1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* memcontrol.c - Memory Controller
3 *
4 * Copyright IBM Corporation, 2007
5 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6 *
7 * Copyright 2007 OpenVZ SWsoft Inc
8 * Author: Pavel Emelianov <xemul@openvz.org>
9 *
10 * Memory thresholds
11 * Copyright (C) 2009 Nokia Corporation
12 * Author: Kirill A. Shutemov
13 *
14 * Kernel Memory Controller
15 * Copyright (C) 2012 Parallels Inc. and Google Inc.
16 * Authors: Glauber Costa and Suleiman Souhlal
17 *
18 * Native page reclaim
19 * Charge lifetime sanitation
20 * Lockless page tracking & accounting
21 * Unified hierarchy configuration model
22 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
23 *
24 * Per memcg lru locking
25 * Copyright (C) 2020 Alibaba, Inc, Alex Shi
26 */
27
28 #include <linux/page_counter.h>
29 #include <linux/memcontrol.h>
30 #include <linux/cgroup.h>
31 #include <linux/pagewalk.h>
32 #include <linux/sched/mm.h>
33 #include <linux/shmem_fs.h>
34 #include <linux/hugetlb.h>
35 #include <linux/pagemap.h>
36 #include <linux/vm_event_item.h>
37 #include <linux/smp.h>
38 #include <linux/page-flags.h>
39 #include <linux/backing-dev.h>
40 #include <linux/bit_spinlock.h>
41 #include <linux/rcupdate.h>
42 #include <linux/limits.h>
43 #include <linux/export.h>
44 #include <linux/mutex.h>
45 #include <linux/rbtree.h>
46 #include <linux/slab.h>
47 #include <linux/swap.h>
48 #include <linux/swapops.h>
49 #include <linux/spinlock.h>
50 #include <linux/eventfd.h>
51 #include <linux/poll.h>
52 #include <linux/sort.h>
53 #include <linux/fs.h>
54 #include <linux/seq_file.h>
55 #include <linux/vmpressure.h>
56 #include <linux/memremap.h>
57 #include <linux/mm_inline.h>
58 #include <linux/swap_cgroup.h>
59 #include <linux/cpu.h>
60 #include <linux/oom.h>
61 #include <linux/lockdep.h>
62 #include <linux/file.h>
63 #include <linux/resume_user_mode.h>
64 #include <linux/psi.h>
65 #include <linux/seq_buf.h>
66 #include <linux/sched/isolation.h>
67 #include "internal.h"
68 #include <net/sock.h>
69 #include <net/ip.h>
70 #include "slab.h"
71 #include "swap.h"
72
73 #include <linux/uaccess.h>
74 #include <linux/zswapd.h>
75
76 #include <trace/events/vmscan.h>
77
78 struct cgroup_subsys memory_cgrp_subsys __read_mostly;
79 EXPORT_SYMBOL(memory_cgrp_subsys);
80
81 struct mem_cgroup *root_mem_cgroup __read_mostly;
82
83 /* Active memory cgroup to use from an interrupt context */
84 DEFINE_PER_CPU(struct mem_cgroup *, int_active_memcg);
85 EXPORT_PER_CPU_SYMBOL_GPL(int_active_memcg);
86
87 /* Socket memory accounting disabled? */
88 static bool cgroup_memory_nosocket __ro_after_init;
89
90 /* Kernel memory accounting disabled? */
91 static bool cgroup_memory_nokmem = true;
92
93 /* BPF memory accounting disabled? */
94 static bool cgroup_memory_nobpf __ro_after_init;
95
96 #ifdef CONFIG_CGROUP_WRITEBACK
97 static DECLARE_WAIT_QUEUE_HEAD(memcg_cgwb_frn_waitq);
98 #endif
99
100 /* Whether legacy memory+swap accounting is active */
do_memsw_account(void)101 static bool do_memsw_account(void)
102 {
103 return !cgroup_subsys_on_dfl(memory_cgrp_subsys);
104 }
105
106 #define THRESHOLDS_EVENTS_TARGET 128
107 #define SOFTLIMIT_EVENTS_TARGET 1024
108
109 /*
110 * Cgroups above their limits are maintained in a RB-Tree, independent of
111 * their hierarchy representation
112 */
113
114 struct mem_cgroup_tree_per_node {
115 struct rb_root rb_root;
116 struct rb_node *rb_rightmost;
117 spinlock_t lock;
118 };
119
120 struct mem_cgroup_tree {
121 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
122 };
123
124 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
125
126 /* for OOM */
127 struct mem_cgroup_eventfd_list {
128 struct list_head list;
129 struct eventfd_ctx *eventfd;
130 };
131
132 /*
133 * cgroup_event represents events which userspace want to receive.
134 */
135 struct mem_cgroup_event {
136 /*
137 * memcg which the event belongs to.
138 */
139 struct mem_cgroup *memcg;
140 /*
141 * eventfd to signal userspace about the event.
142 */
143 struct eventfd_ctx *eventfd;
144 /*
145 * Each of these stored in a list by the cgroup.
146 */
147 struct list_head list;
148 /*
149 * register_event() callback will be used to add new userspace
150 * waiter for changes related to this event. Use eventfd_signal()
151 * on eventfd to send notification to userspace.
152 */
153 int (*register_event)(struct mem_cgroup *memcg,
154 struct eventfd_ctx *eventfd, const char *args);
155 /*
156 * unregister_event() callback will be called when userspace closes
157 * the eventfd or on cgroup removing. This callback must be set,
158 * if you want provide notification functionality.
159 */
160 void (*unregister_event)(struct mem_cgroup *memcg,
161 struct eventfd_ctx *eventfd);
162 /*
163 * All fields below needed to unregister event when
164 * userspace closes eventfd.
165 */
166 poll_table pt;
167 wait_queue_head_t *wqh;
168 wait_queue_entry_t wait;
169 struct work_struct remove;
170 };
171
172 static void mem_cgroup_threshold(struct mem_cgroup *memcg);
173 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
174
175 /* Stuffs for move charges at task migration. */
176 /*
177 * Types of charges to be moved.
178 */
179 #define MOVE_ANON 0x1U
180 #define MOVE_FILE 0x2U
181 #define MOVE_MASK (MOVE_ANON | MOVE_FILE)
182
183 /* "mc" and its members are protected by cgroup_mutex */
184 static struct move_charge_struct {
185 spinlock_t lock; /* for from, to */
186 struct mm_struct *mm;
187 struct mem_cgroup *from;
188 struct mem_cgroup *to;
189 unsigned long flags;
190 unsigned long precharge;
191 unsigned long moved_charge;
192 unsigned long moved_swap;
193 struct task_struct *moving_task; /* a task moving charges */
194 wait_queue_head_t waitq; /* a waitq for other context */
195 } mc = {
196 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
197 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
198 };
199
200 /*
201 * Maximum loops in mem_cgroup_soft_reclaim(), used for soft
202 * limit reclaim to prevent infinite loops, if they ever occur.
203 */
204 #define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
205 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
206
207 /* for encoding cft->private value on file */
208 enum res_type {
209 _MEM,
210 _MEMSWAP,
211 _KMEM,
212 _TCP,
213 };
214
215 #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
216 #define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
217 #define MEMFILE_ATTR(val) ((val) & 0xffff)
218
219 /*
220 * Iteration constructs for visiting all cgroups (under a tree). If
221 * loops are exited prematurely (break), mem_cgroup_iter_break() must
222 * be used for reference counting.
223 */
224 #define for_each_mem_cgroup_tree(iter, root) \
225 for (iter = mem_cgroup_iter(root, NULL, NULL); \
226 iter != NULL; \
227 iter = mem_cgroup_iter(root, iter, NULL))
228
229 #define for_each_mem_cgroup(iter) \
230 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
231 iter != NULL; \
232 iter = mem_cgroup_iter(NULL, iter, NULL))
233
task_is_dying(void)234 static inline bool task_is_dying(void)
235 {
236 return tsk_is_oom_victim(current) || fatal_signal_pending(current) ||
237 (current->flags & PF_EXITING);
238 }
239
240 /* Some nice accessors for the vmpressure. */
memcg_to_vmpressure(struct mem_cgroup *memcg)241 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
242 {
243 if (!memcg)
244 memcg = root_mem_cgroup;
245 return &memcg->vmpressure;
246 }
247
vmpressure_to_memcg(struct vmpressure *vmpr)248 struct mem_cgroup *vmpressure_to_memcg(struct vmpressure *vmpr)
249 {
250 return container_of(vmpr, struct mem_cgroup, vmpressure);
251 }
252
253 #ifdef CONFIG_MEMCG_KMEM
254 static DEFINE_SPINLOCK(objcg_lock);
255
mem_cgroup_kmem_disabled(void)256 bool mem_cgroup_kmem_disabled(void)
257 {
258 return cgroup_memory_nokmem;
259 }
260
261 static void obj_cgroup_uncharge_pages(struct obj_cgroup *objcg,
262 unsigned int nr_pages);
263
obj_cgroup_release(struct percpu_ref *ref)264 static void obj_cgroup_release(struct percpu_ref *ref)
265 {
266 struct obj_cgroup *objcg = container_of(ref, struct obj_cgroup, refcnt);
267 unsigned int nr_bytes;
268 unsigned int nr_pages;
269 unsigned long flags;
270
271 /*
272 * At this point all allocated objects are freed, and
273 * objcg->nr_charged_bytes can't have an arbitrary byte value.
274 * However, it can be PAGE_SIZE or (x * PAGE_SIZE).
275 *
276 * The following sequence can lead to it:
277 * 1) CPU0: objcg == stock->cached_objcg
278 * 2) CPU1: we do a small allocation (e.g. 92 bytes),
279 * PAGE_SIZE bytes are charged
280 * 3) CPU1: a process from another memcg is allocating something,
281 * the stock if flushed,
282 * objcg->nr_charged_bytes = PAGE_SIZE - 92
283 * 5) CPU0: we do release this object,
284 * 92 bytes are added to stock->nr_bytes
285 * 6) CPU0: stock is flushed,
286 * 92 bytes are added to objcg->nr_charged_bytes
287 *
288 * In the result, nr_charged_bytes == PAGE_SIZE.
289 * This page will be uncharged in obj_cgroup_release().
290 */
291 nr_bytes = atomic_read(&objcg->nr_charged_bytes);
292 WARN_ON_ONCE(nr_bytes & (PAGE_SIZE - 1));
293 nr_pages = nr_bytes >> PAGE_SHIFT;
294
295 if (nr_pages)
296 obj_cgroup_uncharge_pages(objcg, nr_pages);
297
298 spin_lock_irqsave(&objcg_lock, flags);
299 list_del(&objcg->list);
300 spin_unlock_irqrestore(&objcg_lock, flags);
301
302 percpu_ref_exit(ref);
303 kfree_rcu(objcg, rcu);
304 }
305
obj_cgroup_alloc(void)306 static struct obj_cgroup *obj_cgroup_alloc(void)
307 {
308 struct obj_cgroup *objcg;
309 int ret;
310
311 objcg = kzalloc(sizeof(struct obj_cgroup), GFP_KERNEL);
312 if (!objcg)
313 return NULL;
314
315 ret = percpu_ref_init(&objcg->refcnt, obj_cgroup_release, 0,
316 GFP_KERNEL);
317 if (ret) {
318 kfree(objcg);
319 return NULL;
320 }
321 INIT_LIST_HEAD(&objcg->list);
322 return objcg;
323 }
324
memcg_reparent_objcgs(struct mem_cgroup *memcg, struct mem_cgroup *parent)325 static void memcg_reparent_objcgs(struct mem_cgroup *memcg,
326 struct mem_cgroup *parent)
327 {
328 struct obj_cgroup *objcg, *iter;
329
330 objcg = rcu_replace_pointer(memcg->objcg, NULL, true);
331
332 spin_lock_irq(&objcg_lock);
333
334 /* 1) Ready to reparent active objcg. */
335 list_add(&objcg->list, &memcg->objcg_list);
336 /* 2) Reparent active objcg and already reparented objcgs to parent. */
337 list_for_each_entry(iter, &memcg->objcg_list, list)
338 WRITE_ONCE(iter->memcg, parent);
339 /* 3) Move already reparented objcgs to the parent's list */
340 list_splice(&memcg->objcg_list, &parent->objcg_list);
341
342 spin_unlock_irq(&objcg_lock);
343
344 percpu_ref_kill(&objcg->refcnt);
345 }
346
347 /*
348 * A lot of the calls to the cache allocation functions are expected to be
349 * inlined by the compiler. Since the calls to memcg_slab_pre_alloc_hook() are
350 * conditional to this static branch, we'll have to allow modules that does
351 * kmem_cache_alloc and the such to see this symbol as well
352 */
353 DEFINE_STATIC_KEY_FALSE(memcg_kmem_online_key);
354 EXPORT_SYMBOL(memcg_kmem_online_key);
355
356 DEFINE_STATIC_KEY_FALSE(memcg_bpf_enabled_key);
357 EXPORT_SYMBOL(memcg_bpf_enabled_key);
358 #endif
359
360 /**
361 * mem_cgroup_css_from_folio - css of the memcg associated with a folio
362 * @folio: folio of interest
363 *
364 * If memcg is bound to the default hierarchy, css of the memcg associated
365 * with @folio is returned. The returned css remains associated with @folio
366 * until it is released.
367 *
368 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
369 * is returned.
370 */
mem_cgroup_css_from_folio(struct folio *folio)371 struct cgroup_subsys_state *mem_cgroup_css_from_folio(struct folio *folio)
372 {
373 struct mem_cgroup *memcg = folio_memcg(folio);
374
375 if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
376 memcg = root_mem_cgroup;
377
378 return &memcg->css;
379 }
380
381 /**
382 * page_cgroup_ino - return inode number of the memcg a page is charged to
383 * @page: the page
384 *
385 * Look up the closest online ancestor of the memory cgroup @page is charged to
386 * and return its inode number or 0 if @page is not charged to any cgroup. It
387 * is safe to call this function without holding a reference to @page.
388 *
389 * Note, this function is inherently racy, because there is nothing to prevent
390 * the cgroup inode from getting torn down and potentially reallocated a moment
391 * after page_cgroup_ino() returns, so it only should be used by callers that
392 * do not care (such as procfs interfaces).
393 */
page_cgroup_ino(struct page *page)394 ino_t page_cgroup_ino(struct page *page)
395 {
396 struct mem_cgroup *memcg;
397 unsigned long ino = 0;
398
399 rcu_read_lock();
400 /* page_folio() is racy here, but the entire function is racy anyway */
401 memcg = folio_memcg_check(page_folio(page));
402
403 while (memcg && !(memcg->css.flags & CSS_ONLINE))
404 memcg = parent_mem_cgroup(memcg);
405 if (memcg)
406 ino = cgroup_ino(memcg->css.cgroup);
407 rcu_read_unlock();
408 return ino;
409 }
410
__mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz, struct mem_cgroup_tree_per_node *mctz, unsigned long new_usage_in_excess)411 static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz,
412 struct mem_cgroup_tree_per_node *mctz,
413 unsigned long new_usage_in_excess)
414 {
415 struct rb_node **p = &mctz->rb_root.rb_node;
416 struct rb_node *parent = NULL;
417 struct mem_cgroup_per_node *mz_node;
418 bool rightmost = true;
419
420 if (mz->on_tree)
421 return;
422
423 mz->usage_in_excess = new_usage_in_excess;
424 if (!mz->usage_in_excess)
425 return;
426 while (*p) {
427 parent = *p;
428 mz_node = rb_entry(parent, struct mem_cgroup_per_node,
429 tree_node);
430 if (mz->usage_in_excess < mz_node->usage_in_excess) {
431 p = &(*p)->rb_left;
432 rightmost = false;
433 } else {
434 p = &(*p)->rb_right;
435 }
436 }
437
438 if (rightmost)
439 mctz->rb_rightmost = &mz->tree_node;
440
441 rb_link_node(&mz->tree_node, parent, p);
442 rb_insert_color(&mz->tree_node, &mctz->rb_root);
443 mz->on_tree = true;
444 }
445
__mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz, struct mem_cgroup_tree_per_node *mctz)446 static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
447 struct mem_cgroup_tree_per_node *mctz)
448 {
449 if (!mz->on_tree)
450 return;
451
452 if (&mz->tree_node == mctz->rb_rightmost)
453 mctz->rb_rightmost = rb_prev(&mz->tree_node);
454
455 rb_erase(&mz->tree_node, &mctz->rb_root);
456 mz->on_tree = false;
457 }
458
mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz, struct mem_cgroup_tree_per_node *mctz)459 static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
460 struct mem_cgroup_tree_per_node *mctz)
461 {
462 unsigned long flags;
463
464 spin_lock_irqsave(&mctz->lock, flags);
465 __mem_cgroup_remove_exceeded(mz, mctz);
466 spin_unlock_irqrestore(&mctz->lock, flags);
467 }
468
soft_limit_excess(struct mem_cgroup *memcg)469 static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
470 {
471 #ifdef CONFIG_HYPERHOLD_FILE_LRU
472 struct mem_cgroup_per_node *mz = mem_cgroup_nodeinfo(memcg, 0);
473 struct lruvec *lruvec = &mz->lruvec;
474 unsigned long nr_pages = lruvec_lru_size(lruvec, LRU_ACTIVE_ANON,
475 MAX_NR_ZONES) + lruvec_lru_size(lruvec, LRU_INACTIVE_ANON,
476 MAX_NR_ZONES);
477 #else
478 unsigned long nr_pages = page_counter_read(&memcg->memory);
479 #endif
480 unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
481 unsigned long excess = 0;
482
483 if (nr_pages > soft_limit)
484 excess = nr_pages - soft_limit;
485
486 return excess;
487 }
488
mem_cgroup_update_tree(struct mem_cgroup *memcg, int nid)489 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, int nid)
490 {
491 unsigned long excess;
492 struct mem_cgroup_per_node *mz;
493 struct mem_cgroup_tree_per_node *mctz;
494
495 if (lru_gen_enabled()) {
496 if (soft_limit_excess(memcg))
497 lru_gen_soft_reclaim(memcg, nid);
498 return;
499 }
500
501 mctz = soft_limit_tree.rb_tree_per_node[nid];
502 if (!mctz)
503 return;
504 /*
505 * Necessary to update all ancestors when hierarchy is used.
506 * because their event counter is not touched.
507 */
508 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
509 mz = memcg->nodeinfo[nid];
510 excess = soft_limit_excess(memcg);
511 /*
512 * We have to update the tree if mz is on RB-tree or
513 * mem is over its softlimit.
514 */
515 if (excess || mz->on_tree) {
516 unsigned long flags;
517
518 spin_lock_irqsave(&mctz->lock, flags);
519 /* if on-tree, remove it */
520 if (mz->on_tree)
521 __mem_cgroup_remove_exceeded(mz, mctz);
522 /*
523 * Insert again. mz->usage_in_excess will be updated.
524 * If excess is 0, no tree ops.
525 */
526 __mem_cgroup_insert_exceeded(mz, mctz, excess);
527 spin_unlock_irqrestore(&mctz->lock, flags);
528 }
529 }
530 }
531
mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)532 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
533 {
534 struct mem_cgroup_tree_per_node *mctz;
535 struct mem_cgroup_per_node *mz;
536 int nid;
537
538 for_each_node(nid) {
539 mz = memcg->nodeinfo[nid];
540 mctz = soft_limit_tree.rb_tree_per_node[nid];
541 if (mctz)
542 mem_cgroup_remove_exceeded(mz, mctz);
543 }
544 }
545
546 static struct mem_cgroup_per_node *
__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)547 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
548 {
549 struct mem_cgroup_per_node *mz;
550
551 retry:
552 mz = NULL;
553 if (!mctz->rb_rightmost)
554 goto done; /* Nothing to reclaim from */
555
556 mz = rb_entry(mctz->rb_rightmost,
557 struct mem_cgroup_per_node, tree_node);
558 /*
559 * Remove the node now but someone else can add it back,
560 * we will to add it back at the end of reclaim to its correct
561 * position in the tree.
562 */
563 __mem_cgroup_remove_exceeded(mz, mctz);
564 if (!soft_limit_excess(mz->memcg) ||
565 !css_tryget(&mz->memcg->css))
566 goto retry;
567 done:
568 return mz;
569 }
570
571 static struct mem_cgroup_per_node *
mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)572 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
573 {
574 struct mem_cgroup_per_node *mz;
575
576 spin_lock_irq(&mctz->lock);
577 mz = __mem_cgroup_largest_soft_limit_node(mctz);
578 spin_unlock_irq(&mctz->lock);
579 return mz;
580 }
581
582 /*
583 * memcg and lruvec stats flushing
584 *
585 * Many codepaths leading to stats update or read are performance sensitive and
586 * adding stats flushing in such codepaths is not desirable. So, to optimize the
587 * flushing the kernel does:
588 *
589 * 1) Periodically and asynchronously flush the stats every 2 seconds to not let
590 * rstat update tree grow unbounded.
591 *
592 * 2) Flush the stats synchronously on reader side only when there are more than
593 * (MEMCG_CHARGE_BATCH * nr_cpus) update events. Though this optimization
594 * will let stats be out of sync by atmost (MEMCG_CHARGE_BATCH * nr_cpus) but
595 * only for 2 seconds due to (1).
596 */
597 static void flush_memcg_stats_dwork(struct work_struct *w);
598 static DECLARE_DEFERRABLE_WORK(stats_flush_dwork, flush_memcg_stats_dwork);
599 static DEFINE_PER_CPU(unsigned int, stats_updates);
600 static atomic_t stats_flush_ongoing = ATOMIC_INIT(0);
601 static atomic_t stats_flush_threshold = ATOMIC_INIT(0);
602 static u64 flush_next_time;
603
604 #define FLUSH_TIME (2UL*HZ)
605
606 /*
607 * Accessors to ensure that preemption is disabled on PREEMPT_RT because it can
608 * not rely on this as part of an acquired spinlock_t lock. These functions are
609 * never used in hardirq context on PREEMPT_RT and therefore disabling preemtion
610 * is sufficient.
611 */
memcg_stats_lock(void)612 static void memcg_stats_lock(void)
613 {
614 preempt_disable_nested();
615 VM_WARN_ON_IRQS_ENABLED();
616 }
617
__memcg_stats_lock(void)618 static void __memcg_stats_lock(void)
619 {
620 preempt_disable_nested();
621 }
622
memcg_stats_unlock(void)623 static void memcg_stats_unlock(void)
624 {
625 preempt_enable_nested();
626 }
627
memcg_rstat_updated(struct mem_cgroup *memcg, int val)628 static inline void memcg_rstat_updated(struct mem_cgroup *memcg, int val)
629 {
630 unsigned int x;
631
632 if (!val)
633 return;
634
635 cgroup_rstat_updated(memcg->css.cgroup, smp_processor_id());
636
637 x = __this_cpu_add_return(stats_updates, abs(val));
638 if (x > MEMCG_CHARGE_BATCH) {
639 /*
640 * If stats_flush_threshold exceeds the threshold
641 * (>num_online_cpus()), cgroup stats update will be triggered
642 * in __mem_cgroup_flush_stats(). Increasing this var further
643 * is redundant and simply adds overhead in atomic update.
644 */
645 if (atomic_read(&stats_flush_threshold) <= num_online_cpus())
646 atomic_add(x / MEMCG_CHARGE_BATCH, &stats_flush_threshold);
647 __this_cpu_write(stats_updates, 0);
648 }
649 }
650
do_flush_stats(void)651 static void do_flush_stats(void)
652 {
653 /*
654 * We always flush the entire tree, so concurrent flushers can just
655 * skip. This avoids a thundering herd problem on the rstat global lock
656 * from memcg flushers (e.g. reclaim, refault, etc).
657 */
658 if (atomic_read(&stats_flush_ongoing) ||
659 atomic_xchg(&stats_flush_ongoing, 1))
660 return;
661
662 WRITE_ONCE(flush_next_time, jiffies_64 + 2*FLUSH_TIME);
663
664 cgroup_rstat_flush(root_mem_cgroup->css.cgroup);
665
666 atomic_set(&stats_flush_threshold, 0);
667 atomic_set(&stats_flush_ongoing, 0);
668 }
669
mem_cgroup_flush_stats(void)670 void mem_cgroup_flush_stats(void)
671 {
672 if (atomic_read(&stats_flush_threshold) > num_online_cpus())
673 do_flush_stats();
674 }
675
mem_cgroup_flush_stats_ratelimited(void)676 void mem_cgroup_flush_stats_ratelimited(void)
677 {
678 if (time_after64(jiffies_64, READ_ONCE(flush_next_time)))
679 mem_cgroup_flush_stats();
680 }
681
flush_memcg_stats_dwork(struct work_struct *w)682 static void flush_memcg_stats_dwork(struct work_struct *w)
683 {
684 /*
685 * Always flush here so that flushing in latency-sensitive paths is
686 * as cheap as possible.
687 */
688 do_flush_stats();
689 queue_delayed_work(system_unbound_wq, &stats_flush_dwork, FLUSH_TIME);
690 }
691
692 /* Subset of vm_event_item to report for memcg event stats */
693 static const unsigned int memcg_vm_event_stat[] = {
694 PGPGIN,
695 PGPGOUT,
696 PGSCAN_KSWAPD,
697 PGSCAN_DIRECT,
698 PGSCAN_KHUGEPAGED,
699 PGSTEAL_KSWAPD,
700 PGSTEAL_DIRECT,
701 PGSTEAL_KHUGEPAGED,
702 PGFAULT,
703 PGMAJFAULT,
704 PGREFILL,
705 PGACTIVATE,
706 PGDEACTIVATE,
707 PGLAZYFREE,
708 PGLAZYFREED,
709 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP)
710 ZSWPIN,
711 ZSWPOUT,
712 #endif
713 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
714 THP_FAULT_ALLOC,
715 THP_COLLAPSE_ALLOC,
716 #endif
717 };
718
719 #define NR_MEMCG_EVENTS ARRAY_SIZE(memcg_vm_event_stat)
720 static int mem_cgroup_events_index[NR_VM_EVENT_ITEMS] __read_mostly;
721
init_memcg_events(void)722 static void init_memcg_events(void)
723 {
724 int i;
725
726 for (i = 0; i < NR_MEMCG_EVENTS; ++i)
727 mem_cgroup_events_index[memcg_vm_event_stat[i]] = i + 1;
728 }
729
memcg_events_index(enum vm_event_item idx)730 static inline int memcg_events_index(enum vm_event_item idx)
731 {
732 return mem_cgroup_events_index[idx] - 1;
733 }
734
735 struct memcg_vmstats_percpu {
736 /* Local (CPU and cgroup) page state & events */
737 long state[MEMCG_NR_STAT];
738 unsigned long events[NR_MEMCG_EVENTS];
739
740 /* Delta calculation for lockless upward propagation */
741 long state_prev[MEMCG_NR_STAT];
742 unsigned long events_prev[NR_MEMCG_EVENTS];
743
744 /* Cgroup1: threshold notifications & softlimit tree updates */
745 unsigned long nr_page_events;
746 unsigned long targets[MEM_CGROUP_NTARGETS];
747 };
748
749 struct memcg_vmstats {
750 /* Aggregated (CPU and subtree) page state & events */
751 long state[MEMCG_NR_STAT];
752 unsigned long events[NR_MEMCG_EVENTS];
753
754 /* Non-hierarchical (CPU aggregated) page state & events */
755 long state_local[MEMCG_NR_STAT];
756 unsigned long events_local[NR_MEMCG_EVENTS];
757
758 /* Pending child counts during tree propagation */
759 long state_pending[MEMCG_NR_STAT];
760 unsigned long events_pending[NR_MEMCG_EVENTS];
761 };
762
memcg_page_state(struct mem_cgroup *memcg, int idx)763 unsigned long memcg_page_state(struct mem_cgroup *memcg, int idx)
764 {
765 long x = READ_ONCE(memcg->vmstats->state[idx]);
766 #ifdef CONFIG_SMP
767 if (x < 0)
768 x = 0;
769 #endif
770 return x;
771 }
772
773 /**
774 * __mod_memcg_state - update cgroup memory statistics
775 * @memcg: the memory cgroup
776 * @idx: the stat item - can be enum memcg_stat_item or enum node_stat_item
777 * @val: delta to add to the counter, can be negative
778 */
__mod_memcg_state(struct mem_cgroup *memcg, int idx, int val)779 void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val)
780 {
781 if (mem_cgroup_disabled())
782 return;
783
784 __this_cpu_add(memcg->vmstats_percpu->state[idx], val);
785 memcg_rstat_updated(memcg, val);
786 }
787
788 /* idx can be of type enum memcg_stat_item or node_stat_item. */
memcg_page_state_local(struct mem_cgroup *memcg, int idx)789 static unsigned long memcg_page_state_local(struct mem_cgroup *memcg, int idx)
790 {
791 long x = READ_ONCE(memcg->vmstats->state_local[idx]);
792
793 #ifdef CONFIG_SMP
794 if (x < 0)
795 x = 0;
796 #endif
797 return x;
798 }
799
__mod_memcg_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx, int val)800 void __mod_memcg_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
801 int val)
802 {
803 struct mem_cgroup_per_node *pn;
804 struct mem_cgroup *memcg;
805
806 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
807 memcg = pn->memcg;
808
809 /*
810 * The caller from rmap relay on disabled preemption becase they never
811 * update their counter from in-interrupt context. For these two
812 * counters we check that the update is never performed from an
813 * interrupt context while other caller need to have disabled interrupt.
814 */
815 __memcg_stats_lock();
816 if (IS_ENABLED(CONFIG_DEBUG_VM)) {
817 switch (idx) {
818 case NR_ANON_MAPPED:
819 case NR_FILE_MAPPED:
820 case NR_ANON_THPS:
821 case NR_SHMEM_PMDMAPPED:
822 case NR_FILE_PMDMAPPED:
823 WARN_ON_ONCE(!in_task());
824 break;
825 default:
826 VM_WARN_ON_IRQS_ENABLED();
827 }
828 }
829
830 /* Update memcg */
831 __this_cpu_add(memcg->vmstats_percpu->state[idx], val);
832
833 /* Update lruvec */
834 __this_cpu_add(pn->lruvec_stats_percpu->state[idx], val);
835
836 memcg_rstat_updated(memcg, val);
837 memcg_stats_unlock();
838 }
839
840 /**
841 * __mod_lruvec_state - update lruvec memory statistics
842 * @lruvec: the lruvec
843 * @idx: the stat item
844 * @val: delta to add to the counter, can be negative
845 *
846 * The lruvec is the intersection of the NUMA node and a cgroup. This
847 * function updates the all three counters that are affected by a
848 * change of state at this level: per-node, per-cgroup, per-lruvec.
849 */
__mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx, int val)850 void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
851 int val)
852 {
853 /* Update node */
854 __mod_node_page_state(lruvec_pgdat(lruvec), idx, val);
855
856 /* Update memcg and lruvec */
857 if (!mem_cgroup_disabled()) {
858 #ifdef CONFIG_HYPERHOLD_FILE_LRU
859 if (is_node_lruvec(lruvec))
860 return;
861 #endif
862 __mod_memcg_lruvec_state(lruvec, idx, val);
863 }
864 }
865
__mod_lruvec_page_state(struct page *page, enum node_stat_item idx, int val)866 void __mod_lruvec_page_state(struct page *page, enum node_stat_item idx,
867 int val)
868 {
869 struct page *head = compound_head(page); /* rmap on tail pages */
870 struct mem_cgroup *memcg;
871 pg_data_t *pgdat = page_pgdat(page);
872 struct lruvec *lruvec;
873
874 #ifdef CONFIG_HYPERHOLD_FILE_LRU
875 if (is_file_page(page) && !is_prot_page(page)) {
876 __mod_node_page_state(pgdat, idx, val);
877 return;
878 }
879 #endif
880
881 rcu_read_lock();
882 memcg = page_memcg(head);
883 /* Untracked pages have no memcg, no lruvec. Update only the node */
884 if (!memcg) {
885 rcu_read_unlock();
886 __mod_node_page_state(pgdat, idx, val);
887 return;
888 }
889
890 lruvec = mem_cgroup_lruvec(memcg, pgdat);
891 __mod_lruvec_state(lruvec, idx, val);
892 rcu_read_unlock();
893 }
894 EXPORT_SYMBOL(__mod_lruvec_page_state);
895
__mod_lruvec_kmem_state(void *p, enum node_stat_item idx, int val)896 void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx, int val)
897 {
898 pg_data_t *pgdat = page_pgdat(virt_to_page(p));
899 struct mem_cgroup *memcg;
900 struct lruvec *lruvec;
901
902 rcu_read_lock();
903 memcg = mem_cgroup_from_slab_obj(p);
904
905 /*
906 * Untracked pages have no memcg, no lruvec. Update only the
907 * node. If we reparent the slab objects to the root memcg,
908 * when we free the slab object, we need to update the per-memcg
909 * vmstats to keep it correct for the root memcg.
910 */
911 if (!memcg) {
912 __mod_node_page_state(pgdat, idx, val);
913 } else {
914 lruvec = mem_cgroup_lruvec(memcg, pgdat);
915 __mod_lruvec_state(lruvec, idx, val);
916 }
917 rcu_read_unlock();
918 }
919
920 /**
921 * __count_memcg_events - account VM events in a cgroup
922 * @memcg: the memory cgroup
923 * @idx: the event item
924 * @count: the number of events that occurred
925 */
__count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx, unsigned long count)926 void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx,
927 unsigned long count)
928 {
929 int index = memcg_events_index(idx);
930
931 if (mem_cgroup_disabled() || index < 0)
932 return;
933 #ifdef CONFIG_HYPERHOLD_FILE_LRU
934 if (!memcg)
935 return;
936 #endif
937
938 memcg_stats_lock();
939 __this_cpu_add(memcg->vmstats_percpu->events[index], count);
940 memcg_rstat_updated(memcg, count);
941 memcg_stats_unlock();
942 }
943
memcg_events(struct mem_cgroup *memcg, int event)944 static unsigned long memcg_events(struct mem_cgroup *memcg, int event)
945 {
946 int index = memcg_events_index(event);
947
948 if (index < 0)
949 return 0;
950 return READ_ONCE(memcg->vmstats->events[index]);
951 }
952
memcg_events_local(struct mem_cgroup *memcg, int event)953 static unsigned long memcg_events_local(struct mem_cgroup *memcg, int event)
954 {
955 int index = memcg_events_index(event);
956
957 if (index < 0)
958 return 0;
959
960 return READ_ONCE(memcg->vmstats->events_local[index]);
961 }
962
mem_cgroup_charge_statistics(struct mem_cgroup *memcg, int nr_pages)963 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
964 int nr_pages)
965 {
966 /* pagein of a big page is an event. So, ignore page size */
967 if (nr_pages > 0)
968 __count_memcg_events(memcg, PGPGIN, 1);
969 else {
970 __count_memcg_events(memcg, PGPGOUT, 1);
971 nr_pages = -nr_pages; /* for event */
972 }
973
974 __this_cpu_add(memcg->vmstats_percpu->nr_page_events, nr_pages);
975 }
976
mem_cgroup_event_ratelimit(struct mem_cgroup *memcg, enum mem_cgroup_events_target target)977 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
978 enum mem_cgroup_events_target target)
979 {
980 unsigned long val, next;
981
982 val = __this_cpu_read(memcg->vmstats_percpu->nr_page_events);
983 next = __this_cpu_read(memcg->vmstats_percpu->targets[target]);
984 /* from time_after() in jiffies.h */
985 if ((long)(next - val) < 0) {
986 switch (target) {
987 case MEM_CGROUP_TARGET_THRESH:
988 next = val + THRESHOLDS_EVENTS_TARGET;
989 break;
990 case MEM_CGROUP_TARGET_SOFTLIMIT:
991 next = val + SOFTLIMIT_EVENTS_TARGET;
992 break;
993 default:
994 break;
995 }
996 __this_cpu_write(memcg->vmstats_percpu->targets[target], next);
997 return true;
998 }
999 return false;
1000 }
1001
1002 /*
1003 * Check events in order.
