1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/mm/memory.c
4 *
5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
6 */
7
8 /*
9 * demand-loading started 01.12.91 - seems it is high on the list of
10 * things wanted, and it should be easy to implement. - Linus
11 */
12
13 /*
14 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
15 * pages started 02.12.91, seems to work. - Linus.
16 *
17 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
18 * would have taken more than the 6M I have free, but it worked well as
19 * far as I could see.
20 *
21 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
22 */
23
24 /*
25 * Real VM (paging to/from disk) started 18.12.91. Much more work and
26 * thought has to go into this. Oh, well..
27 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
28 * Found it. Everything seems to work now.
29 * 20.12.91 - Ok, making the swap-device changeable like the root.
30 */
31
32 /*
33 * 05.04.94 - Multi-page memory management added for v1.1.
34 * Idea by Alex Bligh (alex@cconcepts.co.uk)
35 *
36 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
37 * (Gerhard.Wichert@pdb.siemens.de)
38 *
39 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
40 */
41
42 #include <linux/kernel_stat.h>
43 #include <linux/mm.h>
44 #include <linux/mm_inline.h>
45 #include <linux/sched/mm.h>
46 #include <linux/sched/coredump.h>
47 #include <linux/sched/numa_balancing.h>
48 #include <linux/sched/task.h>
49 #include <linux/hugetlb.h>
50 #include <linux/mman.h>
51 #include <linux/swap.h>
52 #include <linux/highmem.h>
53 #include <linux/pagemap.h>
54 #include <linux/memremap.h>
55 #include <linux/kmsan.h>
56 #include <linux/ksm.h>
57 #include <linux/rmap.h>
58 #include <linux/export.h>
59 #include <linux/delayacct.h>
60 #include <linux/init.h>
61 #include <linux/pfn_t.h>
62 #include <linux/writeback.h>
63 #include <linux/memcontrol.h>
64 #include <linux/mmu_notifier.h>
65 #include <linux/swapops.h>
66 #include <linux/elf.h>
67 #include <linux/gfp.h>
68 #include <linux/migrate.h>
69 #include <linux/string.h>
70 #include <linux/memory-tiers.h>
71 #include <linux/debugfs.h>
72 #include <linux/userfaultfd_k.h>
73 #include <linux/dax.h>
74 #include <linux/oom.h>
75 #include <linux/numa.h>
76 #include <linux/perf_event.h>
77 #include <linux/ptrace.h>
78 #include <linux/vmalloc.h>
79 #include <linux/sched/sysctl.h>
80 #ifdef CONFIG_MEM_PURGEABLE
81 #include <linux/mm_purgeable.h>
82 #endif
83 #include <trace/events/kmem.h>
84
85 #include <asm/io.h>
86 #include <asm/mmu_context.h>
87 #include <asm/pgalloc.h>
88 #include <linux/uaccess.h>
89 #include <asm/tlb.h>
90 #include <asm/tlbflush.h>
91
92 #include "pgalloc-track.h"
93 #include "internal.h"
94 #include "swap.h"
95
96 #if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST)
97 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
98 #endif
99
100 #ifndef CONFIG_NUMA
101 unsigned long max_mapnr;
102 EXPORT_SYMBOL(max_mapnr);
103
104 struct page *mem_map;
105 EXPORT_SYMBOL(mem_map);
106 #endif
107
108 static vm_fault_t do_fault(struct vm_fault *vmf);
109 static vm_fault_t do_anonymous_page(struct vm_fault *vmf);
110 static bool vmf_pte_changed(struct vm_fault *vmf);
111
112 /*
113 * Return true if the original pte was a uffd-wp pte marker (so the pte was
114 * wr-protected).
115 */
vmf_orig_pte_uffd_wp(struct vm_fault *vmf)116 static bool vmf_orig_pte_uffd_wp(struct vm_fault *vmf)
117 {
118 if (!(vmf->flags & FAULT_FLAG_ORIG_PTE_VALID))
119 return false;
120
121 return pte_marker_uffd_wp(vmf->orig_pte);
122 }
123
124 /*
125 * A number of key systems in x86 including ioremap() rely on the assumption
126 * that high_memory defines the upper bound on direct map memory, then end
127 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
128 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
129 * and ZONE_HIGHMEM.
130 */
131 void *high_memory;
132 EXPORT_SYMBOL(high_memory);
133
134 /*
135 * Randomize the address space (stacks, mmaps, brk, etc.).
136 *
137 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
138 * as ancient (libc5 based) binaries can segfault. )
139 */
140 int randomize_va_space __read_mostly =
141 #ifdef CONFIG_COMPAT_BRK
142 1;
143 #else
144 2;
145 #endif
146
147 #ifndef arch_wants_old_prefaulted_pte
arch_wants_old_prefaulted_pte(void)148 static inline bool arch_wants_old_prefaulted_pte(void)
149 {
150 /*
151 * Transitioning a PTE from 'old' to 'young' can be expensive on
152 * some architectures, even if it's performed in hardware. By
153 * default, "false" means prefaulted entries will be 'young'.
154 */
155 return false;
156 }
157 #endif
158
disable_randmaps(char *s)159 static int __init disable_randmaps(char *s)
160 {
161 randomize_va_space = 0;
162 return 1;
163 }
164 __setup("norandmaps", disable_randmaps);
165
166 unsigned long zero_pfn __read_mostly;
167 EXPORT_SYMBOL(zero_pfn);
168
169 unsigned long highest_memmap_pfn __read_mostly;
170
171 /*
172 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
173 */
init_zero_pfn(void)174 static int __init init_zero_pfn(void)
175 {
176 zero_pfn = page_to_pfn(ZERO_PAGE(0));
177 return 0;
178 }
179 early_initcall(init_zero_pfn);
180
mm_trace_rss_stat(struct mm_struct *mm, int member)181 void mm_trace_rss_stat(struct mm_struct *mm, int member)
182 {
183 trace_rss_stat(mm, member);
184 }
185
186 /*
187 * Note: this doesn't free the actual pages themselves. That
188 * has been handled earlier when unmapping all the memory regions.
189 */
free_pte_range(struct mmu_gather *tlb, pmd_t *pmd, unsigned long addr)190 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
191 unsigned long addr)
192 {
193 pgtable_t token = pmd_pgtable(*pmd);
194 pmd_clear(pmd);
195 pte_free_tlb(tlb, token, addr);
196 mm_dec_nr_ptes(tlb->mm);
197 }
198
free_pmd_range(struct mmu_gather *tlb, pud_t *pud, unsigned long addr, unsigned long end, unsigned long floor, unsigned long ceiling)199 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
200 unsigned long addr, unsigned long end,
201 unsigned long floor, unsigned long ceiling)
202 {
203 pmd_t *pmd;
204 unsigned long next;
205 unsigned long start;
206
207 start = addr;
208 pmd = pmd_offset(pud, addr);
209 do {
210 next = pmd_addr_end(addr, end);
211 if (pmd_none_or_clear_bad(pmd))
212 continue;
213 free_pte_range(tlb, pmd, addr);
214 } while (pmd++, addr = next, addr != end);
215
216 start &= PUD_MASK;
217 if (start < floor)
218 return;
219 if (ceiling) {
220 ceiling &= PUD_MASK;
221 if (!ceiling)
222 return;
223 }
224 if (end - 1 > ceiling - 1)
225 return;
226
227 pmd = pmd_offset(pud, start);
228 pud_clear(pud);
229 pmd_free_tlb(tlb, pmd, start);
230 mm_dec_nr_pmds(tlb->mm);
231 }
232
free_pud_range(struct mmu_gather *tlb, p4d_t *p4d, unsigned long addr, unsigned long end, unsigned long floor, unsigned long ceiling)233 static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d,
234 unsigned long addr, unsigned long end,
235 unsigned long floor, unsigned long ceiling)
236 {
237 pud_t *pud;
238 unsigned long next;
239 unsigned long start;
240
241 start = addr;
242 pud = pud_offset(p4d, addr);
243 do {
244 next = pud_addr_end(addr, end);
245 if (pud_none_or_clear_bad(pud))
246 continue;
247 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
248 } while (pud++, addr = next, addr != end);
249
250 start &= P4D_MASK;
251 if (start < floor)
252 return;
253 if (ceiling) {
254 ceiling &= P4D_MASK;
255 if (!ceiling)
256 return;
257 }
258 if (end - 1 > ceiling - 1)
259 return;
260
261 pud = pud_offset(p4d, start);
262 p4d_clear(p4d);
263 pud_free_tlb(tlb, pud, start);
264 mm_dec_nr_puds(tlb->mm);
265 }
266
free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd, unsigned long addr, unsigned long end, unsigned long floor, unsigned long ceiling)267 static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd,
268 unsigned long addr, unsigned long end,
269 unsigned long floor, unsigned long ceiling)
270 {
271 p4d_t *p4d;
272 unsigned long next;
273 unsigned long start;
274
275 start = addr;
276 p4d = p4d_offset(pgd, addr);
277 do {
278 next = p4d_addr_end(addr, end);
279 if (p4d_none_or_clear_bad(p4d))
280 continue;
281 free_pud_range(tlb, p4d, addr, next, floor, ceiling);
282 } while (p4d++, addr = next, addr != end);
283
284 start &= PGDIR_MASK;
285 if (start < floor)
286 return;
287 if (ceiling) {
288 ceiling &= PGDIR_MASK;
289 if (!ceiling)
290 return;
291 }
292 if (end - 1 > ceiling - 1)
293 return;
294
295 p4d = p4d_offset(pgd, start);
296 pgd_clear(pgd);
297 p4d_free_tlb(tlb, p4d, start);
298 }
299
300 /*
301 * This function frees user-level page tables of a process.
302 */
free_pgd_range(struct mmu_gather *tlb, unsigned long addr, unsigned long end, unsigned long floor, unsigned long ceiling)303 void free_pgd_range(struct mmu_gather *tlb,
304 unsigned long addr, unsigned long end,
305 unsigned long floor, unsigned long ceiling)
306 {
307 pgd_t *pgd;
308 unsigned long next;
309
310 /*
311 * The next few lines have given us lots of grief...
312 *
313 * Why are we testing PMD* at this top level? Because often
314 * there will be no work to do at all, and we'd prefer not to
315 * go all the way down to the bottom just to discover that.
316 *
317 * Why all these "- 1"s? Because 0 represents both the bottom
318 * of the address space and the top of it (using -1 for the
319 * top wouldn't help much: the masks would do the wrong thing).
320 * The rule is that addr 0 and floor 0 refer to the bottom of
321 * the address space, but end 0 and ceiling 0 refer to the top
322 * Comparisons need to use "end - 1" and "ceiling - 1" (though
323 * that end 0 case should be mythical).
324 *
325 * Wherever addr is brought up or ceiling brought down, we must
326 * be careful to reject "the opposite 0" before it confuses the
327 * subsequent tests. But what about where end is brought down
328 * by PMD_SIZE below? no, end can't go down to 0 there.
329 *
330 * Whereas we round start (addr) and ceiling down, by different
331 * masks at different levels, in order to test whether a table
332 * now has no other vmas using it, so can be freed, we don't
333 * bother to round floor or end up - the tests don't need that.
334 */
335
336 addr &= PMD_MASK;
337 if (addr < floor) {
338 addr += PMD_SIZE;
339 if (!addr)
340 return;
341 }
342 if (ceiling) {
343 ceiling &= PMD_MASK;
344 if (!ceiling)
345 return;
346 }
347 if (end - 1 > ceiling - 1)
348 end -= PMD_SIZE;
349 if (addr > end - 1)
350 return;
351 /*
352 * We add page table cache pages with PAGE_SIZE,
353 * (see pte_free_tlb()), flush the tlb if we need
354 */
355 tlb_change_page_size(tlb, PAGE_SIZE);
356 pgd = pgd_offset(tlb->mm, addr);
357 do {
358 next = pgd_addr_end(addr, end);
359 if (pgd_none_or_clear_bad(pgd))
360 continue;
361 free_p4d_range(tlb, pgd, addr, next, floor, ceiling);
362 } while (pgd++, addr = next, addr != end);
363 }
364
free_pgtables(struct mmu_gather *tlb, struct ma_state *mas, struct vm_area_struct *vma, unsigned long floor, unsigned long ceiling, bool mm_wr_locked)365 void free_pgtables(struct mmu_gather *tlb, struct ma_state *mas,
366 struct vm_area_struct *vma, unsigned long floor,
367 unsigned long ceiling, bool mm_wr_locked)
368 {
369 do {
370 unsigned long addr = vma->vm_start;
371 struct vm_area_struct *next;
372
373 /*
374 * Note: USER_PGTABLES_CEILING may be passed as ceiling and may
375 * be 0. This will underflow and is okay.
376 */
377 next = mas_find(mas, ceiling - 1);
378
379 /*
380 * Hide vma from rmap and truncate_pagecache before freeing
381 * pgtables
382 */
383 if (mm_wr_locked)
384 vma_start_write(vma);
385 unlink_anon_vmas(vma);
386 unlink_file_vma(vma);
387
388 if (is_vm_hugetlb_page(vma)) {
389 hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
390 floor, next ? next->vm_start : ceiling);
391 } else {
392 /*
393 * Optimization: gather nearby vmas into one call down
394 */
395 while (next && next->vm_start <= vma->vm_end + PMD_SIZE
396 && !is_vm_hugetlb_page(next)) {
397 vma = next;
398 next = mas_find(mas, ceiling - 1);
399 if (mm_wr_locked)
400 vma_start_write(vma);
401 unlink_anon_vmas(vma);
402 unlink_file_vma(vma);
403 }
404 free_pgd_range(tlb, addr, vma->vm_end,
405 floor, next ? next->vm_start : ceiling);
406 }
407 vma = next;
408 } while (vma);
409 }
410
pmd_install(struct mm_struct *mm, pmd_t *pmd, pgtable_t *pte)411 void pmd_install(struct mm_struct *mm, pmd_t *pmd, pgtable_t *pte)
412 {
413 spinlock_t *ptl = pmd_lock(mm, pmd);
414
415 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
416 mm_inc_nr_ptes(mm);
417 /*
418 * Ensure all pte setup (eg. pte page lock and page clearing) are
419 * visible before the pte is made visible to other CPUs by being
420 * put into page tables.
421 *
422 * The other side of the story is the pointer chasing in the page
423 * table walking code (when walking the page table without locking;
424 * ie. most of the time). Fortunately, these data accesses consist
425 * of a chain of data-dependent loads, meaning most CPUs (alpha
426 * being the notable exception) will already guarantee loads are
427 * seen in-order. See the alpha page table accessors for the
428 * smp_rmb() barriers in page table walking code.
429 */
430 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
431 pmd_populate(mm, pmd, *pte);
432 *pte = NULL;
433 }
434 spin_unlock(ptl);
435 }
436
__pte_alloc(struct mm_struct *mm, pmd_t *pmd)437 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd)
438 {
439 pgtable_t new = pte_alloc_one(mm);
440 if (!new)
441 return -ENOMEM;
442
443 pmd_install(mm, pmd, &new);
444 if (new)
445 pte_free(mm, new);
446 return 0;
447 }
448
__pte_alloc_kernel(pmd_t *pmd)449 int __pte_alloc_kernel(pmd_t *pmd)
450 {
451 pte_t *new = pte_alloc_one_kernel(&init_mm);
452 if (!new)
453 return -ENOMEM;
454
455 spin_lock(&init_mm.page_table_lock);
456 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
457 smp_wmb(); /* See comment in pmd_install() */
458 pmd_populate_kernel(&init_mm, pmd, new);
459 new = NULL;
460 }
461 spin_unlock(&init_mm.page_table_lock);
462 if (new)
463 pte_free_kernel(&init_mm, new);
464 return 0;
465 }
466
init_rss_vec(int *rss)467 static inline void init_rss_vec(int *rss)
468 {
469 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
470 }
471
add_mm_rss_vec(struct mm_struct *mm, int *rss)472 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
473 {
474 int i;
475
476 if (current->mm == mm)
477 sync_mm_rss(mm);
478 for (i = 0; i < NR_MM_COUNTERS; i++)
479 if (rss[i])
480 add_mm_counter(mm, i, rss[i]);
481 }
482
483 /*
484 * This function is called to print an error when a bad pte
485 * is found. For example, we might have a PFN-mapped pte in
486 * a region that doesn't allow it.
487 *
488 * The calling function must still handle the error.
489 */
print_bad_pte(struct vm_area_struct *vma, unsigned long addr, pte_t pte, struct page *page)490 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
491 pte_t pte, struct page *page)
492 {
493 pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
494 p4d_t *p4d = p4d_offset(pgd, addr);
495 pud_t *pud = pud_offset(p4d, addr);
496 pmd_t *pmd = pmd_offset(pud, addr);
497 struct address_space *mapping;
498 pgoff_t index;
499 static unsigned long resume;
500 static unsigned long nr_shown;
501 static unsigned long nr_unshown;
502
503 /*
504 * Allow a burst of 60 reports, then keep quiet for that minute;
505 * or allow a steady drip of one report per second.
506 */
507 if (nr_shown == 60) {
508 if (time_before(jiffies, resume)) {
509 nr_unshown++;
510 return;
511 }
512 if (nr_unshown) {
513 pr_alert("BUG: Bad page map: %lu messages suppressed\n",
514 nr_unshown);
515 nr_unshown = 0;
516 }
517 nr_shown = 0;
518 }
519 if (nr_shown++ == 0)
520 resume = jiffies + 60 * HZ;
521
522 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
523 index = linear_page_index(vma, addr);
524
525 pr_alert("BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n",
526 current->comm,
527 (long long)pte_val(pte), (long long)pmd_val(*pmd));
528 if (page)
529 dump_page(page, "bad pte");
530 pr_alert("addr:%px vm_flags:%08lx anon_vma:%px mapping:%px index:%lx\n",
531 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
532 pr_alert("file:%pD fault:%ps mmap:%ps read_folio:%ps\n",
533 vma->vm_file,
534 vma->vm_ops ? vma->vm_ops->fault : NULL,
535 vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
536 mapping ? mapping->a_ops->read_folio : NULL);
537 dump_stack();
538 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
539 }
540
541 /*
542 * vm_normal_page -- This function gets the "struct page" associated with a pte.
543 *
544 * "Special" mappings do not wish to be associated with a "struct page" (either
545 * it doesn't exist, or it exists but they don't want to touch it). In this
546 * case, NULL is returned here. "Normal" mappings do have a struct page.
547 *
548 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
549 * pte bit, in which case this function is trivial. Secondly, an architecture
550 * may not have a spare pte bit, which requires a more complicated scheme,
551 * described below.
552 *
553 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
554 * special mapping (even if there are underlying and valid "struct pages").
555 * COWed pages of a VM_PFNMAP are always normal.
556 *
557 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
558 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
559 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
560 * mapping will always honor the rule
561 *
562 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
563 *
564 * And for normal mappings this is false.
565 *
566 * This restricts such mappings to be a linear translation from virtual address
567 * to pfn. To get around this restriction, we allow arbitrary mappings so long
568 * as the vma is not a COW mapping; in that case, we know that all ptes are
569 * special (because none can have been COWed).
570 *
571 *
572 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
573 *
574 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
575 * page" backing, however the difference is that _all_ pages with a struct
576 * page (that is, those where pfn_valid is true) are refcounted and considered
577 * normal pages by the VM. The disadvantage is that pages are refcounted
578 * (which can be slower and simply not an option for some PFNMAP users). The
579 * advantage is that we don't have to follow the strict linearity rule of
580 * PFNMAP mappings in order to support COWable mappings.
581 *
582 */
vm_normal_page(struct vm_area_struct *vma, unsigned long addr, pte_t pte)583 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
584 pte_t pte)
585 {
586 unsigned long pfn = pte_pfn(pte);
587
588 if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) {
589 if (likely(!pte_special(pte)))
590 goto check_pfn;
591 if (vma->vm_ops && vma->vm_ops->find_special_page)
592 return vma->vm_ops->find_special_page(vma, addr);
593 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
594 return NULL;
595 if (is_zero_pfn(pfn))
596 return NULL;
597 if (pte_devmap(pte))
598 /*
599 * NOTE: New users of ZONE_DEVICE will not set pte_devmap()
600 * and will have refcounts incremented on their struct pages
601 * when they are inserted into PTEs, thus they are safe to
602 * return here. Legacy ZONE_DEVICE pages that set pte_devmap()
603 * do not have refcounts. Example of legacy ZONE_DEVICE is
604 * MEMORY_DEVICE_FS_DAX type in pmem or virtio_fs drivers.
605 */
606 return NULL;
607
608 print_bad_pte(vma, addr, pte, NULL);
609 return NULL;
610 }
611
612 /* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */
613
614 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
615 if (vma->vm_flags & VM_MIXEDMAP) {
616 if (!pfn_valid(pfn))
617 return NULL;
618 goto out;
619 } else {
620 unsigned long off;
621 off = (addr - vma->vm_start) >> PAGE_SHIFT;
622 if (pfn == vma->vm_pgoff + off)
623 return NULL;
624 if (!is_cow_mapping(vma->vm_flags))
625 return NULL;
626 }
627 }
628
629 if (is_zero_pfn(pfn))
630 return NULL;
631
632 check_pfn:
633 if (unlikely(pfn > highest_memmap_pfn)) {
634 print_bad_pte(vma, addr, pte, NULL);
635 return NULL;
636 }
637
638 /*
639 * NOTE! We still have PageReserved() pages in the page tables.
640 * eg. VDSO mappings can cause them to exist.
641 */
642 out:
643 return pfn_to_page(pfn);
644 }
645
vm_normal_folio(struct vm_area_struct *vma, unsigned long addr, pte_t pte)646 struct folio *vm_normal_folio(struct vm_area_struct *vma, unsigned long addr,
647 pte_t pte)
648 {
649 struct page *page = vm_normal_page(vma, addr, pte);
650
651 if (page)
652 return page_folio(page);
653 return NULL;
654 }
655
656 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr, pmd_t pmd)657 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
658 pmd_t pmd)
659 {
660 unsigned long pfn = pmd_pfn(pmd);
661
662 /*
663 * There is no pmd_special() but there may be special pmds, e.g.
664 * in a direct-access (dax) mapping, so let's just replicate the
665 * !CONFIG_ARCH_HAS_PTE_SPECIAL case from vm_normal_page() here.
666 */
667 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
668 if (vma->vm_flags & VM_MIXEDMAP) {
669 if (!pfn_valid(pfn))
670 return NULL;
671 goto out;
672 } else {
673 unsigned long off;
674 off = (addr - vma->vm_start) >> PAGE_SHIFT;
675 if (pfn == vma->vm_pgoff + off)
676 return NULL;
677 if (!is_cow_mapping(vma->vm_flags))
678 return NULL;
679 }
680 }
681
682 if (pmd_devmap(pmd))
683 return NULL;
684 if (is_huge_zero_pmd(pmd))
685 return NULL;
686 if (unlikely(pfn > highest_memmap_pfn))
687 return NULL;
688
689 /*
690 * NOTE! We still have PageReserved() pages in the page tables.
691 * eg. VDSO mappings can cause them to exist.
692 */
693 out:
694 return pfn_to_page(pfn);
695 }
696 #endif
697
restore_exclusive_pte(struct vm_area_struct *vma, struct page *page, unsigned long address, pte_t *ptep)698 static void restore_exclusive_pte(struct vm_area_struct *vma,
699 struct page *page, unsigned long address,
700 pte_t *ptep)
701 {
702 pte_t orig_pte;
703 pte_t pte;
704 swp_entry_t entry;
705
706 orig_pte = ptep_get(ptep);
707 pte = pte_mkold(mk_pte(page, READ_ONCE(vma->vm_page_prot)));
708 if (pte_swp_soft_dirty(orig_pte))
709 pte = pte_mksoft_dirty(pte);
710
711 entry = pte_to_swp_entry(orig_pte);
712 if (pte_swp_uffd_wp(orig_pte))
713 pte = pte_mkuffd_wp(pte);
714 else if (is_writable_device_exclusive_entry(entry))
715 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
716
717 VM_BUG_ON(pte_write(pte) && !(PageAnon(page) && PageAnonExclusive(page)));
718
719 /*
720 * No need to take a page reference as one was already
721 * created when the swap entry was made.
722 */
723 if (PageAnon(page))
724 page_add_anon_rmap(page, vma, address, RMAP_NONE);
725 else
726 /*
727 * Currently device exclusive access only supports anonymous
728 * memory so the entry shouldn't point to a filebacked page.
729 */
730 WARN_ON_ONCE(1);
731
732 set_pte_at(vma->vm_mm, address, ptep, pte);
733
734 /*
735 * No need to invalidate - it was non-present before. However
736 * secondary CPUs may have mappings that need invalidating.
737 */
738 update_mmu_cache(vma, address, ptep);
739 }
740
741 /*
742 * Tries to restore an exclusive pte if the page lock can be acquired without
743 * sleeping.
744 */
745 static int
try_restore_exclusive_pte(pte_t *src_pte, struct vm_area_struct *vma, unsigned long addr)746 try_restore_exclusive_pte(pte_t *src_pte, struct vm_area_struct *vma,
747 unsigned long addr)
748 {
749 swp_entry_t entry = pte_to_swp_entry(ptep_get(src_pte));
750 struct page *page = pfn_swap_entry_to_page(entry);
751
752 if (trylock_page(page)) {
753 restore_exclusive_pte(vma, page, addr, src_pte);
754 unlock_page(page);
755 return 0;
756 }
757
758 return -EBUSY;
759 }
760
761 /*
762 * copy one vm_area from one task to the other. Assumes the page tables
763 * already present in the new task to be cleared in the whole range
764 * covered by this vma.
765 */
766
767 static unsigned long
copy_nonpresent_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm, pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, unsigned long addr, int *rss)768 copy_nonpresent_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
769 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *dst_vma,
770 struct vm_area_struct *src_vma, unsigned long addr, int *rss)
771 {
772 unsigned long vm_flags = dst_vma->vm_flags;
773 pte_t orig_pte = ptep_get(src_pte);
774 pte_t pte = orig_pte;
775 struct page *page;
776 swp_entry_t entry = pte_to_swp_entry(orig_pte);
777
778 if (likely(!non_swap_entry(entry))) {
779 if (swap_duplicate(entry) < 0)
780 return -EIO;
781
782 /* make sure dst_mm is on swapoff's mmlist. */
783 if (unlikely(list_empty(&dst_mm->mmlist))) {
784 spin_lock(&mmlist_lock);
785 if (list_empty(&dst_mm->mmlist))
786 list_add(&dst_mm->mmlist,
787 &src_mm->mmlist);
788 spin_unlock(&mmlist_lock);
789 }
790 /* Mark the swap entry as shared. */
791 if (pte_swp_exclusive(orig_pte)) {
792 pte = pte_swp_clear_exclusive(orig_pte);
793 set_pte_at(src_mm, addr, src_pte, pte);
794 }
795 rss[MM_SWAPENTS]++;
796 } else if (is_migration_entry(entry)) {
797 page = pfn_swap_entry_to_page(entry);
798
799 rss[mm_counter(page)]++;
800
801 if (!is_readable_migration_entry(entry) &&
802 is_cow_mapping(vm_flags)) {
803 /*
804 * COW mappings require pages in both parent and child
805 * to be set to read. A previously exclusive entry is
806 * now shared.
807 */
808 entry = make_readable_migration_entry(
809 swp_offset(entry));
810 pte = swp_entry_to_pte(entry);
811 if (pte_swp_soft_dirty(orig_pte))
812 pte = pte_swp_mksoft_dirty(pte);
813 if (pte_swp_uffd_wp(orig_pte))
814 pte = pte_swp_mkuffd_wp(pte);
815 set_pte_at(src_mm, addr, src_pte, pte);
816 }
817 } else if (is_device_private_entry(entry)) {
818 page = pfn_swap_entry_to_page(entry);
819
820 /*
821 * Update rss count even for unaddressable pages, as
822 * they should treated just like normal pages in this
823 * respect.
824 *
825 * We will likely want to have some new rss counters
826 * for unaddressable pages, at some point. But for now
827 * keep things as they are.
828 */
829 get_page(page);
830 rss[mm_counter(page)]++;
831 /* Cannot fail as these pages cannot get pinned. */
832 BUG_ON(page_try_dup_anon_rmap(page, false, src_vma));
833
834 /*
835 * We do not preserve soft-dirty information, because so
836 * far, checkpoint/restore is the only feature that
837 * requires that. And checkpoint/restore does not work
838 * when a device driver is involved (you cannot easily
839 * save and restore device driver state).
