struct *mm = current->mm;
1216 int pkey = 0;
1217
1218 *populate = 0;
1219
1220 if (!len)
1221 return -EINVAL;
1222
1223 /*
1224 * Does the application expect PROT_READ to imply PROT_EXEC?
1225 *
1226 * (the exception is when the underlying filesystem is noexec
1227 * mounted, in which case we dont add PROT_EXEC.)
1228 */
1229 if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
1230 if (!(file && path_noexec(&file->f_path)))
1231 prot |= PROT_EXEC;
1232
1233 /* force arch specific MAP_FIXED handling in get_unmapped_area */
1234 if (flags & MAP_FIXED_NOREPLACE)
1235 flags |= MAP_FIXED;
1236
1237 if (!(flags & MAP_FIXED))
1238 addr = round_hint_to_min(addr);
1239
1240 /* Careful about overflows.. */
1241 len = PAGE_ALIGN(len);
1242 if (!len)
1243 return -ENOMEM;
1244
1245 /* offset overflow? */
1246 if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
1247 return -EOVERFLOW;
1248
1249 /* Too many mappings? */
1250 if (mm->map_count > sysctl_max_map_count)
1251 return -ENOMEM;
1252
1253 /* Obtain the address to map to. we verify (or select) it and ensure
1254 * that it represents a valid section of the address space.
1255 */
1256 addr = get_unmapped_area(file, addr, len, pgoff, flags);
1257 if (IS_ERR_VALUE(addr))
1258 return addr;
1259
1260 if (flags & MAP_FIXED_NOREPLACE) {
1261 if (find_vma_intersection(mm, addr, addr + len))
1262 return -EEXIST;
1263 }
1264
1265 if (prot == PROT_EXEC) {
1266 pkey = execute_only_pkey(mm);
1267 if (pkey < 0)
1268 pkey = 0;
1269 }
1270
1271 /* Do simple checking here so the lower-level routines won't have
1272 * to. we assume access permissions have been handled by the open
1273 * of the memory object, so we don't do any here.
1274 */
1275 vm_flags |= calc_vm_prot_bits(prot, pkey) | calc_vm_flag_bits(flags) |
1276 mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1277
1278 if (flags & MAP_LOCKED)
1279 if (!can_do_mlock())
1280 return -EPERM;
1281
1282 if (!mlock_future_ok(mm, vm_flags, len))
1283 return -EAGAIN;
1284
1285 if (file) {
1286 struct inode *inode = file_inode(file);
1287 unsigned long flags_mask;
1288
1289 if (!file_mmap_ok(file, inode, pgoff, len))
1290 return -EOVERFLOW;
1291
1292 flags_mask = LEGACY_MAP_MASK | file->f_op->mmap_supported_flags;
1293
1294 switch (flags & MAP_TYPE) {
1295 case MAP_SHARED:
1296 /*
1297 * Force use of MAP_SHARED_VALIDATE with non-legacy
1298 * flags. E.g. MAP_SYNC is dangerous to use with
1299 * MAP_SHARED as you don't know which consistency model
1300 * you will get. We silently ignore unsupported flags
1301 * with MAP_SHARED to preserve backward compatibility.
1302 */
1303 flags &= LEGACY_MAP_MASK;
1304 fallthrough;
1305 case MAP_SHARED_VALIDATE:
1306 if (flags & ~flags_mask)
1307 return -EOPNOTSUPP;
1308 if (prot & PROT_WRITE) {
1309 if (!(file->f_mode & FMODE_WRITE))
1310 return -EACCES;
1311 if (IS_SWAPFILE(file->f_mapping->host))
1312 return -ETXTBSY;
1313 }
1314
1315 /*
1316 * Make sure we don't allow writing to an append-only
1317 * file..
1318 */
1319 if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
1320 return -EACCES;
1321
1322 vm_flags |= VM_SHARED | VM_MAYSHARE;
1323 if (!(file->f_mode & FMODE_WRITE))
1324 vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
1325 fallthrough;
1326 case MAP_PRIVATE:
1327 if (!(file->f_mode & FMODE_READ))
1328 return -EACCES;
1329 if (path_noexec(&file->f_path)) {
1330 if (vm_flags & VM_EXEC)
1331 return -EPERM;
1332 vm_flags &= ~VM_MAYEXEC;
1333 }
1334
1335 if (!file->f_op->mmap)
1336 return -ENODEV;
1337 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1338 return -EINVAL;
1339 break;
1340
1341 default:
1342 return -EINVAL;
1343 }
1344 } else {
1345 switch (flags & MAP_TYPE) {
1346 case MAP_SHARED:
1347 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1348 return -EINVAL;
1349 /*
1350 * Ignore pgoff.
1351 */
1352 pgoff = 0;
1353 vm_flags |= VM_SHARED | VM_MAYSHARE;
1354 break;
1355 case MAP_PRIVATE:
1356 /*
1357 * Set pgoff according to addr for anon_vma.
1358 */
1359 pgoff = addr >> PAGE_SHIFT;
1360 break;
1361 #ifdef CONFIG_MEM_PURGEABLE
1362 case MAP_PURGEABLE:
1363 vm_flags |= VM_PURGEABLE;
1364 break;
1365 case MAP_USEREXPTE:
1366 vm_flags |= VM_USEREXPTE;
1367 break;
1368 #endif
1369 default:
1370 return -EINVAL;
1371 }
1372 }
1373
1374 /*
1375 * Set 'VM_NORESERVE' if we should not account for the
1376 * memory use of this mapping.
1377 */
1378 if (flags & MAP_NORESERVE) {
1379 /* We honor MAP_NORESERVE if allowed to overcommit */
1380 if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
1381 vm_flags |= VM_NORESERVE;
1382
1383 /* hugetlb applies strict overcommit unless MAP_NORESERVE */
1384 if (file && is_file_hugepages(file))
1385 vm_flags |= VM_NORESERVE;
1386 }
1387
1388 addr = mmap_region(file, addr, len, vm_flags, pgoff, uf);
1389 if (!IS_ERR_VALUE(addr) &&
1390 ((vm_flags & VM_LOCKED) ||
1391 (flags & (MAP_POPULATE | MAP_NONBLOCK)) == MAP_POPULATE))
1392 *populate = len;
1393 return addr;
1394 }
1395
ksys_mmap_pgoff(unsigned long addr, unsigned long len, unsigned long prot, unsigned long flags, unsigned long fd, unsigned long pgoff)1396 unsigned long ksys_mmap_pgoff(unsigned long addr, unsigned long len,
1397 unsigned long prot, unsigned long flags,
1398 unsigned long fd, unsigned long pgoff)
1399 {
1400 struct file *file = NULL;
1401 unsigned long retval;
1402
1403 if (!(flags & MAP_ANONYMOUS)) {
1404 audit_mmap_fd(fd, flags);
1405 file = fget(fd);
1406 if (!file)
1407 return -EBADF;
1408 if (is_file_hugepages(file)) {
1409 len = ALIGN(len, huge_page_size(hstate_file(file)));
1410 } else if (unlikely(flags & MAP_HUGETLB)) {
1411 retval = -EINVAL;
1412 goto out_fput;
1413 }
1414 } else if (flags & MAP_HUGETLB) {
1415 struct hstate *hs;
1416
1417 hs = hstate_sizelog((flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1418 if (!hs)
1419 return -EINVAL;
1420
1421 len = ALIGN(len, huge_page_size(hs));
1422 /*
1423 * VM_NORESERVE is used because the reservations will be
1424 * taken when vm_ops->mmap() is called
1425 */
1426 file = hugetlb_file_setup(HUGETLB_ANON_FILE, len,
1427 VM_NORESERVE,
1428 HUGETLB_ANONHUGE_INODE,
1429 (flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1430 if (IS_ERR(file))
1431 return PTR_ERR(file);
1432 }
1433
1434 retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1435
1436 if (!IS_ERR_VALUE(retval)) {
1437 CALL_HCK_LITE_HOOK(check_jit_memory_lhck, current, fd, prot, flags, PAGE_ALIGN(len), &retval);
1438 if (IS_ERR_VALUE(retval))
1439 pr_info("JITINFO: jit request denied");
1440 }
1441 out_fput:
1442 if (file)
1443 fput(file);
1444 return retval;
1445 }
1446
SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len, unsigned long, prot, unsigned long, flags, unsigned long, fd, unsigned long, pgoff)1447 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1448 unsigned long, prot, unsigned long, flags,
1449 unsigned long, fd, unsigned long, pgoff)
1450 {
1451 return ksys_mmap_pgoff(addr, len, prot, flags, fd, pgoff);
1452 }
1453
1454 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1455 struct mmap_arg_struct {
1456 unsigned long addr;
1457 unsigned long len;
1458 unsigned long prot;
1459 unsigned long flags;
1460 unsigned long fd;
1461 unsigned long offset;
1462 };
1463
SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)1464 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1465 {
1466 struct mmap_arg_struct a;
1467
1468 if (copy_from_user(&a, arg, sizeof(a)))
1469 return -EFAULT;
1470 if (offset_in_page(a.offset))
1471 return -EINVAL;
1472
1473 return ksys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1474 a.offset >> PAGE_SHIFT);
1475 }
1476 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1477
vm_ops_needs_writenotify(const struct vm_operations_struct *vm_ops)1478 static bool vm_ops_needs_writenotify(const struct vm_operations_struct *vm_ops)
1479 {
1480 return vm_ops && (vm_ops->page_mkwrite || vm_ops->pfn_mkwrite);
1481 }
1482
vma_is_shared_writable(struct vm_area_struct *vma)1483 static bool vma_is_shared_writable(struct vm_area_struct *vma)
1484 {
1485 return (vma->vm_flags & (VM_WRITE | VM_SHARED)) ==
1486 (VM_WRITE | VM_SHARED);
1487 }
1488
vma_fs_can_writeback(struct vm_area_struct *vma)1489 static bool vma_fs_can_writeback(struct vm_area_struct *vma)
1490 {
1491 /* No managed pages to writeback. */
1492 if (vma->vm_flags & VM_PFNMAP)
1493 return false;
1494
1495 return vma->vm_file && vma->vm_file->f_mapping &&
1496 mapping_can_writeback(vma->vm_file->f_mapping);
1497 }
1498
1499 /*
1500 * Does this VMA require the underlying folios to have their dirty state
1501 * tracked?
1502 */
vma_needs_dirty_tracking(struct vm_area_struct *vma)1503 bool vma_needs_dirty_tracking(struct vm_area_struct *vma)
1504 {
1505 /* Only shared, writable VMAs require dirty tracking. */
1506 if (!vma_is_shared_writable(vma))
1507 return false;
1508
1509 /* Does the filesystem need to be notified? */
1510 if (vm_ops_needs_writenotify(vma->vm_ops))
1511 return true;
1512
1513 /*
1514 * Even if the filesystem doesn't indicate a need for writenotify, if it
1515 * can writeback, dirty tracking is still required.
1516 */
1517 return vma_fs_can_writeback(vma);
1518 }
1519
1520 /*
1521 * Some shared mappings will want the pages marked read-only
1522 * to track write events. If so, we'll downgrade vm_page_prot
1523 * to the private version (using protection_map[] without the
1524 * VM_SHARED bit).
1525 */
vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot)1526 int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot)
1527 {
1528 /* If it was private or non-writable, the write bit is already clear */
1529 if (!vma_is_shared_writable(vma))
1530 return 0;
1531
1532 /* The backer wishes to know when pages are first written to? */
1533 if (vm_ops_needs_writenotify(vma->vm_ops))
1534 return 1;
1535
1536 /* The open routine did something to the protections that pgprot_modify
1537 * won't preserve? */
1538 if (pgprot_val(vm_page_prot) !=
1539 pgprot_val(vm_pgprot_modify(vm_page_prot, vma->vm_flags)))
1540 return 0;
1541
1542 /*
1543 * Do we need to track softdirty? hugetlb does not support softdirty
1544 * tracking yet.
1545 */
1546 if (vma_soft_dirty_enabled(vma) && !is_vm_hugetlb_page(vma))
1547 return 1;
1548
1549 /* Do we need write faults for uffd-wp tracking? */
1550 if (userfaultfd_wp(vma))
1551 return 1;
1552
1553 /* Can the mapping track the dirty pages? */
1554 return vma_fs_can_writeback(vma);
1555 }
1556
1557 /*
1558 * We account for memory if it's a private writeable mapping,
1559 * not hugepages and VM_NORESERVE wasn't set.
1560 */
accountable_mapping(struct file *file, vm_flags_t vm_flags)1561 static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags)
1562 {
1563 /*
1564 * hugetlb has its own accounting separate from the core VM
1565 * VM_HUGETLB may not be set yet so we cannot check for that flag.
1566 */
1567 if (file && is_file_hugepages(file))
1568 return 0;
1569
1570 return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
1571 }
1572
1573 /**
1574 * unmapped_area() - Find an area between the low_limit and the high_limit with
1575 * the correct alignment and offset, all from @info. Note: current->mm is used
1576 * for the search.
1577 *
1578 * @info: The unmapped area information including the range [low_limit -
1579 * high_limit), the alignment offset and mask.