1004 *
1005 */
memcg_check_events(struct mem_cgroup *memcg, int nid)1006 static void memcg_check_events(struct mem_cgroup *memcg, int nid)
1007 {
1008 if (IS_ENABLED(CONFIG_PREEMPT_RT))
1009 return;
1010
1011 /* threshold event is triggered in finer grain than soft limit */
1012 if (unlikely(mem_cgroup_event_ratelimit(memcg,
1013 MEM_CGROUP_TARGET_THRESH))) {
1014 bool do_softlimit;
1015
1016 do_softlimit = mem_cgroup_event_ratelimit(memcg,
1017 MEM_CGROUP_TARGET_SOFTLIMIT);
1018 mem_cgroup_threshold(memcg);
1019 if (unlikely(do_softlimit))
1020 mem_cgroup_update_tree(memcg, nid);
1021 }
1022 }
1023
mem_cgroup_from_task(struct task_struct *p)1024 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
1025 {
1026 /*
1027 * mm_update_next_owner() may clear mm->owner to NULL
1028 * if it races with swapoff, page migration, etc.
1029 * So this can be called with p == NULL.
1030 */
1031 if (unlikely(!p))
1032 return NULL;
1033
1034 return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
1035 }
1036 EXPORT_SYMBOL(mem_cgroup_from_task);
1037
active_memcg(void)1038 static __always_inline struct mem_cgroup *active_memcg(void)
1039 {
1040 if (!in_task())
1041 return this_cpu_read(int_active_memcg);
1042 else
1043 return current->active_memcg;
1044 }
1045
1046 /**
1047 * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg.
1048 * @mm: mm from which memcg should be extracted. It can be NULL.
1049 *
1050 * Obtain a reference on mm->memcg and returns it if successful. If mm
1051 * is NULL, then the memcg is chosen as follows:
1052 * 1) The active memcg, if set.
1053 * 2) current->mm->memcg, if available
1054 * 3) root memcg
1055 * If mem_cgroup is disabled, NULL is returned.
1056 */
get_mem_cgroup_from_mm(struct mm_struct *mm)1057 struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
1058 {
1059 struct mem_cgroup *memcg;
1060
1061 if (mem_cgroup_disabled())
1062 return NULL;
1063
1064 /*
1065 * Page cache insertions can happen without an
1066 * actual mm context, e.g. during disk probing
1067 * on boot, loopback IO, acct() writes etc.
1068 *
1069 * No need to css_get on root memcg as the reference
1070 * counting is disabled on the root level in the
1071 * cgroup core. See CSS_NO_REF.
1072 */
1073 if (unlikely(!mm)) {
1074 memcg = active_memcg();
1075 if (unlikely(memcg)) {
1076 /* remote memcg must hold a ref */
1077 css_get(&memcg->css);
1078 return memcg;
1079 }
1080 mm = current->mm;
1081 if (unlikely(!mm))
1082 return root_mem_cgroup;
1083 }
1084
1085 rcu_read_lock();
1086 do {
1087 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1088 if (unlikely(!memcg))
1089 memcg = root_mem_cgroup;
1090 } while (!css_tryget(&memcg->css));
1091 rcu_read_unlock();
1092 return memcg;
1093 }
1094 EXPORT_SYMBOL(get_mem_cgroup_from_mm);
1095
memcg_kmem_bypass(void)1096 static __always_inline bool memcg_kmem_bypass(void)
1097 {
1098 /* Allow remote memcg charging from any context. */
1099 if (unlikely(active_memcg()))
1100 return false;
1101
1102 /* Memcg to charge can't be determined. */
1103 if (!in_task() || !current->mm || (current->flags & PF_KTHREAD))
1104 return true;
1105
1106 return false;
1107 }
1108
1109 /**
1110 * mem_cgroup_iter - iterate over memory cgroup hierarchy
1111 * @root: hierarchy root
1112 * @prev: previously returned memcg, NULL on first invocation
1113 * @reclaim: cookie for shared reclaim walks, NULL for full walks
1114 *
1115 * Returns references to children of the hierarchy below @root, or
1116 * @root itself, or %NULL after a full round-trip.
1117 *
1118 * Caller must pass the return value in @prev on subsequent
1119 * invocations for reference counting, or use mem_cgroup_iter_break()
1120 * to cancel a hierarchy walk before the round-trip is complete.
1121 *
1122 * Reclaimers can specify a node in @reclaim to divide up the memcgs
1123 * in the hierarchy among all concurrent reclaimers operating on the
1124 * same node.
1125 */
mem_cgroup_iter(struct mem_cgroup *root, struct mem_cgroup *prev, struct mem_cgroup_reclaim_cookie *reclaim)1126 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
1127 struct mem_cgroup *prev,
1128 struct mem_cgroup_reclaim_cookie *reclaim)
1129 {
1130 struct mem_cgroup_reclaim_iter *iter;
1131 struct cgroup_subsys_state *css = NULL;
1132 struct mem_cgroup *memcg = NULL;
1133 struct mem_cgroup *pos = NULL;
1134
1135 if (mem_cgroup_disabled())
1136 return NULL;
1137
1138 if (!root)
1139 root = root_mem_cgroup;
1140
1141 rcu_read_lock();
1142
1143 if (reclaim) {
1144 struct mem_cgroup_per_node *mz;
1145
1146 mz = root->nodeinfo[reclaim->pgdat->node_id];
1147 iter = &mz->iter;
1148
1149 /*
1150 * On start, join the current reclaim iteration cycle.
1151 * Exit when a concurrent walker completes it.
1152 */
1153 if (!prev)
1154 reclaim->generation = iter->generation;
1155 else if (reclaim->generation != iter->generation)
1156 goto out_unlock;
1157
1158 while (1) {
1159 pos = READ_ONCE(iter->position);
1160 if (!pos || css_tryget(&pos->css))
1161 break;
1162 /*
1163 * css reference reached zero, so iter->position will
1164 * be cleared by ->css_released. However, we should not
1165 * rely on this happening soon, because ->css_released
1166 * is called from a work queue, and by busy-waiting we
1167 * might block it. So we clear iter->position right
1168 * away.
1169 */
1170 (void)cmpxchg(&iter->position, pos, NULL);
1171 }
1172 } else if (prev) {
1173 pos = prev;
1174 }
1175
1176 if (pos)
1177 css = &pos->css;
1178
1179 for (;;) {
1180 css = css_next_descendant_pre(css, &root->css);
1181 if (!css) {
1182 /*
1183 * Reclaimers share the hierarchy walk, and a
1184 * new one might jump in right at the end of
1185 * the hierarchy - make sure they see at least
1186 * one group and restart from the beginning.
1187 */
1188 if (!prev)
1189 continue;
1190 break;
1191 }
1192
1193 /*
1194 * Verify the css and acquire a reference. The root
1195 * is provided by the caller, so we know it's alive
1196 * and kicking, and don't take an extra reference.
1197 */
1198 if (css == &root->css || css_tryget(css)) {
1199 memcg = mem_cgroup_from_css(css);
1200 break;
1201 }
1202 }
1203
1204 if (reclaim) {
1205 /*
1206 * The position could have already been updated by a competing
1207 * thread, so check that the value hasn't changed since we read
1208 * it to avoid reclaiming from the same cgroup twice.
1209 */
1210 (void)cmpxchg(&iter->position, pos, memcg);
1211
1212 if (pos)
1213 css_put(&pos->css);
1214
1215 if (!memcg)
1216 iter->generation++;
1217 }
1218
1219 out_unlock:
1220 rcu_read_unlock();
1221 if (prev && prev != root)
1222 css_put(&prev->css);
1223
1224 return memcg;
1225 }
1226
1227 /**
1228 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1229 * @root: hierarchy root
1230 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1231 */
mem_cgroup_iter_break(struct mem_cgroup *root, struct mem_cgroup *prev)1232 void mem_cgroup_iter_break(struct mem_cgroup *root,
1233 struct mem_cgroup *prev)
1234 {
1235 if (!root)
1236 root = root_mem_cgroup;
1237 if (prev && prev != root)
1238 css_put(&prev->css);
1239 }
1240
__invalidate_reclaim_iterators(struct mem_cgroup *from, struct mem_cgroup *dead_memcg)1241 static void __invalidate_reclaim_iterators(struct mem_cgroup *from,
1242 struct mem_cgroup *dead_memcg)
1243 {
1244 struct mem_cgroup_reclaim_iter *iter;
1245 struct mem_cgroup_per_node *mz;
1246 int nid;
1247
1248 for_each_node(nid) {
1249 mz = from->nodeinfo[nid];
1250 iter = &mz->iter;
1251 cmpxchg(&iter->position, dead_memcg, NULL);
1252 }
1253 }
1254
invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)1255 static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
1256 {
1257 struct mem_cgroup *memcg = dead_memcg;
1258 struct mem_cgroup *last;
1259
1260 do {
1261 __invalidate_reclaim_iterators(memcg, dead_memcg);
1262 last = memcg;
1263 } while ((memcg = parent_mem_cgroup(memcg)));
1264
1265 /*
1266 * When cgroup1 non-hierarchy mode is used,
1267 * parent_mem_cgroup() does not walk all the way up to the
1268 * cgroup root (root_mem_cgroup). So we have to handle
1269 * dead_memcg from cgroup root separately.
1270 */
1271 if (!mem_cgroup_is_root(last))
1272 __invalidate_reclaim_iterators(root_mem_cgroup,
1273 dead_memcg);
1274 }
1275
1276 /**
1277 * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
1278 * @memcg: hierarchy root
1279 * @fn: function to call for each task
1280 * @arg: argument passed to @fn
1281 *
1282 * This function iterates over tasks attached to @memcg or to any of its
1283 * descendants and calls @fn for each task. If @fn returns a non-zero
1284 * value, the function breaks the iteration loop. Otherwise, it will iterate
1285 * over all tasks and return 0.
1286 *
1287 * This function must not be called for the root memory cgroup.
1288 */
mem_cgroup_scan_tasks(struct mem_cgroup *memcg, int (*fn)(struct task_struct *, void *), void *arg)1289 void mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
1290 int (*fn)(struct task_struct *, void *), void *arg)
1291 {
1292 struct mem_cgroup *iter;
1293 int ret = 0;
1294
1295 BUG_ON(mem_cgroup_is_root(memcg));
1296
1297 for_each_mem_cgroup_tree(iter, memcg) {
1298 struct css_task_iter it;
1299 struct task_struct *task;
1300
1301 css_task_iter_start(&iter->css, CSS_TASK_ITER_PROCS, &it);
1302 while (!ret && (task = css_task_iter_next(&it)))
1303 ret = fn(task, arg);
1304 css_task_iter_end(&it);
1305 if (ret) {
1306 mem_cgroup_iter_break(memcg, iter);
1307 break;
1308 }
1309 }
1310 }
1311
1312 #ifdef CONFIG_DEBUG_VM
lruvec_memcg_debug(struct lruvec *lruvec, struct folio *folio)1313 void lruvec_memcg_debug(struct lruvec *lruvec, struct folio *folio)
1314 {
1315 struct mem_cgroup *memcg;
1316
1317 if (mem_cgroup_disabled())
1318 return;
1319
1320 memcg = folio_memcg(folio);
1321
1322 if (!memcg)
1323 VM_BUG_ON_FOLIO(!mem_cgroup_is_root(lruvec_memcg(lruvec)), folio);
1324 else
1325 VM_BUG_ON_FOLIO(lruvec_memcg(lruvec) != memcg, folio);
1326 }
1327 #endif
1328
1329 /**
1330 * folio_lruvec_lock - Lock the lruvec for a folio.
1331 * @folio: Pointer to the folio.
1332 *
1333 * These functions are safe to use under any of the following conditions:
1334 * - folio locked
1335 * - folio_test_lru false
1336 * - folio_memcg_lock()
1337 * - folio frozen (refcount of 0)
1338 *
1339 * Return: The lruvec this folio is on with its lock held.
1340 */
folio_lruvec_lock(struct folio *folio)1341 struct lruvec *folio_lruvec_lock(struct folio *folio)
1342 {
1343 struct lruvec *lruvec = folio_lruvec(folio);
1344
1345 spin_lock(&lruvec->lru_lock);
1346 lruvec_memcg_debug(lruvec, folio);
1347
1348 return lruvec;
1349 }
1350
1351 /**
1352 * folio_lruvec_lock_irq - Lock the lruvec for a folio.
1353 * @folio: Pointer to the folio.
1354 *
1355 * These functions are safe to use under any of the following conditions:
1356 * - folio locked
1357 * - folio_test_lru false
1358 * - folio_memcg_lock()
1359 * - folio frozen (refcount of 0)
1360 *
1361 * Return: The lruvec this folio is on with its lock held and interrupts
1362 * disabled.
1363 */
folio_lruvec_lock_irq(struct folio *folio)1364 struct lruvec *folio_lruvec_lock_irq(struct folio *folio)
1365 {
1366 struct lruvec *lruvec = folio_lruvec(folio);
1367
1368 spin_lock_irq(&lruvec->lru_lock);
1369 lruvec_memcg_debug(lruvec, folio);
1370
1371 return lruvec;
1372 }
1373
1374 /**
1375 * folio_lruvec_lock_irqsave - Lock the lruvec for a folio.
1376 * @folio: Pointer to the folio.
1377 * @flags: Pointer to irqsave flags.
1378 *
1379 * These functions are safe to use under any of the following conditions:
1380 * - folio locked
1381 * - folio_test_lru false
1382 * - folio_memcg_lock()
1383 * - folio frozen (refcount of 0)
1384 *
1385 * Return: The lruvec this folio is on with its lock held and interrupts
1386 * disabled.
1387 */
folio_lruvec_lock_irqsave(struct folio *folio, unsigned long *flags)1388 struct lruvec *folio_lruvec_lock_irqsave(struct folio *folio,
1389 unsigned long *flags)
1390 {
1391 struct lruvec *lruvec = folio_lruvec(folio);
1392
1393 spin_lock_irqsave(&lruvec->lru_lock, *flags);
1394 lruvec_memcg_debug(lruvec, folio);
1395
1396 return lruvec;
1397 }
1398
1399 /**
1400 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1401 * @lruvec: mem_cgroup per zone lru vector
1402 * @lru: index of lru list the page is sitting on
1403 * @zid: zone id of the accounted pages
1404 * @nr_pages: positive when adding or negative when removing
1405 *
1406 * This function must be called under lru_lock, just before a page is added
1407 * to or just after a page is removed from an lru list.
1408 */
mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru, int zid, int nr_pages)1409 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1410 int zid, int nr_pages)
1411 {
1412 struct mem_cgroup_per_node *mz;
1413 unsigned long *lru_size;
1414 long size;
1415
1416 if (mem_cgroup_disabled())
1417 return;
1418
1419 #ifdef CONFIG_HYPERHOLD_FILE_LRU
1420 if (is_node_lruvec(lruvec))
1421 return;
1422 #endif
1423
1424 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
1425 lru_size = &mz->lru_zone_size[zid][lru];
1426
1427 if (nr_pages < 0)
1428 *lru_size += nr_pages;
1429
1430 size = *lru_size;
1431 if (WARN_ONCE(size < 0,
1432 "%s(%p, %d, %d): lru_size %ld\n",
1433 __func__, lruvec, lru, nr_pages, size)) {
1434 VM_BUG_ON(1);
1435 *lru_size = 0;
1436 }
1437
1438 if (nr_pages > 0)
1439 *lru_size += nr_pages;
1440 }
1441
1442 /**
1443 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1444 * @memcg: the memory cgroup
1445 *
1446 * Returns the maximum amount of memory @mem can be charged with, in
1447 * pages.
1448 */
mem_cgroup_margin(struct mem_cgroup *memcg)1449 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1450 {
1451 unsigned long margin = 0;
1452 unsigned long count;
1453 unsigned long limit;
1454
1455 count = page_counter_read(&memcg->memory);
1456 limit = READ_ONCE(memcg->memory.max);
1457 if (count < limit)
1458 margin = limit - count;
1459
1460 if (do_memsw_account()) {
1461 count = page_counter_read(&memcg->memsw);
1462 limit = READ_ONCE(memcg->memsw.max);
1463 if (count < limit)
1464 margin = min(margin, limit - count);
1465 else
1466 margin = 0;
1467 }
1468
1469 return margin;
1470 }
1471
1472 /*
1473 * A routine for checking "mem" is under move_account() or not.
1474 *
1475 * Checking a cgroup is mc.from or mc.to or under hierarchy of
1476 * moving cgroups. This is for waiting at high-memory pressure
1477 * caused by "move".
1478 */
mem_cgroup_under_move(struct mem_cgroup *memcg)1479 static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1480 {
1481 struct mem_cgroup *from;
1482 struct mem_cgroup *to;
1483 bool ret = false;
1484 /*
1485 * Unlike task_move routines, we access mc.to, mc.from not under
1486 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1487 */
1488 spin_lock(&mc.lock);
1489 from = mc.from;
1490 to = mc.to;
1491 if (!from)
1492 goto unlock;
1493
1494 ret = mem_cgroup_is_descendant(from, memcg) ||
1495 mem_cgroup_is_descendant(to, memcg);
1496 unlock:
1497 spin_unlock(&mc.lock);
1498 return ret;
1499 }
1500
mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)1501 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1502 {
1503 if (mc.moving_task && current != mc.moving_task) {
1504 if (mem_cgroup_under_move(memcg)) {
1505 DEFINE_WAIT(wait);
1506 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1507 /* moving charge context might have finished. */
1508 if (mc.moving_task)
1509 schedule();
1510 finish_wait(&mc.waitq, &wait);
1511 return true;
1512 }
1513 }
1514 return false;
1515 }
1516
1517 struct memory_stat {
1518 const char *name;
1519 unsigned int idx;
1520 };
1521
1522 static const struct memory_stat memory_stats[] = {
1523 { "anon", NR_ANON_MAPPED },
1524 { "file", NR_FILE_PAGES },
1525 { "kernel", MEMCG_KMEM },
1526 { "kernel_stack", NR_KERNEL_STACK_KB },
1527 { "pagetables", NR_PAGETABLE },
1528 { "sec_pagetables", NR_SECONDARY_PAGETABLE },
1529 { "percpu", MEMCG_PERCPU_B },
1530 { "sock", MEMCG_SOCK },
1531 { "vmalloc", MEMCG_VMALLOC },
1532 { "shmem", NR_SHMEM },
1533 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP)
1534 { "zswap", MEMCG_ZSWAP_B },
1535 { "zswapped", MEMCG_ZSWAPPED },
1536 #endif
1537 { "file_mapped", NR_FILE_MAPPED },
1538 { "file_dirty", NR_FILE_DIRTY },
1539 { "file_writeback", NR_WRITEBACK },
1540 #ifdef CONFIG_SWAP
1541 { "swapcached", NR_SWAPCACHE },
1542 #endif
1543 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1544 { "anon_thp", NR_ANON_THPS },
1545 { "file_thp", NR_FILE_THPS },
1546 { "shmem_thp", NR_SHMEM_THPS },
1547 #endif
1548 { "inactive_anon", NR_INACTIVE_ANON },
1549 { "active_anon", NR_ACTIVE_ANON },
1550 { "inactive_file", NR_INACTIVE_FILE },
1551 { "active_file", NR_ACTIVE_FILE },
1552 { "unevictable", NR_UNEVICTABLE },
1553 { "slab_reclaimable", NR_SLAB_RECLAIMABLE_B },
1554 { "slab_unreclaimable", NR_SLAB_UNRECLAIMABLE_B },
1555
1556 /* The memory events */
1557 { "workingset_refault_anon", WORKINGSET_REFAULT_ANON },
1558 { "workingset_refault_file", WORKINGSET_REFAULT_FILE },
1559 { "workingset_activate_anon", WORKINGSET_ACTIVATE_ANON },
1560 { "workingset_activate_file", WORKINGSET_ACTIVATE_FILE },
1561 { "workingset_restore_anon", WORKINGSET_RESTORE_ANON },
1562 { "workingset_restore_file", WORKINGSET_RESTORE_FILE },
1563 { "workingset_nodereclaim", WORKINGSET_NODERECLAIM },
1564 };
1565
1566 /* Translate stat items to the correct unit for memory.stat output */
memcg_page_state_unit(int item)1567 static int memcg_page_state_unit(int item)
1568 {
1569 switch (item) {
1570 case MEMCG_PERCPU_B:
1571 case MEMCG_ZSWAP_B:
1572 case NR_SLAB_RECLAIMABLE_B:
1573 case NR_SLAB_UNRECLAIMABLE_B:
1574 case WORKINGSET_REFAULT_ANON:
1575 case WORKINGSET_REFAULT_FILE:
1576 case WORKINGSET_ACTIVATE_ANON:
1577 case WORKINGSET_ACTIVATE_FILE:
1578 case WORKINGSET_RESTORE_ANON:
1579 case WORKINGSET_RESTORE_FILE:
1580 case WORKINGSET_NODERECLAIM:
1581 return 1;
1582 case NR_KERNEL_STACK_KB:
1583 return SZ_1K;
1584 default:
1585 return PAGE_SIZE;
1586 }
1587 }
1588
memcg_page_state_output(struct mem_cgroup *memcg, int item)1589 static inline unsigned long memcg_page_state_output(struct mem_cgroup *memcg,
1590 int item)
1591 {
1592 return memcg_page_state(memcg, item) * memcg_page_state_unit(item);
1593 }
1594
memcg_stat_format(struct mem_cgroup *memcg, struct seq_buf *s)1595 static void memcg_stat_format(struct mem_cgroup *memcg, struct seq_buf *s)
1596 {
1597 int i;
1598
1599 /*
1600 * Provide statistics on the state of the memory subsystem as
1601 * well as cumulative event counters that show past behavior.
1602 *
1603 * This list is ordered following a combination of these gradients:
1604 * 1) generic big picture -> specifics and details
1605 * 2) reflecting userspace activity -> reflecting kernel heuristics
1606 *
1607 * Current memory state:
1608 */
1609 mem_cgroup_flush_stats();
1610
1611 for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
1612 u64 size;
1613
1614 size = memcg_page_state_output(memcg, memory_stats[i].idx);
1615 seq_buf_printf(s, "%s %llu\n", memory_stats[i].name, size);
1616
1617 if (unlikely(memory_stats[i].idx == NR_SLAB_UNRECLAIMABLE_B)) {
1618 size += memcg_page_state_output(memcg,
1619 NR_SLAB_RECLAIMABLE_B);
1620 seq_buf_printf(s, "slab %llu\n", size);
1621 }
1622 }
1623
1624 /* Accumulated memory events */
1625 seq_buf_printf(s, "pgscan %lu\n",
1626 memcg_events(memcg, PGSCAN_KSWAPD) +
1627 memcg_events(memcg, PGSCAN_DIRECT) +
1628 memcg_events(memcg, PGSCAN_KHUGEPAGED));
1629 seq_buf_printf(s, "pgsteal %lu\n",
1630 memcg_events(memcg, PGSTEAL_KSWAPD) +
1631 memcg_events(memcg, PGSTEAL_DIRECT) +
1632 memcg_events(memcg, PGSTEAL_KHUGEPAGED));
1633
1634 for (i = 0; i < ARRAY_SIZE(memcg_vm_event_stat); i++) {
1635 if (memcg_vm_event_stat[i] == PGPGIN ||
1636 memcg_vm_event_stat[i] == PGPGOUT)
1637 continue;
1638
1639 seq_buf_printf(s, "%s %lu\n",
1640 vm_event_name(memcg_vm_event_stat[i]),
1641 memcg_events(memcg, memcg_vm_event_stat[i]));
1642 }
1643
1644 /* The above should easily fit into one page */
1645 WARN_ON_ONCE(seq_buf_has_overflowed(s));
1646 }
1647
1648 static void memcg1_stat_format(struct mem_cgroup *memcg, struct seq_buf *s);
1649
memory_stat_format(struct mem_cgroup *memcg, struct seq_buf *s)1650 static void memory_stat_format(struct mem_cgroup *memcg, struct seq_buf *s)
1651 {
1652 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
1653 memcg_stat_format(memcg, s);
1654 else
1655 memcg1_stat_format(memcg, s);
1656 WARN_ON_ONCE(seq_buf_has_overflowed(s));
1657 }
1658
1659 /**
1660 * mem_cgroup_print_oom_context: Print OOM information relevant to
1661 * memory controller.
1662 * @memcg: The memory cgroup that went over limit
1663 * @p: Task that is going to be killed
1664 *
1665 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1666 * enabled
1667 */
mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p)1668 void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p)
1669 {
1670 rcu_read_lock();
1671
1672 if (memcg) {
1673 pr_cont(",oom_memcg=");
1674 pr_cont_cgroup_path(memcg->css.cgroup);
1675 } else
1676 pr_cont(",global_oom");
1677 if (p) {
1678 pr_cont(",task_memcg=");
1679 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1680 }
1681 rcu_read_unlock();
1682 }
1683
1684 /**
1685 * mem_cgroup_print_oom_meminfo: Print OOM memory information relevant to
1686 * memory controller.
1687 * @memcg: The memory cgroup that went over limit
1688 */
mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg)1689 void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg)
1690 {
1691 /* Use static buffer, for the caller is holding oom_lock. */
1692 static char buf[PAGE_SIZE];
1693 struct seq_buf s;
1694
1695 lockdep_assert_held(&oom_lock);
1696
1697 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1698 K((u64)page_counter_read(&memcg->memory)),
1699 K((u64)READ_ONCE(memcg->memory.max)), memcg->memory.failcnt);
1700 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
1701 pr_info("swap: usage %llukB, limit %llukB, failcnt %lu\n",
1702 K((u64)page_counter_read(&memcg->swap)),
1703 K((u64)READ_ONCE(memcg->swap.max)), memcg->swap.failcnt);
1704 else {
1705 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1706 K((u64)page_counter_read(&memcg->memsw)),
1707 K((u64)memcg->memsw.max), memcg->memsw.failcnt);
1708 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1709 K((u64)page_counter_read(&memcg->kmem)),
1710 K((u64)memcg->kmem.max), memcg->kmem.failcnt);
1711 }
1712
1713 pr_info("Memory cgroup stats for ");
1714 pr_cont_cgroup_path(memcg->css.cgroup);
1715 pr_cont(":");
1716 seq_buf_init(&s, buf, sizeof(buf));
1717 memory_stat_format(memcg, &s);
1718 seq_buf_do_printk(&s, KERN_INFO);
1719 }
1720
1721 /*
1722 * Return the memory (and swap, if configured) limit for a memcg.
1723 */
mem_cgroup_get_max(struct mem_cgroup *memcg)1724 unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
1725 {
1726 unsigned long max = READ_ONCE(memcg->memory.max);
1727
1728 if (do_memsw_account()) {
1729 if (mem_cgroup_swappiness(memcg)) {
1730 /* Calculate swap excess capacity from memsw limit */
1731 unsigned long swap = READ_ONCE(memcg->memsw.max) - max;
1732
1733 max += min(swap, (unsigned long)total_swap_pages);
1734 }
1735 } else {
1736 if (mem_cgroup_swappiness(memcg))
1737 max += min(READ_ONCE(memcg->swap.max),
1738 (unsigned long)total_swap_pages);
1739 }
1740 return max;
1741 }
1742
mem_cgroup_size(struct mem_cgroup *memcg)1743 unsigned long mem_cgroup_size(struct mem_cgroup *memcg)
1744 {
1745 return page_counter_read(&memcg->memory);
1746 }
1747
mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask, int order)1748 static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1749 int order)
1750 {
1751 struct oom_control oc = {
1752 .zonelist = NULL,
1753 .nodemask = NULL,
1754 .memcg = memcg,
1755 .gfp_mask = gfp_mask,
1756 .order = order,
1757 };
1758 bool ret = true;
1759
1760 if (mutex_lock_killable(&oom_lock))
1761 return true;
1762
1763 if (mem_cgroup_margin(memcg) >= (1 << order))
1764 goto unlock;
1765
1766 /*
1767 * A few threads which were not waiting at mutex_lock_killable() can
1768 * fail to bail out. Therefore, check again after holding oom_lock.
1769 */
1770 ret = task_is_dying() || out_of_memory(&oc);
1771
1772 unlock:
1773 mutex_unlock(&oom_lock);
1774 return ret;
1775 }
1776
mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg, pg_data_t *pgdat, gfp_t gfp_mask, unsigned long *total_scanned)1777 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1778 pg_data_t *pgdat,
1779 gfp_t gfp_mask,
1780 unsigned long *total_scanned)
1781 {
1782 struct mem_cgroup *victim = NULL;
1783 int total = 0;
1784 int loop = 0;
1785 unsigned long excess;
1786 unsigned long nr_scanned;
1787 struct mem_cgroup_reclaim_cookie reclaim = {
1788 .pgdat = pgdat,
1789 };
1790
1791 excess = soft_limit_excess(root_memcg);
1792
1793 while (1) {
1794 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1795 if (!victim) {
1796 loop++;
1797 if (loop >= 2) {
1798 /*
1799 * If we have not been able to reclaim
1800 * anything, it might because there are
1801 * no reclaimable pages under this hierarchy
1802 */
1803 if (!total)
1804 break;
1805 /*
1806 * We want to do more targeted reclaim.
1807 * excess >> 2 is not to excessive so as to
1808 * reclaim too much, nor too less that we keep
1809 * coming back to reclaim from this cgroup
1810 */
1811 if (total >= (excess >> 2) ||
1812 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1813 break;
1814 }
1815 continue;
1816 }
1817 total += mem_cgroup_shrink_node(victim, gfp_mask, false,
1818 pgdat, &nr_scanned);
1819 *total_scanned += nr_scanned;
1820 if (!soft_limit_excess(root_memcg))
1821 break;
1822 }
1823 mem_cgroup_iter_break(root_memcg, victim);
1824 return total;
1825 }
1826
1827 #ifdef CONFIG_LOCKDEP
1828 static struct lockdep_map memcg_oom_lock_dep_map = {
1829 .name = "memcg_oom_lock",
1830 };
1831 #endif
1832
1833 static DEFINE_SPINLOCK(memcg_oom_lock);
1834
1835 /*
1836 * Check OOM-Killer is already running under our hierarchy.
1837 * If someone is running, return false.
1838 */
mem_cgroup_oom_trylock(struct mem_cgroup *memcg)1839 static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
1840 {
1841 struct mem_cgroup *iter, *failed = NULL;
1842
1843 spin_lock(&memcg_oom_lock);
1844
1845 for_each_mem_cgroup_tree(iter, memcg) {
1846 if (iter->oom_lock) {
1847 /*
1848 * this subtree of our hierarchy is already locked
1849 * so we cannot give a lock.
1850 */
1851 failed = iter;
1852 mem_cgroup_iter_break(memcg, iter);
1853 break;
1854 } else
1855 iter->oom_lock = true;
1856 }
1857
1858 if (failed) {
1859 /*
1860 * OK, we failed to lock the whole subtree so we have
1861 * to clean up what we set up to the failing subtree
1862 */
1863 for_each_mem_cgroup_tree(iter, memcg) {
1864 if (iter == failed) {
1865 mem_cgroup_iter_break(memcg, iter);
1866 break;
1867 }
1868 iter->oom_lock = false;
1869 }
1870 } else
1871 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1872
1873 spin_unlock(&memcg_oom_lock);
1874
1875 return !failed;
1876 }
1877
mem_cgroup_oom_unlock(struct mem_cgroup *memcg)1878 static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1879 {
1880 struct mem_cgroup *iter;
1881
1882 spin_lock(&memcg_oom_lock);
1883 mutex_release(&memcg_oom_lock_dep_map, _RET_IP_);
1884 for_each_mem_cgroup_tree(iter, memcg)
1885 iter->oom_lock = false;
1886 spin_unlock(&memcg_oom_lock);
1887 }
1888
mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)1889 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1890 {
1891 struct mem_cgroup *iter;
1892
1893 spin_lock(&memcg_oom_lock);
1894 for_each_mem_cgroup_tree(iter, memcg)
1895 iter->under_oom++;
1896 spin_unlock(&memcg_oom_lock);
1897 }
1898
mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)1899 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1900 {
1901 struct mem_cgroup *iter;
1902
1903 /*
1904 * Be careful about under_oom underflows because a child memcg
1905 * could have been added after mem_cgroup_mark_under_oom.
1906 */
1907 spin_lock(&memcg_oom_lock);
1908 for_each_mem_cgroup_tree(iter, memcg)
1909 if (iter->under_oom > 0)
1910 iter->under_oom--;
1911 spin_unlock(&memcg_oom_lock);
1912 }
1913
1914 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1915
1916 struct oom_wait_info {
1917 struct mem_cgroup *memcg;
1918 wait_queue_entry_t wait;
1919 };
1920
memcg_oom_wake_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *arg)1921 static int memcg_oom_wake_function(wait_queue_entry_t *wait,
1922 unsigned mode, int sync, void *arg)
1923 {
1924 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1925 struct mem_cgroup *oom_wait_memcg;
1926 struct oom_wait_info *oom_wait_info;
1927
1928 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1929 oom_wait_memcg = oom_wait_info->memcg;
1930
1931 if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1932 !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
1933 return 0;
1934 return autoremove_wake_function(wait, mode, sync, arg);
1935 }
1936
memcg_oom_recover(struct mem_cgroup *memcg)1937 static void memcg_oom_recover(struct mem_cgroup *memcg)
1938 {
1939 /*
1940 * For the following lockless ->under_oom test, the only required
1941 * guarantee is that it must see the state asserted by an OOM when
1942 * this function is called as a result of userland actions
1943 * triggered by the notification of the OOM. This is trivially
1944 * achieved by invoking mem_cgroup_mark_under_oom() before
1945 * triggering notification.
1946 */
1947 if (memcg && memcg->under_oom)
1948 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1949 }
1950
1951 /*
1952 * Returns true if successfully killed one or more processes. Though in some
1953 * corner cases it can return true even without killing any process.
1954 */
mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)1955 static bool mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1956 {
1957 bool locked, ret;
1958
1959 if (order > PAGE_ALLOC_COSTLY_ORDER)
1960 return false;
1961
1962 memcg_memory_event(memcg, MEMCG_OOM);
1963
1964 /*
1965 * We are in the middle of the charge context here, so we
1966 * don't want to block when potentially sitting on a callstack
1967 * that holds all kinds of filesystem and mm locks.
1968 *
1969 * cgroup1 allows disabling the OOM killer and waiting for outside
1970 * handling until the charge can succeed; remember the context and put
1971 * the task to sleep at the end of the page fault when all locks are
1972 * released.
1973 *
1974 * On the other hand, in-kernel OOM killer allows for an async victim
1975 * memory reclaim (oom_reaper) and that means that we are not solely
1976 * relying on the oom victim to make a forward progress and we can
1977 * invoke the oom killer here.
1978 *
1979 * Please note that mem_cgroup_out_of_memory might fail to find a
1980 * victim and then we have to bail out from the charge path.
1981 */
1982 if (READ_ONCE(memcg->oom_kill_disable)) {
1983 if (current->in_user_fault) {
1984 css_get(&memcg->css);
1985 current->memcg_in_oom = memcg;
1986 current->memcg_oom_gfp_mask = mask;
1987 current->memcg_oom_order = order;
1988 }
1989 return false;
1990 }
1991
1992 mem_cgroup_mark_under_oom(memcg);
1993
1994 locked = mem_cgroup_oom_trylock(memcg);
1995
1996 if (locked)
1997 mem_cgroup_oom_notify(memcg);
1998
1999 mem_cgroup_unmark_under_oom(memcg);
2000 ret = mem_cgroup_out_of_memory(memcg, mask, order);
2001
2002 if (locked)
2003 mem_cgroup_oom_unlock(memcg);
2004
2005 return ret;
2006 }
2007
2008 /**
2009 * mem_cgroup_oom_synchronize - complete memcg OOM handling
2010 * @handle: actually kill/wait or just clean up the OOM state
2011 *
2012 * This has to be called at the end of a page fault if the memcg OOM
2013 * handler was enabled.
