1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/memory.c
4  *
5  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
6  */
7 
8 /*
9  * demand-loading started 01.12.91 - seems it is high on the list of
10  * things wanted, and it should be easy to implement. - Linus
11  */
12 
13 /*
14  * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
15  * pages started 02.12.91, seems to work. - Linus.
16  *
17  * Tested sharing by executing about 30 /bin/sh: under the old kernel it
18  * would have taken more than the 6M I have free, but it worked well as
19  * far as I could see.
20  *
21  * Also corrected some "invalidate()"s - I wasn't doing enough of them.
22  */
23 
24 /*
25  * Real VM (paging to/from disk) started 18.12.91. Much more work and
26  * thought has to go into this. Oh, well..
27  * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
28  *		Found it. Everything seems to work now.
29  * 20.12.91  -  Ok, making the swap-device changeable like the root.
30  */
31 
32 /*
33  * 05.04.94  -  Multi-page memory management added for v1.1.
34  *              Idea by Alex Bligh (alex@cconcepts.co.uk)
35  *
36  * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
37  *		(Gerhard.Wichert@pdb.siemens.de)
38  *
39  * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
40  */
41 
42 #include <linux/kernel_stat.h>
43 #include <linux/mm.h>
44 #include <linux/mm_inline.h>
45 #include <linux/sched/mm.h>
46 #include <linux/sched/coredump.h>
47 #include <linux/sched/numa_balancing.h>
48 #include <linux/sched/task.h>
49 #include <linux/hugetlb.h>
50 #include <linux/mman.h>
51 #include <linux/swap.h>
52 #include <linux/highmem.h>
53 #include <linux/pagemap.h>
54 #include <linux/memremap.h>
55 #include <linux/kmsan.h>
56 #include <linux/ksm.h>
57 #include <linux/rmap.h>
58 #include <linux/export.h>
59 #include <linux/delayacct.h>
60 #include <linux/init.h>
61 #include <linux/pfn_t.h>
62 #include <linux/writeback.h>
63 #include <linux/memcontrol.h>
64 #include <linux/mmu_notifier.h>
65 #include <linux/swapops.h>
66 #include <linux/elf.h>
67 #include <linux/gfp.h>
68 #include <linux/migrate.h>
69 #include <linux/string.h>
70 #include <linux/memory-tiers.h>
71 #include <linux/debugfs.h>
72 #include <linux/userfaultfd_k.h>
73 #include <linux/dax.h>
74 #include <linux/oom.h>
75 #include <linux/numa.h>
76 #include <linux/perf_event.h>
77 #include <linux/ptrace.h>
78 #include <linux/vmalloc.h>
79 #include <linux/sched/sysctl.h>
80 #ifdef CONFIG_MEM_PURGEABLE
81 #include <linux/mm_purgeable.h>
82 #endif
83 #include <trace/events/kmem.h>
84 
85 #include <asm/io.h>
86 #include <asm/mmu_context.h>
87 #include <asm/pgalloc.h>
88 #include <linux/uaccess.h>
89 #include <asm/tlb.h>
90 #include <asm/tlbflush.h>
91 
92 #include "pgalloc-track.h"
93 #include "internal.h"
94 #include "swap.h"
95 
96 #if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST)
97 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
98 #endif
99 
100 #ifndef CONFIG_NUMA
101 unsigned long max_mapnr;
102 EXPORT_SYMBOL(max_mapnr);
103 
104 struct page *mem_map;
105 EXPORT_SYMBOL(mem_map);
106 #endif
107 
108 static vm_fault_t do_fault(struct vm_fault *vmf);
109 static vm_fault_t do_anonymous_page(struct vm_fault *vmf);
110 static bool vmf_pte_changed(struct vm_fault *vmf);
111 
112 /*
113  * Return true if the original pte was a uffd-wp pte marker (so the pte was
114  * wr-protected).
115  */
vmf_orig_pte_uffd_wp(struct vm_fault *vmf)116 static bool vmf_orig_pte_uffd_wp(struct vm_fault *vmf)
117 {
118 	if (!(vmf->flags & FAULT_FLAG_ORIG_PTE_VALID))
119 		return false;
120 
121 	return pte_marker_uffd_wp(vmf->orig_pte);
122 }
123 
124 /*
125  * A number of key systems in x86 including ioremap() rely on the assumption
126  * that high_memory defines the upper bound on direct map memory, then end
127  * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
128  * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
129  * and ZONE_HIGHMEM.
130  */
131 void *high_memory;
132 EXPORT_SYMBOL(high_memory);
133 
134 /*
135  * Randomize the address space (stacks, mmaps, brk, etc.).
136  *
137  * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
138  *   as ancient (libc5 based) binaries can segfault. )
139  */
140 int randomize_va_space __read_mostly =
141 #ifdef CONFIG_COMPAT_BRK
142 					1;
143 #else
144 					2;
145 #endif
146 
147 #ifndef arch_wants_old_prefaulted_pte
arch_wants_old_prefaulted_pte(void)148 static inline bool arch_wants_old_prefaulted_pte(void)
149 {
150 	/*
151 	 * Transitioning a PTE from 'old' to 'young' can be expensive on
152 	 * some architectures, even if it's performed in hardware. By
153 	 * default, "false" means prefaulted entries will be 'young'.
154 	 */
155 	return false;
156 }
157 #endif
158 
disable_randmaps(char *s)159 static int __init disable_randmaps(char *s)
160 {
161 	randomize_va_space = 0;
162 	return 1;
163 }
164 __setup("norandmaps", disable_randmaps);
165 
166 unsigned long zero_pfn __read_mostly;
167 EXPORT_SYMBOL(zero_pfn);
168 
169 unsigned long highest_memmap_pfn __read_mostly;
170 
171 /*
172  * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
173  */
init_zero_pfn(void)174 static int __init init_zero_pfn(void)
175 {
176 	zero_pfn = page_to_pfn(ZERO_PAGE(0));
177 	return 0;
178 }
179 early_initcall(init_zero_pfn);
180 
mm_trace_rss_stat(struct mm_struct *mm, int member)181 void mm_trace_rss_stat(struct mm_struct *mm, int member)
182 {
183 	trace_rss_stat(mm, member);
184 }
185 
186 /*
187  * Note: this doesn't free the actual pages themselves. That
188  * has been handled earlier when unmapping all the memory regions.
189  */
free_pte_range(struct mmu_gather *tlb, pmd_t *pmd, unsigned long addr)190 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
191 			   unsigned long addr)
192 {
193 	pgtable_t token = pmd_pgtable(*pmd);
194 	pmd_clear(pmd);
195 	pte_free_tlb(tlb, token, addr);
196 	mm_dec_nr_ptes(tlb->mm);
197 }
198 
free_pmd_range(struct mmu_gather *tlb, pud_t *pud, unsigned long addr, unsigned long end, unsigned long floor, unsigned long ceiling)199 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
200 				unsigned long addr, unsigned long end,
201 				unsigned long floor, unsigned long ceiling)
202 {
203 	pmd_t *pmd;
204 	unsigned long next;
205 	unsigned long start;
206 
207 	start = addr;
208 	pmd = pmd_offset(pud, addr);
209 	do {
210 		next = pmd_addr_end(addr, end);
211 		if (pmd_none_or_clear_bad(pmd))
212 			continue;
213 		free_pte_range(tlb, pmd, addr);
214 	} while (pmd++, addr = next, addr != end);
215 
216 	start &= PUD_MASK;
217 	if (start < floor)
218 		return;
219 	if (ceiling) {
220 		ceiling &= PUD_MASK;
221 		if (!ceiling)
222 			return;
223 	}
224 	if (end - 1 > ceiling - 1)
225 		return;
226 
227 	pmd = pmd_offset(pud, start);
228 	pud_clear(pud);
229 	pmd_free_tlb(tlb, pmd, start);
230 	mm_dec_nr_pmds(tlb->mm);
231 }
232 
free_pud_range(struct mmu_gather *tlb, p4d_t *p4d, unsigned long addr, unsigned long end, unsigned long floor, unsigned long ceiling)233 static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d,
234 				unsigned long addr, unsigned long end,
235 				unsigned long floor, unsigned long ceiling)
236 {
237 	pud_t *pud;
238 	unsigned long next;
239 	unsigned long start;
240 
241 	start = addr;
242 	pud = pud_offset(p4d, addr);
243 	do {
244 		next = pud_addr_end(addr, end);
245 		if (pud_none_or_clear_bad(pud))
246 			continue;
247 		free_pmd_range(tlb, pud, addr, next, floor, ceiling);
248 	} while (pud++, addr = next, addr != end);
249 
250 	start &= P4D_MASK;
251 	if (start < floor)
252 		return;
253 	if (ceiling) {
254 		ceiling &= P4D_MASK;
255 		if (!ceiling)
256 			return;
257 	}
258 	if (end - 1 > ceiling - 1)
259 		return;
260 
261 	pud = pud_offset(p4d, start);
262 	p4d_clear(p4d);
263 	pud_free_tlb(tlb, pud, start);
264 	mm_dec_nr_puds(tlb->mm);
265 }
266 
free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd, unsigned long addr, unsigned long end, unsigned long floor, unsigned long ceiling)267 static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd,
268 				unsigned long addr, unsigned long end,
269 				unsigned long floor, unsigned long ceiling)
270 {
271 	p4d_t *p4d;
272 	unsigned long next;
273 	unsigned long start;
274 
275 	start = addr;
276 	p4d = p4d_offset(pgd, addr);
277 	do {
278 		next = p4d_addr_end(addr, end);
279 		if (p4d_none_or_clear_bad(p4d))
280 			continue;
281 		free_pud_range(tlb, p4d, addr, next, floor, ceiling);
282 	} while (p4d++, addr = next, addr != end);
283 
284 	start &= PGDIR_MASK;
285 	if (start < floor)
286 		return;
287 	if (ceiling) {
288 		ceiling &= PGDIR_MASK;
289 		if (!ceiling)
290 			return;
291 	}
292 	if (end - 1 > ceiling - 1)
293 		return;
294 
295 	p4d = p4d_offset(pgd, start);
296 	pgd_clear(pgd);
297 	p4d_free_tlb(tlb, p4d, start);
298 }
299 
300 /*
301  * This function frees user-level page tables of a process.
302  */
free_pgd_range(struct mmu_gather *tlb, unsigned long addr, unsigned long end, unsigned long floor, unsigned long ceiling)303 void free_pgd_range(struct mmu_gather *tlb,
304 			unsigned long addr, unsigned long end,
305 			unsigned long floor, unsigned long ceiling)
306 {
307 	pgd_t *pgd;
308 	unsigned long next;
309 
310 	/*
311 	 * The next few lines have given us lots of grief...
312 	 *
313 	 * Why are we testing PMD* at this top level?  Because often
314 	 * there will be no work to do at all, and we'd prefer not to
315 	 * go all the way down to the bottom just to discover that.
316 	 *
317 	 * Why all these "- 1"s?  Because 0 represents both the bottom
318 	 * of the address space and the top of it (using -1 for the
319 	 * top wouldn't help much: the masks would do the wrong thing).
320 	 * The rule is that addr 0 and floor 0 refer to the bottom of
321 	 * the address space, but end 0 and ceiling 0 refer to the top
322 	 * Comparisons need to use "end - 1" and "ceiling - 1" (though
323 	 * that end 0 case should be mythical).
324 	 *
325 	 * Wherever addr is brought up or ceiling brought down, we must
326 	 * be careful to reject "the opposite 0" before it confuses the
327 	 * subsequent tests.  But what about where end is brought down
328 	 * by PMD_SIZE below? no, end can't go down to 0 there.
329 	 *
330 	 * Whereas we round start (addr) and ceiling down, by different
331 	 * masks at different levels, in order to test whether a table
332 	 * now has no other vmas using it, so can be freed, we don't
333 	 * bother to round floor or end up - the tests don't need that.
334 	 */
335 
336 	addr &= PMD_MASK;
337 	if (addr < floor) {
338 		addr += PMD_SIZE;
339 		if (!addr)
340 			return;
341 	}
342 	if (ceiling) {
343 		ceiling &= PMD_MASK;
344 		if (!ceiling)
345 			return;
346 	}
347 	if (end - 1 > ceiling - 1)
348 		end -= PMD_SIZE;
349 	if (addr > end - 1)
350 		return;
351 	/*
352 	 * We add page table cache pages with PAGE_SIZE,
353 	 * (see pte_free_tlb()), flush the tlb if we need
354 	 */
355 	tlb_change_page_size(tlb, PAGE_SIZE);
356 	pgd = pgd_offset(tlb->mm, addr);
357 	do {
358 		next = pgd_addr_end(addr, end);
359 		if (pgd_none_or_clear_bad(pgd))
360 			continue;
361 		free_p4d_range(tlb, pgd, addr, next, floor, ceiling);
362 	} while (pgd++, addr = next, addr != end);
363 }
364 
free_pgtables(struct mmu_gather *tlb, struct ma_state *mas, struct vm_area_struct *vma, unsigned long floor, unsigned long ceiling, bool mm_wr_locked)365 void free_pgtables(struct mmu_gather *tlb, struct ma_state *mas,
366 		   struct vm_area_struct *vma, unsigned long floor,
367 		   unsigned long ceiling, bool mm_wr_locked)
368 {
369 	do {
370 		unsigned long addr = vma->vm_start;
371 		struct vm_area_struct *next;
372 
373 		/*
374 		 * Note: USER_PGTABLES_CEILING may be passed as ceiling and may
375 		 * be 0.  This will underflow and is okay.
376 		 */
377 		next = mas_find(mas, ceiling - 1);
378 
379 		/*
380 		 * Hide vma from rmap and truncate_pagecache before freeing
381 		 * pgtables
382 		 */
383 		if (mm_wr_locked)
384 			vma_start_write(vma);
385 		unlink_anon_vmas(vma);
386 		unlink_file_vma(vma);
387 
388 		if (is_vm_hugetlb_page(vma)) {
389 			hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
390 				floor, next ? next->vm_start : ceiling);
391 		} else {
392 			/*
393 			 * Optimization: gather nearby vmas into one call down
394 			 */
395 			while (next && next->vm_start <= vma->vm_end + PMD_SIZE
396 			       && !is_vm_hugetlb_page(next)) {
397 				vma = next;
398 				next = mas_find(mas, ceiling - 1);
399 				if (mm_wr_locked)
400 					vma_start_write(vma);
401 				unlink_anon_vmas(vma);
402 				unlink_file_vma(vma);
403 			}
404 			free_pgd_range(tlb, addr, vma->vm_end,
405 				floor, next ? next->vm_start : ceiling);
406 		}
407 		vma = next;
408 	} while (vma);
409 }
410 
pmd_install(struct mm_struct *mm, pmd_t *pmd, pgtable_t *pte)411 void pmd_install(struct mm_struct *mm, pmd_t *pmd, pgtable_t *pte)
412 {
413 	spinlock_t *ptl = pmd_lock(mm, pmd);
414 
415 	if (likely(pmd_none(*pmd))) {	/* Has another populated it ? */
416 		mm_inc_nr_ptes(mm);
417 		/*
418 		 * Ensure all pte setup (eg. pte page lock and page clearing) are
419 		 * visible before the pte is made visible to other CPUs by being
420 		 * put into page tables.
421 		 *
422 		 * The other side of the story is the pointer chasing in the page
423 		 * table walking code (when walking the page table without locking;
424 		 * ie. most of the time). Fortunately, these data accesses consist
425 		 * of a chain of data-dependent loads, meaning most CPUs (alpha
426 		 * being the notable exception) will already guarantee loads are
427 		 * seen in-order. See the alpha page table accessors for the
428 		 * smp_rmb() barriers in page table walking code.
429 		 */
430 		smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
431 		pmd_populate(mm, pmd, *pte);
432 		*pte = NULL;
433 	}
434 	spin_unlock(ptl);
435 }
436 
__pte_alloc(struct mm_struct *mm, pmd_t *pmd)437 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd)
438 {
439 	pgtable_t new = pte_alloc_one(mm);
440 	if (!new)
441 		return -ENOMEM;
442 
443 	pmd_install(mm, pmd, &new);
444 	if (new)
445 		pte_free(mm, new);
446 	return 0;
447 }
448 
__pte_alloc_kernel(pmd_t *pmd)449 int __pte_alloc_kernel(pmd_t *pmd)
450 {
451 	pte_t *new = pte_alloc_one_kernel(&init_mm);
452 	if (!new)
453 		return -ENOMEM;
454 
455 	spin_lock(&init_mm.page_table_lock);
456 	if (likely(pmd_none(*pmd))) {	/* Has another populated it ? */
457 		smp_wmb(); /* See comment in pmd_install() */
458 		pmd_populate_kernel(&init_mm, pmd, new);
459 		new = NULL;
460 	}
461 	spin_unlock(&init_mm.page_table_lock);
462 	if (new)
463 		pte_free_kernel(&init_mm, new);
464 	return 0;
465 }
466 
init_rss_vec(int *rss)467 static inline void init_rss_vec(int *rss)
468 {
469 	memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
470 }
471 
add_mm_rss_vec(struct mm_struct *mm, int *rss)472 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
473 {
474 	int i;
475 
476 	if (current->mm == mm)
477 		sync_mm_rss(mm);
478 	for (i = 0; i < NR_MM_COUNTERS; i++)
479 		if (rss[i])
480 			add_mm_counter(mm, i, rss[i]);
481 }
482 
483 /*
484  * This function is called to print an error when a bad pte
485  * is found. For example, we might have a PFN-mapped pte in
486  * a region that doesn't allow it.
487  *
488  * The calling function must still handle the error.
489  */
print_bad_pte(struct vm_area_struct *vma, unsigned long addr, pte_t pte, struct page *page)490 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
491 			  pte_t pte, struct page *page)
492 {
493 	pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
494 	p4d_t *p4d = p4d_offset(pgd, addr);
495 	pud_t *pud = pud_offset(p4d, addr);
496 	pmd_t *pmd = pmd_offset(pud, addr);
497 	struct address_space *mapping;
498 	pgoff_t index;
499 	static unsigned long resume;
500 	static unsigned long nr_shown;
501 	static unsigned long nr_unshown;
502 
503 	/*
504 	 * Allow a burst of 60 reports, then keep quiet for that minute;
505 	 * or allow a steady drip of one report per second.
506 	 */
507 	if (nr_shown == 60) {
508 		if (time_before(jiffies, resume)) {
509 			nr_unshown++;
510 			return;
511 		}
512 		if (nr_unshown) {
513 			pr_alert("BUG: Bad page map: %lu messages suppressed\n",
514 				 nr_unshown);
515 			nr_unshown = 0;
516 		}
517 		nr_shown = 0;
518 	}
519 	if (nr_shown++ == 0)
520 		resume = jiffies + 60 * HZ;
521 
522 	mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
523 	index = linear_page_index(vma, addr);
524 
525 	pr_alert("BUG: Bad page map in process %s  pte:%08llx pmd:%08llx\n",
526 		 current->comm,
527 		 (long long)pte_val(pte), (long long)pmd_val(*pmd));
528 	if (page)
529 		dump_page(page, "bad pte");
530 	pr_alert("addr:%px vm_flags:%08lx anon_vma:%px mapping:%px index:%lx\n",
531 		 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
532 	pr_alert("file:%pD fault:%ps mmap:%ps read_folio:%ps\n",
533 		 vma->vm_file,
534 		 vma->vm_ops ? vma->vm_ops->fault : NULL,
535 		 vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
536 		 mapping ? mapping->a_ops->read_folio : NULL);
537 	dump_stack();
538 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
539 }
540 
541 /*
542  * vm_normal_page -- This function gets the "struct page" associated with a pte.
543  *
544  * "Special" mappings do not wish to be associated with a "struct page" (either
545  * it doesn't exist, or it exists but they don't want to touch it). In this
546  * case, NULL is returned here. "Normal" mappings do have a struct page.
547  *
548  * There are 2 broad cases. Firstly, an architecture may define a pte_special()
549  * pte bit, in which case this function is trivial. Secondly, an architecture
550  * may not have a spare pte bit, which requires a more complicated scheme,
551  * described below.
552  *
553  * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
554  * special mapping (even if there are underlying and valid "struct pages").
555  * COWed pages of a VM_PFNMAP are always normal.
556  *
557  * The way we recognize COWed pages within VM_PFNMAP mappings is through the
558  * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
559  * set, and the vm_pgoff will point to the first PFN mapped: thus every special
560  * mapping will always honor the rule
561  *
562  *	pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
563  *
564  * And for normal mappings this is false.
565  *
566  * This restricts such mappings to be a linear translation from virtual address
567  * to pfn. To get around this restriction, we allow arbitrary mappings so long
568  * as the vma is not a COW mapping; in that case, we know that all ptes are
569  * special (because none can have been COWed).
570  *
571  *
572  * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
573  *
574  * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
575  * page" backing, however the difference is that _all_ pages with a struct
576  * page (that is, those where pfn_valid is true) are refcounted and considered
577  * normal pages by the VM. The disadvantage is that pages are refcounted
578  * (which can be slower and simply not an option for some PFNMAP users). The
579  * advantage is that we don't have to follow the strict linearity rule of
580  * PFNMAP mappings in order to support COWable mappings.
581  *
582  */
vm_normal_page(struct vm_area_struct *vma, unsigned long addr, pte_t pte)583 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
584 			    pte_t pte)
585 {
586 	unsigned long pfn = pte_pfn(pte);
587 
588 	if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) {
589 		if (likely(!pte_special(pte)))
590 			goto check_pfn;
591 		if (vma->vm_ops && vma->vm_ops->find_special_page)
592 			return vma->vm_ops->find_special_page(vma, addr);
593 		if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
594 			return NULL;
595 		if (is_zero_pfn(pfn))
596 			return NULL;
597 		if (pte_devmap(pte))
598 		/*
599 		 * NOTE: New users of ZONE_DEVICE will not set pte_devmap()
600 		 * and will have refcounts incremented on their struct pages
601 		 * when they are inserted into PTEs, thus they are safe to
602 		 * return here. Legacy ZONE_DEVICE pages that set pte_devmap()
603 		 * do not have refcounts. Example of legacy ZONE_DEVICE is
604 		 * MEMORY_DEVICE_FS_DAX type in pmem or virtio_fs drivers.
605 		 */
606 			return NULL;
607 
608 		print_bad_pte(vma, addr, pte, NULL);
609 		return NULL;
610 	}
611 
612 	/* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */
613 
614 	if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
615 		if (vma->vm_flags & VM_MIXEDMAP) {
616 			if (!pfn_valid(pfn))
617 				return NULL;
618 			goto out;
619 		} else {
620 			unsigned long off;
621 			off = (addr - vma->vm_start) >> PAGE_SHIFT;
622 			if (pfn == vma->vm_pgoff + off)
623 				return NULL;
624 			if (!is_cow_mapping(vma->vm_flags))
625 				return NULL;
626 		}
627 	}
628 
629 	if (is_zero_pfn(pfn))
630 		return NULL;
631 
632 check_pfn:
633 	if (unlikely(pfn > highest_memmap_pfn)) {
634 		print_bad_pte(vma, addr, pte, NULL);
635 		return NULL;
636 	}
637 
638 	/*
639 	 * NOTE! We still have PageReserved() pages in the page tables.
640 	 * eg. VDSO mappings can cause them to exist.
641 	 */
642 out:
643 	return pfn_to_page(pfn);
644 }
645 
vm_normal_folio(struct vm_area_struct *vma, unsigned long addr, pte_t pte)646 struct folio *vm_normal_folio(struct vm_area_struct *vma, unsigned long addr,
647 			    pte_t pte)
648 {
649 	struct page *page = vm_normal_page(vma, addr, pte);
650 
651 	if (page)
652 		return page_folio(page);
653 	return NULL;
654 }
655 
656 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr, pmd_t pmd)657 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
658 				pmd_t pmd)
659 {
660 	unsigned long pfn = pmd_pfn(pmd);
661 
662 	/*
663 	 * There is no pmd_special() but there may be special pmds, e.g.
664 	 * in a direct-access (dax) mapping, so let's just replicate the
665 	 * !CONFIG_ARCH_HAS_PTE_SPECIAL case from vm_normal_page() here.
666 	 */
667 	if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
668 		if (vma->vm_flags & VM_MIXEDMAP) {
669 			if (!pfn_valid(pfn))
670 				return NULL;
671 			goto out;
672 		} else {
673 			unsigned long off;
674 			off = (addr - vma->vm_start) >> PAGE_SHIFT;
675 			if (pfn == vma->vm_pgoff + off)
676 				return NULL;
677 			if (!is_cow_mapping(vma->vm_flags))
678 				return NULL;
679 		}
680 	}
681 
682 	if (pmd_devmap(pmd))
683 		return NULL;
684 	if (is_huge_zero_pmd(pmd))
685 		return NULL;
686 	if (unlikely(pfn > highest_memmap_pfn))
687 		return NULL;
688 
689 	/*
690 	 * NOTE! We still have PageReserved() pages in the page tables.
691 	 * eg. VDSO mappings can cause them to exist.
692 	 */
693 out:
694 	return pfn_to_page(pfn);
695 }
696 #endif
697 
restore_exclusive_pte(struct vm_area_struct *vma, struct page *page, unsigned long address, pte_t *ptep)698 static void restore_exclusive_pte(struct vm_area_struct *vma,
699 				  struct page *page, unsigned long address,
700 				  pte_t *ptep)
701 {
702 	pte_t orig_pte;
703 	pte_t pte;
704 	swp_entry_t entry;
705 
706 	orig_pte = ptep_get(ptep);
707 	pte = pte_mkold(mk_pte(page, READ_ONCE(vma->vm_page_prot)));
708 	if (pte_swp_soft_dirty(orig_pte))
709 		pte = pte_mksoft_dirty(pte);
710 
711 	entry = pte_to_swp_entry(orig_pte);
712 	if (pte_swp_uffd_wp(orig_pte))
713 		pte = pte_mkuffd_wp(pte);
714 	else if (is_writable_device_exclusive_entry(entry))
715 		pte = maybe_mkwrite(pte_mkdirty(pte), vma);
716 
717 	VM_BUG_ON(pte_write(pte) && !(PageAnon(page) && PageAnonExclusive(page)));
718 
719 	/*
720 	 * No need to take a page reference as one was already
721 	 * created when the swap entry was made.
722 	 */
723 	if (PageAnon(page))
724 		page_add_anon_rmap(page, vma, address, RMAP_NONE);
725 	else
726 		/*
727 		 * Currently device exclusive access only supports anonymous
728 		 * memory so the entry shouldn't point to a filebacked page.
729 		 */
730 		WARN_ON_ONCE(1);
731 
732 	set_pte_at(vma->vm_mm, address, ptep, pte);
733 
734 	/*
735 	 * No need to invalidate - it was non-present before. However
736 	 * secondary CPUs may have mappings that need invalidating.
737 	 */
738 	update_mmu_cache(vma, address, ptep);
739 }
740 
741 /*
742  * Tries to restore an exclusive pte if the page lock can be acquired without
743  * sleeping.
744  */
745 static int
try_restore_exclusive_pte(pte_t *src_pte, struct vm_area_struct *vma, unsigned long addr)746 try_restore_exclusive_pte(pte_t *src_pte, struct vm_area_struct *vma,
747 			unsigned long addr)
748 {
749 	swp_entry_t entry = pte_to_swp_entry(ptep_get(src_pte));
750 	struct page *page = pfn_swap_entry_to_page(entry);
751 
752 	if (trylock_page(page)) {
753 		restore_exclusive_pte(vma, page, addr, src_pte);
754 		unlock_page(page);
755 		return 0;
756 	}
757 
758 	return -EBUSY;
759 }
760 
761 /*
762  * copy one vm_area from one task to the other. Assumes the page tables
763  * already present in the new task to be cleared in the whole range
764  * covered by this vma.
765  */
766 
767 static unsigned long
copy_nonpresent_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm, pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, unsigned long addr, int *rss)768 copy_nonpresent_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
769 		pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *dst_vma,
770 		struct vm_area_struct *src_vma, unsigned long addr, int *rss)
771 {
772 	unsigned long vm_flags = dst_vma->vm_flags;
773 	pte_t orig_pte = ptep_get(src_pte);
774 	pte_t pte = orig_pte;
775 	struct page *page;
776 	swp_entry_t entry = pte_to_swp_entry(orig_pte);
777 
778 	if (likely(!non_swap_entry(entry))) {
779 		if (swap_duplicate(entry) < 0)
780 			return -EIO;
781 
782 		/* make sure dst_mm is on swapoff's mmlist. */
783 		if (unlikely(list_empty(&dst_mm->mmlist))) {
784 			spin_lock(&mmlist_lock);
785 			if (list_empty(&dst_mm->mmlist))
786 				list_add(&dst_mm->mmlist,
787 						&src_mm->mmlist);
788 			spin_unlock(&mmlist_lock);
789 		}
790 		/* Mark the swap entry as shared. */
791 		if (pte_swp_exclusive(orig_pte)) {
792 			pte = pte_swp_clear_exclusive(orig_pte);
793 			set_pte_at(src_mm, addr, src_pte, pte);
794 		}
795 		rss[MM_SWAPENTS]++;
796 	} else if (is_migration_entry(entry)) {
797 		page = pfn_swap_entry_to_page(entry);
798 
799 		rss[mm_counter(page)]++;
800 
801 		if (!is_readable_migration_entry(entry) &&
802 				is_cow_mapping(vm_flags)) {
803 			/*
804 			 * COW mappings require pages in both parent and child
805 			 * to be set to read. A previously exclusive entry is
806 			 * now shared.
807 			 */
808 			entry = make_readable_migration_entry(
809 							swp_offset(entry));
810 			pte = swp_entry_to_pte(entry);
811 			if (pte_swp_soft_dirty(orig_pte))
812 				pte = pte_swp_mksoft_dirty(pte);
813 			if (pte_swp_uffd_wp(orig_pte))
814 				pte = pte_swp_mkuffd_wp(pte);
815 			set_pte_at(src_mm, addr, src_pte, pte);
816 		}
817 	} else if (is_device_private_entry(entry)) {
818 		page = pfn_swap_entry_to_page(entry);
819 
820 		/*
821 		 * Update rss count even for unaddressable pages, as
822 		 * they should treated just like normal pages in this
823 		 * respect.
824 		 *
825 		 * We will likely want to have some new rss counters
826 		 * for unaddressable pages, at some point. But for now
827 		 * keep things as they are.
