xref: /kernel/linux/linux-6.6/fs/proc/task_mmu.c (revision 62306a36)
1// SPDX-License-Identifier: GPL-2.0
2#include <linux/pagewalk.h>
3#include <linux/mm_inline.h>
4#include <linux/hugetlb.h>
5#include <linux/huge_mm.h>
6#include <linux/mount.h>
7#include <linux/ksm.h>
8#include <linux/seq_file.h>
9#include <linux/highmem.h>
10#include <linux/ptrace.h>
11#include <linux/slab.h>
12#include <linux/pagemap.h>
13#include <linux/mempolicy.h>
14#include <linux/rmap.h>
15#include <linux/swap.h>
16#include <linux/sched/mm.h>
17#include <linux/swapops.h>
18#include <linux/mmu_notifier.h>
19#include <linux/page_idle.h>
20#include <linux/shmem_fs.h>
21#include <linux/uaccess.h>
22#include <linux/pkeys.h>
23#ifdef CONFIG_MEM_PURGEABLE
24#include <linux/mm_purgeable.h>
25#endif
26
27#include <asm/elf.h>
28#include <asm/tlb.h>
29#include <asm/tlbflush.h>
30#include "internal.h"
31#include <linux/hck/lite_hck_hideaddr.h>
32
33#define SEQ_PUT_DEC(str, val) \
34		seq_put_decimal_ull_width(m, str, (val) << (PAGE_SHIFT-10), 8)
35void task_mem(struct seq_file *m, struct mm_struct *mm)
36{
37	unsigned long text, lib, swap, anon, file, shmem;
38	unsigned long hiwater_vm, total_vm, hiwater_rss, total_rss;
39#ifdef CONFIG_MEM_PURGEABLE
40	unsigned long nr_purg_sum = 0, nr_purg_pin = 0;
41
42	mm_purg_pages_info(mm, &nr_purg_sum, &nr_purg_pin);
43#endif
44
45	anon = get_mm_counter(mm, MM_ANONPAGES);
46	file = get_mm_counter(mm, MM_FILEPAGES);
47	shmem = get_mm_counter(mm, MM_SHMEMPAGES);
48
49	/*
50	 * Note: to minimize their overhead, mm maintains hiwater_vm and
51	 * hiwater_rss only when about to *lower* total_vm or rss.  Any
52	 * collector of these hiwater stats must therefore get total_vm
53	 * and rss too, which will usually be the higher.  Barriers? not
54	 * worth the effort, such snapshots can always be inconsistent.
55	 */
56	hiwater_vm = total_vm = mm->total_vm;
57	if (hiwater_vm < mm->hiwater_vm)
58		hiwater_vm = mm->hiwater_vm;
59	hiwater_rss = total_rss = anon + file + shmem;
60	if (hiwater_rss < mm->hiwater_rss)
61		hiwater_rss = mm->hiwater_rss;
62
63	/* split executable areas between text and lib */
64	text = PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK);
65	text = min(text, mm->exec_vm << PAGE_SHIFT);
66	lib = (mm->exec_vm << PAGE_SHIFT) - text;
67
68	swap = get_mm_counter(mm, MM_SWAPENTS);
69	SEQ_PUT_DEC("VmPeak:\t", hiwater_vm);
70	SEQ_PUT_DEC(" kB\nVmSize:\t", total_vm);
71	SEQ_PUT_DEC(" kB\nVmLck:\t", mm->locked_vm);
72	SEQ_PUT_DEC(" kB\nVmPin:\t", atomic64_read(&mm->pinned_vm));
73	SEQ_PUT_DEC(" kB\nVmHWM:\t", hiwater_rss);
74	SEQ_PUT_DEC(" kB\nVmRSS:\t", total_rss);
75	SEQ_PUT_DEC(" kB\nRssAnon:\t", anon);
76	SEQ_PUT_DEC(" kB\nRssFile:\t", file);
77	SEQ_PUT_DEC(" kB\nRssShmem:\t", shmem);
78	SEQ_PUT_DEC(" kB\nVmData:\t", mm->data_vm);
79	SEQ_PUT_DEC(" kB\nVmStk:\t", mm->stack_vm);
80	seq_put_decimal_ull_width(m,
81		    " kB\nVmExe:\t", text >> 10, 8);
82	seq_put_decimal_ull_width(m,
83		    " kB\nVmLib:\t", lib >> 10, 8);
84	seq_put_decimal_ull_width(m,
85		    " kB\nVmPTE:\t", mm_pgtables_bytes(mm) >> 10, 8);
86	SEQ_PUT_DEC(" kB\nVmSwap:\t", swap);
87#ifdef CONFIG_MEM_PURGEABLE
88	SEQ_PUT_DEC(" kB\nPurgSum:\t", nr_purg_sum);
89	SEQ_PUT_DEC(" kB\nPurgPin:\t", nr_purg_pin);
90#endif
91	seq_puts(m, " kB\n");
92	hugetlb_report_usage(m, mm);
93}
94#undef SEQ_PUT_DEC
95
96unsigned long task_vsize(struct mm_struct *mm)
97{
98	return PAGE_SIZE * mm->total_vm;
99}
100
101unsigned long task_statm(struct mm_struct *mm,
102			 unsigned long *shared, unsigned long *text,
103			 unsigned long *data, unsigned long *resident)
104{
105	*shared = get_mm_counter(mm, MM_FILEPAGES) +
106			get_mm_counter(mm, MM_SHMEMPAGES);
107	*text = (PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK))
108								>> PAGE_SHIFT;
109	*data = mm->data_vm + mm->stack_vm;
110	*resident = *shared + get_mm_counter(mm, MM_ANONPAGES);
111	return mm->total_vm;
112}
113
114#ifdef CONFIG_NUMA
115/*
116 * Save get_task_policy() for show_numa_map().