2014 *
2015 * Memcg supports userspace OOM handling where failed allocations must
2016 * sleep on a waitqueue until the userspace task resolves the
2017 * situation. Sleeping directly in the charge context with all kinds
2018 * of locks held is not a good idea, instead we remember an OOM state
2019 * in the task and mem_cgroup_oom_synchronize() has to be called at
2020 * the end of the page fault to complete the OOM handling.
2021 *
2022 * Returns %true if an ongoing memcg OOM situation was detected and
2023 * completed, %false otherwise.
2024 */
mem_cgroup_oom_synchronize(bool handle)2025 bool mem_cgroup_oom_synchronize(bool handle)
2026 {
2027 struct mem_cgroup *memcg = current->memcg_in_oom;
2028 struct oom_wait_info owait;
2029 bool locked;
2030
2031 /* OOM is global, do not handle */
2032 if (!memcg)
2033 return false;
2034
2035 if (!handle)
2036 goto cleanup;
2037
2038 owait.memcg = memcg;
2039 owait.wait.flags = 0;
2040 owait.wait.func = memcg_oom_wake_function;
2041 owait.wait.private = current;
2042 INIT_LIST_HEAD(&owait.wait.entry);
2043
2044 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
2045 mem_cgroup_mark_under_oom(memcg);
2046
2047 locked = mem_cgroup_oom_trylock(memcg);
2048
2049 if (locked)
2050 mem_cgroup_oom_notify(memcg);
2051
2052 schedule();
2053 mem_cgroup_unmark_under_oom(memcg);
2054 finish_wait(&memcg_oom_waitq, &owait.wait);
2055
2056 if (locked)
2057 mem_cgroup_oom_unlock(memcg);
2058 cleanup:
2059 current->memcg_in_oom = NULL;
2060 css_put(&memcg->css);
2061 return true;
2062 }
2063
2064 /**
2065 * mem_cgroup_get_oom_group - get a memory cgroup to clean up after OOM
2066 * @victim: task to be killed by the OOM killer
2067 * @oom_domain: memcg in case of memcg OOM, NULL in case of system-wide OOM
2068 *
2069 * Returns a pointer to a memory cgroup, which has to be cleaned up
2070 * by killing all belonging OOM-killable tasks.
2071 *
2072 * Caller has to call mem_cgroup_put() on the returned non-NULL memcg.
2073 */
mem_cgroup_get_oom_group(struct task_struct *victim, struct mem_cgroup *oom_domain)2074 struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
2075 struct mem_cgroup *oom_domain)
2076 {
2077 struct mem_cgroup *oom_group = NULL;
2078 struct mem_cgroup *memcg;
2079
2080 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
2081 return NULL;
2082
2083 if (!oom_domain)
2084 oom_domain = root_mem_cgroup;
2085
2086 rcu_read_lock();
2087
2088 memcg = mem_cgroup_from_task(victim);
2089 if (mem_cgroup_is_root(memcg))
2090 goto out;
2091
2092 /*
2093 * If the victim task has been asynchronously moved to a different
2094 * memory cgroup, we might end up killing tasks outside oom_domain.
2095 * In this case it's better to ignore memory.group.oom.
2096 */
2097 if (unlikely(!mem_cgroup_is_descendant(memcg, oom_domain)))
2098 goto out;
2099
2100 /*
2101 * Traverse the memory cgroup hierarchy from the victim task's
2102 * cgroup up to the OOMing cgroup (or root) to find the
2103 * highest-level memory cgroup with oom.group set.
2104 */
2105 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
2106 if (READ_ONCE(memcg->oom_group))
2107 oom_group = memcg;
2108
2109 if (memcg == oom_domain)
2110 break;
2111 }
2112
2113 if (oom_group)
2114 css_get(&oom_group->css);
2115 out:
2116 rcu_read_unlock();
2117
2118 return oom_group;
2119 }
2120
mem_cgroup_print_oom_group(struct mem_cgroup *memcg)2121 void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
2122 {
2123 pr_info("Tasks in ");
2124 pr_cont_cgroup_path(memcg->css.cgroup);
2125 pr_cont(" are going to be killed due to memory.oom.group set\n");
2126 }
2127
2128 /**
2129 * folio_memcg_lock - Bind a folio to its memcg.
2130 * @folio: The folio.
2131 *
2132 * This function prevents unlocked LRU folios from being moved to
2133 * another cgroup.
2134 *
2135 * It ensures lifetime of the bound memcg. The caller is responsible
2136 * for the lifetime of the folio.
2137 */
folio_memcg_lock(struct folio *folio)2138 void folio_memcg_lock(struct folio *folio)
2139 {
2140 struct mem_cgroup *memcg;
2141 unsigned long flags;
2142
2143 /*
2144 * The RCU lock is held throughout the transaction. The fast
2145 * path can get away without acquiring the memcg->move_lock
2146 * because page moving starts with an RCU grace period.
2147 */
2148 rcu_read_lock();
2149
2150 if (mem_cgroup_disabled())
2151 return;
2152 again:
2153 memcg = folio_memcg(folio);
2154 if (unlikely(!memcg))
2155 return;
2156
2157 #ifdef CONFIG_PROVE_LOCKING
2158 local_irq_save(flags);
2159 might_lock(&memcg->move_lock);
2160 local_irq_restore(flags);
2161 #endif
2162
2163 if (atomic_read(&memcg->moving_account) <= 0)
2164 return;
2165
2166 spin_lock_irqsave(&memcg->move_lock, flags);
2167 if (memcg != folio_memcg(folio)) {
2168 spin_unlock_irqrestore(&memcg->move_lock, flags);
2169 goto again;
2170 }
2171
2172 /*
2173 * When charge migration first begins, we can have multiple
2174 * critical sections holding the fast-path RCU lock and one
2175 * holding the slowpath move_lock. Track the task who has the
2176 * move_lock for folio_memcg_unlock().
2177 */
2178 memcg->move_lock_task = current;
2179 memcg->move_lock_flags = flags;
2180 }
2181
__folio_memcg_unlock(struct mem_cgroup *memcg)2182 static void __folio_memcg_unlock(struct mem_cgroup *memcg)
2183 {
2184 if (memcg && memcg->move_lock_task == current) {
2185 unsigned long flags = memcg->move_lock_flags;
2186
2187 memcg->move_lock_task = NULL;
2188 memcg->move_lock_flags = 0;
2189
2190 spin_unlock_irqrestore(&memcg->move_lock, flags);
2191 }
2192
2193 rcu_read_unlock();
2194 }
2195
2196 /**
2197 * folio_memcg_unlock - Release the binding between a folio and its memcg.
2198 * @folio: The folio.
2199 *
2200 * This releases the binding created by folio_memcg_lock(). This does
2201 * not change the accounting of this folio to its memcg, but it does
2202 * permit others to change it.
2203 */
folio_memcg_unlock(struct folio *folio)2204 void folio_memcg_unlock(struct folio *folio)
2205 {
2206 __folio_memcg_unlock(folio_memcg(folio));
2207 }
2208
2209 struct memcg_stock_pcp {
2210 local_lock_t stock_lock;
2211 struct mem_cgroup *cached; /* this never be root cgroup */
2212 unsigned int nr_pages;
2213
2214 #ifdef CONFIG_MEMCG_KMEM
2215 struct obj_cgroup *cached_objcg;
2216 struct pglist_data *cached_pgdat;
2217 unsigned int nr_bytes;
2218 int nr_slab_reclaimable_b;
2219 int nr_slab_unreclaimable_b;
2220 #endif
2221
2222 struct work_struct work;
2223 unsigned long flags;
2224 #define FLUSHING_CACHED_CHARGE 0
2225 };
2226 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock) = {
2227 .stock_lock = INIT_LOCAL_LOCK(stock_lock),
2228 };
2229 static DEFINE_MUTEX(percpu_charge_mutex);
2230
2231 #ifdef CONFIG_MEMCG_KMEM
2232 static struct obj_cgroup *drain_obj_stock(struct memcg_stock_pcp *stock);
2233 static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
2234 struct mem_cgroup *root_memcg);
2235 static void memcg_account_kmem(struct mem_cgroup *memcg, int nr_pages);
2236
2237 #else
drain_obj_stock(struct memcg_stock_pcp *stock)2238 static inline struct obj_cgroup *drain_obj_stock(struct memcg_stock_pcp *stock)
2239 {
2240 return NULL;
2241 }
obj_stock_flush_required(struct memcg_stock_pcp *stock, struct mem_cgroup *root_memcg)2242 static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
2243 struct mem_cgroup *root_memcg)
2244 {
2245 return false;
2246 }
memcg_account_kmem(struct mem_cgroup *memcg, int nr_pages)2247 static void memcg_account_kmem(struct mem_cgroup *memcg, int nr_pages)
2248 {
2249 }
2250 #endif
2251
2252 /**
2253 * consume_stock: Try to consume stocked charge on this cpu.
2254 * @memcg: memcg to consume from.
2255 * @nr_pages: how many pages to charge.
2256 *
2257 * The charges will only happen if @memcg matches the current cpu's memcg
2258 * stock, and at least @nr_pages are available in that stock. Failure to
2259 * service an allocation will refill the stock.
2260 *
2261 * returns true if successful, false otherwise.
2262 */
consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)2263 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2264 {
2265 struct memcg_stock_pcp *stock;
2266 unsigned long flags;
2267 bool ret = false;
2268
2269 if (nr_pages > MEMCG_CHARGE_BATCH)
2270 return ret;
2271
2272 local_lock_irqsave(&memcg_stock.stock_lock, flags);
2273
2274 stock = this_cpu_ptr(&memcg_stock);
2275 if (memcg == READ_ONCE(stock->cached) && stock->nr_pages >= nr_pages) {
2276 stock->nr_pages -= nr_pages;
2277 ret = true;
2278 }
2279
2280 local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
2281
2282 return ret;
2283 }
2284
2285 /*
2286 * Returns stocks cached in percpu and reset cached information.
2287 */
drain_stock(struct memcg_stock_pcp *stock)2288 static void drain_stock(struct memcg_stock_pcp *stock)
2289 {
2290 struct mem_cgroup *old = READ_ONCE(stock->cached);
2291
2292 if (!old)
2293 return;
2294
2295 if (stock->nr_pages) {
2296 page_counter_uncharge(&old->memory, stock->nr_pages);
2297 if (do_memsw_account())
2298 page_counter_uncharge(&old->memsw, stock->nr_pages);
2299 stock->nr_pages = 0;
2300 }
2301
2302 css_put(&old->css);
2303 WRITE_ONCE(stock->cached, NULL);
2304 }
2305
drain_local_stock(struct work_struct *dummy)2306 static void drain_local_stock(struct work_struct *dummy)
2307 {
2308 struct memcg_stock_pcp *stock;
2309 struct obj_cgroup *old = NULL;
2310 unsigned long flags;
2311
2312 /*
2313 * The only protection from cpu hotplug (memcg_hotplug_cpu_dead) vs.
2314 * drain_stock races is that we always operate on local CPU stock
2315 * here with IRQ disabled
2316 */
2317 local_lock_irqsave(&memcg_stock.stock_lock, flags);
2318
2319 stock = this_cpu_ptr(&memcg_stock);
2320 old = drain_obj_stock(stock);
2321 drain_stock(stock);
2322 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2323
2324 local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
2325 if (old)
2326 obj_cgroup_put(old);
2327 }
2328
2329 /*
2330 * Cache charges(val) to local per_cpu area.
2331 * This will be consumed by consume_stock() function, later.
2332 */
__refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)2333 static void __refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2334 {
2335 struct memcg_stock_pcp *stock;
2336
2337 stock = this_cpu_ptr(&memcg_stock);
2338 if (READ_ONCE(stock->cached) != memcg) { /* reset if necessary */
2339 drain_stock(stock);
2340 css_get(&memcg->css);
2341 WRITE_ONCE(stock->cached, memcg);
2342 }
2343 stock->nr_pages += nr_pages;
2344
2345 if (stock->nr_pages > MEMCG_CHARGE_BATCH)
2346 drain_stock(stock);
2347 }
2348
refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)2349 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2350 {
2351 unsigned long flags;
2352
2353 local_lock_irqsave(&memcg_stock.stock_lock, flags);
2354 __refill_stock(memcg, nr_pages);
2355 local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
2356 }
2357
2358 /*
2359 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2360 * of the hierarchy under it.
2361 */
drain_all_stock(struct mem_cgroup *root_memcg)2362 static void drain_all_stock(struct mem_cgroup *root_memcg)
2363 {
2364 int cpu, curcpu;
2365
2366 /* If someone's already draining, avoid adding running more workers. */
2367 if (!mutex_trylock(&percpu_charge_mutex))
2368 return;
2369 /*
2370 * Notify other cpus that system-wide "drain" is running
2371 * We do not care about races with the cpu hotplug because cpu down
2372 * as well as workers from this path always operate on the local
2373 * per-cpu data. CPU up doesn't touch memcg_stock at all.
2374 */
2375 migrate_disable();
2376 curcpu = smp_processor_id();
2377 for_each_online_cpu(cpu) {
2378 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2379 struct mem_cgroup *memcg;
2380 bool flush = false;
2381
2382 rcu_read_lock();
2383 memcg = READ_ONCE(stock->cached);
2384 if (memcg && stock->nr_pages &&
2385 mem_cgroup_is_descendant(memcg, root_memcg))
2386 flush = true;
2387 else if (obj_stock_flush_required(stock, root_memcg))
2388 flush = true;
2389 rcu_read_unlock();
2390
2391 if (flush &&
2392 !test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2393 if (cpu == curcpu)
2394 drain_local_stock(&stock->work);
2395 else if (!cpu_is_isolated(cpu))
2396 schedule_work_on(cpu, &stock->work);
2397 }
2398 }
2399 migrate_enable();
2400 mutex_unlock(&percpu_charge_mutex);
2401 }
2402
memcg_hotplug_cpu_dead(unsigned int cpu)2403 static int memcg_hotplug_cpu_dead(unsigned int cpu)
2404 {
2405 struct memcg_stock_pcp *stock;
2406
2407 stock = &per_cpu(memcg_stock, cpu);
2408 drain_stock(stock);
2409
2410 return 0;
2411 }
2412
reclaim_high(struct mem_cgroup *memcg, unsigned int nr_pages, gfp_t gfp_mask)2413 static unsigned long reclaim_high(struct mem_cgroup *memcg,
2414 unsigned int nr_pages,
2415 gfp_t gfp_mask)
2416 {
2417 unsigned long nr_reclaimed = 0;
2418
2419 do {
2420 unsigned long pflags;
2421
2422 if (page_counter_read(&memcg->memory) <=
2423 READ_ONCE(memcg->memory.high))
2424 continue;
2425
2426 memcg_memory_event(memcg, MEMCG_HIGH);
2427
2428 psi_memstall_enter(&pflags);
2429 nr_reclaimed += try_to_free_mem_cgroup_pages(memcg, nr_pages,
2430 gfp_mask,
2431 MEMCG_RECLAIM_MAY_SWAP);
2432 psi_memstall_leave(&pflags);
2433 } while ((memcg = parent_mem_cgroup(memcg)) &&
2434 !mem_cgroup_is_root(memcg));
2435
2436 return nr_reclaimed;
2437 }
2438
high_work_func(struct work_struct *work)2439 static void high_work_func(struct work_struct *work)
2440 {
2441 struct mem_cgroup *memcg;
2442
2443 memcg = container_of(work, struct mem_cgroup, high_work);
2444 reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL);
2445 }
2446
2447 /*
2448 * Clamp the maximum sleep time per allocation batch to 2 seconds. This is
2449 * enough to still cause a significant slowdown in most cases, while still
2450 * allowing diagnostics and tracing to proceed without becoming stuck.
2451 */
2452 #define MEMCG_MAX_HIGH_DELAY_JIFFIES (2UL*HZ)
2453
2454 /*
2455 * When calculating the delay, we use these either side of the exponentiation to
2456 * maintain precision and scale to a reasonable number of jiffies (see the table
2457 * below.
2458 *
2459 * - MEMCG_DELAY_PRECISION_SHIFT: Extra precision bits while translating the
2460 * overage ratio to a delay.
2461 * - MEMCG_DELAY_SCALING_SHIFT: The number of bits to scale down the
2462 * proposed penalty in order to reduce to a reasonable number of jiffies, and
2463 * to produce a reasonable delay curve.
2464 *
2465 * MEMCG_DELAY_SCALING_SHIFT just happens to be a number that produces a
2466 * reasonable delay curve compared to precision-adjusted overage, not
2467 * penalising heavily at first, but still making sure that growth beyond the
2468 * limit penalises misbehaviour cgroups by slowing them down exponentially. For
2469 * example, with a high of 100 megabytes:
2470 *
2471 * +-------+------------------------+
2472 * | usage | time to allocate in ms |
2473 * +-------+------------------------+
2474 * | 100M | 0 |
2475 * | 101M | 6 |
2476 * | 102M | 25 |
2477 * | 103M | 57 |
2478 * | 104M | 102 |
2479 * | 105M | 159 |
2480 * | 106M | 230 |
2481 * | 107M | 313 |
2482 * | 108M | 409 |
2483 * | 109M | 518 |
2484 * | 110M | 639 |
2485 * | 111M | 774 |
2486 * | 112M | 921 |
2487 * | 113M | 1081 |
2488 * | 114M | 1254 |
2489 * | 115M | 1439 |
2490 * | 116M | 1638 |
2491 * | 117M | 1849 |
2492 * | 118M | 2000 |
2493 * | 119M | 2000 |
2494 * | 120M | 2000 |
2495 * +-------+------------------------+
2496 */
2497 #define MEMCG_DELAY_PRECISION_SHIFT 20
2498 #define MEMCG_DELAY_SCALING_SHIFT 14
2499
calculate_overage(unsigned long usage, unsigned long high)2500 static u64 calculate_overage(unsigned long usage, unsigned long high)
2501 {
2502 u64 overage;
2503
2504 if (usage <= high)
2505 return 0;
2506
2507 /*
2508 * Prevent division by 0 in overage calculation by acting as if
2509 * it was a threshold of 1 page
2510 */
2511 high = max(high, 1UL);
2512
2513 overage = usage - high;
2514 overage <<= MEMCG_DELAY_PRECISION_SHIFT;
2515 return div64_u64(overage, high);
2516 }
2517
mem_find_max_overage(struct mem_cgroup *memcg)2518 static u64 mem_find_max_overage(struct mem_cgroup *memcg)
2519 {
2520 u64 overage, max_overage = 0;
2521
2522 do {
2523 overage = calculate_overage(page_counter_read(&memcg->memory),
2524 READ_ONCE(memcg->memory.high));
2525 max_overage = max(overage, max_overage);
2526 } while ((memcg = parent_mem_cgroup(memcg)) &&
2527 !mem_cgroup_is_root(memcg));
2528
2529 return max_overage;
2530 }
2531
swap_find_max_overage(struct mem_cgroup *memcg)2532 static u64 swap_find_max_overage(struct mem_cgroup *memcg)
2533 {
2534 u64 overage, max_overage = 0;
2535
2536 do {
2537 overage = calculate_overage(page_counter_read(&memcg->swap),
2538 READ_ONCE(memcg->swap.high));
2539 if (overage)
2540 memcg_memory_event(memcg, MEMCG_SWAP_HIGH);
2541 max_overage = max(overage, max_overage);
2542 } while ((memcg = parent_mem_cgroup(memcg)) &&
2543 !mem_cgroup_is_root(memcg));
2544
2545 return max_overage;
2546 }
2547
2548 /*
2549 * Get the number of jiffies that we should penalise a mischievous cgroup which
2550 * is exceeding its memory.high by checking both it and its ancestors.
2551 */
calculate_high_delay(struct mem_cgroup *memcg, unsigned int nr_pages, u64 max_overage)2552 static unsigned long calculate_high_delay(struct mem_cgroup *memcg,
2553 unsigned int nr_pages,
2554 u64 max_overage)
2555 {
2556 unsigned long penalty_jiffies;
2557
2558 if (!max_overage)
2559 return 0;
2560
2561 /*
2562 * We use overage compared to memory.high to calculate the number of
2563 * jiffies to sleep (penalty_jiffies). Ideally this value should be
2564 * fairly lenient on small overages, and increasingly harsh when the
2565 * memcg in question makes it clear that it has no intention of stopping
2566 * its crazy behaviour, so we exponentially increase the delay based on
2567 * overage amount.
2568 */
2569 penalty_jiffies = max_overage * max_overage * HZ;
2570 penalty_jiffies >>= MEMCG_DELAY_PRECISION_SHIFT;
2571 penalty_jiffies >>= MEMCG_DELAY_SCALING_SHIFT;
2572
2573 /*
2574 * Factor in the task's own contribution to the overage, such that four
2575 * N-sized allocations are throttled approximately the same as one
2576 * 4N-sized allocation.
2577 *
2578 * MEMCG_CHARGE_BATCH pages is nominal, so work out how much smaller or
2579 * larger the current charge patch is than that.
2580 */
2581 return penalty_jiffies * nr_pages / MEMCG_CHARGE_BATCH;
2582 }
2583
2584 /*
2585 * Scheduled by try_charge() to be executed from the userland return path
2586 * and reclaims memory over the high limit.
2587 */
mem_cgroup_handle_over_high(gfp_t gfp_mask)2588 void mem_cgroup_handle_over_high(gfp_t gfp_mask)
2589 {
2590 unsigned long penalty_jiffies;
2591 unsigned long pflags;
2592 unsigned long nr_reclaimed;
2593 unsigned int nr_pages = current->memcg_nr_pages_over_high;
2594 int nr_retries = MAX_RECLAIM_RETRIES;
2595 struct mem_cgroup *memcg;
2596 bool in_retry = false;
2597
2598 if (likely(!nr_pages))
2599 return;
2600
2601 memcg = get_mem_cgroup_from_mm(current->mm);
2602 current->memcg_nr_pages_over_high = 0;
2603
2604 retry_reclaim:
2605 /*
2606 * The allocating task should reclaim at least the batch size, but for
2607 * subsequent retries we only want to do what's necessary to prevent oom
2608 * or breaching resource isolation.
2609 *
2610 * This is distinct from memory.max or page allocator behaviour because
2611 * memory.high is currently batched, whereas memory.max and the page
2612 * allocator run every time an allocation is made.
2613 */
2614 nr_reclaimed = reclaim_high(memcg,
2615 in_retry ? SWAP_CLUSTER_MAX : nr_pages,
2616 gfp_mask);
2617
2618 /*
2619 * memory.high is breached and reclaim is unable to keep up. Throttle
2620 * allocators proactively to slow down excessive growth.
2621 */
2622 penalty_jiffies = calculate_high_delay(memcg, nr_pages,
2623 mem_find_max_overage(memcg));
2624
2625 penalty_jiffies += calculate_high_delay(memcg, nr_pages,
2626 swap_find_max_overage(memcg));
2627
2628 /*
2629 * Clamp the max delay per usermode return so as to still keep the
2630 * application moving forwards and also permit diagnostics, albeit
2631 * extremely slowly.
2632 */
2633 penalty_jiffies = min(penalty_jiffies, MEMCG_MAX_HIGH_DELAY_JIFFIES);
2634
2635 /*
2636 * Don't sleep if the amount of jiffies this memcg owes us is so low
2637 * that it's not even worth doing, in an attempt to be nice to those who
2638 * go only a small amount over their memory.high value and maybe haven't
2639 * been aggressively reclaimed enough yet.
2640 */
2641 if (penalty_jiffies <= HZ / 100)
2642 goto out;
2643
2644 /*
2645 * If reclaim is making forward progress but we're still over
2646 * memory.high, we want to encourage that rather than doing allocator
2647 * throttling.
2648 */
2649 if (nr_reclaimed || nr_retries--) {
2650 in_retry = true;
2651 goto retry_reclaim;
2652 }
2653
2654 /*
2655 * If we exit early, we're guaranteed to die (since
2656 * schedule_timeout_killable sets TASK_KILLABLE). This means we don't
2657 * need to account for any ill-begotten jiffies to pay them off later.
2658 */
2659 psi_memstall_enter(&pflags);
2660 schedule_timeout_killable(penalty_jiffies);
2661 psi_memstall_leave(&pflags);
2662
2663 out:
2664 css_put(&memcg->css);
2665 }
2666
try_charge_memcg(struct mem_cgroup *memcg, gfp_t gfp_mask, unsigned int nr_pages)2667 static int try_charge_memcg(struct mem_cgroup *memcg, gfp_t gfp_mask,
2668 unsigned int nr_pages)
2669 {
2670 unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages);
2671 int nr_retries = MAX_RECLAIM_RETRIES;
2672 struct mem_cgroup *mem_over_limit;
2673 struct page_counter *counter;
2674 unsigned long nr_reclaimed;
2675 bool passed_oom = false;
2676 unsigned int reclaim_options = MEMCG_RECLAIM_MAY_SWAP;
2677 bool drained = false;
2678 bool raised_max_event = false;
2679 unsigned long pflags;
2680
2681 retry:
2682 if (consume_stock(memcg, nr_pages))
2683 return 0;
2684
2685 if (!do_memsw_account() ||
2686 page_counter_try_charge(&memcg->memsw, batch, &counter)) {
2687 if (page_counter_try_charge(&memcg->memory, batch, &counter))
2688 goto done_restock;
2689 if (do_memsw_account())
2690 page_counter_uncharge(&memcg->memsw, batch);
2691 mem_over_limit = mem_cgroup_from_counter(counter, memory);
2692 } else {
2693 mem_over_limit = mem_cgroup_from_counter(counter, memsw);
2694 reclaim_options &= ~MEMCG_RECLAIM_MAY_SWAP;
2695 }
2696
2697 if (batch > nr_pages) {
2698 batch = nr_pages;
2699 goto retry;
2700 }
2701
2702 /*
2703 * Prevent unbounded recursion when reclaim operations need to
2704 * allocate memory. This might exceed the limits temporarily,
2705 * but we prefer facilitating memory reclaim and getting back
2706 * under the limit over triggering OOM kills in these cases.
2707 */
2708 if (unlikely(current->flags & PF_MEMALLOC))
2709 goto force;
2710
2711 if (unlikely(task_in_memcg_oom(current)))
2712 goto nomem;
2713
2714 if (!gfpflags_allow_blocking(gfp_mask))
2715 goto nomem;
2716
2717 memcg_memory_event(mem_over_limit, MEMCG_MAX);
2718 raised_max_event = true;
2719
2720 psi_memstall_enter(&pflags);
2721 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
2722 gfp_mask, reclaim_options);
2723 psi_memstall_leave(&pflags);
2724
2725 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2726 goto retry;
2727
2728 if (!drained) {
2729 drain_all_stock(mem_over_limit);
2730 drained = true;
2731 goto retry;
2732 }
2733
2734 if (gfp_mask & __GFP_NORETRY)
2735 goto nomem;
2736 /*
2737 * Even though the limit is exceeded at this point, reclaim
2738 * may have been able to free some pages. Retry the charge
2739 * before killing the task.
2740 *
2741 * Only for regular pages, though: huge pages are rather
2742 * unlikely to succeed so close to the limit, and we fall back
2743 * to regular pages anyway in case of failure.
2744 */
2745 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2746 goto retry;
2747 /*
2748 * At task move, charge accounts can be doubly counted. So, it's
2749 * better to wait until the end of task_move if something is going on.
2750 */
2751 if (mem_cgroup_wait_acct_move(mem_over_limit))
2752 goto retry;
2753
2754 if (nr_retries--)
2755 goto retry;
2756
2757 if (gfp_mask & __GFP_RETRY_MAYFAIL)
2758 goto nomem;
2759
2760 /* Avoid endless loop for tasks bypassed by the oom killer */
2761 if (passed_oom && task_is_dying())
2762 goto nomem;
2763
2764 /*
2765 * keep retrying as long as the memcg oom killer is able to make
2766 * a forward progress or bypass the charge if the oom killer
2767 * couldn't make any progress.
2768 */
2769 if (mem_cgroup_oom(mem_over_limit, gfp_mask,
2770 get_order(nr_pages * PAGE_SIZE))) {
2771 passed_oom = true;
2772 nr_retries = MAX_RECLAIM_RETRIES;
2773 goto retry;
2774 }
2775 nomem:
2776 /*
2777 * Memcg doesn't have a dedicated reserve for atomic
2778 * allocations. But like the global atomic pool, we need to
2779 * put the burden of reclaim on regular allocation requests
2780 * and let these go through as privileged allocations.
2781 */
2782 if (!(gfp_mask & (__GFP_NOFAIL | __GFP_HIGH)))
2783 return -ENOMEM;
2784 force:
2785 /*
2786 * If the allocation has to be enforced, don't forget to raise
2787 * a MEMCG_MAX event.
2788 */
2789 if (!raised_max_event)
2790 memcg_memory_event(mem_over_limit, MEMCG_MAX);
2791
2792 /*
2793 * The allocation either can't fail or will lead to more memory
2794 * being freed very soon. Allow memory usage go over the limit
2795 * temporarily by force charging it.
2796 */
2797 page_counter_charge(&memcg->memory, nr_pages);
2798 if (do_memsw_account())
2799 page_counter_charge(&memcg->memsw, nr_pages);
2800
2801 return 0;
2802
2803 done_restock:
2804 if (batch > nr_pages)
2805 refill_stock(memcg, batch - nr_pages);
2806
2807 /*
2808 * If the hierarchy is above the normal consumption range, schedule
2809 * reclaim on returning to userland. We can perform reclaim here
2810 * if __GFP_RECLAIM but let's always punt for simplicity and so that
2811 * GFP_KERNEL can consistently be used during reclaim. @memcg is
2812 * not recorded as it most likely matches current's and won't
2813 * change in the meantime. As high limit is checked again before
2814 * reclaim, the cost of mismatch is negligible.
2815 */
2816 do {
2817 bool mem_high, swap_high;
2818
2819 mem_high = page_counter_read(&memcg->memory) >
2820 READ_ONCE(memcg->memory.high);
2821 swap_high = page_counter_read(&memcg->swap) >
2822 READ_ONCE(memcg->swap.high);
2823
2824 /* Don't bother a random interrupted task */
2825 if (!in_task()) {
2826 if (mem_high) {
2827 schedule_work(&memcg->high_work);
2828 break;
2829 }
2830 continue;
2831 }
2832
2833 if (mem_high || swap_high) {
2834 /*
2835 * The allocating tasks in this cgroup will need to do
2836 * reclaim or be throttled to prevent further growth
2837 * of the memory or swap footprints.
2838 *
2839 * Target some best-effort fairness between the tasks,
2840 * and distribute reclaim work and delay penalties
2841 * based on how much each task is actually allocating.
2842 */
2843 current->memcg_nr_pages_over_high += batch;
2844 set_notify_resume(current);
2845 break;
2846 }
2847 } while ((memcg = parent_mem_cgroup(memcg)));
2848
2849 if (current->memcg_nr_pages_over_high > MEMCG_CHARGE_BATCH &&
2850 !(current->flags & PF_MEMALLOC) &&
2851 gfpflags_allow_blocking(gfp_mask)) {
2852 mem_cgroup_handle_over_high(gfp_mask);
2853 }
2854 return 0;
2855 }
2856
try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask, unsigned int nr_pages)2857 static inline int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2858 unsigned int nr_pages)
2859 {
2860 if (mem_cgroup_is_root(memcg))
2861 return 0;
2862
2863 return try_charge_memcg(memcg, gfp_mask, nr_pages);
2864 }
2865
cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)2866 static inline void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2867 {
2868 if (mem_cgroup_is_root(memcg))
2869 return;
2870
2871 page_counter_uncharge(&memcg->memory, nr_pages);
2872 if (do_memsw_account())
2873 page_counter_uncharge(&memcg->memsw, nr_pages);
2874 }
2875
commit_charge(struct folio *folio, struct mem_cgroup *memcg)2876 static void commit_charge(struct folio *folio, struct mem_cgroup *memcg)
2877 {
2878 VM_BUG_ON_FOLIO(folio_memcg(folio), folio);
2879 /*
2880 * Any of the following ensures page's memcg stability:
2881 *
2882 * - the page lock
2883 * - LRU isolation
2884 * - folio_memcg_lock()
2885 * - exclusive reference
2886 * - mem_cgroup_trylock_pages()
2887 */
2888 folio->memcg_data = (unsigned long)memcg;
2889 }
2890
2891 #ifdef CONFIG_MEMCG_KMEM
2892 /*
2893 * The allocated objcg pointers array is not accounted directly.
2894 * Moreover, it should not come from DMA buffer and is not readily
2895 * reclaimable. So those GFP bits should be masked off.
2896 */
2897 #define OBJCGS_CLEAR_MASK (__GFP_DMA | __GFP_RECLAIMABLE | \
2898 __GFP_ACCOUNT | __GFP_NOFAIL)
2899
2900 /*
2901 * mod_objcg_mlstate() may be called with irq enabled, so
2902 * mod_memcg_lruvec_state() should be used.
2903 */
mod_objcg_mlstate(struct obj_cgroup *objcg, struct pglist_data *pgdat, enum node_stat_item idx, int nr)2904 static inline void mod_objcg_mlstate(struct obj_cgroup *objcg,
2905 struct pglist_data *pgdat,
2906 enum node_stat_item idx, int nr)
2907 {
2908 struct mem_cgroup *memcg;
2909 struct lruvec *lruvec;
2910
2911 rcu_read_lock();
2912 memcg = obj_cgroup_memcg(objcg);
2913 lruvec = mem_cgroup_lruvec(memcg, pgdat);
2914 mod_memcg_lruvec_state(lruvec, idx, nr);
2915 rcu_read_unlock();
2916 }
2917
memcg_alloc_slab_cgroups(struct slab *slab, struct kmem_cache *s, gfp_t gfp, bool new_slab)2918 int memcg_alloc_slab_cgroups(struct slab *slab, struct kmem_cache *s,
2919 gfp_t gfp, bool new_slab)
2920 {
2921 unsigned int objects = objs_per_slab(s, slab);
2922 unsigned long memcg_data;
2923 void *vec;
2924
2925 gfp &= ~OBJCGS_CLEAR_MASK;
2926 vec = kcalloc_node(objects, sizeof(struct obj_cgroup *), gfp,
2927 slab_nid(slab));
2928 if (!vec)
2929 return -ENOMEM;
2930
2931 memcg_data = (unsigned long) vec | MEMCG_DATA_OBJCGS;
2932 if (new_slab) {
2933 /*
2934 * If the slab is brand new and nobody can yet access its
2935 * memcg_data, no synchronization is required and memcg_data can
2936 * be simply assigned.
2937 */
2938 slab->memcg_data = memcg_data;
2939 } else if (cmpxchg(&slab->memcg_data, 0, memcg_data)) {
2940 /*
2941 * If the slab is already in use, somebody can allocate and
2942 * assign obj_cgroups in parallel. In this case the existing
2943 * objcg vector should be reused.
2944 */
2945 kfree(vec);
2946 return 0;
2947 }
2948
2949 kmemleak_not_leak(vec);
2950 return 0;
2951 }
2952
2953 static __always_inline
mem_cgroup_from_obj_folio(struct folio *folio, void *p)2954 struct mem_cgroup *mem_cgroup_from_obj_folio(struct folio *folio, void *p)
2955 {
2956 /*
2957 * Slab objects are accounted individually, not per-page.
2958 * Memcg membership data for each individual object is saved in
2959 * slab->memcg_data.
2960 */
2961 if (folio_test_slab(folio)) {
2962 struct obj_cgroup **objcgs;
2963 struct slab *slab;
2964 unsigned int off;
2965
2966 slab = folio_slab(folio);
2967 objcgs = slab_objcgs(slab);
2968 if (!objcgs)
2969 return NULL;
2970
2971 off = obj_to_index(slab->slab_cache, slab, p);
2972 if (objcgs[off])
2973 return obj_cgroup_memcg(objcgs[off]);
2974
2975 return NULL;
2976 }
2977
2978 /*
2979 * folio_memcg_check() is used here, because in theory we can encounter
2980 * a folio where the slab flag has been cleared already, but
2981 * slab->memcg_data has not been freed yet
2982 * folio_memcg_check() will guarantee that a proper memory
2983 * cgroup pointer or NULL will be returned.