840 */
841 if (is_writable_device_private_entry(entry) &&
842 is_cow_mapping(vm_flags)) {
843 entry = make_readable_device_private_entry(
844 swp_offset(entry));
845 pte = swp_entry_to_pte(entry);
846 if (pte_swp_uffd_wp(orig_pte))
847 pte = pte_swp_mkuffd_wp(pte);
848 set_pte_at(src_mm, addr, src_pte, pte);
849 }
850 } else if (is_device_exclusive_entry(entry)) {
851 /*
852 * Make device exclusive entries present by restoring the
853 * original entry then copying as for a present pte. Device
854 * exclusive entries currently only support private writable
855 * (ie. COW) mappings.
856 */
857 VM_BUG_ON(!is_cow_mapping(src_vma->vm_flags));
858 if (try_restore_exclusive_pte(src_pte, src_vma, addr))
859 return -EBUSY;
860 return -ENOENT;
861 } else if (is_pte_marker_entry(entry)) {
862 pte_marker marker = copy_pte_marker(entry, dst_vma);
863
864 if (marker)
865 set_pte_at(dst_mm, addr, dst_pte,
866 make_pte_marker(marker));
867 return 0;
868 }
869 if (!userfaultfd_wp(dst_vma))
870 pte = pte_swp_clear_uffd_wp(pte);
871 set_pte_at(dst_mm, addr, dst_pte, pte);
872 return 0;
873 }
874
875 /*
876 * Copy a present and normal page.
877 *
878 * NOTE! The usual case is that this isn't required;
879 * instead, the caller can just increase the page refcount
880 * and re-use the pte the traditional way.
881 *
882 * And if we need a pre-allocated page but don't yet have
883 * one, return a negative error to let the preallocation
884 * code know so that it can do so outside the page table
885 * lock.
886 */
887 static inline int
copy_present_page(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss, struct folio **prealloc, struct page *page)888 copy_present_page(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
889 pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss,
890 struct folio **prealloc, struct page *page)
891 {
892 struct folio *new_folio;
893 pte_t pte;
894
895 new_folio = *prealloc;
896 if (!new_folio)
897 return -EAGAIN;
898
899 /*
900 * We have a prealloc page, all good! Take it
901 * over and copy the page & arm it.
902 */
903 *prealloc = NULL;
904 copy_user_highpage(&new_folio->page, page, addr, src_vma);
905 __folio_mark_uptodate(new_folio);
906 folio_add_new_anon_rmap(new_folio, dst_vma, addr);
907 folio_add_lru_vma(new_folio, dst_vma);
908 rss[MM_ANONPAGES]++;
909
910 /* All done, just insert the new page copy in the child */
911 pte = mk_pte(&new_folio->page, dst_vma->vm_page_prot);
912 pte = maybe_mkwrite(pte_mkdirty(pte), dst_vma);
913 if (userfaultfd_pte_wp(dst_vma, ptep_get(src_pte)))
914 /* Uffd-wp needs to be delivered to dest pte as well */
915 pte = pte_mkuffd_wp(pte);
916 set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte);
917 return 0;
918 }
919
920 /*
921 * Copy one pte. Returns 0 if succeeded, or -EAGAIN if one preallocated page
922 * is required to copy this pte.
923 */
924 static inline int
copy_present_pte(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss, struct folio **prealloc)925 copy_present_pte(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
926 pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss,
927 struct folio **prealloc)
928 {
929 struct mm_struct *src_mm = src_vma->vm_mm;
930 unsigned long vm_flags = src_vma->vm_flags;
931 pte_t pte = ptep_get(src_pte);
932 struct page *page;
933 struct folio *folio;
934
935 page = vm_normal_page(src_vma, addr, pte);
936 if (page)
937 folio = page_folio(page);
938 if (page && folio_test_anon(folio)) {
939 /*
940 * If this page may have been pinned by the parent process,
941 * copy the page immediately for the child so that we'll always
942 * guarantee the pinned page won't be randomly replaced in the
943 * future.
944 */
945 folio_get(folio);
946 if (unlikely(page_try_dup_anon_rmap(page, false, src_vma))) {
947 /* Page may be pinned, we have to copy. */
948 folio_put(folio);
949 return copy_present_page(dst_vma, src_vma, dst_pte, src_pte,
950 addr, rss, prealloc, page);
951 }
952 rss[MM_ANONPAGES]++;
953 } else if (page) {
954 folio_get(folio);
955 page_dup_file_rmap(page, false);
956 rss[mm_counter_file(page)]++;
957 }
958
959 /*
960 * If it's a COW mapping, write protect it both
961 * in the parent and the child
962 */
963 if (is_cow_mapping(vm_flags) && pte_write(pte)) {
964 ptep_set_wrprotect(src_mm, addr, src_pte);
965 pte = pte_wrprotect(pte);
966 }
967 VM_BUG_ON(page && folio_test_anon(folio) && PageAnonExclusive(page));
968
969 /*
970 * If it's a shared mapping, mark it clean in
971 * the child
972 */
973 if (vm_flags & VM_SHARED)
974 pte = pte_mkclean(pte);
975 pte = pte_mkold(pte);
976
977 if (!userfaultfd_wp(dst_vma))
978 pte = pte_clear_uffd_wp(pte);
979
980 set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte);
981 return 0;
982 }
983
page_copy_prealloc(struct mm_struct *src_mm, struct vm_area_struct *vma, unsigned long addr)984 static inline struct folio *page_copy_prealloc(struct mm_struct *src_mm,
985 struct vm_area_struct *vma, unsigned long addr)
986 {
987 struct folio *new_folio;
988
989 new_folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0, vma, addr, false);
990 if (!new_folio)
991 return NULL;
992
993 if (mem_cgroup_charge(new_folio, src_mm, GFP_KERNEL)) {
994 folio_put(new_folio);
995 return NULL;
996 }
997 folio_throttle_swaprate(new_folio, GFP_KERNEL);
998
999 return new_folio;
1000 }
1001
1002 static int
copy_pte_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr, unsigned long end)1003 copy_pte_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1004 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
1005 unsigned long end)
1006 {
1007 struct mm_struct *dst_mm = dst_vma->vm_mm;
1008 struct mm_struct *src_mm = src_vma->vm_mm;
1009 pte_t *orig_src_pte, *orig_dst_pte;
1010 pte_t *src_pte, *dst_pte;
1011 pte_t ptent;
1012 spinlock_t *src_ptl, *dst_ptl;
1013 int progress, ret = 0;
1014 int rss[NR_MM_COUNTERS];
1015 swp_entry_t entry = (swp_entry_t){0};
1016 struct folio *prealloc = NULL;
1017
1018 again:
1019 progress = 0;
1020 init_rss_vec(rss);
1021
1022 /*
1023 * copy_pmd_range()'s prior pmd_none_or_clear_bad(src_pmd), and the
1024 * error handling here, assume that exclusive mmap_lock on dst and src
1025 * protects anon from unexpected THP transitions; with shmem and file
1026 * protected by mmap_lock-less collapse skipping areas with anon_vma
1027 * (whereas vma_needs_copy() skips areas without anon_vma). A rework
1028 * can remove such assumptions later, but this is good enough for now.
1029 */
1030 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
1031 if (!dst_pte) {
1032 ret = -ENOMEM;
1033 goto out;
1034 }
1035 src_pte = pte_offset_map_nolock(src_mm, src_pmd, addr, &src_ptl);
1036 if (!src_pte) {
1037 pte_unmap_unlock(dst_pte, dst_ptl);
1038 /* ret == 0 */
1039 goto out;
1040 }
1041 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1042 orig_src_pte = src_pte;
1043 orig_dst_pte = dst_pte;
1044 arch_enter_lazy_mmu_mode();
1045
1046 do {
1047 /*
1048 * We are holding two locks at this point - either of them
1049 * could generate latencies in another task on another CPU.
1050 */
1051 if (progress >= 32) {
1052 progress = 0;
1053 if (need_resched() ||
1054 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
1055 break;
1056 }
1057 ptent = ptep_get(src_pte);
1058 if (pte_none(ptent)) {
1059 progress++;
1060 continue;
1061 }
1062 if (unlikely(!pte_present(ptent))) {
1063 ret = copy_nonpresent_pte(dst_mm, src_mm,
1064 dst_pte, src_pte,
1065 dst_vma, src_vma,
1066 addr, rss);
1067 if (ret == -EIO) {
1068 entry = pte_to_swp_entry(ptep_get(src_pte));
1069 break;
1070 } else if (ret == -EBUSY) {
1071 break;
1072 } else if (!ret) {
1073 progress += 8;
1074 continue;
1075 }
1076
1077 /*
1078 * Device exclusive entry restored, continue by copying
1079 * the now present pte.
1080 */
1081 WARN_ON_ONCE(ret != -ENOENT);
1082 }
1083 /* copy_present_pte() will clear `*prealloc' if consumed */
1084 ret = copy_present_pte(dst_vma, src_vma, dst_pte, src_pte,
1085 addr, rss, &prealloc);
1086 /*
1087 * If we need a pre-allocated page for this pte, drop the
1088 * locks, allocate, and try again.
1089 */
1090 if (unlikely(ret == -EAGAIN))
1091 break;
1092 if (unlikely(prealloc)) {
1093 /*
1094 * pre-alloc page cannot be reused by next time so as
1095 * to strictly follow mempolicy (e.g., alloc_page_vma()
1096 * will allocate page according to address). This
1097 * could only happen if one pinned pte changed.
1098 */
1099 folio_put(prealloc);
1100 prealloc = NULL;
1101 }
1102 progress += 8;
1103 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
1104
1105 arch_leave_lazy_mmu_mode();
1106 pte_unmap_unlock(orig_src_pte, src_ptl);
1107 add_mm_rss_vec(dst_mm, rss);
1108 pte_unmap_unlock(orig_dst_pte, dst_ptl);
1109 cond_resched();
1110
1111 if (ret == -EIO) {
1112 VM_WARN_ON_ONCE(!entry.val);
1113 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0) {
1114 ret = -ENOMEM;
1115 goto out;
1116 }
1117 entry.val = 0;
1118 } else if (ret == -EBUSY) {
1119 goto out;
1120 } else if (ret == -EAGAIN) {
1121 prealloc = page_copy_prealloc(src_mm, src_vma, addr);
1122 if (!prealloc)
1123 return -ENOMEM;
1124 } else if (ret) {
1125 VM_WARN_ON_ONCE(1);
1126 }
1127
1128 /* We've captured and resolved the error. Reset, try again. */
1129 ret = 0;
1130
1131 if (addr != end)
1132 goto again;
1133 out:
1134 if (unlikely(prealloc))
1135 folio_put(prealloc);
1136 return ret;
1137 }
1138
1139 static inline int
copy_pmd_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, pud_t *dst_pud, pud_t *src_pud, unsigned long addr, unsigned long end)1140 copy_pmd_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1141 pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1142 unsigned long end)
1143 {
1144 struct mm_struct *dst_mm = dst_vma->vm_mm;
1145 struct mm_struct *src_mm = src_vma->vm_mm;
1146 pmd_t *src_pmd, *dst_pmd;
1147 unsigned long next;
1148
1149 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
1150 if (!dst_pmd)
1151 return -ENOMEM;
1152 src_pmd = pmd_offset(src_pud, addr);
1153 do {
1154 next = pmd_addr_end(addr, end);
1155 if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd)
1156 || pmd_devmap(*src_pmd)) {
1157 int err;
1158 VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, src_vma);
1159 err = copy_huge_pmd(dst_mm, src_mm, dst_pmd, src_pmd,
1160 addr, dst_vma, src_vma);
1161 if (err == -ENOMEM)
1162 return -ENOMEM;
1163 if (!err)
1164 continue;
1165 /* fall through */
1166 }
1167 if (pmd_none_or_clear_bad(src_pmd))
1168 continue;
1169 if (copy_pte_range(dst_vma, src_vma, dst_pmd, src_pmd,
1170 addr, next))
1171 return -ENOMEM;
1172 } while (dst_pmd++, src_pmd++, addr = next, addr != end);
1173 return 0;
1174 }
1175
1176 static inline int
copy_pud_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, p4d_t *dst_p4d, p4d_t *src_p4d, unsigned long addr, unsigned long end)1177 copy_pud_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1178 p4d_t *dst_p4d, p4d_t *src_p4d, unsigned long addr,
1179 unsigned long end)
1180 {
1181 struct mm_struct *dst_mm = dst_vma->vm_mm;
1182 struct mm_struct *src_mm = src_vma->vm_mm;
1183 pud_t *src_pud, *dst_pud;
1184 unsigned long next;
1185
1186 dst_pud = pud_alloc(dst_mm, dst_p4d, addr);
1187 if (!dst_pud)
1188 return -ENOMEM;
1189 src_pud = pud_offset(src_p4d, addr);
1190 do {
1191 next = pud_addr_end(addr, end);
1192 if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) {
1193 int err;
1194
1195 VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, src_vma);
1196 err = copy_huge_pud(dst_mm, src_mm,
1197 dst_pud, src_pud, addr, src_vma);
1198 if (err == -ENOMEM)
1199 return -ENOMEM;
1200 if (!err)
1201 continue;
1202 /* fall through */
1203 }
1204 if (pud_none_or_clear_bad(src_pud))
1205 continue;
1206 if (copy_pmd_range(dst_vma, src_vma, dst_pud, src_pud,
1207 addr, next))
1208 return -ENOMEM;
1209 } while (dst_pud++, src_pud++, addr = next, addr != end);
1210 return 0;
1211 }
1212
1213 static inline int
copy_p4d_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, pgd_t *dst_pgd, pgd_t *src_pgd, unsigned long addr, unsigned long end)1214 copy_p4d_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1215 pgd_t *dst_pgd, pgd_t *src_pgd, unsigned long addr,
1216 unsigned long end)
1217 {
1218 struct mm_struct *dst_mm = dst_vma->vm_mm;
1219 p4d_t *src_p4d, *dst_p4d;
1220 unsigned long next;
1221
1222 dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr);
1223 if (!dst_p4d)
1224 return -ENOMEM;
1225 src_p4d = p4d_offset(src_pgd, addr);
1226 do {
1227 next = p4d_addr_end(addr, end);
1228 if (p4d_none_or_clear_bad(src_p4d))
1229 continue;
1230 if (copy_pud_range(dst_vma, src_vma, dst_p4d, src_p4d,
1231 addr, next))
1232 return -ENOMEM;
1233 } while (dst_p4d++, src_p4d++, addr = next, addr != end);
1234 return 0;
1235 }
1236
1237 /*
1238 * Return true if the vma needs to copy the pgtable during this fork(). Return
1239 * false when we can speed up fork() by allowing lazy page faults later until
1240 * when the child accesses the memory range.
1241 */
1242 static bool
vma_needs_copy(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)1243 vma_needs_copy(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1244 {
1245 /*
1246 * Always copy pgtables when dst_vma has uffd-wp enabled even if it's
1247 * file-backed (e.g. shmem). Because when uffd-wp is enabled, pgtable
1248 * contains uffd-wp protection information, that's something we can't
1249 * retrieve from page cache, and skip copying will lose those info.
1250 */
1251 if (userfaultfd_wp(dst_vma))
1252 return true;
1253
1254 if (src_vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
1255 return true;
1256
1257 if (src_vma->anon_vma)
1258 return true;
1259
1260 /*
1261 * Don't copy ptes where a page fault will fill them correctly. Fork
1262 * becomes much lighter when there are big shared or private readonly
1263 * mappings. The tradeoff is that copy_page_range is more efficient
1264 * than faulting.
1265 */
1266 return false;
1267 }
1268
1269 int
copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)1270 copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1271 {
1272 pgd_t *src_pgd, *dst_pgd;
1273 unsigned long next;
1274 unsigned long addr = src_vma->vm_start;
1275 unsigned long end = src_vma->vm_end;
1276 struct mm_struct *dst_mm = dst_vma->vm_mm;
1277 struct mm_struct *src_mm = src_vma->vm_mm;
1278 struct mmu_notifier_range range;
1279 bool is_cow;
1280 int ret;
1281
1282 if (!vma_needs_copy(dst_vma, src_vma))
1283 return 0;
1284
1285 if (is_vm_hugetlb_page(src_vma))
1286 return copy_hugetlb_page_range(dst_mm, src_mm, dst_vma, src_vma);
1287
1288 if (unlikely(src_vma->vm_flags & VM_PFNMAP)) {
1289 /*
1290 * We do not free on error cases below as remove_vma
1291 * gets called on error from higher level routine
1292 */
1293 ret = track_pfn_copy(src_vma);
1294 if (ret)
1295 return ret;
1296 }
1297
1298 /*
1299 * We need to invalidate the secondary MMU mappings only when
1300 * there could be a permission downgrade on the ptes of the
1301 * parent mm. And a permission downgrade will only happen if
1302 * is_cow_mapping() returns true.
1303 */
1304 is_cow = is_cow_mapping(src_vma->vm_flags);
1305
1306 if (is_cow) {
1307 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE,
1308 0, src_mm, addr, end);
1309 mmu_notifier_invalidate_range_start(&range);
1310 /*
1311 * Disabling preemption is not needed for the write side, as
1312 * the read side doesn't spin, but goes to the mmap_lock.
1313 *
1314 * Use the raw variant of the seqcount_t write API to avoid
1315 * lockdep complaining about preemptibility.
1316 */
1317 vma_assert_write_locked(src_vma);
1318 raw_write_seqcount_begin(&src_mm->write_protect_seq);
1319 }
1320
1321 ret = 0;
1322 dst_pgd = pgd_offset(dst_mm, addr);
1323 src_pgd = pgd_offset(src_mm, addr);
1324 do {
1325 next = pgd_addr_end(addr, end);
1326 if (pgd_none_or_clear_bad(src_pgd))
1327 continue;
1328 if (unlikely(copy_p4d_range(dst_vma, src_vma, dst_pgd, src_pgd,
1329 addr, next))) {
1330 untrack_pfn_clear(dst_vma);
1331 ret = -ENOMEM;
1332 break;
1333 }
1334 } while (dst_pgd++, src_pgd++, addr = next, addr != end);
1335
1336 if (is_cow) {
1337 raw_write_seqcount_end(&src_mm->write_protect_seq);
1338 mmu_notifier_invalidate_range_end(&range);
1339 }
1340 return ret;
1341 }
1342
1343 /* Whether we should zap all COWed (private) pages too */
should_zap_cows(struct zap_details *details)1344 static inline bool should_zap_cows(struct zap_details *details)
1345 {
1346 /* By default, zap all pages */
1347 if (!details)
1348 return true;
1349
1350 /* Or, we zap COWed pages only if the caller wants to */
1351 return details->even_cows;
1352 }
1353
1354 /* Decides whether we should zap this page with the page pointer specified */
should_zap_page(struct zap_details *details, struct page *page)1355 static inline bool should_zap_page(struct zap_details *details, struct page *page)
1356 {
1357 /* If we can make a decision without *page.. */
1358 if (should_zap_cows(details))
1359 return true;
1360
1361 /* E.g. the caller passes NULL for the case of a zero page */
1362 if (!page)
1363 return true;
1364
1365 /* Otherwise we should only zap non-anon pages */
1366 return !PageAnon(page);
1367 }
1368
zap_drop_file_uffd_wp(struct zap_details *details)1369 static inline bool zap_drop_file_uffd_wp(struct zap_details *details)
1370 {
1371 if (!details)
1372 return false;
1373
1374 return details->zap_flags & ZAP_FLAG_DROP_MARKER;
1375 }
1376
1377 /*
1378 * This function makes sure that we'll replace the none pte with an uffd-wp
1379 * swap special pte marker when necessary. Must be with the pgtable lock held.
1380 */
1381 static inline void
zap_install_uffd_wp_if_needed(struct vm_area_struct *vma, unsigned long addr, pte_t *pte, struct zap_details *details, pte_t pteval)1382 zap_install_uffd_wp_if_needed(struct vm_area_struct *vma,
1383 unsigned long addr, pte_t *pte,
1384 struct zap_details *details, pte_t pteval)
1385 {
1386 /* Zap on anonymous always means dropping everything */
1387 if (vma_is_anonymous(vma))
1388 return;
1389
1390 if (zap_drop_file_uffd_wp(details))
1391 return;
1392
1393 pte_install_uffd_wp_if_needed(vma, addr, pte, pteval);
1394 }
1395
zap_pte_range(struct mmu_gather *tlb, struct vm_area_struct *vma, pmd_t *pmd, unsigned long addr, unsigned long end, struct zap_details *details)1396 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1397 struct vm_area_struct *vma, pmd_t *pmd,
1398 unsigned long addr, unsigned long end,
1399 struct zap_details *details)
1400 {
1401 struct mm_struct *mm = tlb->mm;
1402 int force_flush = 0;
1403 int rss[NR_MM_COUNTERS];
1404 spinlock_t *ptl;
1405 pte_t *start_pte;
1406 pte_t *pte;
1407 swp_entry_t entry;
1408
1409 tlb_change_page_size(tlb, PAGE_SIZE);
1410 init_rss_vec(rss);
1411 start_pte = pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1412 if (!pte)
1413 return addr;
1414
1415 flush_tlb_batched_pending(mm);
1416 arch_enter_lazy_mmu_mode();
1417 do {
1418 pte_t ptent = ptep_get(pte);
1419 struct page *page;
1420
1421 if (pte_none(ptent))
1422 continue;
1423
1424 if (need_resched())
1425 break;
1426
1427 if (pte_present(ptent)) {
1428 unsigned int delay_rmap;
1429
1430 page = vm_normal_page(vma, addr, ptent);
1431 #ifdef CONFIG_MEM_PURGEABLE
1432 if (vma->vm_flags & VM_USEREXPTE)
1433 page = NULL;
1434 #endif
1435 if (unlikely(!should_zap_page(details, page)))
1436 continue;
1437 ptent = ptep_get_and_clear_full(mm, addr, pte,
1438 tlb->fullmm);
1439 arch_check_zapped_pte(vma, ptent);
1440 tlb_remove_tlb_entry(tlb, pte, addr);
1441 zap_install_uffd_wp_if_needed(vma, addr, pte, details,
1442 ptent);
1443 if (unlikely(!page)) {
1444 ksm_might_unmap_zero_page(mm, ptent);
1445 continue;
1446 }
1447 #ifdef CONFIG_MEM_PURGEABLE
1448 if (vma->vm_flags & VM_PURGEABLE)
1449 uxpte_clear_present(vma, addr);
1450 #endif
1451 delay_rmap = 0;
1452 if (!PageAnon(page)) {
1453 if (pte_dirty(ptent)) {
1454 set_page_dirty(page);
1455 if (tlb_delay_rmap(tlb)) {
1456 delay_rmap = 1;
1457 force_flush = 1;
1458 }
1459 }
1460 if (pte_young(ptent) && likely(vma_has_recency(vma)))
1461 mark_page_accessed(page);
1462 }
1463 rss[mm_counter(page)]--;
1464 if (!delay_rmap) {
1465 page_remove_rmap(page, vma, false);
1466 if (unlikely(page_mapcount(page) < 0))
1467 print_bad_pte(vma, addr, ptent, page);
1468 }
1469 if (unlikely(__tlb_remove_page(tlb, page, delay_rmap))) {
1470 force_flush = 1;
1471 addr += PAGE_SIZE;
1472 break;
1473 }
1474 continue;
1475 }
1476
1477 entry = pte_to_swp_entry(ptent);
1478 if (is_device_private_entry(entry) ||
1479 is_device_exclusive_entry(entry)) {
1480 page = pfn_swap_entry_to_page(entry);
1481 if (unlikely(!should_zap_page(details, page)))
1482 continue;
1483 /*
1484 * Both device private/exclusive mappings should only
1485 * work with anonymous page so far, so we don't need to
1486 * consider uffd-wp bit when zap. For more information,
1487 * see zap_install_uffd_wp_if_needed().
1488 */
1489 WARN_ON_ONCE(!vma_is_anonymous(vma));
1490 rss[mm_counter(page)]--;
1491 if (is_device_private_entry(entry))
1492 page_remove_rmap(page, vma, false);
1493 put_page(page);
1494 } else if (!non_swap_entry(entry)) {
1495 /* Genuine swap entry, hence a private anon page */
1496 if (!should_zap_cows(details))
1497 continue;
1498 rss[MM_SWAPENTS]--;
1499 if (unlikely(!free_swap_and_cache(entry)))
1500 print_bad_pte(vma, addr, ptent, NULL);
1501 } else if (is_migration_entry(entry)) {
1502 page = pfn_swap_entry_to_page(entry);
1503 if (!should_zap_page(details, page))
1504 continue;
1505 rss[mm_counter(page)]--;
1506 } else if (pte_marker_entry_uffd_wp(entry)) {
1507 /*
1508 * For anon: always drop the marker; for file: only
1509 * drop the marker if explicitly requested.
1510 */
1511 if (!vma_is_anonymous(vma) &&
1512 !zap_drop_file_uffd_wp(details))
1513 continue;
1514 } else if (is_hwpoison_entry(entry) ||
1515 is_poisoned_swp_entry(entry)) {
1516 if (!should_zap_cows(details))
1517 continue;
1518 } else {
1519 /* We should have covered all the swap entry types */
1520 WARN_ON_ONCE(1);
1521 }
1522 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1523 zap_install_uffd_wp_if_needed(vma, addr, pte, details, ptent);
1524 } while (pte++, addr += PAGE_SIZE, addr != end);
1525
1526 add_mm_rss_vec(mm, rss);
1527 arch_leave_lazy_mmu_mode();
1528
1529 /* Do the actual TLB flush before dropping ptl */
1530 if (force_flush) {
1531 tlb_flush_mmu_tlbonly(tlb);
1532 tlb_flush_rmaps(tlb, vma);
1533 }
1534 pte_unmap_unlock(start_pte, ptl);
1535
1536 /*
1537 * If we forced a TLB flush (either due to running out of
1538 * batch buffers or because we needed to flush dirty TLB
1539 * entries before releasing the ptl), free the batched
1540 * memory too. Come back again if we didn't do everything.
1541 */
1542 if (force_flush)
1543 tlb_flush_mmu(tlb);
1544
1545 return addr;
1546 }
1547
zap_pmd_range(struct mmu_gather *tlb, struct vm_area_struct *vma, pud_t *pud, unsigned long addr, unsigned long end, struct zap_details *details)1548 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1549 struct vm_area_struct *vma, pud_t *pud,
1550 unsigned long addr, unsigned long end,
1551 struct zap_details *details)
1552 {
1553 pmd_t *pmd;
1554 unsigned long next;
1555
1556 pmd = pmd_offset(pud, addr);
1557 do {
1558 next = pmd_addr_end(addr, end);
1559 if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
1560 if (next - addr != HPAGE_PMD_SIZE)
1561 __split_huge_pmd(vma, pmd, addr, false, NULL);
1562 else if (zap_huge_pmd(tlb, vma, pmd, addr)) {
1563 addr = next;
1564 continue;
1565 }
1566 /* fall through */
1567 } else if (details && details->single_folio &&
1568 folio_test_pmd_mappable(details->single_folio) &&
1569 next - addr == HPAGE_PMD_SIZE && pmd_none(*pmd)) {
1570 spinlock_t *ptl = pmd_lock(tlb->mm, pmd);
1571 /*
1572 * Take and drop THP pmd lock so that we cannot return
1573 * prematurely, while zap_huge_pmd() has cleared *pmd,
1574 * but not yet decremented compound_mapcount().