117 */
118static void hold_task_mempolicy(struct proc_maps_private *priv)
119{
120	struct task_struct *task = priv->task;
121
122	task_lock(task);
123	priv->task_mempolicy = get_task_policy(task);
124	mpol_get(priv->task_mempolicy);
125	task_unlock(task);
126}
127static void release_task_mempolicy(struct proc_maps_private *priv)
128{
129	mpol_put(priv->task_mempolicy);
130}
131#else
132static void hold_task_mempolicy(struct proc_maps_private *priv)
133{
134}
135static void release_task_mempolicy(struct proc_maps_private *priv)
136{
137}
138#endif
139
140static struct vm_area_struct *proc_get_vma(struct proc_maps_private *priv,
141						loff_t *ppos)
142{
143	struct vm_area_struct *vma = vma_next(&priv->iter);
144
145	if (vma) {
146		*ppos = vma->vm_start;
147	} else {
148		*ppos = -2UL;
149		vma = get_gate_vma(priv->mm);
150	}
151
152	return vma;
153}
154
155static void *m_start(struct seq_file *m, loff_t *ppos)
156{
157	struct proc_maps_private *priv = m->private;
158	unsigned long last_addr = *ppos;
159	struct mm_struct *mm;
160
161	/* See m_next(). Zero at the start or after lseek. */
162	if (last_addr == -1UL)
163		return NULL;
164
165	priv->task = get_proc_task(priv->inode);
166	if (!priv->task)
167		return ERR_PTR(-ESRCH);
168
169	mm = priv->mm;
170	if (!mm || !mmget_not_zero(mm)) {
171		put_task_struct(priv->task);
172		priv->task = NULL;
173		return NULL;
174	}
175
176	if (mmap_read_lock_killable(mm)) {
177		mmput(mm);
178		put_task_struct(priv->task);
179		priv->task = NULL;
180		return ERR_PTR(-EINTR);
181	}
182
183	vma_iter_init(&priv->iter, mm, last_addr);
184	hold_task_mempolicy(priv);
185	if (last_addr == -2UL)
186		return get_gate_vma(mm);
187
188	return proc_get_vma(priv, ppos);
189}
190
191static void *m_next(struct seq_file *m, void *v, loff_t *ppos)
192{
193	if (*ppos == -2UL) {
194		*ppos = -1UL;
195		return NULL;
196	}
197	return proc_get_vma(m->private, ppos);
198}
199
200static void m_stop(struct seq_file *m, void *v)
201{
202	struct proc_maps_private *priv = m->private;
203	struct mm_struct *mm = priv->mm;
204
205	if (!priv->task)
206		return;
207
208	release_task_mempolicy(priv);
209	mmap_read_unlock(mm);
210	mmput(mm);
211	put_task_struct(priv->task);
212	priv->task = NULL;
213}
214
215static int proc_maps_open(struct inode *inode, struct file *file,
216			const struct seq_operations *ops, int psize)
217{
218	struct proc_maps_private *priv = __seq_open_private(file, ops, psize);
219
220	if (!priv)
221		return -ENOMEM;
222
223	priv->inode = inode;
224	priv->mm = proc_mem_open(inode, PTRACE_MODE_READ);
225	if (IS_ERR(priv->mm)) {
226		int err = PTR_ERR(priv->mm);
227
228		seq_release_private(inode, file);
229		return err;
230	}
231
232	return 0;
233}
234
235static int proc_map_release(struct inode *inode, struct file *file)
236{
237	struct seq_file *seq = file->private_data;
238	struct proc_maps_private *priv = seq->private;
239
240	if (priv->mm)
241		mmdrop(priv->mm);
242
243	return seq_release_private(inode, file);
244}
245
246static int do_maps_open(struct inode *inode, struct file *file,
247			const struct seq_operations *ops)
248{