2984 */
2985 return folio_memcg_check(folio);
2986 }
2987
2988 /*
2989 * Returns a pointer to the memory cgroup to which the kernel object is charged.
2990 *
2991 * A passed kernel object can be a slab object, vmalloc object or a generic
2992 * kernel page, so different mechanisms for getting the memory cgroup pointer
2993 * should be used.
2994 *
2995 * In certain cases (e.g. kernel stacks or large kmallocs with SLUB) the caller
2996 * can not know for sure how the kernel object is implemented.
2997 * mem_cgroup_from_obj() can be safely used in such cases.
2998 *
2999 * The caller must ensure the memcg lifetime, e.g. by taking rcu_read_lock(),
3000 * cgroup_mutex, etc.
3001 */
mem_cgroup_from_obj(void *p)3002 struct mem_cgroup *mem_cgroup_from_obj(void *p)
3003 {
3004 struct folio *folio;
3005
3006 if (mem_cgroup_disabled())
3007 return NULL;
3008
3009 if (unlikely(is_vmalloc_addr(p)))
3010 folio = page_folio(vmalloc_to_page(p));
3011 else
3012 folio = virt_to_folio(p);
3013
3014 return mem_cgroup_from_obj_folio(folio, p);
3015 }
3016
3017 /*
3018 * Returns a pointer to the memory cgroup to which the kernel object is charged.
3019 * Similar to mem_cgroup_from_obj(), but faster and not suitable for objects,
3020 * allocated using vmalloc().
3021 *
3022 * A passed kernel object must be a slab object or a generic kernel page.
3023 *
3024 * The caller must ensure the memcg lifetime, e.g. by taking rcu_read_lock(),
3025 * cgroup_mutex, etc.
3026 */
mem_cgroup_from_slab_obj(void *p)3027 struct mem_cgroup *mem_cgroup_from_slab_obj(void *p)
3028 {
3029 if (mem_cgroup_disabled())
3030 return NULL;
3031
3032 return mem_cgroup_from_obj_folio(virt_to_folio(p), p);
3033 }
3034
__get_obj_cgroup_from_memcg(struct mem_cgroup *memcg)3035 static struct obj_cgroup *__get_obj_cgroup_from_memcg(struct mem_cgroup *memcg)
3036 {
3037 struct obj_cgroup *objcg = NULL;
3038
3039 for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg)) {
3040 objcg = rcu_dereference(memcg->objcg);
3041 if (objcg && obj_cgroup_tryget(objcg))
3042 break;
3043 objcg = NULL;
3044 }
3045 return objcg;
3046 }
3047
get_obj_cgroup_from_current(void)3048 __always_inline struct obj_cgroup *get_obj_cgroup_from_current(void)
3049 {
3050 struct obj_cgroup *objcg = NULL;
3051 struct mem_cgroup *memcg;
3052
3053 if (memcg_kmem_bypass())
3054 return NULL;
3055
3056 rcu_read_lock();
3057 if (unlikely(active_memcg()))
3058 memcg = active_memcg();
3059 else
3060 memcg = mem_cgroup_from_task(current);
3061 objcg = __get_obj_cgroup_from_memcg(memcg);
3062 rcu_read_unlock();
3063 return objcg;
3064 }
3065
get_obj_cgroup_from_folio(struct folio *folio)3066 struct obj_cgroup *get_obj_cgroup_from_folio(struct folio *folio)
3067 {
3068 struct obj_cgroup *objcg;
3069
3070 if (!memcg_kmem_online())
3071 return NULL;
3072
3073 if (folio_memcg_kmem(folio)) {
3074 objcg = __folio_objcg(folio);
3075 obj_cgroup_get(objcg);
3076 } else {
3077 struct mem_cgroup *memcg;
3078
3079 rcu_read_lock();
3080 memcg = __folio_memcg(folio);
3081 if (memcg)
3082 objcg = __get_obj_cgroup_from_memcg(memcg);
3083 else
3084 objcg = NULL;
3085 rcu_read_unlock();
3086 }
3087 return objcg;
3088 }
3089
memcg_account_kmem(struct mem_cgroup *memcg, int nr_pages)3090 static void memcg_account_kmem(struct mem_cgroup *memcg, int nr_pages)
3091 {
3092 mod_memcg_state(memcg, MEMCG_KMEM, nr_pages);
3093 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
3094 if (nr_pages > 0)
3095 page_counter_charge(&memcg->kmem, nr_pages);
3096 else
3097 page_counter_uncharge(&memcg->kmem, -nr_pages);
3098 }
3099 }
3100
3101
3102 /*
3103 * obj_cgroup_uncharge_pages: uncharge a number of kernel pages from a objcg
3104 * @objcg: object cgroup to uncharge
3105 * @nr_pages: number of pages to uncharge
3106 */
obj_cgroup_uncharge_pages(struct obj_cgroup *objcg, unsigned int nr_pages)3107 static void obj_cgroup_uncharge_pages(struct obj_cgroup *objcg,
3108 unsigned int nr_pages)
3109 {
3110 struct mem_cgroup *memcg;
3111
3112 memcg = get_mem_cgroup_from_objcg(objcg);
3113
3114 memcg_account_kmem(memcg, -nr_pages);
3115 refill_stock(memcg, nr_pages);
3116
3117 css_put(&memcg->css);
3118 }
3119
3120 /*
3121 * obj_cgroup_charge_pages: charge a number of kernel pages to a objcg
3122 * @objcg: object cgroup to charge
3123 * @gfp: reclaim mode
3124 * @nr_pages: number of pages to charge
3125 *
3126 * Returns 0 on success, an error code on failure.
3127 */
obj_cgroup_charge_pages(struct obj_cgroup *objcg, gfp_t gfp, unsigned int nr_pages)3128 static int obj_cgroup_charge_pages(struct obj_cgroup *objcg, gfp_t gfp,
3129 unsigned int nr_pages)
3130 {
3131 struct mem_cgroup *memcg;
3132 int ret;
3133
3134 memcg = get_mem_cgroup_from_objcg(objcg);
3135
3136 ret = try_charge_memcg(memcg, gfp, nr_pages);
3137 if (ret)
3138 goto out;
3139
3140 memcg_account_kmem(memcg, nr_pages);
3141 out:
3142 css_put(&memcg->css);
3143
3144 return ret;
3145 }
3146
3147 /**
3148 * __memcg_kmem_charge_page: charge a kmem page to the current memory cgroup
3149 * @page: page to charge
3150 * @gfp: reclaim mode
3151 * @order: allocation order
3152 *
3153 * Returns 0 on success, an error code on failure.
3154 */
__memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order)3155 int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order)
3156 {
3157 struct obj_cgroup *objcg;
3158 int ret = 0;
3159
3160 objcg = get_obj_cgroup_from_current();
3161 if (objcg) {
3162 ret = obj_cgroup_charge_pages(objcg, gfp, 1 << order);
3163 if (!ret) {
3164 page->memcg_data = (unsigned long)objcg |
3165 MEMCG_DATA_KMEM;
3166 return 0;
3167 }
3168 obj_cgroup_put(objcg);
3169 }
3170 return ret;
3171 }
3172
3173 /**
3174 * __memcg_kmem_uncharge_page: uncharge a kmem page
3175 * @page: page to uncharge
3176 * @order: allocation order
3177 */
__memcg_kmem_uncharge_page(struct page *page, int order)3178 void __memcg_kmem_uncharge_page(struct page *page, int order)
3179 {
3180 struct folio *folio = page_folio(page);
3181 struct obj_cgroup *objcg;
3182 unsigned int nr_pages = 1 << order;
3183
3184 if (!folio_memcg_kmem(folio))
3185 return;
3186
3187 objcg = __folio_objcg(folio);
3188 obj_cgroup_uncharge_pages(objcg, nr_pages);
3189 folio->memcg_data = 0;
3190 obj_cgroup_put(objcg);
3191 }
3192
mod_objcg_state(struct obj_cgroup *objcg, struct pglist_data *pgdat, enum node_stat_item idx, int nr)3193 void mod_objcg_state(struct obj_cgroup *objcg, struct pglist_data *pgdat,
3194 enum node_stat_item idx, int nr)
3195 {
3196 struct memcg_stock_pcp *stock;
3197 struct obj_cgroup *old = NULL;
3198 unsigned long flags;
3199 int *bytes;
3200
3201 local_lock_irqsave(&memcg_stock.stock_lock, flags);
3202 stock = this_cpu_ptr(&memcg_stock);
3203
3204 /*
3205 * Save vmstat data in stock and skip vmstat array update unless
3206 * accumulating over a page of vmstat data or when pgdat or idx
3207 * changes.
3208 */
3209 if (READ_ONCE(stock->cached_objcg) != objcg) {
3210 old = drain_obj_stock(stock);
3211 obj_cgroup_get(objcg);
3212 stock->nr_bytes = atomic_read(&objcg->nr_charged_bytes)
3213 ? atomic_xchg(&objcg->nr_charged_bytes, 0) : 0;
3214 WRITE_ONCE(stock->cached_objcg, objcg);
3215 stock->cached_pgdat = pgdat;
3216 } else if (stock->cached_pgdat != pgdat) {
3217 /* Flush the existing cached vmstat data */
3218 struct pglist_data *oldpg = stock->cached_pgdat;
3219
3220 if (stock->nr_slab_reclaimable_b) {
3221 mod_objcg_mlstate(objcg, oldpg, NR_SLAB_RECLAIMABLE_B,
3222 stock->nr_slab_reclaimable_b);
3223 stock->nr_slab_reclaimable_b = 0;
3224 }
3225 if (stock->nr_slab_unreclaimable_b) {
3226 mod_objcg_mlstate(objcg, oldpg, NR_SLAB_UNRECLAIMABLE_B,
3227 stock->nr_slab_unreclaimable_b);
3228 stock->nr_slab_unreclaimable_b = 0;
3229 }
3230 stock->cached_pgdat = pgdat;
3231 }
3232
3233 bytes = (idx == NR_SLAB_RECLAIMABLE_B) ? &stock->nr_slab_reclaimable_b
3234 : &stock->nr_slab_unreclaimable_b;
3235 /*
3236 * Even for large object >= PAGE_SIZE, the vmstat data will still be
3237 * cached locally at least once before pushing it out.
3238 */
3239 if (!*bytes) {
3240 *bytes = nr;
3241 nr = 0;
3242 } else {
3243 *bytes += nr;
3244 if (abs(*bytes) > PAGE_SIZE) {
3245 nr = *bytes;
3246 *bytes = 0;
3247 } else {
3248 nr = 0;
3249 }
3250 }
3251 if (nr)
3252 mod_objcg_mlstate(objcg, pgdat, idx, nr);
3253
3254 local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
3255 if (old)
3256 obj_cgroup_put(old);
3257 }
3258
consume_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes)3259 static bool consume_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes)
3260 {
3261 struct memcg_stock_pcp *stock;
3262 unsigned long flags;
3263 bool ret = false;
3264
3265 local_lock_irqsave(&memcg_stock.stock_lock, flags);
3266
3267 stock = this_cpu_ptr(&memcg_stock);
3268 if (objcg == READ_ONCE(stock->cached_objcg) && stock->nr_bytes >= nr_bytes) {
3269 stock->nr_bytes -= nr_bytes;
3270 ret = true;
3271 }
3272
3273 local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
3274
3275 return ret;
3276 }
3277
drain_obj_stock(struct memcg_stock_pcp *stock)3278 static struct obj_cgroup *drain_obj_stock(struct memcg_stock_pcp *stock)
3279 {
3280 struct obj_cgroup *old = READ_ONCE(stock->cached_objcg);
3281
3282 if (!old)
3283 return NULL;
3284
3285 if (stock->nr_bytes) {
3286 unsigned int nr_pages = stock->nr_bytes >> PAGE_SHIFT;
3287 unsigned int nr_bytes = stock->nr_bytes & (PAGE_SIZE - 1);
3288
3289 if (nr_pages) {
3290 struct mem_cgroup *memcg;
3291
3292 memcg = get_mem_cgroup_from_objcg(old);
3293
3294 memcg_account_kmem(memcg, -nr_pages);
3295 __refill_stock(memcg, nr_pages);
3296
3297 css_put(&memcg->css);
3298 }
3299
3300 /*
3301 * The leftover is flushed to the centralized per-memcg value.
3302 * On the next attempt to refill obj stock it will be moved
3303 * to a per-cpu stock (probably, on an other CPU), see
3304 * refill_obj_stock().
3305 *
3306 * How often it's flushed is a trade-off between the memory
3307 * limit enforcement accuracy and potential CPU contention,
3308 * so it might be changed in the future.
3309 */
3310 atomic_add(nr_bytes, &old->nr_charged_bytes);
3311 stock->nr_bytes = 0;
3312 }
3313
3314 /*
3315 * Flush the vmstat data in current stock
3316 */
3317 if (stock->nr_slab_reclaimable_b || stock->nr_slab_unreclaimable_b) {
3318 if (stock->nr_slab_reclaimable_b) {
3319 mod_objcg_mlstate(old, stock->cached_pgdat,
3320 NR_SLAB_RECLAIMABLE_B,
3321 stock->nr_slab_reclaimable_b);
3322 stock->nr_slab_reclaimable_b = 0;
3323 }
3324 if (stock->nr_slab_unreclaimable_b) {
3325 mod_objcg_mlstate(old, stock->cached_pgdat,
3326 NR_SLAB_UNRECLAIMABLE_B,
3327 stock->nr_slab_unreclaimable_b);
3328 stock->nr_slab_unreclaimable_b = 0;
3329 }
3330 stock->cached_pgdat = NULL;
3331 }
3332
3333 WRITE_ONCE(stock->cached_objcg, NULL);
3334 /*
3335 * The `old' objects needs to be released by the caller via
3336 * obj_cgroup_put() outside of memcg_stock_pcp::stock_lock.
3337 */
3338 return old;
3339 }
3340
obj_stock_flush_required(struct memcg_stock_pcp *stock, struct mem_cgroup *root_memcg)3341 static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
3342 struct mem_cgroup *root_memcg)
3343 {
3344 struct obj_cgroup *objcg = READ_ONCE(stock->cached_objcg);
3345 struct mem_cgroup *memcg;
3346
3347 if (objcg) {
3348 memcg = obj_cgroup_memcg(objcg);
3349 if (memcg && mem_cgroup_is_descendant(memcg, root_memcg))
3350 return true;
3351 }
3352
3353 return false;
3354 }
3355
refill_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes, bool allow_uncharge)3356 static void refill_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes,
3357 bool allow_uncharge)
3358 {
3359 struct memcg_stock_pcp *stock;
3360 struct obj_cgroup *old = NULL;
3361 unsigned long flags;
3362 unsigned int nr_pages = 0;
3363
3364 local_lock_irqsave(&memcg_stock.stock_lock, flags);
3365
3366 stock = this_cpu_ptr(&memcg_stock);
3367 if (READ_ONCE(stock->cached_objcg) != objcg) { /* reset if necessary */
3368 old = drain_obj_stock(stock);
3369 obj_cgroup_get(objcg);
3370 WRITE_ONCE(stock->cached_objcg, objcg);
3371 stock->nr_bytes = atomic_read(&objcg->nr_charged_bytes)
3372 ? atomic_xchg(&objcg->nr_charged_bytes, 0) : 0;
3373 allow_uncharge = true; /* Allow uncharge when objcg changes */
3374 }
3375 stock->nr_bytes += nr_bytes;
3376
3377 if (allow_uncharge && (stock->nr_bytes > PAGE_SIZE)) {
3378 nr_pages = stock->nr_bytes >> PAGE_SHIFT;
3379 stock->nr_bytes &= (PAGE_SIZE - 1);
3380 }
3381
3382 local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
3383 if (old)
3384 obj_cgroup_put(old);
3385
3386 if (nr_pages)
3387 obj_cgroup_uncharge_pages(objcg, nr_pages);
3388 }
3389
obj_cgroup_charge(struct obj_cgroup *objcg, gfp_t gfp, size_t size)3390 int obj_cgroup_charge(struct obj_cgroup *objcg, gfp_t gfp, size_t size)
3391 {
3392 unsigned int nr_pages, nr_bytes;
3393 int ret;
3394
3395 if (consume_obj_stock(objcg, size))
3396 return 0;
3397
3398 /*
3399 * In theory, objcg->nr_charged_bytes can have enough
3400 * pre-charged bytes to satisfy the allocation. However,
3401 * flushing objcg->nr_charged_bytes requires two atomic
3402 * operations, and objcg->nr_charged_bytes can't be big.
3403 * The shared objcg->nr_charged_bytes can also become a
3404 * performance bottleneck if all tasks of the same memcg are
3405 * trying to update it. So it's better to ignore it and try
3406 * grab some new pages. The stock's nr_bytes will be flushed to
3407 * objcg->nr_charged_bytes later on when objcg changes.
3408 *
3409 * The stock's nr_bytes may contain enough pre-charged bytes
3410 * to allow one less page from being charged, but we can't rely
3411 * on the pre-charged bytes not being changed outside of
3412 * consume_obj_stock() or refill_obj_stock(). So ignore those
3413 * pre-charged bytes as well when charging pages. To avoid a
3414 * page uncharge right after a page charge, we set the
3415 * allow_uncharge flag to false when calling refill_obj_stock()
3416 * to temporarily allow the pre-charged bytes to exceed the page
3417 * size limit. The maximum reachable value of the pre-charged
3418 * bytes is (sizeof(object) + PAGE_SIZE - 2) if there is no data
3419 * race.
3420 */
3421 nr_pages = size >> PAGE_SHIFT;
3422 nr_bytes = size & (PAGE_SIZE - 1);
3423
3424 if (nr_bytes)
3425 nr_pages += 1;
3426
3427 ret = obj_cgroup_charge_pages(objcg, gfp, nr_pages);
3428 if (!ret && nr_bytes)
3429 refill_obj_stock(objcg, PAGE_SIZE - nr_bytes, false);
3430
3431 return ret;
3432 }
3433
obj_cgroup_uncharge(struct obj_cgroup *objcg, size_t size)3434 void obj_cgroup_uncharge(struct obj_cgroup *objcg, size_t size)
3435 {
3436 refill_obj_stock(objcg, size, true);
3437 }
3438
3439 #endif /* CONFIG_MEMCG_KMEM */
3440
3441 /*
3442 * Because page_memcg(head) is not set on tails, set it now.
3443 */
split_page_memcg(struct page *head, unsigned int nr)3444 void split_page_memcg(struct page *head, unsigned int nr)
3445 {
3446 struct folio *folio = page_folio(head);
3447 struct mem_cgroup *memcg = folio_memcg(folio);
3448 int i;
3449
3450 if (mem_cgroup_disabled() || !memcg)
3451 return;
3452
3453 for (i = 1; i < nr; i++)
3454 folio_page(folio, i)->memcg_data = folio->memcg_data;
3455
3456 if (folio_memcg_kmem(folio))
3457 obj_cgroup_get_many(__folio_objcg(folio), nr - 1);
3458 else
3459 css_get_many(&memcg->css, nr - 1);
3460 }
3461
3462 #ifdef CONFIG_SWAP
3463 /**
3464 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
3465 * @entry: swap entry to be moved
3466 * @from: mem_cgroup which the entry is moved from
3467 * @to: mem_cgroup which the entry is moved to
3468 *
3469 * It succeeds only when the swap_cgroup's record for this entry is the same
3470 * as the mem_cgroup's id of @from.
3471 *
3472 * Returns 0 on success, -EINVAL on failure.
3473 *
3474 * The caller must have charged to @to, IOW, called page_counter_charge() about
3475 * both res and memsw, and called css_get().
3476 */
mem_cgroup_move_swap_account(swp_entry_t entry, struct mem_cgroup *from, struct mem_cgroup *to)3477 static int mem_cgroup_move_swap_account(swp_entry_t entry,
3478 struct mem_cgroup *from, struct mem_cgroup *to)
3479 {
3480 unsigned short old_id, new_id;
3481
3482 old_id = mem_cgroup_id(from);
3483 new_id = mem_cgroup_id(to);
3484
3485 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
3486 mod_memcg_state(from, MEMCG_SWAP, -1);
3487 mod_memcg_state(to, MEMCG_SWAP, 1);
3488 return 0;
3489 }
3490 return -EINVAL;
3491 }
3492 #else
mem_cgroup_move_swap_account(swp_entry_t entry, struct mem_cgroup *from, struct mem_cgroup *to)3493 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
3494 struct mem_cgroup *from, struct mem_cgroup *to)
3495 {
3496 return -EINVAL;
3497 }
3498 #endif
3499
3500 static DEFINE_MUTEX(memcg_max_mutex);
3501
mem_cgroup_resize_max(struct mem_cgroup *memcg, unsigned long max, bool memsw)3502 static int mem_cgroup_resize_max(struct mem_cgroup *memcg,
3503 unsigned long max, bool memsw)
3504 {
3505 bool enlarge = false;
3506 bool drained = false;
3507 int ret;
3508 bool limits_invariant;
3509 struct page_counter *counter = memsw ? &memcg->memsw : &memcg->memory;
3510
3511 do {
3512 if (signal_pending(current)) {
3513 ret = -EINTR;
3514 break;
3515 }
3516
3517 mutex_lock(&memcg_max_mutex);
3518 /*
3519 * Make sure that the new limit (memsw or memory limit) doesn't
3520 * break our basic invariant rule memory.max <= memsw.max.
3521 */
3522 limits_invariant = memsw ? max >= READ_ONCE(memcg->memory.max) :
3523 max <= memcg->memsw.max;
3524 if (!limits_invariant) {
3525 mutex_unlock(&memcg_max_mutex);
3526 ret = -EINVAL;
3527 break;
3528 }
3529 if (max > counter->max)
3530 enlarge = true;
3531 ret = page_counter_set_max(counter, max);
3532 mutex_unlock(&memcg_max_mutex);
3533
3534 if (!ret)
3535 break;
3536
3537 if (!drained) {
3538 drain_all_stock(memcg);
3539 drained = true;
3540 continue;
3541 }
3542
3543 if (!try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL,
3544 memsw ? 0 : MEMCG_RECLAIM_MAY_SWAP)) {
3545 ret = -EBUSY;
3546 break;
3547 }
3548 } while (true);
3549
3550 if (!ret && enlarge)
3551 memcg_oom_recover(memcg);
3552
3553 return ret;
3554 }
3555
mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order, gfp_t gfp_mask, unsigned long *total_scanned)3556 unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
3557 gfp_t gfp_mask,
3558 unsigned long *total_scanned)
3559 {
3560 unsigned long nr_reclaimed = 0;
3561 struct mem_cgroup_per_node *mz, *next_mz = NULL;
3562 unsigned long reclaimed;
3563 int loop = 0;
3564 struct mem_cgroup_tree_per_node *mctz;
3565 unsigned long excess;
3566
3567 if (lru_gen_enabled())
3568 return 0;
3569
3570 if (order > 0)
3571 return 0;
3572
3573 mctz = soft_limit_tree.rb_tree_per_node[pgdat->node_id];
3574
3575 /*
3576 * Do not even bother to check the largest node if the root
3577 * is empty. Do it lockless to prevent lock bouncing. Races
3578 * are acceptable as soft limit is best effort anyway.
3579 */
3580 if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root))
3581 return 0;
3582
3583 /*
3584 * This loop can run a while, specially if mem_cgroup's continuously
3585 * keep exceeding their soft limit and putting the system under
3586 * pressure
3587 */
3588 do {
3589 if (next_mz)
3590 mz = next_mz;
3591 else
3592 mz = mem_cgroup_largest_soft_limit_node(mctz);
3593 if (!mz)
3594 break;
3595
3596 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat,
3597 gfp_mask, total_scanned);
3598 nr_reclaimed += reclaimed;
3599 spin_lock_irq(&mctz->lock);
3600
3601 /*
3602 * If we failed to reclaim anything from this memory cgroup
3603 * it is time to move on to the next cgroup
3604 */
3605 next_mz = NULL;
3606 if (!reclaimed)
3607 next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
3608
3609 excess = soft_limit_excess(mz->memcg);
3610 /*
3611 * One school of thought says that we should not add
3612 * back the node to the tree if reclaim returns 0.
3613 * But our reclaim could return 0, simply because due
3614 * to priority we are exposing a smaller subset of
3615 * memory to reclaim from. Consider this as a longer
3616 * term TODO.
3617 */
3618 /* If excess == 0, no tree ops */
3619 __mem_cgroup_insert_exceeded(mz, mctz, excess);
3620 spin_unlock_irq(&mctz->lock);
3621 css_put(&mz->memcg->css);
3622 loop++;
3623 /*
3624 * Could not reclaim anything and there are no more
3625 * mem cgroups to try or we seem to be looping without
3626 * reclaiming anything.
3627 */
3628 if (!nr_reclaimed &&
3629 (next_mz == NULL ||
3630 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3631 break;
3632 } while (!nr_reclaimed);
3633 if (next_mz)
3634 css_put(&next_mz->memcg->css);
3635 return nr_reclaimed;
3636 }
3637
3638 /*
3639 * Reclaims as many pages from the given memcg as possible.
3640 *
3641 * Caller is responsible for holding css reference for memcg.
3642 */
mem_cgroup_force_empty(struct mem_cgroup *memcg)3643 static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
3644 {
3645 int nr_retries = MAX_RECLAIM_RETRIES;
3646
3647 /* we call try-to-free pages for make this cgroup empty */
3648 lru_add_drain_all();
3649
3650 drain_all_stock(memcg);
3651
3652 /* try to free all pages in this cgroup */
3653 while (nr_retries && page_counter_read(&memcg->memory)) {
3654 if (signal_pending(current))
3655 return -EINTR;
3656
3657 if (!try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL,
3658 MEMCG_RECLAIM_MAY_SWAP))
3659 nr_retries--;
3660 }
3661
3662 return 0;
3663 }
3664
mem_cgroup_force_empty_write(struct kernfs_open_file *of, char *buf, size_t nbytes, loff_t off)3665 static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
3666 char *buf, size_t nbytes,
3667 loff_t off)
3668 {
3669 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3670
3671 if (mem_cgroup_is_root(memcg))
3672 return -EINVAL;
3673 return mem_cgroup_force_empty(memcg) ?: nbytes;
3674 }
3675
mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css, struct cftype *cft)3676 static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
3677 struct cftype *cft)
3678 {
3679 return 1;
3680 }
3681
mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css, struct cftype *cft, u64 val)3682 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
3683 struct cftype *cft, u64 val)
3684 {
3685 if (val == 1)
3686 return 0;
3687
3688 pr_warn_once("Non-hierarchical mode is deprecated. "
3689 "Please report your usecase to linux-mm@kvack.org if you "
3690 "depend on this functionality.\n");
3691
3692 return -EINVAL;
3693 }
3694
mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)3695 static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
3696 {
3697 unsigned long val;
3698
3699 if (mem_cgroup_is_root(memcg)) {
3700 /*
3701 * Approximate root's usage from global state. This isn't
3702 * perfect, but the root usage was always an approximation.
3703 */
3704 val = global_node_page_state(NR_FILE_PAGES) +
3705 global_node_page_state(NR_ANON_MAPPED);
3706 if (swap)
3707 val += total_swap_pages - get_nr_swap_pages();
3708 } else {
3709 if (!swap)
3710 val = page_counter_read(&memcg->memory);
3711 else
3712 val = page_counter_read(&memcg->memsw);
3713 }
3714 return val;
3715 }
3716
3717 enum {
3718 RES_USAGE,
3719 RES_LIMIT,
3720 RES_MAX_USAGE,
3721 RES_FAILCNT,
3722 RES_SOFT_LIMIT,
3723 };
3724
mem_cgroup_read_u64(struct cgroup_subsys_state *css, struct cftype *cft)3725 static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
3726 struct cftype *cft)
3727 {
3728 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3729 struct page_counter *counter;
3730
3731 switch (MEMFILE_TYPE(cft->private)) {
3732 case _MEM:
3733 counter = &memcg->memory;
3734 break;
3735 case _MEMSWAP:
3736 counter = &memcg->memsw;
3737 break;
3738 case _KMEM:
3739 counter = &memcg->kmem;
3740 break;
3741 case _TCP:
3742 counter = &memcg->tcpmem;
3743 break;
3744 default:
3745 BUG();
3746 }
3747
3748 switch (MEMFILE_ATTR(cft->private)) {
3749 case RES_USAGE:
3750 if (counter == &memcg->memory)
3751 return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
3752 if (counter == &memcg->memsw)
3753 return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
3754 return (u64)page_counter_read(counter) * PAGE_SIZE;
3755 case RES_LIMIT:
3756 return (u64)counter->max * PAGE_SIZE;
3757 case RES_MAX_USAGE:
3758 return (u64)counter->watermark * PAGE_SIZE;
3759 case RES_FAILCNT:
3760 return counter->failcnt;
3761 case RES_SOFT_LIMIT:
3762 return (u64)READ_ONCE(memcg->soft_limit) * PAGE_SIZE;
3763 default:
3764 BUG();
3765 }
3766 }
3767
3768 /*
3769 * This function doesn't do anything useful. Its only job is to provide a read
3770 * handler for a file so that cgroup_file_mode() will add read permissions.
3771 */
mem_cgroup_dummy_seq_show(__always_unused struct seq_file *m, __always_unused void *v)3772 static int mem_cgroup_dummy_seq_show(__always_unused struct seq_file *m,
3773 __always_unused void *v)
3774 {
3775 return -EINVAL;
3776 }
3777
3778 #ifdef CONFIG_MEMCG_KMEM
memcg_online_kmem(struct mem_cgroup *memcg)3779 static int memcg_online_kmem(struct mem_cgroup *memcg)
3780 {
3781 struct obj_cgroup *objcg;
3782
3783 if (mem_cgroup_kmem_disabled())
3784 return 0;
3785
3786 if (unlikely(mem_cgroup_is_root(memcg)))
3787 return 0;
3788
3789 objcg = obj_cgroup_alloc();
3790 if (!objcg)
3791 return -ENOMEM;
3792
3793 objcg->memcg = memcg;
3794 rcu_assign_pointer(memcg->objcg, objcg);
3795
3796 static_branch_enable(&memcg_kmem_online_key);
3797
3798 memcg->kmemcg_id = memcg->id.id;
3799
3800 return 0;
3801 }
3802
memcg_offline_kmem(struct mem_cgroup *memcg)3803 static void memcg_offline_kmem(struct mem_cgroup *memcg)
3804 {
3805 struct mem_cgroup *parent;
3806
3807 if (mem_cgroup_kmem_disabled())
3808 return;
3809
3810 if (unlikely(mem_cgroup_is_root(memcg)))
3811 return;
3812
3813 parent = parent_mem_cgroup(memcg);
3814 if (!parent)
3815 parent = root_mem_cgroup;
3816
3817 memcg_reparent_objcgs(memcg, parent);
3818
3819 /*
3820 * After we have finished memcg_reparent_objcgs(), all list_lrus
3821 * corresponding to this cgroup are guaranteed to remain empty.
3822 * The ordering is imposed by list_lru_node->lock taken by
3823 * memcg_reparent_list_lrus().
3824 */
3825 memcg_reparent_list_lrus(memcg, parent);
3826 }
3827 #else
memcg_online_kmem(struct mem_cgroup *memcg)3828 static int memcg_online_kmem(struct mem_cgroup *memcg)
3829 {
3830 return 0;
3831 }
memcg_offline_kmem(struct mem_cgroup *memcg)3832 static void memcg_offline_kmem(struct mem_cgroup *memcg)
3833 {
3834 }
3835 #endif /* CONFIG_MEMCG_KMEM */
3836
memcg_update_tcp_max(struct mem_cgroup *memcg, unsigned long max)3837 static int memcg_update_tcp_max(struct mem_cgroup *memcg, unsigned long max)
3838 {
3839 int ret;
3840
3841 mutex_lock(&memcg_max_mutex);
3842
3843 ret = page_counter_set_max(&memcg->tcpmem, max);
3844 if (ret)
3845 goto out;
3846
3847 if (!memcg->tcpmem_active) {
3848 /*
3849 * The active flag needs to be written after the static_key
3850 * update. This is what guarantees that the socket activation
3851 * function is the last one to run. See mem_cgroup_sk_alloc()
3852 * for details, and note that we don't mark any socket as
3853 * belonging to this memcg until that flag is up.
3854 *
3855 * We need to do this, because static_keys will span multiple
3856 * sites, but we can't control their order. If we mark a socket
3857 * as accounted, but the accounting functions are not patched in
3858 * yet, we'll lose accounting.
3859 *
3860 * We never race with the readers in mem_cgroup_sk_alloc(),
3861 * because when this value change, the code to process it is not
3862 * patched in yet.
3863 */
3864 static_branch_inc(&memcg_sockets_enabled_key);
3865 memcg->tcpmem_active = true;
3866 }
3867 out:
3868 mutex_unlock(&memcg_max_mutex);
3869 return ret;
3870 }
3871
3872 /*
3873 * The user of this function is...
3874 * RES_LIMIT.
3875 */
mem_cgroup_write(struct kernfs_open_file *of, char *buf, size_t nbytes, loff_t off)3876 static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
3877 char *buf, size_t nbytes, loff_t off)
3878 {
3879 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3880 unsigned long nr_pages;
3881 int ret;
3882
3883 buf = strstrip(buf);
3884 ret = page_counter_memparse(buf, "-1", &nr_pages);
3885 if (ret)
3886 return ret;
3887
3888 switch (MEMFILE_ATTR(of_cft(of)->private)) {
3889 case RES_LIMIT:
3890 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3891 ret = -EINVAL;
3892 break;
3893 }
3894 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3895 case _MEM:
3896 ret = mem_cgroup_resize_max(memcg, nr_pages, false);
3897 break;
3898 case _MEMSWAP:
3899 ret = mem_cgroup_resize_max(memcg, nr_pages, true);
3900 break;
3901 case _KMEM:
3902 pr_warn_once("kmem.limit_in_bytes is deprecated and will be removed. "
3903 "Writing any value to this file has no effect. "
3904 "Please report your usecase to linux-mm@kvack.org if you "
3905 "depend on this functionality.\n");
3906 ret = 0;
3907 break;
3908 case _TCP:
3909 ret = memcg_update_tcp_max(memcg, nr_pages);
3910 break;
3911 }
3912 break;
3913 case RES_SOFT_LIMIT:
3914 if (IS_ENABLED(CONFIG_PREEMPT_RT)) {
3915 ret = -EOPNOTSUPP;
3916 } else {
3917 WRITE_ONCE(memcg->soft_limit, nr_pages);
3918 ret = 0;
3919 }
3920 break;
3921 }
3922 return ret ?: nbytes;
3923 }
3924
mem_cgroup_reset(struct kernfs_open_file *of, char *buf, size_t nbytes, loff_t off)3925 static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3926 size_t nbytes, loff_t off)
3927 {
3928 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3929 struct page_counter *counter;
3930
3931 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3932 case _MEM:
3933 counter = &memcg->memory;
3934 break;
3935 case _MEMSWAP:
3936 counter = &memcg->memsw;
3937 break;
3938 case _KMEM:
3939 counter = &memcg->kmem;
3940 break;
3941 case _TCP:
3942 counter = &memcg->tcpmem;
3943 break;
3944 default:
3945 BUG();
3946 }
3947
3948 switch (MEMFILE_ATTR(of_cft(of)->private)) {
3949 case RES_MAX_USAGE:
3950 page_counter_reset_watermark(counter);
3951 break;
3952 case RES_FAILCNT:
3953 counter->failcnt = 0;
3954 break;
3955 default:
3956 BUG();
3957 }
3958
3959 return nbytes;
3960 }
3961
mem_cgroup_move_charge_read(struct cgroup_subsys_state *css, struct cftype *cft)3962 static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3963 struct cftype *cft)
3964 {
3965 return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3966 }
3967
3968 #ifdef CONFIG_MMU
mem_cgroup_move_charge_write(struct cgroup_subsys_state *css, struct cftype *cft, u64 val)3969 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3970 struct cftype *cft, u64 val)
3971 {
3972 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3973
3974 pr_warn_once("Cgroup memory moving (move_charge_at_immigrate) is deprecated. "
3975 "Please report your usecase to linux-mm@kvack.org if you "
3976 "depend on this functionality.\n");
3977
3978 if (val & ~MOVE_MASK)
3979 return -EINVAL;
3980
3981 /*
3982 * No kind of locking is needed in here, because ->can_attach() will
3983 * check this value once in the beginning of the process, and then carry
3984 * on with stale data. This means that changes to this value will only
3985 * affect task migrations starting after the change.