1575 */
1576 spin_unlock(ptl);
1577 }
1578 if (pmd_none(*pmd)) {
1579 addr = next;
1580 continue;
1581 }
1582 addr = zap_pte_range(tlb, vma, pmd, addr, next, details);
1583 if (addr != next)
1584 pmd--;
1585 } while (pmd++, cond_resched(), addr != end);
1586
1587 return addr;
1588 }
1589
zap_pud_range(struct mmu_gather *tlb, struct vm_area_struct *vma, p4d_t *p4d, unsigned long addr, unsigned long end, struct zap_details *details)1590 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1591 struct vm_area_struct *vma, p4d_t *p4d,
1592 unsigned long addr, unsigned long end,
1593 struct zap_details *details)
1594 {
1595 pud_t *pud;
1596 unsigned long next;
1597
1598 pud = pud_offset(p4d, addr);
1599 do {
1600 next = pud_addr_end(addr, end);
1601 if (pud_trans_huge(*pud) || pud_devmap(*pud)) {
1602 if (next - addr != HPAGE_PUD_SIZE) {
1603 mmap_assert_locked(tlb->mm);
1604 split_huge_pud(vma, pud, addr);
1605 } else if (zap_huge_pud(tlb, vma, pud, addr))
1606 goto next;
1607 /* fall through */
1608 }
1609 if (pud_none_or_clear_bad(pud))
1610 continue;
1611 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1612 next:
1613 cond_resched();
1614 } while (pud++, addr = next, addr != end);
1615
1616 return addr;
1617 }
1618
zap_p4d_range(struct mmu_gather *tlb, struct vm_area_struct *vma, pgd_t *pgd, unsigned long addr, unsigned long end, struct zap_details *details)1619 static inline unsigned long zap_p4d_range(struct mmu_gather *tlb,
1620 struct vm_area_struct *vma, pgd_t *pgd,
1621 unsigned long addr, unsigned long end,
1622 struct zap_details *details)
1623 {
1624 p4d_t *p4d;
1625 unsigned long next;
1626
1627 p4d = p4d_offset(pgd, addr);
1628 do {
1629 next = p4d_addr_end(addr, end);
1630 if (p4d_none_or_clear_bad(p4d))
1631 continue;
1632 next = zap_pud_range(tlb, vma, p4d, addr, next, details);
1633 } while (p4d++, addr = next, addr != end);
1634
1635 return addr;
1636 }
1637
unmap_page_range(struct mmu_gather *tlb, struct vm_area_struct *vma, unsigned long addr, unsigned long end, struct zap_details *details)1638 void unmap_page_range(struct mmu_gather *tlb,
1639 struct vm_area_struct *vma,
1640 unsigned long addr, unsigned long end,
1641 struct zap_details *details)
1642 {
1643 pgd_t *pgd;
1644 unsigned long next;
1645
1646 BUG_ON(addr >= end);
1647 tlb_start_vma(tlb, vma);
1648 pgd = pgd_offset(vma->vm_mm, addr);
1649 do {
1650 next = pgd_addr_end(addr, end);
1651 if (pgd_none_or_clear_bad(pgd))
1652 continue;
1653 next = zap_p4d_range(tlb, vma, pgd, addr, next, details);
1654 } while (pgd++, addr = next, addr != end);
1655 tlb_end_vma(tlb, vma);
1656 }
1657
1658
unmap_single_vma(struct mmu_gather *tlb, struct vm_area_struct *vma, unsigned long start_addr, unsigned long end_addr, struct zap_details *details, bool mm_wr_locked)1659 static void unmap_single_vma(struct mmu_gather *tlb,
1660 struct vm_area_struct *vma, unsigned long start_addr,
1661 unsigned long end_addr,
1662 struct zap_details *details, bool mm_wr_locked)
1663 {
1664 unsigned long start = max(vma->vm_start, start_addr);
1665 unsigned long end;
1666
1667 if (start >= vma->vm_end)
1668 return;
1669 end = min(vma->vm_end, end_addr);
1670 if (end <= vma->vm_start)
1671 return;
1672
1673 if (vma->vm_file)
1674 uprobe_munmap(vma, start, end);
1675
1676 if (unlikely(vma->vm_flags & VM_PFNMAP))
1677 untrack_pfn(vma, 0, 0, mm_wr_locked);
1678
1679 if (start != end) {
1680 if (unlikely(is_vm_hugetlb_page(vma))) {
1681 /*
1682 * It is undesirable to test vma->vm_file as it
1683 * should be non-null for valid hugetlb area.
1684 * However, vm_file will be NULL in the error
1685 * cleanup path of mmap_region. When
1686 * hugetlbfs ->mmap method fails,
1687 * mmap_region() nullifies vma->vm_file
1688 * before calling this function to clean up.
1689 * Since no pte has actually been setup, it is
1690 * safe to do nothing in this case.
1691 */
1692 if (vma->vm_file) {
1693 zap_flags_t zap_flags = details ?
1694 details->zap_flags : 0;
1695 __unmap_hugepage_range(tlb, vma, start, end,
1696 NULL, zap_flags);
1697 }
1698 } else
1699 unmap_page_range(tlb, vma, start, end, details);
1700 }
1701 }
1702
1703 /**
1704 * unmap_vmas - unmap a range of memory covered by a list of vma's
1705 * @tlb: address of the caller's struct mmu_gather
1706 * @mas: the maple state
1707 * @vma: the starting vma
1708 * @start_addr: virtual address at which to start unmapping
1709 * @end_addr: virtual address at which to end unmapping
1710 * @tree_end: The maximum index to check
1711 * @mm_wr_locked: lock flag
1712 *
1713 * Unmap all pages in the vma list.
1714 *
1715 * Only addresses between `start' and `end' will be unmapped.
1716 *
1717 * The VMA list must be sorted in ascending virtual address order.
1718 *
1719 * unmap_vmas() assumes that the caller will flush the whole unmapped address
1720 * range after unmap_vmas() returns. So the only responsibility here is to
1721 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1722 * drops the lock and schedules.
1723 */
unmap_vmas(struct mmu_gather *tlb, struct ma_state *mas, struct vm_area_struct *vma, unsigned long start_addr, unsigned long end_addr, unsigned long tree_end, bool mm_wr_locked)1724 void unmap_vmas(struct mmu_gather *tlb, struct ma_state *mas,
1725 struct vm_area_struct *vma, unsigned long start_addr,
1726 unsigned long end_addr, unsigned long tree_end,
1727 bool mm_wr_locked)
1728 {
1729 struct mmu_notifier_range range;
1730 struct zap_details details = {
1731 .zap_flags = ZAP_FLAG_DROP_MARKER | ZAP_FLAG_UNMAP,
1732 /* Careful - we need to zap private pages too! */
1733 .even_cows = true,
1734 };
1735
1736 mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma->vm_mm,
1737 start_addr, end_addr);
1738 mmu_notifier_invalidate_range_start(&range);
1739 do {
1740 unsigned long start = start_addr;
1741 unsigned long end = end_addr;
1742 hugetlb_zap_begin(vma, &start, &end);
1743 unmap_single_vma(tlb, vma, start, end, &details,
1744 mm_wr_locked);
1745 hugetlb_zap_end(vma, &details);
1746 } while ((vma = mas_find(mas, tree_end - 1)) != NULL);
1747 mmu_notifier_invalidate_range_end(&range);
1748 }
1749
1750 /**
1751 * zap_page_range_single - remove user pages in a given range
1752 * @vma: vm_area_struct holding the applicable pages
1753 * @address: starting address of pages to zap
1754 * @size: number of bytes to zap
1755 * @details: details of shared cache invalidation
1756 *
1757 * The range must fit into one VMA.
1758 */
zap_page_range_single(struct vm_area_struct *vma, unsigned long address, unsigned long size, struct zap_details *details)1759 void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1760 unsigned long size, struct zap_details *details)
1761 {
1762 const unsigned long end = address + size;
1763 struct mmu_notifier_range range;
1764 struct mmu_gather tlb;
1765
1766 lru_add_drain();
1767 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm,
1768 address, end);
1769 hugetlb_zap_begin(vma, &range.start, &range.end);
1770 tlb_gather_mmu(&tlb, vma->vm_mm);
1771 update_hiwater_rss(vma->vm_mm);
1772 mmu_notifier_invalidate_range_start(&range);
1773 /*
1774 * unmap 'address-end' not 'range.start-range.end' as range
1775 * could have been expanded for hugetlb pmd sharing.
1776 */
1777 unmap_single_vma(&tlb, vma, address, end, details, false);
1778 mmu_notifier_invalidate_range_end(&range);
1779 tlb_finish_mmu(&tlb);
1780 hugetlb_zap_end(vma, details);
1781 }
1782
1783 /**
1784 * zap_vma_ptes - remove ptes mapping the vma
1785 * @vma: vm_area_struct holding ptes to be zapped
1786 * @address: starting address of pages to zap
1787 * @size: number of bytes to zap
1788 *
1789 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1790 *
1791 * The entire address range must be fully contained within the vma.
1792 *
1793 */
zap_vma_ptes(struct vm_area_struct *vma, unsigned long address, unsigned long size)1794 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1795 unsigned long size)
1796 {
1797 if (!range_in_vma(vma, address, address + size) ||
1798 !(vma->vm_flags & VM_PFNMAP))
1799 return;
1800
1801 zap_page_range_single(vma, address, size, NULL);
1802 }
1803 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1804
walk_to_pmd(struct mm_struct *mm, unsigned long addr)1805 static pmd_t *walk_to_pmd(struct mm_struct *mm, unsigned long addr)
1806 {
1807 pgd_t *pgd;
1808 p4d_t *p4d;
1809 pud_t *pud;
1810 pmd_t *pmd;
1811
1812 pgd = pgd_offset(mm, addr);
1813 p4d = p4d_alloc(mm, pgd, addr);
1814 if (!p4d)
1815 return NULL;
1816 pud = pud_alloc(mm, p4d, addr);
1817 if (!pud)
1818 return NULL;
1819 pmd = pmd_alloc(mm, pud, addr);
1820 if (!pmd)
1821 return NULL;
1822
1823 VM_BUG_ON(pmd_trans_huge(*pmd));
1824 return pmd;
1825 }
1826
__get_locked_pte(struct mm_struct *mm, unsigned long addr, spinlock_t **ptl)1827 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1828 spinlock_t **ptl)
1829 {
1830 pmd_t *pmd = walk_to_pmd(mm, addr);
1831
1832 if (!pmd)
1833 return NULL;
1834 return pte_alloc_map_lock(mm, pmd, addr, ptl);
1835 }
1836
validate_page_before_insert(struct page *page)1837 static int validate_page_before_insert(struct page *page)
1838 {
1839 if (PageAnon(page) || PageSlab(page) || page_has_type(page))
1840 return -EINVAL;
1841 flush_dcache_page(page);
1842 return 0;
1843 }
1844
insert_page_into_pte_locked(struct vm_area_struct *vma, pte_t *pte, unsigned long addr, struct page *page, pgprot_t prot)1845 static int insert_page_into_pte_locked(struct vm_area_struct *vma, pte_t *pte,
1846 unsigned long addr, struct page *page, pgprot_t prot)
1847 {
1848 if (!pte_none(ptep_get(pte)))
1849 return -EBUSY;
1850 /* Ok, finally just insert the thing.. */
1851 get_page(page);
1852 inc_mm_counter(vma->vm_mm, mm_counter_file(page));
1853 page_add_file_rmap(page, vma, false);
1854 set_pte_at(vma->vm_mm, addr, pte, mk_pte(page, prot));
1855 return 0;
1856 }
1857
1858 /*
1859 * This is the old fallback for page remapping.
1860 *
1861 * For historical reasons, it only allows reserved pages. Only
1862 * old drivers should use this, and they needed to mark their
1863 * pages reserved for the old functions anyway.
1864 */
insert_page(struct vm_area_struct *vma, unsigned long addr, struct page *page, pgprot_t prot)1865 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1866 struct page *page, pgprot_t prot)
1867 {
1868 int retval;
1869 pte_t *pte;
1870 spinlock_t *ptl;
1871
1872 retval = validate_page_before_insert(page);
1873 if (retval)
1874 goto out;
1875 retval = -ENOMEM;
1876 pte = get_locked_pte(vma->vm_mm, addr, &ptl);
1877 if (!pte)
1878 goto out;
1879 retval = insert_page_into_pte_locked(vma, pte, addr, page, prot);
1880 pte_unmap_unlock(pte, ptl);
1881 out:
1882 return retval;
1883 }
1884
insert_page_in_batch_locked(struct vm_area_struct *vma, pte_t *pte, unsigned long addr, struct page *page, pgprot_t prot)1885 static int insert_page_in_batch_locked(struct vm_area_struct *vma, pte_t *pte,
1886 unsigned long addr, struct page *page, pgprot_t prot)
1887 {
1888 int err;
1889
1890 if (!page_count(page))
1891 return -EINVAL;
1892 err = validate_page_before_insert(page);
1893 if (err)
1894 return err;
1895 return insert_page_into_pte_locked(vma, pte, addr, page, prot);
1896 }
1897
1898 /* insert_pages() amortizes the cost of spinlock operations
1899 * when inserting pages in a loop.
1900 */
insert_pages(struct vm_area_struct *vma, unsigned long addr, struct page **pages, unsigned long *num, pgprot_t prot)1901 static int insert_pages(struct vm_area_struct *vma, unsigned long addr,
1902 struct page **pages, unsigned long *num, pgprot_t prot)
1903 {
1904 pmd_t *pmd = NULL;
1905 pte_t *start_pte, *pte;
1906 spinlock_t *pte_lock;
1907 struct mm_struct *const mm = vma->vm_mm;
1908 unsigned long curr_page_idx = 0;
1909 unsigned long remaining_pages_total = *num;
1910 unsigned long pages_to_write_in_pmd;
1911 int ret;
1912 more:
1913 ret = -EFAULT;
1914 pmd = walk_to_pmd(mm, addr);
1915 if (!pmd)
1916 goto out;
1917
1918 pages_to_write_in_pmd = min_t(unsigned long,
1919 remaining_pages_total, PTRS_PER_PTE - pte_index(addr));
1920
1921 /* Allocate the PTE if necessary; takes PMD lock once only. */
1922 ret = -ENOMEM;
1923 if (pte_alloc(mm, pmd))
1924 goto out;
1925
1926 while (pages_to_write_in_pmd) {
1927 int pte_idx = 0;
1928 const int batch_size = min_t(int, pages_to_write_in_pmd, 8);
1929
1930 start_pte = pte_offset_map_lock(mm, pmd, addr, &pte_lock);
1931 if (!start_pte) {
1932 ret = -EFAULT;
1933 goto out;
1934 }
1935 for (pte = start_pte; pte_idx < batch_size; ++pte, ++pte_idx) {
1936 int err = insert_page_in_batch_locked(vma, pte,
1937 addr, pages[curr_page_idx], prot);
1938 if (unlikely(err)) {
1939 pte_unmap_unlock(start_pte, pte_lock);
1940 ret = err;
1941 remaining_pages_total -= pte_idx;
1942 goto out;
1943 }
1944 addr += PAGE_SIZE;
1945 ++curr_page_idx;
1946 }
1947 pte_unmap_unlock(start_pte, pte_lock);
1948 pages_to_write_in_pmd -= batch_size;
1949 remaining_pages_total -= batch_size;
1950 }
1951 if (remaining_pages_total)
1952 goto more;
1953 ret = 0;
1954 out:
1955 *num = remaining_pages_total;
1956 return ret;
1957 }
1958
1959 /**
1960 * vm_insert_pages - insert multiple pages into user vma, batching the pmd lock.
1961 * @vma: user vma to map to
1962 * @addr: target start user address of these pages
1963 * @pages: source kernel pages
1964 * @num: in: number of pages to map. out: number of pages that were *not*
1965 * mapped. (0 means all pages were successfully mapped).
1966 *
1967 * Preferred over vm_insert_page() when inserting multiple pages.
1968 *
1969 * In case of error, we may have mapped a subset of the provided
1970 * pages. It is the caller's responsibility to account for this case.
1971 *
1972 * The same restrictions apply as in vm_insert_page().
1973 */
vm_insert_pages(struct vm_area_struct *vma, unsigned long addr, struct page **pages, unsigned long *num)1974 int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
1975 struct page **pages, unsigned long *num)
1976 {
1977 const unsigned long end_addr = addr + (*num * PAGE_SIZE) - 1;
1978
1979 if (addr < vma->vm_start || end_addr >= vma->vm_end)
1980 return -EFAULT;
1981 if (!(vma->vm_flags & VM_MIXEDMAP)) {
1982 BUG_ON(mmap_read_trylock(vma->vm_mm));
1983 BUG_ON(vma->vm_flags & VM_PFNMAP);
1984 vm_flags_set(vma, VM_MIXEDMAP);
1985 }
1986 /* Defer page refcount checking till we're about to map that page. */
1987 return insert_pages(vma, addr, pages, num, vma->vm_page_prot);
1988 }
1989 EXPORT_SYMBOL(vm_insert_pages);
1990
1991 /**
1992 * vm_insert_page - insert single page into user vma
1993 * @vma: user vma to map to
1994 * @addr: target user address of this page
1995 * @page: source kernel page
1996 *
1997 * This allows drivers to insert individual pages they've allocated
1998 * into a user vma.
1999 *
2000 * The page has to be a nice clean _individual_ kernel allocation.
2001 * If you allocate a compound page, you need to have marked it as
2002 * such (__GFP_COMP), or manually just split the page up yourself
2003 * (see split_page()).
2004 *
2005 * NOTE! Traditionally this was done with "remap_pfn_range()" which
2006 * took an arbitrary page protection parameter. This doesn't allow
2007 * that. Your vma protection will have to be set up correctly, which
2008 * means that if you want a shared writable mapping, you'd better
2009 * ask for a shared writable mapping!
2010 *
2011 * The page does not need to be reserved.
2012 *
2013 * Usually this function is called from f_op->mmap() handler
2014 * under mm->mmap_lock write-lock, so it can change vma->vm_flags.
2015 * Caller must set VM_MIXEDMAP on vma if it wants to call this
2016 * function from other places, for example from page-fault handler.
2017 *
2018 * Return: %0 on success, negative error code otherwise.
2019 */
vm_insert_page(struct vm_area_struct *vma, unsigned long addr, struct page *page)2020 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
2021 struct page *page)
2022 {
2023 if (addr < vma->vm_start || addr >= vma->vm_end)
2024 return -EFAULT;
2025 if (!page_count(page))
2026 return -EINVAL;
2027 if (!(vma->vm_flags & VM_MIXEDMAP)) {
2028 BUG_ON(mmap_read_trylock(vma->vm_mm));
2029 BUG_ON(vma->vm_flags & VM_PFNMAP);
2030 vm_flags_set(vma, VM_MIXEDMAP);
2031 }
2032 return insert_page(vma, addr, page, vma->vm_page_prot);
2033 }
2034 EXPORT_SYMBOL(vm_insert_page);
2035
2036 /*
2037 * __vm_map_pages - maps range of kernel pages into user vma
2038 * @vma: user vma to map to
2039 * @pages: pointer to array of source kernel pages
2040 * @num: number of pages in page array
2041 * @offset: user's requested vm_pgoff
2042 *
2043 * This allows drivers to map range of kernel pages into a user vma.
2044 *
2045 * Return: 0 on success and error code otherwise.
2046 */
__vm_map_pages(struct vm_area_struct *vma, struct page **pages, unsigned long num, unsigned long offset)2047 static int __vm_map_pages(struct vm_area_struct *vma, struct page **pages,
2048 unsigned long num, unsigned long offset)
2049 {
2050 unsigned long count = vma_pages(vma);
2051 unsigned long uaddr = vma->vm_start;
2052 int ret, i;
2053
2054 /* Fail if the user requested offset is beyond the end of the object */
2055 if (offset >= num)
2056 return -ENXIO;
2057
2058 /* Fail if the user requested size exceeds available object size */
2059 if (count > num - offset)
2060 return -ENXIO;
2061
2062 for (i = 0; i < count; i++) {
2063 ret = vm_insert_page(vma, uaddr, pages[offset + i]);
2064 if (ret < 0)
2065 return ret;
2066 uaddr += PAGE_SIZE;
2067 }
2068
2069 return 0;
2070 }
2071
2072 /**
2073 * vm_map_pages - maps range of kernel pages starts with non zero offset
2074 * @vma: user vma to map to
2075 * @pages: pointer to array of source kernel pages
2076 * @num: number of pages in page array
2077 *
2078 * Maps an object consisting of @num pages, catering for the user's
2079 * requested vm_pgoff
2080 *
2081 * If we fail to insert any page into the vma, the function will return
2082 * immediately leaving any previously inserted pages present. Callers
2083 * from the mmap handler may immediately return the error as their caller
2084 * will destroy the vma, removing any successfully inserted pages. Other
2085 * callers should make their own arrangements for calling unmap_region().
2086 *
2087 * Context: Process context. Called by mmap handlers.
2088 * Return: 0 on success and error code otherwise.
2089 */
vm_map_pages(struct vm_area_struct *vma, struct page **pages, unsigned long num)2090 int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
2091 unsigned long num)
2092 {
2093 return __vm_map_pages(vma, pages, num, vma->vm_pgoff);
2094 }
2095 EXPORT_SYMBOL(vm_map_pages);
2096
2097 /**
2098 * vm_map_pages_zero - map range of kernel pages starts with zero offset
2099 * @vma: user vma to map to
2100 * @pages: pointer to array of source kernel pages
2101 * @num: number of pages in page array
2102 *
2103 * Similar to vm_map_pages(), except that it explicitly sets the offset
2104 * to 0. This function is intended for the drivers that did not consider
2105 * vm_pgoff.
2106 *
2107 * Context: Process context. Called by mmap handlers.
2108 * Return: 0 on success and error code otherwise.
2109 */
vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages, unsigned long num)2110 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
2111 unsigned long num)
2112 {
2113 return __vm_map_pages(vma, pages, num, 0);
2114 }
2115 EXPORT_SYMBOL(vm_map_pages_zero);
2116
insert_pfn(struct vm_area_struct *vma, unsigned long addr, pfn_t pfn, pgprot_t prot, bool mkwrite)2117 static vm_fault_t insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2118 pfn_t pfn, pgprot_t prot, bool mkwrite)
2119 {
2120 struct mm_struct *mm = vma->vm_mm;
2121 pte_t *pte, entry;
2122 spinlock_t *ptl;
2123
2124 pte = get_locked_pte(mm, addr, &ptl);
2125 if (!pte)
2126 return VM_FAULT_OOM;
2127 entry = ptep_get(pte);
2128 if (!pte_none(entry)) {
2129 if (mkwrite) {
2130 /*
2131 * For read faults on private mappings the PFN passed
2132 * in may not match the PFN we have mapped if the
2133 * mapped PFN is a writeable COW page. In the mkwrite
2134 * case we are creating a writable PTE for a shared
2135 * mapping and we expect the PFNs to match. If they
2136 * don't match, we are likely racing with block
2137 * allocation and mapping invalidation so just skip the
2138 * update.
2139 */
2140 if (pte_pfn(entry) != pfn_t_to_pfn(pfn)) {
2141 WARN_ON_ONCE(!is_zero_pfn(pte_pfn(entry)));
2142 goto out_unlock;
2143 }
2144 entry = pte_mkyoung(entry);
2145 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2146 if (ptep_set_access_flags(vma, addr, pte, entry, 1))
2147 update_mmu_cache(vma, addr, pte);
2148 }
2149 goto out_unlock;
2150 }
2151
2152 /* Ok, finally just insert the thing.. */
2153 if (pfn_t_devmap(pfn))
2154 entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
2155 else
2156 entry = pte_mkspecial(pfn_t_pte(pfn, prot));
2157
2158 if (mkwrite) {
2159 entry = pte_mkyoung(entry);
2160 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2161 }
2162
2163 set_pte_at(mm, addr, pte, entry);
2164 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
2165
2166 out_unlock:
2167 pte_unmap_unlock(pte, ptl);
2168 return VM_FAULT_NOPAGE;
2169 }
2170
2171 /**
2172 * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot
2173 * @vma: user vma to map to
2174 * @addr: target user address of this page
2175 * @pfn: source kernel pfn
2176 * @pgprot: pgprot flags for the inserted page
2177 *
2178 * This is exactly like vmf_insert_pfn(), except that it allows drivers
2179 * to override pgprot on a per-page basis.
2180 *
2181 * This only makes sense for IO mappings, and it makes no sense for
2182 * COW mappings. In general, using multiple vmas is preferable;
2183 * vmf_insert_pfn_prot should only be used if using multiple VMAs is
2184 * impractical.
2185 *
2186 * pgprot typically only differs from @vma->vm_page_prot when drivers set
2187 * caching- and encryption bits different than those of @vma->vm_page_prot,
2188 * because the caching- or encryption mode may not be known at mmap() time.
2189 *
2190 * This is ok as long as @vma->vm_page_prot is not used by the core vm
2191 * to set caching and encryption bits for those vmas (except for COW pages).
2192 * This is ensured by core vm only modifying these page table entries using
2193 * functions that don't touch caching- or encryption bits, using pte_modify()
2194 * if needed. (See for example mprotect()).
2195 *
2196 * Also when new page-table entries are created, this is only done using the
2197 * fault() callback, and never using the value of vma->vm_page_prot,
2198 * except for page-table entries that point to anonymous pages as the result
2199 * of COW.
2200 *
2201 * Context: Process context. May allocate using %GFP_KERNEL.
2202 * Return: vm_fault_t value.
2203 */
vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr, unsigned long pfn, pgprot_t pgprot)2204 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
2205 unsigned long pfn, pgprot_t pgprot)
2206 {
2207 /*
2208 * Technically, architectures with pte_special can avoid all these
2209 * restrictions (same for remap_pfn_range). However we would like
2210 * consistency in testing and feature parity among all, so we should
2211 * try to keep these invariants in place for everybody.
2212 */
2213 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
2214 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
2215 (VM_PFNMAP|VM_MIXEDMAP));
2216 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
2217 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
2218
2219 if (addr < vma->vm_start || addr >= vma->vm_end)
2220 return VM_FAULT_SIGBUS;
2221
2222 if (!pfn_modify_allowed(pfn, pgprot))
2223 return VM_FAULT_SIGBUS;
2224
2225 track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV));
2226
2227 return insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot,
2228 false);
2229 }
2230 EXPORT_SYMBOL(vmf_insert_pfn_prot);
2231
2232 /**
2233 * vmf_insert_pfn - insert single pfn into user vma
2234 * @vma: user vma to map to
2235 * @addr: target user address of this page
2236 * @pfn: source kernel pfn
2237 *
2238 * Similar to vm_insert_page, this allows drivers to insert individual pages
2239 * they've allocated into a user vma. Same comments apply.
2240 *
2241 * This function should only be called from a vm_ops->fault handler, and
2242 * in that case the handler should return the result of this function.
2243 *
2244 * vma cannot be a COW mapping.
2245 *
2246 * As this is called only for pages that do not currently exist, we
2247 * do not need to flush old virtual caches or the TLB.
2248 *
2249 * Context: Process context. May allocate using %GFP_KERNEL.
2250 * Return: vm_fault_t value.
2251 */
vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr, unsigned long pfn)2252 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2253 unsigned long pfn)
2254 {
2255 return vmf_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
2256 }
2257 EXPORT_SYMBOL(vmf_insert_pfn);
2258
vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn)2259 static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn)
2260 {
2261 /* these checks mirror the abort conditions in vm_normal_page */
2262 if (vma->vm_flags & VM_MIXEDMAP)
2263 return true;
2264 if (pfn_t_devmap(pfn))
2265 return true;
2266 if (pfn_t_special(pfn))
2267 return true;
2268 if (is_zero_pfn(pfn_t_to_pfn(pfn)))
2269 return true;
2270 return false;
2271 }
2272
__vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr, pfn_t pfn, bool mkwrite)2273 static vm_fault_t __vm_insert_mixed(struct vm_area_struct *vma,
2274 unsigned long addr, pfn_t pfn, bool mkwrite)
2275 {
2276 pgprot_t pgprot = vma->vm_page_prot;
2277 int err;
2278
2279 BUG_ON(!vm_mixed_ok(vma, pfn));
2280
2281 if (addr < vma->vm_start || addr >= vma->vm_end)
2282 return VM_FAULT_SIGBUS;
2283
2284 track_pfn_insert(vma, &pgprot, pfn);
2285
2286 if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot))
2287 return VM_FAULT_SIGBUS;
2288
2289 /*
2290 * If we don't have pte special, then we have to use the pfn_valid()
2291 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
2292 * refcount the page if pfn_valid is true (hence insert_page rather
2293 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP
2294 * without pte special, it would there be refcounted as a normal page.
2295 */
2296 if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) &&
2297 !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
2298 struct page *page;
2299
2300 /*
2301 * At this point we are committed to insert_page()
2302 * regardless of whether the caller specified flags that
2303 * result in pfn_t_has_page() == false.
2304 */
2305 page = pfn_to_page(pfn_t_to_pfn(pfn));
2306 err = insert_page(vma, addr, page, pgprot);
2307 } else {
2308 return insert_pfn(vma, addr, pfn, pgprot, mkwrite);
2309 }
2310
2311 if (err == -ENOMEM)
2312 return VM_FAULT_OOM;
2313 if (err < 0 && err != -EBUSY)
2314 return VM_FAULT_SIGBUS;
2315
2316 return VM_FAULT_NOPAGE;
2317 }
2318
vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr, pfn_t pfn)2319 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2320 pfn_t pfn)
2321 {
2322 return __vm_insert_mixed(vma, addr, pfn, false);
2323 }
2324 EXPORT_SYMBOL(vmf_insert_mixed);
2325
2326 /*
2327 * If the insertion of PTE failed because someone else already added a
2328 * different entry in the mean time, we treat that as success as we assume
2329 * the same entry was actually inserted.