828 		 */
829 		get_page(page);
830 		rss[mm_counter(page)]++;
831 		/* Cannot fail as these pages cannot get pinned. */
832 		BUG_ON(page_try_dup_anon_rmap(page, false, src_vma));
833 
834 		/*
835 		 * We do not preserve soft-dirty information, because so
836 		 * far, checkpoint/restore is the only feature that
837 		 * requires that. And checkpoint/restore does not work
838 		 * when a device driver is involved (you cannot easily
839 		 * save and restore device driver state).
840 		 */
841 		if (is_writable_device_private_entry(entry) &&
842 		    is_cow_mapping(vm_flags)) {
843 			entry = make_readable_device_private_entry(
844 							swp_offset(entry));
845 			pte = swp_entry_to_pte(entry);
846 			if (pte_swp_uffd_wp(orig_pte))
847 				pte = pte_swp_mkuffd_wp(pte);
848 			set_pte_at(src_mm, addr, src_pte, pte);
849 		}
850 	} else if (is_device_exclusive_entry(entry)) {
851 		/*
852 		 * Make device exclusive entries present by restoring the
853 		 * original entry then copying as for a present pte. Device
854 		 * exclusive entries currently only support private writable
855 		 * (ie. COW) mappings.
856 		 */
857 		VM_BUG_ON(!is_cow_mapping(src_vma->vm_flags));
858 		if (try_restore_exclusive_pte(src_pte, src_vma, addr))
859 			return -EBUSY;
860 		return -ENOENT;
861 	} else if (is_pte_marker_entry(entry)) {
862 		pte_marker marker = copy_pte_marker(entry, dst_vma);
863 
864 		if (marker)
865 			set_pte_at(dst_mm, addr, dst_pte,
866 				   make_pte_marker(marker));
867 		return 0;
868 	}
869 	if (!userfaultfd_wp(dst_vma))
870 		pte = pte_swp_clear_uffd_wp(pte);
871 	set_pte_at(dst_mm, addr, dst_pte, pte);
872 	return 0;
873 }
874 
875 /*
876  * Copy a present and normal page.
877  *
878  * NOTE! The usual case is that this isn't required;
879  * instead, the caller can just increase the page refcount
880  * and re-use the pte the traditional way.
881  *
882  * And if we need a pre-allocated page but don't yet have
883  * one, return a negative error to let the preallocation
884  * code know so that it can do so outside the page table
885  * lock.
886  */
887 static inline int
copy_present_page(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss, struct folio **prealloc, struct page *page)888 copy_present_page(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
889 		  pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss,
890 		  struct folio **prealloc, struct page *page)
891 {
892 	struct folio *new_folio;
893 	pte_t pte;
894 
895 	new_folio = *prealloc;
896 	if (!new_folio)
897 		return -EAGAIN;
898 
899 	/*
900 	 * We have a prealloc page, all good!  Take it
901 	 * over and copy the page & arm it.
902 	 */
903 	*prealloc = NULL;
904 	copy_user_highpage(&new_folio->page, page, addr, src_vma);
905 	__folio_mark_uptodate(new_folio);
906 	folio_add_new_anon_rmap(new_folio, dst_vma, addr);
907 	folio_add_lru_vma(new_folio, dst_vma);
908 	rss[MM_ANONPAGES]++;
909 
910 	/* All done, just insert the new page copy in the child */
911 	pte = mk_pte(&new_folio->page, dst_vma->vm_page_prot);
912 	pte = maybe_mkwrite(pte_mkdirty(pte), dst_vma);
913 	if (userfaultfd_pte_wp(dst_vma, ptep_get(src_pte)))
914 		/* Uffd-wp needs to be delivered to dest pte as well */
915 		pte = pte_mkuffd_wp(pte);
916 	set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte);
917 	return 0;
918 }
919 
920 /*
921  * Copy one pte.  Returns 0 if succeeded, or -EAGAIN if one preallocated page
922  * is required to copy this pte.
923  */
924 static inline int
copy_present_pte(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss, struct folio **prealloc)925 copy_present_pte(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
926 		 pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss,
927 		 struct folio **prealloc)
928 {
929 	struct mm_struct *src_mm = src_vma->vm_mm;
930 	unsigned long vm_flags = src_vma->vm_flags;
931 	pte_t pte = ptep_get(src_pte);
932 	struct page *page;
933 	struct folio *folio;
934 
935 	page = vm_normal_page(src_vma, addr, pte);
936 	if (page)
937 		folio = page_folio(page);
938 	if (page && folio_test_anon(folio)) {
939 		/*
940 		 * If this page may have been pinned by the parent process,
941 		 * copy the page immediately for the child so that we'll always
942 		 * guarantee the pinned page won't be randomly replaced in the
943 		 * future.
944 		 */
945 		folio_get(folio);
946 		if (unlikely(page_try_dup_anon_rmap(page, false, src_vma))) {
947 			/* Page may be pinned, we have to copy. */
948 			folio_put(folio);
949 			return copy_present_page(dst_vma, src_vma, dst_pte, src_pte,
950 						 addr, rss, prealloc, page);
951 		}
952 		rss[MM_ANONPAGES]++;
953 	} else if (page) {
954 		folio_get(folio);
955 		page_dup_file_rmap(page, false);
956 		rss[mm_counter_file(page)]++;
957 	}
958 
959 	/*
960 	 * If it's a COW mapping, write protect it both
961 	 * in the parent and the child
962 	 */
963 	if (is_cow_mapping(vm_flags) && pte_write(pte)) {
964 		ptep_set_wrprotect(src_mm, addr, src_pte);
965 		pte = pte_wrprotect(pte);
966 	}
967 	VM_BUG_ON(page && folio_test_anon(folio) && PageAnonExclusive(page));
968 
969 	/*
970 	 * If it's a shared mapping, mark it clean in
971 	 * the child
972 	 */
973 	if (vm_flags & VM_SHARED)
974 		pte = pte_mkclean(pte);
975 	pte = pte_mkold(pte);
976 
977 	if (!userfaultfd_wp(dst_vma))
978 		pte = pte_clear_uffd_wp(pte);
979 
980 	set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte);
981 	return 0;
982 }
983 
page_copy_prealloc(struct mm_struct *src_mm, struct vm_area_struct *vma, unsigned long addr)984 static inline struct folio *page_copy_prealloc(struct mm_struct *src_mm,
985 		struct vm_area_struct *vma, unsigned long addr)
986 {
987 	struct folio *new_folio;
988 
989 	new_folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0, vma, addr, false);
990 	if (!new_folio)
991 		return NULL;
992 
993 	if (mem_cgroup_charge(new_folio, src_mm, GFP_KERNEL)) {
994 		folio_put(new_folio);
995 		return NULL;
996 	}
997 	folio_throttle_swaprate(new_folio, GFP_KERNEL);
998 
999 	return new_folio;
1000 }
1001 
1002 static int
copy_pte_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr, unsigned long end)1003 copy_pte_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1004 	       pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
1005 	       unsigned long end)
1006 {
1007 	struct mm_struct *dst_mm = dst_vma->vm_mm;
1008 	struct mm_struct *src_mm = src_vma->vm_mm;
1009 	pte_t *orig_src_pte, *orig_dst_pte;
1010 	pte_t *src_pte, *dst_pte;
1011 	pte_t ptent;
1012 	spinlock_t *src_ptl, *dst_ptl;
1013 	int progress, ret = 0;
1014 	int rss[NR_MM_COUNTERS];
1015 	swp_entry_t entry = (swp_entry_t){0};
1016 	struct folio *prealloc = NULL;
1017 
1018 again:
1019 	progress = 0;
1020 	init_rss_vec(rss);
1021 
1022 	/*
1023 	 * copy_pmd_range()'s prior pmd_none_or_clear_bad(src_pmd), and the
1024 	 * error handling here, assume that exclusive mmap_lock on dst and src
1025 	 * protects anon from unexpected THP transitions; with shmem and file
1026 	 * protected by mmap_lock-less collapse skipping areas with anon_vma
1027 	 * (whereas vma_needs_copy() skips areas without anon_vma).  A rework
1028 	 * can remove such assumptions later, but this is good enough for now.
1029 	 */
1030 	dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
1031 	if (!dst_pte) {
1032 		ret = -ENOMEM;
1033 		goto out;
1034 	}
1035 	src_pte = pte_offset_map_nolock(src_mm, src_pmd, addr, &src_ptl);
1036 	if (!src_pte) {
1037 		pte_unmap_unlock(dst_pte, dst_ptl);
1038 		/* ret == 0 */
1039 		goto out;
1040 	}
1041 	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1042 	orig_src_pte = src_pte;
1043 	orig_dst_pte = dst_pte;
1044 	arch_enter_lazy_mmu_mode();
1045 
1046 	do {
1047 		/*
1048 		 * We are holding two locks at this point - either of them
1049 		 * could generate latencies in another task on another CPU.
1050 		 */
1051 		if (progress >= 32) {
1052 			progress = 0;
1053 			if (need_resched() ||
1054 			    spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
1055 				break;
1056 		}
1057 		ptent = ptep_get(src_pte);
1058 		if (pte_none(ptent)) {
1059 			progress++;
1060 			continue;
1061 		}
1062 		if (unlikely(!pte_present(ptent))) {
1063 			ret = copy_nonpresent_pte(dst_mm, src_mm,
1064 						  dst_pte, src_pte,
1065 						  dst_vma, src_vma,
1066 						  addr, rss);
1067 			if (ret == -EIO) {
1068 				entry = pte_to_swp_entry(ptep_get(src_pte));
1069 				break;
1070 			} else if (ret == -EBUSY) {
1071 				break;
1072 			} else if (!ret) {
1073 				progress += 8;
1074 				continue;
1075 			}
1076 
1077 			/*
1078 			 * Device exclusive entry restored, continue by copying
1079 			 * the now present pte.
1080 			 */
1081 			WARN_ON_ONCE(ret != -ENOENT);
1082 		}
1083 		/* copy_present_pte() will clear `*prealloc' if consumed */
1084 		ret = copy_present_pte(dst_vma, src_vma, dst_pte, src_pte,
1085 				       addr, rss, &prealloc);
1086 		/*
1087 		 * If we need a pre-allocated page for this pte, drop the
1088 		 * locks, allocate, and try again.
1089 		 */
1090 		if (unlikely(ret == -EAGAIN))
1091 			break;
1092 		if (unlikely(prealloc)) {
1093 			/*
1094 			 * pre-alloc page cannot be reused by next time so as
1095 			 * to strictly follow mempolicy (e.g., alloc_page_vma()
1096 			 * will allocate page according to address).  This
1097 			 * could only happen if one pinned pte changed.
1098 			 */
1099 			folio_put(prealloc);
1100 			prealloc = NULL;
1101 		}
1102 		progress += 8;
1103 	} while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
1104 
1105 	arch_leave_lazy_mmu_mode();
1106 	pte_unmap_unlock(orig_src_pte, src_ptl);
1107 	add_mm_rss_vec(dst_mm, rss);
1108 	pte_unmap_unlock(orig_dst_pte, dst_ptl);
1109 	cond_resched();
1110 
1111 	if (ret == -EIO) {
1112 		VM_WARN_ON_ONCE(!entry.val);
1113 		if (add_swap_count_continuation(entry, GFP_KERNEL) < 0) {
1114 			ret = -ENOMEM;
1115 			goto out;
1116 		}
1117 		entry.val = 0;
1118 	} else if (ret == -EBUSY) {
1119 		goto out;
1120 	} else if (ret ==  -EAGAIN) {
1121 		prealloc = page_copy_prealloc(src_mm, src_vma, addr);
1122 		if (!prealloc)
1123 			return -ENOMEM;
1124 	} else if (ret) {
1125 		VM_WARN_ON_ONCE(1);
1126 	}
1127 
1128 	/* We've captured and resolved the error. Reset, try again. */
1129 	ret = 0;
1130 
1131 	if (addr != end)
1132 		goto again;
1133 out:
1134 	if (unlikely(prealloc))
1135 		folio_put(prealloc);
1136 	return ret;
1137 }
1138 
1139 static inline int
copy_pmd_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, pud_t *dst_pud, pud_t *src_pud, unsigned long addr, unsigned long end)1140 copy_pmd_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1141 	       pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1142 	       unsigned long end)
1143 {
1144 	struct mm_struct *dst_mm = dst_vma->vm_mm;
1145 	struct mm_struct *src_mm = src_vma->vm_mm;
1146 	pmd_t *src_pmd, *dst_pmd;
1147 	unsigned long next;
1148 
1149 	dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
1150 	if (!dst_pmd)
1151 		return -ENOMEM;
1152 	src_pmd = pmd_offset(src_pud, addr);
1153 	do {
1154 		next = pmd_addr_end(addr, end);
1155 		if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd)
1156 			|| pmd_devmap(*src_pmd)) {
1157 			int err;
1158 			VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, src_vma);
1159 			err = copy_huge_pmd(dst_mm, src_mm, dst_pmd, src_pmd,
1160 					    addr, dst_vma, src_vma);
1161 			if (err == -ENOMEM)
1162 				return -ENOMEM;
1163 			if (!err)
1164 				continue;
1165 			/* fall through */
1166 		}
1167 		if (pmd_none_or_clear_bad(src_pmd))
1168 			continue;
1169 		if (copy_pte_range(dst_vma, src_vma, dst_pmd, src_pmd,
1170 				   addr, next))
1171 			return -ENOMEM;
1172 	} while (dst_pmd++, src_pmd++, addr = next, addr != end);
1173 	return 0;
1174 }
1175 
1176 static inline int
copy_pud_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, p4d_t *dst_p4d, p4d_t *src_p4d, unsigned long addr, unsigned long end)1177 copy_pud_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1178 	       p4d_t *dst_p4d, p4d_t *src_p4d, unsigned long addr,
1179 	       unsigned long end)
1180 {
1181 	struct mm_struct *dst_mm = dst_vma->vm_mm;
1182 	struct mm_struct *src_mm = src_vma->vm_mm;
1183 	pud_t *src_pud, *dst_pud;
1184 	unsigned long next;
1185 
1186 	dst_pud = pud_alloc(dst_mm, dst_p4d, addr);
1187 	if (!dst_pud)
1188 		return -ENOMEM;
1189 	src_pud = pud_offset(src_p4d, addr);
1190 	do {
1191 		next = pud_addr_end(addr, end);
1192 		if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) {
1193 			int err;
1194 
1195 			VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, src_vma);
1196 			err = copy_huge_pud(dst_mm, src_mm,
1197 					    dst_pud, src_pud, addr, src_vma);
1198 			if (err == -ENOMEM)
1199 				return -ENOMEM;
1200 			if (!err)
1201 				continue;
1202 			/* fall through */
1203 		}
1204 		if (pud_none_or_clear_bad(src_pud))
1205 			continue;
1206 		if (copy_pmd_range(dst_vma, src_vma, dst_pud, src_pud,
1207 				   addr, next))
1208 			return -ENOMEM;
1209 	} while (dst_pud++, src_pud++, addr = next, addr != end);
1210 	return 0;
1211 }
1212 
1213 static inline int
copy_p4d_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, pgd_t *dst_pgd, pgd_t *src_pgd, unsigned long addr, unsigned long end)1214 copy_p4d_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1215 	       pgd_t *dst_pgd, pgd_t *src_pgd, unsigned long addr,
1216 	       unsigned long end)
1217 {
1218 	struct mm_struct *dst_mm = dst_vma->vm_mm;
1219 	p4d_t *src_p4d, *dst_p4d;
1220 	unsigned long next;
1221 
1222 	dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr);
1223 	if (!dst_p4d)
1224 		return -ENOMEM;
1225 	src_p4d = p4d_offset(src_pgd, addr);
1226 	do {
1227 		next = p4d_addr_end(addr, end);
1228 		if (p4d_none_or_clear_bad(src_p4d))
1229 			continue;
1230 		if (copy_pud_range(dst_vma, src_vma, dst_p4d, src_p4d,
1231 				   addr, next))
1232 			return -ENOMEM;
1233 	} while (dst_p4d++, src_p4d++, addr = next, addr != end);
1234 	return 0;
1235 }
1236 
1237 /*
1238  * Return true if the vma needs to copy the pgtable during this fork().  Return
1239  * false when we can speed up fork() by allowing lazy page faults later until
1240  * when the child accesses the memory range.
1241  */
1242 static bool
vma_needs_copy(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)1243 vma_needs_copy(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1244 {
1245 	/*
1246 	 * Always copy pgtables when dst_vma has uffd-wp enabled even if it's
1247 	 * file-backed (e.g. shmem). Because when uffd-wp is enabled, pgtable
1248 	 * contains uffd-wp protection information, that's something we can't
1249 	 * retrieve from page cache, and skip copying will lose those info.
1250 	 */
1251 	if (userfaultfd_wp(dst_vma))
1252 		return true;
1253 
1254 	if (src_vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
1255 		return true;
1256 
1257 	if (src_vma->anon_vma)
1258 		return true;
1259 
1260 	/*
1261 	 * Don't copy ptes where a page fault will fill them correctly.  Fork
1262 	 * becomes much lighter when there are big shared or private readonly
1263 	 * mappings. The tradeoff is that copy_page_range is more efficient
1264 	 * than faulting.
1265 	 */
1266 	return false;
1267 }
1268 
1269 int
copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)1270 copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1271 {
1272 	pgd_t *src_pgd, *dst_pgd;
1273 	unsigned long next;
1274 	unsigned long addr = src_vma->vm_start;
1275 	unsigned long end = src_vma->vm_end;
1276 	struct mm_struct *dst_mm = dst_vma->vm_mm;
1277 	struct mm_struct *src_mm = src_vma->vm_mm;
1278 	struct mmu_notifier_range range;
1279 	bool is_cow;
1280 	int ret;
1281 
1282 	if (!vma_needs_copy(dst_vma, src_vma))
1283 		return 0;
1284 
1285 	if (is_vm_hugetlb_page(src_vma))
1286 		return copy_hugetlb_page_range(dst_mm, src_mm, dst_vma, src_vma);
1287 
1288 	if (unlikely(src_vma->vm_flags & VM_PFNMAP)) {
1289 		/*
1290 		 * We do not free on error cases below as remove_vma
1291 		 * gets called on error from higher level routine
1292 		 */
1293 		ret = track_pfn_copy(src_vma);
1294 		if (ret)
1295 			return ret;
1296 	}
1297 
1298 	/*
1299 	 * We need to invalidate the secondary MMU mappings only when
1300 	 * there could be a permission downgrade on the ptes of the
1301 	 * parent mm. And a permission downgrade will only happen if
1302 	 * is_cow_mapping() returns true.
1303 	 */
1304 	is_cow = is_cow_mapping(src_vma->vm_flags);
1305 
1306 	if (is_cow) {
1307 		mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE,
1308 					0, src_mm, addr, end);
1309 		mmu_notifier_invalidate_range_start(&range);
1310 		/*
1311 		 * Disabling preemption is not needed for the write side, as
1312 		 * the read side doesn't spin, but goes to the mmap_lock.
1313 		 *
1314 		 * Use the raw variant of the seqcount_t write API to avoid
1315 		 * lockdep complaining about preemptibility.
1316 		 */
1317 		vma_assert_write_locked(src_vma);
1318 		raw_write_seqcount_begin(&src_mm->write_protect_seq);
1319 	}
1320 
1321 	ret = 0;
1322 	dst_pgd = pgd_offset(dst_mm, addr);
1323 	src_pgd = pgd_offset(src_mm, addr);
1324 	do {
1325 		next = pgd_addr_end(addr, end);
1326 		if (pgd_none_or_clear_bad(src_pgd))
1327 			continue;
1328 		if (unlikely(copy_p4d_range(dst_vma, src_vma, dst_pgd, src_pgd,
1329 					    addr, next))) {
1330 			untrack_pfn_clear(dst_vma);
1331 			ret = -ENOMEM;
1332 			break;
1333 		}
1334 	} while (dst_pgd++, src_pgd++, addr = next, addr != end);
1335 
1336 	if (is_cow) {
1337 		raw_write_seqcount_end(&src_mm->write_protect_seq);
1338 		mmu_notifier_invalidate_range_end(&range);
1339 	}
1340 	return ret;
1341 }
1342 
1343 /* Whether we should zap all COWed (private) pages too */
should_zap_cows(struct zap_details *details)1344 static inline bool should_zap_cows(struct zap_details *details)
1345 {
1346 	/* By default, zap all pages */
1347 	if (!details)
1348 		return true;
1349 
1350 	/* Or, we zap COWed pages only if the caller wants to */
1351 	return details->even_cows;
1352 }
1353 
1354 /* Decides whether we should zap this page with the page pointer specified */
should_zap_page(struct zap_details *details, struct page *page)1355 static inline bool should_zap_page(struct zap_details *details, struct page *page)
1356 {
1357 	/* If we can make a decision without *page.. */
1358 	if (should_zap_cows(details))
1359 		return true;
1360 
1361 	/* E.g. the caller passes NULL for the case of a zero page */
1362 	if (!page)
1363 		return true;
1364 
1365 	/* Otherwise we should only zap non-anon pages */
1366 	return !PageAnon(page);
1367 }
1368 
zap_drop_file_uffd_wp(struct zap_details *details)1369 static inline bool zap_drop_file_uffd_wp(struct zap_details *details)
1370 {
1371 	if (!details)
1372 		return false;
1373 
1374 	return details->zap_flags & ZAP_FLAG_DROP_MARKER;
1375 }
1376 
1377 /*
1378  * This function makes sure that we'll replace the none pte with an uffd-wp
1379  * swap special pte marker when necessary. Must be with the pgtable lock held.
1380  */
1381 static inline void
zap_install_uffd_wp_if_needed(struct vm_area_struct *vma, unsigned long addr, pte_t *pte, struct zap_details *details, pte_t pteval)1382 zap_install_uffd_wp_if_needed(struct vm_area_struct *vma,
1383 			      unsigned long addr, pte_t *pte,
1384 			      struct zap_details *details, pte_t pteval)
1385 {
1386 	/* Zap on anonymous always means dropping everything */
1387 	if (vma_is_anonymous(vma))
1388 		return;
1389 
1390 	if (zap_drop_file_uffd_wp(details))
1391 		return;
1392 
1393 	pte_install_uffd_wp_if_needed(vma, addr, pte, pteval);
1394 }
1395 
zap_pte_range(struct mmu_gather *tlb, struct vm_area_struct *vma, pmd_t *pmd, unsigned long addr, unsigned long end, struct zap_details *details)1396 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1397 				struct vm_area_struct *vma, pmd_t *pmd,
1398 				unsigned long addr, unsigned long end,
1399 				struct zap_details *details)
1400 {
1401 	struct mm_struct *mm = tlb->mm;
1402 	int force_flush = 0;
1403 	int rss[NR_MM_COUNTERS];
1404 	spinlock_t *ptl;
1405 	pte_t *start_pte;
1406 	pte_t *pte;
1407 	swp_entry_t entry;
1408 
1409 	tlb_change_page_size(tlb, PAGE_SIZE);
1410 	init_rss_vec(rss);
1411 	start_pte = pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1412 	if (!pte)
1413 		return addr;
1414 
1415 	flush_tlb_batched_pending(mm);
1416 	arch_enter_lazy_mmu_mode();
1417 	do {
1418 		pte_t ptent = ptep_get(pte);
1419 		struct page *page;
1420 
1421 		if (pte_none(ptent))
1422 			continue;
1423 
1424 		if (need_resched())
1425 			break;
1426 
1427 		if (pte_present(ptent)) {
1428 			unsigned int delay_rmap;
1429 
1430 			page = vm_normal_page(vma, addr, ptent);
1431 #ifdef CONFIG_MEM_PURGEABLE
1432 			if (vma->vm_flags & VM_USEREXPTE)
1433 				page =  NULL;
1434 #endif
1435 			if (unlikely(!should_zap_page(details, page)))
1436 				continue;
1437 			ptent = ptep_get_and_clear_full(mm, addr, pte,
1438 							tlb->fullmm);
1439 			arch_check_zapped_pte(vma, ptent);
1440 			tlb_remove_tlb_entry(tlb, pte, addr);
1441 			zap_install_uffd_wp_if_needed(vma, addr, pte, details,
1442 						      ptent);
1443 			if (unlikely(!page)) {
1444 				ksm_might_unmap_zero_page(mm, ptent);
1445 				continue;
1446 			}
1447 #ifdef CONFIG_MEM_PURGEABLE
1448 			if (vma->vm_flags & VM_PURGEABLE)
1449 				uxpte_clear_present(vma, addr);
1450 #endif
1451 			delay_rmap = 0;
1452 			if (!PageAnon(page)) {
1453 				if (pte_dirty(ptent)) {
1454 					set_page_dirty(page);
1455 					if (tlb_delay_rmap(tlb)) {
1456 						delay_rmap = 1;
1457 						force_flush = 1;
1458 					}
1459 				}
1460 				if (pte_young(ptent) && likely(vma_has_recency(vma)))
1461 					mark_page_accessed(page);
1462 			}
1463 			rss[mm_counter(page)]--;
1464 			if (!delay_rmap) {
1465 				page_remove_rmap(page, vma, false);
1466 				if (unlikely(page_mapcount(page) < 0))
1467 					print_bad_pte(vma, addr, ptent, page);
1468 			}
1469 			if (unlikely(__tlb_remove_page(tlb, page, delay_rmap))) {
1470 				force_flush = 1;
1471 				addr += PAGE_SIZE;
1472 				break;
1473 			}
1474 			continue;
1475 		}
1476 
1477 		entry = pte_to_swp_entry(ptent);
1478 		if (is_device_private_entry(entry) ||
1479 		    is_device_exclusive_entry(entry)) {
1480 			page = pfn_swap_entry_to_page(entry);
1481 			if (unlikely(!should_zap_page(details, page)))
1482 				continue;
1483 			/*
1484 			 * Both device private/exclusive mappings should only
1485 			 * work with anonymous page so far, so we don't need to
1486 			 * consider uffd-wp bit when zap. For more information,
1487 			 * see zap_install_uffd_wp_if_needed().
1488 			 */
1489 			WARN_ON_ONCE(!vma_is_anonymous(vma));
1490 			rss[mm_counter(page)]--;
1491 			if (is_device_private_entry(entry))
1492 				page_remove_rmap(page, vma, false);
1493 			put_page(page);
1494 		} else if (!non_swap_entry(entry)) {
1495 			/* Genuine swap entry, hence a private anon page */
1496 			if (!should_zap_cows(details))
1497 				continue;
1498 			rss[MM_SWAPENTS]--;
1499 			if (unlikely(!free_swap_and_cache(entry)))
1500 				print_bad_pte(vma, addr, ptent, NULL);
1501 		} else if (is_migration_entry(entry)) {
1502 			page = pfn_swap_entry_to_page(entry);
1503 			if (!should_zap_page(details, page))
1504 				continue;
1505 			rss[mm_counter(page)]--;
1506 		} else if (pte_marker_entry_uffd_wp(entry)) {
1507 			/*
1508 			 * For anon: always drop the marker; for file: only
1509 			 * drop the marker if explicitly requested.
1510 			 */
1511 			if (!vma_is_anonymous(vma) &&
1512 			    !zap_drop_file_uffd_wp(details))
1513 				continue;
1514 		} else if (is_hwpoison_entry(entry) ||
1515 			   is_poisoned_swp_entry(entry)) {
1516 			if (!should_zap_cows(details))
1517 				continue;
1518 		} else {
1519 			/* We should have covered all the swap entry types */
1520 			WARN_ON_ONCE(1);
1521 		}
1522 		pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1523 		zap_install_uffd_wp_if_needed(vma, addr, pte, details, ptent);
1524 	} while (pte++, addr += PAGE_SIZE, addr != end);
1525 
1526 	add_mm_rss_vec(mm, rss);
1527 	arch_leave_lazy_mmu_mode();
1528 
1529 	/* Do the actual TLB flush before dropping ptl */
1530 	if (force_flush) {
1531 		tlb_flush_mmu_tlbonly(tlb);
1532 		tlb_flush_rmaps(tlb, vma);
1533 	}
1534 	pte_unmap_unlock(start_pte, ptl);
1535 
1536 	/*
1537 	 * If we forced a TLB flush (either due to running out of
1538 	 * batch buffers or because we needed to flush dirty TLB
1539 	 * entries before releasing the ptl), free the batched
1540 	 * memory too. Come back again if we didn't do everything.
1541 	 */
1542 	if (force_flush)
1543 		tlb_flush_mmu(tlb);
1544 
1545 	return addr;
1546 }
1547 
zap_pmd_range(struct mmu_gather *tlb, struct vm_area_struct *vma, pud_t *pud, unsigned long addr, unsigned long end, struct zap_details *details)1548 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1549 				struct vm_area_struct *vma, pud_t *pud,
1550 				unsigned long addr, unsigned long end,
1551 				struct zap_details *details)
1552 {
1553 	pmd_t *pmd;
1554 	unsigned long next;
1555 
1556 	pmd = pmd_offset(pud, addr);
1557 	do {
1558 		next = pmd_addr_end(addr, end);
1559 		if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
1560 			if (next - addr != HPAGE_PMD_SIZE)
1561 				__split_huge_pmd(vma, pmd, addr, false, NULL);
1562 			else if (zap_huge_pmd(tlb, vma, pmd, addr)) {
1563 				addr = next;
1564 				continue;
1565 			}
1566 			/* fall through */
1567 		} else if (details && details->single_folio &&
1568 			   folio_test_pmd_mappable(details->single_folio) &&
1569 			   next - addr == HPAGE_PMD_SIZE && pmd_none(*pmd)) {
1570 			spinlock_t *ptl = pmd_lock(tlb->mm, pmd);
1571 			/*
1572 			 * Take and drop THP pmd lock so that we cannot return
1573 			 * prematurely, while zap_huge_pmd() has cleared *pmd,
1574 			 * but not yet decremented compound_mapcount().