1580 *
1581 * Return: A memory address or -ENOMEM.
1582 */
unmapped_area(struct vm_unmapped_area_info *info)1583 static unsigned long unmapped_area(struct vm_unmapped_area_info *info)
1584 {
1585 unsigned long length, gap;
1586 unsigned long low_limit, high_limit;
1587 struct vm_area_struct *tmp;
1588
1589 MA_STATE(mas, ¤t->mm->mm_mt, 0, 0);
1590
1591 /* Adjust search length to account for worst case alignment overhead */
1592 length = info->length + info->align_mask;
1593 if (length < info->length)
1594 return -ENOMEM;
1595
1596 low_limit = info->low_limit;
1597 if (low_limit < mmap_min_addr)
1598 low_limit = mmap_min_addr;
1599 high_limit = info->high_limit;
1600 retry:
1601 if (mas_empty_area(&mas, low_limit, high_limit - 1, length))
1602 return -ENOMEM;
1603
1604 gap = mas.index;
1605 gap += (info->align_offset - gap) & info->align_mask;
1606 tmp = mas_next(&mas, ULONG_MAX);
1607 if (tmp && (tmp->vm_flags & VM_STARTGAP_FLAGS)) { /* Avoid prev check if possible */
1608 if (vm_start_gap(tmp) < gap + length - 1) {
1609 low_limit = tmp->vm_end;
1610 mas_reset(&mas);
1611 goto retry;
1612 }
1613 } else {
1614 tmp = mas_prev(&mas, 0);
1615 if (tmp && vm_end_gap(tmp) > gap) {
1616 low_limit = vm_end_gap(tmp);
1617 mas_reset(&mas);
1618 goto retry;
1619 }
1620 }
1621
1622 return gap;
1623 }
1624
1625 /**
1626 * unmapped_area_topdown() - Find an area between the low_limit and the
1627 * high_limit with the correct alignment and offset at the highest available
1628 * address, all from @info. Note: current->mm is used for the search.
1629 *
1630 * @info: The unmapped area information including the range [low_limit -
1631 * high_limit), the alignment offset and mask.
1632 *
1633 * Return: A memory address or -ENOMEM.
1634 */
unmapped_area_topdown(struct vm_unmapped_area_info *info)1635 static unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info)
1636 {
1637 unsigned long length, gap, gap_end;
1638 unsigned long low_limit, high_limit;
1639 struct vm_area_struct *tmp;
1640
1641 MA_STATE(mas, ¤t->mm->mm_mt, 0, 0);
1642 /* Adjust search length to account for worst case alignment overhead */
1643 length = info->length + info->align_mask;
1644 if (length < info->length)
1645 return -ENOMEM;
1646
1647 low_limit = info->low_limit;
1648 if (low_limit < mmap_min_addr)
1649 low_limit = mmap_min_addr;
1650 high_limit = info->high_limit;
1651 retry:
1652 if (mas_empty_area_rev(&mas, low_limit, high_limit - 1, length))
1653 return -ENOMEM;
1654
1655 gap = mas.last + 1 - info->length;
1656 gap -= (gap - info->align_offset) & info->align_mask;
1657 gap_end = mas.last;
1658 tmp = mas_next(&mas, ULONG_MAX);
1659 if (tmp && (tmp->vm_flags & VM_STARTGAP_FLAGS)) { /* Avoid prev check if possible */
1660 if (vm_start_gap(tmp) <= gap_end) {
1661 high_limit = vm_start_gap(tmp);
1662 mas_reset(&mas);
1663 goto retry;
1664 }
1665 } else {
1666 tmp = mas_prev(&mas, 0);
1667 if (tmp && vm_end_gap(tmp) > gap) {
1668 high_limit = tmp->vm_start;
1669 mas_reset(&mas);
1670 goto retry;
1671 }
1672 }
1673
1674 return gap;
1675 }
1676
1677 /*
1678 * Search for an unmapped address range.
1679 *
1680 * We are looking for a range that:
1681 * - does not intersect with any VMA;
1682 * - is contained within the [low_limit, high_limit) interval;
1683 * - is at least the desired size.
1684 * - satisfies (begin_addr & align_mask) == (align_offset & align_mask)
1685 */
vm_unmapped_area(struct vm_unmapped_area_info *info)1686 unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info)
1687 {
1688 unsigned long addr;
1689
1690 if (info->flags & VM_UNMAPPED_AREA_TOPDOWN)
1691 addr = unmapped_area_topdown(info);
1692 else
1693 addr = unmapped_area(info);
1694
1695 trace_vm_unmapped_area(addr, info);
1696 return addr;
1697 }
1698
1699 /* Get an address range which is currently unmapped.
1700 * For shmat() with addr=0.
1701 *
1702 * Ugly calling convention alert:
1703 * Return value with the low bits set means error value,
1704 * ie
1705 * if (ret & ~PAGE_MASK)
1706 * error = ret;
1707 *
1708 * This function "knows" that -ENOMEM has the bits set.
1709 */
1710 unsigned long
generic_get_unmapped_area(struct file *filp, unsigned long addr, unsigned long len, unsigned long pgoff, unsigned long flags)1711 generic_get_unmapped_area(struct file *filp, unsigned long addr,
1712 unsigned long len, unsigned long pgoff,
1713 unsigned long flags)
1714 {
1715 struct mm_struct *mm = current->mm;
1716 struct vm_area_struct *vma, *prev;
1717 struct vm_unmapped_area_info info;
1718 const unsigned long mmap_end = arch_get_mmap_end(addr, len, flags);
1719
1720 if (len > mmap_end - mmap_min_addr)
1721 return -ENOMEM;
1722
1723 if (flags & MAP_FIXED)
1724 return addr;
1725
1726 if (addr) {
1727 addr = PAGE_ALIGN(addr);
1728 vma = find_vma_prev(mm, addr, &prev);
1729 if (mmap_end - len >= addr && addr >= mmap_min_addr &&
1730 (!vma || addr + len <= vm_start_gap(vma)) &&
1731 (!prev || addr >= vm_end_gap(prev)))
1732 return addr;
1733 }
1734
1735 info.flags = 0;
1736 info.length = len;
1737 info.low_limit = mm->mmap_base;
1738 info.high_limit = mmap_end;
1739 info.align_mask = 0;
1740 info.align_offset = 0;
1741 return vm_unmapped_area(&info);
1742 }
1743
1744 #ifndef HAVE_ARCH_UNMAPPED_AREA
1745 unsigned long
arch_get_unmapped_area(struct file *filp, unsigned long addr, unsigned long len, unsigned long pgoff, unsigned long flags)1746 arch_get_unmapped_area(struct file *filp, unsigned long addr,
1747 unsigned long len, unsigned long pgoff,
1748 unsigned long flags)
1749 {
1750 return generic_get_unmapped_area(filp, addr, len, pgoff, flags);
1751 }
1752 #endif
1753
1754 /*
1755 * This mmap-allocator allocates new areas top-down from below the
1756 * stack's low limit (the base):
1757 */
1758 unsigned long
generic_get_unmapped_area_topdown(struct file *filp, unsigned long addr, unsigned long len, unsigned long pgoff, unsigned long flags)1759 generic_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
1760 unsigned long len, unsigned long pgoff,
1761 unsigned long flags)
1762 {
1763 struct vm_area_struct *vma, *prev;
1764 struct mm_struct *mm = current->mm;
1765 struct vm_unmapped_area_info info;
1766 const unsigned long mmap_end = arch_get_mmap_end(addr, len, flags);
1767
1768 /* requested length too big for entire address space */
1769 if (len > mmap_end - mmap_min_addr)
1770 return -ENOMEM;
1771
1772 if (flags & MAP_FIXED)
1773 return addr;
1774
1775 /* requesting a specific address */
1776 if (addr) {
1777 addr = PAGE_ALIGN(addr);
1778 vma = find_vma_prev(mm, addr, &prev);
1779 if (mmap_end - len >= addr && addr >= mmap_min_addr &&
1780 (!vma || addr + len <= vm_start_gap(vma)) &&
1781 (!prev || addr >= vm_end_gap(prev)))
1782 return addr;
1783 }
1784
1785 info.flags = VM_UNMAPPED_AREA_TOPDOWN;
1786 info.length = len;
1787 info.low_limit = PAGE_SIZE;
1788 info.high_limit = arch_get_mmap_base(addr, mm->mmap_base);
1789 info.align_mask = 0;
1790 info.align_offset = 0;
1791 addr = vm_unmapped_area(&info);
1792
1793 /*
1794 * A failed mmap() very likely causes application failure,
1795 * so fall back to the bottom-up function here. This scenario
1796 * can happen with large stack limits and large mmap()
1797 * allocations.
1798 */
1799 if (offset_in_page(addr)) {
1800 VM_BUG_ON(addr != -ENOMEM);
1801 info.flags = 0;
1802 info.low_limit = TASK_UNMAPPED_BASE;
1803 info.high_limit = mmap_end;
1804 addr = vm_unmapped_area(&info);
1805 }
1806
1807 return addr;
1808 }
1809
1810 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
1811 unsigned long
arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr, unsigned long len, unsigned long pgoff, unsigned long flags)1812 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
1813 unsigned long len, unsigned long pgoff,
1814 unsigned long flags)
1815 {
1816 return generic_get_unmapped_area_topdown(filp, addr, len, pgoff, flags);
1817 }
1818 #endif
1819
1820 unsigned long
get_unmapped_area(struct file *file, unsigned long addr, unsigned long len, unsigned long pgoff, unsigned long flags)1821 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
1822 unsigned long pgoff, unsigned long flags)
1823 {
1824 unsigned long (*get_area)(struct file *, unsigned long,
1825 unsigned long, unsigned long, unsigned long);
1826
1827 unsigned long error = arch_mmap_check(addr, len, flags);
1828 if (error)
1829 return error;
1830
1831 /* Careful about overflows.. */
1832 if (len > TASK_SIZE)
1833 return -ENOMEM;
1834
1835 get_area = current->mm->get_unmapped_area;
1836 if (file) {
1837 if (file->f_op->get_unmapped_area)
1838 get_area = file->f_op->get_unmapped_area;
1839 } else if (flags & MAP_SHARED) {
1840 /*
1841 * mmap_region() will call shmem_zero_setup() to create a file,
1842 * so use shmem's get_unmapped_area in case it can be huge.
1843 * do_mmap() will clear pgoff, so match alignment.
1844 */
1845 pgoff = 0;
1846 get_area = shmem_get_unmapped_area;
1847 }
1848
1849 addr = get_area(file, addr, len, pgoff, flags);
1850 if (IS_ERR_VALUE(addr))
1851 return addr;
1852
1853 if (addr > TASK_SIZE - len)
1854 return -ENOMEM;
1855 if (offset_in_page(addr))
1856 return -EINVAL;
1857
1858 error = security_mmap_addr(addr);
1859 return error ? error : addr;
1860 }
1861
1862 EXPORT_SYMBOL(get_unmapped_area);
1863
1864 /**
1865 * find_vma_intersection() - Look up the first VMA which intersects the interval
1866 * @mm: The process address space.
1867 * @start_addr: The inclusive start user address.
1868 * @end_addr: The exclusive end user address.
1869 *
1870 * Returns: The first VMA within the provided range, %NULL otherwise. Assumes
1871 * start_addr < end_addr.
1872 */
find_vma_intersection(struct mm_struct *mm, unsigned long start_addr, unsigned long end_addr)1873 struct vm_area_struct *find_vma_intersection(struct mm_struct *mm,
1874 unsigned long start_addr,
1875 unsigned long end_addr)
1876 {
1877 unsigned long index = start_addr;
1878
1879 mmap_assert_locked(mm);
1880 return mt_find(&mm->mm_mt, &index, end_addr - 1);
1881 }
1882 EXPORT_SYMBOL(find_vma_intersection);
1883
1884 /**
1885 * find_vma() - Find the VMA for a given address, or the next VMA.
1886 * @mm: The mm_struct to check
1887 * @addr: The address
1888 *
1889 * Returns: The VMA associated with addr, or the next VMA.
1890 * May return %NULL in the case of no VMA at addr or above.
1891 */
find_vma(struct mm_struct *mm, unsigned long addr)1892 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
1893 {
1894 unsigned long index = addr;
1895
1896 mmap_assert_locked(mm);
1897 return mt_find(&mm->mm_mt, &index, ULONG_MAX);
1898 }
1899 EXPORT_SYMBOL(find_vma);
1900
1901 /**
1902 * find_vma_prev() - Find the VMA for a given address, or the next vma and
1903 * set %pprev to the previous VMA, if any.
1904 * @mm: The mm_struct to check
1905 * @addr: The address
1906 * @pprev: The pointer to set to the previous VMA
1907 *
1908 * Note that RCU lock is missing here since the external mmap_lock() is used
1909 * instead.
1910 *
1911 * Returns: The VMA associated with @addr, or the next vma.
1912 * May return %NULL in the case of no vma at addr or above.