2330 */
vmf_insert_mixed_mkwrite(struct vm_area_struct *vma, unsigned long addr, pfn_t pfn)2331 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
2332 unsigned long addr, pfn_t pfn)
2333 {
2334 return __vm_insert_mixed(vma, addr, pfn, true);
2335 }
2336 EXPORT_SYMBOL(vmf_insert_mixed_mkwrite);
2337
2338 /*
2339 * maps a range of physical memory into the requested pages. the old
2340 * mappings are removed. any references to nonexistent pages results
2341 * in null mappings (currently treated as "copy-on-access")
2342 */
remap_pte_range(struct mm_struct *mm, pmd_t *pmd, unsigned long addr, unsigned long end, unsigned long pfn, pgprot_t prot)2343 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
2344 unsigned long addr, unsigned long end,
2345 unsigned long pfn, pgprot_t prot)
2346 {
2347 pte_t *pte, *mapped_pte;
2348 spinlock_t *ptl;
2349 int err = 0;
2350
2351 mapped_pte = pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
2352 if (!pte)
2353 return -ENOMEM;
2354 arch_enter_lazy_mmu_mode();
2355 do {
2356 BUG_ON(!pte_none(ptep_get(pte)));
2357 if (!pfn_modify_allowed(pfn, prot)) {
2358 err = -EACCES;
2359 break;
2360 }
2361 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
2362 pfn++;
2363 } while (pte++, addr += PAGE_SIZE, addr != end);
2364 arch_leave_lazy_mmu_mode();
2365 pte_unmap_unlock(mapped_pte, ptl);
2366 return err;
2367 }
2368
remap_pmd_range(struct mm_struct *mm, pud_t *pud, unsigned long addr, unsigned long end, unsigned long pfn, pgprot_t prot)2369 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
2370 unsigned long addr, unsigned long end,
2371 unsigned long pfn, pgprot_t prot)
2372 {
2373 pmd_t *pmd;
2374 unsigned long next;
2375 int err;
2376
2377 pfn -= addr >> PAGE_SHIFT;
2378 pmd = pmd_alloc(mm, pud, addr);
2379 if (!pmd)
2380 return -ENOMEM;
2381 VM_BUG_ON(pmd_trans_huge(*pmd));
2382 do {
2383 next = pmd_addr_end(addr, end);
2384 err = remap_pte_range(mm, pmd, addr, next,
2385 pfn + (addr >> PAGE_SHIFT), prot);
2386 if (err)
2387 return err;
2388 } while (pmd++, addr = next, addr != end);
2389 return 0;
2390 }
2391
remap_pud_range(struct mm_struct *mm, p4d_t *p4d, unsigned long addr, unsigned long end, unsigned long pfn, pgprot_t prot)2392 static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d,
2393 unsigned long addr, unsigned long end,
2394 unsigned long pfn, pgprot_t prot)
2395 {
2396 pud_t *pud;
2397 unsigned long next;
2398 int err;
2399
2400 pfn -= addr >> PAGE_SHIFT;
2401 pud = pud_alloc(mm, p4d, addr);
2402 if (!pud)
2403 return -ENOMEM;
2404 do {
2405 next = pud_addr_end(addr, end);
2406 err = remap_pmd_range(mm, pud, addr, next,
2407 pfn + (addr >> PAGE_SHIFT), prot);
2408 if (err)
2409 return err;
2410 } while (pud++, addr = next, addr != end);
2411 return 0;
2412 }
2413
remap_p4d_range(struct mm_struct *mm, pgd_t *pgd, unsigned long addr, unsigned long end, unsigned long pfn, pgprot_t prot)2414 static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2415 unsigned long addr, unsigned long end,
2416 unsigned long pfn, pgprot_t prot)
2417 {
2418 p4d_t *p4d;
2419 unsigned long next;
2420 int err;
2421
2422 pfn -= addr >> PAGE_SHIFT;
2423 p4d = p4d_alloc(mm, pgd, addr);
2424 if (!p4d)
2425 return -ENOMEM;
2426 do {
2427 next = p4d_addr_end(addr, end);
2428 err = remap_pud_range(mm, p4d, addr, next,
2429 pfn + (addr >> PAGE_SHIFT), prot);
2430 if (err)
2431 return err;
2432 } while (p4d++, addr = next, addr != end);
2433 return 0;
2434 }
2435
2436 /*
2437 * Variant of remap_pfn_range that does not call track_pfn_remap. The caller
2438 * must have pre-validated the caching bits of the pgprot_t.
2439 */
remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr, unsigned long pfn, unsigned long size, pgprot_t prot)2440 int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr,
2441 unsigned long pfn, unsigned long size, pgprot_t prot)
2442 {
2443 pgd_t *pgd;
2444 unsigned long next;
2445 unsigned long end = addr + PAGE_ALIGN(size);
2446 struct mm_struct *mm = vma->vm_mm;
2447 int err;
2448
2449 if (WARN_ON_ONCE(!PAGE_ALIGNED(addr)))
2450 return -EINVAL;
2451
2452 /*
2453 * Physically remapped pages are special. Tell the
2454 * rest of the world about it:
2455 * VM_IO tells people not to look at these pages
2456 * (accesses can have side effects).
2457 * VM_PFNMAP tells the core MM that the base pages are just
2458 * raw PFN mappings, and do not have a "struct page" associated
2459 * with them.
2460 * VM_DONTEXPAND
2461 * Disable vma merging and expanding with mremap().
2462 * VM_DONTDUMP
2463 * Omit vma from core dump, even when VM_IO turned off.
2464 *
2465 * There's a horrible special case to handle copy-on-write
2466 * behaviour that some programs depend on. We mark the "original"
2467 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
2468 * See vm_normal_page() for details.
2469 */
2470 if (is_cow_mapping(vma->vm_flags)) {
2471 if (addr != vma->vm_start || end != vma->vm_end)
2472 return -EINVAL;
2473 vma->vm_pgoff = pfn;
2474 }
2475
2476 vm_flags_set(vma, VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP);
2477
2478 BUG_ON(addr >= end);
2479 pfn -= addr >> PAGE_SHIFT;
2480 pgd = pgd_offset(mm, addr);
2481 flush_cache_range(vma, addr, end);
2482 do {
2483 next = pgd_addr_end(addr, end);
2484 err = remap_p4d_range(mm, pgd, addr, next,
2485 pfn + (addr >> PAGE_SHIFT), prot);
2486 if (err)
2487 return err;
2488 } while (pgd++, addr = next, addr != end);
2489
2490 return 0;
2491 }
2492
2493 /**
2494 * remap_pfn_range - remap kernel memory to userspace
2495 * @vma: user vma to map to
2496 * @addr: target page aligned user address to start at
2497 * @pfn: page frame number of kernel physical memory address
2498 * @size: size of mapping area
2499 * @prot: page protection flags for this mapping
2500 *
2501 * Note: this is only safe if the mm semaphore is held when called.
2502 *
2503 * Return: %0 on success, negative error code otherwise.
2504 */
remap_pfn_range(struct vm_area_struct *vma, unsigned long addr, unsigned long pfn, unsigned long size, pgprot_t prot)2505 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
2506 unsigned long pfn, unsigned long size, pgprot_t prot)
2507 {
2508 int err;
2509
2510 err = track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size));
2511 if (err)
2512 return -EINVAL;
2513
2514 err = remap_pfn_range_notrack(vma, addr, pfn, size, prot);
2515 if (err)
2516 untrack_pfn(vma, pfn, PAGE_ALIGN(size), true);
2517 return err;
2518 }
2519 EXPORT_SYMBOL(remap_pfn_range);
2520
2521 /**
2522 * vm_iomap_memory - remap memory to userspace
2523 * @vma: user vma to map to
2524 * @start: start of the physical memory to be mapped
2525 * @len: size of area
2526 *
2527 * This is a simplified io_remap_pfn_range() for common driver use. The
2528 * driver just needs to give us the physical memory range to be mapped,
2529 * we'll figure out the rest from the vma information.
2530 *
2531 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
2532 * whatever write-combining details or similar.
2533 *
2534 * Return: %0 on success, negative error code otherwise.
2535 */
vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)2536 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
2537 {
2538 unsigned long vm_len, pfn, pages;
2539
2540 /* Check that the physical memory area passed in looks valid */
2541 if (start + len < start)
2542 return -EINVAL;
2543 /*
2544 * You *really* shouldn't map things that aren't page-aligned,
2545 * but we've historically allowed it because IO memory might
2546 * just have smaller alignment.
2547 */
2548 len += start & ~PAGE_MASK;
2549 pfn = start >> PAGE_SHIFT;
2550 pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
2551 if (pfn + pages < pfn)
2552 return -EINVAL;
2553
2554 /* We start the mapping 'vm_pgoff' pages into the area */
2555 if (vma->vm_pgoff > pages)
2556 return -EINVAL;
2557 pfn += vma->vm_pgoff;
2558 pages -= vma->vm_pgoff;
2559
2560 /* Can we fit all of the mapping? */
2561 vm_len = vma->vm_end - vma->vm_start;
2562 if (vm_len >> PAGE_SHIFT > pages)
2563 return -EINVAL;
2564
2565 /* Ok, let it rip */
2566 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
2567 }
2568 EXPORT_SYMBOL(vm_iomap_memory);
2569
apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd, unsigned long addr, unsigned long end, pte_fn_t fn, void *data, bool create, pgtbl_mod_mask *mask)2570 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2571 unsigned long addr, unsigned long end,
2572 pte_fn_t fn, void *data, bool create,
2573 pgtbl_mod_mask *mask)
2574 {
2575 pte_t *pte, *mapped_pte;
2576 int err = 0;
2577 spinlock_t *ptl;
2578
2579 if (create) {
2580 mapped_pte = pte = (mm == &init_mm) ?
2581 pte_alloc_kernel_track(pmd, addr, mask) :
2582 pte_alloc_map_lock(mm, pmd, addr, &ptl);
2583 if (!pte)
2584 return -ENOMEM;
2585 } else {
2586 mapped_pte = pte = (mm == &init_mm) ?
2587 pte_offset_kernel(pmd, addr) :
2588 pte_offset_map_lock(mm, pmd, addr, &ptl);
2589 if (!pte)
2590 return -EINVAL;
2591 }
2592
2593 arch_enter_lazy_mmu_mode();
2594
2595 if (fn) {
2596 do {
2597 if (create || !pte_none(ptep_get(pte))) {
2598 err = fn(pte++, addr, data);
2599 if (err)
2600 break;
2601 }
2602 } while (addr += PAGE_SIZE, addr != end);
2603 }
2604 *mask |= PGTBL_PTE_MODIFIED;
2605
2606 arch_leave_lazy_mmu_mode();
2607
2608 if (mm != &init_mm)
2609 pte_unmap_unlock(mapped_pte, ptl);
2610 return err;
2611 }
2612
apply_to_pmd_range(struct mm_struct *mm, pud_t *pud, unsigned long addr, unsigned long end, pte_fn_t fn, void *data, bool create, pgtbl_mod_mask *mask)2613 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2614 unsigned long addr, unsigned long end,
2615 pte_fn_t fn, void *data, bool create,
2616 pgtbl_mod_mask *mask)
2617 {
2618 pmd_t *pmd;
2619 unsigned long next;
2620 int err = 0;
2621
2622 BUG_ON(pud_huge(*pud));
2623
2624 if (create) {
2625 pmd = pmd_alloc_track(mm, pud, addr, mask);
2626 if (!pmd)
2627 return -ENOMEM;
2628 } else {
2629 pmd = pmd_offset(pud, addr);
2630 }
2631 do {
2632 next = pmd_addr_end(addr, end);
2633 if (pmd_none(*pmd) && !create)
2634 continue;
2635 if (WARN_ON_ONCE(pmd_leaf(*pmd)))
2636 return -EINVAL;
2637 if (!pmd_none(*pmd) && WARN_ON_ONCE(pmd_bad(*pmd))) {
2638 if (!create)
2639 continue;
2640 pmd_clear_bad(pmd);
2641 }
2642 err = apply_to_pte_range(mm, pmd, addr, next,
2643 fn, data, create, mask);
2644 if (err)
2645 break;
2646 } while (pmd++, addr = next, addr != end);
2647
2648 return err;
2649 }
2650
apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d, unsigned long addr, unsigned long end, pte_fn_t fn, void *data, bool create, pgtbl_mod_mask *mask)2651 static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d,
2652 unsigned long addr, unsigned long end,
2653 pte_fn_t fn, void *data, bool create,
2654 pgtbl_mod_mask *mask)
2655 {
2656 pud_t *pud;
2657 unsigned long next;
2658 int err = 0;
2659
2660 if (create) {
2661 pud = pud_alloc_track(mm, p4d, addr, mask);
2662 if (!pud)
2663 return -ENOMEM;
2664 } else {
2665 pud = pud_offset(p4d, addr);
2666 }
2667 do {
2668 next = pud_addr_end(addr, end);
2669 if (pud_none(*pud) && !create)
2670 continue;
2671 if (WARN_ON_ONCE(pud_leaf(*pud)))
2672 return -EINVAL;
2673 if (!pud_none(*pud) && WARN_ON_ONCE(pud_bad(*pud))) {
2674 if (!create)
2675 continue;
2676 pud_clear_bad(pud);
2677 }
2678 err = apply_to_pmd_range(mm, pud, addr, next,
2679 fn, data, create, mask);
2680 if (err)
2681 break;
2682 } while (pud++, addr = next, addr != end);
2683
2684 return err;
2685 }
2686
apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd, unsigned long addr, unsigned long end, pte_fn_t fn, void *data, bool create, pgtbl_mod_mask *mask)2687 static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2688 unsigned long addr, unsigned long end,
2689 pte_fn_t fn, void *data, bool create,
2690 pgtbl_mod_mask *mask)
2691 {
2692 p4d_t *p4d;
2693 unsigned long next;
2694 int err = 0;
2695
2696 if (create) {
2697 p4d = p4d_alloc_track(mm, pgd, addr, mask);
2698 if (!p4d)
2699 return -ENOMEM;
2700 } else {
2701 p4d = p4d_offset(pgd, addr);
2702 }
2703 do {
2704 next = p4d_addr_end(addr, end);
2705 if (p4d_none(*p4d) && !create)
2706 continue;
2707 if (WARN_ON_ONCE(p4d_leaf(*p4d)))
2708 return -EINVAL;
2709 if (!p4d_none(*p4d) && WARN_ON_ONCE(p4d_bad(*p4d))) {
2710 if (!create)
2711 continue;
2712 p4d_clear_bad(p4d);
2713 }
2714 err = apply_to_pud_range(mm, p4d, addr, next,
2715 fn, data, create, mask);
2716 if (err)
2717 break;
2718 } while (p4d++, addr = next, addr != end);
2719
2720 return err;
2721 }
2722
__apply_to_page_range(struct mm_struct *mm, unsigned long addr, unsigned long size, pte_fn_t fn, void *data, bool create)2723 static int __apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2724 unsigned long size, pte_fn_t fn,
2725 void *data, bool create)
2726 {
2727 pgd_t *pgd;
2728 unsigned long start = addr, next;
2729 unsigned long end = addr + size;
2730 pgtbl_mod_mask mask = 0;
2731 int err = 0;
2732
2733 if (WARN_ON(addr >= end))
2734 return -EINVAL;
2735
2736 pgd = pgd_offset(mm, addr);
2737 do {
2738 next = pgd_addr_end(addr, end);
2739 if (pgd_none(*pgd) && !create)
2740 continue;
2741 if (WARN_ON_ONCE(pgd_leaf(*pgd)))
2742 return -EINVAL;
2743 if (!pgd_none(*pgd) && WARN_ON_ONCE(pgd_bad(*pgd))) {
2744 if (!create)
2745 continue;
2746 pgd_clear_bad(pgd);
2747 }
2748 err = apply_to_p4d_range(mm, pgd, addr, next,
2749 fn, data, create, &mask);
2750 if (err)
2751 break;
2752 } while (pgd++, addr = next, addr != end);
2753
2754 if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
2755 arch_sync_kernel_mappings(start, start + size);
2756
2757 return err;
2758 }
2759
2760 /*
2761 * Scan a region of virtual memory, filling in page tables as necessary
2762 * and calling a provided function on each leaf page table.
2763 */
apply_to_page_range(struct mm_struct *mm, unsigned long addr, unsigned long size, pte_fn_t fn, void *data)2764 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2765 unsigned long size, pte_fn_t fn, void *data)
2766 {
2767 return __apply_to_page_range(mm, addr, size, fn, data, true);
2768 }
2769 EXPORT_SYMBOL_GPL(apply_to_page_range);
2770
2771 /*
2772 * Scan a region of virtual memory, calling a provided function on
2773 * each leaf page table where it exists.
2774 *
2775 * Unlike apply_to_page_range, this does _not_ fill in page tables
2776 * where they are absent.
2777 */
apply_to_existing_page_range(struct mm_struct *mm, unsigned long addr, unsigned long size, pte_fn_t fn, void *data)2778 int apply_to_existing_page_range(struct mm_struct *mm, unsigned long addr,
2779 unsigned long size, pte_fn_t fn, void *data)
2780 {
2781 return __apply_to_page_range(mm, addr, size, fn, data, false);
2782 }
2783 EXPORT_SYMBOL_GPL(apply_to_existing_page_range);
2784
2785 /*
2786 * handle_pte_fault chooses page fault handler according to an entry which was
2787 * read non-atomically. Before making any commitment, on those architectures
2788 * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
2789 * parts, do_swap_page must check under lock before unmapping the pte and
2790 * proceeding (but do_wp_page is only called after already making such a check;
2791 * and do_anonymous_page can safely check later on).
2792 */
pte_unmap_same(struct vm_fault *vmf)2793 static inline int pte_unmap_same(struct vm_fault *vmf)
2794 {
2795 int same = 1;
2796 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPTION)
2797 if (sizeof(pte_t) > sizeof(unsigned long)) {
2798 spin_lock(vmf->ptl);
2799 same = pte_same(ptep_get(vmf->pte), vmf->orig_pte);
2800 spin_unlock(vmf->ptl);
2801 }
2802 #endif
2803 pte_unmap(vmf->pte);
2804 vmf->pte = NULL;
2805 return same;
2806 }
2807
2808 /*
2809 * Return:
2810 * 0: copied succeeded
2811 * -EHWPOISON: copy failed due to hwpoison in source page
2812 * -EAGAIN: copied failed (some other reason)
2813 */
__wp_page_copy_user(struct page *dst, struct page *src, struct vm_fault *vmf)2814 static inline int __wp_page_copy_user(struct page *dst, struct page *src,
2815 struct vm_fault *vmf)
2816 {
2817 int ret;
2818 void *kaddr;
2819 void __user *uaddr;
2820 struct vm_area_struct *vma = vmf->vma;
2821 struct mm_struct *mm = vma->vm_mm;
2822 unsigned long addr = vmf->address;
2823
2824 if (likely(src)) {
2825 if (copy_mc_user_highpage(dst, src, addr, vma)) {
2826 memory_failure_queue(page_to_pfn(src), 0);
2827 return -EHWPOISON;
2828 }
2829 return 0;
2830 }
2831
2832 /*
2833 * If the source page was a PFN mapping, we don't have
2834 * a "struct page" for it. We do a best-effort copy by
2835 * just copying from the original user address. If that
2836 * fails, we just zero-fill it. Live with it.
2837 */
2838 kaddr = kmap_atomic(dst);
2839 uaddr = (void __user *)(addr & PAGE_MASK);
2840
2841 /*
2842 * On architectures with software "accessed" bits, we would
2843 * take a double page fault, so mark it accessed here.
2844 */
2845 vmf->pte = NULL;
2846 if (!arch_has_hw_pte_young() && !pte_young(vmf->orig_pte)) {
2847 pte_t entry;
2848
2849 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
2850 if (unlikely(!vmf->pte || !pte_same(ptep_get(vmf->pte), vmf->orig_pte))) {
2851 /*
2852 * Other thread has already handled the fault
2853 * and update local tlb only
2854 */
2855 if (vmf->pte)
2856 update_mmu_tlb(vma, addr, vmf->pte);
2857 ret = -EAGAIN;
2858 goto pte_unlock;
2859 }
2860
2861 entry = pte_mkyoung(vmf->orig_pte);
2862 if (ptep_set_access_flags(vma, addr, vmf->pte, entry, 0))
2863 update_mmu_cache_range(vmf, vma, addr, vmf->pte, 1);
2864 }
2865
2866 /*
2867 * This really shouldn't fail, because the page is there
2868 * in the page tables. But it might just be unreadable,
2869 * in which case we just give up and fill the result with
2870 * zeroes.
2871 */
2872 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
2873 if (vmf->pte)
2874 goto warn;
2875
2876 /* Re-validate under PTL if the page is still mapped */
2877 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
2878 if (unlikely(!vmf->pte || !pte_same(ptep_get(vmf->pte), vmf->orig_pte))) {
2879 /* The PTE changed under us, update local tlb */
2880 if (vmf->pte)
2881 update_mmu_tlb(vma, addr, vmf->pte);
2882 ret = -EAGAIN;
2883 goto pte_unlock;
2884 }
2885
2886 /*
2887 * The same page can be mapped back since last copy attempt.
2888 * Try to copy again under PTL.
2889 */
2890 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
2891 /*
2892 * Give a warn in case there can be some obscure
2893 * use-case
2894 */
2895 warn:
2896 WARN_ON_ONCE(1);
2897 clear_page(kaddr);
2898 }
2899 }
2900
2901 ret = 0;
2902
2903 pte_unlock:
2904 if (vmf->pte)
2905 pte_unmap_unlock(vmf->pte, vmf->ptl);
2906 kunmap_atomic(kaddr);
2907 flush_dcache_page(dst);
2908
2909 return ret;
2910 }
2911
__get_fault_gfp_mask(struct vm_area_struct *vma)2912 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
2913 {
2914 struct file *vm_file = vma->vm_file;
2915
2916 if (vm_file)
2917 return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
2918
2919 /*
2920 * Special mappings (e.g. VDSO) do not have any file so fake
2921 * a default GFP_KERNEL for them.
2922 */
2923 return GFP_KERNEL;
2924 }
2925
2926 /*
2927 * Notify the address space that the page is about to become writable so that
2928 * it can prohibit this or wait for the page to get into an appropriate state.
2929 *
2930 * We do this without the lock held, so that it can sleep if it needs to.
2931 */
do_page_mkwrite(struct vm_fault *vmf, struct folio *folio)2932 static vm_fault_t do_page_mkwrite(struct vm_fault *vmf, struct folio *folio)
2933 {
2934 vm_fault_t ret;
2935 unsigned int old_flags = vmf->flags;
2936
2937 vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2938
2939 if (vmf->vma->vm_file &&
2940 IS_SWAPFILE(vmf->vma->vm_file->f_mapping->host))
2941 return VM_FAULT_SIGBUS;
2942
2943 ret = vmf->vma->vm_ops->page_mkwrite(vmf);
2944 /* Restore original flags so that caller is not surprised */
2945 vmf->flags = old_flags;
2946 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2947 return ret;
2948 if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2949 folio_lock(folio);
2950 if (!folio->mapping) {
2951 folio_unlock(folio);
2952 return 0; /* retry */
2953 }
2954 ret |= VM_FAULT_LOCKED;
2955 } else
2956 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
2957 return ret;
2958 }
2959
2960 /*
2961 * Handle dirtying of a page in shared file mapping on a write fault.
2962 *
2963 * The function expects the page to be locked and unlocks it.
2964 */
fault_dirty_shared_page(struct vm_fault *vmf)2965 static vm_fault_t fault_dirty_shared_page(struct vm_fault *vmf)
2966 {
2967 struct vm_area_struct *vma = vmf->vma;
2968 struct address_space *mapping;
2969 struct folio *folio = page_folio(vmf->page);
2970 bool dirtied;
2971 bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite;
2972
2973 dirtied = folio_mark_dirty(folio);
2974 VM_BUG_ON_FOLIO(folio_test_anon(folio), folio);
2975 /*
2976 * Take a local copy of the address_space - folio.mapping may be zeroed
2977 * by truncate after folio_unlock(). The address_space itself remains
2978 * pinned by vma->vm_file's reference. We rely on folio_unlock()'s
2979 * release semantics to prevent the compiler from undoing this copying.
2980 */
2981 mapping = folio_raw_mapping(folio);
2982 folio_unlock(folio);
2983
2984 if (!page_mkwrite)
2985 file_update_time(vma->vm_file);
2986
2987 /*
2988 * Throttle page dirtying rate down to writeback speed.
2989 *
2990 * mapping may be NULL here because some device drivers do not
2991 * set page.mapping but still dirty their pages
2992 *
2993 * Drop the mmap_lock before waiting on IO, if we can. The file
2994 * is pinning the mapping, as per above.
2995 */
2996 if ((dirtied || page_mkwrite) && mapping) {
2997 struct file *fpin;
2998
2999 fpin = maybe_unlock_mmap_for_io(vmf, NULL);
3000 balance_dirty_pages_ratelimited(mapping);
3001 if (fpin) {
3002 fput(fpin);
3003 return VM_FAULT_COMPLETED;
3004 }
3005 }
3006
3007 return 0;
3008 }
3009
3010 /*
3011 * Handle write page faults for pages that can be reused in the current vma
3012 *
3013 * This can happen either due to the mapping being with the VM_SHARED flag,
3014 * or due to us being the last reference standing to the page. In either
3015 * case, all we need to do here is to mark the page as writable and update
3016 * any related book-keeping.
3017 */
3018 static inline void wp_page_reuse(struct vm_fault *vmf)
3019 __releases(vmf->ptl)
3020 {
3021 struct vm_area_struct *vma = vmf->vma;
3022 struct page *page = vmf->page;
3023 pte_t entry;
3024
3025 VM_BUG_ON(!(vmf->flags & FAULT_FLAG_WRITE));
3026 VM_BUG_ON(page && PageAnon(page) && !PageAnonExclusive(page));
3027
3028 /*
3029 * Clear the pages cpupid information as the existing
3030 * information potentially belongs to a now completely
3031 * unrelated process.
3032 */
3033 if (page)
3034 page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
3035
3036 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
3037 entry = pte_mkyoung(vmf->orig_pte);
3038 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3039 if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1))
3040 update_mmu_cache_range(vmf, vma, vmf->address, vmf->pte, 1);
3041 pte_unmap_unlock(vmf->pte, vmf->ptl);
3042 count_vm_event(PGREUSE);
3043 }
3044
3045 /*
3046 * Handle the case of a page which we actually need to copy to a new page,
3047 * either due to COW or unsharing.
3048 *
3049 * Called with mmap_lock locked and the old page referenced, but
3050 * without the ptl held.
3051 *
3052 * High level logic flow:
3053 *
3054 * - Allocate a page, copy the content of the old page to the new one.
3055 * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
3056 * - Take the PTL. If the pte changed, bail out and release the allocated page
3057 * - If the pte is still the way we remember it, update the page table and all
3058 * relevant references. This includes dropping the reference the page-table
3059 * held to the old page, as well as updating the rmap.
3060 * - In any case, unlock the PTL and drop the reference we took to the old page.
3061 */
wp_page_copy(struct vm_fault *vmf)3062 static vm_fault_t wp_page_copy(struct vm_fault *vmf)
3063 {
3064 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
3065 struct vm_area_struct *vma = vmf->vma;
3066 struct mm_struct *mm = vma->vm_mm;
3067 struct folio *old_folio = NULL;
3068 struct folio *new_folio = NULL;
3069 pte_t entry;
3070 int page_copied = 0;
3071 struct mmu_notifier_range range;
3072 int ret;
3073
3074 delayacct_wpcopy_start();
3075
3076 if (vmf->page)
3077 old_folio = page_folio(vmf->page);
3078 if (unlikely(anon_vma_prepare(vma)))
3079 goto oom;
3080
3081 if (is_zero_pfn(pte_pfn(vmf->orig_pte))) {
3082 new_folio = vma_alloc_zeroed_movable_folio(vma, vmf->address);
3083 if (!new_folio)
3084 goto oom;
3085 } else {
3086 new_folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0, vma,
3087 vmf->address, false);
3088 if (!new_folio)
3089 goto oom;
3090
3091 ret = __wp_page_copy_user(&new_folio->page, vmf->page, vmf);
3092 if (ret) {
3093 /*
3094 * COW failed, if the fault was solved by other,
3095 * it's fine. If not, userspace would re-fault on
3096 * the same address and we will handle the fault
3097 * from the second attempt.
3098 * The -EHWPOISON case will not be retried.