1575 			 */
1576 			spin_unlock(ptl);
1577 		}
1578 		if (pmd_none(*pmd)) {
1579 			addr = next;
1580 			continue;
1581 		}
1582 		addr = zap_pte_range(tlb, vma, pmd, addr, next, details);
1583 		if (addr != next)
1584 			pmd--;
1585 	} while (pmd++, cond_resched(), addr != end);
1586 
1587 	return addr;
1588 }
1589 
zap_pud_range(struct mmu_gather *tlb, struct vm_area_struct *vma, p4d_t *p4d, unsigned long addr, unsigned long end, struct zap_details *details)1590 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1591 				struct vm_area_struct *vma, p4d_t *p4d,
1592 				unsigned long addr, unsigned long end,
1593 				struct zap_details *details)
1594 {
1595 	pud_t *pud;
1596 	unsigned long next;
1597 
1598 	pud = pud_offset(p4d, addr);
1599 	do {
1600 		next = pud_addr_end(addr, end);
1601 		if (pud_trans_huge(*pud) || pud_devmap(*pud)) {
1602 			if (next - addr != HPAGE_PUD_SIZE) {
1603 				mmap_assert_locked(tlb->mm);
1604 				split_huge_pud(vma, pud, addr);
1605 			} else if (zap_huge_pud(tlb, vma, pud, addr))
1606 				goto next;
1607 			/* fall through */
1608 		}
1609 		if (pud_none_or_clear_bad(pud))
1610 			continue;
1611 		next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1612 next:
1613 		cond_resched();
1614 	} while (pud++, addr = next, addr != end);
1615 
1616 	return addr;
1617 }
1618 
zap_p4d_range(struct mmu_gather *tlb, struct vm_area_struct *vma, pgd_t *pgd, unsigned long addr, unsigned long end, struct zap_details *details)1619 static inline unsigned long zap_p4d_range(struct mmu_gather *tlb,
1620 				struct vm_area_struct *vma, pgd_t *pgd,
1621 				unsigned long addr, unsigned long end,
1622 				struct zap_details *details)
1623 {
1624 	p4d_t *p4d;
1625 	unsigned long next;
1626 
1627 	p4d = p4d_offset(pgd, addr);
1628 	do {
1629 		next = p4d_addr_end(addr, end);
1630 		if (p4d_none_or_clear_bad(p4d))
1631 			continue;
1632 		next = zap_pud_range(tlb, vma, p4d, addr, next, details);
1633 	} while (p4d++, addr = next, addr != end);
1634 
1635 	return addr;
1636 }
1637 
unmap_page_range(struct mmu_gather *tlb, struct vm_area_struct *vma, unsigned long addr, unsigned long end, struct zap_details *details)1638 void unmap_page_range(struct mmu_gather *tlb,
1639 			     struct vm_area_struct *vma,
1640 			     unsigned long addr, unsigned long end,
1641 			     struct zap_details *details)
1642 {
1643 	pgd_t *pgd;
1644 	unsigned long next;
1645 
1646 	BUG_ON(addr >= end);
1647 	tlb_start_vma(tlb, vma);
1648 	pgd = pgd_offset(vma->vm_mm, addr);
1649 	do {
1650 		next = pgd_addr_end(addr, end);
1651 		if (pgd_none_or_clear_bad(pgd))
1652 			continue;
1653 		next = zap_p4d_range(tlb, vma, pgd, addr, next, details);
1654 	} while (pgd++, addr = next, addr != end);
1655 	tlb_end_vma(tlb, vma);
1656 }
1657 
1658 
unmap_single_vma(struct mmu_gather *tlb, struct vm_area_struct *vma, unsigned long start_addr, unsigned long end_addr, struct zap_details *details, bool mm_wr_locked)1659 static void unmap_single_vma(struct mmu_gather *tlb,
1660 		struct vm_area_struct *vma, unsigned long start_addr,
1661 		unsigned long end_addr,
1662 		struct zap_details *details, bool mm_wr_locked)
1663 {
1664 	unsigned long start = max(vma->vm_start, start_addr);
1665 	unsigned long end;
1666 
1667 	if (start >= vma->vm_end)
1668 		return;
1669 	end = min(vma->vm_end, end_addr);
1670 	if (end <= vma->vm_start)
1671 		return;
1672 
1673 	if (vma->vm_file)
1674 		uprobe_munmap(vma, start, end);
1675 
1676 	if (unlikely(vma->vm_flags & VM_PFNMAP))
1677 		untrack_pfn(vma, 0, 0, mm_wr_locked);
1678 
1679 	if (start != end) {
1680 		if (unlikely(is_vm_hugetlb_page(vma))) {
1681 			/*
1682 			 * It is undesirable to test vma->vm_file as it
1683 			 * should be non-null for valid hugetlb area.
1684 			 * However, vm_file will be NULL in the error
1685 			 * cleanup path of mmap_region. When
1686 			 * hugetlbfs ->mmap method fails,
1687 			 * mmap_region() nullifies vma->vm_file
1688 			 * before calling this function to clean up.
1689 			 * Since no pte has actually been setup, it is
1690 			 * safe to do nothing in this case.
1691 			 */
1692 			if (vma->vm_file) {
1693 				zap_flags_t zap_flags = details ?
1694 				    details->zap_flags : 0;
1695 				__unmap_hugepage_range(tlb, vma, start, end,
1696 							     NULL, zap_flags);
1697 			}
1698 		} else
1699 			unmap_page_range(tlb, vma, start, end, details);
1700 	}
1701 }
1702 
1703 /**
1704  * unmap_vmas - unmap a range of memory covered by a list of vma's
1705  * @tlb: address of the caller's struct mmu_gather
1706  * @mas: the maple state
1707  * @vma: the starting vma
1708  * @start_addr: virtual address at which to start unmapping
1709  * @end_addr: virtual address at which to end unmapping
1710  * @tree_end: The maximum index to check
1711  * @mm_wr_locked: lock flag
1712  *
1713  * Unmap all pages in the vma list.
1714  *
1715  * Only addresses between `start' and `end' will be unmapped.
1716  *
1717  * The VMA list must be sorted in ascending virtual address order.
1718  *
1719  * unmap_vmas() assumes that the caller will flush the whole unmapped address
1720  * range after unmap_vmas() returns.  So the only responsibility here is to
1721  * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1722  * drops the lock and schedules.
1723  */
unmap_vmas(struct mmu_gather *tlb, struct ma_state *mas, struct vm_area_struct *vma, unsigned long start_addr, unsigned long end_addr, unsigned long tree_end, bool mm_wr_locked)1724 void unmap_vmas(struct mmu_gather *tlb, struct ma_state *mas,
1725 		struct vm_area_struct *vma, unsigned long start_addr,
1726 		unsigned long end_addr, unsigned long tree_end,
1727 		bool mm_wr_locked)
1728 {
1729 	struct mmu_notifier_range range;
1730 	struct zap_details details = {
1731 		.zap_flags = ZAP_FLAG_DROP_MARKER | ZAP_FLAG_UNMAP,
1732 		/* Careful - we need to zap private pages too! */
1733 		.even_cows = true,
1734 	};
1735 
1736 	mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma->vm_mm,
1737 				start_addr, end_addr);
1738 	mmu_notifier_invalidate_range_start(&range);
1739 	do {
1740 		unsigned long start = start_addr;
1741 		unsigned long end = end_addr;
1742 		hugetlb_zap_begin(vma, &start, &end);
1743 		unmap_single_vma(tlb, vma, start, end, &details,
1744 				 mm_wr_locked);
1745 		hugetlb_zap_end(vma, &details);
1746 	} while ((vma = mas_find(mas, tree_end - 1)) != NULL);
1747 	mmu_notifier_invalidate_range_end(&range);
1748 }
1749 
1750 /**
1751  * zap_page_range_single - remove user pages in a given range
1752  * @vma: vm_area_struct holding the applicable pages
1753  * @address: starting address of pages to zap
1754  * @size: number of bytes to zap
1755  * @details: details of shared cache invalidation
1756  *
1757  * The range must fit into one VMA.
1758  */
zap_page_range_single(struct vm_area_struct *vma, unsigned long address, unsigned long size, struct zap_details *details)1759 void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1760 		unsigned long size, struct zap_details *details)
1761 {
1762 	const unsigned long end = address + size;
1763 	struct mmu_notifier_range range;
1764 	struct mmu_gather tlb;
1765 
1766 	lru_add_drain();
1767 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm,
1768 				address, end);
1769 	hugetlb_zap_begin(vma, &range.start, &range.end);
1770 	tlb_gather_mmu(&tlb, vma->vm_mm);
1771 	update_hiwater_rss(vma->vm_mm);
1772 	mmu_notifier_invalidate_range_start(&range);
1773 	/*
1774 	 * unmap 'address-end' not 'range.start-range.end' as range
1775 	 * could have been expanded for hugetlb pmd sharing.
1776 	 */
1777 	unmap_single_vma(&tlb, vma, address, end, details, false);
1778 	mmu_notifier_invalidate_range_end(&range);
1779 	tlb_finish_mmu(&tlb);
1780 	hugetlb_zap_end(vma, details);
1781 }
1782 
1783 /**
1784  * zap_vma_ptes - remove ptes mapping the vma
1785  * @vma: vm_area_struct holding ptes to be zapped
1786  * @address: starting address of pages to zap
1787  * @size: number of bytes to zap
1788  *
1789  * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1790  *
1791  * The entire address range must be fully contained within the vma.
1792  *
1793  */
zap_vma_ptes(struct vm_area_struct *vma, unsigned long address, unsigned long size)1794 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1795 		unsigned long size)
1796 {
1797 	if (!range_in_vma(vma, address, address + size) ||
1798 	    		!(vma->vm_flags & VM_PFNMAP))
1799 		return;
1800 
1801 	zap_page_range_single(vma, address, size, NULL);
1802 }
1803 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1804 
walk_to_pmd(struct mm_struct *mm, unsigned long addr)1805 static pmd_t *walk_to_pmd(struct mm_struct *mm, unsigned long addr)
1806 {
1807 	pgd_t *pgd;
1808 	p4d_t *p4d;
1809 	pud_t *pud;
1810 	pmd_t *pmd;
1811 
1812 	pgd = pgd_offset(mm, addr);
1813 	p4d = p4d_alloc(mm, pgd, addr);
1814 	if (!p4d)
1815 		return NULL;
1816 	pud = pud_alloc(mm, p4d, addr);
1817 	if (!pud)
1818 		return NULL;
1819 	pmd = pmd_alloc(mm, pud, addr);
1820 	if (!pmd)
1821 		return NULL;
1822 
1823 	VM_BUG_ON(pmd_trans_huge(*pmd));
1824 	return pmd;
1825 }
1826 
__get_locked_pte(struct mm_struct *mm, unsigned long addr, spinlock_t **ptl)1827 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1828 			spinlock_t **ptl)
1829 {
1830 	pmd_t *pmd = walk_to_pmd(mm, addr);
1831 
1832 	if (!pmd)
1833 		return NULL;
1834 	return pte_alloc_map_lock(mm, pmd, addr, ptl);
1835 }
1836 
validate_page_before_insert(struct page *page)1837 static int validate_page_before_insert(struct page *page)
1838 {
1839 	if (PageAnon(page) || PageSlab(page) || page_has_type(page))
1840 		return -EINVAL;
1841 	flush_dcache_page(page);
1842 	return 0;
1843 }
1844 
insert_page_into_pte_locked(struct vm_area_struct *vma, pte_t *pte, unsigned long addr, struct page *page, pgprot_t prot)1845 static int insert_page_into_pte_locked(struct vm_area_struct *vma, pte_t *pte,
1846 			unsigned long addr, struct page *page, pgprot_t prot)
1847 {
1848 	if (!pte_none(ptep_get(pte)))
1849 		return -EBUSY;
1850 	/* Ok, finally just insert the thing.. */
1851 	get_page(page);
1852 	inc_mm_counter(vma->vm_mm, mm_counter_file(page));
1853 	page_add_file_rmap(page, vma, false);
1854 	set_pte_at(vma->vm_mm, addr, pte, mk_pte(page, prot));
1855 	return 0;
1856 }
1857 
1858 /*
1859  * This is the old fallback for page remapping.
1860  *
1861  * For historical reasons, it only allows reserved pages. Only
1862  * old drivers should use this, and they needed to mark their
1863  * pages reserved for the old functions anyway.
1864  */
insert_page(struct vm_area_struct *vma, unsigned long addr, struct page *page, pgprot_t prot)1865 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1866 			struct page *page, pgprot_t prot)
1867 {
1868 	int retval;
1869 	pte_t *pte;
1870 	spinlock_t *ptl;
1871 
1872 	retval = validate_page_before_insert(page);
1873 	if (retval)
1874 		goto out;
1875 	retval = -ENOMEM;
1876 	pte = get_locked_pte(vma->vm_mm, addr, &ptl);
1877 	if (!pte)
1878 		goto out;
1879 	retval = insert_page_into_pte_locked(vma, pte, addr, page, prot);
1880 	pte_unmap_unlock(pte, ptl);
1881 out:
1882 	return retval;
1883 }
1884 
insert_page_in_batch_locked(struct vm_area_struct *vma, pte_t *pte, unsigned long addr, struct page *page, pgprot_t prot)1885 static int insert_page_in_batch_locked(struct vm_area_struct *vma, pte_t *pte,
1886 			unsigned long addr, struct page *page, pgprot_t prot)
1887 {
1888 	int err;
1889 
1890 	if (!page_count(page))
1891 		return -EINVAL;
1892 	err = validate_page_before_insert(page);
1893 	if (err)
1894 		return err;
1895 	return insert_page_into_pte_locked(vma, pte, addr, page, prot);
1896 }
1897 
1898 /* insert_pages() amortizes the cost of spinlock operations
1899  * when inserting pages in a loop.
1900  */
insert_pages(struct vm_area_struct *vma, unsigned long addr, struct page **pages, unsigned long *num, pgprot_t prot)1901 static int insert_pages(struct vm_area_struct *vma, unsigned long addr,
1902 			struct page **pages, unsigned long *num, pgprot_t prot)
1903 {
1904 	pmd_t *pmd = NULL;
1905 	pte_t *start_pte, *pte;
1906 	spinlock_t *pte_lock;
1907 	struct mm_struct *const mm = vma->vm_mm;
1908 	unsigned long curr_page_idx = 0;
1909 	unsigned long remaining_pages_total = *num;
1910 	unsigned long pages_to_write_in_pmd;
1911 	int ret;
1912 more:
1913 	ret = -EFAULT;
1914 	pmd = walk_to_pmd(mm, addr);
1915 	if (!pmd)
1916 		goto out;
1917 
1918 	pages_to_write_in_pmd = min_t(unsigned long,
1919 		remaining_pages_total, PTRS_PER_PTE - pte_index(addr));
1920 
1921 	/* Allocate the PTE if necessary; takes PMD lock once only. */
1922 	ret = -ENOMEM;
1923 	if (pte_alloc(mm, pmd))
1924 		goto out;
1925 
1926 	while (pages_to_write_in_pmd) {
1927 		int pte_idx = 0;
1928 		const int batch_size = min_t(int, pages_to_write_in_pmd, 8);
1929 
1930 		start_pte = pte_offset_map_lock(mm, pmd, addr, &pte_lock);
1931 		if (!start_pte) {
1932 			ret = -EFAULT;
1933 			goto out;
1934 		}
1935 		for (pte = start_pte; pte_idx < batch_size; ++pte, ++pte_idx) {
1936 			int err = insert_page_in_batch_locked(vma, pte,
1937 				addr, pages[curr_page_idx], prot);
1938 			if (unlikely(err)) {
1939 				pte_unmap_unlock(start_pte, pte_lock);
1940 				ret = err;
1941 				remaining_pages_total -= pte_idx;
1942 				goto out;
1943 			}
1944 			addr += PAGE_SIZE;
1945 			++curr_page_idx;
1946 		}
1947 		pte_unmap_unlock(start_pte, pte_lock);
1948 		pages_to_write_in_pmd -= batch_size;
1949 		remaining_pages_total -= batch_size;
1950 	}
1951 	if (remaining_pages_total)
1952 		goto more;
1953 	ret = 0;
1954 out:
1955 	*num = remaining_pages_total;
1956 	return ret;
1957 }
1958 
1959 /**
1960  * vm_insert_pages - insert multiple pages into user vma, batching the pmd lock.
1961  * @vma: user vma to map to
1962  * @addr: target start user address of these pages
1963  * @pages: source kernel pages
1964  * @num: in: number of pages to map. out: number of pages that were *not*
1965  * mapped. (0 means all pages were successfully mapped).
1966  *
1967  * Preferred over vm_insert_page() when inserting multiple pages.
1968  *
1969  * In case of error, we may have mapped a subset of the provided
1970  * pages. It is the caller's responsibility to account for this case.
1971  *
1972  * The same restrictions apply as in vm_insert_page().
1973  */
vm_insert_pages(struct vm_area_struct *vma, unsigned long addr, struct page **pages, unsigned long *num)1974 int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
1975 			struct page **pages, unsigned long *num)
1976 {
1977 	const unsigned long end_addr = addr + (*num * PAGE_SIZE) - 1;
1978 
1979 	if (addr < vma->vm_start || end_addr >= vma->vm_end)
1980 		return -EFAULT;
1981 	if (!(vma->vm_flags & VM_MIXEDMAP)) {
1982 		BUG_ON(mmap_read_trylock(vma->vm_mm));
1983 		BUG_ON(vma->vm_flags & VM_PFNMAP);
1984 		vm_flags_set(vma, VM_MIXEDMAP);
1985 	}
1986 	/* Defer page refcount checking till we're about to map that page. */
1987 	return insert_pages(vma, addr, pages, num, vma->vm_page_prot);
1988 }
1989 EXPORT_SYMBOL(vm_insert_pages);
1990 
1991 /**
1992  * vm_insert_page - insert single page into user vma
1993  * @vma: user vma to map to
1994  * @addr: target user address of this page
1995  * @page: source kernel page
1996  *
1997  * This allows drivers to insert individual pages they've allocated
1998  * into a user vma.
1999  *
2000  * The page has to be a nice clean _individual_ kernel allocation.
2001  * If you allocate a compound page, you need to have marked it as
2002  * such (__GFP_COMP), or manually just split the page up yourself
2003  * (see split_page()).
2004  *
2005  * NOTE! Traditionally this was done with "remap_pfn_range()" which
2006  * took an arbitrary page protection parameter. This doesn't allow
2007  * that. Your vma protection will have to be set up correctly, which
2008  * means that if you want a shared writable mapping, you'd better
2009  * ask for a shared writable mapping!
2010  *
2011  * The page does not need to be reserved.
2012  *
2013  * Usually this function is called from f_op->mmap() handler
2014  * under mm->mmap_lock write-lock, so it can change vma->vm_flags.
2015  * Caller must set VM_MIXEDMAP on vma if it wants to call this
2016  * function from other places, for example from page-fault handler.
2017  *
2018  * Return: %0 on success, negative error code otherwise.
2019  */
vm_insert_page(struct vm_area_struct *vma, unsigned long addr, struct page *page)2020 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
2021 			struct page *page)
2022 {
2023 	if (addr < vma->vm_start || addr >= vma->vm_end)
2024 		return -EFAULT;
2025 	if (!page_count(page))
2026 		return -EINVAL;
2027 	if (!(vma->vm_flags & VM_MIXEDMAP)) {
2028 		BUG_ON(mmap_read_trylock(vma->vm_mm));
2029 		BUG_ON(vma->vm_flags & VM_PFNMAP);
2030 		vm_flags_set(vma, VM_MIXEDMAP);
2031 	}
2032 	return insert_page(vma, addr, page, vma->vm_page_prot);
2033 }
2034 EXPORT_SYMBOL(vm_insert_page);
2035 
2036 /*
2037  * __vm_map_pages - maps range of kernel pages into user vma
2038  * @vma: user vma to map to
2039  * @pages: pointer to array of source kernel pages
2040  * @num: number of pages in page array
2041  * @offset: user's requested vm_pgoff
2042  *
2043  * This allows drivers to map range of kernel pages into a user vma.
2044  *
2045  * Return: 0 on success and error code otherwise.
2046  */
__vm_map_pages(struct vm_area_struct *vma, struct page **pages, unsigned long num, unsigned long offset)2047 static int __vm_map_pages(struct vm_area_struct *vma, struct page **pages,
2048 				unsigned long num, unsigned long offset)
2049 {
2050 	unsigned long count = vma_pages(vma);
2051 	unsigned long uaddr = vma->vm_start;
2052 	int ret, i;
2053 
2054 	/* Fail if the user requested offset is beyond the end of the object */
2055 	if (offset >= num)
2056 		return -ENXIO;
2057 
2058 	/* Fail if the user requested size exceeds available object size */
2059 	if (count > num - offset)
2060 		return -ENXIO;
2061 
2062 	for (i = 0; i < count; i++) {
2063 		ret = vm_insert_page(vma, uaddr, pages[offset + i]);
2064 		if (ret < 0)
2065 			return ret;
2066 		uaddr += PAGE_SIZE;
2067 	}
2068 
2069 	return 0;
2070 }
2071 
2072 /**
2073  * vm_map_pages - maps range of kernel pages starts with non zero offset
2074  * @vma: user vma to map to
2075  * @pages: pointer to array of source kernel pages
2076  * @num: number of pages in page array
2077  *
2078  * Maps an object consisting of @num pages, catering for the user's
2079  * requested vm_pgoff
2080  *
2081  * If we fail to insert any page into the vma, the function will return
2082  * immediately leaving any previously inserted pages present.  Callers
2083  * from the mmap handler may immediately return the error as their caller
2084  * will destroy the vma, removing any successfully inserted pages. Other
2085  * callers should make their own arrangements for calling unmap_region().
2086  *
2087  * Context: Process context. Called by mmap handlers.
2088  * Return: 0 on success and error code otherwise.
2089  */
vm_map_pages(struct vm_area_struct *vma, struct page **pages, unsigned long num)2090 int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
2091 				unsigned long num)
2092 {
2093 	return __vm_map_pages(vma, pages, num, vma->vm_pgoff);
2094 }
2095 EXPORT_SYMBOL(vm_map_pages);
2096 
2097 /**
2098  * vm_map_pages_zero - map range of kernel pages starts with zero offset
2099  * @vma: user vma to map to
2100  * @pages: pointer to array of source kernel pages
2101  * @num: number of pages in page array
2102  *
2103  * Similar to vm_map_pages(), except that it explicitly sets the offset
2104  * to 0. This function is intended for the drivers that did not consider
2105  * vm_pgoff.
2106  *
2107  * Context: Process context. Called by mmap handlers.
2108  * Return: 0 on success and error code otherwise.
2109  */
vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages, unsigned long num)2110 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
2111 				unsigned long num)
2112 {
2113 	return __vm_map_pages(vma, pages, num, 0);
2114 }
2115 EXPORT_SYMBOL(vm_map_pages_zero);
2116 
insert_pfn(struct vm_area_struct *vma, unsigned long addr, pfn_t pfn, pgprot_t prot, bool mkwrite)2117 static vm_fault_t insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2118 			pfn_t pfn, pgprot_t prot, bool mkwrite)
2119 {
2120 	struct mm_struct *mm = vma->vm_mm;
2121 	pte_t *pte, entry;
2122 	spinlock_t *ptl;
2123 
2124 	pte = get_locked_pte(mm, addr, &ptl);
2125 	if (!pte)
2126 		return VM_FAULT_OOM;
2127 	entry = ptep_get(pte);
2128 	if (!pte_none(entry)) {
2129 		if (mkwrite) {
2130 			/*
2131 			 * For read faults on private mappings the PFN passed
2132 			 * in may not match the PFN we have mapped if the
2133 			 * mapped PFN is a writeable COW page.  In the mkwrite
2134 			 * case we are creating a writable PTE for a shared
2135 			 * mapping and we expect the PFNs to match. If they
2136 			 * don't match, we are likely racing with block
2137 			 * allocation and mapping invalidation so just skip the
2138 			 * update.
2139 			 */
2140 			if (pte_pfn(entry) != pfn_t_to_pfn(pfn)) {
2141 				WARN_ON_ONCE(!is_zero_pfn(pte_pfn(entry)));
2142 				goto out_unlock;
2143 			}
2144 			entry = pte_mkyoung(entry);
2145 			entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2146 			if (ptep_set_access_flags(vma, addr, pte, entry, 1))
2147 				update_mmu_cache(vma, addr, pte);
2148 		}
2149 		goto out_unlock;
2150 	}
2151 
2152 	/* Ok, finally just insert the thing.. */
2153 	if (pfn_t_devmap(pfn))
2154 		entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
2155 	else
2156 		entry = pte_mkspecial(pfn_t_pte(pfn, prot));
2157 
2158 	if (mkwrite) {
2159 		entry = pte_mkyoung(entry);
2160 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2161 	}
2162 
2163 	set_pte_at(mm, addr, pte, entry);
2164 	update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
2165 
2166 out_unlock:
2167 	pte_unmap_unlock(pte, ptl);
2168 	return VM_FAULT_NOPAGE;
2169 }
2170 
2171 /**
2172  * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot
2173  * @vma: user vma to map to
2174  * @addr: target user address of this page
2175  * @pfn: source kernel pfn
2176  * @pgprot: pgprot flags for the inserted page
2177  *
2178  * This is exactly like vmf_insert_pfn(), except that it allows drivers
2179  * to override pgprot on a per-page basis.
2180  *
2181  * This only makes sense for IO mappings, and it makes no sense for
2182  * COW mappings.  In general, using multiple vmas is preferable;
2183  * vmf_insert_pfn_prot should only be used if using multiple VMAs is
2184  * impractical.
2185  *
2186  * pgprot typically only differs from @vma->vm_page_prot when drivers set
2187  * caching- and encryption bits different than those of @vma->vm_page_prot,
2188  * because the caching- or encryption mode may not be known at mmap() time.
2189  *
2190  * This is ok as long as @vma->vm_page_prot is not used by the core vm
2191  * to set caching and encryption bits for those vmas (except for COW pages).
2192  * This is ensured by core vm only modifying these page table entries using
2193  * functions that don't touch caching- or encryption bits, using pte_modify()
2194  * if needed. (See for example mprotect()).
2195  *
2196  * Also when new page-table entries are created, this is only done using the
2197  * fault() callback, and never using the value of vma->vm_page_prot,
2198  * except for page-table entries that point to anonymous pages as the result
2199  * of COW.
2200  *
2201  * Context: Process context.  May allocate using %GFP_KERNEL.
2202  * Return: vm_fault_t value.
2203  */
vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr, unsigned long pfn, pgprot_t pgprot)2204 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
2205 			unsigned long pfn, pgprot_t pgprot)
2206 {
2207 	/*
2208 	 * Technically, architectures with pte_special can avoid all these
2209 	 * restrictions (same for remap_pfn_range).  However we would like
2210 	 * consistency in testing and feature parity among all, so we should
2211 	 * try to keep these invariants in place for everybody.
2212 	 */
2213 	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
2214 	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
2215 						(VM_PFNMAP|VM_MIXEDMAP));
2216 	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
2217 	BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
2218 
2219 	if (addr < vma->vm_start || addr >= vma->vm_end)
2220 		return VM_FAULT_SIGBUS;
2221 
2222 	if (!pfn_modify_allowed(pfn, pgprot))
2223 		return VM_FAULT_SIGBUS;
2224 
2225 	track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV));
2226 
2227 	return insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot,
2228 			false);
2229 }
2230 EXPORT_SYMBOL(vmf_insert_pfn_prot);
2231 
2232 /**
2233  * vmf_insert_pfn - insert single pfn into user vma
2234  * @vma: user vma to map to
2235  * @addr: target user address of this page
2236  * @pfn: source kernel pfn
2237  *
2238  * Similar to vm_insert_page, this allows drivers to insert individual pages
2239  * they've allocated into a user vma. Same comments apply.
2240  *
2241  * This function should only be called from a vm_ops->fault handler, and
2242  * in that case the handler should return the result of this function.
2243  *
2244  * vma cannot be a COW mapping.
2245  *
2246  * As this is called only for pages that do not currently exist, we
2247  * do not need to flush old virtual caches or the TLB.
2248  *
2249  * Context: Process context.  May allocate using %GFP_KERNEL.
2250  * Return: vm_fault_t value.
2251  */
vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr, unsigned long pfn)2252 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2253 			unsigned long pfn)
2254 {
2255 	return vmf_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
2256 }
2257 EXPORT_SYMBOL(vmf_insert_pfn);
2258 
vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn)2259 static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn)
2260 {
2261 	/* these checks mirror the abort conditions in vm_normal_page */
2262 	if (vma->vm_flags & VM_MIXEDMAP)
2263 		return true;
2264 	if (pfn_t_devmap(pfn))
2265 		return true;
2266 	if (pfn_t_special(pfn))
2267 		return true;
2268 	if (is_zero_pfn(pfn_t_to_pfn(pfn)))
2269 		return true;
2270 	return false;
2271 }
2272 
__vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr, pfn_t pfn, bool mkwrite)2273 static vm_fault_t __vm_insert_mixed(struct vm_area_struct *vma,
2274 		unsigned long addr, pfn_t pfn, bool mkwrite)
2275 {
2276 	pgprot_t pgprot = vma->vm_page_prot;
2277 	int err;
2278 
2279 	BUG_ON(!vm_mixed_ok(vma, pfn));
2280 
2281 	if (addr < vma->vm_start || addr >= vma->vm_end)
2282 		return VM_FAULT_SIGBUS;
2283 
2284 	track_pfn_insert(vma, &pgprot, pfn);
2285 
2286 	if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot))
2287 		return VM_FAULT_SIGBUS;
2288 
2289 	/*
2290 	 * If we don't have pte special, then we have to use the pfn_valid()
2291 	 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
2292 	 * refcount the page if pfn_valid is true (hence insert_page rather
2293 	 * than insert_pfn).  If a zero_pfn were inserted into a VM_MIXEDMAP
2294 	 * without pte special, it would there be refcounted as a normal page.
2295 	 */
2296 	if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) &&
2297 	    !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
2298 		struct page *page;
2299 
2300 		/*
2301 		 * At this point we are committed to insert_page()
2302 		 * regardless of whether the caller specified flags that
2303 		 * result in pfn_t_has_page() == false.
2304 		 */
2305 		page = pfn_to_page(pfn_t_to_pfn(pfn));
2306 		err = insert_page(vma, addr, page, pgprot);
2307 	} else {
2308 		return insert_pfn(vma, addr, pfn, pgprot, mkwrite);
2309 	}
2310 
2311 	if (err == -ENOMEM)
2312 		return VM_FAULT_OOM;
2313 	if (err < 0 && err != -EBUSY)
2314 		return VM_FAULT_SIGBUS;
2315 
2316 	return VM_FAULT_NOPAGE;
2317 }
2318 
vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr, pfn_t pfn)2319 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2320 		pfn_t pfn)
2321 {
2322 	return __vm_insert_mixed(vma, addr, pfn, false);
2323 }
2324 EXPORT_SYMBOL(vmf_insert_mixed);
2325 
2326 /*
2327  *  If the insertion of PTE failed because someone else already added a
2328  *  different entry in the mean time, we treat that as success as we assume
2329  *  the same entry was actually inserted.