1913 */
1914 struct vm_area_struct *
find_vma_prev(struct mm_struct *mm, unsigned long addr, struct vm_area_struct **pprev)1915 find_vma_prev(struct mm_struct *mm, unsigned long addr,
1916 struct vm_area_struct **pprev)
1917 {
1918 struct vm_area_struct *vma;
1919 MA_STATE(mas, &mm->mm_mt, addr, addr);
1920
1921 vma = mas_walk(&mas);
1922 *pprev = mas_prev(&mas, 0);
1923 if (!vma)
1924 vma = mas_next(&mas, ULONG_MAX);
1925 return vma;
1926 }
1927
1928 /*
1929 * Verify that the stack growth is acceptable and
1930 * update accounting. This is shared with both the
1931 * grow-up and grow-down cases.
1932 */
acct_stack_growth(struct vm_area_struct *vma, unsigned long size, unsigned long grow)1933 static int acct_stack_growth(struct vm_area_struct *vma,
1934 unsigned long size, unsigned long grow)
1935 {
1936 struct mm_struct *mm = vma->vm_mm;
1937 unsigned long new_start;
1938
1939 /* address space limit tests */
1940 if (!may_expand_vm(mm, vma->vm_flags, grow))
1941 return -ENOMEM;
1942
1943 /* Stack limit test */
1944 if (size > rlimit(RLIMIT_STACK))
1945 return -ENOMEM;
1946
1947 /* mlock limit tests */
1948 if (!mlock_future_ok(mm, vma->vm_flags, grow << PAGE_SHIFT))
1949 return -ENOMEM;
1950
1951 /* Check to ensure the stack will not grow into a hugetlb-only region */
1952 new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
1953 vma->vm_end - size;
1954 if (is_hugepage_only_range(vma->vm_mm, new_start, size))
1955 return -EFAULT;
1956
1957 /*
1958 * Overcommit.. This must be the final test, as it will
1959 * update security statistics.
1960 */
1961 if (security_vm_enough_memory_mm(mm, grow))
1962 return -ENOMEM;
1963
1964 return 0;
1965 }
1966
1967 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
1968 /*
1969 * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
1970 * vma is the last one with address > vma->vm_end. Have to extend vma.
1971 */
expand_upwards(struct vm_area_struct *vma, unsigned long address)1972 static int expand_upwards(struct vm_area_struct *vma, unsigned long address)
1973 {
1974 struct mm_struct *mm = vma->vm_mm;
1975 struct vm_area_struct *next;
1976 unsigned long gap_addr;
1977 int error = 0;
1978 MA_STATE(mas, &mm->mm_mt, vma->vm_start, address);
1979
1980 if (!(vma->vm_flags & VM_GROWSUP))
1981 return -EFAULT;
1982
1983 /* Guard against exceeding limits of the address space. */
1984 address &= PAGE_MASK;
1985 if (address >= (TASK_SIZE & PAGE_MASK))
1986 return -ENOMEM;
1987 address += PAGE_SIZE;
1988
1989 /* Enforce stack_guard_gap */
1990 gap_addr = address + stack_guard_gap;
1991
1992 /* Guard against overflow */
1993 if (gap_addr < address || gap_addr > TASK_SIZE)
1994 gap_addr = TASK_SIZE;
1995
1996 next = find_vma_intersection(mm, vma->vm_end, gap_addr);
1997 if (next && vma_is_accessible(next)) {
1998 if (!(next->vm_flags & VM_GROWSUP))
1999 return -ENOMEM;
2000 /* Check that both stack segments have the same anon_vma? */
2001 }
2002
2003 if (next)
2004 mas_prev_range(&mas, address);
2005
2006 __mas_set_range(&mas, vma->vm_start, address - 1);
2007 if (mas_preallocate(&mas, vma, GFP_KERNEL))
2008 return -ENOMEM;
2009
2010 /* We must make sure the anon_vma is allocated. */
2011 if (unlikely(anon_vma_prepare(vma))) {
2012 mas_destroy(&mas);
2013 return -ENOMEM;
2014 }
2015
2016 /* Lock the VMA before expanding to prevent concurrent page faults */
2017 vma_start_write(vma);
2018 /*
2019 * vma->vm_start/vm_end cannot change under us because the caller
2020 * is required to hold the mmap_lock in read mode. We need the
2021 * anon_vma lock to serialize against concurrent expand_stacks.
2022 */
2023 anon_vma_lock_write(vma->anon_vma);
2024
2025 /* Somebody else might have raced and expanded it already */
2026 if (address > vma->vm_end) {
2027 unsigned long size, grow;
2028
2029 size = address - vma->vm_start;
2030 grow = (address - vma->vm_end) >> PAGE_SHIFT;
2031
2032 error = -ENOMEM;
2033 if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) {
2034 error = acct_stack_growth(vma, size, grow);
2035 if (!error) {
2036 /*
2037 * We only hold a shared mmap_lock lock here, so
2038 * we need to protect against concurrent vma
2039 * expansions. anon_vma_lock_write() doesn't
2040 * help here, as we don't guarantee that all
2041 * growable vmas in a mm share the same root
2042 * anon vma. So, we reuse mm->page_table_lock
2043 * to guard against concurrent vma expansions.
2044 */
2045 spin_lock(&mm->page_table_lock);
2046 if (vma->vm_flags & VM_LOCKED)
2047 mm->locked_vm += grow;
2048 vm_stat_account(mm, vma->vm_flags, grow);
2049 anon_vma_interval_tree_pre_update_vma(vma);
2050 vma->vm_end = address;
2051 /* Overwrite old entry in mtree. */
2052 mas_store_prealloc(&mas, vma);
2053 anon_vma_interval_tree_post_update_vma(vma);
2054 spin_unlock(&mm->page_table_lock);
2055
2056 perf_event_mmap(vma);
2057 }
2058 }
2059 }
2060 anon_vma_unlock_write(vma->anon_vma);
2061 khugepaged_enter_vma(vma, vma->vm_flags);
2062 mas_destroy(&mas);
2063 validate_mm(mm);
2064 return error;
2065 }
2066 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
2067
2068 /*
2069 * vma is the first one with address < vma->vm_start. Have to extend vma.
2070 * mmap_lock held for writing.
2071 */
expand_downwards(struct vm_area_struct *vma, unsigned long address)2072 int expand_downwards(struct vm_area_struct *vma, unsigned long address)
2073 {
2074 struct mm_struct *mm = vma->vm_mm;
2075 MA_STATE(mas, &mm->mm_mt, vma->vm_start, vma->vm_start);
2076 struct vm_area_struct *prev;
2077 int error = 0;
2078
2079 if (!(vma->vm_flags & VM_GROWSDOWN))
2080 return -EFAULT;
2081
2082 address &= PAGE_MASK;
2083 if (address < mmap_min_addr || address < FIRST_USER_ADDRESS)
2084 return -EPERM;
2085
2086 /* Enforce stack_guard_gap */
2087 prev = mas_prev(&mas, 0);
2088 /* Check that both stack segments have the same anon_vma? */
2089 if (prev) {
2090 if (!(prev->vm_flags & VM_GROWSDOWN) &&
2091 vma_is_accessible(prev) &&
2092 (address - prev->vm_end < stack_guard_gap))
2093 return -ENOMEM;
2094 }
2095
2096 if (prev)
2097 mas_next_range(&mas, vma->vm_start);
2098
2099 __mas_set_range(&mas, address, vma->vm_end - 1);
2100 if (mas_preallocate(&mas, vma, GFP_KERNEL))
2101 return -ENOMEM;
2102
2103 /* We must make sure the anon_vma is allocated. */
2104 if (unlikely(anon_vma_prepare(vma))) {
2105 mas_destroy(&mas);
2106 return -ENOMEM;
2107 }
2108
2109 /* Lock the VMA before expanding to prevent concurrent page faults */
2110 vma_start_write(vma);
2111 /*
2112 * vma->vm_start/vm_end cannot change under us because the caller
2113 * is required to hold the mmap_lock in read mode. We need the
2114 * anon_vma lock to serialize against concurrent expand_stacks.
2115 */
2116 anon_vma_lock_write(vma->anon_vma);
2117
2118 /* Somebody else might have raced and expanded it already */
2119 if (address < vma->vm_start) {
2120 unsigned long size, grow;
2121
2122 size = vma->vm_end - address;
2123 grow = (vma->vm_start - address) >> PAGE_SHIFT;
2124
2125 error = -ENOMEM;
2126 if (grow <= vma->vm_pgoff) {
2127 error = acct_stack_growth(vma, size, grow);
2128 if (!error) {
2129 /*
2130 * We only hold a shared mmap_lock lock here, so
2131 * we need to protect against concurrent vma
2132 * expansions. anon_vma_lock_write() doesn't
2133 * help here, as we don't guarantee that all
2134 * growable vmas in a mm share the same root
2135 * anon vma. So, we reuse mm->page_table_lock
2136 * to guard against concurrent vma expansions.
2137 */
2138 spin_lock(&mm->page_table_lock);
2139 if (vma->vm_flags & VM_LOCKED)
2140 mm->locked_vm += grow;
2141 vm_stat_account(mm, vma->vm_flags, grow);
2142 anon_vma_interval_tree_pre_update_vma(vma);
2143 vma->vm_start = address;
2144 vma->vm_pgoff -= grow;
2145 /* Overwrite old entry in mtree. */
2146 mas_store_prealloc(&mas, vma);
2147 anon_vma_interval_tree_post_update_vma(vma);
2148 spin_unlock(&mm->page_table_lock);
2149
2150 perf_event_mmap(vma);
2151 }
2152 }
2153 }
2154 anon_vma_unlock_write(vma->anon_vma);
2155 khugepaged_enter_vma(vma, vma->vm_flags);
2156 mas_destroy(&mas);
2157 validate_mm(mm);
2158 return error;
2159 }
2160
2161 /* enforced gap between the expanding stack and other mappings. */
2162 unsigned long stack_guard_gap = 256UL<<PAGE_SHIFT;
2163
cmdline_parse_stack_guard_gap(char *p)2164 static int __init cmdline_parse_stack_guard_gap(char *p)
2165 {
2166 unsigned long val;
2167 char *endptr;
2168
2169 val = simple_strtoul(p, &endptr, 10);
2170 if (!*endptr)
2171 stack_guard_gap = val << PAGE_SHIFT;
2172
2173 return 1;
2174 }
2175 __setup("stack_guard_gap=", cmdline_parse_stack_guard_gap);
2176
2177 #ifdef CONFIG_STACK_GROWSUP
expand_stack_locked(struct vm_area_struct *vma, unsigned long address)2178 int expand_stack_locked(struct vm_area_struct *vma, unsigned long address)
2179 {
2180 return expand_upwards(vma, address);
2181 }
2182
find_extend_vma_locked(struct mm_struct *mm, unsigned long addr)2183 struct vm_area_struct *find_extend_vma_locked(struct mm_struct *mm, unsigned long addr)
2184 {
2185 struct vm_area_struct *vma, *prev;
2186
2187 addr &= PAGE_MASK;
2188 vma = find_vma_prev(mm, addr, &prev);
2189 if (vma && (vma->vm_start <= addr))
2190 return vma;
2191 if (!prev)
2192 return NULL;
2193 if (expand_stack_locked(prev, addr))
2194 return NULL;
2195 if (prev->vm_flags & VM_LOCKED)
2196 populate_vma_page_range(prev, addr, prev->vm_end, NULL);
2197 return prev;
2198 }
2199 #else
expand_stack_locked(struct vm_area_struct *vma, unsigned long address)2200 int expand_stack_locked(struct vm_area_struct *vma, unsigned long address)
2201 {
2202 if (unlikely(!(vma->vm_flags & VM_GROWSDOWN)))
2203 return -EINVAL;
2204 return expand_downwards(vma, address);
2205 }
2206
find_extend_vma_locked(struct mm_struct *mm, unsigned long addr)2207 struct vm_area_struct *find_extend_vma_locked(struct mm_struct *mm, unsigned long addr)
2208 {
2209 struct vm_area_struct *vma;
2210 unsigned long start;
2211
2212 addr &= PAGE_MASK;
2213 vma = find_vma(mm, addr);
2214 if (!vma)
2215 return NULL;
2216 if (vma->vm_start <= addr)
2217 return vma;
2218 start = vma->vm_start;
2219 if (expand_stack_locked(vma, addr))
2220 return NULL;
2221 if (vma->vm_flags & VM_LOCKED)
2222 populate_vma_page_range(vma, addr, start, NULL);
2223 return vma;
2224 }
2225 #endif
2226
2227 /*
2228 * IA64 has some horrid mapping rules: it can expand both up and down,
2229 * but with various special rules.
2230 *
2231 * We'll get rid of this architecture eventually, so the ugliness is
2232 * temporary.
2233 */
2234 #ifdef CONFIG_IA64
vma_expand_ok(struct vm_area_struct *vma, unsigned long addr)2235 static inline bool vma_expand_ok(struct vm_area_struct *vma, unsigned long addr)
2236 {
2237 return REGION_NUMBER(addr) == REGION_NUMBER(vma->vm_start) &&
2238 REGION_OFFSET(addr) < RGN_MAP_LIMIT;
2239 }
2240
2241 /*
2242 * IA64 stacks grow down, but there's a special register backing store
2243 * that can grow up. Only sequentially, though, so the new address must
2244 * match vm_end.