3986 */
3987 memcg->move_charge_at_immigrate = val;
3988 return 0;
3989 }
3990 #else
mem_cgroup_move_charge_write(struct cgroup_subsys_state *css, struct cftype *cft, u64 val)3991 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3992 struct cftype *cft, u64 val)
3993 {
3994 return -ENOSYS;
3995 }
3996 #endif
3997
3998 #ifdef CONFIG_NUMA
3999
4000 #define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE))
4001 #define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON))
4002 #define LRU_ALL ((1 << NR_LRU_LISTS) - 1)
4003
mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg, int nid, unsigned int lru_mask, bool tree)4004 static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
4005 int nid, unsigned int lru_mask, bool tree)
4006 {
4007 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
4008 unsigned long nr = 0;
4009 enum lru_list lru;
4010
4011 VM_BUG_ON((unsigned)nid >= nr_node_ids);
4012
4013 for_each_lru(lru) {
4014 if (!(BIT(lru) & lru_mask))
4015 continue;
4016 if (tree)
4017 nr += lruvec_page_state(lruvec, NR_LRU_BASE + lru);
4018 else
4019 nr += lruvec_page_state_local(lruvec, NR_LRU_BASE + lru);
4020 }
4021 return nr;
4022 }
4023
mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg, unsigned int lru_mask, bool tree)4024 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
4025 unsigned int lru_mask,
4026 bool tree)
4027 {
4028 unsigned long nr = 0;
4029 enum lru_list lru;
4030
4031 for_each_lru(lru) {
4032 if (!(BIT(lru) & lru_mask))
4033 continue;
4034 if (tree)
4035 nr += memcg_page_state(memcg, NR_LRU_BASE + lru);
4036 else
4037 nr += memcg_page_state_local(memcg, NR_LRU_BASE + lru);
4038 }
4039 return nr;
4040 }
4041
memcg_numa_stat_show(struct seq_file *m, void *v)4042 static int memcg_numa_stat_show(struct seq_file *m, void *v)
4043 {
4044 struct numa_stat {
4045 const char *name;
4046 unsigned int lru_mask;
4047 };
4048
4049 static const struct numa_stat stats[] = {
4050 { "total", LRU_ALL },
4051 { "file", LRU_ALL_FILE },
4052 { "anon", LRU_ALL_ANON },
4053 { "unevictable", BIT(LRU_UNEVICTABLE) },
4054 };
4055 const struct numa_stat *stat;
4056 int nid;
4057 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
4058
4059 mem_cgroup_flush_stats();
4060
4061 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
4062 seq_printf(m, "%s=%lu", stat->name,
4063 mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
4064 false));
4065 for_each_node_state(nid, N_MEMORY)
4066 seq_printf(m, " N%d=%lu", nid,
4067 mem_cgroup_node_nr_lru_pages(memcg, nid,
4068 stat->lru_mask, false));
4069 seq_putc(m, '\n');
4070 }
4071
4072 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
4073
4074 seq_printf(m, "hierarchical_%s=%lu", stat->name,
4075 mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
4076 true));
4077 for_each_node_state(nid, N_MEMORY)
4078 seq_printf(m, " N%d=%lu", nid,
4079 mem_cgroup_node_nr_lru_pages(memcg, nid,
4080 stat->lru_mask, true));
4081 seq_putc(m, '\n');
4082 }
4083
4084 return 0;
4085 }
4086 #endif /* CONFIG_NUMA */
4087
4088 static const unsigned int memcg1_stats[] = {
4089 NR_FILE_PAGES,
4090 NR_ANON_MAPPED,
4091 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4092 NR_ANON_THPS,
4093 #endif
4094 NR_SHMEM,
4095 NR_FILE_MAPPED,
4096 NR_FILE_DIRTY,
4097 NR_WRITEBACK,
4098 WORKINGSET_REFAULT_ANON,
4099 WORKINGSET_REFAULT_FILE,
4100 MEMCG_SWAP,
4101 };
4102
4103 static const char *const memcg1_stat_names[] = {
4104 "cache",
4105 "rss",
4106 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4107 "rss_huge",
4108 #endif
4109 "shmem",
4110 "mapped_file",
4111 "dirty",
4112 "writeback",
4113 "workingset_refault_anon",
4114 "workingset_refault_file",
4115 "swap",
4116 };
4117
4118 /* Universal VM events cgroup1 shows, original sort order */
4119 static const unsigned int memcg1_events[] = {
4120 PGPGIN,
4121 PGPGOUT,
4122 PGFAULT,
4123 PGMAJFAULT,
4124 };
4125
memcg1_stat_format(struct mem_cgroup *memcg, struct seq_buf *s)4126 static void memcg1_stat_format(struct mem_cgroup *memcg, struct seq_buf *s)
4127 {
4128 unsigned long memory, memsw;
4129 struct mem_cgroup *mi;
4130 unsigned int i;
4131
4132 BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats));
4133
4134 mem_cgroup_flush_stats();
4135
4136 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
4137 unsigned long nr;
4138
4139 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
4140 continue;
4141 nr = memcg_page_state_local(memcg, memcg1_stats[i]);
4142 seq_buf_printf(s, "%s %lu\n", memcg1_stat_names[i],
4143 nr * memcg_page_state_unit(memcg1_stats[i]));
4144 }
4145
4146 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
4147 seq_buf_printf(s, "%s %lu\n", vm_event_name(memcg1_events[i]),
4148 memcg_events_local(memcg, memcg1_events[i]));
4149
4150 for (i = 0; i < NR_LRU_LISTS; i++)
4151 seq_buf_printf(s, "%s %lu\n", lru_list_name(i),
4152 memcg_page_state_local(memcg, NR_LRU_BASE + i) *
4153 PAGE_SIZE);
4154
4155 /* Hierarchical information */
4156 memory = memsw = PAGE_COUNTER_MAX;
4157 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
4158 memory = min(memory, READ_ONCE(mi->memory.max));
4159 memsw = min(memsw, READ_ONCE(mi->memsw.max));
4160 }
4161 seq_buf_printf(s, "hierarchical_memory_limit %llu\n",
4162 (u64)memory * PAGE_SIZE);
4163 if (do_memsw_account())
4164 seq_buf_printf(s, "hierarchical_memsw_limit %llu\n",
4165 (u64)memsw * PAGE_SIZE);
4166
4167 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
4168 unsigned long nr;
4169
4170 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
4171 continue;
4172 nr = memcg_page_state(memcg, memcg1_stats[i]);
4173 seq_buf_printf(s, "total_%s %llu\n", memcg1_stat_names[i],
4174 (u64)nr * memcg_page_state_unit(memcg1_stats[i]));
4175 }
4176
4177 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
4178 seq_buf_printf(s, "total_%s %llu\n",
4179 vm_event_name(memcg1_events[i]),
4180 (u64)memcg_events(memcg, memcg1_events[i]));
4181
4182 for (i = 0; i < NR_LRU_LISTS; i++)
4183 seq_buf_printf(s, "total_%s %llu\n", lru_list_name(i),
4184 (u64)memcg_page_state(memcg, NR_LRU_BASE + i) *
4185 PAGE_SIZE);
4186
4187 #ifdef CONFIG_DEBUG_VM
4188 {
4189 pg_data_t *pgdat;
4190 struct mem_cgroup_per_node *mz;
4191 unsigned long anon_cost = 0;
4192 unsigned long file_cost = 0;
4193
4194 for_each_online_pgdat(pgdat) {
4195 mz = memcg->nodeinfo[pgdat->node_id];
4196
4197 anon_cost += mz->lruvec.anon_cost;
4198 file_cost += mz->lruvec.file_cost;
4199 }
4200 seq_buf_printf(s, "anon_cost %lu\n", anon_cost);
4201 seq_buf_printf(s, "file_cost %lu\n", file_cost);
4202 }
4203 #endif
4204 }
4205
mem_cgroup_swappiness_read(struct cgroup_subsys_state *css, struct cftype *cft)4206 static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
4207 struct cftype *cft)
4208 {
4209 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4210
4211 return mem_cgroup_swappiness(memcg);
4212 }
4213
mem_cgroup_swappiness_write(struct cgroup_subsys_state *css, struct cftype *cft, u64 val)4214 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
4215 struct cftype *cft, u64 val)
4216 {
4217 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4218
4219 if (val > 200)
4220 return -EINVAL;
4221
4222 if (!mem_cgroup_is_root(memcg))
4223 WRITE_ONCE(memcg->swappiness, val);
4224 else
4225 WRITE_ONCE(vm_swappiness, val);
4226
4227 return 0;
4228 }
4229
__mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)4230 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
4231 {
4232 struct mem_cgroup_threshold_ary *t;
4233 unsigned long usage;
4234 int i;
4235
4236 rcu_read_lock();
4237 if (!swap)
4238 t = rcu_dereference(memcg->thresholds.primary);
4239 else
4240 t = rcu_dereference(memcg->memsw_thresholds.primary);
4241
4242 if (!t)
4243 goto unlock;
4244
4245 usage = mem_cgroup_usage(memcg, swap);
4246
4247 /*
4248 * current_threshold points to threshold just below or equal to usage.
4249 * If it's not true, a threshold was crossed after last
4250 * call of __mem_cgroup_threshold().
4251 */
4252 i = t->current_threshold;
4253
4254 /*
4255 * Iterate backward over array of thresholds starting from
4256 * current_threshold and check if a threshold is crossed.
4257 * If none of thresholds below usage is crossed, we read
4258 * only one element of the array here.
4259 */
4260 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
4261 eventfd_signal(t->entries[i].eventfd, 1);
4262
4263 /* i = current_threshold + 1 */
4264 i++;
4265
4266 /*
4267 * Iterate forward over array of thresholds starting from
4268 * current_threshold+1 and check if a threshold is crossed.
4269 * If none of thresholds above usage is crossed, we read
4270 * only one element of the array here.
4271 */
4272 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
4273 eventfd_signal(t->entries[i].eventfd, 1);
4274
4275 /* Update current_threshold */
4276 t->current_threshold = i - 1;
4277 unlock:
4278 rcu_read_unlock();
4279 }
4280
mem_cgroup_threshold(struct mem_cgroup *memcg)4281 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
4282 {
4283 while (memcg) {
4284 __mem_cgroup_threshold(memcg, false);
4285 if (do_memsw_account())
4286 __mem_cgroup_threshold(memcg, true);
4287
4288 memcg = parent_mem_cgroup(memcg);
4289 }
4290 }
4291
compare_thresholds(const void *a, const void *b)4292 static int compare_thresholds(const void *a, const void *b)
4293 {
4294 const struct mem_cgroup_threshold *_a = a;
4295 const struct mem_cgroup_threshold *_b = b;
4296
4297 if (_a->threshold > _b->threshold)
4298 return 1;
4299
4300 if (_a->threshold < _b->threshold)
4301 return -1;
4302
4303 return 0;
4304 }
4305
mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)4306 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
4307 {
4308 struct mem_cgroup_eventfd_list *ev;
4309
4310 spin_lock(&memcg_oom_lock);
4311
4312 list_for_each_entry(ev, &memcg->oom_notify, list)
4313 eventfd_signal(ev->eventfd, 1);
4314
4315 spin_unlock(&memcg_oom_lock);
4316 return 0;
4317 }
4318
mem_cgroup_oom_notify(struct mem_cgroup *memcg)4319 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
4320 {
4321 struct mem_cgroup *iter;
4322
4323 for_each_mem_cgroup_tree(iter, memcg)
4324 mem_cgroup_oom_notify_cb(iter);
4325 }
4326
__mem_cgroup_usage_register_event(struct mem_cgroup *memcg, struct eventfd_ctx *eventfd, const char *args, enum res_type type)4327 static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
4328 struct eventfd_ctx *eventfd, const char *args, enum res_type type)
4329 {
4330 struct mem_cgroup_thresholds *thresholds;
4331 struct mem_cgroup_threshold_ary *new;
4332 unsigned long threshold;
4333 unsigned long usage;
4334 int i, size, ret;
4335
4336 ret = page_counter_memparse(args, "-1", &threshold);
4337 if (ret)
4338 return ret;
4339
4340 mutex_lock(&memcg->thresholds_lock);
4341
4342 if (type == _MEM) {
4343 thresholds = &memcg->thresholds;
4344 usage = mem_cgroup_usage(memcg, false);
4345 } else if (type == _MEMSWAP) {
4346 thresholds = &memcg->memsw_thresholds;
4347 usage = mem_cgroup_usage(memcg, true);
4348 } else
4349 BUG();
4350
4351 /* Check if a threshold crossed before adding a new one */
4352 if (thresholds->primary)
4353 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4354
4355 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
4356
4357 /* Allocate memory for new array of thresholds */
4358 new = kmalloc(struct_size(new, entries, size), GFP_KERNEL);
4359 if (!new) {
4360 ret = -ENOMEM;
4361 goto unlock;
4362 }
4363 new->size = size;
4364
4365 /* Copy thresholds (if any) to new array */
4366 if (thresholds->primary)
4367 memcpy(new->entries, thresholds->primary->entries,
4368 flex_array_size(new, entries, size - 1));
4369
4370 /* Add new threshold */
4371 new->entries[size - 1].eventfd = eventfd;
4372 new->entries[size - 1].threshold = threshold;
4373
4374 /* Sort thresholds. Registering of new threshold isn't time-critical */
4375 sort(new->entries, size, sizeof(*new->entries),
4376 compare_thresholds, NULL);
4377
4378 /* Find current threshold */
4379 new->current_threshold = -1;
4380 for (i = 0; i < size; i++) {
4381 if (new->entries[i].threshold <= usage) {
4382 /*
4383 * new->current_threshold will not be used until
4384 * rcu_assign_pointer(), so it's safe to increment
4385 * it here.
4386 */
4387 ++new->current_threshold;
4388 } else
4389 break;
4390 }
4391
4392 /* Free old spare buffer and save old primary buffer as spare */
4393 kfree(thresholds->spare);
4394 thresholds->spare = thresholds->primary;
4395
4396 rcu_assign_pointer(thresholds->primary, new);
4397
4398 /* To be sure that nobody uses thresholds */
4399 synchronize_rcu();
4400
4401 unlock:
4402 mutex_unlock(&memcg->thresholds_lock);
4403
4404 return ret;
4405 }
4406
mem_cgroup_usage_register_event(struct mem_cgroup *memcg, struct eventfd_ctx *eventfd, const char *args)4407 static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
4408 struct eventfd_ctx *eventfd, const char *args)
4409 {
4410 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
4411 }
4412
memsw_cgroup_usage_register_event(struct mem_cgroup *memcg, struct eventfd_ctx *eventfd, const char *args)4413 static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
4414 struct eventfd_ctx *eventfd, const char *args)
4415 {
4416 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
4417 }
4418
__mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg, struct eventfd_ctx *eventfd, enum res_type type)4419 static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4420 struct eventfd_ctx *eventfd, enum res_type type)
4421 {
4422 struct mem_cgroup_thresholds *thresholds;
4423 struct mem_cgroup_threshold_ary *new;
4424 unsigned long usage;
4425 int i, j, size, entries;
4426
4427 mutex_lock(&memcg->thresholds_lock);
4428
4429 if (type == _MEM) {
4430 thresholds = &memcg->thresholds;
4431 usage = mem_cgroup_usage(memcg, false);
4432 } else if (type == _MEMSWAP) {
4433 thresholds = &memcg->memsw_thresholds;
4434 usage = mem_cgroup_usage(memcg, true);
4435 } else
4436 BUG();
4437
4438 if (!thresholds->primary)
4439 goto unlock;
4440
4441 /* Check if a threshold crossed before removing */
4442 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4443
4444 /* Calculate new number of threshold */
4445 size = entries = 0;
4446 for (i = 0; i < thresholds->primary->size; i++) {
4447 if (thresholds->primary->entries[i].eventfd != eventfd)
4448 size++;
4449 else
4450 entries++;
4451 }
4452
4453 new = thresholds->spare;
4454
4455 /* If no items related to eventfd have been cleared, nothing to do */
4456 if (!entries)
4457 goto unlock;
4458
4459 /* Set thresholds array to NULL if we don't have thresholds */
4460 if (!size) {
4461 kfree(new);
4462 new = NULL;
4463 goto swap_buffers;
4464 }
4465
4466 new->size = size;
4467
4468 /* Copy thresholds and find current threshold */
4469 new->current_threshold = -1;
4470 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4471 if (thresholds->primary->entries[i].eventfd == eventfd)
4472 continue;
4473
4474 new->entries[j] = thresholds->primary->entries[i];
4475 if (new->entries[j].threshold <= usage) {
4476 /*
4477 * new->current_threshold will not be used
4478 * until rcu_assign_pointer(), so it's safe to increment
4479 * it here.
4480 */
4481 ++new->current_threshold;
4482 }
4483 j++;
4484 }
4485
4486 swap_buffers:
4487 /* Swap primary and spare array */
4488 thresholds->spare = thresholds->primary;
4489
4490 rcu_assign_pointer(thresholds->primary, new);
4491
4492 /* To be sure that nobody uses thresholds */
4493 synchronize_rcu();
4494
4495 /* If all events are unregistered, free the spare array */
4496 if (!new) {
4497 kfree(thresholds->spare);
4498 thresholds->spare = NULL;
4499 }
4500 unlock:
4501 mutex_unlock(&memcg->thresholds_lock);
4502 }
4503
mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg, struct eventfd_ctx *eventfd)4504 static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4505 struct eventfd_ctx *eventfd)
4506 {
4507 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
4508 }
4509
memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg, struct eventfd_ctx *eventfd)4510 static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4511 struct eventfd_ctx *eventfd)
4512 {
4513 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
4514 }
4515
mem_cgroup_oom_register_event(struct mem_cgroup *memcg, struct eventfd_ctx *eventfd, const char *args)4516 static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
4517 struct eventfd_ctx *eventfd, const char *args)
4518 {
4519 struct mem_cgroup_eventfd_list *event;
4520
4521 event = kmalloc(sizeof(*event), GFP_KERNEL);
4522 if (!event)
4523 return -ENOMEM;
4524
4525 spin_lock(&memcg_oom_lock);
4526
4527 event->eventfd = eventfd;
4528 list_add(&event->list, &memcg->oom_notify);
4529
4530 /* already in OOM ? */
4531 if (memcg->under_oom)
4532 eventfd_signal(eventfd, 1);
4533 spin_unlock(&memcg_oom_lock);
4534
4535 return 0;
4536 }
4537
mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg, struct eventfd_ctx *eventfd)4538 static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
4539 struct eventfd_ctx *eventfd)
4540 {
4541 struct mem_cgroup_eventfd_list *ev, *tmp;
4542
4543 spin_lock(&memcg_oom_lock);
4544
4545 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
4546 if (ev->eventfd == eventfd) {
4547 list_del(&ev->list);
4548 kfree(ev);
4549 }
4550 }
4551
4552 spin_unlock(&memcg_oom_lock);
4553 }
4554
mem_cgroup_oom_control_read(struct seq_file *sf, void *v)4555 static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
4556 {
4557 struct mem_cgroup *memcg = mem_cgroup_from_seq(sf);
4558
4559 seq_printf(sf, "oom_kill_disable %d\n", READ_ONCE(memcg->oom_kill_disable));
4560 seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
4561 seq_printf(sf, "oom_kill %lu\n",
4562 atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL]));
4563 return 0;
4564 }
4565
mem_cgroup_oom_control_write(struct cgroup_subsys_state *css, struct cftype *cft, u64 val)4566 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
4567 struct cftype *cft, u64 val)
4568 {
4569 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4570
4571 /* cannot set to root cgroup and only 0 and 1 are allowed */
4572 if (mem_cgroup_is_root(memcg) || !((val == 0) || (val == 1)))
4573 return -EINVAL;
4574
4575 WRITE_ONCE(memcg->oom_kill_disable, val);
4576 if (!val)
4577 memcg_oom_recover(memcg);
4578
4579 return 0;
4580 }
4581
4582 #ifdef CONFIG_CGROUP_WRITEBACK
4583
4584 #include <trace/events/writeback.h>
4585
memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)4586 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4587 {
4588 return wb_domain_init(&memcg->cgwb_domain, gfp);
4589 }
4590
memcg_wb_domain_exit(struct mem_cgroup *memcg)4591 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4592 {
4593 wb_domain_exit(&memcg->cgwb_domain);
4594 }
4595
memcg_wb_domain_size_changed(struct mem_cgroup *memcg)4596 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4597 {
4598 wb_domain_size_changed(&memcg->cgwb_domain);
4599 }
4600
mem_cgroup_wb_domain(struct bdi_writeback *wb)4601 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
4602 {
4603 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4604
4605 if (!memcg->css.parent)
4606 return NULL;
4607
4608 return &memcg->cgwb_domain;
4609 }
4610
4611 /**
4612 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
4613 * @wb: bdi_writeback in question
4614 * @pfilepages: out parameter for number of file pages
4615 * @pheadroom: out parameter for number of allocatable pages according to memcg
4616 * @pdirty: out parameter for number of dirty pages
4617 * @pwriteback: out parameter for number of pages under writeback
4618 *
4619 * Determine the numbers of file, headroom, dirty, and writeback pages in
4620 * @wb's memcg. File, dirty and writeback are self-explanatory. Headroom
4621 * is a bit more involved.
4622 *
4623 * A memcg's headroom is "min(max, high) - used". In the hierarchy, the
4624 * headroom is calculated as the lowest headroom of itself and the
4625 * ancestors. Note that this doesn't consider the actual amount of
4626 * available memory in the system. The caller should further cap
4627 * *@pheadroom accordingly.
4628 */
mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages, unsigned long *pheadroom, unsigned long *pdirty, unsigned long *pwriteback)4629 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
4630 unsigned long *pheadroom, unsigned long *pdirty,
4631 unsigned long *pwriteback)
4632 {
4633 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4634 struct mem_cgroup *parent;
4635
4636 mem_cgroup_flush_stats();
4637
4638 *pdirty = memcg_page_state(memcg, NR_FILE_DIRTY);
4639 *pwriteback = memcg_page_state(memcg, NR_WRITEBACK);
4640 *pfilepages = memcg_page_state(memcg, NR_INACTIVE_FILE) +
4641 memcg_page_state(memcg, NR_ACTIVE_FILE);
4642
4643 *pheadroom = PAGE_COUNTER_MAX;
4644 while ((parent = parent_mem_cgroup(memcg))) {
4645 unsigned long ceiling = min(READ_ONCE(memcg->memory.max),
4646 READ_ONCE(memcg->memory.high));
4647 unsigned long used = page_counter_read(&memcg->memory);
4648
4649 *pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
4650 memcg = parent;
4651 }
4652 }
4653
4654 /*
4655 * Foreign dirty flushing
4656 *
4657 * There's an inherent mismatch between memcg and writeback. The former
4658 * tracks ownership per-page while the latter per-inode. This was a
4659 * deliberate design decision because honoring per-page ownership in the
4660 * writeback path is complicated, may lead to higher CPU and IO overheads
4661 * and deemed unnecessary given that write-sharing an inode across
4662 * different cgroups isn't a common use-case.
4663 *
4664 * Combined with inode majority-writer ownership switching, this works well
4665 * enough in most cases but there are some pathological cases. For
4666 * example, let's say there are two cgroups A and B which keep writing to
4667 * different but confined parts of the same inode. B owns the inode and
4668 * A's memory is limited far below B's. A's dirty ratio can rise enough to
4669 * trigger balance_dirty_pages() sleeps but B's can be low enough to avoid
4670 * triggering background writeback. A will be slowed down without a way to
4671 * make writeback of the dirty pages happen.
4672 *
4673 * Conditions like the above can lead to a cgroup getting repeatedly and
4674 * severely throttled after making some progress after each
4675 * dirty_expire_interval while the underlying IO device is almost
4676 * completely idle.
4677 *
4678 * Solving this problem completely requires matching the ownership tracking
4679 * granularities between memcg and writeback in either direction. However,
4680 * the more egregious behaviors can be avoided by simply remembering the
4681 * most recent foreign dirtying events and initiating remote flushes on
4682 * them when local writeback isn't enough to keep the memory clean enough.
4683 *
4684 * The following two functions implement such mechanism. When a foreign
4685 * page - a page whose memcg and writeback ownerships don't match - is
4686 * dirtied, mem_cgroup_track_foreign_dirty() records the inode owning
4687 * bdi_writeback on the page owning memcg. When balance_dirty_pages()
4688 * decides that the memcg needs to sleep due to high dirty ratio, it calls
4689 * mem_cgroup_flush_foreign() which queues writeback on the recorded
4690 * foreign bdi_writebacks which haven't expired. Both the numbers of
4691 * recorded bdi_writebacks and concurrent in-flight foreign writebacks are
4692 * limited to MEMCG_CGWB_FRN_CNT.
4693 *
4694 * The mechanism only remembers IDs and doesn't hold any object references.
4695 * As being wrong occasionally doesn't matter, updates and accesses to the
4696 * records are lockless and racy.
4697 */
mem_cgroup_track_foreign_dirty_slowpath(struct folio *folio, struct bdi_writeback *wb)4698 void mem_cgroup_track_foreign_dirty_slowpath(struct folio *folio,
4699 struct bdi_writeback *wb)
4700 {
4701 struct mem_cgroup *memcg = folio_memcg(folio);
4702 struct memcg_cgwb_frn *frn;
4703 u64 now = get_jiffies_64();
4704 u64 oldest_at = now;
4705 int oldest = -1;
4706 int i;
4707
4708 trace_track_foreign_dirty(folio, wb);
4709
4710 /*
4711 * Pick the slot to use. If there is already a slot for @wb, keep
4712 * using it. If not replace the oldest one which isn't being
4713 * written out.
4714 */
4715 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
4716 frn = &memcg->cgwb_frn[i];
4717 if (frn->bdi_id == wb->bdi->id &&
4718 frn->memcg_id == wb->memcg_css->id)
4719 break;
4720 if (time_before64(frn->at, oldest_at) &&
4721 atomic_read(&frn->done.cnt) == 1) {
4722 oldest = i;
4723 oldest_at = frn->at;
4724 }
4725 }
4726
4727 if (i < MEMCG_CGWB_FRN_CNT) {
4728 /*
4729 * Re-using an existing one. Update timestamp lazily to
4730 * avoid making the cacheline hot. We want them to be
4731 * reasonably up-to-date and significantly shorter than
4732 * dirty_expire_interval as that's what expires the record.
4733 * Use the shorter of 1s and dirty_expire_interval / 8.
4734 */
4735 unsigned long update_intv =
4736 min_t(unsigned long, HZ,
4737 msecs_to_jiffies(dirty_expire_interval * 10) / 8);
4738
4739 if (time_before64(frn->at, now - update_intv))
4740 frn->at = now;
4741 } else if (oldest >= 0) {
4742 /* replace the oldest free one */
4743 frn = &memcg->cgwb_frn[oldest];
4744 frn->bdi_id = wb->bdi->id;
4745 frn->memcg_id = wb->memcg_css->id;
4746 frn->at = now;
4747 }
4748 }
4749
4750 /* issue foreign writeback flushes for recorded foreign dirtying events */
mem_cgroup_flush_foreign(struct bdi_writeback *wb)4751 void mem_cgroup_flush_foreign(struct bdi_writeback *wb)
4752 {
4753 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4754 unsigned long intv = msecs_to_jiffies(dirty_expire_interval * 10);
4755 u64 now = jiffies_64;
4756 int i;
4757
4758 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
4759 struct memcg_cgwb_frn *frn = &memcg->cgwb_frn[i];
4760
4761 /*
4762 * If the record is older than dirty_expire_interval,
4763 * writeback on it has already started. No need to kick it
4764 * off again. Also, don't start a new one if there's
4765 * already one in flight.
4766 */
4767 if (time_after64(frn->at, now - intv) &&
4768 atomic_read(&frn->done.cnt) == 1) {
4769 frn->at = 0;
4770 trace_flush_foreign(wb, frn->bdi_id, frn->memcg_id);
4771 cgroup_writeback_by_id(frn->bdi_id, frn->memcg_id,
4772 WB_REASON_FOREIGN_FLUSH,
4773 &frn->done);
4774 }
4775 }
4776 }
4777
4778 #else /* CONFIG_CGROUP_WRITEBACK */
4779
memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)4780 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4781 {
4782 return 0;
4783 }
4784
memcg_wb_domain_exit(struct mem_cgroup *memcg)4785 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4786 {
4787 }
4788
memcg_wb_domain_size_changed(struct mem_cgroup *memcg)4789 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4790 {
4791 }
4792
4793 #endif /* CONFIG_CGROUP_WRITEBACK */
4794
4795 /*
4796 * DO NOT USE IN NEW FILES.
4797 *
4798 * "cgroup.event_control" implementation.
4799 *
4800 * This is way over-engineered. It tries to support fully configurable
4801 * events for each user. Such level of flexibility is completely
4802 * unnecessary especially in the light of the planned unified hierarchy.
4803 *
4804 * Please deprecate this and replace with something simpler if at all
4805 * possible.
4806 */
4807
4808 /*
4809 * Unregister event and free resources.
4810 *
4811 * Gets called from workqueue.
4812 */
memcg_event_remove(struct work_struct *work)4813 static void memcg_event_remove(struct work_struct *work)
4814 {
4815 struct mem_cgroup_event *event =
4816 container_of(work, struct mem_cgroup_event, remove);
4817 struct mem_cgroup *memcg = event->memcg;
4818
4819 remove_wait_queue(event->wqh, &event->wait);
4820
4821 event->unregister_event(memcg, event->eventfd);
4822
4823 /* Notify userspace the event is going away. */
4824 eventfd_signal(event->eventfd, 1);
4825
4826 eventfd_ctx_put(event->eventfd);
4827 kfree(event);
4828 css_put(&memcg->css);
4829 }
4830
4831 /*
4832 * Gets called on EPOLLHUP on eventfd when user closes it.
4833 *
4834 * Called with wqh->lock held and interrupts disabled.
4835 */
memcg_event_wake(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)4836 static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode,
4837 int sync, void *key)
4838 {
4839 struct mem_cgroup_event *event =
4840 container_of(wait, struct mem_cgroup_event, wait);
4841 struct mem_cgroup *memcg = event->memcg;
4842 __poll_t flags = key_to_poll(key);
4843
4844 if (flags & EPOLLHUP) {
4845 /*
4846 * If the event has been detached at cgroup removal, we
4847 * can simply return knowing the other side will cleanup
4848 * for us.
4849 *
4850 * We can't race against event freeing since the other
4851 * side will require wqh->lock via remove_wait_queue(),
4852 * which we hold.
4853 */
4854 spin_lock(&memcg->event_list_lock);
4855 if (!list_empty(&event->list)) {
4856 list_del_init(&event->list);
4857 /*
4858 * We are in atomic context, but cgroup_event_remove()
4859 * may sleep, so we have to call it in workqueue.
4860 */
4861 schedule_work(&event->remove);
4862 }
4863 spin_unlock(&memcg->event_list_lock);
4864 }
4865
4866 return 0;
4867 }
4868
memcg_event_ptable_queue_proc(struct file *file, wait_queue_head_t *wqh, poll_table *pt)4869 static void memcg_event_ptable_queue_proc(struct file *file,
4870 wait_queue_head_t *wqh, poll_table *pt)
4871 {
4872 struct mem_cgroup_event *event =
4873 container_of(pt, struct mem_cgroup_event, pt);
4874
4875 event->wqh = wqh;
4876 add_wait_queue(wqh, &event->wait);
4877 }
4878
4879 /*
4880 * DO NOT USE IN NEW FILES.
4881 *
4882 * Parse input and register new cgroup event handler.
4883 *
4884 * Input must be in format '<event_fd> <control_fd> <args>'.
4885 * Interpretation of args is defined by control file implementation.
4886 */
memcg_write_event_control(struct kernfs_open_file *of, char *buf, size_t nbytes, loff_t off)4887 static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
4888 char *buf, size_t nbytes, loff_t off)
4889 {
4890 struct cgroup_subsys_state *css = of_css(of);
4891 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4892 struct mem_cgroup_event *event;
4893 struct cgroup_subsys_state *cfile_css;
4894 unsigned int efd, cfd;
4895 struct fd efile;
4896 struct fd cfile;
4897 struct dentry *cdentry;
4898 const char *name;
4899 char *endp;
4900 int ret;
4901
4902 if (IS_ENABLED(CONFIG_PREEMPT_RT))
4903 return -EOPNOTSUPP;
4904
4905 buf = strstrip(buf);
4906
4907 efd = simple_strtoul(buf, &endp, 10);
4908 if (*endp != ' ')
4909 return -EINVAL;
4910 buf = endp + 1;
4911
4912 cfd = simple_strtoul(buf, &endp, 10);
4913 if ((*endp != ' ') && (*endp != '\0'))
4914 return -EINVAL;
4915 buf = endp + 1;
4916
4917 event = kzalloc(sizeof(*event), GFP_KERNEL);
4918 if (!event)
4919 return -ENOMEM;
4920
4921 event->memcg = memcg;
4922 INIT_LIST_HEAD(&event->list);
4923 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
4924 init_waitqueue_func_entry(&event->wait, memcg_event_wake);
4925 INIT_WORK(&event->remove, memcg_event_remove);
4926
4927 efile = fdget(efd);
4928 if (!efile.file) {
4929 ret = -EBADF;
4930 goto out_kfree;
4931 }
4932
4933 event->eventfd = eventfd_ctx_fileget(efile.file);
4934 if (IS_ERR(event->eventfd)) {
4935 ret = PTR_ERR(event->eventfd);
4936 goto out_put_efile;
4937 }
4938
4939 cfile = fdget(cfd);
4940 if (!cfile.file) {
4941 ret = -EBADF;
4942 goto out_put_eventfd;
4943 }
4944
4945 /* the process need read permission on control file */
4946 /* AV: shouldn't we check that it's been opened for read instead? */
4947 ret = file_permission(cfile.file, MAY_READ);
4948 if (ret < 0)
4949 goto out_put_cfile;
4950
4951 /*
4952 * The control file must be a regular cgroup1 file. As a regular cgroup
4953 * file can't be renamed, it's safe to access its name afterwards.
4954 */
4955 cdentry = cfile.file->f_path.dentry;
4956 if (cdentry->d_sb->s_type != &cgroup_fs_type || !d_is_reg(cdentry)) {
4957 ret = -EINVAL;
4958 goto out_put_cfile;
4959 }
4960
4961 /*
4962 * Determine the event callbacks and set them in @event. This used
4963 * to be done via struct cftype but cgroup core no longer knows
4964 * about these events. The following is crude but the whole thing
4965 * is for compatibility anyway.
4966 *
4967 * DO NOT ADD NEW FILES.
4968 */
4969 name = cdentry->d_name.name;
4970
4971 if (!strcmp(name, "memory.usage_in_bytes")) {
4972 event->register_event = mem_cgroup_usage_register_event;
4973 event->unregister_event = mem_cgroup_usage_unregister_event;
4974 } else if (!strcmp(name, "memory.oom_control")) {
4975 event->register_event = mem_cgroup_oom_register_event;
4976 event->unregister_event = mem_cgroup_oom_unregister_event;
4977 } else if (!strcmp(name, "memory.pressure_level")) {
4978 event->register_event = vmpressure_register_event;
4979 event->unregister_event = vmpressure_unregister_event;
4980 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
4981 event->register_event = memsw_cgroup_usage_register_event;
4982 event->unregister_event = memsw_cgroup_usage_unregister_event;
4983 } else {
4984 ret = -EINVAL;
4985 goto out_put_cfile;
4986 }
4987
4988 /*
4989 * Verify @cfile should belong to @css. Also, remaining events are
4990 * automatically removed on cgroup destruction but the removal is
4991 * asynchronous, so take an extra ref on @css.