2330  */
vmf_insert_mixed_mkwrite(struct vm_area_struct *vma, unsigned long addr, pfn_t pfn)2331 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
2332 		unsigned long addr, pfn_t pfn)
2333 {
2334 	return __vm_insert_mixed(vma, addr, pfn, true);
2335 }
2336 EXPORT_SYMBOL(vmf_insert_mixed_mkwrite);
2337 
2338 /*
2339  * maps a range of physical memory into the requested pages. the old
2340  * mappings are removed. any references to nonexistent pages results
2341  * in null mappings (currently treated as "copy-on-access")
2342  */
remap_pte_range(struct mm_struct *mm, pmd_t *pmd, unsigned long addr, unsigned long end, unsigned long pfn, pgprot_t prot)2343 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
2344 			unsigned long addr, unsigned long end,
2345 			unsigned long pfn, pgprot_t prot)
2346 {
2347 	pte_t *pte, *mapped_pte;
2348 	spinlock_t *ptl;
2349 	int err = 0;
2350 
2351 	mapped_pte = pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
2352 	if (!pte)
2353 		return -ENOMEM;
2354 	arch_enter_lazy_mmu_mode();
2355 	do {
2356 		BUG_ON(!pte_none(ptep_get(pte)));
2357 		if (!pfn_modify_allowed(pfn, prot)) {
2358 			err = -EACCES;
2359 			break;
2360 		}
2361 		set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
2362 		pfn++;
2363 	} while (pte++, addr += PAGE_SIZE, addr != end);
2364 	arch_leave_lazy_mmu_mode();
2365 	pte_unmap_unlock(mapped_pte, ptl);
2366 	return err;
2367 }
2368 
remap_pmd_range(struct mm_struct *mm, pud_t *pud, unsigned long addr, unsigned long end, unsigned long pfn, pgprot_t prot)2369 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
2370 			unsigned long addr, unsigned long end,
2371 			unsigned long pfn, pgprot_t prot)
2372 {
2373 	pmd_t *pmd;
2374 	unsigned long next;
2375 	int err;
2376 
2377 	pfn -= addr >> PAGE_SHIFT;
2378 	pmd = pmd_alloc(mm, pud, addr);
2379 	if (!pmd)
2380 		return -ENOMEM;
2381 	VM_BUG_ON(pmd_trans_huge(*pmd));
2382 	do {
2383 		next = pmd_addr_end(addr, end);
2384 		err = remap_pte_range(mm, pmd, addr, next,
2385 				pfn + (addr >> PAGE_SHIFT), prot);
2386 		if (err)
2387 			return err;
2388 	} while (pmd++, addr = next, addr != end);
2389 	return 0;
2390 }
2391 
remap_pud_range(struct mm_struct *mm, p4d_t *p4d, unsigned long addr, unsigned long end, unsigned long pfn, pgprot_t prot)2392 static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d,
2393 			unsigned long addr, unsigned long end,
2394 			unsigned long pfn, pgprot_t prot)
2395 {
2396 	pud_t *pud;
2397 	unsigned long next;
2398 	int err;
2399 
2400 	pfn -= addr >> PAGE_SHIFT;
2401 	pud = pud_alloc(mm, p4d, addr);
2402 	if (!pud)
2403 		return -ENOMEM;
2404 	do {
2405 		next = pud_addr_end(addr, end);
2406 		err = remap_pmd_range(mm, pud, addr, next,
2407 				pfn + (addr >> PAGE_SHIFT), prot);
2408 		if (err)
2409 			return err;
2410 	} while (pud++, addr = next, addr != end);
2411 	return 0;
2412 }
2413 
remap_p4d_range(struct mm_struct *mm, pgd_t *pgd, unsigned long addr, unsigned long end, unsigned long pfn, pgprot_t prot)2414 static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2415 			unsigned long addr, unsigned long end,
2416 			unsigned long pfn, pgprot_t prot)
2417 {
2418 	p4d_t *p4d;
2419 	unsigned long next;
2420 	int err;
2421 
2422 	pfn -= addr >> PAGE_SHIFT;
2423 	p4d = p4d_alloc(mm, pgd, addr);
2424 	if (!p4d)
2425 		return -ENOMEM;
2426 	do {
2427 		next = p4d_addr_end(addr, end);
2428 		err = remap_pud_range(mm, p4d, addr, next,
2429 				pfn + (addr >> PAGE_SHIFT), prot);
2430 		if (err)
2431 			return err;
2432 	} while (p4d++, addr = next, addr != end);
2433 	return 0;
2434 }
2435 
2436 /*
2437  * Variant of remap_pfn_range that does not call track_pfn_remap.  The caller
2438  * must have pre-validated the caching bits of the pgprot_t.
2439  */
remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr, unsigned long pfn, unsigned long size, pgprot_t prot)2440 int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr,
2441 		unsigned long pfn, unsigned long size, pgprot_t prot)
2442 {
2443 	pgd_t *pgd;
2444 	unsigned long next;
2445 	unsigned long end = addr + PAGE_ALIGN(size);
2446 	struct mm_struct *mm = vma->vm_mm;
2447 	int err;
2448 
2449 	if (WARN_ON_ONCE(!PAGE_ALIGNED(addr)))
2450 		return -EINVAL;
2451 
2452 	/*
2453 	 * Physically remapped pages are special. Tell the
2454 	 * rest of the world about it:
2455 	 *   VM_IO tells people not to look at these pages
2456 	 *	(accesses can have side effects).
2457 	 *   VM_PFNMAP tells the core MM that the base pages are just
2458 	 *	raw PFN mappings, and do not have a "struct page" associated
2459 	 *	with them.
2460 	 *   VM_DONTEXPAND
2461 	 *      Disable vma merging and expanding with mremap().
2462 	 *   VM_DONTDUMP
2463 	 *      Omit vma from core dump, even when VM_IO turned off.
2464 	 *
2465 	 * There's a horrible special case to handle copy-on-write
2466 	 * behaviour that some programs depend on. We mark the "original"
2467 	 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
2468 	 * See vm_normal_page() for details.
2469 	 */
2470 	if (is_cow_mapping(vma->vm_flags)) {
2471 		if (addr != vma->vm_start || end != vma->vm_end)
2472 			return -EINVAL;
2473 		vma->vm_pgoff = pfn;
2474 	}
2475 
2476 	vm_flags_set(vma, VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP);
2477 
2478 	BUG_ON(addr >= end);
2479 	pfn -= addr >> PAGE_SHIFT;
2480 	pgd = pgd_offset(mm, addr);
2481 	flush_cache_range(vma, addr, end);
2482 	do {
2483 		next = pgd_addr_end(addr, end);
2484 		err = remap_p4d_range(mm, pgd, addr, next,
2485 				pfn + (addr >> PAGE_SHIFT), prot);
2486 		if (err)
2487 			return err;
2488 	} while (pgd++, addr = next, addr != end);
2489 
2490 	return 0;
2491 }
2492 
2493 /**
2494  * remap_pfn_range - remap kernel memory to userspace
2495  * @vma: user vma to map to
2496  * @addr: target page aligned user address to start at
2497  * @pfn: page frame number of kernel physical memory address
2498  * @size: size of mapping area
2499  * @prot: page protection flags for this mapping
2500  *
2501  * Note: this is only safe if the mm semaphore is held when called.
2502  *
2503  * Return: %0 on success, negative error code otherwise.
2504  */
remap_pfn_range(struct vm_area_struct *vma, unsigned long addr, unsigned long pfn, unsigned long size, pgprot_t prot)2505 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
2506 		    unsigned long pfn, unsigned long size, pgprot_t prot)
2507 {
2508 	int err;
2509 
2510 	err = track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size));
2511 	if (err)
2512 		return -EINVAL;
2513 
2514 	err = remap_pfn_range_notrack(vma, addr, pfn, size, prot);
2515 	if (err)
2516 		untrack_pfn(vma, pfn, PAGE_ALIGN(size), true);
2517 	return err;
2518 }
2519 EXPORT_SYMBOL(remap_pfn_range);
2520 
2521 /**
2522  * vm_iomap_memory - remap memory to userspace
2523  * @vma: user vma to map to
2524  * @start: start of the physical memory to be mapped
2525  * @len: size of area
2526  *
2527  * This is a simplified io_remap_pfn_range() for common driver use. The
2528  * driver just needs to give us the physical memory range to be mapped,
2529  * we'll figure out the rest from the vma information.
2530  *
2531  * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
2532  * whatever write-combining details or similar.
2533  *
2534  * Return: %0 on success, negative error code otherwise.
2535  */
vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)2536 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
2537 {
2538 	unsigned long vm_len, pfn, pages;
2539 
2540 	/* Check that the physical memory area passed in looks valid */
2541 	if (start + len < start)
2542 		return -EINVAL;
2543 	/*
2544 	 * You *really* shouldn't map things that aren't page-aligned,
2545 	 * but we've historically allowed it because IO memory might
2546 	 * just have smaller alignment.
2547 	 */
2548 	len += start & ~PAGE_MASK;
2549 	pfn = start >> PAGE_SHIFT;
2550 	pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
2551 	if (pfn + pages < pfn)
2552 		return -EINVAL;
2553 
2554 	/* We start the mapping 'vm_pgoff' pages into the area */
2555 	if (vma->vm_pgoff > pages)
2556 		return -EINVAL;
2557 	pfn += vma->vm_pgoff;
2558 	pages -= vma->vm_pgoff;
2559 
2560 	/* Can we fit all of the mapping? */
2561 	vm_len = vma->vm_end - vma->vm_start;
2562 	if (vm_len >> PAGE_SHIFT > pages)
2563 		return -EINVAL;
2564 
2565 	/* Ok, let it rip */
2566 	return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
2567 }
2568 EXPORT_SYMBOL(vm_iomap_memory);
2569 
apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd, unsigned long addr, unsigned long end, pte_fn_t fn, void *data, bool create, pgtbl_mod_mask *mask)2570 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2571 				     unsigned long addr, unsigned long end,
2572 				     pte_fn_t fn, void *data, bool create,
2573 				     pgtbl_mod_mask *mask)
2574 {
2575 	pte_t *pte, *mapped_pte;
2576 	int err = 0;
2577 	spinlock_t *ptl;
2578 
2579 	if (create) {
2580 		mapped_pte = pte = (mm == &init_mm) ?
2581 			pte_alloc_kernel_track(pmd, addr, mask) :
2582 			pte_alloc_map_lock(mm, pmd, addr, &ptl);
2583 		if (!pte)
2584 			return -ENOMEM;
2585 	} else {
2586 		mapped_pte = pte = (mm == &init_mm) ?
2587 			pte_offset_kernel(pmd, addr) :
2588 			pte_offset_map_lock(mm, pmd, addr, &ptl);
2589 		if (!pte)
2590 			return -EINVAL;
2591 	}
2592 
2593 	arch_enter_lazy_mmu_mode();
2594 
2595 	if (fn) {
2596 		do {
2597 			if (create || !pte_none(ptep_get(pte))) {
2598 				err = fn(pte++, addr, data);
2599 				if (err)
2600 					break;
2601 			}
2602 		} while (addr += PAGE_SIZE, addr != end);
2603 	}
2604 	*mask |= PGTBL_PTE_MODIFIED;
2605 
2606 	arch_leave_lazy_mmu_mode();
2607 
2608 	if (mm != &init_mm)
2609 		pte_unmap_unlock(mapped_pte, ptl);
2610 	return err;
2611 }
2612 
apply_to_pmd_range(struct mm_struct *mm, pud_t *pud, unsigned long addr, unsigned long end, pte_fn_t fn, void *data, bool create, pgtbl_mod_mask *mask)2613 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2614 				     unsigned long addr, unsigned long end,
2615 				     pte_fn_t fn, void *data, bool create,
2616 				     pgtbl_mod_mask *mask)
2617 {
2618 	pmd_t *pmd;
2619 	unsigned long next;
2620 	int err = 0;
2621 
2622 	BUG_ON(pud_huge(*pud));
2623 
2624 	if (create) {
2625 		pmd = pmd_alloc_track(mm, pud, addr, mask);
2626 		if (!pmd)
2627 			return -ENOMEM;
2628 	} else {
2629 		pmd = pmd_offset(pud, addr);
2630 	}
2631 	do {
2632 		next = pmd_addr_end(addr, end);
2633 		if (pmd_none(*pmd) && !create)
2634 			continue;
2635 		if (WARN_ON_ONCE(pmd_leaf(*pmd)))
2636 			return -EINVAL;
2637 		if (!pmd_none(*pmd) && WARN_ON_ONCE(pmd_bad(*pmd))) {
2638 			if (!create)
2639 				continue;
2640 			pmd_clear_bad(pmd);
2641 		}
2642 		err = apply_to_pte_range(mm, pmd, addr, next,
2643 					 fn, data, create, mask);
2644 		if (err)
2645 			break;
2646 	} while (pmd++, addr = next, addr != end);
2647 
2648 	return err;
2649 }
2650 
apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d, unsigned long addr, unsigned long end, pte_fn_t fn, void *data, bool create, pgtbl_mod_mask *mask)2651 static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d,
2652 				     unsigned long addr, unsigned long end,
2653 				     pte_fn_t fn, void *data, bool create,
2654 				     pgtbl_mod_mask *mask)
2655 {
2656 	pud_t *pud;
2657 	unsigned long next;
2658 	int err = 0;
2659 
2660 	if (create) {
2661 		pud = pud_alloc_track(mm, p4d, addr, mask);
2662 		if (!pud)
2663 			return -ENOMEM;
2664 	} else {
2665 		pud = pud_offset(p4d, addr);
2666 	}
2667 	do {
2668 		next = pud_addr_end(addr, end);
2669 		if (pud_none(*pud) && !create)
2670 			continue;
2671 		if (WARN_ON_ONCE(pud_leaf(*pud)))
2672 			return -EINVAL;
2673 		if (!pud_none(*pud) && WARN_ON_ONCE(pud_bad(*pud))) {
2674 			if (!create)
2675 				continue;
2676 			pud_clear_bad(pud);
2677 		}
2678 		err = apply_to_pmd_range(mm, pud, addr, next,
2679 					 fn, data, create, mask);
2680 		if (err)
2681 			break;
2682 	} while (pud++, addr = next, addr != end);
2683 
2684 	return err;
2685 }
2686 
apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd, unsigned long addr, unsigned long end, pte_fn_t fn, void *data, bool create, pgtbl_mod_mask *mask)2687 static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2688 				     unsigned long addr, unsigned long end,
2689 				     pte_fn_t fn, void *data, bool create,
2690 				     pgtbl_mod_mask *mask)
2691 {
2692 	p4d_t *p4d;
2693 	unsigned long next;
2694 	int err = 0;
2695 
2696 	if (create) {
2697 		p4d = p4d_alloc_track(mm, pgd, addr, mask);
2698 		if (!p4d)
2699 			return -ENOMEM;
2700 	} else {
2701 		p4d = p4d_offset(pgd, addr);
2702 	}
2703 	do {
2704 		next = p4d_addr_end(addr, end);
2705 		if (p4d_none(*p4d) && !create)
2706 			continue;
2707 		if (WARN_ON_ONCE(p4d_leaf(*p4d)))
2708 			return -EINVAL;
2709 		if (!p4d_none(*p4d) && WARN_ON_ONCE(p4d_bad(*p4d))) {
2710 			if (!create)
2711 				continue;
2712 			p4d_clear_bad(p4d);
2713 		}
2714 		err = apply_to_pud_range(mm, p4d, addr, next,
2715 					 fn, data, create, mask);
2716 		if (err)
2717 			break;
2718 	} while (p4d++, addr = next, addr != end);
2719 
2720 	return err;
2721 }
2722 
__apply_to_page_range(struct mm_struct *mm, unsigned long addr, unsigned long size, pte_fn_t fn, void *data, bool create)2723 static int __apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2724 				 unsigned long size, pte_fn_t fn,
2725 				 void *data, bool create)
2726 {
2727 	pgd_t *pgd;
2728 	unsigned long start = addr, next;
2729 	unsigned long end = addr + size;
2730 	pgtbl_mod_mask mask = 0;
2731 	int err = 0;
2732 
2733 	if (WARN_ON(addr >= end))
2734 		return -EINVAL;
2735 
2736 	pgd = pgd_offset(mm, addr);
2737 	do {
2738 		next = pgd_addr_end(addr, end);
2739 		if (pgd_none(*pgd) && !create)
2740 			continue;
2741 		if (WARN_ON_ONCE(pgd_leaf(*pgd)))
2742 			return -EINVAL;
2743 		if (!pgd_none(*pgd) && WARN_ON_ONCE(pgd_bad(*pgd))) {
2744 			if (!create)
2745 				continue;
2746 			pgd_clear_bad(pgd);
2747 		}
2748 		err = apply_to_p4d_range(mm, pgd, addr, next,
2749 					 fn, data, create, &mask);
2750 		if (err)
2751 			break;
2752 	} while (pgd++, addr = next, addr != end);
2753 
2754 	if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
2755 		arch_sync_kernel_mappings(start, start + size);
2756 
2757 	return err;
2758 }
2759 
2760 /*
2761  * Scan a region of virtual memory, filling in page tables as necessary
2762  * and calling a provided function on each leaf page table.
2763  */
apply_to_page_range(struct mm_struct *mm, unsigned long addr, unsigned long size, pte_fn_t fn, void *data)2764 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2765 			unsigned long size, pte_fn_t fn, void *data)
2766 {
2767 	return __apply_to_page_range(mm, addr, size, fn, data, true);
2768 }
2769 EXPORT_SYMBOL_GPL(apply_to_page_range);
2770 
2771 /*
2772  * Scan a region of virtual memory, calling a provided function on
2773  * each leaf page table where it exists.
2774  *
2775  * Unlike apply_to_page_range, this does _not_ fill in page tables
2776  * where they are absent.
2777  */
apply_to_existing_page_range(struct mm_struct *mm, unsigned long addr, unsigned long size, pte_fn_t fn, void *data)2778 int apply_to_existing_page_range(struct mm_struct *mm, unsigned long addr,
2779 				 unsigned long size, pte_fn_t fn, void *data)
2780 {
2781 	return __apply_to_page_range(mm, addr, size, fn, data, false);
2782 }
2783 EXPORT_SYMBOL_GPL(apply_to_existing_page_range);
2784 
2785 /*
2786  * handle_pte_fault chooses page fault handler according to an entry which was
2787  * read non-atomically.  Before making any commitment, on those architectures
2788  * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
2789  * parts, do_swap_page must check under lock before unmapping the pte and
2790  * proceeding (but do_wp_page is only called after already making such a check;
2791  * and do_anonymous_page can safely check later on).
2792  */
pte_unmap_same(struct vm_fault *vmf)2793 static inline int pte_unmap_same(struct vm_fault *vmf)
2794 {
2795 	int same = 1;
2796 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPTION)
2797 	if (sizeof(pte_t) > sizeof(unsigned long)) {
2798 		spin_lock(vmf->ptl);
2799 		same = pte_same(ptep_get(vmf->pte), vmf->orig_pte);
2800 		spin_unlock(vmf->ptl);
2801 	}
2802 #endif
2803 	pte_unmap(vmf->pte);
2804 	vmf->pte = NULL;
2805 	return same;
2806 }
2807 
2808 /*
2809  * Return:
2810  *	0:		copied succeeded
2811  *	-EHWPOISON:	copy failed due to hwpoison in source page
2812  *	-EAGAIN:	copied failed (some other reason)
2813  */
__wp_page_copy_user(struct page *dst, struct page *src, struct vm_fault *vmf)2814 static inline int __wp_page_copy_user(struct page *dst, struct page *src,
2815 				      struct vm_fault *vmf)
2816 {
2817 	int ret;
2818 	void *kaddr;
2819 	void __user *uaddr;
2820 	struct vm_area_struct *vma = vmf->vma;
2821 	struct mm_struct *mm = vma->vm_mm;
2822 	unsigned long addr = vmf->address;
2823 
2824 	if (likely(src)) {
2825 		if (copy_mc_user_highpage(dst, src, addr, vma)) {
2826 			memory_failure_queue(page_to_pfn(src), 0);
2827 			return -EHWPOISON;
2828 		}
2829 		return 0;
2830 	}
2831 
2832 	/*
2833 	 * If the source page was a PFN mapping, we don't have
2834 	 * a "struct page" for it. We do a best-effort copy by
2835 	 * just copying from the original user address. If that
2836 	 * fails, we just zero-fill it. Live with it.
2837 	 */
2838 	kaddr = kmap_atomic(dst);
2839 	uaddr = (void __user *)(addr & PAGE_MASK);
2840 
2841 	/*
2842 	 * On architectures with software "accessed" bits, we would
2843 	 * take a double page fault, so mark it accessed here.
2844 	 */
2845 	vmf->pte = NULL;
2846 	if (!arch_has_hw_pte_young() && !pte_young(vmf->orig_pte)) {
2847 		pte_t entry;
2848 
2849 		vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
2850 		if (unlikely(!vmf->pte || !pte_same(ptep_get(vmf->pte), vmf->orig_pte))) {
2851 			/*
2852 			 * Other thread has already handled the fault
2853 			 * and update local tlb only
2854 			 */
2855 			if (vmf->pte)
2856 				update_mmu_tlb(vma, addr, vmf->pte);
2857 			ret = -EAGAIN;
2858 			goto pte_unlock;
2859 		}
2860 
2861 		entry = pte_mkyoung(vmf->orig_pte);
2862 		if (ptep_set_access_flags(vma, addr, vmf->pte, entry, 0))
2863 			update_mmu_cache_range(vmf, vma, addr, vmf->pte, 1);
2864 	}
2865 
2866 	/*
2867 	 * This really shouldn't fail, because the page is there
2868 	 * in the page tables. But it might just be unreadable,
2869 	 * in which case we just give up and fill the result with
2870 	 * zeroes.
2871 	 */
2872 	if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
2873 		if (vmf->pte)
2874 			goto warn;
2875 
2876 		/* Re-validate under PTL if the page is still mapped */
2877 		vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
2878 		if (unlikely(!vmf->pte || !pte_same(ptep_get(vmf->pte), vmf->orig_pte))) {
2879 			/* The PTE changed under us, update local tlb */
2880 			if (vmf->pte)
2881 				update_mmu_tlb(vma, addr, vmf->pte);
2882 			ret = -EAGAIN;
2883 			goto pte_unlock;
2884 		}
2885 
2886 		/*
2887 		 * The same page can be mapped back since last copy attempt.
2888 		 * Try to copy again under PTL.
2889 		 */
2890 		if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
2891 			/*
2892 			 * Give a warn in case there can be some obscure
2893 			 * use-case
2894 			 */
2895 warn:
2896 			WARN_ON_ONCE(1);
2897 			clear_page(kaddr);
2898 		}
2899 	}
2900 
2901 	ret = 0;
2902 
2903 pte_unlock:
2904 	if (vmf->pte)
2905 		pte_unmap_unlock(vmf->pte, vmf->ptl);
2906 	kunmap_atomic(kaddr);
2907 	flush_dcache_page(dst);
2908 
2909 	return ret;
2910 }
2911 
__get_fault_gfp_mask(struct vm_area_struct *vma)2912 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
2913 {
2914 	struct file *vm_file = vma->vm_file;
2915 
2916 	if (vm_file)
2917 		return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
2918 
2919 	/*
2920 	 * Special mappings (e.g. VDSO) do not have any file so fake
2921 	 * a default GFP_KERNEL for them.
2922 	 */
2923 	return GFP_KERNEL;
2924 }
2925 
2926 /*
2927  * Notify the address space that the page is about to become writable so that
2928  * it can prohibit this or wait for the page to get into an appropriate state.
2929  *
2930  * We do this without the lock held, so that it can sleep if it needs to.
2931  */
do_page_mkwrite(struct vm_fault *vmf, struct folio *folio)2932 static vm_fault_t do_page_mkwrite(struct vm_fault *vmf, struct folio *folio)
2933 {
2934 	vm_fault_t ret;
2935 	unsigned int old_flags = vmf->flags;
2936 
2937 	vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2938 
2939 	if (vmf->vma->vm_file &&
2940 	    IS_SWAPFILE(vmf->vma->vm_file->f_mapping->host))
2941 		return VM_FAULT_SIGBUS;
2942 
2943 	ret = vmf->vma->vm_ops->page_mkwrite(vmf);
2944 	/* Restore original flags so that caller is not surprised */
2945 	vmf->flags = old_flags;
2946 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2947 		return ret;
2948 	if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2949 		folio_lock(folio);
2950 		if (!folio->mapping) {
2951 			folio_unlock(folio);
2952 			return 0; /* retry */
2953 		}
2954 		ret |= VM_FAULT_LOCKED;
2955 	} else
2956 		VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
2957 	return ret;
2958 }
2959 
2960 /*
2961  * Handle dirtying of a page in shared file mapping on a write fault.
2962  *
2963  * The function expects the page to be locked and unlocks it.
2964  */
fault_dirty_shared_page(struct vm_fault *vmf)2965 static vm_fault_t fault_dirty_shared_page(struct vm_fault *vmf)
2966 {
2967 	struct vm_area_struct *vma = vmf->vma;
2968 	struct address_space *mapping;
2969 	struct folio *folio = page_folio(vmf->page);
2970 	bool dirtied;
2971 	bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite;
2972 
2973 	dirtied = folio_mark_dirty(folio);
2974 	VM_BUG_ON_FOLIO(folio_test_anon(folio), folio);
2975 	/*
2976 	 * Take a local copy of the address_space - folio.mapping may be zeroed
2977 	 * by truncate after folio_unlock().   The address_space itself remains
2978 	 * pinned by vma->vm_file's reference.  We rely on folio_unlock()'s
2979 	 * release semantics to prevent the compiler from undoing this copying.
2980 	 */
2981 	mapping = folio_raw_mapping(folio);
2982 	folio_unlock(folio);
2983 
2984 	if (!page_mkwrite)
2985 		file_update_time(vma->vm_file);
2986 
2987 	/*
2988 	 * Throttle page dirtying rate down to writeback speed.
2989 	 *
2990 	 * mapping may be NULL here because some device drivers do not
2991 	 * set page.mapping but still dirty their pages
2992 	 *
2993 	 * Drop the mmap_lock before waiting on IO, if we can. The file
2994 	 * is pinning the mapping, as per above.
2995 	 */
2996 	if ((dirtied || page_mkwrite) && mapping) {
2997 		struct file *fpin;
2998 
2999 		fpin = maybe_unlock_mmap_for_io(vmf, NULL);
3000 		balance_dirty_pages_ratelimited(mapping);
3001 		if (fpin) {
3002 			fput(fpin);
3003 			return VM_FAULT_COMPLETED;
3004 		}
3005 	}
3006 
3007 	return 0;
3008 }
3009 
3010 /*
3011  * Handle write page faults for pages that can be reused in the current vma
3012  *
3013  * This can happen either due to the mapping being with the VM_SHARED flag,
3014  * or due to us being the last reference standing to the page. In either
3015  * case, all we need to do here is to mark the page as writable and update
3016  * any related book-keeping.
3017  */
3018 static inline void wp_page_reuse(struct vm_fault *vmf)
3019 	__releases(vmf->ptl)
3020 {
3021 	struct vm_area_struct *vma = vmf->vma;
3022 	struct page *page = vmf->page;
3023 	pte_t entry;
3024 
3025 	VM_BUG_ON(!(vmf->flags & FAULT_FLAG_WRITE));
3026 	VM_BUG_ON(page && PageAnon(page) && !PageAnonExclusive(page));
3027 
3028 	/*
3029 	 * Clear the pages cpupid information as the existing
3030 	 * information potentially belongs to a now completely
3031 	 * unrelated process.
3032 	 */
3033 	if (page)
3034 		page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
3035 
3036 	flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
3037 	entry = pte_mkyoung(vmf->orig_pte);
3038 	entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3039 	if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1))
3040 		update_mmu_cache_range(vmf, vma, vmf->address, vmf->pte, 1);
3041 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3042 	count_vm_event(PGREUSE);
3043 }
3044 
3045 /*
3046  * Handle the case of a page which we actually need to copy to a new page,
3047  * either due to COW or unsharing.
3048  *
3049  * Called with mmap_lock locked and the old page referenced, but
3050  * without the ptl held.
3051  *
3052  * High level logic flow:
3053  *
3054  * - Allocate a page, copy the content of the old page to the new one.
3055  * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
3056  * - Take the PTL. If the pte changed, bail out and release the allocated page
3057  * - If the pte is still the way we remember it, update the page table and all
3058  *   relevant references. This includes dropping the reference the page-table
3059  *   held to the old page, as well as updating the rmap.
3060  * - In any case, unlock the PTL and drop the reference we took to the old page.
3061  */
wp_page_copy(struct vm_fault *vmf)3062 static vm_fault_t wp_page_copy(struct vm_fault *vmf)
3063 {
3064 	const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
3065 	struct vm_area_struct *vma = vmf->vma;
3066 	struct mm_struct *mm = vma->vm_mm;
3067 	struct folio *old_folio = NULL;
3068 	struct folio *new_folio = NULL;
3069 	pte_t entry;
3070 	int page_copied = 0;
3071 	struct mmu_notifier_range range;
3072 	int ret;
3073 
3074 	delayacct_wpcopy_start();
3075 
3076 	if (vmf->page)
3077 		old_folio = page_folio(vmf->page);
3078 	if (unlikely(anon_vma_prepare(vma)))
3079 		goto oom;
3080 
3081 	if (is_zero_pfn(pte_pfn(vmf->orig_pte))) {
3082 		new_folio = vma_alloc_zeroed_movable_folio(vma, vmf->address);
3083 		if (!new_folio)
3084 			goto oom;
3085 	} else {
3086 		new_folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0, vma,
3087 				vmf->address, false);
3088 		if (!new_folio)
3089 			goto oom;
3090 
3091 		ret = __wp_page_copy_user(&new_folio->page, vmf->page, vmf);
3092 		if (ret) {
3093 			/*
3094 			 * COW failed, if the fault was solved by other,
3095 			 * it's fine. If not, userspace would re-fault on
3096 			 * the same address and we will handle the fault
3097 			 * from the second attempt.
3098 			 * The -EHWPOISON case will not be retried.