3099 */
3100 folio_put(new_folio);
3101 if (old_folio)
3102 folio_put(old_folio);
3103
3104 delayacct_wpcopy_end();
3105 return ret == -EHWPOISON ? VM_FAULT_HWPOISON : 0;
3106 }
3107 kmsan_copy_page_meta(&new_folio->page, vmf->page);
3108 }
3109
3110 if (mem_cgroup_charge(new_folio, mm, GFP_KERNEL))
3111 goto oom_free_new;
3112 folio_throttle_swaprate(new_folio, GFP_KERNEL);
3113
3114 __folio_mark_uptodate(new_folio);
3115
3116 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm,
3117 vmf->address & PAGE_MASK,
3118 (vmf->address & PAGE_MASK) + PAGE_SIZE);
3119 mmu_notifier_invalidate_range_start(&range);
3120
3121 /*
3122 * Re-check the pte - we dropped the lock
3123 */
3124 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl);
3125 if (likely(vmf->pte && pte_same(ptep_get(vmf->pte), vmf->orig_pte))) {
3126 if (old_folio) {
3127 if (!folio_test_anon(old_folio)) {
3128 dec_mm_counter(mm, mm_counter_file(&old_folio->page));
3129 inc_mm_counter(mm, MM_ANONPAGES);
3130 }
3131 } else {
3132 ksm_might_unmap_zero_page(mm, vmf->orig_pte);
3133 inc_mm_counter(mm, MM_ANONPAGES);
3134 }
3135 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
3136 entry = mk_pte(&new_folio->page, vma->vm_page_prot);
3137 entry = pte_sw_mkyoung(entry);
3138 if (unlikely(unshare)) {
3139 if (pte_soft_dirty(vmf->orig_pte))
3140 entry = pte_mksoft_dirty(entry);
3141 if (pte_uffd_wp(vmf->orig_pte))
3142 entry = pte_mkuffd_wp(entry);
3143 } else {
3144 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3145 }
3146
3147 /*
3148 * Clear the pte entry and flush it first, before updating the
3149 * pte with the new entry, to keep TLBs on different CPUs in
3150 * sync. This code used to set the new PTE then flush TLBs, but
3151 * that left a window where the new PTE could be loaded into
3152 * some TLBs while the old PTE remains in others.
3153 */
3154 ptep_clear_flush(vma, vmf->address, vmf->pte);
3155 folio_add_new_anon_rmap(new_folio, vma, vmf->address);
3156 #ifdef CONFIG_MEM_PURGEABLE
3157 if (vma->vm_flags & VM_PURGEABLE) {
3158 pr_info("set wp new folio %lx purgeable\n", folio_pfn(new_folio));
3159 folio_set_purgeable(new_folio);
3160 uxpte_set_present(vma, vmf->address);
3161 }
3162 #endif
3163 folio_add_lru_vma(new_folio, vma);
3164 /*
3165 * We call the notify macro here because, when using secondary
3166 * mmu page tables (such as kvm shadow page tables), we want the
3167 * new page to be mapped directly into the secondary page table.
3168 */
3169 BUG_ON(unshare && pte_write(entry));
3170 set_pte_at_notify(mm, vmf->address, vmf->pte, entry);
3171 update_mmu_cache_range(vmf, vma, vmf->address, vmf->pte, 1);
3172 if (old_folio) {
3173 /*
3174 * Only after switching the pte to the new page may
3175 * we remove the mapcount here. Otherwise another
3176 * process may come and find the rmap count decremented
3177 * before the pte is switched to the new page, and
3178 * "reuse" the old page writing into it while our pte
3179 * here still points into it and can be read by other
3180 * threads.
3181 *
3182 * The critical issue is to order this
3183 * page_remove_rmap with the ptp_clear_flush above.
3184 * Those stores are ordered by (if nothing else,)
3185 * the barrier present in the atomic_add_negative
3186 * in page_remove_rmap.
3187 *
3188 * Then the TLB flush in ptep_clear_flush ensures that
3189 * no process can access the old page before the
3190 * decremented mapcount is visible. And the old page
3191 * cannot be reused until after the decremented
3192 * mapcount is visible. So transitively, TLBs to
3193 * old page will be flushed before it can be reused.
3194 */
3195 page_remove_rmap(vmf->page, vma, false);
3196 }
3197
3198 /* Free the old page.. */
3199 new_folio = old_folio;
3200 page_copied = 1;
3201 pte_unmap_unlock(vmf->pte, vmf->ptl);
3202 } else if (vmf->pte) {
3203 update_mmu_tlb(vma, vmf->address, vmf->pte);
3204 pte_unmap_unlock(vmf->pte, vmf->ptl);
3205 }
3206
3207 mmu_notifier_invalidate_range_end(&range);
3208
3209 if (new_folio)
3210 folio_put(new_folio);
3211 if (old_folio) {
3212 if (page_copied)
3213 free_swap_cache(&old_folio->page);
3214 folio_put(old_folio);
3215 }
3216
3217 delayacct_wpcopy_end();
3218 return 0;
3219 oom_free_new:
3220 folio_put(new_folio);
3221 oom:
3222 if (old_folio)
3223 folio_put(old_folio);
3224
3225 delayacct_wpcopy_end();
3226 return VM_FAULT_OOM;
3227 }
3228
3229 /**
3230 * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
3231 * writeable once the page is prepared
3232 *
3233 * @vmf: structure describing the fault
3234 *
3235 * This function handles all that is needed to finish a write page fault in a
3236 * shared mapping due to PTE being read-only once the mapped page is prepared.
3237 * It handles locking of PTE and modifying it.
3238 *
3239 * The function expects the page to be locked or other protection against
3240 * concurrent faults / writeback (such as DAX radix tree locks).
3241 *
3242 * Return: %0 on success, %VM_FAULT_NOPAGE when PTE got changed before
3243 * we acquired PTE lock.
3244 */
finish_mkwrite_fault(struct vm_fault *vmf)3245 vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf)
3246 {
3247 WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED));
3248 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address,
3249 &vmf->ptl);
3250 if (!vmf->pte)
3251 return VM_FAULT_NOPAGE;
3252 /*
3253 * We might have raced with another page fault while we released the
3254 * pte_offset_map_lock.
3255 */
3256 if (!pte_same(ptep_get(vmf->pte), vmf->orig_pte)) {
3257 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
3258 pte_unmap_unlock(vmf->pte, vmf->ptl);
3259 return VM_FAULT_NOPAGE;
3260 }
3261 wp_page_reuse(vmf);
3262 return 0;
3263 }
3264
3265 /*
3266 * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
3267 * mapping
3268 */
wp_pfn_shared(struct vm_fault *vmf)3269 static vm_fault_t wp_pfn_shared(struct vm_fault *vmf)
3270 {
3271 struct vm_area_struct *vma = vmf->vma;
3272
3273 if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
3274 vm_fault_t ret;
3275
3276 pte_unmap_unlock(vmf->pte, vmf->ptl);
3277 if (vmf->flags & FAULT_FLAG_VMA_LOCK) {
3278 vma_end_read(vmf->vma);
3279 return VM_FAULT_RETRY;
3280 }
3281
3282 vmf->flags |= FAULT_FLAG_MKWRITE;
3283 ret = vma->vm_ops->pfn_mkwrite(vmf);
3284 if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))
3285 return ret;
3286 return finish_mkwrite_fault(vmf);
3287 }
3288 wp_page_reuse(vmf);
3289 return 0;
3290 }
3291
3292 static vm_fault_t wp_page_shared(struct vm_fault *vmf, struct folio *folio)
3293 __releases(vmf->ptl)
3294 {
3295 struct vm_area_struct *vma = vmf->vma;
3296 vm_fault_t ret = 0;
3297
3298 folio_get(folio);
3299
3300 if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
3301 vm_fault_t tmp;
3302
3303 pte_unmap_unlock(vmf->pte, vmf->ptl);
3304 if (vmf->flags & FAULT_FLAG_VMA_LOCK) {
3305 folio_put(folio);
3306 vma_end_read(vmf->vma);
3307 return VM_FAULT_RETRY;
3308 }
3309
3310 tmp = do_page_mkwrite(vmf, folio);
3311 if (unlikely(!tmp || (tmp &
3312 (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
3313 folio_put(folio);
3314 return tmp;
3315 }
3316 tmp = finish_mkwrite_fault(vmf);
3317 if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
3318 folio_unlock(folio);
3319 folio_put(folio);
3320 return tmp;
3321 }
3322 } else {
3323 wp_page_reuse(vmf);
3324 folio_lock(folio);
3325 }
3326 ret |= fault_dirty_shared_page(vmf);
3327 folio_put(folio);
3328
3329 return ret;
3330 }
3331
3332 /*
3333 * This routine handles present pages, when
3334 * * users try to write to a shared page (FAULT_FLAG_WRITE)
3335 * * GUP wants to take a R/O pin on a possibly shared anonymous page
3336 * (FAULT_FLAG_UNSHARE)
3337 *
3338 * It is done by copying the page to a new address and decrementing the
3339 * shared-page counter for the old page.
3340 *
3341 * Note that this routine assumes that the protection checks have been
3342 * done by the caller (the low-level page fault routine in most cases).
3343 * Thus, with FAULT_FLAG_WRITE, we can safely just mark it writable once we've
3344 * done any necessary COW.
3345 *
3346 * In case of FAULT_FLAG_WRITE, we also mark the page dirty at this point even
3347 * though the page will change only once the write actually happens. This
3348 * avoids a few races, and potentially makes it more efficient.
3349 *
3350 * We enter with non-exclusive mmap_lock (to exclude vma changes,
3351 * but allow concurrent faults), with pte both mapped and locked.
3352 * We return with mmap_lock still held, but pte unmapped and unlocked.
3353 */
3354 static vm_fault_t do_wp_page(struct vm_fault *vmf)
3355 __releases(vmf->ptl)
3356 {
3357 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
3358 struct vm_area_struct *vma = vmf->vma;
3359 struct folio *folio = NULL;
3360
3361 if (likely(!unshare)) {
3362 if (userfaultfd_pte_wp(vma, ptep_get(vmf->pte))) {
3363 pte_unmap_unlock(vmf->pte, vmf->ptl);
3364 return handle_userfault(vmf, VM_UFFD_WP);
3365 }
3366
3367 /*
3368 * Userfaultfd write-protect can defer flushes. Ensure the TLB
3369 * is flushed in this case before copying.
3370 */
3371 if (unlikely(userfaultfd_wp(vmf->vma) &&
3372 mm_tlb_flush_pending(vmf->vma->vm_mm)))
3373 flush_tlb_page(vmf->vma, vmf->address);
3374 }
3375
3376 vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte);
3377
3378 if (vmf->page)
3379 folio = page_folio(vmf->page);
3380
3381 /*
3382 * Shared mapping: we are guaranteed to have VM_WRITE and
3383 * FAULT_FLAG_WRITE set at this point.
3384 */
3385 if (vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) {
3386 /*
3387 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
3388 * VM_PFNMAP VMA.
3389 *
3390 * We should not cow pages in a shared writeable mapping.
3391 * Just mark the pages writable and/or call ops->pfn_mkwrite.
3392 */
3393 if (!vmf->page)
3394 return wp_pfn_shared(vmf);
3395 return wp_page_shared(vmf, folio);
3396 }
3397
3398 /*
3399 * Private mapping: create an exclusive anonymous page copy if reuse
3400 * is impossible. We might miss VM_WRITE for FOLL_FORCE handling.
3401 */
3402 if (folio && folio_test_anon(folio)) {
3403 /*
3404 * If the page is exclusive to this process we must reuse the
3405 * page without further checks.
3406 */
3407 if (PageAnonExclusive(vmf->page))
3408 goto reuse;
3409
3410 /*
3411 * We have to verify under folio lock: these early checks are
3412 * just an optimization to avoid locking the folio and freeing
3413 * the swapcache if there is little hope that we can reuse.
3414 *
3415 * KSM doesn't necessarily raise the folio refcount.
3416 */
3417 if (folio_test_ksm(folio) || folio_ref_count(folio) > 3)
3418 goto copy;
3419 if (!folio_test_lru(folio))
3420 /*
3421 * We cannot easily detect+handle references from
3422 * remote LRU caches or references to LRU folios.
3423 */
3424 lru_add_drain();
3425 if (folio_ref_count(folio) > 1 + folio_test_swapcache(folio))
3426 goto copy;
3427 if (!folio_trylock(folio))
3428 goto copy;
3429 if (folio_test_swapcache(folio))
3430 folio_free_swap(folio);
3431 if (folio_test_ksm(folio) || folio_ref_count(folio) != 1) {
3432 folio_unlock(folio);
3433 goto copy;
3434 }
3435 /*
3436 * Ok, we've got the only folio reference from our mapping
3437 * and the folio is locked, it's dark out, and we're wearing
3438 * sunglasses. Hit it.
3439 */
3440 page_move_anon_rmap(vmf->page, vma);
3441 folio_unlock(folio);
3442 reuse:
3443 if (unlikely(unshare)) {
3444 pte_unmap_unlock(vmf->pte, vmf->ptl);
3445 return 0;
3446 }
3447 wp_page_reuse(vmf);
3448 return 0;
3449 }
3450 copy:
3451 if ((vmf->flags & FAULT_FLAG_VMA_LOCK) && !vma->anon_vma) {
3452 pte_unmap_unlock(vmf->pte, vmf->ptl);
3453 vma_end_read(vmf->vma);
3454 return VM_FAULT_RETRY;
3455 }
3456
3457 /*
3458 * Ok, we need to copy. Oh, well..
3459 */
3460 if (folio)
3461 folio_get(folio);
3462
3463 pte_unmap_unlock(vmf->pte, vmf->ptl);
3464 #ifdef CONFIG_KSM
3465 if (folio && folio_test_ksm(folio))
3466 count_vm_event(COW_KSM);
3467 #endif
3468 return wp_page_copy(vmf);
3469 }
3470
unmap_mapping_range_vma(struct vm_area_struct *vma, unsigned long start_addr, unsigned long end_addr, struct zap_details *details)3471 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
3472 unsigned long start_addr, unsigned long end_addr,
3473 struct zap_details *details)
3474 {
3475 zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
3476 }
3477
unmap_mapping_range_tree(struct rb_root_cached *root, pgoff_t first_index, pgoff_t last_index, struct zap_details *details)3478 static inline void unmap_mapping_range_tree(struct rb_root_cached *root,
3479 pgoff_t first_index,
3480 pgoff_t last_index,
3481 struct zap_details *details)
3482 {
3483 struct vm_area_struct *vma;
3484 pgoff_t vba, vea, zba, zea;
3485
3486 vma_interval_tree_foreach(vma, root, first_index, last_index) {
3487 vba = vma->vm_pgoff;
3488 vea = vba + vma_pages(vma) - 1;
3489 zba = max(first_index, vba);
3490 zea = min(last_index, vea);
3491
3492 unmap_mapping_range_vma(vma,
3493 ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
3494 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
3495 details);
3496 }
3497 }
3498
3499 /**
3500 * unmap_mapping_folio() - Unmap single folio from processes.
3501 * @folio: The locked folio to be unmapped.
3502 *
3503 * Unmap this folio from any userspace process which still has it mmaped.
3504 * Typically, for efficiency, the range of nearby pages has already been
3505 * unmapped by unmap_mapping_pages() or unmap_mapping_range(). But once
3506 * truncation or invalidation holds the lock on a folio, it may find that
3507 * the page has been remapped again: and then uses unmap_mapping_folio()
3508 * to unmap it finally.
3509 */
unmap_mapping_folio(struct folio *folio)3510 void unmap_mapping_folio(struct folio *folio)
3511 {
3512 struct address_space *mapping = folio->mapping;
3513 struct zap_details details = { };
3514 pgoff_t first_index;
3515 pgoff_t last_index;
3516
3517 VM_BUG_ON(!folio_test_locked(folio));
3518
3519 first_index = folio->index;
3520 last_index = folio_next_index(folio) - 1;
3521
3522 details.even_cows = false;
3523 details.single_folio = folio;
3524 details.zap_flags = ZAP_FLAG_DROP_MARKER;
3525
3526 i_mmap_lock_read(mapping);
3527 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
3528 unmap_mapping_range_tree(&mapping->i_mmap, first_index,
3529 last_index, &details);
3530 i_mmap_unlock_read(mapping);
3531 }
3532
3533 /**
3534 * unmap_mapping_pages() - Unmap pages from processes.
3535 * @mapping: The address space containing pages to be unmapped.
3536 * @start: Index of first page to be unmapped.
3537 * @nr: Number of pages to be unmapped. 0 to unmap to end of file.
3538 * @even_cows: Whether to unmap even private COWed pages.
3539 *
3540 * Unmap the pages in this address space from any userspace process which
3541 * has them mmaped. Generally, you want to remove COWed pages as well when
3542 * a file is being truncated, but not when invalidating pages from the page
3543 * cache.
3544 */
unmap_mapping_pages(struct address_space *mapping, pgoff_t start, pgoff_t nr, bool even_cows)3545 void unmap_mapping_pages(struct address_space *mapping, pgoff_t start,
3546 pgoff_t nr, bool even_cows)
3547 {
3548 struct zap_details details = { };
3549 pgoff_t first_index = start;
3550 pgoff_t last_index = start + nr - 1;
3551
3552 details.even_cows = even_cows;
3553 if (last_index < first_index)
3554 last_index = ULONG_MAX;
3555
3556 i_mmap_lock_read(mapping);
3557 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
3558 unmap_mapping_range_tree(&mapping->i_mmap, first_index,
3559 last_index, &details);
3560 i_mmap_unlock_read(mapping);
3561 }
3562 EXPORT_SYMBOL_GPL(unmap_mapping_pages);
3563
3564 /**
3565 * unmap_mapping_range - unmap the portion of all mmaps in the specified
3566 * address_space corresponding to the specified byte range in the underlying
3567 * file.
3568 *
3569 * @mapping: the address space containing mmaps to be unmapped.
3570 * @holebegin: byte in first page to unmap, relative to the start of
3571 * the underlying file. This will be rounded down to a PAGE_SIZE
3572 * boundary. Note that this is different from truncate_pagecache(), which
3573 * must keep the partial page. In contrast, we must get rid of
3574 * partial pages.
3575 * @holelen: size of prospective hole in bytes. This will be rounded
3576 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
3577 * end of the file.
3578 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
3579 * but 0 when invalidating pagecache, don't throw away private data.
3580 */
unmap_mapping_range(struct address_space *mapping, loff_t const holebegin, loff_t const holelen, int even_cows)3581 void unmap_mapping_range(struct address_space *mapping,
3582 loff_t const holebegin, loff_t const holelen, int even_cows)
3583 {
3584 pgoff_t hba = (pgoff_t)(holebegin) >> PAGE_SHIFT;
3585 pgoff_t hlen = ((pgoff_t)(holelen) + PAGE_SIZE - 1) >> PAGE_SHIFT;
3586
3587 /* Check for overflow. */
3588 if (sizeof(holelen) > sizeof(hlen)) {
3589 long long holeend =
3590 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3591 if (holeend & ~(long long)ULONG_MAX)
3592 hlen = ULONG_MAX - hba + 1;
3593 }
3594
3595 unmap_mapping_pages(mapping, hba, hlen, even_cows);
3596 }
3597 EXPORT_SYMBOL(unmap_mapping_range);
3598
3599 /*
3600 * Restore a potential device exclusive pte to a working pte entry
3601 */
remove_device_exclusive_entry(struct vm_fault *vmf)3602 static vm_fault_t remove_device_exclusive_entry(struct vm_fault *vmf)
3603 {
3604 struct folio *folio = page_folio(vmf->page);
3605 struct vm_area_struct *vma = vmf->vma;
3606 struct mmu_notifier_range range;
3607 vm_fault_t ret;
3608
3609 /*
3610 * We need a reference to lock the folio because we don't hold
3611 * the PTL so a racing thread can remove the device-exclusive
3612 * entry and unmap it. If the folio is free the entry must
3613 * have been removed already. If it happens to have already
3614 * been re-allocated after being freed all we do is lock and
3615 * unlock it.
3616 */
3617 if (!folio_try_get(folio))
3618 return 0;
3619
3620 ret = folio_lock_or_retry(folio, vmf);
3621 if (ret) {
3622 folio_put(folio);
3623 return ret;
3624 }
3625 mmu_notifier_range_init_owner(&range, MMU_NOTIFY_EXCLUSIVE, 0,
3626 vma->vm_mm, vmf->address & PAGE_MASK,
3627 (vmf->address & PAGE_MASK) + PAGE_SIZE, NULL);
3628 mmu_notifier_invalidate_range_start(&range);
3629
3630 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3631 &vmf->ptl);
3632 if (likely(vmf->pte && pte_same(ptep_get(vmf->pte), vmf->orig_pte)))
3633 restore_exclusive_pte(vma, vmf->page, vmf->address, vmf->pte);
3634
3635 if (vmf->pte)
3636 pte_unmap_unlock(vmf->pte, vmf->ptl);
3637 folio_unlock(folio);
3638 folio_put(folio);
3639
3640 mmu_notifier_invalidate_range_end(&range);
3641 return 0;
3642 }
3643
should_try_to_free_swap(struct folio *folio, struct vm_area_struct *vma, unsigned int fault_flags)3644 static inline bool should_try_to_free_swap(struct folio *folio,
3645 struct vm_area_struct *vma,
3646 unsigned int fault_flags)
3647 {
3648 if (!folio_test_swapcache(folio))
3649 return false;
3650 if (mem_cgroup_swap_full(folio) || (vma->vm_flags & VM_LOCKED) ||
3651 folio_test_mlocked(folio))
3652 return true;
3653 /*
3654 * If we want to map a page that's in the swapcache writable, we
3655 * have to detect via the refcount if we're really the exclusive
3656 * user. Try freeing the swapcache to get rid of the swapcache
3657 * reference only in case it's likely that we'll be the exlusive user.
3658 */
3659 return (fault_flags & FAULT_FLAG_WRITE) && !folio_test_ksm(folio) &&
3660 folio_ref_count(folio) == 2;
3661 }
3662
pte_marker_clear(struct vm_fault *vmf)3663 static vm_fault_t pte_marker_clear(struct vm_fault *vmf)
3664 {
3665 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd,
3666 vmf->address, &vmf->ptl);
3667 if (!vmf->pte)
3668 return 0;
3669 /*
3670 * Be careful so that we will only recover a special uffd-wp pte into a
3671 * none pte. Otherwise it means the pte could have changed, so retry.
3672 *
3673 * This should also cover the case where e.g. the pte changed
3674 * quickly from a PTE_MARKER_UFFD_WP into PTE_MARKER_POISONED.
3675 * So is_pte_marker() check is not enough to safely drop the pte.
3676 */
3677 if (pte_same(vmf->orig_pte, ptep_get(vmf->pte)))
3678 pte_clear(vmf->vma->vm_mm, vmf->address, vmf->pte);
3679 pte_unmap_unlock(vmf->pte, vmf->ptl);
3680 return 0;
3681 }
3682
do_pte_missing(struct vm_fault *vmf)3683 static vm_fault_t do_pte_missing(struct vm_fault *vmf)
3684 {
3685 if (vma_is_anonymous(vmf->vma))
3686 return do_anonymous_page(vmf);
3687 else
3688 return do_fault(vmf);
3689 }
3690
3691 /*
3692 * This is actually a page-missing access, but with uffd-wp special pte
3693 * installed. It means this pte was wr-protected before being unmapped.
3694 */
pte_marker_handle_uffd_wp(struct vm_fault *vmf)3695 static vm_fault_t pte_marker_handle_uffd_wp(struct vm_fault *vmf)
3696 {
3697 /*
3698 * Just in case there're leftover special ptes even after the region
3699 * got unregistered - we can simply clear them.
3700 */
3701 if (unlikely(!userfaultfd_wp(vmf->vma)))
3702 return pte_marker_clear(vmf);
3703
3704 return do_pte_missing(vmf);
3705 }
3706
handle_pte_marker(struct vm_fault *vmf)3707 static vm_fault_t handle_pte_marker(struct vm_fault *vmf)
3708 {
3709 swp_entry_t entry = pte_to_swp_entry(vmf->orig_pte);
3710 unsigned long marker = pte_marker_get(entry);
3711
3712 /*
3713 * PTE markers should never be empty. If anything weird happened,
3714 * the best thing to do is to kill the process along with its mm.
3715 */
3716 if (WARN_ON_ONCE(!marker))
3717 return VM_FAULT_SIGBUS;
3718
3719 /* Higher priority than uffd-wp when data corrupted */
3720 if (marker & PTE_MARKER_POISONED)
3721 return VM_FAULT_HWPOISON;
3722
3723 if (pte_marker_entry_uffd_wp(entry))
3724 return pte_marker_handle_uffd_wp(vmf);
3725
3726 /* This is an unknown pte marker */
3727 return VM_FAULT_SIGBUS;
3728 }
3729
3730 /*
3731 * We enter with non-exclusive mmap_lock (to exclude vma changes,
3732 * but allow concurrent faults), and pte mapped but not yet locked.
3733 * We return with pte unmapped and unlocked.
3734 *
3735 * We return with the mmap_lock locked or unlocked in the same cases
3736 * as does filemap_fault().
3737 */
do_swap_page(struct vm_fault *vmf)3738 vm_fault_t do_swap_page(struct vm_fault *vmf)
3739 {
3740 struct vm_area_struct *vma = vmf->vma;
3741 struct folio *swapcache, *folio = NULL;
3742 struct page *page;
3743 struct swap_info_struct *si = NULL;
3744 rmap_t rmap_flags = RMAP_NONE;
3745 bool need_clear_cache = false;
3746 bool exclusive = false;
3747 swp_entry_t entry;
3748 pte_t pte;
3749 vm_fault_t ret = 0;
3750 void *shadow = NULL;
3751
3752 if (!pte_unmap_same(vmf))
3753 goto out;
3754
3755 entry = pte_to_swp_entry(vmf->orig_pte);
3756 if (unlikely(non_swap_entry(entry))) {
3757 if (is_migration_entry(entry)) {
3758 migration_entry_wait(vma->vm_mm, vmf->pmd,
3759 vmf->address);
3760 } else if (is_device_exclusive_entry(entry)) {
3761 vmf->page = pfn_swap_entry_to_page(entry);
3762 ret = remove_device_exclusive_entry(vmf);
3763 } else if (is_device_private_entry(entry)) {
3764 if (vmf->flags & FAULT_FLAG_VMA_LOCK) {
3765 /*
3766 * migrate_to_ram is not yet ready to operate
3767 * under VMA lock.
3768 */
3769 vma_end_read(vma);
3770 ret = VM_FAULT_RETRY;
3771 goto out;
3772 }
3773
3774 vmf->page = pfn_swap_entry_to_page(entry);
3775 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3776 vmf->address, &vmf->ptl);
3777 if (unlikely(!vmf->pte ||
3778 !pte_same(ptep_get(vmf->pte),
3779 vmf->orig_pte)))
3780 goto unlock;
3781
3782 /*
3783 * Get a page reference while we know the page can't be
3784 * freed.
3785 */
3786 get_page(vmf->page);
3787 pte_unmap_unlock(vmf->pte, vmf->ptl);
3788 ret = vmf->page->pgmap->ops->migrate_to_ram(vmf);
3789 put_page(vmf->page);
3790 } else if (is_hwpoison_entry(entry)) {
3791 ret = VM_FAULT_HWPOISON;
3792 } else if (is_pte_marker_entry(entry)) {
3793 ret = handle_pte_marker(vmf);
3794 } else {
3795 print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL);
3796 ret = VM_FAULT_SIGBUS;
3797 }
3798 goto out;
3799 }
3800
3801 /* Prevent swapoff from happening to us. */
3802 si = get_swap_device(entry);
3803 if (unlikely(!si))
3804 goto out;
3805
3806 folio = swap_cache_get_folio(entry, vma, vmf->address);
3807 if (folio)
3808 page = folio_file_page(folio, swp_offset(entry));
3809 swapcache = folio;
3810
3811 if (!folio) {
3812 if (data_race(si->flags & SWP_SYNCHRONOUS_IO) &&
3813 __swap_count(entry) == 1) {
3814 /*
3815 * Prevent parallel swapin from proceeding with
3816 * the cache flag. Otherwise, another thread may
3817 * finish swapin first, free the entry, and swapout
3818 * reusing the same entry. It's undetectable as
3819 * pte_same() returns true due to entry reuse.
3820 */
3821 if (swapcache_prepare(entry)) {
3822 /* Relax a bit to prevent rapid repeated page faults */
3823 schedule_timeout_uninterruptible(1);
3824 goto out;
3825 }
3826 need_clear_cache = true;
3827
3828 /* skip swapcache */
3829 folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0,
3830 vma, vmf->address, false);
3831 page = &folio->page;
3832 if (folio) {
3833 __folio_set_locked(folio);
3834 __folio_set_swapbacked(folio);
3835
3836 if (mem_cgroup_swapin_charge_folio(folio,
3837 vma->vm_mm, GFP_KERNEL,
3838 entry)) {
3839 ret = VM_FAULT_OOM;
3840 goto out_page;
3841 }
3842 mem_cgroup_swapin_uncharge_swap(entry);
3843
3844 shadow = get_shadow_from_swap_cache(entry);
3845 if (shadow)
3846 workingset_refault(folio, shadow);
3847
3848 folio_add_lru(folio);
3849
3850 /* To provide entry to swap_readpage() */
3851 folio->swap = entry;
3852 swap_readpage(page, true, NULL);
3853 folio->private = NULL;
3854 }
3855 } else {
3856 page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
3857 vmf);
3858 if (page)
3859 folio = page_folio(page);
3860 swapcache = folio;
3861 }
3862
3863 if (!folio) {
3864 /*
3865 * Back out if somebody else faulted in this pte
3866 * while we released the pte lock.