4992 */
4993 cfile_css = css_tryget_online_from_dir(cdentry->d_parent,
4994 &memory_cgrp_subsys);
4995 ret = -EINVAL;
4996 if (IS_ERR(cfile_css))
4997 goto out_put_cfile;
4998 if (cfile_css != css) {
4999 css_put(cfile_css);
5000 goto out_put_cfile;
5001 }
5002
5003 ret = event->register_event(memcg, event->eventfd, buf);
5004 if (ret)
5005 goto out_put_css;
5006
5007 vfs_poll(efile.file, &event->pt);
5008
5009 spin_lock_irq(&memcg->event_list_lock);
5010 list_add(&event->list, &memcg->event_list);
5011 spin_unlock_irq(&memcg->event_list_lock);
5012
5013 fdput(cfile);
5014 fdput(efile);
5015
5016 return nbytes;
5017
5018 out_put_css:
5019 css_put(css);
5020 out_put_cfile:
5021 fdput(cfile);
5022 out_put_eventfd:
5023 eventfd_ctx_put(event->eventfd);
5024 out_put_efile:
5025 fdput(efile);
5026 out_kfree:
5027 kfree(event);
5028
5029 return ret;
5030 }
5031
5032 #if defined(CONFIG_MEMCG_KMEM) && (defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG))
mem_cgroup_slab_show(struct seq_file *m, void *p)5033 static int mem_cgroup_slab_show(struct seq_file *m, void *p)
5034 {
5035 /*
5036 * Deprecated.
5037 * Please, take a look at tools/cgroup/memcg_slabinfo.py .
5038 */
5039 return 0;
5040 }
5041 #endif
5042
5043 static int memory_stat_show(struct seq_file *m, void *v);
5044
5045 static struct cftype mem_cgroup_legacy_files[] = {
5046 {
5047 .name = "usage_in_bytes",
5048 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
5049 .read_u64 = mem_cgroup_read_u64,
5050 },
5051 {
5052 .name = "max_usage_in_bytes",
5053 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
5054 .write = mem_cgroup_reset,
5055 .read_u64 = mem_cgroup_read_u64,
5056 },
5057 {
5058 .name = "limit_in_bytes",
5059 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
5060 .write = mem_cgroup_write,
5061 .read_u64 = mem_cgroup_read_u64,
5062 },
5063 {
5064 .name = "soft_limit_in_bytes",
5065 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
5066 .write = mem_cgroup_write,
5067 .read_u64 = mem_cgroup_read_u64,
5068 },
5069 {
5070 .name = "failcnt",
5071 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
5072 .write = mem_cgroup_reset,
5073 .read_u64 = mem_cgroup_read_u64,
5074 },
5075 {
5076 .name = "stat",
5077 .seq_show = memory_stat_show,
5078 },
5079 {
5080 .name = "force_empty",
5081 .write = mem_cgroup_force_empty_write,
5082 },
5083 {
5084 .name = "use_hierarchy",
5085 .write_u64 = mem_cgroup_hierarchy_write,
5086 .read_u64 = mem_cgroup_hierarchy_read,
5087 },
5088 {
5089 .name = "cgroup.event_control", /* XXX: for compat */
5090 .write = memcg_write_event_control,
5091 .flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
5092 },
5093 {
5094 .name = "swappiness",
5095 .read_u64 = mem_cgroup_swappiness_read,
5096 .write_u64 = mem_cgroup_swappiness_write,
5097 },
5098 {
5099 .name = "move_charge_at_immigrate",
5100 .read_u64 = mem_cgroup_move_charge_read,
5101 .write_u64 = mem_cgroup_move_charge_write,
5102 },
5103 {
5104 .name = "oom_control",
5105 .seq_show = mem_cgroup_oom_control_read,
5106 .write_u64 = mem_cgroup_oom_control_write,
5107 },
5108 {
5109 .name = "pressure_level",
5110 .seq_show = mem_cgroup_dummy_seq_show,
5111 },
5112 #ifdef CONFIG_NUMA
5113 {
5114 .name = "numa_stat",
5115 .seq_show = memcg_numa_stat_show,
5116 },
5117 #endif
5118 {
5119 .name = "kmem.limit_in_bytes",
5120 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
5121 .write = mem_cgroup_write,
5122 .read_u64 = mem_cgroup_read_u64,
5123 },
5124 {
5125 .name = "kmem.usage_in_bytes",
5126 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
5127 .read_u64 = mem_cgroup_read_u64,
5128 },
5129 {
5130 .name = "kmem.failcnt",
5131 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
5132 .write = mem_cgroup_reset,
5133 .read_u64 = mem_cgroup_read_u64,
5134 },
5135 {
5136 .name = "kmem.max_usage_in_bytes",
5137 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
5138 .write = mem_cgroup_reset,
5139 .read_u64 = mem_cgroup_read_u64,
5140 },
5141 #if defined(CONFIG_MEMCG_KMEM) && \
5142 (defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG))
5143 {
5144 .name = "kmem.slabinfo",
5145 .seq_show = mem_cgroup_slab_show,
5146 },
5147 #endif
5148 {
5149 .name = "kmem.tcp.limit_in_bytes",
5150 .private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
5151 .write = mem_cgroup_write,
5152 .read_u64 = mem_cgroup_read_u64,
5153 },
5154 {
5155 .name = "kmem.tcp.usage_in_bytes",
5156 .private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
5157 .read_u64 = mem_cgroup_read_u64,
5158 },
5159 {
5160 .name = "kmem.tcp.failcnt",
5161 .private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
5162 .write = mem_cgroup_reset,
5163 .read_u64 = mem_cgroup_read_u64,
5164 },
5165 {
5166 .name = "kmem.tcp.max_usage_in_bytes",
5167 .private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
5168 .write = mem_cgroup_reset,
5169 .read_u64 = mem_cgroup_read_u64,
5170 },
5171 { }, /* terminate */
5172 };
5173
5174 /*
5175 * Private memory cgroup IDR
5176 *
5177 * Swap-out records and page cache shadow entries need to store memcg
5178 * references in constrained space, so we maintain an ID space that is
5179 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
5180 * memory-controlled cgroups to 64k.
5181 *
5182 * However, there usually are many references to the offline CSS after
5183 * the cgroup has been destroyed, such as page cache or reclaimable
5184 * slab objects, that don't need to hang on to the ID. We want to keep
5185 * those dead CSS from occupying IDs, or we might quickly exhaust the
5186 * relatively small ID space and prevent the creation of new cgroups
5187 * even when there are much fewer than 64k cgroups - possibly none.
5188 *
5189 * Maintain a private 16-bit ID space for memcg, and allow the ID to
5190 * be freed and recycled when it's no longer needed, which is usually
5191 * when the CSS is offlined.
5192 *
5193 * The only exception to that are records of swapped out tmpfs/shmem
5194 * pages that need to be attributed to live ancestors on swapin. But
5195 * those references are manageable from userspace.
5196 */
5197
5198 #define MEM_CGROUP_ID_MAX ((1UL << MEM_CGROUP_ID_SHIFT) - 1)
5199 static DEFINE_IDR(mem_cgroup_idr);
5200
mem_cgroup_id_remove(struct mem_cgroup *memcg)5201 static void mem_cgroup_id_remove(struct mem_cgroup *memcg)
5202 {
5203 if (memcg->id.id > 0) {
5204 idr_remove(&mem_cgroup_idr, memcg->id.id);
5205 memcg->id.id = 0;
5206 }
5207 }
5208
mem_cgroup_id_get_many(struct mem_cgroup *memcg, unsigned int n)5209 static void __maybe_unused mem_cgroup_id_get_many(struct mem_cgroup *memcg,
5210 unsigned int n)
5211 {
5212 refcount_add(n, &memcg->id.ref);
5213 }
5214
mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n)5215 static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n)
5216 {
5217 if (refcount_sub_and_test(n, &memcg->id.ref)) {
5218 mem_cgroup_id_remove(memcg);
5219
5220 /* Memcg ID pins CSS */
5221 css_put(&memcg->css);
5222 }
5223 }
5224
mem_cgroup_id_put(struct mem_cgroup *memcg)5225 static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
5226 {
5227 mem_cgroup_id_put_many(memcg, 1);
5228 }
5229
5230 /**
5231 * mem_cgroup_from_id - look up a memcg from a memcg id
5232 * @id: the memcg id to look up
5233 *
5234 * Caller must hold rcu_read_lock().
5235 */
mem_cgroup_from_id(unsigned short id)5236 struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
5237 {
5238 WARN_ON_ONCE(!rcu_read_lock_held());
5239 #ifdef CONFIG_HYPERHOLD_FILE_LRU
5240 if (id == -1)
5241 return NULL;
5242 #endif
5243 return idr_find(&mem_cgroup_idr, id);
5244 }
5245
5246 #ifdef CONFIG_SHRINKER_DEBUG
mem_cgroup_get_from_ino(unsigned long ino)5247 struct mem_cgroup *mem_cgroup_get_from_ino(unsigned long ino)
5248 {
5249 struct cgroup *cgrp;
5250 struct cgroup_subsys_state *css;
5251 struct mem_cgroup *memcg;
5252
5253 cgrp = cgroup_get_from_id(ino);
5254 if (IS_ERR(cgrp))
5255 return ERR_CAST(cgrp);
5256
5257 css = cgroup_get_e_css(cgrp, &memory_cgrp_subsys);
5258 if (css)
5259 memcg = container_of(css, struct mem_cgroup, css);
5260 else
5261 memcg = ERR_PTR(-ENOENT);
5262
5263 cgroup_put(cgrp);
5264
5265 return memcg;
5266 }
5267 #endif
5268
alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)5269 static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
5270 {
5271 struct mem_cgroup_per_node *pn;
5272
5273 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, node);
5274 if (!pn)
5275 return 1;
5276
5277 pn->lruvec_stats_percpu = alloc_percpu_gfp(struct lruvec_stats_percpu,
5278 GFP_KERNEL_ACCOUNT);
5279 if (!pn->lruvec_stats_percpu) {
5280 kfree(pn);
5281 return 1;
5282 }
5283
5284 lruvec_init(&pn->lruvec);
5285 #if defined(CONFIG_HYPERHOLD_FILE_LRU) && defined(CONFIG_MEMCG)
5286 pn->lruvec.pgdat = NODE_DATA(node);
5287 #endif
5288 pn->memcg = memcg;
5289
5290 memcg->nodeinfo[node] = pn;
5291 return 0;
5292 }
5293
free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)5294 static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
5295 {
5296 struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
5297
5298 if (!pn)
5299 return;
5300
5301 free_percpu(pn->lruvec_stats_percpu);
5302 kfree(pn);
5303 }
5304
__mem_cgroup_free(struct mem_cgroup *memcg)5305 static void __mem_cgroup_free(struct mem_cgroup *memcg)
5306 {
5307 int node;
5308
5309 for_each_node(node)
5310 free_mem_cgroup_per_node_info(memcg, node);
5311 kfree(memcg->vmstats);
5312 free_percpu(memcg->vmstats_percpu);
5313 kfree(memcg);
5314 }
5315
mem_cgroup_free(struct mem_cgroup *memcg)5316 static void mem_cgroup_free(struct mem_cgroup *memcg)
5317 {
5318 lru_gen_exit_memcg(memcg);
5319 memcg_wb_domain_exit(memcg);
5320 __mem_cgroup_free(memcg);
5321 }
5322
mem_cgroup_alloc(void)5323 static struct mem_cgroup *mem_cgroup_alloc(void)
5324 {
5325 struct mem_cgroup *memcg;
5326 int node;
5327 int __maybe_unused i;
5328 long error = -ENOMEM;
5329
5330 memcg = kzalloc(struct_size(memcg, nodeinfo, nr_node_ids), GFP_KERNEL);
5331 if (!memcg)
5332 return ERR_PTR(error);
5333
5334 memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL,
5335 1, MEM_CGROUP_ID_MAX + 1, GFP_KERNEL);
5336 if (memcg->id.id < 0) {
5337 error = memcg->id.id;
5338 goto fail;
5339 }
5340
5341 memcg->vmstats = kzalloc(sizeof(struct memcg_vmstats), GFP_KERNEL);
5342 if (!memcg->vmstats)
5343 goto fail;
5344
5345 memcg->vmstats_percpu = alloc_percpu_gfp(struct memcg_vmstats_percpu,
5346 GFP_KERNEL_ACCOUNT);
5347 if (!memcg->vmstats_percpu)
5348 goto fail;
5349
5350 for_each_node(node)
5351 if (alloc_mem_cgroup_per_node_info(memcg, node))
5352 goto fail;
5353
5354 if (memcg_wb_domain_init(memcg, GFP_KERNEL))
5355 goto fail;
5356
5357 INIT_WORK(&memcg->high_work, high_work_func);
5358 INIT_LIST_HEAD(&memcg->oom_notify);
5359 mutex_init(&memcg->thresholds_lock);
5360 spin_lock_init(&memcg->move_lock);
5361 vmpressure_init(&memcg->vmpressure);
5362 INIT_LIST_HEAD(&memcg->event_list);
5363 spin_lock_init(&memcg->event_list_lock);
5364 memcg->socket_pressure = jiffies;
5365 #ifdef CONFIG_MEMCG_KMEM
5366 memcg->kmemcg_id = -1;
5367 INIT_LIST_HEAD(&memcg->objcg_list);
5368 #endif
5369 #ifdef CONFIG_CGROUP_WRITEBACK
5370 INIT_LIST_HEAD(&memcg->cgwb_list);
5371 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
5372 memcg->cgwb_frn[i].done =
5373 __WB_COMPLETION_INIT(&memcg_cgwb_frn_waitq);
5374 #endif
5375 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5376 spin_lock_init(&memcg->deferred_split_queue.split_queue_lock);
5377 INIT_LIST_HEAD(&memcg->deferred_split_queue.split_queue);
5378 memcg->deferred_split_queue.split_queue_len = 0;
5379 #endif
5380
5381 #ifdef CONFIG_HYPERHOLD_MEMCG
5382 if (unlikely(!score_head_inited)) {
5383 INIT_LIST_HEAD(&score_head);
5384 score_head_inited = true;
5385 }
5386 #endif
5387
5388 #ifdef CONFIG_HYPERHOLD_MEMCG
5389 INIT_LIST_HEAD(&memcg->score_node);
5390 #endif
5391
5392 lru_gen_init_memcg(memcg);
5393 return memcg;
5394 fail:
5395 mem_cgroup_id_remove(memcg);
5396 __mem_cgroup_free(memcg);
5397 return ERR_PTR(error);
5398 }
5399
5400 static struct cgroup_subsys_state * __ref
mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)5401 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
5402 {
5403 struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
5404 struct mem_cgroup *memcg, *old_memcg;
5405
5406 old_memcg = set_active_memcg(parent);
5407 memcg = mem_cgroup_alloc();
5408 set_active_memcg(old_memcg);
5409 if (IS_ERR(memcg))
5410 return ERR_CAST(memcg);
5411
5412 #ifdef CONFIG_HYPERHOLD_MEMCG
5413 atomic64_set(&memcg->memcg_reclaimed.app_score, 300);
5414 #endif
5415 #ifdef CONFIG_HYPERHOLD_ZSWAPD
5416 atomic_set(&memcg->memcg_reclaimed.ub_zram2ufs_ratio, 10);
5417 atomic_set(&memcg->memcg_reclaimed.ub_mem2zram_ratio, 60);
5418 atomic_set(&memcg->memcg_reclaimed.refault_threshold, 50);
5419 #endif
5420 page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
5421 WRITE_ONCE(memcg->soft_limit, PAGE_COUNTER_MAX);
5422 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP)
5423 memcg->zswap_max = PAGE_COUNTER_MAX;
5424 #endif
5425 page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
5426 if (parent) {
5427 WRITE_ONCE(memcg->swappiness, mem_cgroup_swappiness(parent));
5428 WRITE_ONCE(memcg->oom_kill_disable, READ_ONCE(parent->oom_kill_disable));
5429
5430 page_counter_init(&memcg->memory, &parent->memory);
5431 page_counter_init(&memcg->swap, &parent->swap);
5432 page_counter_init(&memcg->kmem, &parent->kmem);
5433 page_counter_init(&memcg->tcpmem, &parent->tcpmem);
5434 } else {
5435 init_memcg_events();
5436 page_counter_init(&memcg->memory, NULL);
5437 page_counter_init(&memcg->swap, NULL);
5438 page_counter_init(&memcg->kmem, NULL);
5439 page_counter_init(&memcg->tcpmem, NULL);
5440
5441 root_mem_cgroup = memcg;
5442 return &memcg->css;
5443 }
5444
5445 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
5446 static_branch_inc(&memcg_sockets_enabled_key);
5447
5448 #if defined(CONFIG_MEMCG_KMEM)
5449 if (!cgroup_memory_nobpf)
5450 static_branch_inc(&memcg_bpf_enabled_key);
5451 #endif
5452
5453 return &memcg->css;
5454 }
5455
mem_cgroup_css_online(struct cgroup_subsys_state *css)5456 static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
5457 {
5458 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5459
5460 if (memcg_online_kmem(memcg))
5461 goto remove_id;
5462
5463 /*
5464 * A memcg must be visible for expand_shrinker_info()
5465 * by the time the maps are allocated. So, we allocate maps
5466 * here, when for_each_mem_cgroup() can't skip it.
5467 */
5468 if (alloc_shrinker_info(memcg))
5469 goto offline_kmem;
5470
5471 if (unlikely(mem_cgroup_is_root(memcg)))
5472 queue_delayed_work(system_unbound_wq, &stats_flush_dwork,
5473 FLUSH_TIME);
5474 lru_gen_online_memcg(memcg);
5475
5476 #ifdef CONFIG_HYPERHOLD_MEMCG
5477 memcg_app_score_update(memcg);
5478 css_get(css);
5479 #endif
5480
5481 /* Online state pins memcg ID, memcg ID pins CSS */
5482 refcount_set(&memcg->id.ref, 1);
5483 css_get(css);
5484
5485 /*
5486 * Ensure mem_cgroup_from_id() works once we're fully online.
5487 *
5488 * We could do this earlier and require callers to filter with
5489 * css_tryget_online(). But right now there are no users that
5490 * need earlier access, and the workingset code relies on the
5491 * cgroup tree linkage (mem_cgroup_get_nr_swap_pages()). So
5492 * publish it here at the end of onlining. This matches the
5493 * regular ID destruction during offlining.
5494 */
5495 idr_replace(&mem_cgroup_idr, memcg, memcg->id.id);
5496
5497 return 0;
5498 offline_kmem:
5499 memcg_offline_kmem(memcg);
5500 remove_id:
5501 mem_cgroup_id_remove(memcg);
5502 return -ENOMEM;
5503 }
5504
mem_cgroup_css_offline(struct cgroup_subsys_state *css)5505 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
5506 {
5507 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5508 struct mem_cgroup_event *event, *tmp;
5509
5510 #ifdef CONFIG_HYPERHOLD_MEMCG
5511 unsigned long flags;
5512
5513 write_lock_irqsave(&score_list_lock, flags);
5514 list_del_init(&memcg->score_node);
5515 write_unlock_irqrestore(&score_list_lock, flags);
5516 css_put(css);
5517 #endif
5518
5519 /*
5520 * Unregister events and notify userspace.
5521 * Notify userspace about cgroup removing only after rmdir of cgroup
5522 * directory to avoid race between userspace and kernelspace.
5523 */
5524 spin_lock_irq(&memcg->event_list_lock);
5525 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
5526 list_del_init(&event->list);
5527 schedule_work(&event->remove);
5528 }
5529 spin_unlock_irq(&memcg->event_list_lock);
5530
5531 page_counter_set_min(&memcg->memory, 0);
5532 page_counter_set_low(&memcg->memory, 0);
5533
5534 memcg_offline_kmem(memcg);
5535 reparent_shrinker_deferred(memcg);
5536 wb_memcg_offline(memcg);
5537 lru_gen_offline_memcg(memcg);
5538
5539 drain_all_stock(memcg);
5540
5541 mem_cgroup_id_put(memcg);
5542 }
5543
mem_cgroup_css_released(struct cgroup_subsys_state *css)5544 static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
5545 {
5546 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5547
5548 invalidate_reclaim_iterators(memcg);
5549 lru_gen_release_memcg(memcg);
5550 }
5551
mem_cgroup_css_free(struct cgroup_subsys_state *css)5552 static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
5553 {
5554 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5555 int __maybe_unused i;
5556
5557 #ifdef CONFIG_CGROUP_WRITEBACK
5558 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
5559 wb_wait_for_completion(&memcg->cgwb_frn[i].done);
5560 #endif
5561 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
5562 static_branch_dec(&memcg_sockets_enabled_key);
5563
5564 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
5565 static_branch_dec(&memcg_sockets_enabled_key);
5566
5567 #if defined(CONFIG_MEMCG_KMEM)
5568 if (!cgroup_memory_nobpf)
5569 static_branch_dec(&memcg_bpf_enabled_key);
5570 #endif
5571
5572 vmpressure_cleanup(&memcg->vmpressure);
5573 cancel_work_sync(&memcg->high_work);
5574 mem_cgroup_remove_from_trees(memcg);
5575 free_shrinker_info(memcg);
5576 mem_cgroup_free(memcg);
5577 }
5578
5579 /**
5580 * mem_cgroup_css_reset - reset the states of a mem_cgroup
5581 * @css: the target css
5582 *
5583 * Reset the states of the mem_cgroup associated with @css. This is
5584 * invoked when the userland requests disabling on the default hierarchy
5585 * but the memcg is pinned through dependency. The memcg should stop
5586 * applying policies and should revert to the vanilla state as it may be
5587 * made visible again.
5588 *
5589 * The current implementation only resets the essential configurations.
5590 * This needs to be expanded to cover all the visible parts.
5591 */
mem_cgroup_css_reset(struct cgroup_subsys_state *css)5592 static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
5593 {
5594 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5595
5596 page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX);
5597 page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX);
5598 page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX);
5599 page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX);
5600 page_counter_set_min(&memcg->memory, 0);
5601 page_counter_set_low(&memcg->memory, 0);
5602 page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
5603 WRITE_ONCE(memcg->soft_limit, PAGE_COUNTER_MAX);
5604 page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
5605 memcg_wb_domain_size_changed(memcg);
5606 }
5607
mem_cgroup_css_rstat_flush(struct cgroup_subsys_state *css, int cpu)5608 static void mem_cgroup_css_rstat_flush(struct cgroup_subsys_state *css, int cpu)
5609 {
5610 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5611 struct mem_cgroup *parent = parent_mem_cgroup(memcg);
5612 struct memcg_vmstats_percpu *statc;
5613 long delta, delta_cpu, v;
5614 int i, nid;
5615
5616 statc = per_cpu_ptr(memcg->vmstats_percpu, cpu);
5617
5618 for (i = 0; i < MEMCG_NR_STAT; i++) {
5619 /*
5620 * Collect the aggregated propagation counts of groups
5621 * below us. We're in a per-cpu loop here and this is
5622 * a global counter, so the first cycle will get them.
5623 */
5624 delta = memcg->vmstats->state_pending[i];
5625 if (delta)
5626 memcg->vmstats->state_pending[i] = 0;
5627
5628 /* Add CPU changes on this level since the last flush */
5629 delta_cpu = 0;
5630 v = READ_ONCE(statc->state[i]);
5631 if (v != statc->state_prev[i]) {
5632 delta_cpu = v - statc->state_prev[i];
5633 delta += delta_cpu;
5634 statc->state_prev[i] = v;
5635 }
5636
5637 /* Aggregate counts on this level and propagate upwards */
5638 if (delta_cpu)
5639 memcg->vmstats->state_local[i] += delta_cpu;
5640
5641 if (delta) {
5642 memcg->vmstats->state[i] += delta;
5643 if (parent)
5644 parent->vmstats->state_pending[i] += delta;
5645 }
5646 }
5647
5648 for (i = 0; i < NR_MEMCG_EVENTS; i++) {
5649 delta = memcg->vmstats->events_pending[i];
5650 if (delta)
5651 memcg->vmstats->events_pending[i] = 0;
5652
5653 delta_cpu = 0;
5654 v = READ_ONCE(statc->events[i]);
5655 if (v != statc->events_prev[i]) {
5656 delta_cpu = v - statc->events_prev[i];
5657 delta += delta_cpu;
5658 statc->events_prev[i] = v;
5659 }
5660
5661 if (delta_cpu)
5662 memcg->vmstats->events_local[i] += delta_cpu;
5663
5664 if (delta) {
5665 memcg->vmstats->events[i] += delta;
5666 if (parent)
5667 parent->vmstats->events_pending[i] += delta;
5668 }
5669 }
5670
5671 for_each_node_state(nid, N_MEMORY) {
5672 struct mem_cgroup_per_node *pn = memcg->nodeinfo[nid];
5673 struct mem_cgroup_per_node *ppn = NULL;
5674 struct lruvec_stats_percpu *lstatc;
5675
5676 if (parent)
5677 ppn = parent->nodeinfo[nid];
5678
5679 lstatc = per_cpu_ptr(pn->lruvec_stats_percpu, cpu);
5680
5681 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) {
5682 delta = pn->lruvec_stats.state_pending[i];
5683 if (delta)
5684 pn->lruvec_stats.state_pending[i] = 0;
5685
5686 delta_cpu = 0;
5687 v = READ_ONCE(lstatc->state[i]);
5688 if (v != lstatc->state_prev[i]) {
5689 delta_cpu = v - lstatc->state_prev[i];
5690 delta += delta_cpu;
5691 lstatc->state_prev[i] = v;
5692 }
5693
5694 if (delta_cpu)
5695 pn->lruvec_stats.state_local[i] += delta_cpu;
5696
5697 if (delta) {
5698 pn->lruvec_stats.state[i] += delta;
5699 if (ppn)
5700 ppn->lruvec_stats.state_pending[i] += delta;
5701 }
5702 }
5703 }
5704 }
5705
5706 #ifdef CONFIG_MMU
5707 /* Handlers for move charge at task migration. */
mem_cgroup_do_precharge(unsigned long count)5708 static int mem_cgroup_do_precharge(unsigned long count)
5709 {
5710 int ret;
5711
5712 /* Try a single bulk charge without reclaim first, kswapd may wake */
5713 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
5714 if (!ret) {
5715 mc.precharge += count;
5716 return ret;
5717 }
5718
5719 /* Try charges one by one with reclaim, but do not retry */
5720 while (count--) {
5721 ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1);
5722 if (ret)
5723 return ret;
5724 mc.precharge++;
5725 cond_resched();
5726 }
5727 return 0;
5728 }
5729
5730 union mc_target {
5731 struct page *page;
5732 swp_entry_t ent;
5733 };
5734
5735 enum mc_target_type {
5736 MC_TARGET_NONE = 0,
5737 MC_TARGET_PAGE,
5738 MC_TARGET_SWAP,
5739 MC_TARGET_DEVICE,
5740 };
5741
mc_handle_present_pte(struct vm_area_struct *vma, unsigned long addr, pte_t ptent)5742 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
5743 unsigned long addr, pte_t ptent)
5744 {
5745 struct page *page = vm_normal_page(vma, addr, ptent);
5746
5747 if (!page)
5748 return NULL;
5749 if (PageAnon(page)) {
5750 if (!(mc.flags & MOVE_ANON))
5751 return NULL;
5752 } else {
5753 if (!(mc.flags & MOVE_FILE))
5754 return NULL;
5755 }
5756 get_page(page);
5757
5758 return page;
5759 }
5760
5761 #if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE)
mc_handle_swap_pte(struct vm_area_struct *vma, pte_t ptent, swp_entry_t *entry)5762 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5763 pte_t ptent, swp_entry_t *entry)
5764 {
5765 struct page *page = NULL;
5766 swp_entry_t ent = pte_to_swp_entry(ptent);
5767
5768 if (!(mc.flags & MOVE_ANON))
5769 return NULL;
5770
5771 /*
5772 * Handle device private pages that are not accessible by the CPU, but
5773 * stored as special swap entries in the page table.
5774 */
5775 if (is_device_private_entry(ent)) {
5776 page = pfn_swap_entry_to_page(ent);
5777 if (!get_page_unless_zero(page))
5778 return NULL;
5779 return page;
5780 }
5781
5782 if (non_swap_entry(ent))
5783 return NULL;
5784
5785 /*
5786 * Because swap_cache_get_folio() updates some statistics counter,
5787 * we call find_get_page() with swapper_space directly.
5788 */
5789 page = find_get_page(swap_address_space(ent), swp_offset(ent));
5790 entry->val = ent.val;
5791
5792 return page;
5793 }
5794 #else
mc_handle_swap_pte(struct vm_area_struct *vma, pte_t ptent, swp_entry_t *entry)5795 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5796 pte_t ptent, swp_entry_t *entry)
5797 {
5798 return NULL;
5799 }
5800 #endif
5801
mc_handle_file_pte(struct vm_area_struct *vma, unsigned long addr, pte_t ptent)5802 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
5803 unsigned long addr, pte_t ptent)
5804 {
5805 unsigned long index;
5806 struct folio *folio;
5807
5808 if (!vma->vm_file) /* anonymous vma */
5809 return NULL;
5810 if (!(mc.flags & MOVE_FILE))
5811 return NULL;
5812
5813 /* folio is moved even if it's not RSS of this task(page-faulted). */
5814 /* shmem/tmpfs may report page out on swap: account for that too. */
5815 index = linear_page_index(vma, addr);
5816 folio = filemap_get_incore_folio(vma->vm_file->f_mapping, index);
5817 if (IS_ERR(folio))
5818 return NULL;
5819 return folio_file_page(folio, index);
5820 }
5821
5822 /**
5823 * mem_cgroup_move_account - move account of the page
5824 * @page: the page
5825 * @compound: charge the page as compound or small page
5826 * @from: mem_cgroup which the page is moved from.
5827 * @to: mem_cgroup which the page is moved to. @from != @to.
5828 *
5829 * The page must be locked and not on the LRU.
5830 *
5831 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
5832 * from old cgroup.
5833 */
mem_cgroup_move_account(struct page *page, bool compound, struct mem_cgroup *from, struct mem_cgroup *to)5834 static int mem_cgroup_move_account(struct page *page,
5835 bool compound,
5836 struct mem_cgroup *from,
5837 struct mem_cgroup *to)
5838 {
5839 struct folio *folio = page_folio(page);
5840 struct lruvec *from_vec, *to_vec;
5841 struct pglist_data *pgdat;
5842 unsigned int nr_pages = compound ? folio_nr_pages(folio) : 1;
5843 int nid, ret;
5844
5845 VM_BUG_ON(from == to);
5846 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
5847 VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
5848 VM_BUG_ON(compound && !folio_test_large(folio));
5849
5850 ret = -EINVAL;
5851 if (folio_memcg(folio) != from)
5852 goto out;
5853
5854 pgdat = folio_pgdat(folio);
5855 from_vec = mem_cgroup_lruvec(from, pgdat);
5856 to_vec = mem_cgroup_lruvec(to, pgdat);
5857
5858 folio_memcg_lock(folio);
5859
5860 if (folio_test_anon(folio)) {
5861 if (folio_mapped(folio)) {
5862 __mod_lruvec_state(from_vec, NR_ANON_MAPPED, -nr_pages);
5863 __mod_lruvec_state(to_vec, NR_ANON_MAPPED, nr_pages);
5864 if (folio_test_pmd_mappable(folio)) {
5865 __mod_lruvec_state(from_vec, NR_ANON_THPS,
5866 -nr_pages);
5867 __mod_lruvec_state(to_vec, NR_ANON_THPS,
5868 nr_pages);
5869 }
5870 }
5871 } else {
5872 __mod_lruvec_state(from_vec, NR_FILE_PAGES, -nr_pages);
5873 __mod_lruvec_state(to_vec, NR_FILE_PAGES, nr_pages);
5874
5875 if (folio_test_swapbacked(folio)) {
5876 __mod_lruvec_state(from_vec, NR_SHMEM, -nr_pages);
5877 __mod_lruvec_state(to_vec, NR_SHMEM, nr_pages);
5878 }
5879
5880 if (folio_mapped(folio)) {
5881 __mod_lruvec_state(from_vec, NR_FILE_MAPPED, -nr_pages);
5882 __mod_lruvec_state(to_vec, NR_FILE_MAPPED, nr_pages);
5883 }
5884
5885 if (folio_test_dirty(folio)) {
5886 struct address_space *mapping = folio_mapping(folio);
5887
5888 if (mapping_can_writeback(mapping)) {
5889 __mod_lruvec_state(from_vec, NR_FILE_DIRTY,
5890 -nr_pages);
5891 __mod_lruvec_state(to_vec, NR_FILE_DIRTY,
5892 nr_pages);
5893 }
5894 }
5895 }
5896
5897 #ifdef CONFIG_SWAP
5898 if (folio_test_swapcache(folio)) {
5899 __mod_lruvec_state(from_vec, NR_SWAPCACHE, -nr_pages);
5900 __mod_lruvec_state(to_vec, NR_SWAPCACHE, nr_pages);
5901 }
5902 #endif
5903 if (folio_test_writeback(folio)) {
5904 __mod_lruvec_state(from_vec, NR_WRITEBACK, -nr_pages);
5905 __mod_lruvec_state(to_vec, NR_WRITEBACK, nr_pages);
5906 }
5907
5908 /*
5909 * All state has been migrated, let's switch to the new memcg.
5910 *
5911 * It is safe to change page's memcg here because the page
5912 * is referenced, charged, isolated, and locked: we can't race
5913 * with (un)charging, migration, LRU putback, or anything else
5914 * that would rely on a stable page's memory cgroup.
5915 *
5916 * Note that folio_memcg_lock is a memcg lock, not a page lock,
5917 * to save space. As soon as we switch page's memory cgroup to a
5918 * new memcg that isn't locked, the above state can change
5919 * concurrently again. Make sure we're truly done with it.
5920 */
5921 smp_mb();
5922
5923 css_get(&to->css);
5924 css_put(&from->css);
5925
5926 folio->memcg_data = (unsigned long)to;
5927
5928 __folio_memcg_unlock(from);
5929
5930 ret = 0;
5931 nid = folio_nid(folio);
5932
5933 local_irq_disable();
5934 mem_cgroup_charge_statistics(to, nr_pages);
5935 memcg_check_events(to, nid);
5936 mem_cgroup_charge_statistics(from, -nr_pages);
5937 memcg_check_events(from, nid);
5938 local_irq_enable();
5939 out:
5940 return ret;
5941 }
5942
5943 /**
5944 * get_mctgt_type - get target type of moving charge
5945 * @vma: the vma the pte to be checked belongs
5946 * @addr: the address corresponding to the pte to be checked
5947 * @ptent: the pte to be checked
5948 * @target: the pointer the target page or swap ent will be stored(can be NULL)
5949 *
5950 * Context: Called with pte lock held.
5951 * Return:
5952 * * MC_TARGET_NONE - If the pte is not a target for move charge.
5953 * * MC_TARGET_PAGE - If the page corresponding to this pte is a target for
5954 * move charge. If @target is not NULL, the page is stored in target->page
5955 * with extra refcnt taken (Caller should release it).
5956 * * MC_TARGET_SWAP - If the swap entry corresponding to this pte is a
5957 * target for charge migration. If @target is not NULL, the entry is
5958 * stored in target->ent.
5959 * * MC_TARGET_DEVICE - Like MC_TARGET_PAGE but page is device memory and
5960 * thus not on the lru. For now such page is charged like a regular page
5961 * would be as it is just special memory taking the place of a regular page.