3099 			 */
3100 			folio_put(new_folio);
3101 			if (old_folio)
3102 				folio_put(old_folio);
3103 
3104 			delayacct_wpcopy_end();
3105 			return ret == -EHWPOISON ? VM_FAULT_HWPOISON : 0;
3106 		}
3107 		kmsan_copy_page_meta(&new_folio->page, vmf->page);
3108 	}
3109 
3110 	if (mem_cgroup_charge(new_folio, mm, GFP_KERNEL))
3111 		goto oom_free_new;
3112 	folio_throttle_swaprate(new_folio, GFP_KERNEL);
3113 
3114 	__folio_mark_uptodate(new_folio);
3115 
3116 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm,
3117 				vmf->address & PAGE_MASK,
3118 				(vmf->address & PAGE_MASK) + PAGE_SIZE);
3119 	mmu_notifier_invalidate_range_start(&range);
3120 
3121 	/*
3122 	 * Re-check the pte - we dropped the lock
3123 	 */
3124 	vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl);
3125 	if (likely(vmf->pte && pte_same(ptep_get(vmf->pte), vmf->orig_pte))) {
3126 		if (old_folio) {
3127 			if (!folio_test_anon(old_folio)) {
3128 				dec_mm_counter(mm, mm_counter_file(&old_folio->page));
3129 				inc_mm_counter(mm, MM_ANONPAGES);
3130 			}
3131 		} else {
3132 			ksm_might_unmap_zero_page(mm, vmf->orig_pte);
3133 			inc_mm_counter(mm, MM_ANONPAGES);
3134 		}
3135 		flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
3136 		entry = mk_pte(&new_folio->page, vma->vm_page_prot);
3137 		entry = pte_sw_mkyoung(entry);
3138 		if (unlikely(unshare)) {
3139 			if (pte_soft_dirty(vmf->orig_pte))
3140 				entry = pte_mksoft_dirty(entry);
3141 			if (pte_uffd_wp(vmf->orig_pte))
3142 				entry = pte_mkuffd_wp(entry);
3143 		} else {
3144 			entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3145 		}
3146 
3147 		/*
3148 		 * Clear the pte entry and flush it first, before updating the
3149 		 * pte with the new entry, to keep TLBs on different CPUs in
3150 		 * sync. This code used to set the new PTE then flush TLBs, but
3151 		 * that left a window where the new PTE could be loaded into
3152 		 * some TLBs while the old PTE remains in others.
3153 		 */
3154 		ptep_clear_flush(vma, vmf->address, vmf->pte);
3155 		folio_add_new_anon_rmap(new_folio, vma, vmf->address);
3156 #ifdef CONFIG_MEM_PURGEABLE
3157 		if (vma->vm_flags & VM_PURGEABLE) {
3158 			pr_info("set wp new folio %lx purgeable\n", folio_pfn(new_folio));
3159 			folio_set_purgeable(new_folio);
3160 			uxpte_set_present(vma, vmf->address);
3161 		}
3162 #endif
3163 		folio_add_lru_vma(new_folio, vma);
3164 		/*
3165 		 * We call the notify macro here because, when using secondary
3166 		 * mmu page tables (such as kvm shadow page tables), we want the
3167 		 * new page to be mapped directly into the secondary page table.
3168 		 */
3169 		BUG_ON(unshare && pte_write(entry));
3170 		set_pte_at_notify(mm, vmf->address, vmf->pte, entry);
3171 		update_mmu_cache_range(vmf, vma, vmf->address, vmf->pte, 1);
3172 		if (old_folio) {
3173 			/*
3174 			 * Only after switching the pte to the new page may
3175 			 * we remove the mapcount here. Otherwise another
3176 			 * process may come and find the rmap count decremented
3177 			 * before the pte is switched to the new page, and
3178 			 * "reuse" the old page writing into it while our pte
3179 			 * here still points into it and can be read by other
3180 			 * threads.
3181 			 *
3182 			 * The critical issue is to order this
3183 			 * page_remove_rmap with the ptp_clear_flush above.
3184 			 * Those stores are ordered by (if nothing else,)
3185 			 * the barrier present in the atomic_add_negative
3186 			 * in page_remove_rmap.
3187 			 *
3188 			 * Then the TLB flush in ptep_clear_flush ensures that
3189 			 * no process can access the old page before the
3190 			 * decremented mapcount is visible. And the old page
3191 			 * cannot be reused until after the decremented
3192 			 * mapcount is visible. So transitively, TLBs to
3193 			 * old page will be flushed before it can be reused.
3194 			 */
3195 			page_remove_rmap(vmf->page, vma, false);
3196 		}
3197 
3198 		/* Free the old page.. */
3199 		new_folio = old_folio;
3200 		page_copied = 1;
3201 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3202 	} else if (vmf->pte) {
3203 		update_mmu_tlb(vma, vmf->address, vmf->pte);
3204 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3205 	}
3206 
3207 	mmu_notifier_invalidate_range_end(&range);
3208 
3209 	if (new_folio)
3210 		folio_put(new_folio);
3211 	if (old_folio) {
3212 		if (page_copied)
3213 			free_swap_cache(&old_folio->page);
3214 		folio_put(old_folio);
3215 	}
3216 
3217 	delayacct_wpcopy_end();
3218 	return 0;
3219 oom_free_new:
3220 	folio_put(new_folio);
3221 oom:
3222 	if (old_folio)
3223 		folio_put(old_folio);
3224 
3225 	delayacct_wpcopy_end();
3226 	return VM_FAULT_OOM;
3227 }
3228 
3229 /**
3230  * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
3231  *			  writeable once the page is prepared
3232  *
3233  * @vmf: structure describing the fault
3234  *
3235  * This function handles all that is needed to finish a write page fault in a
3236  * shared mapping due to PTE being read-only once the mapped page is prepared.
3237  * It handles locking of PTE and modifying it.
3238  *
3239  * The function expects the page to be locked or other protection against
3240  * concurrent faults / writeback (such as DAX radix tree locks).
3241  *
3242  * Return: %0 on success, %VM_FAULT_NOPAGE when PTE got changed before
3243  * we acquired PTE lock.
3244  */
finish_mkwrite_fault(struct vm_fault *vmf)3245 vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf)
3246 {
3247 	WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED));
3248 	vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address,
3249 				       &vmf->ptl);
3250 	if (!vmf->pte)
3251 		return VM_FAULT_NOPAGE;
3252 	/*
3253 	 * We might have raced with another page fault while we released the
3254 	 * pte_offset_map_lock.
3255 	 */
3256 	if (!pte_same(ptep_get(vmf->pte), vmf->orig_pte)) {
3257 		update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
3258 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3259 		return VM_FAULT_NOPAGE;
3260 	}
3261 	wp_page_reuse(vmf);
3262 	return 0;
3263 }
3264 
3265 /*
3266  * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
3267  * mapping
3268  */
wp_pfn_shared(struct vm_fault *vmf)3269 static vm_fault_t wp_pfn_shared(struct vm_fault *vmf)
3270 {
3271 	struct vm_area_struct *vma = vmf->vma;
3272 
3273 	if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
3274 		vm_fault_t ret;
3275 
3276 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3277 		if (vmf->flags & FAULT_FLAG_VMA_LOCK) {
3278 			vma_end_read(vmf->vma);
3279 			return VM_FAULT_RETRY;
3280 		}
3281 
3282 		vmf->flags |= FAULT_FLAG_MKWRITE;
3283 		ret = vma->vm_ops->pfn_mkwrite(vmf);
3284 		if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))
3285 			return ret;
3286 		return finish_mkwrite_fault(vmf);
3287 	}
3288 	wp_page_reuse(vmf);
3289 	return 0;
3290 }
3291 
3292 static vm_fault_t wp_page_shared(struct vm_fault *vmf, struct folio *folio)
3293 	__releases(vmf->ptl)
3294 {
3295 	struct vm_area_struct *vma = vmf->vma;
3296 	vm_fault_t ret = 0;
3297 
3298 	folio_get(folio);
3299 
3300 	if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
3301 		vm_fault_t tmp;
3302 
3303 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3304 		if (vmf->flags & FAULT_FLAG_VMA_LOCK) {
3305 			folio_put(folio);
3306 			vma_end_read(vmf->vma);
3307 			return VM_FAULT_RETRY;
3308 		}
3309 
3310 		tmp = do_page_mkwrite(vmf, folio);
3311 		if (unlikely(!tmp || (tmp &
3312 				      (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
3313 			folio_put(folio);
3314 			return tmp;
3315 		}
3316 		tmp = finish_mkwrite_fault(vmf);
3317 		if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
3318 			folio_unlock(folio);
3319 			folio_put(folio);
3320 			return tmp;
3321 		}
3322 	} else {
3323 		wp_page_reuse(vmf);
3324 		folio_lock(folio);
3325 	}
3326 	ret |= fault_dirty_shared_page(vmf);
3327 	folio_put(folio);
3328 
3329 	return ret;
3330 }
3331 
3332 /*
3333  * This routine handles present pages, when
3334  * * users try to write to a shared page (FAULT_FLAG_WRITE)
3335  * * GUP wants to take a R/O pin on a possibly shared anonymous page
3336  *   (FAULT_FLAG_UNSHARE)
3337  *
3338  * It is done by copying the page to a new address and decrementing the
3339  * shared-page counter for the old page.
3340  *
3341  * Note that this routine assumes that the protection checks have been
3342  * done by the caller (the low-level page fault routine in most cases).
3343  * Thus, with FAULT_FLAG_WRITE, we can safely just mark it writable once we've
3344  * done any necessary COW.
3345  *
3346  * In case of FAULT_FLAG_WRITE, we also mark the page dirty at this point even
3347  * though the page will change only once the write actually happens. This
3348  * avoids a few races, and potentially makes it more efficient.
3349  *
3350  * We enter with non-exclusive mmap_lock (to exclude vma changes,
3351  * but allow concurrent faults), with pte both mapped and locked.
3352  * We return with mmap_lock still held, but pte unmapped and unlocked.
3353  */
3354 static vm_fault_t do_wp_page(struct vm_fault *vmf)
3355 	__releases(vmf->ptl)
3356 {
3357 	const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
3358 	struct vm_area_struct *vma = vmf->vma;
3359 	struct folio *folio = NULL;
3360 
3361 	if (likely(!unshare)) {
3362 		if (userfaultfd_pte_wp(vma, ptep_get(vmf->pte))) {
3363 			pte_unmap_unlock(vmf->pte, vmf->ptl);
3364 			return handle_userfault(vmf, VM_UFFD_WP);
3365 		}
3366 
3367 		/*
3368 		 * Userfaultfd write-protect can defer flushes. Ensure the TLB
3369 		 * is flushed in this case before copying.
3370 		 */
3371 		if (unlikely(userfaultfd_wp(vmf->vma) &&
3372 			     mm_tlb_flush_pending(vmf->vma->vm_mm)))
3373 			flush_tlb_page(vmf->vma, vmf->address);
3374 	}
3375 
3376 	vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte);
3377 
3378 	if (vmf->page)
3379 		folio = page_folio(vmf->page);
3380 
3381 	/*
3382 	 * Shared mapping: we are guaranteed to have VM_WRITE and
3383 	 * FAULT_FLAG_WRITE set at this point.
3384 	 */
3385 	if (vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) {
3386 		/*
3387 		 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
3388 		 * VM_PFNMAP VMA.
3389 		 *
3390 		 * We should not cow pages in a shared writeable mapping.
3391 		 * Just mark the pages writable and/or call ops->pfn_mkwrite.
3392 		 */
3393 		if (!vmf->page)
3394 			return wp_pfn_shared(vmf);
3395 		return wp_page_shared(vmf, folio);
3396 	}
3397 
3398 	/*
3399 	 * Private mapping: create an exclusive anonymous page copy if reuse
3400 	 * is impossible. We might miss VM_WRITE for FOLL_FORCE handling.
3401 	 */
3402 	if (folio && folio_test_anon(folio)) {
3403 		/*
3404 		 * If the page is exclusive to this process we must reuse the
3405 		 * page without further checks.
3406 		 */
3407 		if (PageAnonExclusive(vmf->page))
3408 			goto reuse;
3409 
3410 		/*
3411 		 * We have to verify under folio lock: these early checks are
3412 		 * just an optimization to avoid locking the folio and freeing
3413 		 * the swapcache if there is little hope that we can reuse.
3414 		 *
3415 		 * KSM doesn't necessarily raise the folio refcount.
3416 		 */
3417 		if (folio_test_ksm(folio) || folio_ref_count(folio) > 3)
3418 			goto copy;
3419 		if (!folio_test_lru(folio))
3420 			/*
3421 			 * We cannot easily detect+handle references from
3422 			 * remote LRU caches or references to LRU folios.
3423 			 */
3424 			lru_add_drain();
3425 		if (folio_ref_count(folio) > 1 + folio_test_swapcache(folio))
3426 			goto copy;
3427 		if (!folio_trylock(folio))
3428 			goto copy;
3429 		if (folio_test_swapcache(folio))
3430 			folio_free_swap(folio);
3431 		if (folio_test_ksm(folio) || folio_ref_count(folio) != 1) {
3432 			folio_unlock(folio);
3433 			goto copy;
3434 		}
3435 		/*
3436 		 * Ok, we've got the only folio reference from our mapping
3437 		 * and the folio is locked, it's dark out, and we're wearing
3438 		 * sunglasses. Hit it.
3439 		 */
3440 		page_move_anon_rmap(vmf->page, vma);
3441 		folio_unlock(folio);
3442 reuse:
3443 		if (unlikely(unshare)) {
3444 			pte_unmap_unlock(vmf->pte, vmf->ptl);
3445 			return 0;
3446 		}
3447 		wp_page_reuse(vmf);
3448 		return 0;
3449 	}
3450 copy:
3451 	if ((vmf->flags & FAULT_FLAG_VMA_LOCK) && !vma->anon_vma) {
3452 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3453 		vma_end_read(vmf->vma);
3454 		return VM_FAULT_RETRY;
3455 	}
3456 
3457 	/*
3458 	 * Ok, we need to copy. Oh, well..
3459 	 */
3460 	if (folio)
3461 		folio_get(folio);
3462 
3463 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3464 #ifdef CONFIG_KSM
3465 	if (folio && folio_test_ksm(folio))
3466 		count_vm_event(COW_KSM);
3467 #endif
3468 	return wp_page_copy(vmf);
3469 }
3470 
unmap_mapping_range_vma(struct vm_area_struct *vma, unsigned long start_addr, unsigned long end_addr, struct zap_details *details)3471 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
3472 		unsigned long start_addr, unsigned long end_addr,
3473 		struct zap_details *details)
3474 {
3475 	zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
3476 }
3477 
unmap_mapping_range_tree(struct rb_root_cached *root, pgoff_t first_index, pgoff_t last_index, struct zap_details *details)3478 static inline void unmap_mapping_range_tree(struct rb_root_cached *root,
3479 					    pgoff_t first_index,
3480 					    pgoff_t last_index,
3481 					    struct zap_details *details)
3482 {
3483 	struct vm_area_struct *vma;
3484 	pgoff_t vba, vea, zba, zea;
3485 
3486 	vma_interval_tree_foreach(vma, root, first_index, last_index) {
3487 		vba = vma->vm_pgoff;
3488 		vea = vba + vma_pages(vma) - 1;
3489 		zba = max(first_index, vba);
3490 		zea = min(last_index, vea);
3491 
3492 		unmap_mapping_range_vma(vma,
3493 			((zba - vba) << PAGE_SHIFT) + vma->vm_start,
3494 			((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
3495 				details);
3496 	}
3497 }
3498 
3499 /**
3500  * unmap_mapping_folio() - Unmap single folio from processes.
3501  * @folio: The locked folio to be unmapped.
3502  *
3503  * Unmap this folio from any userspace process which still has it mmaped.
3504  * Typically, for efficiency, the range of nearby pages has already been
3505  * unmapped by unmap_mapping_pages() or unmap_mapping_range().  But once
3506  * truncation or invalidation holds the lock on a folio, it may find that
3507  * the page has been remapped again: and then uses unmap_mapping_folio()
3508  * to unmap it finally.
3509  */
unmap_mapping_folio(struct folio *folio)3510 void unmap_mapping_folio(struct folio *folio)
3511 {
3512 	struct address_space *mapping = folio->mapping;
3513 	struct zap_details details = { };
3514 	pgoff_t	first_index;
3515 	pgoff_t	last_index;
3516 
3517 	VM_BUG_ON(!folio_test_locked(folio));
3518 
3519 	first_index = folio->index;
3520 	last_index = folio_next_index(folio) - 1;
3521 
3522 	details.even_cows = false;
3523 	details.single_folio = folio;
3524 	details.zap_flags = ZAP_FLAG_DROP_MARKER;
3525 
3526 	i_mmap_lock_read(mapping);
3527 	if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
3528 		unmap_mapping_range_tree(&mapping->i_mmap, first_index,
3529 					 last_index, &details);
3530 	i_mmap_unlock_read(mapping);
3531 }
3532 
3533 /**
3534  * unmap_mapping_pages() - Unmap pages from processes.
3535  * @mapping: The address space containing pages to be unmapped.
3536  * @start: Index of first page to be unmapped.
3537  * @nr: Number of pages to be unmapped.  0 to unmap to end of file.
3538  * @even_cows: Whether to unmap even private COWed pages.
3539  *
3540  * Unmap the pages in this address space from any userspace process which
3541  * has them mmaped.  Generally, you want to remove COWed pages as well when
3542  * a file is being truncated, but not when invalidating pages from the page
3543  * cache.
3544  */
unmap_mapping_pages(struct address_space *mapping, pgoff_t start, pgoff_t nr, bool even_cows)3545 void unmap_mapping_pages(struct address_space *mapping, pgoff_t start,
3546 		pgoff_t nr, bool even_cows)
3547 {
3548 	struct zap_details details = { };
3549 	pgoff_t	first_index = start;
3550 	pgoff_t	last_index = start + nr - 1;
3551 
3552 	details.even_cows = even_cows;
3553 	if (last_index < first_index)
3554 		last_index = ULONG_MAX;
3555 
3556 	i_mmap_lock_read(mapping);
3557 	if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
3558 		unmap_mapping_range_tree(&mapping->i_mmap, first_index,
3559 					 last_index, &details);
3560 	i_mmap_unlock_read(mapping);
3561 }
3562 EXPORT_SYMBOL_GPL(unmap_mapping_pages);
3563 
3564 /**
3565  * unmap_mapping_range - unmap the portion of all mmaps in the specified
3566  * address_space corresponding to the specified byte range in the underlying
3567  * file.
3568  *
3569  * @mapping: the address space containing mmaps to be unmapped.
3570  * @holebegin: byte in first page to unmap, relative to the start of
3571  * the underlying file.  This will be rounded down to a PAGE_SIZE
3572  * boundary.  Note that this is different from truncate_pagecache(), which
3573  * must keep the partial page.  In contrast, we must get rid of
3574  * partial pages.
3575  * @holelen: size of prospective hole in bytes.  This will be rounded
3576  * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
3577  * end of the file.
3578  * @even_cows: 1 when truncating a file, unmap even private COWed pages;
3579  * but 0 when invalidating pagecache, don't throw away private data.
3580  */
unmap_mapping_range(struct address_space *mapping, loff_t const holebegin, loff_t const holelen, int even_cows)3581 void unmap_mapping_range(struct address_space *mapping,
3582 		loff_t const holebegin, loff_t const holelen, int even_cows)
3583 {
3584 	pgoff_t hba = (pgoff_t)(holebegin) >> PAGE_SHIFT;
3585 	pgoff_t hlen = ((pgoff_t)(holelen) + PAGE_SIZE - 1) >> PAGE_SHIFT;
3586 
3587 	/* Check for overflow. */
3588 	if (sizeof(holelen) > sizeof(hlen)) {
3589 		long long holeend =
3590 			(holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3591 		if (holeend & ~(long long)ULONG_MAX)
3592 			hlen = ULONG_MAX - hba + 1;
3593 	}
3594 
3595 	unmap_mapping_pages(mapping, hba, hlen, even_cows);
3596 }
3597 EXPORT_SYMBOL(unmap_mapping_range);
3598 
3599 /*
3600  * Restore a potential device exclusive pte to a working pte entry
3601  */
remove_device_exclusive_entry(struct vm_fault *vmf)3602 static vm_fault_t remove_device_exclusive_entry(struct vm_fault *vmf)
3603 {
3604 	struct folio *folio = page_folio(vmf->page);
3605 	struct vm_area_struct *vma = vmf->vma;
3606 	struct mmu_notifier_range range;
3607 	vm_fault_t ret;
3608 
3609 	/*
3610 	 * We need a reference to lock the folio because we don't hold
3611 	 * the PTL so a racing thread can remove the device-exclusive
3612 	 * entry and unmap it. If the folio is free the entry must
3613 	 * have been removed already. If it happens to have already
3614 	 * been re-allocated after being freed all we do is lock and
3615 	 * unlock it.
3616 	 */
3617 	if (!folio_try_get(folio))
3618 		return 0;
3619 
3620 	ret = folio_lock_or_retry(folio, vmf);
3621 	if (ret) {
3622 		folio_put(folio);
3623 		return ret;
3624 	}
3625 	mmu_notifier_range_init_owner(&range, MMU_NOTIFY_EXCLUSIVE, 0,
3626 				vma->vm_mm, vmf->address & PAGE_MASK,
3627 				(vmf->address & PAGE_MASK) + PAGE_SIZE, NULL);
3628 	mmu_notifier_invalidate_range_start(&range);
3629 
3630 	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3631 				&vmf->ptl);
3632 	if (likely(vmf->pte && pte_same(ptep_get(vmf->pte), vmf->orig_pte)))
3633 		restore_exclusive_pte(vma, vmf->page, vmf->address, vmf->pte);
3634 
3635 	if (vmf->pte)
3636 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3637 	folio_unlock(folio);
3638 	folio_put(folio);
3639 
3640 	mmu_notifier_invalidate_range_end(&range);
3641 	return 0;
3642 }
3643 
should_try_to_free_swap(struct folio *folio, struct vm_area_struct *vma, unsigned int fault_flags)3644 static inline bool should_try_to_free_swap(struct folio *folio,
3645 					   struct vm_area_struct *vma,
3646 					   unsigned int fault_flags)
3647 {
3648 	if (!folio_test_swapcache(folio))
3649 		return false;
3650 	if (mem_cgroup_swap_full(folio) || (vma->vm_flags & VM_LOCKED) ||
3651 	    folio_test_mlocked(folio))
3652 		return true;
3653 	/*
3654 	 * If we want to map a page that's in the swapcache writable, we
3655 	 * have to detect via the refcount if we're really the exclusive
3656 	 * user. Try freeing the swapcache to get rid of the swapcache
3657 	 * reference only in case it's likely that we'll be the exlusive user.
3658 	 */
3659 	return (fault_flags & FAULT_FLAG_WRITE) && !folio_test_ksm(folio) &&
3660 		folio_ref_count(folio) == 2;
3661 }
3662 
pte_marker_clear(struct vm_fault *vmf)3663 static vm_fault_t pte_marker_clear(struct vm_fault *vmf)
3664 {
3665 	vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd,
3666 				       vmf->address, &vmf->ptl);
3667 	if (!vmf->pte)
3668 		return 0;
3669 	/*
3670 	 * Be careful so that we will only recover a special uffd-wp pte into a
3671 	 * none pte.  Otherwise it means the pte could have changed, so retry.
3672 	 *
3673 	 * This should also cover the case where e.g. the pte changed
3674 	 * quickly from a PTE_MARKER_UFFD_WP into PTE_MARKER_POISONED.
3675 	 * So is_pte_marker() check is not enough to safely drop the pte.
3676 	 */
3677 	if (pte_same(vmf->orig_pte, ptep_get(vmf->pte)))
3678 		pte_clear(vmf->vma->vm_mm, vmf->address, vmf->pte);
3679 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3680 	return 0;
3681 }
3682 
do_pte_missing(struct vm_fault *vmf)3683 static vm_fault_t do_pte_missing(struct vm_fault *vmf)
3684 {
3685 	if (vma_is_anonymous(vmf->vma))
3686 		return do_anonymous_page(vmf);
3687 	else
3688 		return do_fault(vmf);
3689 }
3690 
3691 /*
3692  * This is actually a page-missing access, but with uffd-wp special pte
3693  * installed.  It means this pte was wr-protected before being unmapped.
3694  */
pte_marker_handle_uffd_wp(struct vm_fault *vmf)3695 static vm_fault_t pte_marker_handle_uffd_wp(struct vm_fault *vmf)
3696 {
3697 	/*
3698 	 * Just in case there're leftover special ptes even after the region
3699 	 * got unregistered - we can simply clear them.
3700 	 */
3701 	if (unlikely(!userfaultfd_wp(vmf->vma)))
3702 		return pte_marker_clear(vmf);
3703 
3704 	return do_pte_missing(vmf);
3705 }
3706 
handle_pte_marker(struct vm_fault *vmf)3707 static vm_fault_t handle_pte_marker(struct vm_fault *vmf)
3708 {
3709 	swp_entry_t entry = pte_to_swp_entry(vmf->orig_pte);
3710 	unsigned long marker = pte_marker_get(entry);
3711 
3712 	/*
3713 	 * PTE markers should never be empty.  If anything weird happened,
3714 	 * the best thing to do is to kill the process along with its mm.
3715 	 */
3716 	if (WARN_ON_ONCE(!marker))
3717 		return VM_FAULT_SIGBUS;
3718 
3719 	/* Higher priority than uffd-wp when data corrupted */
3720 	if (marker & PTE_MARKER_POISONED)
3721 		return VM_FAULT_HWPOISON;
3722 
3723 	if (pte_marker_entry_uffd_wp(entry))
3724 		return pte_marker_handle_uffd_wp(vmf);
3725 
3726 	/* This is an unknown pte marker */
3727 	return VM_FAULT_SIGBUS;
3728 }
3729 
3730 /*
3731  * We enter with non-exclusive mmap_lock (to exclude vma changes,
3732  * but allow concurrent faults), and pte mapped but not yet locked.
3733  * We return with pte unmapped and unlocked.
3734  *
3735  * We return with the mmap_lock locked or unlocked in the same cases
3736  * as does filemap_fault().
3737  */
do_swap_page(struct vm_fault *vmf)3738 vm_fault_t do_swap_page(struct vm_fault *vmf)
3739 {
3740 	struct vm_area_struct *vma = vmf->vma;
3741 	struct folio *swapcache, *folio = NULL;
3742 	struct page *page;
3743 	struct swap_info_struct *si = NULL;
3744 	rmap_t rmap_flags = RMAP_NONE;
3745 	bool need_clear_cache = false;
3746 	bool exclusive = false;
3747 	swp_entry_t entry;
3748 	pte_t pte;
3749 	vm_fault_t ret = 0;
3750 	void *shadow = NULL;
3751 
3752 	if (!pte_unmap_same(vmf))
3753 		goto out;
3754 
3755 	entry = pte_to_swp_entry(vmf->orig_pte);
3756 	if (unlikely(non_swap_entry(entry))) {
3757 		if (is_migration_entry(entry)) {
3758 			migration_entry_wait(vma->vm_mm, vmf->pmd,
3759 					     vmf->address);
3760 		} else if (is_device_exclusive_entry(entry)) {
3761 			vmf->page = pfn_swap_entry_to_page(entry);
3762 			ret = remove_device_exclusive_entry(vmf);
3763 		} else if (is_device_private_entry(entry)) {
3764 			if (vmf->flags & FAULT_FLAG_VMA_LOCK) {
3765 				/*
3766 				 * migrate_to_ram is not yet ready to operate
3767 				 * under VMA lock.
3768 				 */
3769 				vma_end_read(vma);
3770 				ret = VM_FAULT_RETRY;
3771 				goto out;
3772 			}
3773 
3774 			vmf->page = pfn_swap_entry_to_page(entry);
3775 			vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3776 					vmf->address, &vmf->ptl);
3777 			if (unlikely(!vmf->pte ||
3778 				     !pte_same(ptep_get(vmf->pte),
3779 							vmf->orig_pte)))
3780 				goto unlock;
3781 
3782 			/*
3783 			 * Get a page reference while we know the page can't be
3784 			 * freed.
3785 			 */
3786 			get_page(vmf->page);
3787 			pte_unmap_unlock(vmf->pte, vmf->ptl);
3788 			ret = vmf->page->pgmap->ops->migrate_to_ram(vmf);
3789 			put_page(vmf->page);
3790 		} else if (is_hwpoison_entry(entry)) {
3791 			ret = VM_FAULT_HWPOISON;
3792 		} else if (is_pte_marker_entry(entry)) {
3793 			ret = handle_pte_marker(vmf);
3794 		} else {
3795 			print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL);
3796 			ret = VM_FAULT_SIGBUS;
3797 		}
3798 		goto out;
3799 	}
3800 
3801 	/* Prevent swapoff from happening to us. */
3802 	si = get_swap_device(entry);
3803 	if (unlikely(!si))
3804 		goto out;
3805 
3806 	folio = swap_cache_get_folio(entry, vma, vmf->address);
3807 	if (folio)
3808 		page = folio_file_page(folio, swp_offset(entry));
3809 	swapcache = folio;
3810 
3811 	if (!folio) {
3812 		if (data_race(si->flags & SWP_SYNCHRONOUS_IO) &&
3813 		    __swap_count(entry) == 1) {
3814 			/*
3815 			 * Prevent parallel swapin from proceeding with
3816 			 * the cache flag. Otherwise, another thread may
3817 			 * finish swapin first, free the entry, and swapout
3818 			 * reusing the same entry. It's undetectable as
3819 			 * pte_same() returns true due to entry reuse.
3820 			 */
3821 			if (swapcache_prepare(entry)) {
3822 				/* Relax a bit to prevent rapid repeated page faults */
3823 				schedule_timeout_uninterruptible(1);
3824 				goto out;
3825 			}
3826 			need_clear_cache = true;
3827 
3828 			/* skip swapcache */
3829 			folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0,
3830 						vma, vmf->address, false);
3831 			page = &folio->page;
3832 			if (folio) {
3833 				__folio_set_locked(folio);
3834 				__folio_set_swapbacked(folio);
3835 
3836 				if (mem_cgroup_swapin_charge_folio(folio,
3837 							vma->vm_mm, GFP_KERNEL,
3838 							entry)) {
3839 					ret = VM_FAULT_OOM;
3840 					goto out_page;
3841 				}
3842 				mem_cgroup_swapin_uncharge_swap(entry);
3843 
3844 				shadow = get_shadow_from_swap_cache(entry);
3845 				if (shadow)
3846 					workingset_refault(folio, shadow);
3847 
3848 				folio_add_lru(folio);
3849 
3850 				/* To provide entry to swap_readpage() */
3851 				folio->swap = entry;
3852 				swap_readpage(page, true, NULL);
3853 				folio->private = NULL;
3854 			}
3855 		} else {
3856 			page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
3857 						vmf);
3858 			if (page)
3859 				folio = page_folio(page);
3860 			swapcache = folio;
3861 		}
3862 
3863 		if (!folio) {
3864 			/*
3865 			 * Back out if somebody else faulted in this pte
3866 			 * while we released the pte lock.