3867 */
3868 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3869 vmf->address, &vmf->ptl);
3870 if (likely(vmf->pte &&
3871 pte_same(ptep_get(vmf->pte), vmf->orig_pte)))
3872 ret = VM_FAULT_OOM;
3873 goto unlock;
3874 }
3875
3876 /* Had to read the page from swap area: Major fault */
3877 ret = VM_FAULT_MAJOR;
3878 count_vm_event(PGMAJFAULT);
3879 count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
3880 } else if (PageHWPoison(page)) {
3881 /*
3882 * hwpoisoned dirty swapcache pages are kept for killing
3883 * owner processes (which may be unknown at hwpoison time)
3884 */
3885 ret = VM_FAULT_HWPOISON;
3886 goto out_release;
3887 }
3888
3889 ret |= folio_lock_or_retry(folio, vmf);
3890 if (ret & VM_FAULT_RETRY)
3891 goto out_release;
3892
3893 if (swapcache) {
3894 /*
3895 * Make sure folio_free_swap() or swapoff did not release the
3896 * swapcache from under us. The page pin, and pte_same test
3897 * below, are not enough to exclude that. Even if it is still
3898 * swapcache, we need to check that the page's swap has not
3899 * changed.
3900 */
3901 if (unlikely(!folio_test_swapcache(folio) ||
3902 page_swap_entry(page).val != entry.val))
3903 goto out_page;
3904
3905 /*
3906 * KSM sometimes has to copy on read faults, for example, if
3907 * page->index of !PageKSM() pages would be nonlinear inside the
3908 * anon VMA -- PageKSM() is lost on actual swapout.
3909 */
3910 page = ksm_might_need_to_copy(page, vma, vmf->address);
3911 if (unlikely(!page)) {
3912 ret = VM_FAULT_OOM;
3913 goto out_page;
3914 } else if (unlikely(PTR_ERR(page) == -EHWPOISON)) {
3915 ret = VM_FAULT_HWPOISON;
3916 goto out_page;
3917 }
3918 folio = page_folio(page);
3919
3920 /*
3921 * If we want to map a page that's in the swapcache writable, we
3922 * have to detect via the refcount if we're really the exclusive
3923 * owner. Try removing the extra reference from the local LRU
3924 * caches if required.
3925 */
3926 if ((vmf->flags & FAULT_FLAG_WRITE) && folio == swapcache &&
3927 !folio_test_ksm(folio) && !folio_test_lru(folio))
3928 lru_add_drain();
3929 }
3930
3931 folio_throttle_swaprate(folio, GFP_KERNEL);
3932
3933 /*
3934 * Back out if somebody else already faulted in this pte.
3935 */
3936 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3937 &vmf->ptl);
3938 if (unlikely(!vmf->pte || !pte_same(ptep_get(vmf->pte), vmf->orig_pte)))
3939 goto out_nomap;
3940
3941 if (unlikely(!folio_test_uptodate(folio))) {
3942 ret = VM_FAULT_SIGBUS;
3943 goto out_nomap;
3944 }
3945
3946 /*
3947 * PG_anon_exclusive reuses PG_mappedtodisk for anon pages. A swap pte
3948 * must never point at an anonymous page in the swapcache that is
3949 * PG_anon_exclusive. Sanity check that this holds and especially, that
3950 * no filesystem set PG_mappedtodisk on a page in the swapcache. Sanity
3951 * check after taking the PT lock and making sure that nobody
3952 * concurrently faulted in this page and set PG_anon_exclusive.
3953 */
3954 BUG_ON(!folio_test_anon(folio) && folio_test_mappedtodisk(folio));
3955 BUG_ON(folio_test_anon(folio) && PageAnonExclusive(page));
3956
3957 /*
3958 * Check under PT lock (to protect against concurrent fork() sharing
3959 * the swap entry concurrently) for certainly exclusive pages.
3960 */
3961 if (!folio_test_ksm(folio)) {
3962 exclusive = pte_swp_exclusive(vmf->orig_pte);
3963 if (folio != swapcache) {
3964 /*
3965 * We have a fresh page that is not exposed to the
3966 * swapcache -> certainly exclusive.
3967 */
3968 exclusive = true;
3969 } else if (exclusive && folio_test_writeback(folio) &&
3970 data_race(si->flags & SWP_STABLE_WRITES)) {
3971 /*
3972 * This is tricky: not all swap backends support
3973 * concurrent page modifications while under writeback.
3974 *
3975 * So if we stumble over such a page in the swapcache
3976 * we must not set the page exclusive, otherwise we can
3977 * map it writable without further checks and modify it
3978 * while still under writeback.
3979 *
3980 * For these problematic swap backends, simply drop the
3981 * exclusive marker: this is perfectly fine as we start
3982 * writeback only if we fully unmapped the page and
3983 * there are no unexpected references on the page after
3984 * unmapping succeeded. After fully unmapped, no
3985 * further GUP references (FOLL_GET and FOLL_PIN) can
3986 * appear, so dropping the exclusive marker and mapping
3987 * it only R/O is fine.
3988 */
3989 exclusive = false;
3990 }
3991 }
3992
3993 /*
3994 * Some architectures may have to restore extra metadata to the page
3995 * when reading from swap. This metadata may be indexed by swap entry
3996 * so this must be called before swap_free().
3997 */
3998 arch_swap_restore(entry, folio);
3999
4000 /*
4001 * Remove the swap entry and conditionally try to free up the swapcache.
4002 * We're already holding a reference on the page but haven't mapped it
4003 * yet.
4004 */
4005 swap_free(entry);
4006 if (should_try_to_free_swap(folio, vma, vmf->flags))
4007 folio_free_swap(folio);
4008
4009 inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
4010 dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
4011 pte = mk_pte(page, vma->vm_page_prot);
4012
4013 /*
4014 * Same logic as in do_wp_page(); however, optimize for pages that are
4015 * certainly not shared either because we just allocated them without
4016 * exposing them to the swapcache or because the swap entry indicates
4017 * exclusivity.
4018 */
4019 if (!folio_test_ksm(folio) &&
4020 (exclusive || folio_ref_count(folio) == 1)) {
4021 if (vmf->flags & FAULT_FLAG_WRITE) {
4022 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
4023 vmf->flags &= ~FAULT_FLAG_WRITE;
4024 }
4025 rmap_flags |= RMAP_EXCLUSIVE;
4026 }
4027 flush_icache_page(vma, page);
4028 if (pte_swp_soft_dirty(vmf->orig_pte))
4029 pte = pte_mksoft_dirty(pte);
4030 if (pte_swp_uffd_wp(vmf->orig_pte))
4031 pte = pte_mkuffd_wp(pte);
4032 vmf->orig_pte = pte;
4033
4034 /* ksm created a completely new copy */
4035 if (unlikely(folio != swapcache && swapcache)) {
4036 page_add_new_anon_rmap(page, vma, vmf->address);
4037 folio_add_lru_vma(folio, vma);
4038 } else {
4039 page_add_anon_rmap(page, vma, vmf->address, rmap_flags);
4040 }
4041
4042 VM_BUG_ON(!folio_test_anon(folio) ||
4043 (pte_write(pte) && !PageAnonExclusive(page)));
4044 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
4045 arch_do_swap_page(vma->vm_mm, vma, vmf->address, pte, vmf->orig_pte);
4046
4047 folio_unlock(folio);
4048 if (folio != swapcache && swapcache) {
4049 /*
4050 * Hold the lock to avoid the swap entry to be reused
4051 * until we take the PT lock for the pte_same() check
4052 * (to avoid false positives from pte_same). For
4053 * further safety release the lock after the swap_free
4054 * so that the swap count won't change under a
4055 * parallel locked swapcache.
4056 */
4057 folio_unlock(swapcache);
4058 folio_put(swapcache);
4059 }
4060
4061 if (vmf->flags & FAULT_FLAG_WRITE) {
4062 ret |= do_wp_page(vmf);
4063 if (ret & VM_FAULT_ERROR)
4064 ret &= VM_FAULT_ERROR;
4065 goto out;
4066 }
4067
4068 /* No need to invalidate - it was non-present before */
4069 update_mmu_cache_range(vmf, vma, vmf->address, vmf->pte, 1);
4070 unlock:
4071 if (vmf->pte)
4072 pte_unmap_unlock(vmf->pte, vmf->ptl);
4073 out:
4074 /* Clear the swap cache pin for direct swapin after PTL unlock */
4075 if (need_clear_cache)
4076 swapcache_clear(si, entry);
4077 if (si)
4078 put_swap_device(si);
4079 return ret;
4080 out_nomap:
4081 if (vmf->pte)
4082 pte_unmap_unlock(vmf->pte, vmf->ptl);
4083 out_page:
4084 folio_unlock(folio);
4085 out_release:
4086 folio_put(folio);
4087 if (folio != swapcache && swapcache) {
4088 folio_unlock(swapcache);
4089 folio_put(swapcache);
4090 }
4091 if (need_clear_cache)
4092 swapcache_clear(si, entry);
4093 if (si)
4094 put_swap_device(si);
4095 return ret;
4096 }
4097
4098 /*
4099 * We enter with non-exclusive mmap_lock (to exclude vma changes,
4100 * but allow concurrent faults), and pte mapped but not yet locked.
4101 * We return with mmap_lock still held, but pte unmapped and unlocked.
4102 */
do_anonymous_page(struct vm_fault *vmf)4103 static vm_fault_t do_anonymous_page(struct vm_fault *vmf)
4104 {
4105 bool uffd_wp = vmf_orig_pte_uffd_wp(vmf);
4106 struct vm_area_struct *vma = vmf->vma;
4107 struct folio *folio;
4108 vm_fault_t ret = 0;
4109 pte_t entry;
4110
4111 /* File mapping without ->vm_ops ? */
4112 if (vma->vm_flags & VM_SHARED)
4113 return VM_FAULT_SIGBUS;
4114
4115 /*
4116 * Use pte_alloc() instead of pte_alloc_map(), so that OOM can
4117 * be distinguished from a transient failure of pte_offset_map().
4118 */
4119 if (pte_alloc(vma->vm_mm, vmf->pmd))
4120 return VM_FAULT_OOM;
4121
4122 #ifdef CONFIG_MEM_PURGEABLE
4123 /* use extra page table for userexpte */
4124 if (vma->vm_flags & VM_USEREXPTE) {
4125 if (do_uxpte_page_fault(vmf, &entry))
4126 goto oom;
4127 else
4128 goto got_page;
4129 }
4130 #endif
4131 /* Use the zero-page for reads */
4132 if (!(vmf->flags & FAULT_FLAG_WRITE) &&
4133 !mm_forbids_zeropage(vma->vm_mm)) {
4134 entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address),
4135 vma->vm_page_prot));
4136 #ifdef CONFIG_MEM_PURGEABLE
4137 got_page:
4138 #endif
4139 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
4140 vmf->address, &vmf->ptl);
4141 if (!vmf->pte)
4142 goto unlock;
4143 if (vmf_pte_changed(vmf)) {
4144 update_mmu_tlb(vma, vmf->address, vmf->pte);
4145 goto unlock;
4146 }
4147 ret = check_stable_address_space(vma->vm_mm);
4148 if (ret)
4149 goto unlock;
4150 /* Deliver the page fault to userland, check inside PT lock */
4151 if (userfaultfd_missing(vma)) {
4152 pte_unmap_unlock(vmf->pte, vmf->ptl);
4153 return handle_userfault(vmf, VM_UFFD_MISSING);
4154 }
4155 goto setpte;
4156 }
4157
4158 /* Allocate our own private page. */
4159 if (unlikely(anon_vma_prepare(vma)))
4160 goto oom;
4161 folio = vma_alloc_zeroed_movable_folio(vma, vmf->address);
4162 if (!folio)
4163 goto oom;
4164
4165 if (mem_cgroup_charge(folio, vma->vm_mm, GFP_KERNEL))
4166 goto oom_free_page;
4167 folio_throttle_swaprate(folio, GFP_KERNEL);
4168
4169 /*
4170 * The memory barrier inside __folio_mark_uptodate makes sure that
4171 * preceding stores to the page contents become visible before
4172 * the set_pte_at() write.
4173 */
4174 __folio_mark_uptodate(folio);
4175
4176 entry = mk_pte(&folio->page, vma->vm_page_prot);
4177 entry = pte_sw_mkyoung(entry);
4178 if (vma->vm_flags & VM_WRITE)
4179 entry = pte_mkwrite(pte_mkdirty(entry), vma);
4180
4181 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
4182 &vmf->ptl);
4183 if (!vmf->pte)
4184 goto release;
4185 if (vmf_pte_changed(vmf)) {
4186 update_mmu_tlb(vma, vmf->address, vmf->pte);
4187 goto release;
4188 }
4189
4190 ret = check_stable_address_space(vma->vm_mm);
4191 if (ret)
4192 goto release;
4193
4194 /* Deliver the page fault to userland, check inside PT lock */
4195 if (userfaultfd_missing(vma)) {
4196 pte_unmap_unlock(vmf->pte, vmf->ptl);
4197 folio_put(folio);
4198 return handle_userfault(vmf, VM_UFFD_MISSING);
4199 }
4200
4201 inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
4202 folio_add_new_anon_rmap(folio, vma, vmf->address);
4203 #ifdef CONFIG_MEM_PURGEABLE
4204 if (vma->vm_flags & VM_PURGEABLE)
4205 folio_set_purgeable(folio);
4206 #endif
4207 folio_add_lru_vma(folio, vma);
4208 setpte:
4209 #ifdef CONFIG_MEM_PURGEABLE
4210 if (vma->vm_flags & VM_PURGEABLE)
4211 uxpte_set_present(vma, vmf->address);
4212 #endif
4213 if (uffd_wp)
4214 entry = pte_mkuffd_wp(entry);
4215 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
4216
4217 /* No need to invalidate - it was non-present before */
4218 update_mmu_cache_range(vmf, vma, vmf->address, vmf->pte, 1);
4219 unlock:
4220 if (vmf->pte)
4221 pte_unmap_unlock(vmf->pte, vmf->ptl);
4222 return ret;
4223 release:
4224 folio_put(folio);
4225 goto unlock;
4226 oom_free_page:
4227 folio_put(folio);
4228 oom:
4229 return VM_FAULT_OOM;
4230 }
4231
4232 /*
4233 * The mmap_lock must have been held on entry, and may have been
4234 * released depending on flags and vma->vm_ops->fault() return value.
4235 * See filemap_fault() and __lock_page_retry().
4236 */
__do_fault(struct vm_fault *vmf)4237 static vm_fault_t __do_fault(struct vm_fault *vmf)
4238 {
4239 struct vm_area_struct *vma = vmf->vma;
4240 vm_fault_t ret;
4241
4242 /*
4243 * Preallocate pte before we take page_lock because this might lead to
4244 * deadlocks for memcg reclaim which waits for pages under writeback:
4245 * lock_page(A)
4246 * SetPageWriteback(A)
4247 * unlock_page(A)
4248 * lock_page(B)
4249 * lock_page(B)
4250 * pte_alloc_one
4251 * shrink_page_list
4252 * wait_on_page_writeback(A)
4253 * SetPageWriteback(B)
4254 * unlock_page(B)
4255 * # flush A, B to clear the writeback
4256 */
4257 if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) {
4258 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
4259 if (!vmf->prealloc_pte)
4260 return VM_FAULT_OOM;
4261 }
4262
4263 ret = vma->vm_ops->fault(vmf);
4264 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY |
4265 VM_FAULT_DONE_COW)))
4266 return ret;
4267
4268 if (unlikely(PageHWPoison(vmf->page))) {
4269 struct page *page = vmf->page;
4270 vm_fault_t poisonret = VM_FAULT_HWPOISON;
4271 if (ret & VM_FAULT_LOCKED) {
4272 if (page_mapped(page))
4273 unmap_mapping_pages(page_mapping(page),
4274 page->index, 1, false);
4275 /* Retry if a clean page was removed from the cache. */
4276 if (invalidate_inode_page(page))
4277 poisonret = VM_FAULT_NOPAGE;
4278 unlock_page(page);
4279 }
4280 put_page(page);
4281 vmf->page = NULL;
4282 return poisonret;
4283 }
4284
4285 if (unlikely(!(ret & VM_FAULT_LOCKED)))
4286 lock_page(vmf->page);
4287 else
4288 VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page);
4289
4290 return ret;
4291 }
4292
4293 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
deposit_prealloc_pte(struct vm_fault *vmf)4294 static void deposit_prealloc_pte(struct vm_fault *vmf)
4295 {
4296 struct vm_area_struct *vma = vmf->vma;
4297
4298 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
4299 /*
4300 * We are going to consume the prealloc table,
4301 * count that as nr_ptes.
4302 */
4303 mm_inc_nr_ptes(vma->vm_mm);
4304 vmf->prealloc_pte = NULL;
4305 }
4306
do_set_pmd(struct vm_fault *vmf, struct page *page)4307 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
4308 {
4309 struct vm_area_struct *vma = vmf->vma;
4310 bool write = vmf->flags & FAULT_FLAG_WRITE;
4311 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
4312 pmd_t entry;
4313 vm_fault_t ret = VM_FAULT_FALLBACK;
4314
4315 if (!transhuge_vma_suitable(vma, haddr))
4316 return ret;
4317
4318 page = compound_head(page);
4319 if (compound_order(page) != HPAGE_PMD_ORDER)
4320 return ret;
4321
4322 /*
4323 * Just backoff if any subpage of a THP is corrupted otherwise
4324 * the corrupted page may mapped by PMD silently to escape the
4325 * check. This kind of THP just can be PTE mapped. Access to
4326 * the corrupted subpage should trigger SIGBUS as expected.
4327 */
4328 if (unlikely(PageHasHWPoisoned(page)))
4329 return ret;
4330
4331 /*
4332 * Archs like ppc64 need additional space to store information
4333 * related to pte entry. Use the preallocated table for that.
4334 */
4335 if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) {
4336 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
4337 if (!vmf->prealloc_pte)
4338 return VM_FAULT_OOM;
4339 }
4340
4341 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
4342 if (unlikely(!pmd_none(*vmf->pmd)))
4343 goto out;
4344
4345 flush_icache_pages(vma, page, HPAGE_PMD_NR);
4346
4347 entry = mk_huge_pmd(page, vma->vm_page_prot);
4348 if (write)
4349 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
4350
4351 add_mm_counter(vma->vm_mm, mm_counter_file(page), HPAGE_PMD_NR);
4352 page_add_file_rmap(page, vma, true);
4353
4354 /*
4355 * deposit and withdraw with pmd lock held
4356 */
4357 if (arch_needs_pgtable_deposit())
4358 deposit_prealloc_pte(vmf);
4359
4360 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
4361
4362 update_mmu_cache_pmd(vma, haddr, vmf->pmd);
4363
4364 /* fault is handled */
4365 ret = 0;
4366 count_vm_event(THP_FILE_MAPPED);
4367 out:
4368 spin_unlock(vmf->ptl);
4369 return ret;
4370 }
4371 #else
do_set_pmd(struct vm_fault *vmf, struct page *page)4372 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
4373 {
4374 return VM_FAULT_FALLBACK;
4375 }
4376 #endif
4377
4378 /**
4379 * set_pte_range - Set a range of PTEs to point to pages in a folio.
4380 * @vmf: Fault decription.
4381 * @folio: The folio that contains @page.
4382 * @page: The first page to create a PTE for.
4383 * @nr: The number of PTEs to create.
4384 * @addr: The first address to create a PTE for.
4385 */
set_pte_range(struct vm_fault *vmf, struct folio *folio, struct page *page, unsigned int nr, unsigned long addr)4386 void set_pte_range(struct vm_fault *vmf, struct folio *folio,
4387 struct page *page, unsigned int nr, unsigned long addr)
4388 {
4389 struct vm_area_struct *vma = vmf->vma;
4390 bool uffd_wp = vmf_orig_pte_uffd_wp(vmf);
4391 bool write = vmf->flags & FAULT_FLAG_WRITE;
4392 bool prefault = in_range(vmf->address, addr, nr * PAGE_SIZE);
4393 pte_t entry;
4394
4395 flush_icache_pages(vma, page, nr);
4396 entry = mk_pte(page, vma->vm_page_prot);
4397
4398 if (prefault && arch_wants_old_prefaulted_pte())
4399 entry = pte_mkold(entry);
4400 else
4401 entry = pte_sw_mkyoung(entry);
4402
4403 if (write)
4404 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
4405 if (unlikely(uffd_wp))
4406 entry = pte_mkuffd_wp(entry);
4407 /* copy-on-write page */
4408 if (write && !(vma->vm_flags & VM_SHARED)) {
4409 add_mm_counter(vma->vm_mm, MM_ANONPAGES, nr);
4410 VM_BUG_ON_FOLIO(nr != 1, folio);
4411 folio_add_new_anon_rmap(folio, vma, addr);
4412 folio_add_lru_vma(folio, vma);
4413 } else {
4414 add_mm_counter(vma->vm_mm, mm_counter_file(page), nr);
4415 folio_add_file_rmap_range(folio, page, nr, vma, false);
4416 }
4417 set_ptes(vma->vm_mm, addr, vmf->pte, entry, nr);
4418
4419 /* no need to invalidate: a not-present page won't be cached */
4420 update_mmu_cache_range(vmf, vma, addr, vmf->pte, nr);
4421 }
4422
vmf_pte_changed(struct vm_fault *vmf)4423 static bool vmf_pte_changed(struct vm_fault *vmf)
4424 {
4425 if (vmf->flags & FAULT_FLAG_ORIG_PTE_VALID)
4426 return !pte_same(ptep_get(vmf->pte), vmf->orig_pte);
4427
4428 return !pte_none(ptep_get(vmf->pte));
4429 }
4430
4431 /**
4432 * finish_fault - finish page fault once we have prepared the page to fault
4433 *
4434 * @vmf: structure describing the fault
4435 *
4436 * This function handles all that is needed to finish a page fault once the
4437 * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
4438 * given page, adds reverse page mapping, handles memcg charges and LRU
4439 * addition.
4440 *
4441 * The function expects the page to be locked and on success it consumes a
4442 * reference of a page being mapped (for the PTE which maps it).
4443 *
4444 * Return: %0 on success, %VM_FAULT_ code in case of error.
4445 */
finish_fault(struct vm_fault *vmf)4446 vm_fault_t finish_fault(struct vm_fault *vmf)
4447 {
4448 struct vm_area_struct *vma = vmf->vma;
4449 struct page *page;
4450 vm_fault_t ret;
4451
4452 /* Did we COW the page? */
4453 if ((vmf->flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
4454 page = vmf->cow_page;
4455 else
4456 page = vmf->page;
4457
4458 /*
4459 * check even for read faults because we might have lost our CoWed
4460 * page
4461 */
4462 if (!(vma->vm_flags & VM_SHARED)) {
4463 ret = check_stable_address_space(vma->vm_mm);
4464 if (ret)
4465 return ret;
4466 }
4467
4468 if (pmd_none(*vmf->pmd)) {
4469 if (PageTransCompound(page)) {
4470 ret = do_set_pmd(vmf, page);
4471 if (ret != VM_FAULT_FALLBACK)
4472 return ret;
4473 }
4474
4475 if (vmf->prealloc_pte)
4476 pmd_install(vma->vm_mm, vmf->pmd, &vmf->prealloc_pte);
4477 else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd)))
4478 return VM_FAULT_OOM;
4479 }
4480
4481 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
4482 vmf->address, &vmf->ptl);
4483 if (!vmf->pte)
4484 return VM_FAULT_NOPAGE;
4485
4486 /* Re-check under ptl */
4487 if (likely(!vmf_pte_changed(vmf))) {
4488 struct folio *folio = page_folio(page);
4489
4490 set_pte_range(vmf, folio, page, 1, vmf->address);
4491 ret = 0;
4492 } else {
4493 update_mmu_tlb(vma, vmf->address, vmf->pte);
4494 ret = VM_FAULT_NOPAGE;
4495 }
4496
4497 pte_unmap_unlock(vmf->pte, vmf->ptl);
4498 return ret;
4499 }
4500
4501 static unsigned long fault_around_pages __read_mostly =
4502 65536 >> PAGE_SHIFT;
4503
4504 #ifdef CONFIG_DEBUG_FS
fault_around_bytes_get(void *data, u64 *val)4505 static int fault_around_bytes_get(void *data, u64 *val)
4506 {
4507 *val = fault_around_pages << PAGE_SHIFT;
4508 return 0;
4509 }
4510
4511 /*
4512 * fault_around_bytes must be rounded down to the nearest page order as it's
4513 * what do_fault_around() expects to see.
4514 */
fault_around_bytes_set(void *data, u64 val)4515 static int fault_around_bytes_set(void *data, u64 val)
4516 {
4517 if (val / PAGE_SIZE > PTRS_PER_PTE)
4518 return -EINVAL;
4519
4520 /*
4521 * The minimum value is 1 page, however this results in no fault-around
4522 * at all. See should_fault_around().
4523 */
4524 fault_around_pages = max(rounddown_pow_of_two(val) >> PAGE_SHIFT, 1UL);
4525
4526 return 0;
4527 }
4528 DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops,
4529 fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
4530
fault_around_debugfs(void)4531 static int __init fault_around_debugfs(void)
4532 {
4533 debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL,
4534 &fault_around_bytes_fops);
4535 return 0;
4536 }
4537 late_initcall(fault_around_debugfs);
4538 #endif
4539
4540 /*
4541 * do_fault_around() tries to map few pages around the fault address. The hope
4542 * is that the pages will be needed soon and this will lower the number of
4543 * faults to handle.
4544 *
4545 * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
4546 * not ready to be mapped: not up-to-date, locked, etc.
4547 *
4548 * This function doesn't cross VMA or page table boundaries, in order to call
4549 * map_pages() and acquire a PTE lock only once.
4550 *
4551 * fault_around_pages defines how many pages we'll try to map.
4552 * do_fault_around() expects it to be set to a power of two less than or equal
4553 * to PTRS_PER_PTE.
4554 *
4555 * The virtual address of the area that we map is naturally aligned to
4556 * fault_around_pages * PAGE_SIZE rounded down to the machine page size
4557 * (and therefore to page order). This way it's easier to guarantee
4558 * that we don't cross page table boundaries.
4559 */
do_fault_around(struct vm_fault *vmf)4560 static vm_fault_t do_fault_around(struct vm_fault *vmf)
4561 {
4562 pgoff_t nr_pages = READ_ONCE(fault_around_pages);
4563 pgoff_t pte_off = pte_index(vmf->address);
4564 /* The page offset of vmf->address within the VMA. */
4565 pgoff_t vma_off = vmf->pgoff - vmf->vma->vm_pgoff;
4566 pgoff_t from_pte, to_pte;
4567 vm_fault_t ret;
4568
4569 /* The PTE offset of the start address, clamped to the VMA. */
4570 from_pte = max(ALIGN_DOWN(pte_off, nr_pages),
4571 pte_off - min(pte_off, vma_off));
4572
4573 /* The PTE offset of the end address, clamped to the VMA and PTE. */
4574 to_pte = min3(from_pte + nr_pages, (pgoff_t)PTRS_PER_PTE,
4575 pte_off + vma_pages(vmf->vma) - vma_off) - 1;
4576
4577 if (pmd_none(*vmf->pmd)) {
4578 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
4579 if (!vmf->prealloc_pte)
4580 return VM_FAULT_OOM;
4581 }
4582
4583 rcu_read_lock();
4584 ret = vmf->vma->vm_ops->map_pages(vmf,
4585 vmf->pgoff + from_pte - pte_off,
4586 vmf->pgoff + to_pte - pte_off);
4587 rcu_read_unlock();
4588
4589 return ret;
4590 }
4591
4592 /* Return true if we should do read fault-around, false otherwise */
should_fault_around(struct vm_fault *vmf)4593 static inline bool should_fault_around(struct vm_fault *vmf)
4594 {
4595 /* No ->map_pages? No way to fault around... */
4596 if (!vmf->vma->vm_ops->map_pages)
4597 return false;
4598
4599 if (uffd_disable_fault_around(vmf->vma))
4600 return false;
4601
4602 /* A single page implies no faulting 'around' at all. */
4603 return fault_around_pages > 1;
4604 }
4605
do_read_fault(struct vm_fault *vmf)4606 static vm_fault_t do_read_fault(struct vm_fault *vmf)
4607 {
4608 vm_fault_t ret = 0;
4609 struct folio *folio;
4610
4611 /*
4612 * Let's call ->map_pages() first and use ->fault() as fallback
4613 * if page by the offset is not ready to be mapped (cold cache or
4614 * something).