2245 */
vma_expand_up(struct vm_area_struct *vma, unsigned long addr)2246 static inline int vma_expand_up(struct vm_area_struct *vma, unsigned long addr)
2247 {
2248 if (!vma_expand_ok(vma, addr))
2249 return -EFAULT;
2250 if (vma->vm_end != (addr & PAGE_MASK))
2251 return -EFAULT;
2252 return expand_upwards(vma, addr);
2253 }
2254
vma_expand_down(struct vm_area_struct *vma, unsigned long addr)2255 static inline bool vma_expand_down(struct vm_area_struct *vma, unsigned long addr)
2256 {
2257 if (!vma_expand_ok(vma, addr))
2258 return -EFAULT;
2259 return expand_downwards(vma, addr);
2260 }
2261
2262 #elif defined(CONFIG_STACK_GROWSUP)
2263
2264 #define vma_expand_up(vma,addr) expand_upwards(vma, addr)
2265 #define vma_expand_down(vma, addr) (-EFAULT)
2266
2267 #else
2268
2269 #define vma_expand_up(vma,addr) (-EFAULT)
2270 #define vma_expand_down(vma, addr) expand_downwards(vma, addr)
2271
2272 #endif
2273
2274 /*
2275 * expand_stack(): legacy interface for page faulting. Don't use unless
2276 * you have to.
2277 *
2278 * This is called with the mm locked for reading, drops the lock, takes
2279 * the lock for writing, tries to look up a vma again, expands it if
2280 * necessary, and downgrades the lock to reading again.
2281 *
2282 * If no vma is found or it can't be expanded, it returns NULL and has
2283 * dropped the lock.
2284 */
expand_stack(struct mm_struct *mm, unsigned long addr)2285 struct vm_area_struct *expand_stack(struct mm_struct *mm, unsigned long addr)
2286 {
2287 struct vm_area_struct *vma, *prev;
2288
2289 mmap_read_unlock(mm);
2290 if (mmap_write_lock_killable(mm))
2291 return NULL;
2292
2293 vma = find_vma_prev(mm, addr, &prev);
2294 if (vma && vma->vm_start <= addr)
2295 goto success;
2296
2297 if (prev && !vma_expand_up(prev, addr)) {
2298 vma = prev;
2299 goto success;
2300 }
2301
2302 if (vma && !vma_expand_down(vma, addr))
2303 goto success;
2304
2305 mmap_write_unlock(mm);
2306 return NULL;
2307
2308 success:
2309 mmap_write_downgrade(mm);
2310 return vma;
2311 }
2312
2313 /*
2314 * Ok - we have the memory areas we should free on a maple tree so release them,
2315 * and do the vma updates.
2316 *
2317 * Called with the mm semaphore held.
2318 */
remove_mt(struct mm_struct *mm, struct ma_state *mas)2319 static inline void remove_mt(struct mm_struct *mm, struct ma_state *mas)
2320 {
2321 unsigned long nr_accounted = 0;
2322 struct vm_area_struct *vma;
2323
2324 /* Update high watermark before we lower total_vm */
2325 update_hiwater_vm(mm);
2326 mas_for_each(mas, vma, ULONG_MAX) {
2327 long nrpages = vma_pages(vma);
2328
2329 if (vma->vm_flags & VM_ACCOUNT)
2330 nr_accounted += nrpages;
2331 vm_stat_account(mm, vma->vm_flags, -nrpages);
2332 remove_vma(vma, false);
2333 }
2334 vm_unacct_memory(nr_accounted);
2335 }
2336
2337 /*
2338 * Get rid of page table information in the indicated region.
2339 *
2340 * Called with the mm semaphore held.
2341 */
unmap_region(struct mm_struct *mm, struct ma_state *mas, struct vm_area_struct *vma, struct vm_area_struct *prev, struct vm_area_struct *next, unsigned long start, unsigned long end, unsigned long tree_end, bool mm_wr_locked)2342 static void unmap_region(struct mm_struct *mm, struct ma_state *mas,
2343 struct vm_area_struct *vma, struct vm_area_struct *prev,
2344 struct vm_area_struct *next, unsigned long start,
2345 unsigned long end, unsigned long tree_end, bool mm_wr_locked)
2346 {
2347 struct mmu_gather tlb;
2348 unsigned long mt_start = mas->index;
2349
2350 lru_add_drain();
2351 tlb_gather_mmu(&tlb, mm);
2352 update_hiwater_rss(mm);
2353 unmap_vmas(&tlb, mas, vma, start, end, tree_end, mm_wr_locked);
2354 mas_set(mas, mt_start);
2355 free_pgtables(&tlb, mas, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS,
2356 next ? next->vm_start : USER_PGTABLES_CEILING,
2357 mm_wr_locked);
2358 tlb_finish_mmu(&tlb);
2359 }
2360
2361 /*
2362 * __split_vma() bypasses sysctl_max_map_count checking. We use this where it
2363 * has already been checked or doesn't make sense to fail.
2364 * VMA Iterator will point to the end VMA.
2365 */
__split_vma(struct vma_iterator *vmi, struct vm_area_struct *vma, unsigned long addr, int new_below)2366 int __split_vma(struct vma_iterator *vmi, struct vm_area_struct *vma,
2367 unsigned long addr, int new_below)
2368 {
2369 struct vma_prepare vp;
2370 struct vm_area_struct *new;
2371 int err;
2372
2373 WARN_ON(vma->vm_start >= addr);
2374 WARN_ON(vma->vm_end <= addr);
2375
2376 if (vma->vm_ops && vma->vm_ops->may_split) {
2377 err = vma->vm_ops->may_split(vma, addr);
2378 if (err)
2379 return err;
2380 }
2381
2382 new = vm_area_dup(vma);
2383 if (!new)
2384 return -ENOMEM;
2385
2386 if (new_below) {
2387 new->vm_end = addr;
2388 } else {
2389 new->vm_start = addr;
2390 new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
2391 }
2392
2393 err = -ENOMEM;
2394 vma_iter_config(vmi, new->vm_start, new->vm_end);
2395 if (vma_iter_prealloc(vmi, new))
2396 goto out_free_vma;
2397
2398 err = vma_dup_policy(vma, new);
2399 if (err)
2400 goto out_free_vmi;
2401
2402 err = anon_vma_clone(new, vma);
2403 if (err)
2404 goto out_free_mpol;
2405
2406 if (new->vm_file)
2407 get_file(new->vm_file);
2408
2409 if (new->vm_ops && new->vm_ops->open)
2410 new->vm_ops->open(new);
2411
2412 vma_start_write(vma);
2413 vma_start_write(new);
2414
2415 init_vma_prep(&vp, vma);
2416 vp.insert = new;
2417 vma_prepare(&vp);
2418 vma_adjust_trans_huge(vma, vma->vm_start, addr, 0);
2419
2420 if (new_below) {
2421 vma->vm_start = addr;
2422 vma->vm_pgoff += (addr - new->vm_start) >> PAGE_SHIFT;
2423 } else {
2424 vma->vm_end = addr;
2425 }
2426
2427 /* vma_complete stores the new vma */
2428 vma_complete(&vp, vmi, vma->vm_mm);
2429
2430 /* Success. */
2431 if (new_below)
2432 vma_next(vmi);
2433 return 0;
2434
2435 out_free_mpol:
2436 mpol_put(vma_policy(new));
2437 out_free_vmi:
2438 vma_iter_free(vmi);
2439 out_free_vma:
2440 vm_area_free(new);
2441 return err;
2442 }
2443
2444 /*
2445 * Split a vma into two pieces at address 'addr', a new vma is allocated
2446 * either for the first part or the tail.
2447 */
split_vma(struct vma_iterator *vmi, struct vm_area_struct *vma, unsigned long addr, int new_below)2448 int split_vma(struct vma_iterator *vmi, struct vm_area_struct *vma,
2449 unsigned long addr, int new_below)
2450 {
2451 if (vma->vm_mm->map_count >= sysctl_max_map_count)
2452 return -ENOMEM;
2453
2454 return __split_vma(vmi, vma, addr, new_below);
2455 }
2456
2457 /*
2458 * do_vmi_align_munmap() - munmap the aligned region from @start to @end.
2459 * @vmi: The vma iterator
2460 * @vma: The starting vm_area_struct
2461 * @mm: The mm_struct
2462 * @start: The aligned start address to munmap.
2463 * @end: The aligned end address to munmap.
2464 * @uf: The userfaultfd list_head
2465 * @unlock: Set to true to drop the mmap_lock. unlocking only happens on
2466 * success.
2467 *
2468 * Return: 0 on success and drops the lock if so directed, error and leaves the
2469 * lock held otherwise.
2470 */
2471 static int
do_vmi_align_munmap(struct vma_iterator *vmi, struct vm_area_struct *vma, struct mm_struct *mm, unsigned long start, unsigned long end, struct list_head *uf, bool unlock)2472 do_vmi_align_munmap(struct vma_iterator *vmi, struct vm_area_struct *vma,
2473 struct mm_struct *mm, unsigned long start,
2474 unsigned long end, struct list_head *uf, bool unlock)
2475 {
2476 struct vm_area_struct *prev, *next = NULL;
2477 struct maple_tree mt_detach;
2478 int count = 0;
2479 int error = -ENOMEM;
2480 unsigned long locked_vm = 0;
2481 MA_STATE(mas_detach, &mt_detach, 0, 0);
2482 mt_init_flags(&mt_detach, vmi->mas.tree->ma_flags & MT_FLAGS_LOCK_MASK);
2483 mt_on_stack(mt_detach);
2484
2485 /*
2486 * If we need to split any vma, do it now to save pain later.
2487 *
2488 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
2489 * unmapped vm_area_struct will remain in use: so lower split_vma
2490 * places tmp vma above, and higher split_vma places tmp vma below.
2491 */
2492
2493 /* Does it split the first one? */
2494 if (start > vma->vm_start) {
2495
2496 /*
2497 * Make sure that map_count on return from munmap() will
2498 * not exceed its limit; but let map_count go just above
2499 * its limit temporarily, to help free resources as expected.
2500 */
2501 if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count)
2502 goto map_count_exceeded;
2503
2504 error = __split_vma(vmi, vma, start, 1);
2505 if (error)
2506 goto start_split_failed;
2507 }
2508
2509 /*
2510 * Detach a range of VMAs from the mm. Using next as a temp variable as
2511 * it is always overwritten.
2512 */
2513 next = vma;
2514 do {
2515 /* Does it split the end? */
2516 if (next->vm_end > end) {
2517 error = __split_vma(vmi, next, end, 0);
2518 if (error)
2519 goto end_split_failed;
2520 }
2521 vma_start_write(next);
2522 mas_set(&mas_detach, count);
2523 error = mas_store_gfp(&mas_detach, next, GFP_KERNEL);
2524 if (error)
2525 goto munmap_gather_failed;
2526 vma_mark_detached(next, true);
2527 if (next->vm_flags & VM_LOCKED)
2528 locked_vm += vma_pages(next);
2529
2530 count++;
2531 if (unlikely(uf)) {
2532 /*
2533 * If userfaultfd_unmap_prep returns an error the vmas
2534 * will remain split, but userland will get a
2535 * highly unexpected error anyway. This is no
2536 * different than the case where the first of the two
2537 * __split_vma fails, but we don't undo the first
2538 * split, despite we could. This is unlikely enough
2539 * failure that it's not worth optimizing it for.
2540 */
2541 error = userfaultfd_unmap_prep(next, start, end, uf);
2542
2543 if (error)
2544 goto userfaultfd_error;
2545 }
2546 #ifdef CONFIG_DEBUG_VM_MAPLE_TREE
2547 BUG_ON(next->vm_start < start);
2548 BUG_ON(next->vm_start > end);
2549 #endif
2550 } for_each_vma_range(*vmi, next, end);
2551
2552 #if defined(CONFIG_DEBUG_VM_MAPLE_TREE)
2553 /* Make sure no VMAs are about to be lost. */
2554 {
2555 MA_STATE(test, &mt_detach, 0, 0);
2556 struct vm_area_struct *vma_mas, *vma_test;
2557 int test_count = 0;
2558
2559 vma_iter_set(vmi, start);
2560 rcu_read_lock();
2561 vma_test = mas_find(&test, count - 1);
2562 for_each_vma_range(*vmi, vma_mas, end) {
2563 BUG_ON(vma_mas != vma_test);
2564 test_count++;
2565 vma_test = mas_next(&test, count - 1);
2566 }
2567 rcu_read_unlock();
2568 BUG_ON(count != test_count);
2569 }
2570 #endif
2571
2572 while (vma_iter_addr(vmi) > start)
2573 vma_iter_prev_range(vmi);
2574
2575 error = vma_iter_clear_gfp(vmi, start, end, GFP_KERNEL);
2576 if (error)
2577 goto clear_tree_failed;
2578
2579 /* Point of no return */
2580 mm->locked_vm -= locked_vm;
2581 mm->map_count -= count;
2582 if (unlock)
2583 mmap_write_downgrade(mm);
2584
2585 prev = vma_iter_prev_range(vmi);
2586 next = vma_next(vmi);
2587 if (next)
2588 vma_iter_prev_range(vmi);
2589
2590 /*
2591 * We can free page tables without write-locking mmap_lock because VMAs
2592 * were isolated before we downgraded mmap_lock.