3867 			 */
3868 			vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3869 					vmf->address, &vmf->ptl);
3870 			if (likely(vmf->pte &&
3871 				   pte_same(ptep_get(vmf->pte), vmf->orig_pte)))
3872 				ret = VM_FAULT_OOM;
3873 			goto unlock;
3874 		}
3875 
3876 		/* Had to read the page from swap area: Major fault */
3877 		ret = VM_FAULT_MAJOR;
3878 		count_vm_event(PGMAJFAULT);
3879 		count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
3880 	} else if (PageHWPoison(page)) {
3881 		/*
3882 		 * hwpoisoned dirty swapcache pages are kept for killing
3883 		 * owner processes (which may be unknown at hwpoison time)
3884 		 */
3885 		ret = VM_FAULT_HWPOISON;
3886 		goto out_release;
3887 	}
3888 
3889 	ret |= folio_lock_or_retry(folio, vmf);
3890 	if (ret & VM_FAULT_RETRY)
3891 		goto out_release;
3892 
3893 	if (swapcache) {
3894 		/*
3895 		 * Make sure folio_free_swap() or swapoff did not release the
3896 		 * swapcache from under us.  The page pin, and pte_same test
3897 		 * below, are not enough to exclude that.  Even if it is still
3898 		 * swapcache, we need to check that the page's swap has not
3899 		 * changed.
3900 		 */
3901 		if (unlikely(!folio_test_swapcache(folio) ||
3902 			     page_swap_entry(page).val != entry.val))
3903 			goto out_page;
3904 
3905 		/*
3906 		 * KSM sometimes has to copy on read faults, for example, if
3907 		 * page->index of !PageKSM() pages would be nonlinear inside the
3908 		 * anon VMA -- PageKSM() is lost on actual swapout.
3909 		 */
3910 		page = ksm_might_need_to_copy(page, vma, vmf->address);
3911 		if (unlikely(!page)) {
3912 			ret = VM_FAULT_OOM;
3913 			goto out_page;
3914 		} else if (unlikely(PTR_ERR(page) == -EHWPOISON)) {
3915 			ret = VM_FAULT_HWPOISON;
3916 			goto out_page;
3917 		}
3918 		folio = page_folio(page);
3919 
3920 		/*
3921 		 * If we want to map a page that's in the swapcache writable, we
3922 		 * have to detect via the refcount if we're really the exclusive
3923 		 * owner. Try removing the extra reference from the local LRU
3924 		 * caches if required.
3925 		 */
3926 		if ((vmf->flags & FAULT_FLAG_WRITE) && folio == swapcache &&
3927 		    !folio_test_ksm(folio) && !folio_test_lru(folio))
3928 			lru_add_drain();
3929 	}
3930 
3931 	folio_throttle_swaprate(folio, GFP_KERNEL);
3932 
3933 	/*
3934 	 * Back out if somebody else already faulted in this pte.
3935 	 */
3936 	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3937 			&vmf->ptl);
3938 	if (unlikely(!vmf->pte || !pte_same(ptep_get(vmf->pte), vmf->orig_pte)))
3939 		goto out_nomap;
3940 
3941 	if (unlikely(!folio_test_uptodate(folio))) {
3942 		ret = VM_FAULT_SIGBUS;
3943 		goto out_nomap;
3944 	}
3945 
3946 	/*
3947 	 * PG_anon_exclusive reuses PG_mappedtodisk for anon pages. A swap pte
3948 	 * must never point at an anonymous page in the swapcache that is
3949 	 * PG_anon_exclusive. Sanity check that this holds and especially, that
3950 	 * no filesystem set PG_mappedtodisk on a page in the swapcache. Sanity
3951 	 * check after taking the PT lock and making sure that nobody
3952 	 * concurrently faulted in this page and set PG_anon_exclusive.
3953 	 */
3954 	BUG_ON(!folio_test_anon(folio) && folio_test_mappedtodisk(folio));
3955 	BUG_ON(folio_test_anon(folio) && PageAnonExclusive(page));
3956 
3957 	/*
3958 	 * Check under PT lock (to protect against concurrent fork() sharing
3959 	 * the swap entry concurrently) for certainly exclusive pages.
3960 	 */
3961 	if (!folio_test_ksm(folio)) {
3962 		exclusive = pte_swp_exclusive(vmf->orig_pte);
3963 		if (folio != swapcache) {
3964 			/*
3965 			 * We have a fresh page that is not exposed to the
3966 			 * swapcache -> certainly exclusive.
3967 			 */
3968 			exclusive = true;
3969 		} else if (exclusive && folio_test_writeback(folio) &&
3970 			  data_race(si->flags & SWP_STABLE_WRITES)) {
3971 			/*
3972 			 * This is tricky: not all swap backends support
3973 			 * concurrent page modifications while under writeback.
3974 			 *
3975 			 * So if we stumble over such a page in the swapcache
3976 			 * we must not set the page exclusive, otherwise we can
3977 			 * map it writable without further checks and modify it
3978 			 * while still under writeback.
3979 			 *
3980 			 * For these problematic swap backends, simply drop the
3981 			 * exclusive marker: this is perfectly fine as we start
3982 			 * writeback only if we fully unmapped the page and
3983 			 * there are no unexpected references on the page after
3984 			 * unmapping succeeded. After fully unmapped, no
3985 			 * further GUP references (FOLL_GET and FOLL_PIN) can
3986 			 * appear, so dropping the exclusive marker and mapping
3987 			 * it only R/O is fine.
3988 			 */
3989 			exclusive = false;
3990 		}
3991 	}
3992 
3993 	/*
3994 	 * Some architectures may have to restore extra metadata to the page
3995 	 * when reading from swap. This metadata may be indexed by swap entry
3996 	 * so this must be called before swap_free().
3997 	 */
3998 	arch_swap_restore(entry, folio);
3999 
4000 	/*
4001 	 * Remove the swap entry and conditionally try to free up the swapcache.
4002 	 * We're already holding a reference on the page but haven't mapped it
4003 	 * yet.
4004 	 */
4005 	swap_free(entry);
4006 	if (should_try_to_free_swap(folio, vma, vmf->flags))
4007 		folio_free_swap(folio);
4008 
4009 	inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
4010 	dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
4011 	pte = mk_pte(page, vma->vm_page_prot);
4012 
4013 	/*
4014 	 * Same logic as in do_wp_page(); however, optimize for pages that are
4015 	 * certainly not shared either because we just allocated them without
4016 	 * exposing them to the swapcache or because the swap entry indicates
4017 	 * exclusivity.
4018 	 */
4019 	if (!folio_test_ksm(folio) &&
4020 	    (exclusive || folio_ref_count(folio) == 1)) {
4021 		if (vmf->flags & FAULT_FLAG_WRITE) {
4022 			pte = maybe_mkwrite(pte_mkdirty(pte), vma);
4023 			vmf->flags &= ~FAULT_FLAG_WRITE;
4024 		}
4025 		rmap_flags |= RMAP_EXCLUSIVE;
4026 	}
4027 	flush_icache_page(vma, page);
4028 	if (pte_swp_soft_dirty(vmf->orig_pte))
4029 		pte = pte_mksoft_dirty(pte);
4030 	if (pte_swp_uffd_wp(vmf->orig_pte))
4031 		pte = pte_mkuffd_wp(pte);
4032 	vmf->orig_pte = pte;
4033 
4034 	/* ksm created a completely new copy */
4035 	if (unlikely(folio != swapcache && swapcache)) {
4036 		page_add_new_anon_rmap(page, vma, vmf->address);
4037 		folio_add_lru_vma(folio, vma);
4038 	} else {
4039 		page_add_anon_rmap(page, vma, vmf->address, rmap_flags);
4040 	}
4041 
4042 	VM_BUG_ON(!folio_test_anon(folio) ||
4043 			(pte_write(pte) && !PageAnonExclusive(page)));
4044 	set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
4045 	arch_do_swap_page(vma->vm_mm, vma, vmf->address, pte, vmf->orig_pte);
4046 
4047 	folio_unlock(folio);
4048 	if (folio != swapcache && swapcache) {
4049 		/*
4050 		 * Hold the lock to avoid the swap entry to be reused
4051 		 * until we take the PT lock for the pte_same() check
4052 		 * (to avoid false positives from pte_same). For
4053 		 * further safety release the lock after the swap_free
4054 		 * so that the swap count won't change under a
4055 		 * parallel locked swapcache.
4056 		 */
4057 		folio_unlock(swapcache);
4058 		folio_put(swapcache);
4059 	}
4060 
4061 	if (vmf->flags & FAULT_FLAG_WRITE) {
4062 		ret |= do_wp_page(vmf);
4063 		if (ret & VM_FAULT_ERROR)
4064 			ret &= VM_FAULT_ERROR;
4065 		goto out;
4066 	}
4067 
4068 	/* No need to invalidate - it was non-present before */
4069 	update_mmu_cache_range(vmf, vma, vmf->address, vmf->pte, 1);
4070 unlock:
4071 	if (vmf->pte)
4072 		pte_unmap_unlock(vmf->pte, vmf->ptl);
4073 out:
4074 	/* Clear the swap cache pin for direct swapin after PTL unlock */
4075 	if (need_clear_cache)
4076 		swapcache_clear(si, entry);
4077 	if (si)
4078 		put_swap_device(si);
4079 	return ret;
4080 out_nomap:
4081 	if (vmf->pte)
4082 		pte_unmap_unlock(vmf->pte, vmf->ptl);
4083 out_page:
4084 	folio_unlock(folio);
4085 out_release:
4086 	folio_put(folio);
4087 	if (folio != swapcache && swapcache) {
4088 		folio_unlock(swapcache);
4089 		folio_put(swapcache);
4090 	}
4091 	if (need_clear_cache)
4092 		swapcache_clear(si, entry);
4093 	if (si)
4094 		put_swap_device(si);
4095 	return ret;
4096 }
4097 
4098 /*
4099  * We enter with non-exclusive mmap_lock (to exclude vma changes,
4100  * but allow concurrent faults), and pte mapped but not yet locked.
4101  * We return with mmap_lock still held, but pte unmapped and unlocked.
4102  */
do_anonymous_page(struct vm_fault *vmf)4103 static vm_fault_t do_anonymous_page(struct vm_fault *vmf)
4104 {
4105 	bool uffd_wp = vmf_orig_pte_uffd_wp(vmf);
4106 	struct vm_area_struct *vma = vmf->vma;
4107 	struct folio *folio;
4108 	vm_fault_t ret = 0;
4109 	pte_t entry;
4110 
4111 	/* File mapping without ->vm_ops ? */
4112 	if (vma->vm_flags & VM_SHARED)
4113 		return VM_FAULT_SIGBUS;
4114 
4115 	/*
4116 	 * Use pte_alloc() instead of pte_alloc_map(), so that OOM can
4117 	 * be distinguished from a transient failure of pte_offset_map().
4118 	 */
4119 	if (pte_alloc(vma->vm_mm, vmf->pmd))
4120 		return VM_FAULT_OOM;
4121 
4122 #ifdef CONFIG_MEM_PURGEABLE
4123 	/* use extra page table for userexpte */
4124 	if (vma->vm_flags & VM_USEREXPTE) {
4125 		if (do_uxpte_page_fault(vmf, &entry))
4126 			goto oom;
4127 		else
4128 			goto got_page;
4129 	}
4130 #endif
4131 	/* Use the zero-page for reads */
4132 	if (!(vmf->flags & FAULT_FLAG_WRITE) &&
4133 			!mm_forbids_zeropage(vma->vm_mm)) {
4134 		entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address),
4135 						vma->vm_page_prot));
4136 #ifdef CONFIG_MEM_PURGEABLE
4137 got_page:
4138 #endif
4139 		vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
4140 				vmf->address, &vmf->ptl);
4141 		if (!vmf->pte)
4142 			goto unlock;
4143 		if (vmf_pte_changed(vmf)) {
4144 			update_mmu_tlb(vma, vmf->address, vmf->pte);
4145 			goto unlock;
4146 		}
4147 		ret = check_stable_address_space(vma->vm_mm);
4148 		if (ret)
4149 			goto unlock;
4150 		/* Deliver the page fault to userland, check inside PT lock */
4151 		if (userfaultfd_missing(vma)) {
4152 			pte_unmap_unlock(vmf->pte, vmf->ptl);
4153 			return handle_userfault(vmf, VM_UFFD_MISSING);
4154 		}
4155 		goto setpte;
4156 	}
4157 
4158 	/* Allocate our own private page. */
4159 	if (unlikely(anon_vma_prepare(vma)))
4160 		goto oom;
4161 	folio = vma_alloc_zeroed_movable_folio(vma, vmf->address);
4162 	if (!folio)
4163 		goto oom;
4164 
4165 	if (mem_cgroup_charge(folio, vma->vm_mm, GFP_KERNEL))
4166 		goto oom_free_page;
4167 	folio_throttle_swaprate(folio, GFP_KERNEL);
4168 
4169 	/*
4170 	 * The memory barrier inside __folio_mark_uptodate makes sure that
4171 	 * preceding stores to the page contents become visible before
4172 	 * the set_pte_at() write.
4173 	 */
4174 	__folio_mark_uptodate(folio);
4175 
4176 	entry = mk_pte(&folio->page, vma->vm_page_prot);
4177 	entry = pte_sw_mkyoung(entry);
4178 	if (vma->vm_flags & VM_WRITE)
4179 		entry = pte_mkwrite(pte_mkdirty(entry), vma);
4180 
4181 	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
4182 			&vmf->ptl);
4183 	if (!vmf->pte)
4184 		goto release;
4185 	if (vmf_pte_changed(vmf)) {
4186 		update_mmu_tlb(vma, vmf->address, vmf->pte);
4187 		goto release;
4188 	}
4189 
4190 	ret = check_stable_address_space(vma->vm_mm);
4191 	if (ret)
4192 		goto release;
4193 
4194 	/* Deliver the page fault to userland, check inside PT lock */
4195 	if (userfaultfd_missing(vma)) {
4196 		pte_unmap_unlock(vmf->pte, vmf->ptl);
4197 		folio_put(folio);
4198 		return handle_userfault(vmf, VM_UFFD_MISSING);
4199 	}
4200 
4201 	inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
4202 	folio_add_new_anon_rmap(folio, vma, vmf->address);
4203 #ifdef CONFIG_MEM_PURGEABLE
4204 	if (vma->vm_flags & VM_PURGEABLE)
4205 		folio_set_purgeable(folio);
4206 #endif
4207 	folio_add_lru_vma(folio, vma);
4208 setpte:
4209 #ifdef CONFIG_MEM_PURGEABLE
4210 	if (vma->vm_flags & VM_PURGEABLE)
4211 		uxpte_set_present(vma, vmf->address);
4212 #endif
4213 	if (uffd_wp)
4214 		entry = pte_mkuffd_wp(entry);
4215 	set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
4216 
4217 	/* No need to invalidate - it was non-present before */
4218 	update_mmu_cache_range(vmf, vma, vmf->address, vmf->pte, 1);
4219 unlock:
4220 	if (vmf->pte)
4221 		pte_unmap_unlock(vmf->pte, vmf->ptl);
4222 	return ret;
4223 release:
4224 	folio_put(folio);
4225 	goto unlock;
4226 oom_free_page:
4227 	folio_put(folio);
4228 oom:
4229 	return VM_FAULT_OOM;
4230 }
4231 
4232 /*
4233  * The mmap_lock must have been held on entry, and may have been
4234  * released depending on flags and vma->vm_ops->fault() return value.
4235  * See filemap_fault() and __lock_page_retry().
4236  */
__do_fault(struct vm_fault *vmf)4237 static vm_fault_t __do_fault(struct vm_fault *vmf)
4238 {
4239 	struct vm_area_struct *vma = vmf->vma;
4240 	vm_fault_t ret;
4241 
4242 	/*
4243 	 * Preallocate pte before we take page_lock because this might lead to
4244 	 * deadlocks for memcg reclaim which waits for pages under writeback:
4245 	 *				lock_page(A)
4246 	 *				SetPageWriteback(A)
4247 	 *				unlock_page(A)
4248 	 * lock_page(B)
4249 	 *				lock_page(B)
4250 	 * pte_alloc_one
4251 	 *   shrink_page_list
4252 	 *     wait_on_page_writeback(A)
4253 	 *				SetPageWriteback(B)
4254 	 *				unlock_page(B)
4255 	 *				# flush A, B to clear the writeback
4256 	 */
4257 	if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) {
4258 		vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
4259 		if (!vmf->prealloc_pte)
4260 			return VM_FAULT_OOM;
4261 	}
4262 
4263 	ret = vma->vm_ops->fault(vmf);
4264 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY |
4265 			    VM_FAULT_DONE_COW)))
4266 		return ret;
4267 
4268 	if (unlikely(PageHWPoison(vmf->page))) {
4269 		struct page *page = vmf->page;
4270 		vm_fault_t poisonret = VM_FAULT_HWPOISON;
4271 		if (ret & VM_FAULT_LOCKED) {
4272 			if (page_mapped(page))
4273 				unmap_mapping_pages(page_mapping(page),
4274 						    page->index, 1, false);
4275 			/* Retry if a clean page was removed from the cache. */
4276 			if (invalidate_inode_page(page))
4277 				poisonret = VM_FAULT_NOPAGE;
4278 			unlock_page(page);
4279 		}
4280 		put_page(page);
4281 		vmf->page = NULL;
4282 		return poisonret;
4283 	}
4284 
4285 	if (unlikely(!(ret & VM_FAULT_LOCKED)))
4286 		lock_page(vmf->page);
4287 	else
4288 		VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page);
4289 
4290 	return ret;
4291 }
4292 
4293 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
deposit_prealloc_pte(struct vm_fault *vmf)4294 static void deposit_prealloc_pte(struct vm_fault *vmf)
4295 {
4296 	struct vm_area_struct *vma = vmf->vma;
4297 
4298 	pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
4299 	/*
4300 	 * We are going to consume the prealloc table,
4301 	 * count that as nr_ptes.
4302 	 */
4303 	mm_inc_nr_ptes(vma->vm_mm);
4304 	vmf->prealloc_pte = NULL;
4305 }
4306 
do_set_pmd(struct vm_fault *vmf, struct page *page)4307 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
4308 {
4309 	struct vm_area_struct *vma = vmf->vma;
4310 	bool write = vmf->flags & FAULT_FLAG_WRITE;
4311 	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
4312 	pmd_t entry;
4313 	vm_fault_t ret = VM_FAULT_FALLBACK;
4314 
4315 	if (!transhuge_vma_suitable(vma, haddr))
4316 		return ret;
4317 
4318 	page = compound_head(page);
4319 	if (compound_order(page) != HPAGE_PMD_ORDER)
4320 		return ret;
4321 
4322 	/*
4323 	 * Just backoff if any subpage of a THP is corrupted otherwise
4324 	 * the corrupted page may mapped by PMD silently to escape the
4325 	 * check.  This kind of THP just can be PTE mapped.  Access to
4326 	 * the corrupted subpage should trigger SIGBUS as expected.
4327 	 */
4328 	if (unlikely(PageHasHWPoisoned(page)))
4329 		return ret;
4330 
4331 	/*
4332 	 * Archs like ppc64 need additional space to store information
4333 	 * related to pte entry. Use the preallocated table for that.
4334 	 */
4335 	if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) {
4336 		vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
4337 		if (!vmf->prealloc_pte)
4338 			return VM_FAULT_OOM;
4339 	}
4340 
4341 	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
4342 	if (unlikely(!pmd_none(*vmf->pmd)))
4343 		goto out;
4344 
4345 	flush_icache_pages(vma, page, HPAGE_PMD_NR);
4346 
4347 	entry = mk_huge_pmd(page, vma->vm_page_prot);
4348 	if (write)
4349 		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
4350 
4351 	add_mm_counter(vma->vm_mm, mm_counter_file(page), HPAGE_PMD_NR);
4352 	page_add_file_rmap(page, vma, true);
4353 
4354 	/*
4355 	 * deposit and withdraw with pmd lock held
4356 	 */
4357 	if (arch_needs_pgtable_deposit())
4358 		deposit_prealloc_pte(vmf);
4359 
4360 	set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
4361 
4362 	update_mmu_cache_pmd(vma, haddr, vmf->pmd);
4363 
4364 	/* fault is handled */
4365 	ret = 0;
4366 	count_vm_event(THP_FILE_MAPPED);
4367 out:
4368 	spin_unlock(vmf->ptl);
4369 	return ret;
4370 }
4371 #else
do_set_pmd(struct vm_fault *vmf, struct page *page)4372 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
4373 {
4374 	return VM_FAULT_FALLBACK;
4375 }
4376 #endif
4377 
4378 /**
4379  * set_pte_range - Set a range of PTEs to point to pages in a folio.
4380  * @vmf: Fault decription.
4381  * @folio: The folio that contains @page.
4382  * @page: The first page to create a PTE for.
4383  * @nr: The number of PTEs to create.
4384  * @addr: The first address to create a PTE for.
4385  */
set_pte_range(struct vm_fault *vmf, struct folio *folio, struct page *page, unsigned int nr, unsigned long addr)4386 void set_pte_range(struct vm_fault *vmf, struct folio *folio,
4387 		struct page *page, unsigned int nr, unsigned long addr)
4388 {
4389 	struct vm_area_struct *vma = vmf->vma;
4390 	bool uffd_wp = vmf_orig_pte_uffd_wp(vmf);
4391 	bool write = vmf->flags & FAULT_FLAG_WRITE;
4392 	bool prefault = in_range(vmf->address, addr, nr * PAGE_SIZE);
4393 	pte_t entry;
4394 
4395 	flush_icache_pages(vma, page, nr);
4396 	entry = mk_pte(page, vma->vm_page_prot);
4397 
4398 	if (prefault && arch_wants_old_prefaulted_pte())
4399 		entry = pte_mkold(entry);
4400 	else
4401 		entry = pte_sw_mkyoung(entry);
4402 
4403 	if (write)
4404 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
4405 	if (unlikely(uffd_wp))
4406 		entry = pte_mkuffd_wp(entry);
4407 	/* copy-on-write page */
4408 	if (write && !(vma->vm_flags & VM_SHARED)) {
4409 		add_mm_counter(vma->vm_mm, MM_ANONPAGES, nr);
4410 		VM_BUG_ON_FOLIO(nr != 1, folio);
4411 		folio_add_new_anon_rmap(folio, vma, addr);
4412 		folio_add_lru_vma(folio, vma);
4413 	} else {
4414 		add_mm_counter(vma->vm_mm, mm_counter_file(page), nr);
4415 		folio_add_file_rmap_range(folio, page, nr, vma, false);
4416 	}
4417 	set_ptes(vma->vm_mm, addr, vmf->pte, entry, nr);
4418 
4419 	/* no need to invalidate: a not-present page won't be cached */
4420 	update_mmu_cache_range(vmf, vma, addr, vmf->pte, nr);
4421 }
4422 
vmf_pte_changed(struct vm_fault *vmf)4423 static bool vmf_pte_changed(struct vm_fault *vmf)
4424 {
4425 	if (vmf->flags & FAULT_FLAG_ORIG_PTE_VALID)
4426 		return !pte_same(ptep_get(vmf->pte), vmf->orig_pte);
4427 
4428 	return !pte_none(ptep_get(vmf->pte));
4429 }
4430 
4431 /**
4432  * finish_fault - finish page fault once we have prepared the page to fault
4433  *
4434  * @vmf: structure describing the fault
4435  *
4436  * This function handles all that is needed to finish a page fault once the
4437  * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
4438  * given page, adds reverse page mapping, handles memcg charges and LRU
4439  * addition.
4440  *
4441  * The function expects the page to be locked and on success it consumes a
4442  * reference of a page being mapped (for the PTE which maps it).
4443  *
4444  * Return: %0 on success, %VM_FAULT_ code in case of error.
4445  */
finish_fault(struct vm_fault *vmf)4446 vm_fault_t finish_fault(struct vm_fault *vmf)
4447 {
4448 	struct vm_area_struct *vma = vmf->vma;
4449 	struct page *page;
4450 	vm_fault_t ret;
4451 
4452 	/* Did we COW the page? */
4453 	if ((vmf->flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
4454 		page = vmf->cow_page;
4455 	else
4456 		page = vmf->page;
4457 
4458 	/*
4459 	 * check even for read faults because we might have lost our CoWed
4460 	 * page
4461 	 */
4462 	if (!(vma->vm_flags & VM_SHARED)) {
4463 		ret = check_stable_address_space(vma->vm_mm);
4464 		if (ret)
4465 			return ret;
4466 	}
4467 
4468 	if (pmd_none(*vmf->pmd)) {
4469 		if (PageTransCompound(page)) {
4470 			ret = do_set_pmd(vmf, page);
4471 			if (ret != VM_FAULT_FALLBACK)
4472 				return ret;
4473 		}
4474 
4475 		if (vmf->prealloc_pte)
4476 			pmd_install(vma->vm_mm, vmf->pmd, &vmf->prealloc_pte);
4477 		else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd)))
4478 			return VM_FAULT_OOM;
4479 	}
4480 
4481 	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
4482 				      vmf->address, &vmf->ptl);
4483 	if (!vmf->pte)
4484 		return VM_FAULT_NOPAGE;
4485 
4486 	/* Re-check under ptl */
4487 	if (likely(!vmf_pte_changed(vmf))) {
4488 		struct folio *folio = page_folio(page);
4489 
4490 		set_pte_range(vmf, folio, page, 1, vmf->address);
4491 		ret = 0;
4492 	} else {
4493 		update_mmu_tlb(vma, vmf->address, vmf->pte);
4494 		ret = VM_FAULT_NOPAGE;
4495 	}
4496 
4497 	pte_unmap_unlock(vmf->pte, vmf->ptl);
4498 	return ret;
4499 }
4500 
4501 static unsigned long fault_around_pages __read_mostly =
4502 	65536 >> PAGE_SHIFT;
4503 
4504 #ifdef CONFIG_DEBUG_FS
fault_around_bytes_get(void *data, u64 *val)4505 static int fault_around_bytes_get(void *data, u64 *val)
4506 {
4507 	*val = fault_around_pages << PAGE_SHIFT;
4508 	return 0;
4509 }
4510 
4511 /*
4512  * fault_around_bytes must be rounded down to the nearest page order as it's
4513  * what do_fault_around() expects to see.
4514  */
fault_around_bytes_set(void *data, u64 val)4515 static int fault_around_bytes_set(void *data, u64 val)
4516 {
4517 	if (val / PAGE_SIZE > PTRS_PER_PTE)
4518 		return -EINVAL;
4519 
4520 	/*
4521 	 * The minimum value is 1 page, however this results in no fault-around
4522 	 * at all. See should_fault_around().
4523 	 */
4524 	fault_around_pages = max(rounddown_pow_of_two(val) >> PAGE_SHIFT, 1UL);
4525 
4526 	return 0;
4527 }
4528 DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops,
4529 		fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
4530 
fault_around_debugfs(void)4531 static int __init fault_around_debugfs(void)
4532 {
4533 	debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL,
4534 				   &fault_around_bytes_fops);
4535 	return 0;
4536 }
4537 late_initcall(fault_around_debugfs);
4538 #endif
4539 
4540 /*
4541  * do_fault_around() tries to map few pages around the fault address. The hope
4542  * is that the pages will be needed soon and this will lower the number of
4543  * faults to handle.
4544  *
4545  * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
4546  * not ready to be mapped: not up-to-date, locked, etc.
4547  *
4548  * This function doesn't cross VMA or page table boundaries, in order to call
4549  * map_pages() and acquire a PTE lock only once.
4550  *
4551  * fault_around_pages defines how many pages we'll try to map.
4552  * do_fault_around() expects it to be set to a power of two less than or equal
4553  * to PTRS_PER_PTE.
4554  *
4555  * The virtual address of the area that we map is naturally aligned to
4556  * fault_around_pages * PAGE_SIZE rounded down to the machine page size
4557  * (and therefore to page order).  This way it's easier to guarantee
4558  * that we don't cross page table boundaries.
4559  */
do_fault_around(struct vm_fault *vmf)4560 static vm_fault_t do_fault_around(struct vm_fault *vmf)
4561 {
4562 	pgoff_t nr_pages = READ_ONCE(fault_around_pages);
4563 	pgoff_t pte_off = pte_index(vmf->address);
4564 	/* The page offset of vmf->address within the VMA. */
4565 	pgoff_t vma_off = vmf->pgoff - vmf->vma->vm_pgoff;
4566 	pgoff_t from_pte, to_pte;
4567 	vm_fault_t ret;
4568 
4569 	/* The PTE offset of the start address, clamped to the VMA. */
4570 	from_pte = max(ALIGN_DOWN(pte_off, nr_pages),
4571 		       pte_off - min(pte_off, vma_off));
4572 
4573 	/* The PTE offset of the end address, clamped to the VMA and PTE. */
4574 	to_pte = min3(from_pte + nr_pages, (pgoff_t)PTRS_PER_PTE,
4575 		      pte_off + vma_pages(vmf->vma) - vma_off) - 1;
4576 
4577 	if (pmd_none(*vmf->pmd)) {
4578 		vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
4579 		if (!vmf->prealloc_pte)
4580 			return VM_FAULT_OOM;
4581 	}
4582 
4583 	rcu_read_lock();
4584 	ret = vmf->vma->vm_ops->map_pages(vmf,
4585 			vmf->pgoff + from_pte - pte_off,
4586 			vmf->pgoff + to_pte - pte_off);
4587 	rcu_read_unlock();
4588 
4589 	return ret;
4590 }
4591 
4592 /* Return true if we should do read fault-around, false otherwise */
should_fault_around(struct vm_fault *vmf)4593 static inline bool should_fault_around(struct vm_fault *vmf)
4594 {
4595 	/* No ->map_pages?  No way to fault around... */
4596 	if (!vmf->vma->vm_ops->map_pages)
4597 		return false;
4598 
4599 	if (uffd_disable_fault_around(vmf->vma))
4600 		return false;
4601 
4602 	/* A single page implies no faulting 'around' at all. */
4603 	return fault_around_pages > 1;
4604 }
4605 
do_read_fault(struct vm_fault *vmf)4606 static vm_fault_t do_read_fault(struct vm_fault *vmf)
4607 {
4608 	vm_fault_t ret = 0;
4609 	struct folio *folio;
4610 
4611 	/*
4612 	 * Let's call ->map_pages() first and use ->fault() as fallback
4613 	 * if page by the offset is not ready to be mapped (cold cache or
4614 	 * something).