4615 */
4616 if (should_fault_around(vmf)) {
4617 ret = do_fault_around(vmf);
4618 if (ret)
4619 return ret;
4620 }
4621
4622 if (vmf->flags & FAULT_FLAG_VMA_LOCK) {
4623 vma_end_read(vmf->vma);
4624 return VM_FAULT_RETRY;
4625 }
4626
4627 ret = __do_fault(vmf);
4628 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4629 return ret;
4630
4631 ret |= finish_fault(vmf);
4632 folio = page_folio(vmf->page);
4633 folio_unlock(folio);
4634 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4635 folio_put(folio);
4636 return ret;
4637 }
4638
do_cow_fault(struct vm_fault *vmf)4639 static vm_fault_t do_cow_fault(struct vm_fault *vmf)
4640 {
4641 struct vm_area_struct *vma = vmf->vma;
4642 vm_fault_t ret;
4643
4644 if (vmf->flags & FAULT_FLAG_VMA_LOCK) {
4645 vma_end_read(vma);
4646 return VM_FAULT_RETRY;
4647 }
4648
4649 if (unlikely(anon_vma_prepare(vma)))
4650 return VM_FAULT_OOM;
4651
4652 vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address);
4653 if (!vmf->cow_page)
4654 return VM_FAULT_OOM;
4655
4656 if (mem_cgroup_charge(page_folio(vmf->cow_page), vma->vm_mm,
4657 GFP_KERNEL)) {
4658 put_page(vmf->cow_page);
4659 return VM_FAULT_OOM;
4660 }
4661 folio_throttle_swaprate(page_folio(vmf->cow_page), GFP_KERNEL);
4662
4663 ret = __do_fault(vmf);
4664 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4665 goto uncharge_out;
4666 if (ret & VM_FAULT_DONE_COW)
4667 return ret;
4668
4669 copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma);
4670 __SetPageUptodate(vmf->cow_page);
4671
4672 ret |= finish_fault(vmf);
4673 unlock_page(vmf->page);
4674 put_page(vmf->page);
4675 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4676 goto uncharge_out;
4677 return ret;
4678 uncharge_out:
4679 put_page(vmf->cow_page);
4680 return ret;
4681 }
4682
do_shared_fault(struct vm_fault *vmf)4683 static vm_fault_t do_shared_fault(struct vm_fault *vmf)
4684 {
4685 struct vm_area_struct *vma = vmf->vma;
4686 vm_fault_t ret, tmp;
4687 struct folio *folio;
4688
4689 if (vmf->flags & FAULT_FLAG_VMA_LOCK) {
4690 vma_end_read(vma);
4691 return VM_FAULT_RETRY;
4692 }
4693
4694 ret = __do_fault(vmf);
4695 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4696 return ret;
4697
4698 folio = page_folio(vmf->page);
4699
4700 /*
4701 * Check if the backing address space wants to know that the page is
4702 * about to become writable
4703 */
4704 if (vma->vm_ops->page_mkwrite) {
4705 folio_unlock(folio);
4706 tmp = do_page_mkwrite(vmf, folio);
4707 if (unlikely(!tmp ||
4708 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
4709 folio_put(folio);
4710 return tmp;
4711 }
4712 }
4713
4714 ret |= finish_fault(vmf);
4715 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
4716 VM_FAULT_RETRY))) {
4717 folio_unlock(folio);
4718 folio_put(folio);
4719 return ret;
4720 }
4721
4722 ret |= fault_dirty_shared_page(vmf);
4723 return ret;
4724 }
4725
4726 /*
4727 * We enter with non-exclusive mmap_lock (to exclude vma changes,
4728 * but allow concurrent faults).
4729 * The mmap_lock may have been released depending on flags and our
4730 * return value. See filemap_fault() and __folio_lock_or_retry().
4731 * If mmap_lock is released, vma may become invalid (for example
4732 * by other thread calling munmap()).
4733 */
do_fault(struct vm_fault *vmf)4734 static vm_fault_t do_fault(struct vm_fault *vmf)
4735 {
4736 struct vm_area_struct *vma = vmf->vma;
4737 struct mm_struct *vm_mm = vma->vm_mm;
4738 vm_fault_t ret;
4739
4740 /*
4741 * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND
4742 */
4743 if (!vma->vm_ops->fault) {
4744 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd,
4745 vmf->address, &vmf->ptl);
4746 if (unlikely(!vmf->pte))
4747 ret = VM_FAULT_SIGBUS;
4748 else {
4749 /*
4750 * Make sure this is not a temporary clearing of pte
4751 * by holding ptl and checking again. A R/M/W update
4752 * of pte involves: take ptl, clearing the pte so that
4753 * we don't have concurrent modification by hardware
4754 * followed by an update.
4755 */
4756 if (unlikely(pte_none(ptep_get(vmf->pte))))
4757 ret = VM_FAULT_SIGBUS;
4758 else
4759 ret = VM_FAULT_NOPAGE;
4760
4761 pte_unmap_unlock(vmf->pte, vmf->ptl);
4762 }
4763 } else if (!(vmf->flags & FAULT_FLAG_WRITE))
4764 ret = do_read_fault(vmf);
4765 else if (!(vma->vm_flags & VM_SHARED))
4766 ret = do_cow_fault(vmf);
4767 else
4768 ret = do_shared_fault(vmf);
4769
4770 /* preallocated pagetable is unused: free it */
4771 if (vmf->prealloc_pte) {
4772 pte_free(vm_mm, vmf->prealloc_pte);
4773 vmf->prealloc_pte = NULL;
4774 }
4775 return ret;
4776 }
4777
numa_migrate_prep(struct page *page, struct vm_area_struct *vma, unsigned long addr, int page_nid, int *flags)4778 int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
4779 unsigned long addr, int page_nid, int *flags)
4780 {
4781 get_page(page);
4782
4783 /* Record the current PID acceesing VMA */
4784 vma_set_access_pid_bit(vma);
4785
4786 count_vm_numa_event(NUMA_HINT_FAULTS);
4787 if (page_nid == numa_node_id()) {
4788 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
4789 *flags |= TNF_FAULT_LOCAL;
4790 }
4791
4792 return mpol_misplaced(page, vma, addr);
4793 }
4794
do_numa_page(struct vm_fault *vmf)4795 static vm_fault_t do_numa_page(struct vm_fault *vmf)
4796 {
4797 struct vm_area_struct *vma = vmf->vma;
4798 struct page *page = NULL;
4799 int page_nid = NUMA_NO_NODE;
4800 bool writable = false;
4801 int last_cpupid;
4802 int target_nid;
4803 pte_t pte, old_pte;
4804 int flags = 0;
4805
4806 /*
4807 * The "pte" at this point cannot be used safely without
4808 * validation through pte_unmap_same(). It's of NUMA type but
4809 * the pfn may be screwed if the read is non atomic.
4810 */
4811 spin_lock(vmf->ptl);
4812 if (unlikely(!pte_same(ptep_get(vmf->pte), vmf->orig_pte))) {
4813 pte_unmap_unlock(vmf->pte, vmf->ptl);
4814 goto out;
4815 }
4816
4817 /* Get the normal PTE */
4818 old_pte = ptep_get(vmf->pte);
4819 pte = pte_modify(old_pte, vma->vm_page_prot);
4820
4821 /*
4822 * Detect now whether the PTE could be writable; this information
4823 * is only valid while holding the PT lock.
4824 */
4825 writable = pte_write(pte);
4826 if (!writable && vma_wants_manual_pte_write_upgrade(vma) &&
4827 can_change_pte_writable(vma, vmf->address, pte))
4828 writable = true;
4829
4830 page = vm_normal_page(vma, vmf->address, pte);
4831 if (!page || is_zone_device_page(page))
4832 goto out_map;
4833
4834 /* TODO: handle PTE-mapped THP */
4835 if (PageCompound(page))
4836 goto out_map;
4837
4838 /*
4839 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
4840 * much anyway since they can be in shared cache state. This misses
4841 * the case where a mapping is writable but the process never writes
4842 * to it but pte_write gets cleared during protection updates and
4843 * pte_dirty has unpredictable behaviour between PTE scan updates,
4844 * background writeback, dirty balancing and application behaviour.
4845 */
4846 if (!writable)
4847 flags |= TNF_NO_GROUP;
4848
4849 /*
4850 * Flag if the page is shared between multiple address spaces. This
4851 * is later used when determining whether to group tasks together
4852 */
4853 if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
4854 flags |= TNF_SHARED;
4855
4856 page_nid = page_to_nid(page);
4857 /*
4858 * For memory tiering mode, cpupid of slow memory page is used
4859 * to record page access time. So use default value.
4860 */
4861 if ((sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) &&
4862 !node_is_toptier(page_nid))
4863 last_cpupid = (-1 & LAST_CPUPID_MASK);
4864 else
4865 last_cpupid = page_cpupid_last(page);
4866 target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid,
4867 &flags);
4868 if (target_nid == NUMA_NO_NODE) {
4869 put_page(page);
4870 goto out_map;
4871 }
4872 pte_unmap_unlock(vmf->pte, vmf->ptl);
4873 writable = false;
4874
4875 /* Migrate to the requested node */
4876 if (migrate_misplaced_page(page, vma, target_nid)) {
4877 page_nid = target_nid;
4878 flags |= TNF_MIGRATED;
4879 } else {
4880 flags |= TNF_MIGRATE_FAIL;
4881 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
4882 vmf->address, &vmf->ptl);
4883 if (unlikely(!vmf->pte))
4884 goto out;
4885 if (unlikely(!pte_same(ptep_get(vmf->pte), vmf->orig_pte))) {
4886 pte_unmap_unlock(vmf->pte, vmf->ptl);
4887 goto out;
4888 }
4889 goto out_map;
4890 }
4891
4892 out:
4893 if (page_nid != NUMA_NO_NODE)
4894 task_numa_fault(last_cpupid, page_nid, 1, flags);
4895 return 0;
4896 out_map:
4897 /*
4898 * Make it present again, depending on how arch implements
4899 * non-accessible ptes, some can allow access by kernel mode.
4900 */
4901 old_pte = ptep_modify_prot_start(vma, vmf->address, vmf->pte);
4902 pte = pte_modify(old_pte, vma->vm_page_prot);
4903 pte = pte_mkyoung(pte);
4904 if (writable)
4905 pte = pte_mkwrite(pte, vma);
4906 ptep_modify_prot_commit(vma, vmf->address, vmf->pte, old_pte, pte);
4907 update_mmu_cache_range(vmf, vma, vmf->address, vmf->pte, 1);
4908 pte_unmap_unlock(vmf->pte, vmf->ptl);
4909 goto out;
4910 }
4911
create_huge_pmd(struct vm_fault *vmf)4912 static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf)
4913 {
4914 struct vm_area_struct *vma = vmf->vma;
4915 if (vma_is_anonymous(vma))
4916 return do_huge_pmd_anonymous_page(vmf);
4917 if (vma->vm_ops->huge_fault)
4918 return vma->vm_ops->huge_fault(vmf, PMD_ORDER);
4919 return VM_FAULT_FALLBACK;
4920 }
4921
4922 /* `inline' is required to avoid gcc 4.1.2 build error */
wp_huge_pmd(struct vm_fault *vmf)4923 static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf)
4924 {
4925 struct vm_area_struct *vma = vmf->vma;
4926 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
4927 vm_fault_t ret;
4928
4929 if (vma_is_anonymous(vma)) {
4930 if (likely(!unshare) &&
4931 userfaultfd_huge_pmd_wp(vma, vmf->orig_pmd))
4932 return handle_userfault(vmf, VM_UFFD_WP);
4933 return do_huge_pmd_wp_page(vmf);
4934 }
4935
4936 if (vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) {
4937 if (vma->vm_ops->huge_fault) {
4938 ret = vma->vm_ops->huge_fault(vmf, PMD_ORDER);
4939 if (!(ret & VM_FAULT_FALLBACK))
4940 return ret;
4941 }
4942 }
4943
4944 /* COW or write-notify handled on pte level: split pmd. */
4945 __split_huge_pmd(vma, vmf->pmd, vmf->address, false, NULL);
4946
4947 return VM_FAULT_FALLBACK;
4948 }
4949
create_huge_pud(struct vm_fault *vmf)4950 static vm_fault_t create_huge_pud(struct vm_fault *vmf)
4951 {
4952 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \
4953 defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
4954 struct vm_area_struct *vma = vmf->vma;
4955 /* No support for anonymous transparent PUD pages yet */
4956 if (vma_is_anonymous(vma))
4957 return VM_FAULT_FALLBACK;
4958 if (vma->vm_ops->huge_fault)
4959 return vma->vm_ops->huge_fault(vmf, PUD_ORDER);
4960 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
4961 return VM_FAULT_FALLBACK;
4962 }
4963
wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud)4964 static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud)
4965 {
4966 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \
4967 defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
4968 struct vm_area_struct *vma = vmf->vma;
4969 vm_fault_t ret;
4970
4971 /* No support for anonymous transparent PUD pages yet */
4972 if (vma_is_anonymous(vma))
4973 goto split;
4974 if (vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) {
4975 if (vma->vm_ops->huge_fault) {
4976 ret = vma->vm_ops->huge_fault(vmf, PUD_ORDER);
4977 if (!(ret & VM_FAULT_FALLBACK))
4978 return ret;
4979 }
4980 }
4981 split:
4982 /* COW or write-notify not handled on PUD level: split pud.*/
4983 __split_huge_pud(vma, vmf->pud, vmf->address);
4984 #endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
4985 return VM_FAULT_FALLBACK;
4986 }
4987
4988 /*
4989 * These routines also need to handle stuff like marking pages dirty
4990 * and/or accessed for architectures that don't do it in hardware (most
4991 * RISC architectures). The early dirtying is also good on the i386.
4992 *
4993 * There is also a hook called "update_mmu_cache()" that architectures
4994 * with external mmu caches can use to update those (ie the Sparc or
4995 * PowerPC hashed page tables that act as extended TLBs).
4996 *
4997 * We enter with non-exclusive mmap_lock (to exclude vma changes, but allow
4998 * concurrent faults).
4999 *
5000 * The mmap_lock may have been released depending on flags and our return value.
5001 * See filemap_fault() and __folio_lock_or_retry().
5002 */
handle_pte_fault(struct vm_fault *vmf)5003 static vm_fault_t handle_pte_fault(struct vm_fault *vmf)
5004 {
5005 pte_t entry;
5006
5007 if (unlikely(pmd_none(*vmf->pmd))) {
5008 /*
5009 * Leave __pte_alloc() until later: because vm_ops->fault may
5010 * want to allocate huge page, and if we expose page table
5011 * for an instant, it will be difficult to retract from
5012 * concurrent faults and from rmap lookups.
5013 */
5014 vmf->pte = NULL;
5015 vmf->flags &= ~FAULT_FLAG_ORIG_PTE_VALID;
5016 } else {
5017 /*
5018 * A regular pmd is established and it can't morph into a huge
5019 * pmd by anon khugepaged, since that takes mmap_lock in write
5020 * mode; but shmem or file collapse to THP could still morph
5021 * it into a huge pmd: just retry later if so.
5022 */
5023 vmf->pte = pte_offset_map_nolock(vmf->vma->vm_mm, vmf->pmd,
5024 vmf->address, &vmf->ptl);
5025 if (unlikely(!vmf->pte))
5026 return 0;
5027 vmf->orig_pte = ptep_get_lockless(vmf->pte);
5028 vmf->flags |= FAULT_FLAG_ORIG_PTE_VALID;
5029
5030 if (pte_none(vmf->orig_pte)) {
5031 pte_unmap(vmf->pte);
5032 vmf->pte = NULL;
5033 }
5034 }
5035
5036 if (!vmf->pte)
5037 return do_pte_missing(vmf);
5038
5039 if (!pte_present(vmf->orig_pte))
5040 return do_swap_page(vmf);
5041
5042 if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma))
5043 return do_numa_page(vmf);
5044
5045 spin_lock(vmf->ptl);
5046 entry = vmf->orig_pte;
5047 if (unlikely(!pte_same(ptep_get(vmf->pte), entry))) {
5048 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
5049 goto unlock;
5050 }
5051 if (vmf->flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) {
5052 if (!pte_write(entry))
5053 return do_wp_page(vmf);
5054 else if (likely(vmf->flags & FAULT_FLAG_WRITE))
5055 entry = pte_mkdirty(entry);
5056 }
5057 entry = pte_mkyoung(entry);
5058 if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry,
5059 vmf->flags & FAULT_FLAG_WRITE)) {
5060 update_mmu_cache_range(vmf, vmf->vma, vmf->address,
5061 vmf->pte, 1);
5062 } else {
5063 /* Skip spurious TLB flush for retried page fault */
5064 if (vmf->flags & FAULT_FLAG_TRIED)
5065 goto unlock;
5066 /*
5067 * This is needed only for protection faults but the arch code
5068 * is not yet telling us if this is a protection fault or not.
5069 * This still avoids useless tlb flushes for .text page faults
5070 * with threads.
5071 */
5072 if (vmf->flags & FAULT_FLAG_WRITE)
5073 flush_tlb_fix_spurious_fault(vmf->vma, vmf->address,
5074 vmf->pte);
5075 }
5076 unlock:
5077 pte_unmap_unlock(vmf->pte, vmf->ptl);
5078 return 0;
5079 }
5080
5081 /*
5082 * On entry, we hold either the VMA lock or the mmap_lock
5083 * (FAULT_FLAG_VMA_LOCK tells you which). If VM_FAULT_RETRY is set in
5084 * the result, the mmap_lock is not held on exit. See filemap_fault()
5085 * and __folio_lock_or_retry().
5086 */
__handle_mm_fault(struct vm_area_struct *vma, unsigned long address, unsigned int flags)5087 static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma,
5088 unsigned long address, unsigned int flags)
5089 {
5090 struct vm_fault vmf = {
5091 .vma = vma,
5092 .address = address & PAGE_MASK,
5093 .real_address = address,
5094 .flags = flags,
5095 .pgoff = linear_page_index(vma, address),
5096 .gfp_mask = __get_fault_gfp_mask(vma),
5097 };
5098 struct mm_struct *mm = vma->vm_mm;
5099 unsigned long vm_flags = vma->vm_flags;
5100 pgd_t *pgd;
5101 p4d_t *p4d;
5102 vm_fault_t ret;
5103
5104 pgd = pgd_offset(mm, address);
5105 p4d = p4d_alloc(mm, pgd, address);
5106 if (!p4d)
5107 return VM_FAULT_OOM;
5108
5109 vmf.pud = pud_alloc(mm, p4d, address);
5110 if (!vmf.pud)
5111 return VM_FAULT_OOM;
5112 retry_pud:
5113 if (pud_none(*vmf.pud) &&
5114 hugepage_vma_check(vma, vm_flags, false, true, true)) {
5115 ret = create_huge_pud(&vmf);
5116 if (!(ret & VM_FAULT_FALLBACK))
5117 return ret;
5118 } else {
5119 pud_t orig_pud = *vmf.pud;
5120
5121 barrier();
5122 if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) {
5123
5124 /*
5125 * TODO once we support anonymous PUDs: NUMA case and
5126 * FAULT_FLAG_UNSHARE handling.
5127 */
5128 if ((flags & FAULT_FLAG_WRITE) && !pud_write(orig_pud)) {
5129 ret = wp_huge_pud(&vmf, orig_pud);
5130 if (!(ret & VM_FAULT_FALLBACK))
5131 return ret;
5132 } else {
5133 huge_pud_set_accessed(&vmf, orig_pud);
5134 return 0;
5135 }
5136 }
5137 }
5138
5139 vmf.pmd = pmd_alloc(mm, vmf.pud, address);
5140 if (!vmf.pmd)
5141 return VM_FAULT_OOM;
5142
5143 /* Huge pud page fault raced with pmd_alloc? */
5144 if (pud_trans_unstable(vmf.pud))
5145 goto retry_pud;
5146
5147 if (pmd_none(*vmf.pmd) &&
5148 hugepage_vma_check(vma, vm_flags, false, true, true)) {
5149 ret = create_huge_pmd(&vmf);
5150 if (!(ret & VM_FAULT_FALLBACK))
5151 return ret;
5152 } else {
5153 vmf.orig_pmd = pmdp_get_lockless(vmf.pmd);
5154
5155 if (unlikely(is_swap_pmd(vmf.orig_pmd))) {
5156 VM_BUG_ON(thp_migration_supported() &&
5157 !is_pmd_migration_entry(vmf.orig_pmd));
5158 if (is_pmd_migration_entry(vmf.orig_pmd))
5159 pmd_migration_entry_wait(mm, vmf.pmd);
5160 return 0;
5161 }
5162 if (pmd_trans_huge(vmf.orig_pmd) || pmd_devmap(vmf.orig_pmd)) {
5163 if (pmd_protnone(vmf.orig_pmd) && vma_is_accessible(vma))
5164 return do_huge_pmd_numa_page(&vmf);
5165
5166 if ((flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) &&
5167 !pmd_write(vmf.orig_pmd)) {
5168 ret = wp_huge_pmd(&vmf);
5169 if (!(ret & VM_FAULT_FALLBACK))
5170 return ret;
5171 } else {
5172 huge_pmd_set_accessed(&vmf);
5173 return 0;
5174 }
5175 }
5176 }
5177
5178 return handle_pte_fault(&vmf);
5179 }
5180
5181 /**
5182 * mm_account_fault - Do page fault accounting
5183 * @mm: mm from which memcg should be extracted. It can be NULL.
5184 * @regs: the pt_regs struct pointer. When set to NULL, will skip accounting
5185 * of perf event counters, but we'll still do the per-task accounting to
5186 * the task who triggered this page fault.
5187 * @address: the faulted address.
5188 * @flags: the fault flags.
5189 * @ret: the fault retcode.
5190 *
5191 * This will take care of most of the page fault accounting. Meanwhile, it
5192 * will also include the PERF_COUNT_SW_PAGE_FAULTS_[MAJ|MIN] perf counter
5193 * updates. However, note that the handling of PERF_COUNT_SW_PAGE_FAULTS should
5194 * still be in per-arch page fault handlers at the entry of page fault.
5195 */
mm_account_fault(struct mm_struct *mm, struct pt_regs *regs, unsigned long address, unsigned int flags, vm_fault_t ret)5196 static inline void mm_account_fault(struct mm_struct *mm, struct pt_regs *regs,
5197 unsigned long address, unsigned int flags,
5198 vm_fault_t ret)
5199 {
5200 bool major;
5201
5202 /* Incomplete faults will be accounted upon completion. */
5203 if (ret & VM_FAULT_RETRY)
5204 return;
5205
5206 /*
5207 * To preserve the behavior of older kernels, PGFAULT counters record
5208 * both successful and failed faults, as opposed to perf counters,
5209 * which ignore failed cases.
5210 */
5211 count_vm_event(PGFAULT);
5212 count_memcg_event_mm(mm, PGFAULT);
5213
5214 /*
5215 * Do not account for unsuccessful faults (e.g. when the address wasn't
5216 * valid). That includes arch_vma_access_permitted() failing before
5217 * reaching here. So this is not a "this many hardware page faults"
5218 * counter. We should use the hw profiling for that.
5219 */
5220 if (ret & VM_FAULT_ERROR)
5221 return;
5222
5223 /*
5224 * We define the fault as a major fault when the final successful fault
5225 * is VM_FAULT_MAJOR, or if it retried (which implies that we couldn't
5226 * handle it immediately previously).
5227 */
5228 major = (ret & VM_FAULT_MAJOR) || (flags & FAULT_FLAG_TRIED);
5229
5230 if (major)
5231 current->maj_flt++;
5232 else
5233 current->min_flt++;
5234
5235 /*
5236 * If the fault is done for GUP, regs will be NULL. We only do the
5237 * accounting for the per thread fault counters who triggered the
5238 * fault, and we skip the perf event updates.
5239 */
5240 if (!regs)
5241 return;
5242
5243 if (major)
5244 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address);
5245 else
5246 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address);
5247 }
5248
5249 #ifdef CONFIG_LRU_GEN
lru_gen_enter_fault(struct vm_area_struct *vma)5250 static void lru_gen_enter_fault(struct vm_area_struct *vma)
5251 {
5252 /* the LRU algorithm only applies to accesses with recency */
5253 current->in_lru_fault = vma_has_recency(vma);
5254 }
5255
lru_gen_exit_fault(void)5256 static void lru_gen_exit_fault(void)
5257 {
5258 current->in_lru_fault = false;
5259 }
5260 #else
lru_gen_enter_fault(struct vm_area_struct *vma)5261 static void lru_gen_enter_fault(struct vm_area_struct *vma)
5262 {
5263 }
5264
lru_gen_exit_fault(void)5265 static void lru_gen_exit_fault(void)
5266 {
5267 }
5268 #endif /* CONFIG_LRU_GEN */
5269
sanitize_fault_flags(struct vm_area_struct *vma, unsigned int *flags)5270 static vm_fault_t sanitize_fault_flags(struct vm_area_struct *vma,
5271 unsigned int *flags)
5272 {
5273 if (unlikely(*flags & FAULT_FLAG_UNSHARE)) {
5274 if (WARN_ON_ONCE(*flags & FAULT_FLAG_WRITE))
5275 return VM_FAULT_SIGSEGV;
5276 /*
5277 * FAULT_FLAG_UNSHARE only applies to COW mappings. Let's
5278 * just treat it like an ordinary read-fault otherwise.
5279 */
5280 if (!is_cow_mapping(vma->vm_flags))
5281 *flags &= ~FAULT_FLAG_UNSHARE;
5282 } else if (*flags & FAULT_FLAG_WRITE) {
5283 /* Write faults on read-only mappings are impossible ... */
5284 if (WARN_ON_ONCE(!(vma->vm_flags & VM_MAYWRITE)))
5285 return VM_FAULT_SIGSEGV;
5286 /* ... and FOLL_FORCE only applies to COW mappings. */
5287 if (WARN_ON_ONCE(!(vma->vm_flags & VM_WRITE) &&
5288 !is_cow_mapping(vma->vm_flags)))
5289 return VM_FAULT_SIGSEGV;
5290 }
5291 #ifdef CONFIG_PER_VMA_LOCK
5292 /*
5293 * Per-VMA locks can't be used with FAULT_FLAG_RETRY_NOWAIT because of
5294 * the assumption that lock is dropped on VM_FAULT_RETRY.
5295 */
5296 if (WARN_ON_ONCE((*flags &
5297 (FAULT_FLAG_VMA_LOCK | FAULT_FLAG_RETRY_NOWAIT)) ==
5298 (FAULT_FLAG_VMA_LOCK | FAULT_FLAG_RETRY_NOWAIT)))
5299 return VM_FAULT_SIGSEGV;
5300 #endif
5301
5302 return 0;
5303 }
5304
5305 /*
5306 * By the time we get here, we already hold the mm semaphore
5307 *
5308 * The mmap_lock may have been released depending on flags and our
5309 * return value. See filemap_fault() and __folio_lock_or_retry().
5310 */
handle_mm_fault(struct vm_area_struct *vma, unsigned long address, unsigned int flags, struct pt_regs *regs)5311 vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
5312 unsigned int flags, struct pt_regs *regs)
5313 {
5314 /* If the fault handler drops the mmap_lock, vma may be freed */
5315 struct mm_struct *mm = vma->vm_mm;
5316 vm_fault_t ret;
5317
5318 __set_current_state(TASK_RUNNING);
5319
5320 ret = sanitize_fault_flags(vma, &flags);
5321 if (ret)
5322 goto out;
5323
5324 if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
5325 flags & FAULT_FLAG_INSTRUCTION,
5326 flags & FAULT_FLAG_REMOTE)) {
5327 ret = VM_FAULT_SIGSEGV;
5328 goto out;
5329 }
5330
5331 /*
5332 * Enable the memcg OOM handling for faults triggered in user
5333 * space. Kernel faults are handled more gracefully.
5334 */
5335 if (flags & FAULT_FLAG_USER)
5336 mem_cgroup_enter_user_fault();
5337
5338 lru_gen_enter_fault(vma);
5339
5340 if (unlikely(is_vm_hugetlb_page(vma)))
5341 ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
5342 else
5343 ret = __handle_mm_fault(vma, address, flags);
5344
5345 lru_gen_exit_fault();
5346
5347 if (flags & FAULT_FLAG_USER) {
5348 mem_cgroup_exit_user_fault();
5349 /*
5350 * The task may have entered a memcg OOM situation but
5351 * if the allocation error was handled gracefully (no
5352 * VM_FAULT_OOM), there is no need to kill anything.
5353 * Just clean up the OOM state peacefully.