2593 */
2594 mas_set(&mas_detach, 1);
2595 unmap_region(mm, &mas_detach, vma, prev, next, start, end, count,
2596 !unlock);
2597 /* Statistics and freeing VMAs */
2598 mas_set(&mas_detach, 0);
2599 remove_mt(mm, &mas_detach);
2600 validate_mm(mm);
2601 if (unlock)
2602 mmap_read_unlock(mm);
2603
2604 __mt_destroy(&mt_detach);
2605 return 0;
2606
2607 clear_tree_failed:
2608 userfaultfd_error:
2609 munmap_gather_failed:
2610 end_split_failed:
2611 mas_set(&mas_detach, 0);
2612 mas_for_each(&mas_detach, next, end)
2613 vma_mark_detached(next, false);
2614
2615 __mt_destroy(&mt_detach);
2616 start_split_failed:
2617 map_count_exceeded:
2618 validate_mm(mm);
2619 return error;
2620 }
2621
2622 /*
2623 * do_vmi_munmap() - munmap a given range.
2624 * @vmi: The vma iterator
2625 * @mm: The mm_struct
2626 * @start: The start address to munmap
2627 * @len: The length of the range to munmap
2628 * @uf: The userfaultfd list_head
2629 * @unlock: set to true if the user wants to drop the mmap_lock on success
2630 *
2631 * This function takes a @mas that is either pointing to the previous VMA or set
2632 * to MA_START and sets it up to remove the mapping(s). The @len will be
2633 * aligned and any arch_unmap work will be preformed.
2634 *
2635 * Return: 0 on success and drops the lock if so directed, error and leaves the
2636 * lock held otherwise.
2637 */
do_vmi_munmap(struct vma_iterator *vmi, struct mm_struct *mm, unsigned long start, size_t len, struct list_head *uf, bool unlock)2638 int do_vmi_munmap(struct vma_iterator *vmi, struct mm_struct *mm,
2639 unsigned long start, size_t len, struct list_head *uf,
2640 bool unlock)
2641 {
2642 unsigned long end;
2643 struct vm_area_struct *vma;
2644
2645 if ((offset_in_page(start)) || start > TASK_SIZE || len > TASK_SIZE-start)
2646 return -EINVAL;
2647
2648 end = start + PAGE_ALIGN(len);
2649 if (end == start)
2650 return -EINVAL;
2651
2652 int errno = 0;
2653 CALL_HCK_LITE_HOOK(delete_jit_memory_lhck, current, start, len, &errno);
2654 if (errno)
2655 return errno;
2656
2657 /* arch_unmap() might do unmaps itself. */
2658 arch_unmap(mm, start, end);
2659
2660 /* Find the first overlapping VMA */
2661 vma = vma_find(vmi, end);
2662 if (!vma) {
2663 if (unlock)
2664 mmap_write_unlock(mm);
2665 return 0;
2666 }
2667
2668 return do_vmi_align_munmap(vmi, vma, mm, start, end, uf, unlock);
2669 }
2670
2671 /* do_munmap() - Wrapper function for non-maple tree aware do_munmap() calls.
2672 * @mm: The mm_struct
2673 * @start: The start address to munmap
2674 * @len: The length to be munmapped.
2675 * @uf: The userfaultfd list_head
2676 *
2677 * Return: 0 on success, error otherwise.
2678 */
do_munmap(struct mm_struct *mm, unsigned long start, size_t len, struct list_head *uf)2679 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len,
2680 struct list_head *uf)
2681 {
2682 VMA_ITERATOR(vmi, mm, start);
2683
2684 return do_vmi_munmap(&vmi, mm, start, len, uf, false);
2685 }
2686
mmap_region(struct file *file, unsigned long addr, unsigned long len, vm_flags_t vm_flags, unsigned long pgoff, struct list_head *uf)2687 unsigned long mmap_region(struct file *file, unsigned long addr,
2688 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
2689 struct list_head *uf)
2690 {
2691 struct mm_struct *mm = current->mm;
2692 struct vm_area_struct *vma = NULL;
2693 struct vm_area_struct *next, *prev, *merge;
2694 pgoff_t pglen = len >> PAGE_SHIFT;
2695 unsigned long charged = 0;
2696 unsigned long end = addr + len;
2697 unsigned long merge_start = addr, merge_end = end;
2698 pgoff_t vm_pgoff;
2699 int error;
2700 VMA_ITERATOR(vmi, mm, addr);
2701
2702 /* Check against address space limit. */
2703 if (!may_expand_vm(mm, vm_flags, len >> PAGE_SHIFT)) {
2704 unsigned long nr_pages;
2705
2706 /*
2707 * MAP_FIXED may remove pages of mappings that intersects with
2708 * requested mapping. Account for the pages it would unmap.
2709 */
2710 nr_pages = count_vma_pages_range(mm, addr, end);
2711
2712 if (!may_expand_vm(mm, vm_flags,
2713 (len >> PAGE_SHIFT) - nr_pages))
2714 return -ENOMEM;
2715 }
2716
2717 /* Unmap any existing mapping in the area */
2718 if (do_vmi_munmap(&vmi, mm, addr, len, uf, false))
2719 return -ENOMEM;
2720
2721 /*
2722 * Private writable mapping: check memory availability
2723 */
2724 if (accountable_mapping(file, vm_flags)) {
2725 charged = len >> PAGE_SHIFT;
2726 if (security_vm_enough_memory_mm(mm, charged))
2727 return -ENOMEM;
2728 vm_flags |= VM_ACCOUNT;
2729 }
2730
2731 next = vma_next(&vmi);
2732 prev = vma_prev(&vmi);
2733 if (vm_flags & VM_SPECIAL) {
2734 if (prev)
2735 vma_iter_next_range(&vmi);
2736 goto cannot_expand;
2737 }
2738
2739 /* Attempt to expand an old mapping */
2740 /* Check next */
2741 if (next && next->vm_start == end && !vma_policy(next) &&
2742 can_vma_merge_before(next, vm_flags, NULL, file, pgoff+pglen,
2743 NULL_VM_UFFD_CTX, NULL)) {
2744 merge_end = next->vm_end;
2745 vma = next;
2746 vm_pgoff = next->vm_pgoff - pglen;
2747 }
2748
2749 /* Check prev */
2750 if (prev && prev->vm_end == addr && !vma_policy(prev) &&
2751 (vma ? can_vma_merge_after(prev, vm_flags, vma->anon_vma, file,
2752 pgoff, vma->vm_userfaultfd_ctx, NULL) :
2753 can_vma_merge_after(prev, vm_flags, NULL, file, pgoff,
2754 NULL_VM_UFFD_CTX, NULL))) {
2755 merge_start = prev->vm_start;
2756 vma = prev;
2757 vm_pgoff = prev->vm_pgoff;
2758 } else if (prev) {
2759 vma_iter_next_range(&vmi);
2760 }
2761
2762 /* Actually expand, if possible */
2763 if (vma &&
2764 !vma_expand(&vmi, vma, merge_start, merge_end, vm_pgoff, next)) {
2765 khugepaged_enter_vma(vma, vm_flags);
2766 goto expanded;
2767 }
2768
2769 if (vma == prev)
2770 vma_iter_set(&vmi, addr);
2771 cannot_expand:
2772
2773 /*
2774 * Determine the object being mapped and call the appropriate
2775 * specific mapper. the address has already been validated, but
2776 * not unmapped, but the maps are removed from the list.
2777 */
2778 vma = vm_area_alloc(mm);
2779 if (!vma) {
2780 error = -ENOMEM;
2781 goto unacct_error;
2782 }
2783
2784 vma_iter_config(&vmi, addr, end);
2785 vma->vm_start = addr;
2786 vma->vm_end = end;
2787 vm_flags_init(vma, vm_flags);
2788 vma->vm_page_prot = vm_get_page_prot(vm_flags);
2789 vma->vm_pgoff = pgoff;
2790
2791 if (file) {
2792 if (vm_flags & VM_SHARED) {
2793 error = mapping_map_writable(file->f_mapping);
2794 if (error)
2795 goto free_vma;
2796 }
2797
2798 vma->vm_file = get_file(file);
2799 error = call_mmap(file, vma);
2800 if (error)
2801 goto unmap_and_free_vma;
2802
2803 /*
2804 * Expansion is handled above, merging is handled below.
2805 * Drivers should not alter the address of the VMA.
2806 */
2807 error = -EINVAL;
2808 if (WARN_ON((addr != vma->vm_start)))
2809 goto close_and_free_vma;
2810
2811 vma_iter_config(&vmi, addr, end);
2812 /*
2813 * If vm_flags changed after call_mmap(), we should try merge
2814 * vma again as we may succeed this time.
2815 */
2816 if (unlikely(vm_flags != vma->vm_flags && prev)) {
2817 merge = vma_merge(&vmi, mm, prev, vma->vm_start,
2818 vma->vm_end, vma->vm_flags, NULL,
2819 vma->vm_file, vma->vm_pgoff, NULL,
2820 NULL_VM_UFFD_CTX, NULL);
2821 if (merge) {
2822 /*
2823 * ->mmap() can change vma->vm_file and fput
2824 * the original file. So fput the vma->vm_file
2825 * here or we would add an extra fput for file
2826 * and cause general protection fault
2827 * ultimately.
2828 */
2829 fput(vma->vm_file);
2830 vm_area_free(vma);
2831 vma = merge;
2832 /* Update vm_flags to pick up the change. */
2833 vm_flags = vma->vm_flags;
2834 goto unmap_writable;
2835 }
2836 }
2837
2838 vm_flags = vma->vm_flags;
2839 } else if (vm_flags & VM_SHARED) {
2840 error = shmem_zero_setup(vma);
2841 if (error)
2842 goto free_vma;
2843 } else {
2844 vma_set_anonymous(vma);
2845 }
2846
2847 if (map_deny_write_exec(vma, vma->vm_flags)) {
2848 error = -EACCES;
2849 goto close_and_free_vma;
2850 }
2851
2852 /* Allow architectures to sanity-check the vm_flags */
2853 error = -EINVAL;
2854 if (!arch_validate_flags(vma->vm_flags))
2855 goto close_and_free_vma;
2856
2857 error = -ENOMEM;
2858 if (vma_iter_prealloc(&vmi, vma))
2859 goto close_and_free_vma;
2860
2861 /* Lock the VMA since it is modified after insertion into VMA tree */
2862 vma_start_write(vma);
2863 vma_iter_store(&vmi, vma);
2864 mm->map_count++;
2865 if (vma->vm_file) {
2866 i_mmap_lock_write(vma->vm_file->f_mapping);
2867 if (vma->vm_flags & VM_SHARED)
2868 mapping_allow_writable(vma->vm_file->f_mapping);
2869
2870 flush_dcache_mmap_lock(vma->vm_file->f_mapping);
2871 vma_interval_tree_insert(vma, &vma->vm_file->f_mapping->i_mmap);
2872 flush_dcache_mmap_unlock(vma->vm_file->f_mapping);
2873 i_mmap_unlock_write(vma->vm_file->f_mapping);
2874 }
2875
2876 /*
2877 * vma_merge() calls khugepaged_enter_vma() either, the below
2878 * call covers the non-merge case.
2879 */
2880 khugepaged_enter_vma(vma, vma->vm_flags);
2881
2882 /* Once vma denies write, undo our temporary denial count */
2883 unmap_writable:
2884 if (file && vm_flags & VM_SHARED)
2885 mapping_unmap_writable(file->f_mapping);
2886 file = vma->vm_file;
2887 ksm_add_vma(vma);
2888 expanded:
2889 perf_event_mmap(vma);
2890
2891 vm_stat_account(mm, vm_flags, len >> PAGE_SHIFT);
2892 if (vm_flags & VM_LOCKED) {
2893 if ((vm_flags & VM_SPECIAL) || vma_is_dax(vma) ||
2894 is_vm_hugetlb_page(vma) ||
2895 vma == get_gate_vma(current->mm))
2896 vm_flags_clear(vma, VM_LOCKED_MASK);
2897 else
2898 mm->locked_vm += (len >> PAGE_SHIFT);
2899 }
2900
2901 if (file)
2902 uprobe_mmap(vma);
2903
2904 /*
2905 * New (or expanded) vma always get soft dirty status.
2906 * Otherwise user-space soft-dirty page tracker won't
2907 * be able to distinguish situation when vma area unmapped,
2908 * then new mapped in-place (which must be aimed as
2909 * a completely new data area).