5962 * See Documentations/vm/hmm.txt and include/linux/hmm.h
5963 */
get_mctgt_type(struct vm_area_struct *vma, unsigned long addr, pte_t ptent, union mc_target *target)5964 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
5965 unsigned long addr, pte_t ptent, union mc_target *target)
5966 {
5967 struct page *page = NULL;
5968 enum mc_target_type ret = MC_TARGET_NONE;
5969 swp_entry_t ent = { .val = 0 };
5970
5971 if (pte_present(ptent))
5972 page = mc_handle_present_pte(vma, addr, ptent);
5973 else if (pte_none_mostly(ptent))
5974 /*
5975 * PTE markers should be treated as a none pte here, separated
5976 * from other swap handling below.
5977 */
5978 page = mc_handle_file_pte(vma, addr, ptent);
5979 else if (is_swap_pte(ptent))
5980 page = mc_handle_swap_pte(vma, ptent, &ent);
5981
5982 if (target && page) {
5983 if (!trylock_page(page)) {
5984 put_page(page);
5985 return ret;
5986 }
5987 /*
5988 * page_mapped() must be stable during the move. This
5989 * pte is locked, so if it's present, the page cannot
5990 * become unmapped. If it isn't, we have only partial
5991 * control over the mapped state: the page lock will
5992 * prevent new faults against pagecache and swapcache,
5993 * so an unmapped page cannot become mapped. However,
5994 * if the page is already mapped elsewhere, it can
5995 * unmap, and there is nothing we can do about it.
5996 * Alas, skip moving the page in this case.
5997 */
5998 if (!pte_present(ptent) && page_mapped(page)) {
5999 unlock_page(page);
6000 put_page(page);
6001 return ret;
6002 }
6003 }
6004
6005 if (!page && !ent.val)
6006 return ret;
6007 if (page) {
6008 /*
6009 * Do only loose check w/o serialization.
6010 * mem_cgroup_move_account() checks the page is valid or
6011 * not under LRU exclusion.
6012 */
6013 if (page_memcg(page) == mc.from) {
6014 ret = MC_TARGET_PAGE;
6015 if (is_device_private_page(page) ||
6016 is_device_coherent_page(page))
6017 ret = MC_TARGET_DEVICE;
6018 if (target)
6019 target->page = page;
6020 }
6021 if (!ret || !target) {
6022 if (target)
6023 unlock_page(page);
6024 put_page(page);
6025 }
6026 }
6027 /*
6028 * There is a swap entry and a page doesn't exist or isn't charged.
6029 * But we cannot move a tail-page in a THP.
6030 */
6031 if (ent.val && !ret && (!page || !PageTransCompound(page)) &&
6032 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
6033 ret = MC_TARGET_SWAP;
6034 if (target)
6035 target->ent = ent;
6036 }
6037 return ret;
6038 }
6039
6040 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
6041 /*
6042 * We don't consider PMD mapped swapping or file mapped pages because THP does
6043 * not support them for now.
6044 * Caller should make sure that pmd_trans_huge(pmd) is true.
6045 */
get_mctgt_type_thp(struct vm_area_struct *vma, unsigned long addr, pmd_t pmd, union mc_target *target)6046 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
6047 unsigned long addr, pmd_t pmd, union mc_target *target)
6048 {
6049 struct page *page = NULL;
6050 enum mc_target_type ret = MC_TARGET_NONE;
6051
6052 if (unlikely(is_swap_pmd(pmd))) {
6053 VM_BUG_ON(thp_migration_supported() &&
6054 !is_pmd_migration_entry(pmd));
6055 return ret;
6056 }
6057 page = pmd_page(pmd);
6058 VM_BUG_ON_PAGE(!page || !PageHead(page), page);
6059 if (!(mc.flags & MOVE_ANON))
6060 return ret;
6061 if (page_memcg(page) == mc.from) {
6062 ret = MC_TARGET_PAGE;
6063 if (target) {
6064 get_page(page);
6065 if (!trylock_page(page)) {
6066 put_page(page);
6067 return MC_TARGET_NONE;
6068 }
6069 target->page = page;
6070 }
6071 }
6072 return ret;
6073 }
6074 #else
get_mctgt_type_thp(struct vm_area_struct *vma, unsigned long addr, pmd_t pmd, union mc_target *target)6075 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
6076 unsigned long addr, pmd_t pmd, union mc_target *target)
6077 {
6078 return MC_TARGET_NONE;
6079 }
6080 #endif
6081
mem_cgroup_count_precharge_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end, struct mm_walk *walk)6082 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
6083 unsigned long addr, unsigned long end,
6084 struct mm_walk *walk)
6085 {
6086 struct vm_area_struct *vma = walk->vma;
6087 pte_t *pte;
6088 spinlock_t *ptl;
6089
6090 ptl = pmd_trans_huge_lock(pmd, vma);
6091 if (ptl) {
6092 /*
6093 * Note their can not be MC_TARGET_DEVICE for now as we do not
6094 * support transparent huge page with MEMORY_DEVICE_PRIVATE but
6095 * this might change.
6096 */
6097 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
6098 mc.precharge += HPAGE_PMD_NR;
6099 spin_unlock(ptl);
6100 return 0;
6101 }
6102
6103 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
6104 if (!pte)
6105 return 0;
6106 for (; addr != end; pte++, addr += PAGE_SIZE)
6107 if (get_mctgt_type(vma, addr, ptep_get(pte), NULL))
6108 mc.precharge++; /* increment precharge temporarily */
6109 pte_unmap_unlock(pte - 1, ptl);
6110 cond_resched();
6111
6112 return 0;
6113 }
6114
6115 static const struct mm_walk_ops precharge_walk_ops = {
6116 .pmd_entry = mem_cgroup_count_precharge_pte_range,
6117 .walk_lock = PGWALK_RDLOCK,
6118 };
6119
mem_cgroup_count_precharge(struct mm_struct *mm)6120 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
6121 {
6122 unsigned long precharge;
6123
6124 mmap_read_lock(mm);
6125 walk_page_range(mm, 0, ULONG_MAX, &precharge_walk_ops, NULL);
6126 mmap_read_unlock(mm);
6127
6128 precharge = mc.precharge;
6129 mc.precharge = 0;
6130
6131 return precharge;
6132 }
6133
mem_cgroup_precharge_mc(struct mm_struct *mm)6134 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
6135 {
6136 unsigned long precharge = mem_cgroup_count_precharge(mm);
6137
6138 VM_BUG_ON(mc.moving_task);
6139 mc.moving_task = current;
6140 return mem_cgroup_do_precharge(precharge);
6141 }
6142
6143 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
__mem_cgroup_clear_mc(void)6144 static void __mem_cgroup_clear_mc(void)
6145 {
6146 struct mem_cgroup *from = mc.from;
6147 struct mem_cgroup *to = mc.to;
6148
6149 /* we must uncharge all the leftover precharges from mc.to */
6150 if (mc.precharge) {
6151 cancel_charge(mc.to, mc.precharge);
6152 mc.precharge = 0;
6153 }
6154 /*
6155 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
6156 * we must uncharge here.
6157 */
6158 if (mc.moved_charge) {
6159 cancel_charge(mc.from, mc.moved_charge);
6160 mc.moved_charge = 0;
6161 }
6162 /* we must fixup refcnts and charges */
6163 if (mc.moved_swap) {
6164 /* uncharge swap account from the old cgroup */
6165 if (!mem_cgroup_is_root(mc.from))
6166 page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
6167
6168 mem_cgroup_id_put_many(mc.from, mc.moved_swap);
6169
6170 /*
6171 * we charged both to->memory and to->memsw, so we
6172 * should uncharge to->memory.
6173 */
6174 if (!mem_cgroup_is_root(mc.to))
6175 page_counter_uncharge(&mc.to->memory, mc.moved_swap);
6176
6177 mc.moved_swap = 0;
6178 }
6179 memcg_oom_recover(from);
6180 memcg_oom_recover(to);
6181 wake_up_all(&mc.waitq);
6182 }
6183
mem_cgroup_clear_mc(void)6184 static void mem_cgroup_clear_mc(void)
6185 {
6186 struct mm_struct *mm = mc.mm;
6187
6188 /*
6189 * we must clear moving_task before waking up waiters at the end of
6190 * task migration.
6191 */
6192 mc.moving_task = NULL;
6193 __mem_cgroup_clear_mc();
6194 spin_lock(&mc.lock);
6195 mc.from = NULL;
6196 mc.to = NULL;
6197 mc.mm = NULL;
6198 spin_unlock(&mc.lock);
6199
6200 mmput(mm);
6201 }
6202
mem_cgroup_can_attach(struct cgroup_taskset *tset)6203 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
6204 {
6205 struct cgroup_subsys_state *css;
6206 struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
6207 struct mem_cgroup *from;
6208 struct task_struct *leader, *p;
6209 struct mm_struct *mm;
6210 unsigned long move_flags;
6211 int ret = 0;
6212
6213 /* charge immigration isn't supported on the default hierarchy */
6214 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
6215 return 0;
6216
6217 /*
6218 * Multi-process migrations only happen on the default hierarchy
6219 * where charge immigration is not used. Perform charge
6220 * immigration if @tset contains a leader and whine if there are
6221 * multiple.
6222 */
6223 p = NULL;
6224 cgroup_taskset_for_each_leader(leader, css, tset) {
6225 WARN_ON_ONCE(p);
6226 p = leader;
6227 memcg = mem_cgroup_from_css(css);
6228 }
6229 if (!p)
6230 return 0;
6231
6232 /*
6233 * We are now committed to this value whatever it is. Changes in this
6234 * tunable will only affect upcoming migrations, not the current one.
6235 * So we need to save it, and keep it going.
6236 */
6237 move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
6238 if (!move_flags)
6239 return 0;
6240
6241 from = mem_cgroup_from_task(p);
6242
6243 VM_BUG_ON(from == memcg);
6244
6245 mm = get_task_mm(p);
6246 if (!mm)
6247 return 0;
6248 /* We move charges only when we move a owner of the mm */
6249 if (mm->owner == p) {
6250 VM_BUG_ON(mc.from);
6251 VM_BUG_ON(mc.to);
6252 VM_BUG_ON(mc.precharge);
6253 VM_BUG_ON(mc.moved_charge);
6254 VM_BUG_ON(mc.moved_swap);
6255
6256 spin_lock(&mc.lock);
6257 mc.mm = mm;
6258 mc.from = from;
6259 mc.to = memcg;
6260 mc.flags = move_flags;
6261 spin_unlock(&mc.lock);
6262 /* We set mc.moving_task later */
6263
6264 ret = mem_cgroup_precharge_mc(mm);
6265 if (ret)
6266 mem_cgroup_clear_mc();
6267 } else {
6268 mmput(mm);
6269 }
6270 return ret;
6271 }
6272
mem_cgroup_cancel_attach(struct cgroup_taskset *tset)6273 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
6274 {
6275 if (mc.to)
6276 mem_cgroup_clear_mc();
6277 }
6278
mem_cgroup_move_charge_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end, struct mm_walk *walk)6279 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
6280 unsigned long addr, unsigned long end,
6281 struct mm_walk *walk)
6282 {
6283 int ret = 0;
6284 struct vm_area_struct *vma = walk->vma;
6285 pte_t *pte;
6286 spinlock_t *ptl;
6287 enum mc_target_type target_type;
6288 union mc_target target;
6289 struct page *page;
6290
6291 ptl = pmd_trans_huge_lock(pmd, vma);
6292 if (ptl) {
6293 if (mc.precharge < HPAGE_PMD_NR) {
6294 spin_unlock(ptl);
6295 return 0;
6296 }
6297 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
6298 if (target_type == MC_TARGET_PAGE) {
6299 page = target.page;
6300 if (isolate_lru_page(page)) {
6301 if (!mem_cgroup_move_account(page, true,
6302 mc.from, mc.to)) {
6303 mc.precharge -= HPAGE_PMD_NR;
6304 mc.moved_charge += HPAGE_PMD_NR;
6305 }
6306 putback_lru_page(page);
6307 }
6308 unlock_page(page);
6309 put_page(page);
6310 } else if (target_type == MC_TARGET_DEVICE) {
6311 page = target.page;
6312 if (!mem_cgroup_move_account(page, true,
6313 mc.from, mc.to)) {
6314 mc.precharge -= HPAGE_PMD_NR;
6315 mc.moved_charge += HPAGE_PMD_NR;
6316 }
6317 unlock_page(page);
6318 put_page(page);
6319 }
6320 spin_unlock(ptl);
6321 return 0;
6322 }
6323
6324 retry:
6325 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
6326 if (!pte)
6327 return 0;
6328 for (; addr != end; addr += PAGE_SIZE) {
6329 pte_t ptent = ptep_get(pte++);
6330 bool device = false;
6331 swp_entry_t ent;
6332
6333 if (!mc.precharge)
6334 break;
6335
6336 switch (get_mctgt_type(vma, addr, ptent, &target)) {
6337 case MC_TARGET_DEVICE:
6338 device = true;
6339 fallthrough;
6340 case MC_TARGET_PAGE:
6341 page = target.page;
6342 /*
6343 * We can have a part of the split pmd here. Moving it
6344 * can be done but it would be too convoluted so simply
6345 * ignore such a partial THP and keep it in original
6346 * memcg. There should be somebody mapping the head.
6347 */
6348 if (PageTransCompound(page))
6349 goto put;
6350 if (!device && !isolate_lru_page(page))
6351 goto put;
6352 if (!mem_cgroup_move_account(page, false,
6353 mc.from, mc.to)) {
6354 mc.precharge--;
6355 /* we uncharge from mc.from later. */
6356 mc.moved_charge++;
6357 }
6358 if (!device)
6359 putback_lru_page(page);
6360 put: /* get_mctgt_type() gets & locks the page */
6361 unlock_page(page);
6362 put_page(page);
6363 break;
6364 case MC_TARGET_SWAP:
6365 ent = target.ent;
6366 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
6367 mc.precharge--;
6368 mem_cgroup_id_get_many(mc.to, 1);
6369 /* we fixup other refcnts and charges later. */
6370 mc.moved_swap++;
6371 }
6372 break;
6373 default:
6374 break;
6375 }
6376 }
6377 pte_unmap_unlock(pte - 1, ptl);
6378 cond_resched();
6379
6380 if (addr != end) {
6381 /*
6382 * We have consumed all precharges we got in can_attach().
6383 * We try charge one by one, but don't do any additional
6384 * charges to mc.to if we have failed in charge once in attach()
6385 * phase.
6386 */
6387 ret = mem_cgroup_do_precharge(1);
6388 if (!ret)
6389 goto retry;
6390 }
6391
6392 return ret;
6393 }
6394
6395 static const struct mm_walk_ops charge_walk_ops = {
6396 .pmd_entry = mem_cgroup_move_charge_pte_range,
6397 .walk_lock = PGWALK_RDLOCK,
6398 };
6399
mem_cgroup_move_charge(void)6400 static void mem_cgroup_move_charge(void)
6401 {
6402 lru_add_drain_all();
6403 /*
6404 * Signal folio_memcg_lock() to take the memcg's move_lock
6405 * while we're moving its pages to another memcg. Then wait
6406 * for already started RCU-only updates to finish.
6407 */
6408 atomic_inc(&mc.from->moving_account);
6409 synchronize_rcu();
6410 retry:
6411 if (unlikely(!mmap_read_trylock(mc.mm))) {
6412 /*
6413 * Someone who are holding the mmap_lock might be waiting in
6414 * waitq. So we cancel all extra charges, wake up all waiters,
6415 * and retry. Because we cancel precharges, we might not be able
6416 * to move enough charges, but moving charge is a best-effort
6417 * feature anyway, so it wouldn't be a big problem.
6418 */
6419 __mem_cgroup_clear_mc();
6420 cond_resched();
6421 goto retry;
6422 }
6423 /*
6424 * When we have consumed all precharges and failed in doing
6425 * additional charge, the page walk just aborts.
6426 */
6427 walk_page_range(mc.mm, 0, ULONG_MAX, &charge_walk_ops, NULL);
6428 mmap_read_unlock(mc.mm);
6429 atomic_dec(&mc.from->moving_account);
6430 }
6431
mem_cgroup_move_task(void)6432 static void mem_cgroup_move_task(void)
6433 {
6434 if (mc.to) {
6435 mem_cgroup_move_charge();
6436 mem_cgroup_clear_mc();
6437 }
6438 }
6439 #else /* !CONFIG_MMU */
mem_cgroup_can_attach(struct cgroup_taskset *tset)6440 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
6441 {
6442 return 0;
6443 }
mem_cgroup_cancel_attach(struct cgroup_taskset *tset)6444 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
6445 {
6446 }
mem_cgroup_move_task(void)6447 static void mem_cgroup_move_task(void)
6448 {
6449 }
6450 #endif
6451
6452 #ifdef CONFIG_LRU_GEN
mem_cgroup_attach(struct cgroup_taskset *tset)6453 static void mem_cgroup_attach(struct cgroup_taskset *tset)
6454 {
6455 struct task_struct *task;
6456 struct cgroup_subsys_state *css;
6457
6458 /* find the first leader if there is any */
6459 cgroup_taskset_for_each_leader(task, css, tset)
6460 break;
6461
6462 if (!task)
6463 return;
6464
6465 task_lock(task);
6466 if (task->mm && READ_ONCE(task->mm->owner) == task)
6467 lru_gen_migrate_mm(task->mm);
6468 task_unlock(task);
6469 }
6470 #else
mem_cgroup_attach(struct cgroup_taskset *tset)6471 static void mem_cgroup_attach(struct cgroup_taskset *tset)
6472 {
6473 }
6474 #endif /* CONFIG_LRU_GEN */
6475
seq_puts_memcg_tunable(struct seq_file *m, unsigned long value)6476 static int seq_puts_memcg_tunable(struct seq_file *m, unsigned long value)
6477 {
6478 if (value == PAGE_COUNTER_MAX)
6479 seq_puts(m, "max\n");
6480 else
6481 seq_printf(m, "%llu\n", (u64)value * PAGE_SIZE);
6482
6483 return 0;
6484 }
6485
memory_current_read(struct cgroup_subsys_state *css, struct cftype *cft)6486 static u64 memory_current_read(struct cgroup_subsys_state *css,
6487 struct cftype *cft)
6488 {
6489 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6490
6491 return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
6492 }
6493
memory_peak_read(struct cgroup_subsys_state *css, struct cftype *cft)6494 static u64 memory_peak_read(struct cgroup_subsys_state *css,
6495 struct cftype *cft)
6496 {
6497 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6498
6499 return (u64)memcg->memory.watermark * PAGE_SIZE;
6500 }
6501
memory_min_show(struct seq_file *m, void *v)6502 static int memory_min_show(struct seq_file *m, void *v)
6503 {
6504 return seq_puts_memcg_tunable(m,
6505 READ_ONCE(mem_cgroup_from_seq(m)->memory.min));
6506 }
6507
memory_min_write(struct kernfs_open_file *of, char *buf, size_t nbytes, loff_t off)6508 static ssize_t memory_min_write(struct kernfs_open_file *of,
6509 char *buf, size_t nbytes, loff_t off)
6510 {
6511 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6512 unsigned long min;
6513 int err;
6514
6515 buf = strstrip(buf);
6516 err = page_counter_memparse(buf, "max", &min);
6517 if (err)
6518 return err;
6519
6520 page_counter_set_min(&memcg->memory, min);
6521
6522 return nbytes;
6523 }
6524
memory_low_show(struct seq_file *m, void *v)6525 static int memory_low_show(struct seq_file *m, void *v)
6526 {
6527 return seq_puts_memcg_tunable(m,
6528 READ_ONCE(mem_cgroup_from_seq(m)->memory.low));
6529 }
6530
memory_low_write(struct kernfs_open_file *of, char *buf, size_t nbytes, loff_t off)6531 static ssize_t memory_low_write(struct kernfs_open_file *of,
6532 char *buf, size_t nbytes, loff_t off)
6533 {
6534 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6535 unsigned long low;
6536 int err;
6537
6538 buf = strstrip(buf);
6539 err = page_counter_memparse(buf, "max", &low);
6540 if (err)
6541 return err;
6542
6543 page_counter_set_low(&memcg->memory, low);
6544
6545 return nbytes;
6546 }
6547
memory_high_show(struct seq_file *m, void *v)6548 static int memory_high_show(struct seq_file *m, void *v)
6549 {
6550 return seq_puts_memcg_tunable(m,
6551 READ_ONCE(mem_cgroup_from_seq(m)->memory.high));
6552 }
6553
memory_high_write(struct kernfs_open_file *of, char *buf, size_t nbytes, loff_t off)6554 static ssize_t memory_high_write(struct kernfs_open_file *of,
6555 char *buf, size_t nbytes, loff_t off)
6556 {
6557 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6558 unsigned int nr_retries = MAX_RECLAIM_RETRIES;
6559 bool drained = false;
6560 unsigned long high;
6561 int err;
6562
6563 buf = strstrip(buf);
6564 err = page_counter_memparse(buf, "max", &high);
6565 if (err)
6566 return err;
6567
6568 page_counter_set_high(&memcg->memory, high);
6569
6570 for (;;) {
6571 unsigned long nr_pages = page_counter_read(&memcg->memory);
6572 unsigned long reclaimed;
6573
6574 if (nr_pages <= high)
6575 break;
6576
6577 if (signal_pending(current))
6578 break;
6579
6580 if (!drained) {
6581 drain_all_stock(memcg);
6582 drained = true;
6583 continue;
6584 }
6585
6586 reclaimed = try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
6587 GFP_KERNEL, MEMCG_RECLAIM_MAY_SWAP);
6588
6589 if (!reclaimed && !nr_retries--)
6590 break;
6591 }
6592
6593 memcg_wb_domain_size_changed(memcg);
6594 return nbytes;
6595 }
6596
memory_max_show(struct seq_file *m, void *v)6597 static int memory_max_show(struct seq_file *m, void *v)
6598 {
6599 return seq_puts_memcg_tunable(m,
6600 READ_ONCE(mem_cgroup_from_seq(m)->memory.max));
6601 }
6602
memory_max_write(struct kernfs_open_file *of, char *buf, size_t nbytes, loff_t off)6603 static ssize_t memory_max_write(struct kernfs_open_file *of,
6604 char *buf, size_t nbytes, loff_t off)
6605 {
6606 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6607 unsigned int nr_reclaims = MAX_RECLAIM_RETRIES;
6608 bool drained = false;
6609 unsigned long max;
6610 int err;
6611
6612 buf = strstrip(buf);
6613 err = page_counter_memparse(buf, "max", &max);
6614 if (err)
6615 return err;
6616
6617 xchg(&memcg->memory.max, max);
6618
6619 for (;;) {
6620 unsigned long nr_pages = page_counter_read(&memcg->memory);
6621
6622 if (nr_pages <= max)
6623 break;
6624
6625 if (signal_pending(current))
6626 break;
6627
6628 if (!drained) {
6629 drain_all_stock(memcg);
6630 drained = true;
6631 continue;
6632 }
6633
6634 if (nr_reclaims) {
6635 if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
6636 GFP_KERNEL, MEMCG_RECLAIM_MAY_SWAP))
6637 nr_reclaims--;
6638 continue;
6639 }
6640
6641 memcg_memory_event(memcg, MEMCG_OOM);
6642 if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
6643 break;
6644 }
6645
6646 memcg_wb_domain_size_changed(memcg);
6647 return nbytes;
6648 }
6649
__memory_events_show(struct seq_file *m, atomic_long_t *events)6650 static void __memory_events_show(struct seq_file *m, atomic_long_t *events)
6651 {
6652 seq_printf(m, "low %lu\n", atomic_long_read(&events[MEMCG_LOW]));
6653 seq_printf(m, "high %lu\n", atomic_long_read(&events[MEMCG_HIGH]));
6654 seq_printf(m, "max %lu\n", atomic_long_read(&events[MEMCG_MAX]));
6655 seq_printf(m, "oom %lu\n", atomic_long_read(&events[MEMCG_OOM]));
6656 seq_printf(m, "oom_kill %lu\n",
6657 atomic_long_read(&events[MEMCG_OOM_KILL]));
6658 seq_printf(m, "oom_group_kill %lu\n",
6659 atomic_long_read(&events[MEMCG_OOM_GROUP_KILL]));
6660 }
6661
memory_events_show(struct seq_file *m, void *v)6662 static int memory_events_show(struct seq_file *m, void *v)
6663 {
6664 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6665
6666 __memory_events_show(m, memcg->memory_events);
6667 return 0;
6668 }
6669
memory_events_local_show(struct seq_file *m, void *v)6670 static int memory_events_local_show(struct seq_file *m, void *v)
6671 {
6672 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6673
6674 __memory_events_show(m, memcg->memory_events_local);
6675 return 0;
6676 }
6677
memory_stat_show(struct seq_file *m, void *v)6678 static int memory_stat_show(struct seq_file *m, void *v)
6679 {
6680 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6681 char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
6682 struct seq_buf s;
6683
6684 if (!buf)
6685 return -ENOMEM;
6686 seq_buf_init(&s, buf, PAGE_SIZE);
6687 memory_stat_format(memcg, &s);
6688 seq_puts(m, buf);
6689 kfree(buf);
6690 #ifdef CONFIG_HYPERHOLD_DEBUG
6691 memcg_eswap_info_show(m);
6692 #endif
6693 return 0;
6694 }
6695
6696 #ifdef CONFIG_NUMA
lruvec_page_state_output(struct lruvec *lruvec, int item)6697 static inline unsigned long lruvec_page_state_output(struct lruvec *lruvec,
6698 int item)
6699 {
6700 return lruvec_page_state(lruvec, item) * memcg_page_state_unit(item);
6701 }
6702
memory_numa_stat_show(struct seq_file *m, void *v)6703 static int memory_numa_stat_show(struct seq_file *m, void *v)
6704 {
6705 int i;
6706 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6707
6708 mem_cgroup_flush_stats();
6709
6710 for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
6711 int nid;
6712
6713 if (memory_stats[i].idx >= NR_VM_NODE_STAT_ITEMS)
6714 continue;
6715
6716 seq_printf(m, "%s", memory_stats[i].name);
6717 for_each_node_state(nid, N_MEMORY) {
6718 u64 size;
6719 struct lruvec *lruvec;
6720
6721 lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
6722 size = lruvec_page_state_output(lruvec,
6723 memory_stats[i].idx);
6724 seq_printf(m, " N%d=%llu", nid, size);
6725 }
6726 seq_putc(m, '\n');
6727 }
6728
6729 return 0;
6730 }
6731 #endif
6732
memory_oom_group_show(struct seq_file *m, void *v)6733 static int memory_oom_group_show(struct seq_file *m, void *v)
6734 {
6735 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6736
6737 seq_printf(m, "%d\n", READ_ONCE(memcg->oom_group));
6738
6739 return 0;
6740 }
6741
memory_oom_group_write(struct kernfs_open_file *of, char *buf, size_t nbytes, loff_t off)6742 static ssize_t memory_oom_group_write(struct kernfs_open_file *of,
6743 char *buf, size_t nbytes, loff_t off)
6744 {
6745 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6746 int ret, oom_group;
6747
6748 buf = strstrip(buf);
6749 if (!buf)
6750 return -EINVAL;
6751
6752 ret = kstrtoint(buf, 0, &oom_group);
6753 if (ret)
6754 return ret;
6755
6756 if (oom_group != 0 && oom_group != 1)
6757 return -EINVAL;
6758
6759 WRITE_ONCE(memcg->oom_group, oom_group);
6760
6761 return nbytes;
6762 }
6763
memory_reclaim(struct kernfs_open_file *of, char *buf, size_t nbytes, loff_t off)6764 static ssize_t memory_reclaim(struct kernfs_open_file *of, char *buf,
6765 size_t nbytes, loff_t off)
6766 {
6767 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6768 unsigned int nr_retries = MAX_RECLAIM_RETRIES;
6769 unsigned long nr_to_reclaim, nr_reclaimed = 0;
6770 unsigned int reclaim_options;
6771 int err;
6772
6773 buf = strstrip(buf);
6774 err = page_counter_memparse(buf, "", &nr_to_reclaim);
6775 if (err)
6776 return err;
6777
6778 reclaim_options = MEMCG_RECLAIM_MAY_SWAP | MEMCG_RECLAIM_PROACTIVE;
6779 while (nr_reclaimed < nr_to_reclaim) {
6780 unsigned long reclaimed;
6781
6782 if (signal_pending(current))
6783 return -EINTR;
6784
6785 /*
6786 * This is the final attempt, drain percpu lru caches in the
6787 * hope of introducing more evictable pages for
6788 * try_to_free_mem_cgroup_pages().
6789 */
6790 if (!nr_retries)
6791 lru_add_drain_all();
6792
6793 reclaimed = try_to_free_mem_cgroup_pages(memcg,
6794 min(nr_to_reclaim - nr_reclaimed, SWAP_CLUSTER_MAX),
6795 GFP_KERNEL, reclaim_options);
6796
6797 if (!reclaimed && !nr_retries--)
6798 return -EAGAIN;
6799
6800 nr_reclaimed += reclaimed;
6801 }
6802
6803 return nbytes;
6804 }
6805
6806 static struct cftype memory_files[] = {
6807 {
6808 .name = "current",
6809 .flags = CFTYPE_NOT_ON_ROOT,
6810 .read_u64 = memory_current_read,
6811 },
6812 {
6813 .name = "peak",
6814 .flags = CFTYPE_NOT_ON_ROOT,
6815 .read_u64 = memory_peak_read,
6816 },
6817 {
6818 .name = "min",
6819 .flags = CFTYPE_NOT_ON_ROOT,
6820 .seq_show = memory_min_show,
6821 .write = memory_min_write,
6822 },
6823 {
6824 .name = "low",
6825 .flags = CFTYPE_NOT_ON_ROOT,
6826 .seq_show = memory_low_show,
6827 .write = memory_low_write,
6828 },
6829 {
6830 .name = "high",
6831 .flags = CFTYPE_NOT_ON_ROOT,
6832 .seq_show = memory_high_show,
6833 .write = memory_high_write,
6834 },
6835 {
6836 .name = "max",
6837 .flags = CFTYPE_NOT_ON_ROOT,
6838 .seq_show = memory_max_show,
6839 .write = memory_max_write,
6840 },
6841 {
6842 .name = "events",
6843 .flags = CFTYPE_NOT_ON_ROOT,
6844 .file_offset = offsetof(struct mem_cgroup, events_file),
6845 .seq_show = memory_events_show,
6846 },
6847 {
6848 .name = "events.local",
6849 .flags = CFTYPE_NOT_ON_ROOT,
6850 .file_offset = offsetof(struct mem_cgroup, events_local_file),
6851 .seq_show = memory_events_local_show,
6852 },
6853 {
6854 .name = "stat",
6855 .seq_show = memory_stat_show,
6856 },
6857 #ifdef CONFIG_NUMA
6858 {
6859 .name = "numa_stat",
6860 .seq_show = memory_numa_stat_show,
6861 },
6862 #endif
6863 {
6864 .name = "oom.group",
6865 .flags = CFTYPE_NOT_ON_ROOT | CFTYPE_NS_DELEGATABLE,
6866 .seq_show = memory_oom_group_show,
6867 .write = memory_oom_group_write,
6868 },
6869 {
6870 .name = "reclaim",
6871 .flags = CFTYPE_NS_DELEGATABLE,
6872 .write = memory_reclaim,
6873 },
6874 { } /* terminate */
6875 };
6876
6877 struct cgroup_subsys memory_cgrp_subsys = {
6878 .css_alloc = mem_cgroup_css_alloc,
6879 .css_online = mem_cgroup_css_online,
6880 .css_offline = mem_cgroup_css_offline,
6881 .css_released = mem_cgroup_css_released,
6882 .css_free = mem_cgroup_css_free,
6883 .css_reset = mem_cgroup_css_reset,
6884 .css_rstat_flush = mem_cgroup_css_rstat_flush,
6885 .can_attach = mem_cgroup_can_attach,
6886 .attach = mem_cgroup_attach,
6887 .cancel_attach = mem_cgroup_cancel_attach,
6888 .post_attach = mem_cgroup_move_task,
6889 .dfl_cftypes = memory_files,
6890 .legacy_cftypes = mem_cgroup_legacy_files,
6891 .early_init = 0,
6892 };
6893
6894 /*
6895 * This function calculates an individual cgroup's effective
6896 * protection which is derived from its own memory.min/low, its
6897 * parent's and siblings' settings, as well as the actual memory
6898 * distribution in the tree.
6899 *
6900 * The following rules apply to the effective protection values:
6901 *
6902 * 1. At the first level of reclaim, effective protection is equal to
6903 * the declared protection in memory.min and memory.low.
6904 *
6905 * 2. To enable safe delegation of the protection configuration, at
6906 * subsequent levels the effective protection is capped to the
6907 * parent's effective protection.
6908 *
6909 * 3. To make complex and dynamic subtrees easier to configure, the
6910 * user is allowed to overcommit the declared protection at a given
6911 * level. If that is the case, the parent's effective protection is
6912 * distributed to the children in proportion to how much protection
6913 * they have declared and how much of it they are utilizing.
6914 *
6915 * This makes distribution proportional, but also work-conserving:
6916 * if one cgroup claims much more protection than it uses memory,
6917 * the unused remainder is available to its siblings.
6918 *
6919 * 4. Conversely, when the declared protection is undercommitted at a
6920 * given level, the distribution of the larger parental protection
6921 * budget is NOT proportional. A cgroup's protection from a sibling
6922 * is capped to its own memory.min/low setting.
6923 *
6924 * 5. However, to allow protecting recursive subtrees from each other
6925 * without having to declare each individual cgroup's fixed share
6926 * of the ancestor's claim to protection, any unutilized -
6927 * "floating" - protection from up the tree is distributed in
6928 * proportion to each cgroup's *usage*. This makes the protection
6929 * neutral wrt sibling cgroups and lets them compete freely over
6930 * the shared parental protection budget, but it protects the
6931 * subtree as a whole from neighboring subtrees.
6932 *
6933 * Note that 4. and 5. are not in conflict: 4. is about protecting
6934 * against immediate siblings whereas 5. is about protecting against
6935 * neighboring subtrees.
6936 */
effective_protection(unsigned long usage, unsigned long parent_usage, unsigned long setting, unsigned long parent_effective, unsigned long siblings_protected)6937 static unsigned long effective_protection(unsigned long usage,
6938 unsigned long parent_usage,
6939 unsigned long setting,
6940 unsigned long parent_effective,
6941 unsigned long siblings_protected)
6942 {
6943 unsigned long protected;
6944 unsigned long ep;
6945
6946 protected = min(usage, setting);
6947 /*
6948 * If all cgroups at this level combined claim and use more
6949 * protection than what the parent affords them, distribute
6950 * shares in proportion to utilization.
6951 *
6952 * We are using actual utilization rather than the statically
6953 * claimed protection in order to be work-conserving: claimed
6954 * but unused protection is available to siblings that would
6955 * otherwise get a smaller chunk than what they claimed.
6956 */
6957 if (siblings_protected > parent_effective)
6958 return protected * parent_effective / siblings_protected;
6959
6960 /*
6961 * Ok, utilized protection of all children is within what the
6962 * parent affords them, so we know whatever this child claims
6963 * and utilizes is effectively protected.
6964 *
6965 * If there is unprotected usage beyond this value, reclaim
6966 * will apply pressure in proportion to that amount.
6967 *
6968 * If there is unutilized protection, the cgroup will be fully
6969 * shielded from reclaim, but we do return a smaller value for
6970 * protection than what the group could enjoy in theory. This
6971 * is okay. With the overcommit distribution above, effective
6972 * protection is always dependent on how memory is actually
6973 * consumed among the siblings anyway.
6974 */
6975 ep = protected;
6976
6977 /*
6978 * If the children aren't claiming (all of) the protection
6979 * afforded to them by the parent, distribute the remainder in
6980 * proportion to the (unprotected) memory of each cgroup. That
6981 * way, cgroups that aren't explicitly prioritized wrt each
6982 * other compete freely over the allowance, but they are
6983 * collectively protected from neighboring trees.
6984 *
6985 * We're using unprotected memory for the weight so that if
6986 * some cgroups DO claim explicit protection, we don't protect
6987 * the same bytes twice.
6988 *
6989 * Check both usage and parent_usage against the respective
6990 * protected values. One should imply the other, but they
6991 * aren't read atomically - make sure the division is sane.