4615 	 */
4616 	if (should_fault_around(vmf)) {
4617 		ret = do_fault_around(vmf);
4618 		if (ret)
4619 			return ret;
4620 	}
4621 
4622 	if (vmf->flags & FAULT_FLAG_VMA_LOCK) {
4623 		vma_end_read(vmf->vma);
4624 		return VM_FAULT_RETRY;
4625 	}
4626 
4627 	ret = __do_fault(vmf);
4628 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4629 		return ret;
4630 
4631 	ret |= finish_fault(vmf);
4632 	folio = page_folio(vmf->page);
4633 	folio_unlock(folio);
4634 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4635 		folio_put(folio);
4636 	return ret;
4637 }
4638 
do_cow_fault(struct vm_fault *vmf)4639 static vm_fault_t do_cow_fault(struct vm_fault *vmf)
4640 {
4641 	struct vm_area_struct *vma = vmf->vma;
4642 	vm_fault_t ret;
4643 
4644 	if (vmf->flags & FAULT_FLAG_VMA_LOCK) {
4645 		vma_end_read(vma);
4646 		return VM_FAULT_RETRY;
4647 	}
4648 
4649 	if (unlikely(anon_vma_prepare(vma)))
4650 		return VM_FAULT_OOM;
4651 
4652 	vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address);
4653 	if (!vmf->cow_page)
4654 		return VM_FAULT_OOM;
4655 
4656 	if (mem_cgroup_charge(page_folio(vmf->cow_page), vma->vm_mm,
4657 				GFP_KERNEL)) {
4658 		put_page(vmf->cow_page);
4659 		return VM_FAULT_OOM;
4660 	}
4661 	folio_throttle_swaprate(page_folio(vmf->cow_page), GFP_KERNEL);
4662 
4663 	ret = __do_fault(vmf);
4664 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4665 		goto uncharge_out;
4666 	if (ret & VM_FAULT_DONE_COW)
4667 		return ret;
4668 
4669 	copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma);
4670 	__SetPageUptodate(vmf->cow_page);
4671 
4672 	ret |= finish_fault(vmf);
4673 	unlock_page(vmf->page);
4674 	put_page(vmf->page);
4675 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4676 		goto uncharge_out;
4677 	return ret;
4678 uncharge_out:
4679 	put_page(vmf->cow_page);
4680 	return ret;
4681 }
4682 
do_shared_fault(struct vm_fault *vmf)4683 static vm_fault_t do_shared_fault(struct vm_fault *vmf)
4684 {
4685 	struct vm_area_struct *vma = vmf->vma;
4686 	vm_fault_t ret, tmp;
4687 	struct folio *folio;
4688 
4689 	if (vmf->flags & FAULT_FLAG_VMA_LOCK) {
4690 		vma_end_read(vma);
4691 		return VM_FAULT_RETRY;
4692 	}
4693 
4694 	ret = __do_fault(vmf);
4695 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4696 		return ret;
4697 
4698 	folio = page_folio(vmf->page);
4699 
4700 	/*
4701 	 * Check if the backing address space wants to know that the page is
4702 	 * about to become writable
4703 	 */
4704 	if (vma->vm_ops->page_mkwrite) {
4705 		folio_unlock(folio);
4706 		tmp = do_page_mkwrite(vmf, folio);
4707 		if (unlikely(!tmp ||
4708 				(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
4709 			folio_put(folio);
4710 			return tmp;
4711 		}
4712 	}
4713 
4714 	ret |= finish_fault(vmf);
4715 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
4716 					VM_FAULT_RETRY))) {
4717 		folio_unlock(folio);
4718 		folio_put(folio);
4719 		return ret;
4720 	}
4721 
4722 	ret |= fault_dirty_shared_page(vmf);
4723 	return ret;
4724 }
4725 
4726 /*
4727  * We enter with non-exclusive mmap_lock (to exclude vma changes,
4728  * but allow concurrent faults).
4729  * The mmap_lock may have been released depending on flags and our
4730  * return value.  See filemap_fault() and __folio_lock_or_retry().
4731  * If mmap_lock is released, vma may become invalid (for example
4732  * by other thread calling munmap()).
4733  */
do_fault(struct vm_fault *vmf)4734 static vm_fault_t do_fault(struct vm_fault *vmf)
4735 {
4736 	struct vm_area_struct *vma = vmf->vma;
4737 	struct mm_struct *vm_mm = vma->vm_mm;
4738 	vm_fault_t ret;
4739 
4740 	/*
4741 	 * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND
4742 	 */
4743 	if (!vma->vm_ops->fault) {
4744 		vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd,
4745 					       vmf->address, &vmf->ptl);
4746 		if (unlikely(!vmf->pte))
4747 			ret = VM_FAULT_SIGBUS;
4748 		else {
4749 			/*
4750 			 * Make sure this is not a temporary clearing of pte
4751 			 * by holding ptl and checking again. A R/M/W update
4752 			 * of pte involves: take ptl, clearing the pte so that
4753 			 * we don't have concurrent modification by hardware
4754 			 * followed by an update.
4755 			 */
4756 			if (unlikely(pte_none(ptep_get(vmf->pte))))
4757 				ret = VM_FAULT_SIGBUS;
4758 			else
4759 				ret = VM_FAULT_NOPAGE;
4760 
4761 			pte_unmap_unlock(vmf->pte, vmf->ptl);
4762 		}
4763 	} else if (!(vmf->flags & FAULT_FLAG_WRITE))
4764 		ret = do_read_fault(vmf);
4765 	else if (!(vma->vm_flags & VM_SHARED))
4766 		ret = do_cow_fault(vmf);
4767 	else
4768 		ret = do_shared_fault(vmf);
4769 
4770 	/* preallocated pagetable is unused: free it */
4771 	if (vmf->prealloc_pte) {
4772 		pte_free(vm_mm, vmf->prealloc_pte);
4773 		vmf->prealloc_pte = NULL;
4774 	}
4775 	return ret;
4776 }
4777 
numa_migrate_prep(struct page *page, struct vm_area_struct *vma, unsigned long addr, int page_nid, int *flags)4778 int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
4779 		      unsigned long addr, int page_nid, int *flags)
4780 {
4781 	get_page(page);
4782 
4783 	/* Record the current PID acceesing VMA */
4784 	vma_set_access_pid_bit(vma);
4785 
4786 	count_vm_numa_event(NUMA_HINT_FAULTS);
4787 	if (page_nid == numa_node_id()) {
4788 		count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
4789 		*flags |= TNF_FAULT_LOCAL;
4790 	}
4791 
4792 	return mpol_misplaced(page, vma, addr);
4793 }
4794 
do_numa_page(struct vm_fault *vmf)4795 static vm_fault_t do_numa_page(struct vm_fault *vmf)
4796 {
4797 	struct vm_area_struct *vma = vmf->vma;
4798 	struct page *page = NULL;
4799 	int page_nid = NUMA_NO_NODE;
4800 	bool writable = false;
4801 	int last_cpupid;
4802 	int target_nid;
4803 	pte_t pte, old_pte;
4804 	int flags = 0;
4805 
4806 	/*
4807 	 * The "pte" at this point cannot be used safely without
4808 	 * validation through pte_unmap_same(). It's of NUMA type but
4809 	 * the pfn may be screwed if the read is non atomic.
4810 	 */
4811 	spin_lock(vmf->ptl);
4812 	if (unlikely(!pte_same(ptep_get(vmf->pte), vmf->orig_pte))) {
4813 		pte_unmap_unlock(vmf->pte, vmf->ptl);
4814 		goto out;
4815 	}
4816 
4817 	/* Get the normal PTE  */
4818 	old_pte = ptep_get(vmf->pte);
4819 	pte = pte_modify(old_pte, vma->vm_page_prot);
4820 
4821 	/*
4822 	 * Detect now whether the PTE could be writable; this information
4823 	 * is only valid while holding the PT lock.
4824 	 */
4825 	writable = pte_write(pte);
4826 	if (!writable && vma_wants_manual_pte_write_upgrade(vma) &&
4827 	    can_change_pte_writable(vma, vmf->address, pte))
4828 		writable = true;
4829 
4830 	page = vm_normal_page(vma, vmf->address, pte);
4831 	if (!page || is_zone_device_page(page))
4832 		goto out_map;
4833 
4834 	/* TODO: handle PTE-mapped THP */
4835 	if (PageCompound(page))
4836 		goto out_map;
4837 
4838 	/*
4839 	 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
4840 	 * much anyway since they can be in shared cache state. This misses
4841 	 * the case where a mapping is writable but the process never writes
4842 	 * to it but pte_write gets cleared during protection updates and
4843 	 * pte_dirty has unpredictable behaviour between PTE scan updates,
4844 	 * background writeback, dirty balancing and application behaviour.
4845 	 */
4846 	if (!writable)
4847 		flags |= TNF_NO_GROUP;
4848 
4849 	/*
4850 	 * Flag if the page is shared between multiple address spaces. This
4851 	 * is later used when determining whether to group tasks together
4852 	 */
4853 	if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
4854 		flags |= TNF_SHARED;
4855 
4856 	page_nid = page_to_nid(page);
4857 	/*
4858 	 * For memory tiering mode, cpupid of slow memory page is used
4859 	 * to record page access time.  So use default value.
4860 	 */
4861 	if ((sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) &&
4862 	    !node_is_toptier(page_nid))
4863 		last_cpupid = (-1 & LAST_CPUPID_MASK);
4864 	else
4865 		last_cpupid = page_cpupid_last(page);
4866 	target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid,
4867 			&flags);
4868 	if (target_nid == NUMA_NO_NODE) {
4869 		put_page(page);
4870 		goto out_map;
4871 	}
4872 	pte_unmap_unlock(vmf->pte, vmf->ptl);
4873 	writable = false;
4874 
4875 	/* Migrate to the requested node */
4876 	if (migrate_misplaced_page(page, vma, target_nid)) {
4877 		page_nid = target_nid;
4878 		flags |= TNF_MIGRATED;
4879 	} else {
4880 		flags |= TNF_MIGRATE_FAIL;
4881 		vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
4882 					       vmf->address, &vmf->ptl);
4883 		if (unlikely(!vmf->pte))
4884 			goto out;
4885 		if (unlikely(!pte_same(ptep_get(vmf->pte), vmf->orig_pte))) {
4886 			pte_unmap_unlock(vmf->pte, vmf->ptl);
4887 			goto out;
4888 		}
4889 		goto out_map;
4890 	}
4891 
4892 out:
4893 	if (page_nid != NUMA_NO_NODE)
4894 		task_numa_fault(last_cpupid, page_nid, 1, flags);
4895 	return 0;
4896 out_map:
4897 	/*
4898 	 * Make it present again, depending on how arch implements
4899 	 * non-accessible ptes, some can allow access by kernel mode.
4900 	 */
4901 	old_pte = ptep_modify_prot_start(vma, vmf->address, vmf->pte);
4902 	pte = pte_modify(old_pte, vma->vm_page_prot);
4903 	pte = pte_mkyoung(pte);
4904 	if (writable)
4905 		pte = pte_mkwrite(pte, vma);
4906 	ptep_modify_prot_commit(vma, vmf->address, vmf->pte, old_pte, pte);
4907 	update_mmu_cache_range(vmf, vma, vmf->address, vmf->pte, 1);
4908 	pte_unmap_unlock(vmf->pte, vmf->ptl);
4909 	goto out;
4910 }
4911 
create_huge_pmd(struct vm_fault *vmf)4912 static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf)
4913 {
4914 	struct vm_area_struct *vma = vmf->vma;
4915 	if (vma_is_anonymous(vma))
4916 		return do_huge_pmd_anonymous_page(vmf);
4917 	if (vma->vm_ops->huge_fault)
4918 		return vma->vm_ops->huge_fault(vmf, PMD_ORDER);
4919 	return VM_FAULT_FALLBACK;
4920 }
4921 
4922 /* `inline' is required to avoid gcc 4.1.2 build error */
wp_huge_pmd(struct vm_fault *vmf)4923 static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf)
4924 {
4925 	struct vm_area_struct *vma = vmf->vma;
4926 	const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
4927 	vm_fault_t ret;
4928 
4929 	if (vma_is_anonymous(vma)) {
4930 		if (likely(!unshare) &&
4931 		    userfaultfd_huge_pmd_wp(vma, vmf->orig_pmd))
4932 			return handle_userfault(vmf, VM_UFFD_WP);
4933 		return do_huge_pmd_wp_page(vmf);
4934 	}
4935 
4936 	if (vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) {
4937 		if (vma->vm_ops->huge_fault) {
4938 			ret = vma->vm_ops->huge_fault(vmf, PMD_ORDER);
4939 			if (!(ret & VM_FAULT_FALLBACK))
4940 				return ret;
4941 		}
4942 	}
4943 
4944 	/* COW or write-notify handled on pte level: split pmd. */
4945 	__split_huge_pmd(vma, vmf->pmd, vmf->address, false, NULL);
4946 
4947 	return VM_FAULT_FALLBACK;
4948 }
4949 
create_huge_pud(struct vm_fault *vmf)4950 static vm_fault_t create_huge_pud(struct vm_fault *vmf)
4951 {
4952 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) &&			\
4953 	defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
4954 	struct vm_area_struct *vma = vmf->vma;
4955 	/* No support for anonymous transparent PUD pages yet */
4956 	if (vma_is_anonymous(vma))
4957 		return VM_FAULT_FALLBACK;
4958 	if (vma->vm_ops->huge_fault)
4959 		return vma->vm_ops->huge_fault(vmf, PUD_ORDER);
4960 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
4961 	return VM_FAULT_FALLBACK;
4962 }
4963 
wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud)4964 static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud)
4965 {
4966 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) &&			\
4967 	defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
4968 	struct vm_area_struct *vma = vmf->vma;
4969 	vm_fault_t ret;
4970 
4971 	/* No support for anonymous transparent PUD pages yet */
4972 	if (vma_is_anonymous(vma))
4973 		goto split;
4974 	if (vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) {
4975 		if (vma->vm_ops->huge_fault) {
4976 			ret = vma->vm_ops->huge_fault(vmf, PUD_ORDER);
4977 			if (!(ret & VM_FAULT_FALLBACK))
4978 				return ret;
4979 		}
4980 	}
4981 split:
4982 	/* COW or write-notify not handled on PUD level: split pud.*/
4983 	__split_huge_pud(vma, vmf->pud, vmf->address);
4984 #endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
4985 	return VM_FAULT_FALLBACK;
4986 }
4987 
4988 /*
4989  * These routines also need to handle stuff like marking pages dirty
4990  * and/or accessed for architectures that don't do it in hardware (most
4991  * RISC architectures).  The early dirtying is also good on the i386.
4992  *
4993  * There is also a hook called "update_mmu_cache()" that architectures
4994  * with external mmu caches can use to update those (ie the Sparc or
4995  * PowerPC hashed page tables that act as extended TLBs).
4996  *
4997  * We enter with non-exclusive mmap_lock (to exclude vma changes, but allow
4998  * concurrent faults).
4999  *
5000  * The mmap_lock may have been released depending on flags and our return value.
5001  * See filemap_fault() and __folio_lock_or_retry().
5002  */
handle_pte_fault(struct vm_fault *vmf)5003 static vm_fault_t handle_pte_fault(struct vm_fault *vmf)
5004 {
5005 	pte_t entry;
5006 
5007 	if (unlikely(pmd_none(*vmf->pmd))) {
5008 		/*
5009 		 * Leave __pte_alloc() until later: because vm_ops->fault may
5010 		 * want to allocate huge page, and if we expose page table
5011 		 * for an instant, it will be difficult to retract from
5012 		 * concurrent faults and from rmap lookups.
5013 		 */
5014 		vmf->pte = NULL;
5015 		vmf->flags &= ~FAULT_FLAG_ORIG_PTE_VALID;
5016 	} else {
5017 		/*
5018 		 * A regular pmd is established and it can't morph into a huge
5019 		 * pmd by anon khugepaged, since that takes mmap_lock in write
5020 		 * mode; but shmem or file collapse to THP could still morph
5021 		 * it into a huge pmd: just retry later if so.
5022 		 */
5023 		vmf->pte = pte_offset_map_nolock(vmf->vma->vm_mm, vmf->pmd,
5024 						 vmf->address, &vmf->ptl);
5025 		if (unlikely(!vmf->pte))
5026 			return 0;
5027 		vmf->orig_pte = ptep_get_lockless(vmf->pte);
5028 		vmf->flags |= FAULT_FLAG_ORIG_PTE_VALID;
5029 
5030 		if (pte_none(vmf->orig_pte)) {
5031 			pte_unmap(vmf->pte);
5032 			vmf->pte = NULL;
5033 		}
5034 	}
5035 
5036 	if (!vmf->pte)
5037 		return do_pte_missing(vmf);
5038 
5039 	if (!pte_present(vmf->orig_pte))
5040 		return do_swap_page(vmf);
5041 
5042 	if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma))
5043 		return do_numa_page(vmf);
5044 
5045 	spin_lock(vmf->ptl);
5046 	entry = vmf->orig_pte;
5047 	if (unlikely(!pte_same(ptep_get(vmf->pte), entry))) {
5048 		update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
5049 		goto unlock;
5050 	}
5051 	if (vmf->flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) {
5052 		if (!pte_write(entry))
5053 			return do_wp_page(vmf);
5054 		else if (likely(vmf->flags & FAULT_FLAG_WRITE))
5055 			entry = pte_mkdirty(entry);
5056 	}
5057 	entry = pte_mkyoung(entry);
5058 	if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry,
5059 				vmf->flags & FAULT_FLAG_WRITE)) {
5060 		update_mmu_cache_range(vmf, vmf->vma, vmf->address,
5061 				vmf->pte, 1);
5062 	} else {
5063 		/* Skip spurious TLB flush for retried page fault */
5064 		if (vmf->flags & FAULT_FLAG_TRIED)
5065 			goto unlock;
5066 		/*
5067 		 * This is needed only for protection faults but the arch code
5068 		 * is not yet telling us if this is a protection fault or not.
5069 		 * This still avoids useless tlb flushes for .text page faults
5070 		 * with threads.
5071 		 */
5072 		if (vmf->flags & FAULT_FLAG_WRITE)
5073 			flush_tlb_fix_spurious_fault(vmf->vma, vmf->address,
5074 						     vmf->pte);
5075 	}
5076 unlock:
5077 	pte_unmap_unlock(vmf->pte, vmf->ptl);
5078 	return 0;
5079 }
5080 
5081 /*
5082  * On entry, we hold either the VMA lock or the mmap_lock
5083  * (FAULT_FLAG_VMA_LOCK tells you which).  If VM_FAULT_RETRY is set in
5084  * the result, the mmap_lock is not held on exit.  See filemap_fault()
5085  * and __folio_lock_or_retry().
5086  */
__handle_mm_fault(struct vm_area_struct *vma, unsigned long address, unsigned int flags)5087 static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma,
5088 		unsigned long address, unsigned int flags)
5089 {
5090 	struct vm_fault vmf = {
5091 		.vma = vma,
5092 		.address = address & PAGE_MASK,
5093 		.real_address = address,
5094 		.flags = flags,
5095 		.pgoff = linear_page_index(vma, address),
5096 		.gfp_mask = __get_fault_gfp_mask(vma),
5097 	};
5098 	struct mm_struct *mm = vma->vm_mm;
5099 	unsigned long vm_flags = vma->vm_flags;
5100 	pgd_t *pgd;
5101 	p4d_t *p4d;
5102 	vm_fault_t ret;
5103 
5104 	pgd = pgd_offset(mm, address);
5105 	p4d = p4d_alloc(mm, pgd, address);
5106 	if (!p4d)
5107 		return VM_FAULT_OOM;
5108 
5109 	vmf.pud = pud_alloc(mm, p4d, address);
5110 	if (!vmf.pud)
5111 		return VM_FAULT_OOM;
5112 retry_pud:
5113 	if (pud_none(*vmf.pud) &&
5114 	    hugepage_vma_check(vma, vm_flags, false, true, true)) {
5115 		ret = create_huge_pud(&vmf);
5116 		if (!(ret & VM_FAULT_FALLBACK))
5117 			return ret;
5118 	} else {
5119 		pud_t orig_pud = *vmf.pud;
5120 
5121 		barrier();
5122 		if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) {
5123 
5124 			/*
5125 			 * TODO once we support anonymous PUDs: NUMA case and
5126 			 * FAULT_FLAG_UNSHARE handling.
5127 			 */
5128 			if ((flags & FAULT_FLAG_WRITE) && !pud_write(orig_pud)) {
5129 				ret = wp_huge_pud(&vmf, orig_pud);
5130 				if (!(ret & VM_FAULT_FALLBACK))
5131 					return ret;
5132 			} else {
5133 				huge_pud_set_accessed(&vmf, orig_pud);
5134 				return 0;
5135 			}
5136 		}
5137 	}
5138 
5139 	vmf.pmd = pmd_alloc(mm, vmf.pud, address);
5140 	if (!vmf.pmd)
5141 		return VM_FAULT_OOM;
5142 
5143 	/* Huge pud page fault raced with pmd_alloc? */
5144 	if (pud_trans_unstable(vmf.pud))
5145 		goto retry_pud;
5146 
5147 	if (pmd_none(*vmf.pmd) &&
5148 	    hugepage_vma_check(vma, vm_flags, false, true, true)) {
5149 		ret = create_huge_pmd(&vmf);
5150 		if (!(ret & VM_FAULT_FALLBACK))
5151 			return ret;
5152 	} else {
5153 		vmf.orig_pmd = pmdp_get_lockless(vmf.pmd);
5154 
5155 		if (unlikely(is_swap_pmd(vmf.orig_pmd))) {
5156 			VM_BUG_ON(thp_migration_supported() &&
5157 					  !is_pmd_migration_entry(vmf.orig_pmd));
5158 			if (is_pmd_migration_entry(vmf.orig_pmd))
5159 				pmd_migration_entry_wait(mm, vmf.pmd);
5160 			return 0;
5161 		}
5162 		if (pmd_trans_huge(vmf.orig_pmd) || pmd_devmap(vmf.orig_pmd)) {
5163 			if (pmd_protnone(vmf.orig_pmd) && vma_is_accessible(vma))
5164 				return do_huge_pmd_numa_page(&vmf);
5165 
5166 			if ((flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) &&
5167 			    !pmd_write(vmf.orig_pmd)) {
5168 				ret = wp_huge_pmd(&vmf);
5169 				if (!(ret & VM_FAULT_FALLBACK))
5170 					return ret;
5171 			} else {
5172 				huge_pmd_set_accessed(&vmf);
5173 				return 0;
5174 			}
5175 		}
5176 	}
5177 
5178 	return handle_pte_fault(&vmf);
5179 }
5180 
5181 /**
5182  * mm_account_fault - Do page fault accounting
5183  * @mm: mm from which memcg should be extracted. It can be NULL.
5184  * @regs: the pt_regs struct pointer.  When set to NULL, will skip accounting
5185  *        of perf event counters, but we'll still do the per-task accounting to
5186  *        the task who triggered this page fault.
5187  * @address: the faulted address.
5188  * @flags: the fault flags.
5189  * @ret: the fault retcode.
5190  *
5191  * This will take care of most of the page fault accounting.  Meanwhile, it
5192  * will also include the PERF_COUNT_SW_PAGE_FAULTS_[MAJ|MIN] perf counter
5193  * updates.  However, note that the handling of PERF_COUNT_SW_PAGE_FAULTS should
5194  * still be in per-arch page fault handlers at the entry of page fault.
5195  */
mm_account_fault(struct mm_struct *mm, struct pt_regs *regs, unsigned long address, unsigned int flags, vm_fault_t ret)5196 static inline void mm_account_fault(struct mm_struct *mm, struct pt_regs *regs,
5197 				    unsigned long address, unsigned int flags,
5198 				    vm_fault_t ret)
5199 {
5200 	bool major;
5201 
5202 	/* Incomplete faults will be accounted upon completion. */
5203 	if (ret & VM_FAULT_RETRY)
5204 		return;
5205 
5206 	/*
5207 	 * To preserve the behavior of older kernels, PGFAULT counters record
5208 	 * both successful and failed faults, as opposed to perf counters,
5209 	 * which ignore failed cases.
5210 	 */
5211 	count_vm_event(PGFAULT);
5212 	count_memcg_event_mm(mm, PGFAULT);
5213 
5214 	/*
5215 	 * Do not account for unsuccessful faults (e.g. when the address wasn't
5216 	 * valid).  That includes arch_vma_access_permitted() failing before
5217 	 * reaching here. So this is not a "this many hardware page faults"
5218 	 * counter.  We should use the hw profiling for that.
5219 	 */
5220 	if (ret & VM_FAULT_ERROR)
5221 		return;
5222 
5223 	/*
5224 	 * We define the fault as a major fault when the final successful fault
5225 	 * is VM_FAULT_MAJOR, or if it retried (which implies that we couldn't
5226 	 * handle it immediately previously).
5227 	 */
5228 	major = (ret & VM_FAULT_MAJOR) || (flags & FAULT_FLAG_TRIED);
5229 
5230 	if (major)
5231 		current->maj_flt++;
5232 	else
5233 		current->min_flt++;
5234 
5235 	/*
5236 	 * If the fault is done for GUP, regs will be NULL.  We only do the
5237 	 * accounting for the per thread fault counters who triggered the
5238 	 * fault, and we skip the perf event updates.
5239 	 */
5240 	if (!regs)
5241 		return;
5242 
5243 	if (major)
5244 		perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address);
5245 	else
5246 		perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address);
5247 }
5248 
5249 #ifdef CONFIG_LRU_GEN
lru_gen_enter_fault(struct vm_area_struct *vma)5250 static void lru_gen_enter_fault(struct vm_area_struct *vma)
5251 {
5252 	/* the LRU algorithm only applies to accesses with recency */
5253 	current->in_lru_fault = vma_has_recency(vma);
5254 }
5255 
lru_gen_exit_fault(void)5256 static void lru_gen_exit_fault(void)
5257 {
5258 	current->in_lru_fault = false;
5259 }
5260 #else
lru_gen_enter_fault(struct vm_area_struct *vma)5261 static void lru_gen_enter_fault(struct vm_area_struct *vma)
5262 {
5263 }
5264 
lru_gen_exit_fault(void)5265 static void lru_gen_exit_fault(void)
5266 {
5267 }
5268 #endif /* CONFIG_LRU_GEN */
5269 
sanitize_fault_flags(struct vm_area_struct *vma, unsigned int *flags)5270 static vm_fault_t sanitize_fault_flags(struct vm_area_struct *vma,
5271 				       unsigned int *flags)
5272 {
5273 	if (unlikely(*flags & FAULT_FLAG_UNSHARE)) {
5274 		if (WARN_ON_ONCE(*flags & FAULT_FLAG_WRITE))
5275 			return VM_FAULT_SIGSEGV;
5276 		/*
5277 		 * FAULT_FLAG_UNSHARE only applies to COW mappings. Let's
5278 		 * just treat it like an ordinary read-fault otherwise.
5279 		 */
5280 		if (!is_cow_mapping(vma->vm_flags))
5281 			*flags &= ~FAULT_FLAG_UNSHARE;
5282 	} else if (*flags & FAULT_FLAG_WRITE) {
5283 		/* Write faults on read-only mappings are impossible ... */
5284 		if (WARN_ON_ONCE(!(vma->vm_flags & VM_MAYWRITE)))
5285 			return VM_FAULT_SIGSEGV;
5286 		/* ... and FOLL_FORCE only applies to COW mappings. */
5287 		if (WARN_ON_ONCE(!(vma->vm_flags & VM_WRITE) &&
5288 				 !is_cow_mapping(vma->vm_flags)))
5289 			return VM_FAULT_SIGSEGV;
5290 	}
5291 #ifdef CONFIG_PER_VMA_LOCK
5292 	/*
5293 	 * Per-VMA locks can't be used with FAULT_FLAG_RETRY_NOWAIT because of
5294 	 * the assumption that lock is dropped on VM_FAULT_RETRY.
5295 	 */
5296 	if (WARN_ON_ONCE((*flags &
5297 			(FAULT_FLAG_VMA_LOCK | FAULT_FLAG_RETRY_NOWAIT)) ==
5298 			(FAULT_FLAG_VMA_LOCK | FAULT_FLAG_RETRY_NOWAIT)))
5299 		return VM_FAULT_SIGSEGV;
5300 #endif
5301 
5302 	return 0;
5303 }
5304 
5305 /*
5306  * By the time we get here, we already hold the mm semaphore
5307  *
5308  * The mmap_lock may have been released depending on flags and our
5309  * return value.  See filemap_fault() and __folio_lock_or_retry().
5310  */
handle_mm_fault(struct vm_area_struct *vma, unsigned long address, unsigned int flags, struct pt_regs *regs)5311 vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
5312 			   unsigned int flags, struct pt_regs *regs)
5313 {
5314 	/* If the fault handler drops the mmap_lock, vma may be freed */
5315 	struct mm_struct *mm = vma->vm_mm;
5316 	vm_fault_t ret;
5317 
5318 	__set_current_state(TASK_RUNNING);
5319 
5320 	ret = sanitize_fault_flags(vma, &flags);
5321 	if (ret)
5322 		goto out;
5323 
5324 	if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
5325 					    flags & FAULT_FLAG_INSTRUCTION,
5326 					    flags & FAULT_FLAG_REMOTE)) {
5327 		ret = VM_FAULT_SIGSEGV;
5328 		goto out;
5329 	}
5330 
5331 	/*
5332 	 * Enable the memcg OOM handling for faults triggered in user
5333 	 * space.  Kernel faults are handled more gracefully.
5334 	 */
5335 	if (flags & FAULT_FLAG_USER)
5336 		mem_cgroup_enter_user_fault();
5337 
5338 	lru_gen_enter_fault(vma);
5339 
5340 	if (unlikely(is_vm_hugetlb_page(vma)))
5341 		ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
5342 	else
5343 		ret = __handle_mm_fault(vma, address, flags);
5344 
5345 	lru_gen_exit_fault();
5346 
5347 	if (flags & FAULT_FLAG_USER) {
5348 		mem_cgroup_exit_user_fault();
5349 		/*
5350 		 * The task may have entered a memcg OOM situation but
5351 		 * if the allocation error was handled gracefully (no
5352 		 * VM_FAULT_OOM), there is no need to kill anything.
5353 		 * Just clean up the OOM state peacefully.