2910 */
2911 vm_flags_set(vma, VM_SOFTDIRTY);
2912
2913 vma_set_page_prot(vma);
2914
2915 validate_mm(mm);
2916 return addr;
2917
2918 close_and_free_vma:
2919 if (file && vma->vm_ops && vma->vm_ops->close)
2920 vma->vm_ops->close(vma);
2921
2922 if (file || vma->vm_file) {
2923 unmap_and_free_vma:
2924 fput(vma->vm_file);
2925 vma->vm_file = NULL;
2926
2927 vma_iter_set(&vmi, vma->vm_end);
2928 /* Undo any partial mapping done by a device driver. */
2929 unmap_region(mm, &vmi.mas, vma, prev, next, vma->vm_start,
2930 vma->vm_end, vma->vm_end, true);
2931 }
2932 if (file && (vm_flags & VM_SHARED))
2933 mapping_unmap_writable(file->f_mapping);
2934 free_vma:
2935 vm_area_free(vma);
2936 unacct_error:
2937 if (charged)
2938 vm_unacct_memory(charged);
2939 validate_mm(mm);
2940 return error;
2941 }
2942
__vm_munmap(unsigned long start, size_t len, bool unlock)2943 static int __vm_munmap(unsigned long start, size_t len, bool unlock)
2944 {
2945 int ret;
2946 struct mm_struct *mm = current->mm;
2947 LIST_HEAD(uf);
2948 VMA_ITERATOR(vmi, mm, start);
2949
2950 if (mmap_write_lock_killable(mm))
2951 return -EINTR;
2952
2953 ret = do_vmi_munmap(&vmi, mm, start, len, &uf, unlock);
2954 if (ret || !unlock)
2955 mmap_write_unlock(mm);
2956
2957 userfaultfd_unmap_complete(mm, &uf);
2958 return ret;
2959 }
2960
vm_munmap(unsigned long start, size_t len)2961 int vm_munmap(unsigned long start, size_t len)
2962 {
2963 return __vm_munmap(start, len, false);
2964 }
2965 EXPORT_SYMBOL(vm_munmap);
2966
SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)2967 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
2968 {
2969 addr = untagged_addr(addr);
2970 return __vm_munmap(addr, len, true);
2971 }
2972
2973
2974 /*
2975 * Emulation of deprecated remap_file_pages() syscall.
2976 */
SYSCALL_DEFINE5(remap_file_pages, unsigned long, start, unsigned long, size, unsigned long, prot, unsigned long, pgoff, unsigned long, flags)2977 SYSCALL_DEFINE5(remap_file_pages, unsigned long, start, unsigned long, size,
2978 unsigned long, prot, unsigned long, pgoff, unsigned long, flags)
2979 {
2980
2981 struct mm_struct *mm = current->mm;
2982 struct vm_area_struct *vma;
2983 unsigned long populate = 0;
2984 unsigned long ret = -EINVAL;
2985 struct file *file;
2986
2987 pr_warn_once("%s (%d) uses deprecated remap_file_pages() syscall. See Documentation/mm/remap_file_pages.rst.\n",
2988 current->comm, current->pid);
2989
2990 if (prot)
2991 return ret;
2992 start = start & PAGE_MASK;
2993 size = size & PAGE_MASK;
2994
2995 if (start + size <= start)
2996 return ret;
2997
2998 /* Does pgoff wrap? */
2999 if (pgoff + (size >> PAGE_SHIFT) < pgoff)
3000 return ret;
3001
3002 if (mmap_write_lock_killable(mm))
3003 return -EINTR;
3004
3005 vma = vma_lookup(mm, start);
3006
3007 if (!vma || !(vma->vm_flags & VM_SHARED))
3008 goto out;
3009
3010 if (start + size > vma->vm_end) {
3011 VMA_ITERATOR(vmi, mm, vma->vm_end);
3012 struct vm_area_struct *next, *prev = vma;
3013
3014 for_each_vma_range(vmi, next, start + size) {
3015 /* hole between vmas ? */
3016 if (next->vm_start != prev->vm_end)
3017 goto out;
3018
3019 if (next->vm_file != vma->vm_file)
3020 goto out;
3021
3022 if (next->vm_flags != vma->vm_flags)
3023 goto out;
3024
3025 if (start + size <= next->vm_end)
3026 break;
3027
3028 prev = next;
3029 }
3030
3031 if (!next)
3032 goto out;
3033 }
3034
3035 prot |= vma->vm_flags & VM_READ ? PROT_READ : 0;
3036 prot |= vma->vm_flags & VM_WRITE ? PROT_WRITE : 0;
3037 prot |= vma->vm_flags & VM_EXEC ? PROT_EXEC : 0;
3038
3039 flags &= MAP_NONBLOCK;
3040 flags |= MAP_SHARED | MAP_FIXED | MAP_POPULATE;
3041 if (vma->vm_flags & VM_LOCKED)
3042 flags |= MAP_LOCKED;
3043
3044 file = get_file(vma->vm_file);
3045 ret = do_mmap(vma->vm_file, start, size,
3046 prot, flags, 0, pgoff, &populate, NULL);
3047 fput(file);
3048 out:
3049 mmap_write_unlock(mm);
3050 if (populate)
3051 mm_populate(ret, populate);
3052 if (!IS_ERR_VALUE(ret))
3053 ret = 0;
3054 return ret;
3055 }
3056
3057 /*
3058 * do_vma_munmap() - Unmap a full or partial vma.
3059 * @vmi: The vma iterator pointing at the vma
3060 * @vma: The first vma to be munmapped
3061 * @start: the start of the address to unmap
3062 * @end: The end of the address to unmap
3063 * @uf: The userfaultfd list_head
3064 * @unlock: Drop the lock on success
3065 *
3066 * unmaps a VMA mapping when the vma iterator is already in position.
3067 * Does not handle alignment.
3068 *
3069 * Return: 0 on success drops the lock of so directed, error on failure and will
3070 * still hold the lock.
3071 */
do_vma_munmap(struct vma_iterator *vmi, struct vm_area_struct *vma, unsigned long start, unsigned long end, struct list_head *uf, bool unlock)3072 int do_vma_munmap(struct vma_iterator *vmi, struct vm_area_struct *vma,
3073 unsigned long start, unsigned long end, struct list_head *uf,
3074 bool unlock)
3075 {
3076 struct mm_struct *mm = vma->vm_mm;
3077
3078 arch_unmap(mm, start, end);
3079 return do_vmi_align_munmap(vmi, vma, mm, start, end, uf, unlock);
3080 }
3081
3082 /*
3083 * do_brk_flags() - Increase the brk vma if the flags match.
3084 * @vmi: The vma iterator
3085 * @addr: The start address
3086 * @len: The length of the increase
3087 * @vma: The vma,
3088 * @flags: The VMA Flags
3089 *
3090 * Extend the brk VMA from addr to addr + len. If the VMA is NULL or the flags
3091 * do not match then create a new anonymous VMA. Eventually we may be able to
3092 * do some brk-specific accounting here.
3093 */
do_brk_flags(struct vma_iterator *vmi, struct vm_area_struct *vma, unsigned long addr, unsigned long len, unsigned long flags)3094 static int do_brk_flags(struct vma_iterator *vmi, struct vm_area_struct *vma,
3095 unsigned long addr, unsigned long len, unsigned long flags)
3096 {
3097 struct mm_struct *mm = current->mm;
3098 struct vma_prepare vp;
3099
3100 /*
3101 * Check against address space limits by the changed size
3102 * Note: This happens *after* clearing old mappings in some code paths.
3103 */
3104 flags |= VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
3105 if (!may_expand_vm(mm, flags, len >> PAGE_SHIFT))
3106 return -ENOMEM;
3107
3108 if (mm->map_count > sysctl_max_map_count)
3109 return -ENOMEM;
3110
3111 if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT))
3112 return -ENOMEM;
3113
3114 /*
3115 * Expand the existing vma if possible; Note that singular lists do not
3116 * occur after forking, so the expand will only happen on new VMAs.
3117 */
3118 if (vma && vma->vm_end == addr && !vma_policy(vma) &&
3119 can_vma_merge_after(vma, flags, NULL, NULL,
3120 addr >> PAGE_SHIFT, NULL_VM_UFFD_CTX, NULL)) {
3121 vma_iter_config(vmi, vma->vm_start, addr + len);
3122 if (vma_iter_prealloc(vmi, vma))
3123 goto unacct_fail;
3124
3125 vma_start_write(vma);
3126
3127 init_vma_prep(&vp, vma);
3128 vma_prepare(&vp);
3129 vma_adjust_trans_huge(vma, vma->vm_start, addr + len, 0);
3130 vma->vm_end = addr + len;
3131 vm_flags_set(vma, VM_SOFTDIRTY);
3132 vma_iter_store(vmi, vma);
3133
3134 vma_complete(&vp, vmi, mm);
3135 khugepaged_enter_vma(vma, flags);
3136 goto out;
3137 }
3138
3139 if (vma)
3140 vma_iter_next_range(vmi);
3141 /* create a vma struct for an anonymous mapping */
3142 vma = vm_area_alloc(mm);
3143 if (!vma)
3144 goto unacct_fail;
3145
3146 vma_set_anonymous(vma);
3147 vma->vm_start = addr;
3148 vma->vm_end = addr + len;
3149 vma->vm_pgoff = addr >> PAGE_SHIFT;
3150 vm_flags_init(vma, flags);
3151 vma->vm_page_prot = vm_get_page_prot(flags);
3152 vma_start_write(vma);
3153 if (vma_iter_store_gfp(vmi, vma, GFP_KERNEL))
3154 goto mas_store_fail;
3155
3156 mm->map_count++;
3157 validate_mm(mm);
3158 ksm_add_vma(vma);
3159 out:
3160 perf_event_mmap(vma);
3161 mm->total_vm += len >> PAGE_SHIFT;
3162 mm->data_vm += len >> PAGE_SHIFT;
3163 if (flags & VM_LOCKED)
3164 mm->locked_vm += (len >> PAGE_SHIFT);
3165 vm_flags_set(vma, VM_SOFTDIRTY);
3166 return 0;
3167
3168 mas_store_fail:
3169 vm_area_free(vma);
3170 unacct_fail:
3171 vm_unacct_memory(len >> PAGE_SHIFT);
3172 return -ENOMEM;
3173 }
3174
vm_brk_flags(unsigned long addr, unsigned long request, unsigned long flags)3175 int vm_brk_flags(unsigned long addr, unsigned long request, unsigned long flags)
3176 {
3177 struct mm_struct *mm = current->mm;
3178 struct vm_area_struct *vma = NULL;
3179 unsigned long len;
3180 int ret;
3181 bool populate;
3182 LIST_HEAD(uf);
3183 VMA_ITERATOR(vmi, mm, addr);
3184
3185 len = PAGE_ALIGN(request);
3186 if (len < request)
3187 return -ENOMEM;
3188 if (!len)
3189 return 0;
3190
3191 /* Until we need other flags, refuse anything except VM_EXEC. */
3192 if ((flags & (~VM_EXEC)) != 0)
3193 return -EINVAL;
3194
3195 if (mmap_write_lock_killable(mm))
3196 return -EINTR;
3197
3198 ret = check_brk_limits(addr, len);
3199 if (ret)
3200 goto limits_failed;
3201
3202 ret = do_vmi_munmap(&vmi, mm, addr, len, &uf, 0);
3203 if (ret)
3204 goto munmap_failed;
3205
3206 vma = vma_prev(&vmi);
3207 ret = do_brk_flags(&vmi, vma, addr, len, flags);
3208 populate = ((mm->def_flags & VM_LOCKED) != 0);
3209 mmap_write_unlock(mm);
3210 userfaultfd_unmap_complete(mm, &uf);
3211 if (populate && !ret)
3212 mm_populate(addr, len);
3213 return ret;
3214
3215 munmap_failed:
3216 limits_failed:
3217 mmap_write_unlock(mm);
3218 return ret;
3219 }
3220 EXPORT_SYMBOL(vm_brk_flags);
3221
vm_brk(unsigned long addr, unsigned long len)3222 int vm_brk(unsigned long addr, unsigned long len)
3223 {
3224 return vm_brk_flags(addr, len, 0);
3225 }
3226 EXPORT_SYMBOL(vm_brk);
3227
3228 /* Release all mmaps. */
exit_mmap(struct mm_struct *mm)3229 void exit_mmap(struct mm_struct *mm)
3230 {
3231 struct mmu_gather tlb;
3232 struct vm_area_struct *vma;
3233 unsigned long nr_accounted = 0;
3234 MA_STATE(mas, &mm->mm_mt, 0, 0);
3235 int count = 0;
3236
3237 /* mm's last user has gone, and its about to be pulled down */
3238 mmu_notifier_release(mm);
3239
3240 mmap_read_lock(mm);
3241 arch_exit_mmap(mm);
3242
3243 vma = mas_find(&mas, ULONG_MAX);
3244 if (!vma) {
3245 /* Can happen if dup_mmap() received an OOM */
3246 mmap_read_unlock(mm);
3247 return;
3248 }
3249
3250 lru_add_drain();
3251 flush_cache_mm(mm);
3252 tlb_gather_mmu_fullmm(&tlb, mm);
3253 /* update_hiwater_rss(mm) here? but nobody should be looking */
3254 /* Use ULONG_MAX here to ensure all VMAs in the mm are unmapped */
3255 unmap_vmas(&tlb, &mas, vma, 0, ULONG_MAX, ULONG_MAX, false);
3256 mmap_read_unlock(mm);
3257
3258 /*
3259 * Set MMF_OOM_SKIP to hide this task from the oom killer/reaper
3260 * because the memory has been already freed.