6992 */
6993 if (!(cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT))
6994 return ep;
6995 if (parent_effective > siblings_protected &&
6996 parent_usage > siblings_protected &&
6997 usage > protected) {
6998 unsigned long unclaimed;
6999
7000 unclaimed = parent_effective - siblings_protected;
7001 unclaimed *= usage - protected;
7002 unclaimed /= parent_usage - siblings_protected;
7003
7004 ep += unclaimed;
7005 }
7006
7007 return ep;
7008 }
7009
7010 /**
7011 * mem_cgroup_calculate_protection - check if memory consumption is in the normal range
7012 * @root: the top ancestor of the sub-tree being checked
7013 * @memcg: the memory cgroup to check
7014 *
7015 * WARNING: This function is not stateless! It can only be used as part
7016 * of a top-down tree iteration, not for isolated queries.
7017 */
mem_cgroup_calculate_protection(struct mem_cgroup *root, struct mem_cgroup *memcg)7018 void mem_cgroup_calculate_protection(struct mem_cgroup *root,
7019 struct mem_cgroup *memcg)
7020 {
7021 unsigned long usage, parent_usage;
7022 struct mem_cgroup *parent;
7023
7024 if (mem_cgroup_disabled())
7025 return;
7026
7027 if (!root)
7028 root = root_mem_cgroup;
7029
7030 /*
7031 * Effective values of the reclaim targets are ignored so they
7032 * can be stale. Have a look at mem_cgroup_protection for more
7033 * details.
7034 * TODO: calculation should be more robust so that we do not need
7035 * that special casing.
7036 */
7037 if (memcg == root)
7038 return;
7039
7040 usage = page_counter_read(&memcg->memory);
7041 if (!usage)
7042 return;
7043
7044 parent = parent_mem_cgroup(memcg);
7045
7046 if (parent == root) {
7047 memcg->memory.emin = READ_ONCE(memcg->memory.min);
7048 memcg->memory.elow = READ_ONCE(memcg->memory.low);
7049 return;
7050 }
7051
7052 parent_usage = page_counter_read(&parent->memory);
7053
7054 WRITE_ONCE(memcg->memory.emin, effective_protection(usage, parent_usage,
7055 READ_ONCE(memcg->memory.min),
7056 READ_ONCE(parent->memory.emin),
7057 atomic_long_read(&parent->memory.children_min_usage)));
7058
7059 WRITE_ONCE(memcg->memory.elow, effective_protection(usage, parent_usage,
7060 READ_ONCE(memcg->memory.low),
7061 READ_ONCE(parent->memory.elow),
7062 atomic_long_read(&parent->memory.children_low_usage)));
7063 }
7064
charge_memcg(struct folio *folio, struct mem_cgroup *memcg, gfp_t gfp)7065 static int charge_memcg(struct folio *folio, struct mem_cgroup *memcg,
7066 gfp_t gfp)
7067 {
7068 long nr_pages = folio_nr_pages(folio);
7069 int ret;
7070
7071 ret = try_charge(memcg, gfp, nr_pages);
7072 if (ret)
7073 goto out;
7074
7075 css_get(&memcg->css);
7076 commit_charge(folio, memcg);
7077
7078 local_irq_disable();
7079 mem_cgroup_charge_statistics(memcg, nr_pages);
7080 memcg_check_events(memcg, folio_nid(folio));
7081 local_irq_enable();
7082 out:
7083 return ret;
7084 }
7085
__mem_cgroup_charge(struct folio *folio, struct mm_struct *mm, gfp_t gfp)7086 int __mem_cgroup_charge(struct folio *folio, struct mm_struct *mm, gfp_t gfp)
7087 {
7088 struct mem_cgroup *memcg;
7089 int ret;
7090
7091 memcg = get_mem_cgroup_from_mm(mm);
7092 ret = charge_memcg(folio, memcg, gfp);
7093 css_put(&memcg->css);
7094
7095 return ret;
7096 }
7097
7098 /**
7099 * mem_cgroup_swapin_charge_folio - Charge a newly allocated folio for swapin.
7100 * @folio: folio to charge.
7101 * @mm: mm context of the victim
7102 * @gfp: reclaim mode
7103 * @entry: swap entry for which the folio is allocated
7104 *
7105 * This function charges a folio allocated for swapin. Please call this before
7106 * adding the folio to the swapcache.
7107 *
7108 * Returns 0 on success. Otherwise, an error code is returned.
7109 */
mem_cgroup_swapin_charge_folio(struct folio *folio, struct mm_struct *mm, gfp_t gfp, swp_entry_t entry)7110 int mem_cgroup_swapin_charge_folio(struct folio *folio, struct mm_struct *mm,
7111 gfp_t gfp, swp_entry_t entry)
7112 {
7113 struct mem_cgroup *memcg;
7114 unsigned short id;
7115 int ret;
7116
7117 if (mem_cgroup_disabled())
7118 return 0;
7119
7120 id = lookup_swap_cgroup_id(entry);
7121 rcu_read_lock();
7122 memcg = mem_cgroup_from_id(id);
7123 if (!memcg || !css_tryget_online(&memcg->css))
7124 memcg = get_mem_cgroup_from_mm(mm);
7125 rcu_read_unlock();
7126
7127 ret = charge_memcg(folio, memcg, gfp);
7128
7129 css_put(&memcg->css);
7130 return ret;
7131 }
7132
7133 /*
7134 * mem_cgroup_swapin_uncharge_swap - uncharge swap slot
7135 * @entry: swap entry for which the page is charged
7136 *
7137 * Call this function after successfully adding the charged page to swapcache.
7138 *
7139 * Note: This function assumes the page for which swap slot is being uncharged
7140 * is order 0 page.
7141 */
mem_cgroup_swapin_uncharge_swap(swp_entry_t entry)7142 void mem_cgroup_swapin_uncharge_swap(swp_entry_t entry)
7143 {
7144 /*
7145 * Cgroup1's unified memory+swap counter has been charged with the
7146 * new swapcache page, finish the transfer by uncharging the swap
7147 * slot. The swap slot would also get uncharged when it dies, but
7148 * it can stick around indefinitely and we'd count the page twice
7149 * the entire time.
7150 *
7151 * Cgroup2 has separate resource counters for memory and swap,
7152 * so this is a non-issue here. Memory and swap charge lifetimes
7153 * correspond 1:1 to page and swap slot lifetimes: we charge the
7154 * page to memory here, and uncharge swap when the slot is freed.
7155 */
7156 if (!mem_cgroup_disabled() && do_memsw_account()) {
7157 /*
7158 * The swap entry might not get freed for a long time,
7159 * let's not wait for it. The page already received a
7160 * memory+swap charge, drop the swap entry duplicate.
7161 */
7162 mem_cgroup_uncharge_swap(entry, 1);
7163 }
7164 }
7165
7166 struct uncharge_gather {
7167 struct mem_cgroup *memcg;
7168 unsigned long nr_memory;
7169 unsigned long pgpgout;
7170 unsigned long nr_kmem;
7171 int nid;
7172 };
7173
uncharge_gather_clear(struct uncharge_gather *ug)7174 static inline void uncharge_gather_clear(struct uncharge_gather *ug)
7175 {
7176 memset(ug, 0, sizeof(*ug));
7177 }
7178
uncharge_batch(const struct uncharge_gather *ug)7179 static void uncharge_batch(const struct uncharge_gather *ug)
7180 {
7181 unsigned long flags;
7182
7183 if (ug->nr_memory) {
7184 page_counter_uncharge(&ug->memcg->memory, ug->nr_memory);
7185 if (do_memsw_account())
7186 page_counter_uncharge(&ug->memcg->memsw, ug->nr_memory);
7187 if (ug->nr_kmem)
7188 memcg_account_kmem(ug->memcg, -ug->nr_kmem);
7189 memcg_oom_recover(ug->memcg);
7190 }
7191
7192 local_irq_save(flags);
7193 __count_memcg_events(ug->memcg, PGPGOUT, ug->pgpgout);
7194 __this_cpu_add(ug->memcg->vmstats_percpu->nr_page_events, ug->nr_memory);
7195 memcg_check_events(ug->memcg, ug->nid);
7196 local_irq_restore(flags);
7197
7198 /* drop reference from uncharge_folio */
7199 css_put(&ug->memcg->css);
7200 }
7201
uncharge_folio(struct folio *folio, struct uncharge_gather *ug)7202 static void uncharge_folio(struct folio *folio, struct uncharge_gather *ug)
7203 {
7204 long nr_pages;
7205 struct mem_cgroup *memcg;
7206 struct obj_cgroup *objcg;
7207
7208 VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
7209
7210 /*
7211 * Nobody should be changing or seriously looking at
7212 * folio memcg or objcg at this point, we have fully
7213 * exclusive access to the folio.
7214 */
7215 if (folio_memcg_kmem(folio)) {
7216 objcg = __folio_objcg(folio);
7217 /*
7218 * This get matches the put at the end of the function and
7219 * kmem pages do not hold memcg references anymore.
7220 */
7221 memcg = get_mem_cgroup_from_objcg(objcg);
7222 } else {
7223 memcg = __folio_memcg(folio);
7224 }
7225
7226 if (!memcg)
7227 return;
7228
7229 if (ug->memcg != memcg) {
7230 if (ug->memcg) {
7231 uncharge_batch(ug);
7232 uncharge_gather_clear(ug);
7233 }
7234 ug->memcg = memcg;
7235 ug->nid = folio_nid(folio);
7236
7237 /* pairs with css_put in uncharge_batch */
7238 css_get(&memcg->css);
7239 }
7240
7241 nr_pages = folio_nr_pages(folio);
7242
7243 if (folio_memcg_kmem(folio)) {
7244 ug->nr_memory += nr_pages;
7245 ug->nr_kmem += nr_pages;
7246
7247 folio->memcg_data = 0;
7248 obj_cgroup_put(objcg);
7249 } else {
7250 /* LRU pages aren't accounted at the root level */
7251 if (!mem_cgroup_is_root(memcg))
7252 ug->nr_memory += nr_pages;
7253 ug->pgpgout++;
7254
7255 folio->memcg_data = 0;
7256 }
7257
7258 css_put(&memcg->css);
7259 }
7260
__mem_cgroup_uncharge(struct folio *folio)7261 void __mem_cgroup_uncharge(struct folio *folio)
7262 {
7263 struct uncharge_gather ug;
7264
7265 /* Don't touch folio->lru of any random page, pre-check: */
7266 if (!folio_memcg(folio))
7267 return;
7268
7269 uncharge_gather_clear(&ug);
7270 uncharge_folio(folio, &ug);
7271 uncharge_batch(&ug);
7272 }
7273
7274 /**
7275 * __mem_cgroup_uncharge_list - uncharge a list of page
7276 * @page_list: list of pages to uncharge
7277 *
7278 * Uncharge a list of pages previously charged with
7279 * __mem_cgroup_charge().
7280 */
__mem_cgroup_uncharge_list(struct list_head *page_list)7281 void __mem_cgroup_uncharge_list(struct list_head *page_list)
7282 {
7283 struct uncharge_gather ug;
7284 struct folio *folio;
7285
7286 uncharge_gather_clear(&ug);
7287 list_for_each_entry(folio, page_list, lru)
7288 uncharge_folio(folio, &ug);
7289 if (ug.memcg)
7290 uncharge_batch(&ug);
7291 }
7292
7293 /**
7294 * mem_cgroup_migrate - Charge a folio's replacement.
7295 * @old: Currently circulating folio.
7296 * @new: Replacement folio.
7297 *
7298 * Charge @new as a replacement folio for @old. @old will
7299 * be uncharged upon free.
7300 *
7301 * Both folios must be locked, @new->mapping must be set up.
7302 */
mem_cgroup_migrate(struct folio *old, struct folio *new)7303 void mem_cgroup_migrate(struct folio *old, struct folio *new)
7304 {
7305 struct mem_cgroup *memcg;
7306 long nr_pages = folio_nr_pages(new);
7307 unsigned long flags;
7308
7309 VM_BUG_ON_FOLIO(!folio_test_locked(old), old);
7310 VM_BUG_ON_FOLIO(!folio_test_locked(new), new);
7311 VM_BUG_ON_FOLIO(folio_test_anon(old) != folio_test_anon(new), new);
7312 VM_BUG_ON_FOLIO(folio_nr_pages(old) != nr_pages, new);
7313
7314 if (mem_cgroup_disabled())
7315 return;
7316
7317 /* Page cache replacement: new folio already charged? */
7318 if (folio_memcg(new))
7319 return;
7320
7321 memcg = folio_memcg(old);
7322 VM_WARN_ON_ONCE_FOLIO(!memcg, old);
7323 if (!memcg)
7324 return;
7325
7326 /* Force-charge the new page. The old one will be freed soon */
7327 if (!mem_cgroup_is_root(memcg)) {
7328 page_counter_charge(&memcg->memory, nr_pages);
7329 if (do_memsw_account())
7330 page_counter_charge(&memcg->memsw, nr_pages);
7331 }
7332
7333 css_get(&memcg->css);
7334 commit_charge(new, memcg);
7335
7336 local_irq_save(flags);
7337 mem_cgroup_charge_statistics(memcg, nr_pages);
7338 memcg_check_events(memcg, folio_nid(new));
7339 local_irq_restore(flags);
7340 }
7341
7342 DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
7343 EXPORT_SYMBOL(memcg_sockets_enabled_key);
7344
mem_cgroup_sk_alloc(struct sock *sk)7345 void mem_cgroup_sk_alloc(struct sock *sk)
7346 {
7347 struct mem_cgroup *memcg;
7348
7349 if (!mem_cgroup_sockets_enabled)
7350 return;
7351
7352 /* Do not associate the sock with unrelated interrupted task's memcg. */
7353 if (!in_task())
7354 return;
7355
7356 rcu_read_lock();
7357 memcg = mem_cgroup_from_task(current);
7358 if (mem_cgroup_is_root(memcg))
7359 goto out;
7360 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
7361 goto out;
7362 if (css_tryget(&memcg->css))
7363 sk->sk_memcg = memcg;
7364 out:
7365 rcu_read_unlock();
7366 }
7367
mem_cgroup_sk_free(struct sock *sk)7368 void mem_cgroup_sk_free(struct sock *sk)
7369 {
7370 if (sk->sk_memcg)
7371 css_put(&sk->sk_memcg->css);
7372 }
7373
7374 /**
7375 * mem_cgroup_charge_skmem - charge socket memory
7376 * @memcg: memcg to charge
7377 * @nr_pages: number of pages to charge
7378 * @gfp_mask: reclaim mode
7379 *
7380 * Charges @nr_pages to @memcg. Returns %true if the charge fit within
7381 * @memcg's configured limit, %false if it doesn't.
7382 */
mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages, gfp_t gfp_mask)7383 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages,
7384 gfp_t gfp_mask)
7385 {
7386 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
7387 struct page_counter *fail;
7388
7389 if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
7390 memcg->tcpmem_pressure = 0;
7391 return true;
7392 }
7393 memcg->tcpmem_pressure = 1;
7394 if (gfp_mask & __GFP_NOFAIL) {
7395 page_counter_charge(&memcg->tcpmem, nr_pages);
7396 return true;
7397 }
7398 return false;
7399 }
7400
7401 if (try_charge(memcg, gfp_mask, nr_pages) == 0) {
7402 mod_memcg_state(memcg, MEMCG_SOCK, nr_pages);
7403 return true;
7404 }
7405
7406 return false;
7407 }
7408
7409 /**
7410 * mem_cgroup_uncharge_skmem - uncharge socket memory
7411 * @memcg: memcg to uncharge
7412 * @nr_pages: number of pages to uncharge
7413 */
mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)7414 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
7415 {
7416 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
7417 page_counter_uncharge(&memcg->tcpmem, nr_pages);
7418 return;
7419 }
7420
7421 mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages);
7422
7423 refill_stock(memcg, nr_pages);
7424 }
7425
cgroup_memory(char *s)7426 static int __init cgroup_memory(char *s)
7427 {
7428 char *token;
7429
7430 while ((token = strsep(&s, ",")) != NULL) {
7431 if (!*token)
7432 continue;
7433 if (!strcmp(token, "nosocket"))
7434 cgroup_memory_nosocket = true;
7435 if (!strcmp(token, "nokmem"))
7436 cgroup_memory_nokmem = true;
7437 if (!strcmp(token, "nobpf"))
7438 cgroup_memory_nobpf = true;
7439 if (!strcmp(token, "kmem"))
7440 cgroup_memory_nokmem = false;
7441 }
7442 return 1;
7443 }
7444 __setup("cgroup.memory=", cgroup_memory);
7445
7446 /*
7447 * subsys_initcall() for memory controller.
7448 *
7449 * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this
7450 * context because of lock dependencies (cgroup_lock -> cpu hotplug) but
7451 * basically everything that doesn't depend on a specific mem_cgroup structure
7452 * should be initialized from here.
7453 */
mem_cgroup_init(void)7454 static int __init mem_cgroup_init(void)
7455 {
7456 int cpu, node;
7457
7458 /*
7459 * Currently s32 type (can refer to struct batched_lruvec_stat) is
7460 * used for per-memcg-per-cpu caching of per-node statistics. In order
7461 * to work fine, we should make sure that the overfill threshold can't
7462 * exceed S32_MAX / PAGE_SIZE.
7463 */
7464 BUILD_BUG_ON(MEMCG_CHARGE_BATCH > S32_MAX / PAGE_SIZE);
7465
7466 cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL,
7467 memcg_hotplug_cpu_dead);
7468
7469 for_each_possible_cpu(cpu)
7470 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
7471 drain_local_stock);
7472
7473 for_each_node(node) {
7474 struct mem_cgroup_tree_per_node *rtpn;
7475
7476 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, node);
7477
7478 rtpn->rb_root = RB_ROOT;
7479 rtpn->rb_rightmost = NULL;
7480 spin_lock_init(&rtpn->lock);
7481 soft_limit_tree.rb_tree_per_node[node] = rtpn;
7482 }
7483
7484 return 0;
7485 }
7486 subsys_initcall(mem_cgroup_init);
7487
7488 #ifdef CONFIG_SWAP
mem_cgroup_id_get_online(struct mem_cgroup *memcg)7489 static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
7490 {
7491 while (!refcount_inc_not_zero(&memcg->id.ref)) {
7492 /*
7493 * The root cgroup cannot be destroyed, so it's refcount must
7494 * always be >= 1.
7495 */
7496 if (WARN_ON_ONCE(mem_cgroup_is_root(memcg))) {
7497 VM_BUG_ON(1);
7498 break;
7499 }
7500 memcg = parent_mem_cgroup(memcg);
7501 if (!memcg)
7502 memcg = root_mem_cgroup;
7503 }
7504 return memcg;
7505 }
7506
7507 /**
7508 * mem_cgroup_swapout - transfer a memsw charge to swap
7509 * @folio: folio whose memsw charge to transfer
7510 * @entry: swap entry to move the charge to
7511 *
7512 * Transfer the memsw charge of @folio to @entry.
7513 */
mem_cgroup_swapout(struct folio *folio, swp_entry_t entry)7514 void mem_cgroup_swapout(struct folio *folio, swp_entry_t entry)
7515 {
7516 struct mem_cgroup *memcg, *swap_memcg;
7517 unsigned int nr_entries;
7518 unsigned short oldid;
7519
7520 VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
7521 VM_BUG_ON_FOLIO(folio_ref_count(folio), folio);
7522
7523 if (mem_cgroup_disabled())
7524 return;
7525
7526 if (!do_memsw_account())
7527 return;
7528
7529 memcg = folio_memcg(folio);
7530
7531 VM_WARN_ON_ONCE_FOLIO(!memcg, folio);
7532 if (!memcg)
7533 return;
7534
7535 /*
7536 * In case the memcg owning these pages has been offlined and doesn't
7537 * have an ID allocated to it anymore, charge the closest online
7538 * ancestor for the swap instead and transfer the memory+swap charge.
7539 */
7540 swap_memcg = mem_cgroup_id_get_online(memcg);
7541 nr_entries = folio_nr_pages(folio);
7542 /* Get references for the tail pages, too */
7543 if (nr_entries > 1)
7544 mem_cgroup_id_get_many(swap_memcg, nr_entries - 1);
7545 oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg),
7546 nr_entries);
7547 VM_BUG_ON_FOLIO(oldid, folio);
7548 mod_memcg_state(swap_memcg, MEMCG_SWAP, nr_entries);
7549
7550 folio->memcg_data = 0;
7551
7552 if (!mem_cgroup_is_root(memcg))
7553 page_counter_uncharge(&memcg->memory, nr_entries);
7554
7555 if (memcg != swap_memcg) {
7556 if (!mem_cgroup_is_root(swap_memcg))
7557 page_counter_charge(&swap_memcg->memsw, nr_entries);
7558 page_counter_uncharge(&memcg->memsw, nr_entries);
7559 }
7560
7561 /*
7562 * Interrupts should be disabled here because the caller holds the
7563 * i_pages lock which is taken with interrupts-off. It is
7564 * important here to have the interrupts disabled because it is the
7565 * only synchronisation we have for updating the per-CPU variables.
7566 */
7567 memcg_stats_lock();
7568 mem_cgroup_charge_statistics(memcg, -nr_entries);
7569 memcg_stats_unlock();
7570 memcg_check_events(memcg, folio_nid(folio));
7571
7572 css_put(&memcg->css);
7573 }
7574
7575 /**
7576 * __mem_cgroup_try_charge_swap - try charging swap space for a folio
7577 * @folio: folio being added to swap
7578 * @entry: swap entry to charge
7579 *
7580 * Try to charge @folio's memcg for the swap space at @entry.
7581 *
7582 * Returns 0 on success, -ENOMEM on failure.
7583 */
__mem_cgroup_try_charge_swap(struct folio *folio, swp_entry_t entry)7584 int __mem_cgroup_try_charge_swap(struct folio *folio, swp_entry_t entry)
7585 {
7586 unsigned int nr_pages = folio_nr_pages(folio);
7587 struct page_counter *counter;
7588 struct mem_cgroup *memcg;
7589 unsigned short oldid;
7590
7591 if (do_memsw_account())
7592 return 0;
7593
7594 memcg = folio_memcg(folio);
7595
7596 VM_WARN_ON_ONCE_FOLIO(!memcg, folio);
7597 if (!memcg)
7598 return 0;
7599
7600 if (!entry.val) {
7601 memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
7602 return 0;
7603 }
7604
7605 memcg = mem_cgroup_id_get_online(memcg);
7606
7607 if (!mem_cgroup_is_root(memcg) &&
7608 !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) {
7609 memcg_memory_event(memcg, MEMCG_SWAP_MAX);
7610 memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
7611 mem_cgroup_id_put(memcg);
7612 return -ENOMEM;
7613 }
7614
7615 /* Get references for the tail pages, too */
7616 if (nr_pages > 1)
7617 mem_cgroup_id_get_many(memcg, nr_pages - 1);
7618 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages);
7619 VM_BUG_ON_FOLIO(oldid, folio);
7620 mod_memcg_state(memcg, MEMCG_SWAP, nr_pages);
7621
7622 return 0;
7623 }
7624
7625 /**
7626 * __mem_cgroup_uncharge_swap - uncharge swap space
7627 * @entry: swap entry to uncharge
7628 * @nr_pages: the amount of swap space to uncharge
7629 */
__mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages)7630 void __mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages)
7631 {
7632 struct mem_cgroup *memcg;
7633 unsigned short id;
7634
7635 id = swap_cgroup_record(entry, 0, nr_pages);
7636 rcu_read_lock();
7637 memcg = mem_cgroup_from_id(id);
7638 if (memcg) {
7639 if (!mem_cgroup_is_root(memcg)) {
7640 if (do_memsw_account())
7641 page_counter_uncharge(&memcg->memsw, nr_pages);
7642 else
7643 page_counter_uncharge(&memcg->swap, nr_pages);
7644 }
7645 mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages);
7646 mem_cgroup_id_put_many(memcg, nr_pages);
7647 }
7648 rcu_read_unlock();
7649 }
7650
mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)7651 long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
7652 {
7653 long nr_swap_pages = get_nr_swap_pages();
7654
7655 if (mem_cgroup_disabled() || do_memsw_account())
7656 return nr_swap_pages;
7657 for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg))
7658 nr_swap_pages = min_t(long, nr_swap_pages,
7659 READ_ONCE(memcg->swap.max) -
7660 page_counter_read(&memcg->swap));
7661 return nr_swap_pages;
7662 }
7663
mem_cgroup_swap_full(struct folio *folio)7664 bool mem_cgroup_swap_full(struct folio *folio)
7665 {
7666 struct mem_cgroup *memcg;
7667
7668 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
7669
7670 if (vm_swap_full())
7671 return true;
7672 if (do_memsw_account())
7673 return false;
7674
7675 memcg = folio_memcg(folio);
7676 if (!memcg)
7677 return false;
7678
7679 for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg)) {
7680 unsigned long usage = page_counter_read(&memcg->swap);
7681
7682 if (usage * 2 >= READ_ONCE(memcg->swap.high) ||
7683 usage * 2 >= READ_ONCE(memcg->swap.max))
7684 return true;
7685 }
7686
7687 return false;
7688 }
7689
setup_swap_account(char *s)7690 static int __init setup_swap_account(char *s)
7691 {
7692 bool res;
7693
7694 if (!kstrtobool(s, &res) && !res)
7695 pr_warn_once("The swapaccount=0 commandline option is deprecated "
7696 "in favor of configuring swap control via cgroupfs. "
7697 "Please report your usecase to linux-mm@kvack.org if you "
7698 "depend on this functionality.\n");
7699 return 1;
7700 }
7701 __setup("swapaccount=", setup_swap_account);
7702
swap_current_read(struct cgroup_subsys_state *css, struct cftype *cft)7703 static u64 swap_current_read(struct cgroup_subsys_state *css,
7704 struct cftype *cft)
7705 {
7706 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7707
7708 return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
7709 }
7710
swap_peak_read(struct cgroup_subsys_state *css, struct cftype *cft)7711 static u64 swap_peak_read(struct cgroup_subsys_state *css,
7712 struct cftype *cft)
7713 {
7714 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7715
7716 return (u64)memcg->swap.watermark * PAGE_SIZE;
7717 }
7718
swap_high_show(struct seq_file *m, void *v)7719 static int swap_high_show(struct seq_file *m, void *v)
7720 {
7721 return seq_puts_memcg_tunable(m,
7722 READ_ONCE(mem_cgroup_from_seq(m)->swap.high));
7723 }
7724
swap_high_write(struct kernfs_open_file *of, char *buf, size_t nbytes, loff_t off)7725 static ssize_t swap_high_write(struct kernfs_open_file *of,
7726 char *buf, size_t nbytes, loff_t off)
7727 {
7728 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
7729 unsigned long high;
7730 int err;
7731
7732 buf = strstrip(buf);
7733 err = page_counter_memparse(buf, "max", &high);
7734 if (err)
7735 return err;
7736
7737 page_counter_set_high(&memcg->swap, high);
7738
7739 return nbytes;
7740 }
7741
swap_max_show(struct seq_file *m, void *v)7742 static int swap_max_show(struct seq_file *m, void *v)
7743 {
7744 return seq_puts_memcg_tunable(m,
7745 READ_ONCE(mem_cgroup_from_seq(m)->swap.max));
7746 }
7747
swap_max_write(struct kernfs_open_file *of, char *buf, size_t nbytes, loff_t off)7748 static ssize_t swap_max_write(struct kernfs_open_file *of,
7749 char *buf, size_t nbytes, loff_t off)
7750 {
7751 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
7752 unsigned long max;
7753 int err;
7754
7755 buf = strstrip(buf);
7756 err = page_counter_memparse(buf, "max", &max);
7757 if (err)
7758 return err;
7759
7760 xchg(&memcg->swap.max, max);
7761
7762 return nbytes;
7763 }
7764
swap_events_show(struct seq_file *m, void *v)7765 static int swap_events_show(struct seq_file *m, void *v)
7766 {
7767 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
7768
7769 seq_printf(m, "high %lu\n",
7770 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_HIGH]));
7771 seq_printf(m, "max %lu\n",
7772 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX]));
7773 seq_printf(m, "fail %lu\n",
7774 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL]));
7775
7776 return 0;
7777 }
7778
7779 static struct cftype swap_files[] = {
7780 {
7781 .name = "swap.current",
7782 .flags = CFTYPE_NOT_ON_ROOT,
7783 .read_u64 = swap_current_read,
7784 },
7785 {
7786 .name = "swap.high",
7787 .flags = CFTYPE_NOT_ON_ROOT,
7788 .seq_show = swap_high_show,
7789 .write = swap_high_write,
7790 },
7791 {
7792 .name = "swap.max",
7793 .flags = CFTYPE_NOT_ON_ROOT,
7794 .seq_show = swap_max_show,
7795 .write = swap_max_write,
7796 },
7797 {
7798 .name = "swap.peak",
7799 .flags = CFTYPE_NOT_ON_ROOT,
7800 .read_u64 = swap_peak_read,
7801 },
7802 {
7803 .name = "swap.events",
7804 .flags = CFTYPE_NOT_ON_ROOT,
7805 .file_offset = offsetof(struct mem_cgroup, swap_events_file),
7806 .seq_show = swap_events_show,
7807 },
7808 { } /* terminate */
7809 };
7810
7811 static struct cftype memsw_files[] = {
7812 {
7813 .name = "memsw.usage_in_bytes",
7814 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
7815 .read_u64 = mem_cgroup_read_u64,
7816 },
7817 {
7818 .name = "memsw.max_usage_in_bytes",
7819 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
7820 .write = mem_cgroup_reset,
7821 .read_u64 = mem_cgroup_read_u64,
7822 },
7823 {
7824 .name = "memsw.limit_in_bytes",
7825 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
7826 .write = mem_cgroup_write,
7827 .read_u64 = mem_cgroup_read_u64,
7828 },
7829 {
7830 .name = "memsw.failcnt",
7831 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
7832 .write = mem_cgroup_reset,
7833 .read_u64 = mem_cgroup_read_u64,
7834 },
7835 { }, /* terminate */
7836 };
7837
7838 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP)
7839 /**
7840 * obj_cgroup_may_zswap - check if this cgroup can zswap
7841 * @objcg: the object cgroup
7842 *
7843 * Check if the hierarchical zswap limit has been reached.
7844 *
7845 * This doesn't check for specific headroom, and it is not atomic
7846 * either. But with zswap, the size of the allocation is only known
7847 * once compression has occured, and this optimistic pre-check avoids
7848 * spending cycles on compression when there is already no room left
7849 * or zswap is disabled altogether somewhere in the hierarchy.
7850 */
obj_cgroup_may_zswap(struct obj_cgroup *objcg)7851 bool obj_cgroup_may_zswap(struct obj_cgroup *objcg)
7852 {
7853 struct mem_cgroup *memcg, *original_memcg;
7854 bool ret = true;
7855
7856 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
7857 return true;
7858
7859 original_memcg = get_mem_cgroup_from_objcg(objcg);
7860 for (memcg = original_memcg; !mem_cgroup_is_root(memcg);
7861 memcg = parent_mem_cgroup(memcg)) {
7862 unsigned long max = READ_ONCE(memcg->zswap_max);
7863 unsigned long pages;
7864
7865 if (max == PAGE_COUNTER_MAX)
7866 continue;
7867 if (max == 0) {
7868 ret = false;
7869 break;
7870 }
7871
7872 cgroup_rstat_flush(memcg->css.cgroup);
7873 pages = memcg_page_state(memcg, MEMCG_ZSWAP_B) / PAGE_SIZE;
7874 if (pages < max)
7875 continue;
7876 ret = false;
7877 break;
7878 }
7879 mem_cgroup_put(original_memcg);
7880 return ret;
7881 }
7882
7883 /**
7884 * obj_cgroup_charge_zswap - charge compression backend memory
7885 * @objcg: the object cgroup
7886 * @size: size of compressed object
7887 *
7888 * This forces the charge after obj_cgroup_may_zswap() allowed
7889 * compression and storage in zwap for this cgroup to go ahead.
7890 */
obj_cgroup_charge_zswap(struct obj_cgroup *objcg, size_t size)7891 void obj_cgroup_charge_zswap(struct obj_cgroup *objcg, size_t size)
7892 {
7893 struct mem_cgroup *memcg;
7894
7895 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
7896 return;
7897
7898 VM_WARN_ON_ONCE(!(current->flags & PF_MEMALLOC));
7899
7900 /* PF_MEMALLOC context, charging must succeed */
7901 if (obj_cgroup_charge(objcg, GFP_KERNEL, size))
7902 VM_WARN_ON_ONCE(1);
7903
7904 rcu_read_lock();
7905 memcg = obj_cgroup_memcg(objcg);
7906 mod_memcg_state(memcg, MEMCG_ZSWAP_B, size);
7907 mod_memcg_state(memcg, MEMCG_ZSWAPPED, 1);
7908 rcu_read_unlock();
7909 }
7910
7911 /**
7912 * obj_cgroup_uncharge_zswap - uncharge compression backend memory
7913 * @objcg: the object cgroup
7914 * @size: size of compressed object
7915 *
7916 * Uncharges zswap memory on page in.
7917 */
obj_cgroup_uncharge_zswap(struct obj_cgroup *objcg, size_t size)7918 void obj_cgroup_uncharge_zswap(struct obj_cgroup *objcg, size_t size)
7919 {
7920 struct mem_cgroup *memcg;
7921
7922 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
7923 return;
7924
7925 obj_cgroup_uncharge(objcg, size);
7926
7927 rcu_read_lock();
7928 memcg = obj_cgroup_memcg(objcg);
7929 mod_memcg_state(memcg, MEMCG_ZSWAP_B, -size);
7930 mod_memcg_state(memcg, MEMCG_ZSWAPPED, -1);
7931 rcu_read_unlock();
7932 }
7933
zswap_current_read(struct cgroup_subsys_state *css, struct cftype *cft)7934 static u64 zswap_current_read(struct cgroup_subsys_state *css,
7935 struct cftype *cft)
7936 {
7937 cgroup_rstat_flush(css->cgroup);
7938 return memcg_page_state(mem_cgroup_from_css(css), MEMCG_ZSWAP_B);
7939 }
7940
zswap_max_show(struct seq_file *m, void *v)7941 static int zswap_max_show(struct seq_file *m, void *v)
7942 {
7943 return seq_puts_memcg_tunable(m,
7944 READ_ONCE(mem_cgroup_from_seq(m)->zswap_max));
7945 }
7946
zswap_max_write(struct kernfs_open_file *of, char *buf, size_t nbytes, loff_t off)7947 static ssize_t zswap_max_write(struct kernfs_open_file *of,
7948 char *buf, size_t nbytes, loff_t off)
7949 {
7950 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
7951 unsigned long max;
7952 int err;
7953
7954 buf = strstrip(buf);
7955 err = page_counter_memparse(buf, "max", &max);
7956 if (err)
7957 return err;
7958
7959 xchg(&memcg->zswap_max, max);
7960
7961 return nbytes;
7962 }
7963
7964 static struct cftype zswap_files[] = {
7965 {
7966 .name = "zswap.current",
7967 .flags = CFTYPE_NOT_ON_ROOT,
7968 .read_u64 = zswap_current_read,
7969 },
7970 {
7971 .name = "zswap.max",
7972 .flags = CFTYPE_NOT_ON_ROOT,
7973 .seq_show = zswap_max_show,
7974 .write = zswap_max_write,
7975 },
7976 { } /* terminate */
7977 };
7978 #endif /* CONFIG_MEMCG_KMEM && CONFIG_ZSWAP */
7979
mem_cgroup_swap_init(void)7980 static int __init mem_cgroup_swap_init(void)
7981 {
7982 if (mem_cgroup_disabled())
7983 return 0;
7984
7985 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, swap_files));
7986 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys, memsw_files));
7987 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP)
7988 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, zswap_files));
7989 #endif
7990 return 0;
7991 }
7992 subsys_initcall(mem_cgroup_swap_init);
7993
7994 #endif /* CONFIG_SWAP */
7995