5354 		 */
5355 		if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
5356 			mem_cgroup_oom_synchronize(false);
5357 	}
5358 out:
5359 	mm_account_fault(mm, regs, address, flags, ret);
5360 
5361 	return ret;
5362 }
5363 EXPORT_SYMBOL_GPL(handle_mm_fault);
5364 
5365 #ifdef CONFIG_LOCK_MM_AND_FIND_VMA
5366 #include <linux/extable.h>
5367 
get_mmap_lock_carefully(struct mm_struct *mm, struct pt_regs *regs)5368 static inline bool get_mmap_lock_carefully(struct mm_struct *mm, struct pt_regs *regs)
5369 {
5370 	if (likely(mmap_read_trylock(mm)))
5371 		return true;
5372 
5373 	if (regs && !user_mode(regs)) {
5374 		unsigned long ip = exception_ip(regs);
5375 		if (!search_exception_tables(ip))
5376 			return false;
5377 	}
5378 
5379 	return !mmap_read_lock_killable(mm);
5380 }
5381 
mmap_upgrade_trylock(struct mm_struct *mm)5382 static inline bool mmap_upgrade_trylock(struct mm_struct *mm)
5383 {
5384 	/*
5385 	 * We don't have this operation yet.
5386 	 *
5387 	 * It should be easy enough to do: it's basically a
5388 	 *    atomic_long_try_cmpxchg_acquire()
5389 	 * from RWSEM_READER_BIAS -> RWSEM_WRITER_LOCKED, but
5390 	 * it also needs the proper lockdep magic etc.
5391 	 */
5392 	return false;
5393 }
5394 
upgrade_mmap_lock_carefully(struct mm_struct *mm, struct pt_regs *regs)5395 static inline bool upgrade_mmap_lock_carefully(struct mm_struct *mm, struct pt_regs *regs)
5396 {
5397 	mmap_read_unlock(mm);
5398 	if (regs && !user_mode(regs)) {
5399 		unsigned long ip = exception_ip(regs);
5400 		if (!search_exception_tables(ip))
5401 			return false;
5402 	}
5403 	return !mmap_write_lock_killable(mm);
5404 }
5405 
5406 /*
5407  * Helper for page fault handling.
5408  *
5409  * This is kind of equivalend to "mmap_read_lock()" followed
5410  * by "find_extend_vma()", except it's a lot more careful about
5411  * the locking (and will drop the lock on failure).
5412  *
5413  * For example, if we have a kernel bug that causes a page
5414  * fault, we don't want to just use mmap_read_lock() to get
5415  * the mm lock, because that would deadlock if the bug were
5416  * to happen while we're holding the mm lock for writing.
5417  *
5418  * So this checks the exception tables on kernel faults in
5419  * order to only do this all for instructions that are actually
5420  * expected to fault.
5421  *
5422  * We can also actually take the mm lock for writing if we
5423  * need to extend the vma, which helps the VM layer a lot.
5424  */
lock_mm_and_find_vma(struct mm_struct *mm, unsigned long addr, struct pt_regs *regs)5425 struct vm_area_struct *lock_mm_and_find_vma(struct mm_struct *mm,
5426 			unsigned long addr, struct pt_regs *regs)
5427 {
5428 	struct vm_area_struct *vma;
5429 
5430 	if (!get_mmap_lock_carefully(mm, regs))
5431 		return NULL;
5432 
5433 	vma = find_vma(mm, addr);
5434 	if (likely(vma && (vma->vm_start <= addr)))
5435 		return vma;
5436 
5437 	/*
5438 	 * Well, dang. We might still be successful, but only
5439 	 * if we can extend a vma to do so.
5440 	 */
5441 	if (!vma || !(vma->vm_flags & VM_GROWSDOWN)) {
5442 		mmap_read_unlock(mm);
5443 		return NULL;
5444 	}
5445 
5446 	/*
5447 	 * We can try to upgrade the mmap lock atomically,
5448 	 * in which case we can continue to use the vma
5449 	 * we already looked up.
5450 	 *
5451 	 * Otherwise we'll have to drop the mmap lock and
5452 	 * re-take it, and also look up the vma again,
5453 	 * re-checking it.
5454 	 */
5455 	if (!mmap_upgrade_trylock(mm)) {
5456 		if (!upgrade_mmap_lock_carefully(mm, regs))
5457 			return NULL;
5458 
5459 		vma = find_vma(mm, addr);
5460 		if (!vma)
5461 			goto fail;
5462 		if (vma->vm_start <= addr)
5463 			goto success;
5464 		if (!(vma->vm_flags & VM_GROWSDOWN))
5465 			goto fail;
5466 	}
5467 
5468 	if (expand_stack_locked(vma, addr))
5469 		goto fail;
5470 
5471 success:
5472 	mmap_write_downgrade(mm);
5473 	return vma;
5474 
5475 fail:
5476 	mmap_write_unlock(mm);
5477 	return NULL;
5478 }
5479 #endif
5480 
5481 #ifdef CONFIG_PER_VMA_LOCK
5482 /*
5483  * Lookup and lock a VMA under RCU protection. Returned VMA is guaranteed to be
5484  * stable and not isolated. If the VMA is not found or is being modified the
5485  * function returns NULL.
5486  */
lock_vma_under_rcu(struct mm_struct *mm, unsigned long address)5487 struct vm_area_struct *lock_vma_under_rcu(struct mm_struct *mm,
5488 					  unsigned long address)
5489 {
5490 	MA_STATE(mas, &mm->mm_mt, address, address);
5491 	struct vm_area_struct *vma;
5492 
5493 	rcu_read_lock();
5494 retry:
5495 	vma = mas_walk(&mas);
5496 	if (!vma)
5497 		goto inval;
5498 
5499 	if (!vma_start_read(vma))
5500 		goto inval;
5501 
5502 	/*
5503 	 * find_mergeable_anon_vma uses adjacent vmas which are not locked.
5504 	 * This check must happen after vma_start_read(); otherwise, a
5505 	 * concurrent mremap() with MREMAP_DONTUNMAP could dissociate the VMA
5506 	 * from its anon_vma.
5507 	 */
5508 	if (unlikely(vma_is_anonymous(vma) && !vma->anon_vma))
5509 		goto inval_end_read;
5510 
5511 	/* Check since vm_start/vm_end might change before we lock the VMA */
5512 	if (unlikely(address < vma->vm_start || address >= vma->vm_end))
5513 		goto inval_end_read;
5514 
5515 	/* Check if the VMA got isolated after we found it */
5516 	if (vma->detached) {
5517 		vma_end_read(vma);
5518 		count_vm_vma_lock_event(VMA_LOCK_MISS);
5519 		/* The area was replaced with another one */
5520 		goto retry;
5521 	}
5522 
5523 	rcu_read_unlock();
5524 	return vma;
5525 
5526 inval_end_read:
5527 	vma_end_read(vma);
5528 inval:
5529 	rcu_read_unlock();
5530 	count_vm_vma_lock_event(VMA_LOCK_ABORT);
5531 	return NULL;
5532 }
5533 #endif /* CONFIG_PER_VMA_LOCK */
5534 
5535 #ifndef __PAGETABLE_P4D_FOLDED
5536 /*
5537  * Allocate p4d page table.
5538  * We've already handled the fast-path in-line.
5539  */
__p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)5540 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
5541 {
5542 	p4d_t *new = p4d_alloc_one(mm, address);
5543 	if (!new)
5544 		return -ENOMEM;
5545 
5546 	spin_lock(&mm->page_table_lock);
5547 	if (pgd_present(*pgd)) {	/* Another has populated it */
5548 		p4d_free(mm, new);
5549 	} else {
5550 		smp_wmb(); /* See comment in pmd_install() */
5551 		pgd_populate(mm, pgd, new);
5552 	}
5553 	spin_unlock(&mm->page_table_lock);
5554 	return 0;
5555 }
5556 #endif /* __PAGETABLE_P4D_FOLDED */
5557 
5558 #ifndef __PAGETABLE_PUD_FOLDED
5559 /*
5560  * Allocate page upper directory.
5561  * We've already handled the fast-path in-line.
5562  */
__pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address)5563 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address)
5564 {
5565 	pud_t *new = pud_alloc_one(mm, address);
5566 	if (!new)
5567 		return -ENOMEM;
5568 
5569 	spin_lock(&mm->page_table_lock);
5570 	if (!p4d_present(*p4d)) {
5571 		mm_inc_nr_puds(mm);
5572 		smp_wmb(); /* See comment in pmd_install() */
5573 		p4d_populate(mm, p4d, new);
5574 	} else	/* Another has populated it */
5575 		pud_free(mm, new);
5576 	spin_unlock(&mm->page_table_lock);
5577 	return 0;
5578 }
5579 #endif /* __PAGETABLE_PUD_FOLDED */
5580 
5581 #ifndef __PAGETABLE_PMD_FOLDED
5582 /*
5583  * Allocate page middle directory.
5584  * We've already handled the fast-path in-line.
5585  */
__pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)5586 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
5587 {
5588 	spinlock_t *ptl;
5589 	pmd_t *new = pmd_alloc_one(mm, address);
5590 	if (!new)
5591 		return -ENOMEM;
5592 
5593 	ptl = pud_lock(mm, pud);
5594 	if (!pud_present(*pud)) {
5595 		mm_inc_nr_pmds(mm);
5596 		smp_wmb(); /* See comment in pmd_install() */
5597 		pud_populate(mm, pud, new);
5598 	} else {	/* Another has populated it */
5599 		pmd_free(mm, new);
5600 	}
5601 	spin_unlock(ptl);
5602 	return 0;
5603 }
5604 #endif /* __PAGETABLE_PMD_FOLDED */
5605 
5606 /**
5607  * follow_pte - look up PTE at a user virtual address
5608  * @mm: the mm_struct of the target address space
5609  * @address: user virtual address
5610  * @ptepp: location to store found PTE
5611  * @ptlp: location to store the lock for the PTE
5612  *
5613  * On a successful return, the pointer to the PTE is stored in @ptepp;
5614  * the corresponding lock is taken and its location is stored in @ptlp.
5615  * The contents of the PTE are only stable until @ptlp is released;
5616  * any further use, if any, must be protected against invalidation
5617  * with MMU notifiers.
5618  *
5619  * Only IO mappings and raw PFN mappings are allowed.  The mmap semaphore
5620  * should be taken for read.
5621  *
5622  * KVM uses this function.  While it is arguably less bad than ``follow_pfn``,
5623  * it is not a good general-purpose API.
5624  *
5625  * Return: zero on success, -ve otherwise.
5626  */
follow_pte(struct mm_struct *mm, unsigned long address, pte_t **ptepp, spinlock_t **ptlp)5627 int follow_pte(struct mm_struct *mm, unsigned long address,
5628 	       pte_t **ptepp, spinlock_t **ptlp)
5629 {
5630 	pgd_t *pgd;
5631 	p4d_t *p4d;
5632 	pud_t *pud;
5633 	pmd_t *pmd;
5634 	pte_t *ptep;
5635 
5636 	pgd = pgd_offset(mm, address);
5637 	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
5638 		goto out;
5639 
5640 	p4d = p4d_offset(pgd, address);
5641 	if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d)))
5642 		goto out;
5643 
5644 	pud = pud_offset(p4d, address);
5645 	if (pud_none(*pud) || unlikely(pud_bad(*pud)))
5646 		goto out;
5647 
5648 	pmd = pmd_offset(pud, address);
5649 	VM_BUG_ON(pmd_trans_huge(*pmd));
5650 
5651 	ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
5652 	if (!ptep)
5653 		goto out;
5654 	if (!pte_present(ptep_get(ptep)))
5655 		goto unlock;
5656 	*ptepp = ptep;
5657 	return 0;
5658 unlock:
5659 	pte_unmap_unlock(ptep, *ptlp);
5660 out:
5661 	return -EINVAL;
5662 }
5663 EXPORT_SYMBOL_GPL(follow_pte);
5664 
5665 /**
5666  * follow_pfn - look up PFN at a user virtual address
5667  * @vma: memory mapping
5668  * @address: user virtual address
5669  * @pfn: location to store found PFN
5670  *
5671  * Only IO mappings and raw PFN mappings are allowed.
5672  *
5673  * This function does not allow the caller to read the permissions
5674  * of the PTE.  Do not use it.
5675  *
5676  * Return: zero and the pfn at @pfn on success, -ve otherwise.
5677  */
follow_pfn(struct vm_area_struct *vma, unsigned long address, unsigned long *pfn)5678 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
5679 	unsigned long *pfn)
5680 {
5681 	int ret = -EINVAL;
5682 	spinlock_t *ptl;
5683 	pte_t *ptep;
5684 
5685 	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
5686 		return ret;
5687 
5688 	ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
5689 	if (ret)
5690 		return ret;
5691 	*pfn = pte_pfn(ptep_get(ptep));
5692 	pte_unmap_unlock(ptep, ptl);
5693 	return 0;
5694 }
5695 EXPORT_SYMBOL(follow_pfn);
5696 
5697 #ifdef CONFIG_HAVE_IOREMAP_PROT
follow_phys(struct vm_area_struct *vma, unsigned long address, unsigned int flags, unsigned long *prot, resource_size_t *phys)5698 int follow_phys(struct vm_area_struct *vma,
5699 		unsigned long address, unsigned int flags,
5700 		unsigned long *prot, resource_size_t *phys)
5701 {
5702 	int ret = -EINVAL;
5703 	pte_t *ptep, pte;
5704 	spinlock_t *ptl;
5705 
5706 	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
5707 		goto out;
5708 
5709 	if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
5710 		goto out;
5711 	pte = ptep_get(ptep);
5712 
5713 	if ((flags & FOLL_WRITE) && !pte_write(pte))
5714 		goto unlock;
5715 
5716 	*prot = pgprot_val(pte_pgprot(pte));
5717 	*phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
5718 
5719 	ret = 0;
5720 unlock:
5721 	pte_unmap_unlock(ptep, ptl);
5722 out:
5723 	return ret;
5724 }
5725 
5726 /**
5727  * generic_access_phys - generic implementation for iomem mmap access
5728  * @vma: the vma to access
5729  * @addr: userspace address, not relative offset within @vma
5730  * @buf: buffer to read/write
5731  * @len: length of transfer
5732  * @write: set to FOLL_WRITE when writing, otherwise reading
5733  *
5734  * This is a generic implementation for &vm_operations_struct.access for an
5735  * iomem mapping. This callback is used by access_process_vm() when the @vma is
5736  * not page based.
5737  */
generic_access_phys(struct vm_area_struct *vma, unsigned long addr, void *buf, int len, int write)5738 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
5739 			void *buf, int len, int write)
5740 {
5741 	resource_size_t phys_addr;
5742 	unsigned long prot = 0;
5743 	void __iomem *maddr;
5744 	pte_t *ptep, pte;
5745 	spinlock_t *ptl;
5746 	int offset = offset_in_page(addr);
5747 	int ret = -EINVAL;
5748 
5749 	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
5750 		return -EINVAL;
5751 
5752 retry:
5753 	if (follow_pte(vma->vm_mm, addr, &ptep, &ptl))
5754 		return -EINVAL;
5755 	pte = ptep_get(ptep);
5756 	pte_unmap_unlock(ptep, ptl);
5757 
5758 	prot = pgprot_val(pte_pgprot(pte));
5759 	phys_addr = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
5760 
5761 	if ((write & FOLL_WRITE) && !pte_write(pte))
5762 		return -EINVAL;
5763 
5764 	maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
5765 	if (!maddr)
5766 		return -ENOMEM;
5767 
5768 	if (follow_pte(vma->vm_mm, addr, &ptep, &ptl))
5769 		goto out_unmap;
5770 
5771 	if (!pte_same(pte, ptep_get(ptep))) {
5772 		pte_unmap_unlock(ptep, ptl);
5773 		iounmap(maddr);
5774 
5775 		goto retry;
5776 	}
5777 
5778 	if (write)
5779 		memcpy_toio(maddr + offset, buf, len);
5780 	else
5781 		memcpy_fromio(buf, maddr + offset, len);
5782 	ret = len;
5783 	pte_unmap_unlock(ptep, ptl);
5784 out_unmap:
5785 	iounmap(maddr);
5786 
5787 	return ret;
5788 }
5789 EXPORT_SYMBOL_GPL(generic_access_phys);
5790 #endif
5791 
5792 /*
5793  * Access another process' address space as given in mm.
5794  */
__access_remote_vm(struct mm_struct *mm, unsigned long addr, void *buf, int len, unsigned int gup_flags)5795 int __access_remote_vm(struct mm_struct *mm, unsigned long addr, void *buf,
5796 		       int len, unsigned int gup_flags)
5797 {
5798 	void *old_buf = buf;
5799 	int write = gup_flags & FOLL_WRITE;
5800 
5801 	if (mmap_read_lock_killable(mm))
5802 		return 0;
5803 
5804 	/* Untag the address before looking up the VMA */
5805 	addr = untagged_addr_remote(mm, addr);
5806 
5807 	/* Avoid triggering the temporary warning in __get_user_pages */
5808 	if (!vma_lookup(mm, addr) && !expand_stack(mm, addr))
5809 		return 0;
5810 
5811 	/* ignore errors, just check how much was successfully transferred */
5812 	while (len) {
5813 		int bytes, offset;
5814 		void *maddr;
5815 		struct vm_area_struct *vma = NULL;
5816 		struct page *page = get_user_page_vma_remote(mm, addr,
5817 							     gup_flags, &vma);
5818 
5819 		if (IS_ERR_OR_NULL(page)) {
5820 			/* We might need to expand the stack to access it */
5821 			vma = vma_lookup(mm, addr);
5822 			if (!vma) {
5823 				vma = expand_stack(mm, addr);
5824 
5825 				/* mmap_lock was dropped on failure */
5826 				if (!vma)
5827 					return buf - old_buf;
5828 
5829 				/* Try again if stack expansion worked */
5830 				continue;
5831 			}
5832 
5833 
5834 			/*
5835 			 * Check if this is a VM_IO | VM_PFNMAP VMA, which
5836 			 * we can access using slightly different code.
5837 			 */
5838 			bytes = 0;
5839 #ifdef CONFIG_HAVE_IOREMAP_PROT
5840 			if (vma->vm_ops && vma->vm_ops->access)
5841 				bytes = vma->vm_ops->access(vma, addr, buf,
5842 							    len, write);
5843 #endif
5844 			if (bytes <= 0)
5845 				break;
5846 		} else {
5847 			bytes = len;
5848 			offset = addr & (PAGE_SIZE-1);
5849 			if (bytes > PAGE_SIZE-offset)
5850 				bytes = PAGE_SIZE-offset;
5851 
5852 			maddr = kmap(page);
5853 			if (write) {
5854 				copy_to_user_page(vma, page, addr,
5855 						  maddr + offset, buf, bytes);
5856 				set_page_dirty_lock(page);
5857 			} else {
5858 				copy_from_user_page(vma, page, addr,
5859 						    buf, maddr + offset, bytes);
5860 			}
5861 			kunmap(page);
5862 			put_page(page);
5863 		}
5864 		len -= bytes;
5865 		buf += bytes;
5866 		addr += bytes;
5867 	}
5868 	mmap_read_unlock(mm);
5869 
5870 	return buf - old_buf;
5871 }
5872 
5873 /**
5874  * access_remote_vm - access another process' address space
5875  * @mm:		the mm_struct of the target address space
5876  * @addr:	start address to access
5877  * @buf:	source or destination buffer
5878  * @len:	number of bytes to transfer
5879  * @gup_flags:	flags modifying lookup behaviour
5880  *
5881  * The caller must hold a reference on @mm.
5882  *
5883  * Return: number of bytes copied from source to destination.
5884  */
access_remote_vm(struct mm_struct *mm, unsigned long addr, void *buf, int len, unsigned int gup_flags)5885 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
5886 		void *buf, int len, unsigned int gup_flags)
5887 {
5888 	return __access_remote_vm(mm, addr, buf, len, gup_flags);
5889 }
5890 
5891 /*
5892  * Access another process' address space.
5893  * Source/target buffer must be kernel space,
5894  * Do not walk the page table directly, use get_user_pages
5895  */
access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, unsigned int gup_flags)5896 int access_process_vm(struct task_struct *tsk, unsigned long addr,
5897 		void *buf, int len, unsigned int gup_flags)
5898 {
5899 	struct mm_struct *mm;
5900 	int ret;
5901 
5902 	mm = get_task_mm(tsk);
5903 	if (!mm)
5904 		return 0;
5905 
5906 	ret = __access_remote_vm(mm, addr, buf, len, gup_flags);
5907 
5908 	mmput(mm);
5909 
5910 	return ret;
5911 }
5912 EXPORT_SYMBOL_GPL(access_process_vm);
5913 
5914 /*
5915  * Print the name of a VMA.
5916  */
print_vma_addr(char *prefix, unsigned long ip)5917 void print_vma_addr(char *prefix, unsigned long ip)
5918 {
5919 	struct mm_struct *mm = current->mm;
5920 	struct vm_area_struct *vma;
5921 
5922 	/*
5923 	 * we might be running from an atomic context so we cannot sleep
5924 	 */
5925 	if (!mmap_read_trylock(mm))
5926 		return;
5927 
5928 	vma = find_vma(mm, ip);
5929 	if (vma && vma->vm_file) {
5930 		struct file *f = vma->vm_file;
5931 		char *buf = (char *)__get_free_page(GFP_NOWAIT);
5932 		if (buf) {
5933 			char *p;
5934 
5935 			p = file_path(f, buf, PAGE_SIZE);
5936 			if (IS_ERR(p))
5937 				p = "?";
5938 			printk("%s%s[%lx+%lx]", prefix, kbasename(p),
5939 					vma->vm_start,
5940 					vma->vm_end - vma->vm_start);
5941 			free_page((unsigned long)buf);
5942 		}
5943 	}
5944 	mmap_read_unlock(mm);
5945 }
5946 
5947 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
__might_fault(const char *file, int line)5948 void __might_fault(const char *file, int line)
5949 {
5950 	if (pagefault_disabled())
5951 		return;
5952 	__might_sleep(file, line);
5953 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
5954 	if (current->mm)
5955 		might_lock_read(&current->mm->mmap_lock);
5956 #endif
5957 }
5958 EXPORT_SYMBOL(__might_fault);
5959 #endif
5960 
5961 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
5962 /*
5963  * Process all subpages of the specified huge page with the specified
5964  * operation.  The target subpage will be processed last to keep its
5965  * cache lines hot.
5966  */
process_huge_page( unsigned long addr_hint, unsigned int pages_per_huge_page, int (*process_subpage)(unsigned long addr, int idx, void *arg), void *arg)5967 static inline int process_huge_page(
5968 	unsigned long addr_hint, unsigned int pages_per_huge_page,
5969 	int (*process_subpage)(unsigned long addr, int idx, void *arg),
5970 	void *arg)
5971 {
5972 	int i, n, base, l, ret;
5973 	unsigned long addr = addr_hint &
5974 		~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5975 
5976 	/* Process target subpage last to keep its cache lines hot */
5977 	might_sleep();
5978 	n = (addr_hint - addr) / PAGE_SIZE;
5979 	if (2 * n <= pages_per_huge_page) {
5980 		/* If target subpage in first half of huge page */
5981 		base = 0;
5982 		l = n;
5983 		/* Process subpages at the end of huge page */
5984 		for (i = pages_per_huge_page - 1; i >= 2 * n; i--) {
5985 			cond_resched();
5986 			ret = process_subpage(addr + i * PAGE_SIZE, i, arg);
5987 			if (ret)
5988 				return ret;
5989 		}
5990 	} else {
5991 		/* If target subpage in second half of huge page */
5992 		base = pages_per_huge_page - 2 * (pages_per_huge_page - n);
5993 		l = pages_per_huge_page - n;
5994 		/* Process subpages at the begin of huge page */
5995 		for (i = 0; i < base; i++) {
5996 			cond_resched();
5997 			ret = process_subpage(addr + i * PAGE_SIZE, i, arg);
5998 			if (ret)
5999 				return ret;
6000 		}
6001 	}
6002 	/*
6003 	 * Process remaining subpages in left-right-left-right pattern
6004 	 * towards the target subpage
6005 	 */
6006 	for (i = 0; i < l; i++) {
6007 		int left_idx = base + i;
6008 		int right_idx = base + 2 * l - 1 - i;
6009 
6010 		cond_resched();
6011 		ret = process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg);
6012 		if (ret)
6013 			return ret;
6014 		cond_resched();
6015 		ret = process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg);
6016 		if (ret)
6017 			return ret;
6018 	}
6019 	return 0;
6020 }
6021 
clear_gigantic_page(struct page *page, unsigned long addr, unsigned int pages_per_huge_page)6022 static void clear_gigantic_page(struct page *page,
6023 				unsigned long addr,
6024 				unsigned int pages_per_huge_page)
6025 {
6026 	int i;
6027 	struct page *p;
6028 
6029 	might_sleep();
6030 	for (i = 0; i < pages_per_huge_page; i++) {
6031 		p = nth_page(page, i);
6032 		cond_resched();
6033 		clear_user_highpage(p, addr + i * PAGE_SIZE);
6034 	}
6035 }
6036 
clear_subpage(unsigned long addr, int idx, void *arg)6037 static int clear_subpage(unsigned long addr, int idx, void *arg)
6038 {
6039 	struct page *page = arg;
6040 
6041 	clear_user_highpage(page + idx, addr);
6042 	return 0;
6043 }
6044 
clear_huge_page(struct page *page, unsigned long addr_hint, unsigned int pages_per_huge_page)6045 void clear_huge_page(struct page *page,
6046 		     unsigned long addr_hint, unsigned int pages_per_huge_page)
6047 {
6048 	unsigned long addr = addr_hint &
6049 		~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
6050 
6051 	if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
6052 		clear_gigantic_page(page, addr, pages_per_huge_page);
6053 		return;
6054 	}
6055 
6056 	process_huge_page(addr_hint, pages_per_huge_page, clear_subpage, page);
6057 }
6058 
copy_user_gigantic_page(struct folio *dst, struct folio *src, unsigned long addr, struct vm_area_struct *vma, unsigned int pages_per_huge_page)6059 static int copy_user_gigantic_page(struct folio *dst, struct folio *src,
6060 				     unsigned long addr,
6061 				     struct vm_area_struct *vma,
6062 				     unsigned int pages_per_huge_page)
6063 {
6064 	int i;
6065 	struct page *dst_page;
6066 	struct page *src_page;
6067 
6068 	for (i = 0; i < pages_per_huge_page; i++) {
6069 		dst_page = folio_page(dst, i);
6070 		src_page = folio_page(src, i);
6071 
6072 		cond_resched();
6073 		if (copy_mc_user_highpage(dst_page, src_page,
6074 					  addr + i*PAGE_SIZE, vma)) {
6075 			memory_failure_queue(page_to_pfn(src_page), 0);
6076 			return -EHWPOISON;
6077 		}
6078 	}
6079 	return 0;
6080 }
6081 
6082 struct copy_subpage_arg {
6083 	struct page *dst;
6084 	struct page *src;
6085 	struct vm_area_struct *vma;
6086 };
6087 
copy_subpage(unsigned long addr, int idx, void *arg)6088 static int copy_subpage(unsigned long addr, int idx, void *arg)
6089 {
6090 	struct copy_subpage_arg *copy_arg = arg;
6091 
6092 	if (copy_mc_user_highpage(copy_arg->dst + idx, copy_arg->src + idx,
6093 				  addr, copy_arg->vma)) {
6094 		memory_failure_queue(page_to_pfn(copy_arg->src + idx), 0);
6095 		return -EHWPOISON;
6096 	}
6097 	return 0;
6098 }
6099 
copy_user_large_folio(struct folio *dst, struct folio *src, unsigned long addr_hint, struct vm_area_struct *vma)6100 int copy_user_large_folio(struct folio *dst, struct folio *src,
6101 			  unsigned long addr_hint, struct vm_area_struct *vma)
6102 {
6103 	unsigned int pages_per_huge_page = folio_nr_pages(dst);
6104 	unsigned long addr = addr_hint &
6105 		~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
6106 	struct copy_subpage_arg arg = {
6107 		.dst = &dst->page,
6108 		.src = &src->page,
6109 		.vma = vma,
6110 	};
6111 
6112 	if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES))
6113 		return copy_user_gigantic_page(dst, src, addr, vma,
6114 					       pages_per_huge_page);
6115 
6116 	return process_huge_page(addr_hint, pages_per_huge_page, copy_subpage, &arg);
6117 }
6118 
copy_folio_from_user(struct folio *dst_folio, const void __user *usr_src, bool allow_pagefault)6119 long copy_folio_from_user(struct folio *dst_folio,
6120 			   const void __user *usr_src,
6121 			   bool allow_pagefault)
6122 {
6123 	void *kaddr;
6124 	unsigned long i, rc = 0;
6125 	unsigned int nr_pages = folio_nr_pages(dst_folio);
6126 	unsigned long ret_val = nr_pages * PAGE_SIZE;
6127 	struct page *subpage;
6128 
6129 	for (i = 0; i < nr_pages; i++) {
6130 		subpage = folio_page(dst_folio, i);
6131 		kaddr = kmap_local_page(subpage);
6132 		if (!allow_pagefault)
6133 			pagefault_disable();
6134 		rc = copy_from_user(kaddr, usr_src + i * PAGE_SIZE, PAGE_SIZE);
6135 		if (!allow_pagefault)
6136 			pagefault_enable();
6137 		kunmap_local(kaddr);
6138 
6139 		ret_val -= (PAGE_SIZE - rc);
6140 		if (rc)
6141 			break;
6142 
6143 		flush_dcache_page(subpage);
6144 
6145 		cond_resched();
6146 	}
6147 	return ret_val;
6148 }
6149 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
6150 
6151 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
6152 
6153 static struct kmem_cache *page_ptl_cachep;
6154 
ptlock_cache_init(void)6155 void __init ptlock_cache_init(void)
6156 {
6157 	page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
6158 			SLAB_PANIC, NULL);
6159 }
6160 
ptlock_alloc(struct ptdesc *ptdesc)6161 bool ptlock_alloc(struct ptdesc *ptdesc)
6162 {
6163 	spinlock_t *ptl;
6164 
6165 	ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
6166 	if (!ptl)
6167 		return false;
6168 	ptdesc->ptl = ptl;
6169 	return true;
6170 }
6171 
ptlock_free(struct ptdesc *ptdesc)6172 void ptlock_free(struct ptdesc *ptdesc)
6173 {
6174 	kmem_cache_free(page_ptl_cachep, ptdesc->ptl);
6175 }
6176 #endif
6177