5354 */
5355 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
5356 mem_cgroup_oom_synchronize(false);
5357 }
5358 out:
5359 mm_account_fault(mm, regs, address, flags, ret);
5360
5361 return ret;
5362 }
5363 EXPORT_SYMBOL_GPL(handle_mm_fault);
5364
5365 #ifdef CONFIG_LOCK_MM_AND_FIND_VMA
5366 #include <linux/extable.h>
5367
get_mmap_lock_carefully(struct mm_struct *mm, struct pt_regs *regs)5368 static inline bool get_mmap_lock_carefully(struct mm_struct *mm, struct pt_regs *regs)
5369 {
5370 if (likely(mmap_read_trylock(mm)))
5371 return true;
5372
5373 if (regs && !user_mode(regs)) {
5374 unsigned long ip = exception_ip(regs);
5375 if (!search_exception_tables(ip))
5376 return false;
5377 }
5378
5379 return !mmap_read_lock_killable(mm);
5380 }
5381
mmap_upgrade_trylock(struct mm_struct *mm)5382 static inline bool mmap_upgrade_trylock(struct mm_struct *mm)
5383 {
5384 /*
5385 * We don't have this operation yet.
5386 *
5387 * It should be easy enough to do: it's basically a
5388 * atomic_long_try_cmpxchg_acquire()
5389 * from RWSEM_READER_BIAS -> RWSEM_WRITER_LOCKED, but
5390 * it also needs the proper lockdep magic etc.
5391 */
5392 return false;
5393 }
5394
upgrade_mmap_lock_carefully(struct mm_struct *mm, struct pt_regs *regs)5395 static inline bool upgrade_mmap_lock_carefully(struct mm_struct *mm, struct pt_regs *regs)
5396 {
5397 mmap_read_unlock(mm);
5398 if (regs && !user_mode(regs)) {
5399 unsigned long ip = exception_ip(regs);
5400 if (!search_exception_tables(ip))
5401 return false;
5402 }
5403 return !mmap_write_lock_killable(mm);
5404 }
5405
5406 /*
5407 * Helper for page fault handling.
5408 *
5409 * This is kind of equivalend to "mmap_read_lock()" followed
5410 * by "find_extend_vma()", except it's a lot more careful about
5411 * the locking (and will drop the lock on failure).
5412 *
5413 * For example, if we have a kernel bug that causes a page
5414 * fault, we don't want to just use mmap_read_lock() to get
5415 * the mm lock, because that would deadlock if the bug were
5416 * to happen while we're holding the mm lock for writing.
5417 *
5418 * So this checks the exception tables on kernel faults in
5419 * order to only do this all for instructions that are actually
5420 * expected to fault.
5421 *
5422 * We can also actually take the mm lock for writing if we
5423 * need to extend the vma, which helps the VM layer a lot.
5424 */
lock_mm_and_find_vma(struct mm_struct *mm, unsigned long addr, struct pt_regs *regs)5425 struct vm_area_struct *lock_mm_and_find_vma(struct mm_struct *mm,
5426 unsigned long addr, struct pt_regs *regs)
5427 {
5428 struct vm_area_struct *vma;
5429
5430 if (!get_mmap_lock_carefully(mm, regs))
5431 return NULL;
5432
5433 vma = find_vma(mm, addr);
5434 if (likely(vma && (vma->vm_start <= addr)))
5435 return vma;
5436
5437 /*
5438 * Well, dang. We might still be successful, but only
5439 * if we can extend a vma to do so.
5440 */
5441 if (!vma || !(vma->vm_flags & VM_GROWSDOWN)) {
5442 mmap_read_unlock(mm);
5443 return NULL;
5444 }
5445
5446 /*
5447 * We can try to upgrade the mmap lock atomically,
5448 * in which case we can continue to use the vma
5449 * we already looked up.
5450 *
5451 * Otherwise we'll have to drop the mmap lock and
5452 * re-take it, and also look up the vma again,
5453 * re-checking it.
5454 */
5455 if (!mmap_upgrade_trylock(mm)) {
5456 if (!upgrade_mmap_lock_carefully(mm, regs))
5457 return NULL;
5458
5459 vma = find_vma(mm, addr);
5460 if (!vma)
5461 goto fail;
5462 if (vma->vm_start <= addr)
5463 goto success;
5464 if (!(vma->vm_flags & VM_GROWSDOWN))
5465 goto fail;
5466 }
5467
5468 if (expand_stack_locked(vma, addr))
5469 goto fail;
5470
5471 success:
5472 mmap_write_downgrade(mm);
5473 return vma;
5474
5475 fail:
5476 mmap_write_unlock(mm);
5477 return NULL;
5478 }
5479 #endif
5480
5481 #ifdef CONFIG_PER_VMA_LOCK
5482 /*
5483 * Lookup and lock a VMA under RCU protection. Returned VMA is guaranteed to be
5484 * stable and not isolated. If the VMA is not found or is being modified the
5485 * function returns NULL.
5486 */
lock_vma_under_rcu(struct mm_struct *mm, unsigned long address)5487 struct vm_area_struct *lock_vma_under_rcu(struct mm_struct *mm,
5488 unsigned long address)
5489 {
5490 MA_STATE(mas, &mm->mm_mt, address, address);
5491 struct vm_area_struct *vma;
5492
5493 rcu_read_lock();
5494 retry:
5495 vma = mas_walk(&mas);
5496 if (!vma)
5497 goto inval;
5498
5499 if (!vma_start_read(vma))
5500 goto inval;
5501
5502 /*
5503 * find_mergeable_anon_vma uses adjacent vmas which are not locked.
5504 * This check must happen after vma_start_read(); otherwise, a
5505 * concurrent mremap() with MREMAP_DONTUNMAP could dissociate the VMA
5506 * from its anon_vma.
5507 */
5508 if (unlikely(vma_is_anonymous(vma) && !vma->anon_vma))
5509 goto inval_end_read;
5510
5511 /* Check since vm_start/vm_end might change before we lock the VMA */
5512 if (unlikely(address < vma->vm_start || address >= vma->vm_end))
5513 goto inval_end_read;
5514
5515 /* Check if the VMA got isolated after we found it */
5516 if (vma->detached) {
5517 vma_end_read(vma);
5518 count_vm_vma_lock_event(VMA_LOCK_MISS);
5519 /* The area was replaced with another one */
5520 goto retry;
5521 }
5522
5523 rcu_read_unlock();
5524 return vma;
5525
5526 inval_end_read:
5527 vma_end_read(vma);
5528 inval:
5529 rcu_read_unlock();
5530 count_vm_vma_lock_event(VMA_LOCK_ABORT);
5531 return NULL;
5532 }
5533 #endif /* CONFIG_PER_VMA_LOCK */
5534
5535 #ifndef __PAGETABLE_P4D_FOLDED
5536 /*
5537 * Allocate p4d page table.
5538 * We've already handled the fast-path in-line.
5539 */
__p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)5540 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
5541 {
5542 p4d_t *new = p4d_alloc_one(mm, address);
5543 if (!new)
5544 return -ENOMEM;
5545
5546 spin_lock(&mm->page_table_lock);
5547 if (pgd_present(*pgd)) { /* Another has populated it */
5548 p4d_free(mm, new);
5549 } else {
5550 smp_wmb(); /* See comment in pmd_install() */
5551 pgd_populate(mm, pgd, new);
5552 }
5553 spin_unlock(&mm->page_table_lock);
5554 return 0;
5555 }
5556 #endif /* __PAGETABLE_P4D_FOLDED */
5557
5558 #ifndef __PAGETABLE_PUD_FOLDED
5559 /*
5560 * Allocate page upper directory.
5561 * We've already handled the fast-path in-line.
5562 */
__pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address)5563 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address)
5564 {
5565 pud_t *new = pud_alloc_one(mm, address);
5566 if (!new)
5567 return -ENOMEM;
5568
5569 spin_lock(&mm->page_table_lock);
5570 if (!p4d_present(*p4d)) {
5571 mm_inc_nr_puds(mm);
5572 smp_wmb(); /* See comment in pmd_install() */
5573 p4d_populate(mm, p4d, new);
5574 } else /* Another has populated it */
5575 pud_free(mm, new);
5576 spin_unlock(&mm->page_table_lock);
5577 return 0;
5578 }
5579 #endif /* __PAGETABLE_PUD_FOLDED */
5580
5581 #ifndef __PAGETABLE_PMD_FOLDED
5582 /*
5583 * Allocate page middle directory.
5584 * We've already handled the fast-path in-line.
5585 */
__pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)5586 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
5587 {
5588 spinlock_t *ptl;
5589 pmd_t *new = pmd_alloc_one(mm, address);
5590 if (!new)
5591 return -ENOMEM;
5592
5593 ptl = pud_lock(mm, pud);
5594 if (!pud_present(*pud)) {
5595 mm_inc_nr_pmds(mm);
5596 smp_wmb(); /* See comment in pmd_install() */
5597 pud_populate(mm, pud, new);
5598 } else { /* Another has populated it */
5599 pmd_free(mm, new);
5600 }
5601 spin_unlock(ptl);
5602 return 0;
5603 }
5604 #endif /* __PAGETABLE_PMD_FOLDED */
5605
5606 /**
5607 * follow_pte - look up PTE at a user virtual address
5608 * @mm: the mm_struct of the target address space
5609 * @address: user virtual address
5610 * @ptepp: location to store found PTE
5611 * @ptlp: location to store the lock for the PTE
5612 *
5613 * On a successful return, the pointer to the PTE is stored in @ptepp;
5614 * the corresponding lock is taken and its location is stored in @ptlp.
5615 * The contents of the PTE are only stable until @ptlp is released;
5616 * any further use, if any, must be protected against invalidation
5617 * with MMU notifiers.
5618 *
5619 * Only IO mappings and raw PFN mappings are allowed. The mmap semaphore
5620 * should be taken for read.
5621 *
5622 * KVM uses this function. While it is arguably less bad than ``follow_pfn``,
5623 * it is not a good general-purpose API.
5624 *
5625 * Return: zero on success, -ve otherwise.
5626 */
follow_pte(struct mm_struct *mm, unsigned long address, pte_t **ptepp, spinlock_t **ptlp)5627 int follow_pte(struct mm_struct *mm, unsigned long address,
5628 pte_t **ptepp, spinlock_t **ptlp)
5629 {
5630 pgd_t *pgd;
5631 p4d_t *p4d;
5632 pud_t *pud;
5633 pmd_t *pmd;
5634 pte_t *ptep;
5635
5636 pgd = pgd_offset(mm, address);
5637 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
5638 goto out;
5639
5640 p4d = p4d_offset(pgd, address);
5641 if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d)))
5642 goto out;
5643
5644 pud = pud_offset(p4d, address);
5645 if (pud_none(*pud) || unlikely(pud_bad(*pud)))
5646 goto out;
5647
5648 pmd = pmd_offset(pud, address);
5649 VM_BUG_ON(pmd_trans_huge(*pmd));
5650
5651 ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
5652 if (!ptep)
5653 goto out;
5654 if (!pte_present(ptep_get(ptep)))
5655 goto unlock;
5656 *ptepp = ptep;
5657 return 0;
5658 unlock:
5659 pte_unmap_unlock(ptep, *ptlp);
5660 out:
5661 return -EINVAL;
5662 }
5663 EXPORT_SYMBOL_GPL(follow_pte);
5664
5665 /**
5666 * follow_pfn - look up PFN at a user virtual address
5667 * @vma: memory mapping
5668 * @address: user virtual address
5669 * @pfn: location to store found PFN
5670 *
5671 * Only IO mappings and raw PFN mappings are allowed.
5672 *
5673 * This function does not allow the caller to read the permissions
5674 * of the PTE. Do not use it.
5675 *
5676 * Return: zero and the pfn at @pfn on success, -ve otherwise.
5677 */
follow_pfn(struct vm_area_struct *vma, unsigned long address, unsigned long *pfn)5678 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
5679 unsigned long *pfn)
5680 {
5681 int ret = -EINVAL;
5682 spinlock_t *ptl;
5683 pte_t *ptep;
5684
5685 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
5686 return ret;
5687
5688 ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
5689 if (ret)
5690 return ret;
5691 *pfn = pte_pfn(ptep_get(ptep));
5692 pte_unmap_unlock(ptep, ptl);
5693 return 0;
5694 }
5695 EXPORT_SYMBOL(follow_pfn);
5696
5697 #ifdef CONFIG_HAVE_IOREMAP_PROT
follow_phys(struct vm_area_struct *vma, unsigned long address, unsigned int flags, unsigned long *prot, resource_size_t *phys)5698 int follow_phys(struct vm_area_struct *vma,
5699 unsigned long address, unsigned int flags,
5700 unsigned long *prot, resource_size_t *phys)
5701 {
5702 int ret = -EINVAL;
5703 pte_t *ptep, pte;
5704 spinlock_t *ptl;
5705
5706 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
5707 goto out;
5708
5709 if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
5710 goto out;
5711 pte = ptep_get(ptep);
5712
5713 if ((flags & FOLL_WRITE) && !pte_write(pte))
5714 goto unlock;
5715
5716 *prot = pgprot_val(pte_pgprot(pte));
5717 *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
5718
5719 ret = 0;
5720 unlock:
5721 pte_unmap_unlock(ptep, ptl);
5722 out:
5723 return ret;
5724 }
5725
5726 /**
5727 * generic_access_phys - generic implementation for iomem mmap access
5728 * @vma: the vma to access
5729 * @addr: userspace address, not relative offset within @vma
5730 * @buf: buffer to read/write
5731 * @len: length of transfer
5732 * @write: set to FOLL_WRITE when writing, otherwise reading
5733 *
5734 * This is a generic implementation for &vm_operations_struct.access for an
5735 * iomem mapping. This callback is used by access_process_vm() when the @vma is
5736 * not page based.
5737 */
generic_access_phys(struct vm_area_struct *vma, unsigned long addr, void *buf, int len, int write)5738 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
5739 void *buf, int len, int write)
5740 {
5741 resource_size_t phys_addr;
5742 unsigned long prot = 0;
5743 void __iomem *maddr;
5744 pte_t *ptep, pte;
5745 spinlock_t *ptl;
5746 int offset = offset_in_page(addr);
5747 int ret = -EINVAL;
5748
5749 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
5750 return -EINVAL;
5751
5752 retry:
5753 if (follow_pte(vma->vm_mm, addr, &ptep, &ptl))
5754 return -EINVAL;
5755 pte = ptep_get(ptep);
5756 pte_unmap_unlock(ptep, ptl);
5757
5758 prot = pgprot_val(pte_pgprot(pte));
5759 phys_addr = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
5760
5761 if ((write & FOLL_WRITE) && !pte_write(pte))
5762 return -EINVAL;
5763
5764 maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
5765 if (!maddr)
5766 return -ENOMEM;
5767
5768 if (follow_pte(vma->vm_mm, addr, &ptep, &ptl))
5769 goto out_unmap;
5770
5771 if (!pte_same(pte, ptep_get(ptep))) {
5772 pte_unmap_unlock(ptep, ptl);
5773 iounmap(maddr);
5774
5775 goto retry;
5776 }
5777
5778 if (write)
5779 memcpy_toio(maddr + offset, buf, len);
5780 else
5781 memcpy_fromio(buf, maddr + offset, len);
5782 ret = len;
5783 pte_unmap_unlock(ptep, ptl);
5784 out_unmap:
5785 iounmap(maddr);
5786
5787 return ret;
5788 }
5789 EXPORT_SYMBOL_GPL(generic_access_phys);
5790 #endif
5791
5792 /*
5793 * Access another process' address space as given in mm.
5794 */
__access_remote_vm(struct mm_struct *mm, unsigned long addr, void *buf, int len, unsigned int gup_flags)5795 int __access_remote_vm(struct mm_struct *mm, unsigned long addr, void *buf,
5796 int len, unsigned int gup_flags)
5797 {
5798 void *old_buf = buf;
5799 int write = gup_flags & FOLL_WRITE;
5800
5801 if (mmap_read_lock_killable(mm))
5802 return 0;
5803
5804 /* Untag the address before looking up the VMA */
5805 addr = untagged_addr_remote(mm, addr);
5806
5807 /* Avoid triggering the temporary warning in __get_user_pages */
5808 if (!vma_lookup(mm, addr) && !expand_stack(mm, addr))
5809 return 0;
5810
5811 /* ignore errors, just check how much was successfully transferred */
5812 while (len) {
5813 int bytes, offset;
5814 void *maddr;
5815 struct vm_area_struct *vma = NULL;
5816 struct page *page = get_user_page_vma_remote(mm, addr,
5817 gup_flags, &vma);
5818
5819 if (IS_ERR_OR_NULL(page)) {
5820 /* We might need to expand the stack to access it */
5821 vma = vma_lookup(mm, addr);
5822 if (!vma) {
5823 vma = expand_stack(mm, addr);
5824
5825 /* mmap_lock was dropped on failure */
5826 if (!vma)
5827 return buf - old_buf;
5828
5829 /* Try again if stack expansion worked */
5830 continue;
5831 }
5832
5833
5834 /*
5835 * Check if this is a VM_IO | VM_PFNMAP VMA, which
5836 * we can access using slightly different code.
5837 */
5838 bytes = 0;
5839 #ifdef CONFIG_HAVE_IOREMAP_PROT
5840 if (vma->vm_ops && vma->vm_ops->access)
5841 bytes = vma->vm_ops->access(vma, addr, buf,
5842 len, write);
5843 #endif
5844 if (bytes <= 0)
5845 break;
5846 } else {
5847 bytes = len;
5848 offset = addr & (PAGE_SIZE-1);
5849 if (bytes > PAGE_SIZE-offset)
5850 bytes = PAGE_SIZE-offset;
5851
5852 maddr = kmap(page);
5853 if (write) {
5854 copy_to_user_page(vma, page, addr,
5855 maddr + offset, buf, bytes);
5856 set_page_dirty_lock(page);
5857 } else {
5858 copy_from_user_page(vma, page, addr,
5859 buf, maddr + offset, bytes);
5860 }
5861 kunmap(page);
5862 put_page(page);
5863 }
5864 len -= bytes;
5865 buf += bytes;
5866 addr += bytes;
5867 }
5868 mmap_read_unlock(mm);
5869
5870 return buf - old_buf;
5871 }
5872
5873 /**
5874 * access_remote_vm - access another process' address space
5875 * @mm: the mm_struct of the target address space
5876 * @addr: start address to access
5877 * @buf: source or destination buffer
5878 * @len: number of bytes to transfer
5879 * @gup_flags: flags modifying lookup behaviour
5880 *
5881 * The caller must hold a reference on @mm.
5882 *
5883 * Return: number of bytes copied from source to destination.
5884 */
access_remote_vm(struct mm_struct *mm, unsigned long addr, void *buf, int len, unsigned int gup_flags)5885 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
5886 void *buf, int len, unsigned int gup_flags)
5887 {
5888 return __access_remote_vm(mm, addr, buf, len, gup_flags);
5889 }
5890
5891 /*
5892 * Access another process' address space.
5893 * Source/target buffer must be kernel space,
5894 * Do not walk the page table directly, use get_user_pages
5895 */
access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, unsigned int gup_flags)5896 int access_process_vm(struct task_struct *tsk, unsigned long addr,
5897 void *buf, int len, unsigned int gup_flags)
5898 {
5899 struct mm_struct *mm;
5900 int ret;
5901
5902 mm = get_task_mm(tsk);
5903 if (!mm)
5904 return 0;
5905
5906 ret = __access_remote_vm(mm, addr, buf, len, gup_flags);
5907
5908 mmput(mm);
5909
5910 return ret;
5911 }
5912 EXPORT_SYMBOL_GPL(access_process_vm);
5913
5914 /*
5915 * Print the name of a VMA.
5916 */
print_vma_addr(char *prefix, unsigned long ip)5917 void print_vma_addr(char *prefix, unsigned long ip)
5918 {
5919 struct mm_struct *mm = current->mm;
5920 struct vm_area_struct *vma;
5921
5922 /*
5923 * we might be running from an atomic context so we cannot sleep
5924 */
5925 if (!mmap_read_trylock(mm))
5926 return;
5927
5928 vma = find_vma(mm, ip);
5929 if (vma && vma->vm_file) {
5930 struct file *f = vma->vm_file;
5931 char *buf = (char *)__get_free_page(GFP_NOWAIT);
5932 if (buf) {
5933 char *p;
5934
5935 p = file_path(f, buf, PAGE_SIZE);
5936 if (IS_ERR(p))
5937 p = "?";
5938 printk("%s%s[%lx+%lx]", prefix, kbasename(p),
5939 vma->vm_start,
5940 vma->vm_end - vma->vm_start);
5941 free_page((unsigned long)buf);
5942 }
5943 }
5944 mmap_read_unlock(mm);
5945 }
5946
5947 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
__might_fault(const char *file, int line)5948 void __might_fault(const char *file, int line)
5949 {
5950 if (pagefault_disabled())
5951 return;
5952 __might_sleep(file, line);
5953 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
5954 if (current->mm)
5955 might_lock_read(¤t->mm->mmap_lock);
5956 #endif
5957 }
5958 EXPORT_SYMBOL(__might_fault);
5959 #endif
5960
5961 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
5962 /*
5963 * Process all subpages of the specified huge page with the specified
5964 * operation. The target subpage will be processed last to keep its
5965 * cache lines hot.
5966 */
process_huge_page( unsigned long addr_hint, unsigned int pages_per_huge_page, int (*process_subpage)(unsigned long addr, int idx, void *arg), void *arg)5967 static inline int process_huge_page(
5968 unsigned long addr_hint, unsigned int pages_per_huge_page,
5969 int (*process_subpage)(unsigned long addr, int idx, void *arg),
5970 void *arg)
5971 {
5972 int i, n, base, l, ret;
5973 unsigned long addr = addr_hint &
5974 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5975
5976 /* Process target subpage last to keep its cache lines hot */
5977 might_sleep();
5978 n = (addr_hint - addr) / PAGE_SIZE;
5979 if (2 * n <= pages_per_huge_page) {
5980 /* If target subpage in first half of huge page */
5981 base = 0;
5982 l = n;
5983 /* Process subpages at the end of huge page */
5984 for (i = pages_per_huge_page - 1; i >= 2 * n; i--) {
5985 cond_resched();
5986 ret = process_subpage(addr + i * PAGE_SIZE, i, arg);
5987 if (ret)
5988 return ret;
5989 }
5990 } else {
5991 /* If target subpage in second half of huge page */
5992 base = pages_per_huge_page - 2 * (pages_per_huge_page - n);
5993 l = pages_per_huge_page - n;
5994 /* Process subpages at the begin of huge page */
5995 for (i = 0; i < base; i++) {
5996 cond_resched();
5997 ret = process_subpage(addr + i * PAGE_SIZE, i, arg);
5998 if (ret)
5999 return ret;
6000 }
6001 }
6002 /*
6003 * Process remaining subpages in left-right-left-right pattern
6004 * towards the target subpage
6005 */
6006 for (i = 0; i < l; i++) {
6007 int left_idx = base + i;
6008 int right_idx = base + 2 * l - 1 - i;
6009
6010 cond_resched();
6011 ret = process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg);
6012 if (ret)
6013 return ret;
6014 cond_resched();
6015 ret = process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg);
6016 if (ret)
6017 return ret;
6018 }
6019 return 0;
6020 }
6021
clear_gigantic_page(struct page *page, unsigned long addr, unsigned int pages_per_huge_page)6022 static void clear_gigantic_page(struct page *page,
6023 unsigned long addr,
6024 unsigned int pages_per_huge_page)
6025 {
6026 int i;
6027 struct page *p;
6028
6029 might_sleep();
6030 for (i = 0; i < pages_per_huge_page; i++) {
6031 p = nth_page(page, i);
6032 cond_resched();
6033 clear_user_highpage(p, addr + i * PAGE_SIZE);
6034 }
6035 }
6036
clear_subpage(unsigned long addr, int idx, void *arg)6037 static int clear_subpage(unsigned long addr, int idx, void *arg)
6038 {
6039 struct page *page = arg;
6040
6041 clear_user_highpage(page + idx, addr);
6042 return 0;
6043 }
6044
clear_huge_page(struct page *page, unsigned long addr_hint, unsigned int pages_per_huge_page)6045 void clear_huge_page(struct page *page,
6046 unsigned long addr_hint, unsigned int pages_per_huge_page)
6047 {
6048 unsigned long addr = addr_hint &
6049 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
6050
6051 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
6052 clear_gigantic_page(page, addr, pages_per_huge_page);
6053 return;
6054 }
6055
6056 process_huge_page(addr_hint, pages_per_huge_page, clear_subpage, page);
6057 }
6058
copy_user_gigantic_page(struct folio *dst, struct folio *src, unsigned long addr, struct vm_area_struct *vma, unsigned int pages_per_huge_page)6059 static int copy_user_gigantic_page(struct folio *dst, struct folio *src,
6060 unsigned long addr,
6061 struct vm_area_struct *vma,
6062 unsigned int pages_per_huge_page)
6063 {
6064 int i;
6065 struct page *dst_page;
6066 struct page *src_page;
6067
6068 for (i = 0; i < pages_per_huge_page; i++) {
6069 dst_page = folio_page(dst, i);
6070 src_page = folio_page(src, i);
6071
6072 cond_resched();
6073 if (copy_mc_user_highpage(dst_page, src_page,
6074 addr + i*PAGE_SIZE, vma)) {
6075 memory_failure_queue(page_to_pfn(src_page), 0);
6076 return -EHWPOISON;
6077 }
6078 }
6079 return 0;
6080 }
6081
6082 struct copy_subpage_arg {
6083 struct page *dst;
6084 struct page *src;
6085 struct vm_area_struct *vma;
6086 };
6087
copy_subpage(unsigned long addr, int idx, void *arg)6088 static int copy_subpage(unsigned long addr, int idx, void *arg)
6089 {
6090 struct copy_subpage_arg *copy_arg = arg;
6091
6092 if (copy_mc_user_highpage(copy_arg->dst + idx, copy_arg->src + idx,
6093 addr, copy_arg->vma)) {
6094 memory_failure_queue(page_to_pfn(copy_arg->src + idx), 0);
6095 return -EHWPOISON;
6096 }
6097 return 0;
6098 }
6099
copy_user_large_folio(struct folio *dst, struct folio *src, unsigned long addr_hint, struct vm_area_struct *vma)6100 int copy_user_large_folio(struct folio *dst, struct folio *src,
6101 unsigned long addr_hint, struct vm_area_struct *vma)
6102 {
6103 unsigned int pages_per_huge_page = folio_nr_pages(dst);
6104 unsigned long addr = addr_hint &
6105 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
6106 struct copy_subpage_arg arg = {
6107 .dst = &dst->page,
6108 .src = &src->page,
6109 .vma = vma,
6110 };
6111
6112 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES))
6113 return copy_user_gigantic_page(dst, src, addr, vma,
6114 pages_per_huge_page);
6115
6116 return process_huge_page(addr_hint, pages_per_huge_page, copy_subpage, &arg);
6117 }
6118
copy_folio_from_user(struct folio *dst_folio, const void __user *usr_src, bool allow_pagefault)6119 long copy_folio_from_user(struct folio *dst_folio,
6120 const void __user *usr_src,
6121 bool allow_pagefault)
6122 {
6123 void *kaddr;
6124 unsigned long i, rc = 0;
6125 unsigned int nr_pages = folio_nr_pages(dst_folio);
6126 unsigned long ret_val = nr_pages * PAGE_SIZE;
6127 struct page *subpage;
6128
6129 for (i = 0; i < nr_pages; i++) {
6130 subpage = folio_page(dst_folio, i);
6131 kaddr = kmap_local_page(subpage);
6132 if (!allow_pagefault)
6133 pagefault_disable();
6134 rc = copy_from_user(kaddr, usr_src + i * PAGE_SIZE, PAGE_SIZE);
6135 if (!allow_pagefault)
6136 pagefault_enable();
6137 kunmap_local(kaddr);
6138
6139 ret_val -= (PAGE_SIZE - rc);
6140 if (rc)
6141 break;
6142
6143 flush_dcache_page(subpage);
6144
6145 cond_resched();
6146 }
6147 return ret_val;
6148 }
6149 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
6150
6151 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
6152
6153 static struct kmem_cache *page_ptl_cachep;
6154
ptlock_cache_init(void)6155 void __init ptlock_cache_init(void)
6156 {
6157 page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
6158 SLAB_PANIC, NULL);
6159 }
6160
ptlock_alloc(struct ptdesc *ptdesc)6161 bool ptlock_alloc(struct ptdesc *ptdesc)
6162 {
6163 spinlock_t *ptl;
6164
6165 ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
6166 if (!ptl)
6167 return false;
6168 ptdesc->ptl = ptl;
6169 return true;
6170 }
6171
ptlock_free(struct ptdesc *ptdesc)6172 void ptlock_free(struct ptdesc *ptdesc)
6173 {
6174 kmem_cache_free(page_ptl_cachep, ptdesc->ptl);
6175 }
6176 #endif
6177