3261 */
3262 set_bit(MMF_OOM_SKIP, &mm->flags);
3263 mmap_write_lock(mm);
3264 mt_clear_in_rcu(&mm->mm_mt);
3265 mas_set(&mas, vma->vm_end);
3266 free_pgtables(&tlb, &mas, vma, FIRST_USER_ADDRESS,
3267 USER_PGTABLES_CEILING, true);
3268 tlb_finish_mmu(&tlb);
3269
3270 /*
3271 * Walk the list again, actually closing and freeing it, with preemption
3272 * enabled, without holding any MM locks besides the unreachable
3273 * mmap_write_lock.
3274 */
3275 mas_set(&mas, vma->vm_end);
3276 do {
3277 if (vma->vm_flags & VM_ACCOUNT)
3278 nr_accounted += vma_pages(vma);
3279 remove_vma(vma, true);
3280 count++;
3281 cond_resched();
3282 } while ((vma = mas_find(&mas, ULONG_MAX)) != NULL);
3283
3284 BUG_ON(count != mm->map_count);
3285
3286 trace_exit_mmap(mm);
3287 __mt_destroy(&mm->mm_mt);
3288 mmap_write_unlock(mm);
3289 vm_unacct_memory(nr_accounted);
3290 }
3291
3292 /* Insert vm structure into process list sorted by address
3293 * and into the inode's i_mmap tree. If vm_file is non-NULL
3294 * then i_mmap_rwsem is taken here.
3295 */
insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)3296 int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
3297 {
3298 unsigned long charged = vma_pages(vma);
3299
3300
3301 if (find_vma_intersection(mm, vma->vm_start, vma->vm_end))
3302 return -ENOMEM;
3303
3304 if ((vma->vm_flags & VM_ACCOUNT) &&
3305 security_vm_enough_memory_mm(mm, charged))
3306 return -ENOMEM;
3307
3308 /*
3309 * The vm_pgoff of a purely anonymous vma should be irrelevant
3310 * until its first write fault, when page's anon_vma and index
3311 * are set. But now set the vm_pgoff it will almost certainly
3312 * end up with (unless mremap moves it elsewhere before that
3313 * first wfault), so /proc/pid/maps tells a consistent story.
3314 *
3315 * By setting it to reflect the virtual start address of the
3316 * vma, merges and splits can happen in a seamless way, just
3317 * using the existing file pgoff checks and manipulations.
3318 * Similarly in do_mmap and in do_brk_flags.
3319 */
3320 if (vma_is_anonymous(vma)) {
3321 BUG_ON(vma->anon_vma);
3322 vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
3323 }
3324
3325 if (vma_link(mm, vma)) {
3326 vm_unacct_memory(charged);
3327 return -ENOMEM;
3328 }
3329
3330 return 0;
3331 }
3332
3333 /*
3334 * Copy the vma structure to a new location in the same mm,
3335 * prior to moving page table entries, to effect an mremap move.
3336 */
copy_vma(struct vm_area_struct **vmap, unsigned long addr, unsigned long len, pgoff_t pgoff, bool *need_rmap_locks)3337 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
3338 unsigned long addr, unsigned long len, pgoff_t pgoff,
3339 bool *need_rmap_locks)
3340 {
3341 struct vm_area_struct *vma = *vmap;
3342 unsigned long vma_start = vma->vm_start;
3343 struct mm_struct *mm = vma->vm_mm;
3344 struct vm_area_struct *new_vma, *prev;
3345 bool faulted_in_anon_vma = true;
3346 VMA_ITERATOR(vmi, mm, addr);
3347
3348 /*
3349 * If anonymous vma has not yet been faulted, update new pgoff
3350 * to match new location, to increase its chance of merging.
3351 */
3352 if (unlikely(vma_is_anonymous(vma) && !vma->anon_vma)) {
3353 pgoff = addr >> PAGE_SHIFT;
3354 faulted_in_anon_vma = false;
3355 }
3356
3357 new_vma = find_vma_prev(mm, addr, &prev);
3358 if (new_vma && new_vma->vm_start < addr + len)
3359 return NULL; /* should never get here */
3360
3361 new_vma = vma_merge(&vmi, mm, prev, addr, addr + len, vma->vm_flags,
3362 vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma),
3363 vma->vm_userfaultfd_ctx, anon_vma_name(vma));
3364 if (new_vma) {
3365 /*
3366 * Source vma may have been merged into new_vma
3367 */
3368 if (unlikely(vma_start >= new_vma->vm_start &&
3369 vma_start < new_vma->vm_end)) {
3370 /*
3371 * The only way we can get a vma_merge with
3372 * self during an mremap is if the vma hasn't
3373 * been faulted in yet and we were allowed to
3374 * reset the dst vma->vm_pgoff to the
3375 * destination address of the mremap to allow
3376 * the merge to happen. mremap must change the
3377 * vm_pgoff linearity between src and dst vmas
3378 * (in turn preventing a vma_merge) to be
3379 * safe. It is only safe to keep the vm_pgoff
3380 * linear if there are no pages mapped yet.
3381 */
3382 VM_BUG_ON_VMA(faulted_in_anon_vma, new_vma);
3383 *vmap = vma = new_vma;
3384 }
3385 *need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff);
3386 } else {
3387 new_vma = vm_area_dup(vma);
3388 if (!new_vma)
3389 goto out;
3390 new_vma->vm_start = addr;
3391 new_vma->vm_end = addr + len;
3392 new_vma->vm_pgoff = pgoff;
3393 if (vma_dup_policy(vma, new_vma))
3394 goto out_free_vma;
3395 if (anon_vma_clone(new_vma, vma))
3396 goto out_free_mempol;
3397 if (new_vma->vm_file)
3398 get_file(new_vma->vm_file);
3399 if (new_vma->vm_ops && new_vma->vm_ops->open)
3400 new_vma->vm_ops->open(new_vma);
3401 if (vma_link(mm, new_vma))
3402 goto out_vma_link;
3403 *need_rmap_locks = false;
3404 }
3405 return new_vma;
3406
3407 out_vma_link:
3408 if (new_vma->vm_ops && new_vma->vm_ops->close)
3409 new_vma->vm_ops->close(new_vma);
3410
3411 if (new_vma->vm_file)
3412 fput(new_vma->vm_file);
3413
3414 unlink_anon_vmas(new_vma);
3415 out_free_mempol:
3416 mpol_put(vma_policy(new_vma));
3417 out_free_vma:
3418 vm_area_free(new_vma);
3419 out:
3420 return NULL;
3421 }
3422
3423 /*
3424 * Return true if the calling process may expand its vm space by the passed
3425 * number of pages
3426 */
may_expand_vm(struct mm_struct *mm, vm_flags_t flags, unsigned long npages)3427 bool may_expand_vm(struct mm_struct *mm, vm_flags_t flags, unsigned long npages)
3428 {
3429 if (mm->total_vm + npages > rlimit(RLIMIT_AS) >> PAGE_SHIFT)
3430 return false;
3431
3432 if (is_data_mapping(flags) &&
3433 mm->data_vm + npages > rlimit(RLIMIT_DATA) >> PAGE_SHIFT) {
3434 /* Workaround for Valgrind */
3435 if (rlimit(RLIMIT_DATA) == 0 &&
3436 mm->data_vm + npages <= rlimit_max(RLIMIT_DATA) >> PAGE_SHIFT)
3437 return true;
3438
3439 pr_warn_once("%s (%d): VmData %lu exceed data ulimit %lu. Update limits%s.\n",
3440 current->comm, current->pid,
3441 (mm->data_vm + npages) << PAGE_SHIFT,
3442 rlimit(RLIMIT_DATA),
3443 ignore_rlimit_data ? "" : " or use boot option ignore_rlimit_data");
3444
3445 if (!ignore_rlimit_data)
3446 return false;
3447 }
3448
3449 return true;
3450 }
3451
vm_stat_account(struct mm_struct *mm, vm_flags_t flags, long npages)3452 void vm_stat_account(struct mm_struct *mm, vm_flags_t flags, long npages)
3453 {
3454 WRITE_ONCE(mm->total_vm, READ_ONCE(mm->total_vm)+npages);
3455
3456 if (is_exec_mapping(flags))
3457 mm->exec_vm += npages;
3458 else if (is_stack_mapping(flags))
3459 mm->stack_vm += npages;
3460 else if (is_data_mapping(flags))
3461 mm->data_vm += npages;
3462 }
3463
3464 static vm_fault_t special_mapping_fault(struct vm_fault *vmf);
3465
3466 /*
3467 * Having a close hook prevents vma merging regardless of flags.
3468 */
special_mapping_close(struct vm_area_struct *vma)3469 static void special_mapping_close(struct vm_area_struct *vma)
3470 {
3471 }
3472
special_mapping_name(struct vm_area_struct *vma)3473 static const char *special_mapping_name(struct vm_area_struct *vma)
3474 {
3475 return ((struct vm_special_mapping *)vma->vm_private_data)->name;
3476 }
3477
special_mapping_mremap(struct vm_area_struct *new_vma)3478 static int special_mapping_mremap(struct vm_area_struct *new_vma)
3479 {
3480 struct vm_special_mapping *sm = new_vma->vm_private_data;
3481
3482 if (WARN_ON_ONCE(current->mm != new_vma->vm_mm))
3483 return -EFAULT;
3484
3485 if (sm->mremap)
3486 return sm->mremap(sm, new_vma);
3487
3488 return 0;
3489 }
3490
special_mapping_split(struct vm_area_struct *vma, unsigned long addr)3491 static int special_mapping_split(struct vm_area_struct *vma, unsigned long addr)
3492 {
3493 /*
3494 * Forbid splitting special mappings - kernel has expectations over
3495 * the number of pages in mapping. Together with VM_DONTEXPAND
3496 * the size of vma should stay the same over the special mapping's
3497 * lifetime.
3498 */
3499 return -EINVAL;
3500 }
3501
3502 static const struct vm_operations_struct special_mapping_vmops = {
3503 .close = special_mapping_close,
3504 .fault = special_mapping_fault,
3505 .mremap = special_mapping_mremap,
3506 .name = special_mapping_name,
3507 /* vDSO code relies that VVAR can't be accessed remotely */
3508 .access = NULL,
3509 .may_split = special_mapping_split,
3510 };
3511
3512 static const struct vm_operations_struct legacy_special_mapping_vmops = {
3513 .close = special_mapping_close,
3514 .fault = special_mapping_fault,
3515 };
3516
special_mapping_fault(struct vm_fault *vmf)3517 static vm_fault_t special_mapping_fault(struct vm_fault *vmf)
3518 {
3519 struct vm_area_struct *vma = vmf->vma;
3520 pgoff_t pgoff;
3521 struct page **pages;
3522
3523 if (vma->vm_ops == &legacy_special_mapping_vmops) {
3524 pages = vma->vm_private_data;
3525 } else {
3526 struct vm_special_mapping *sm = vma->vm_private_data;
3527
3528 if (sm->fault)
3529 return sm->fault(sm, vmf->vma, vmf);
3530
3531 pages = sm->pages;
3532 }
3533
3534 for (pgoff = vmf->pgoff; pgoff && *pages; ++pages)
3535 pgoff--;
3536
3537 if (*pages) {
3538 struct page *page = *pages;
3539 get_page(page);
3540 vmf->page = page;
3541 return 0;
3542 }
3543
3544 return VM_FAULT_SIGBUS;
3545 }
3546
__install_special_mapping( struct mm_struct *mm, unsigned long addr, unsigned long len, unsigned long vm_flags, void *priv, const struct vm_operations_struct *ops)3547 static struct vm_area_struct *__install_special_mapping(
3548 struct mm_struct *mm,
3549 unsigned long addr, unsigned long len,
3550 unsigned long vm_flags, void *priv,
3551 const struct vm_operations_struct *ops)
3552 {
3553 int ret;
3554 struct vm_area_struct *vma;
3555
3556 vma = vm_area_alloc(mm);
3557 if (unlikely(vma == NULL))
3558 return ERR_PTR(-ENOMEM);
3559
3560 vma->vm_start = addr;
3561 vma->vm_end = addr + len;
3562
3563 vm_flags_init(vma, (vm_flags | mm->def_flags |
3564 VM_DONTEXPAND | VM_SOFTDIRTY) & ~VM_LOCKED_MASK);
3565 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
3566
3567 vma->vm_ops = ops;
3568 vma->vm_private_data = priv;
3569
3570 ret = insert_vm_struct(mm, vma);
3571 if (ret)
3572 goto out;
3573
3574 vm_stat_account(mm, vma->vm_flags, len >> PAGE_SHIFT);
3575
3576 perf_event_mmap(vma);
3577
3578 return vma;
3579
3580 out:
3581 vm_area_free(vma);
3582 return ERR_PTR(ret);
3583 }
3584
vma_is_special_mapping(const struct vm_area_struct *vma, const struct vm_special_mapping *sm)3585 bool vma_is_special_mapping(const struct vm_area_struct *vma,
3586 const struct vm_special_mapping *sm)
3587 {
3588 return vma->vm_private_data == sm &&
3589 (vma->vm_ops == &special_mapping_vmops ||
3590 vma->vm_ops == &legacy_special_mapping_vmops);
3591 }
3592
3593 /*
3594 * Called with mm->mmap_lock held for writing.
3595 * Insert a new vma covering the given region, with the given flags.
3596 * Its pages are supplied by the given array of struct page *.
3597 * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
3598 * The region past the last page supplied will always produce SIGBUS.
3599 * The array pointer and the pages it points to are assumed to stay alive
3600 * for as long as this mapping might exist.
3601 */
_install_special_mapping( struct mm_struct *mm, unsigned long addr, unsigned long len, unsigned long vm_flags, const struct vm_special_mapping *spec)3602 struct vm_area_struct *_install_special_mapping(
3603 struct mm_struct *mm,
3604 unsigned long addr, unsigned long len,
3605 unsigned long vm_flags, const struct vm_special_mapping *spec)
3606 {
3607 return __install_special_mapping(mm, addr, len, vm_flags, (void *)spec,
3608 &special_mapping_vmops);
3609 }
3610
install_special_mapping(struct mm_struct *mm, unsigned long addr, unsigned long len, unsigned long vm_flags, struct page **pages)3611 int install_special_mapping(struct mm_struct *mm,
3612 unsigned long addr, unsigned long len,
3613 unsigned long vm_flags, struct page **pages)
3614 {
3615 struct vm_area_struct *vma = __install_special_mapping(
3616 mm, addr, len, vm_flags, (void *)pages,
3617 &legacy_special_mapping_vmops);
3618
3619 return PTR_ERR_OR_ZERO(vma);
3620 }
3621
3622 static DEFINE_MUTEX(mm_all_locks_mutex);
3623
vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)3624 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
3625 {
3626 if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) {
3627 /*
3628 * The LSB of head.next can't change from under us
3629 * because we hold the mm_all_locks_mutex.
3630 */
3631 down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_lock);
3632 /*
3633 * We can safely modify head.next after taking the
3634 * anon_vma->root->rwsem. If some other vma in this mm shares
3635 * the same anon_vma we won't take it again.
3636 *
3637 * No need of atomic instructions here, head.next
3638 * can't change from under us thanks to the
3639 * anon_vma->root->rwsem.
3640 */
3641 if (__test_and_set_bit(0, (unsigned long *)
3642 &anon_vma->root->rb_root.rb_root.rb_node))
3643 BUG();
3644 }
3645 }
3646
vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)3647 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
3648 {
3649 if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3650 /*
3651 * AS_MM_ALL_LOCKS can't change from under us because
3652 * we hold the mm_all_locks_mutex.
3653 *
3654 * Operations on ->flags have to be atomic because
3655 * even if AS_MM_ALL_LOCKS is stable thanks to the
3656 * mm_all_locks_mutex, there may be other cpus
3657 * changing other bitflags in parallel to us.
3658 */
3659 if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
3660 BUG();
3661 down_write_nest_lock(&mapping->i_mmap_rwsem, &mm->mmap_lock);
3662 }
3663 }
3664
3665 /*
3666 * This operation locks against the VM for all pte/vma/mm related
3667 * operations that could ever happen on a certain mm. This includes
3668 * vmtruncate, try_to_unmap, and all page faults.
3669 *
3670 * The caller must take the mmap_lock in write mode before calling
3671 * mm_take_all_locks(). The caller isn't allowed to release the
3672 * mmap_lock until mm_drop_all_locks() returns.
3673 *
3674 * mmap_lock in write mode is required in order to block all operations
3675 * that could modify pagetables and free pages without need of
3676 * altering the vma layout. It's also needed in write mode to avoid new
3677 * anon_vmas to be associated with existing vmas.
3678 *
3679 * A single task can't take more than one mm_take_all_locks() in a row
3680 * or it would deadlock.
3681 *
3682 * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in
3683 * mapping->flags avoid to take the same lock twice, if more than one
3684 * vma in this mm is backed by the same anon_vma or address_space.
3685 *
3686 * We take locks in following order, accordingly to comment at beginning
3687 * of mm/rmap.c:
3688 * - all hugetlbfs_i_mmap_rwsem_key locks (aka mapping->i_mmap_rwsem for
3689 * hugetlb mapping);
3690 * - all vmas marked locked
3691 * - all i_mmap_rwsem locks;
3692 * - all anon_vma->rwseml
3693 *
3694 * We can take all locks within these types randomly because the VM code
3695 * doesn't nest them and we protected from parallel mm_take_all_locks() by
3696 * mm_all_locks_mutex.
3697 *
3698 * mm_take_all_locks() and mm_drop_all_locks are expensive operations
3699 * that may have to take thousand of locks.
3700 *
3701 * mm_take_all_locks() can fail if it's interrupted by signals.
3702 */
mm_take_all_locks(struct mm_struct *mm)3703 int mm_take_all_locks(struct mm_struct *mm)
3704 {
3705 struct vm_area_struct *vma;
3706 struct anon_vma_chain *avc;
3707 MA_STATE(mas, &mm->mm_mt, 0, 0);
3708
3709 mmap_assert_write_locked(mm);
3710
3711 mutex_lock(&mm_all_locks_mutex);
3712
3713 /*
3714 * vma_start_write() does not have a complement in mm_drop_all_locks()
3715 * because vma_start_write() is always asymmetrical; it marks a VMA as
3716 * being written to until mmap_write_unlock() or mmap_write_downgrade()
3717 * is reached.
3718 */
3719 mas_for_each(&mas, vma, ULONG_MAX) {
3720 if (signal_pending(current))
3721 goto out_unlock;
3722 vma_start_write(vma);
3723 }
3724
3725 mas_set(&mas, 0);
3726 mas_for_each(&mas, vma, ULONG_MAX) {
3727 if (signal_pending(current))
3728 goto out_unlock;
3729 if (vma->vm_file && vma->vm_file->f_mapping &&
3730 is_vm_hugetlb_page(vma))
3731 vm_lock_mapping(mm, vma->vm_file->f_mapping);
3732 }
3733
3734 mas_set(&mas, 0);
3735 mas_for_each(&mas, vma, ULONG_MAX) {
3736 if (signal_pending(current))
3737 goto out_unlock;
3738 if (vma->vm_file && vma->vm_file->f_mapping &&
3739 !is_vm_hugetlb_page(vma))
3740 vm_lock_mapping(mm, vma->vm_file->f_mapping);
3741 }
3742
3743 mas_set(&mas, 0);
3744 mas_for_each(&mas, vma, ULONG_MAX) {
3745 if (signal_pending(current))
3746 goto out_unlock;
3747 if (vma->anon_vma)
3748 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3749 vm_lock_anon_vma(mm, avc->anon_vma);
3750 }
3751
3752 return 0;
3753
3754 out_unlock:
3755 mm_drop_all_locks(mm);
3756 return -EINTR;
3757 }
3758
vm_unlock_anon_vma(struct anon_vma *anon_vma)3759 static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
3760 {
3761 if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) {
3762 /*
3763 * The LSB of head.next can't change to 0 from under
3764 * us because we hold the mm_all_locks_mutex.
3765 *
3766 * We must however clear the bitflag before unlocking
3767 * the vma so the users using the anon_vma->rb_root will
3768 * never see our bitflag.
3769 *
3770 * No need of atomic instructions here, head.next
3771 * can't change from under us until we release the
3772 * anon_vma->root->rwsem.
3773 */
3774 if (!__test_and_clear_bit(0, (unsigned long *)
3775 &anon_vma->root->rb_root.rb_root.rb_node))
3776 BUG();
3777 anon_vma_unlock_write(anon_vma);
3778 }
3779 }
3780
vm_unlock_mapping(struct address_space *mapping)3781 static void vm_unlock_mapping(struct address_space *mapping)
3782 {
3783 if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3784 /*
3785 * AS_MM_ALL_LOCKS can't change to 0 from under us
3786 * because we hold the mm_all_locks_mutex.
3787 */
3788 i_mmap_unlock_write(mapping);
3789 if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
3790 &mapping->flags))
3791 BUG();
3792 }
3793 }
3794
3795 /*
3796 * The mmap_lock cannot be released by the caller until
3797 * mm_drop_all_locks() returns.
3798 */
mm_drop_all_locks(struct mm_struct *mm)3799 void mm_drop_all_locks(struct mm_struct *mm)
3800 {
3801 struct vm_area_struct *vma;
3802 struct anon_vma_chain *avc;
3803 MA_STATE(mas, &mm->mm_mt, 0, 0);
3804
3805 mmap_assert_write_locked(mm);
3806 BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
3807
3808 mas_for_each(&mas, vma, ULONG_MAX) {
3809 if (vma->anon_vma)
3810 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3811 vm_unlock_anon_vma(avc->anon_vma);
3812 if (vma->vm_file && vma->vm_file->f_mapping)
3813 vm_unlock_mapping(vma->vm_file->f_mapping);
3814 }
3815
3816 mutex_unlock(&mm_all_locks_mutex);
3817 }
3818
3819 /*
3820 * initialise the percpu counter for VM
3821 */
mmap_init(void)3822 void __init mmap_init(void)
3823 {
3824 int ret;
3825
3826 ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL);
3827 VM_BUG_ON(ret);
3828 }
3829
3830 /*
3831 * Initialise sysctl_user_reserve_kbytes.
3832 *
3833 * This is intended to prevent a user from starting a single memory hogging
3834 * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
3835 * mode.
3836 *
3837 * The default value is min(3% of free memory, 128MB)
3838 * 128MB is enough to recover with sshd/login, bash, and top/kill.
3839 */
init_user_reserve(void)3840 static int init_user_reserve(void)
3841 {
3842 unsigned long free_kbytes;
3843
3844 free_kbytes = K(global_zone_page_state(NR_FREE_PAGES));
3845
3846 sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
3847 return 0;
3848 }
3849 subsys_initcall(init_user_reserve);
3850
3851 /*
3852 * Initialise sysctl_admin_reserve_kbytes.
3853 *
3854 * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
3855 * to log in and kill a memory hogging process.
3856 *
3857 * Systems with more than 256MB will reserve 8MB, enough to recover
3858 * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
3859 * only reserve 3% of free pages by default.
3860 */
init_admin_reserve(void)3861 static int init_admin_reserve(void)
3862 {
3863 unsigned long free_kbytes;
3864
3865 free_kbytes = K(global_zone_page_state(NR_FREE_PAGES));
3866
3867 sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
3868 return 0;
3869 }
3870 subsys_initcall(init_admin_reserve);
3871
3872 /*
3873 * Reinititalise user and admin reserves if memory is added or removed.
3874 *
3875 * The default user reserve max is 128MB, and the default max for the
3876 * admin reserve is 8MB. These are usually, but not always, enough to
3877 * enable recovery from a memory hogging process using login/sshd, a shell,
3878 * and tools like top. It may make sense to increase or even disable the
3879 * reserve depending on the existence of swap or variations in the recovery
3880 * tools. So, the admin may have changed them.
3881 *
3882 * If memory is added and the reserves have been eliminated or increased above
3883 * the default max, then we'll trust the admin.
3884 *
3885 * If memory is removed and there isn't enough free memory, then we
3886 * need to reset the reserves.
3887 *
3888 * Otherwise keep the reserve set by the admin.
3889 */
reserve_mem_notifier(struct notifier_block *nb, unsigned long action, void *data)3890 static int reserve_mem_notifier(struct notifier_block *nb,
3891 unsigned long action, void *data)
3892 {
3893 unsigned long tmp, free_kbytes;
3894
3895 switch (action) {
3896 case MEM_ONLINE:
3897 /* Default max is 128MB. Leave alone if modified by operator. */
3898 tmp = sysctl_user_reserve_kbytes;
3899 if (0 < tmp && tmp < (1UL << 17))
3900 init_user_reserve();
3901
3902 /* Default max is 8MB. Leave alone if modified by operator. */
3903 tmp = sysctl_admin_reserve_kbytes;
3904 if (0 < tmp && tmp < (1UL << 13))
3905 init_admin_reserve();
3906
3907 break;
3908 case MEM_OFFLINE:
3909 free_kbytes = K(global_zone_page_state(NR_FREE_PAGES));
3910
3911 if (sysctl_user_reserve_kbytes > free_kbytes) {
3912 init_user_reserve();
3913 pr_info("vm.user_reserve_kbytes reset to %lu\n",
3914 sysctl_user_reserve_kbytes);
3915 }
3916
3917 if (sysctl_admin_reserve_kbytes > free_kbytes) {
3918 init_admin_reserve();
3919 pr_info("vm.admin_reserve_kbytes reset to %lu\n",
3920 sysctl_admin_reserve_kbytes);
3921 }
3922 break;
3923 default:
3924 break;
3925 }
3926 return NOTIFY_OK;
3927 }
3928
init_reserve_notifier(void)3929 static int __meminit init_reserve_notifier(void)
3930 {
3931 if (hotplug_memory_notifier(reserve_mem_notifier, DEFAULT_CALLBACK_PRI))
3932 pr_err("Failed registering memory add/remove notifier for admin reserve\n");
3933
3934 return 0;
3935 }
3936 subsys_initcall(init_reserve_notifier);
3937