249	return proc_maps_open(inode, file, ops,
250				sizeof(struct proc_maps_private));
251}
252
253static void show_vma_header_prefix(struct seq_file *m,
254				   unsigned long start, unsigned long end,
255				   vm_flags_t flags, unsigned long long pgoff,
256				   dev_t dev, unsigned long ino)
257{
258	seq_setwidth(m, 25 + sizeof(void *) * 6 - 1);
259	seq_put_hex_ll(m, NULL, start, 8);
260	seq_put_hex_ll(m, "-", end, 8);
261	seq_putc(m, ' ');
262	seq_putc(m, flags & VM_READ ? 'r' : '-');
263	seq_putc(m, flags & VM_WRITE ? 'w' : '-');
264	seq_putc(m, flags & VM_EXEC ? 'x' : '-');
265	seq_putc(m, flags & VM_MAYSHARE ? 's' : 'p');
266	seq_put_hex_ll(m, " ", pgoff, 8);
267	seq_put_hex_ll(m, " ", MAJOR(dev), 2);
268	seq_put_hex_ll(m, ":", MINOR(dev), 2);
269	seq_put_decimal_ull(m, " ", ino);
270	seq_putc(m, ' ');
271}
272
273static void
274show_map_vma(struct seq_file *m, struct vm_area_struct *vma)
275{
276	struct anon_vma_name *anon_name = NULL;
277	struct mm_struct *mm = vma->vm_mm;
278	struct file *file = vma->vm_file;
279	vm_flags_t flags = vma->vm_flags;
280	unsigned long ino = 0;
281	unsigned long long pgoff = 0;
282	unsigned long start, end;
283	dev_t dev = 0;
284	const char *name = NULL;
285
286	if (file) {
287		struct inode *inode = file_inode(vma->vm_file);
288		dev = inode->i_sb->s_dev;
289		ino = inode->i_ino;
290		pgoff = ((loff_t)vma->vm_pgoff) << PAGE_SHIFT;
291	}
292
293	start = vma->vm_start;
294	end = vma->vm_end;
295	CALL_HCK_LITE_HOOK(hideaddr_header_prefix_lhck, &start, &end, &flags, m, vma);
296	show_vma_header_prefix(m, start, end, flags, pgoff, dev, ino);
297	if (mm)
298		anon_name = anon_vma_name(vma);
299
300	/*
301	 * Print the dentry name for named mappings, and a
302	 * special [heap] marker for the heap:
303	 */
304	if (file) {
305		seq_pad(m, ' ');
306		/*
307		 * If user named this anon shared memory via
308		 * prctl(PR_SET_VMA ..., use the provided name.
309		 */
310		if (anon_name)
311			seq_printf(m, "[anon_shmem:%s]", anon_name->name);
312		else
313			seq_file_path(m, file, "\n");
314		goto done;
315	}
316
317	if (vma->vm_ops && vma->vm_ops->name) {
318		name = vma->vm_ops->name(vma);
319		if (name)
320			goto done;
321	}
322
323	name = arch_vma_name(vma);
324	if (!name) {
325		if (!mm) {
326			name = "[vdso]";
327			goto done;
328		}
329
330		if (vma_is_initial_heap(vma)) {
331			name = "[heap]";
332			goto done;
333		}
334
335		if (vma_is_initial_stack(vma)) {
336			name = "[stack]";
337			goto done;
338		}
339
340		if (anon_name) {
341			seq_pad(m, ' ');
342			seq_printf(m, "[anon:%s]", anon_name->name);
343		}
344	}
345
346done:
347	if (name) {
348		seq_pad(m, ' ');
349		seq_puts(m, name);
350	}
351	seq_putc(m, '\n');
352}
353
354static int show_map(struct seq_file *m, void *v)
355{
356	show_map_vma(m, v);
357	return 0;
358}
359
360static const struct seq_operations proc_pid_maps_op = {
361	.start	= m_start,
362	.next	= m_next,
363	.stop	= m_stop,
364	.show	= show_map
365};
366
367static int pid_maps_open(struct inode *inode, struct file *file)
368{
369	return do_maps_open(inode, file, &proc_pid_maps_op);
370}
371
372const struct file_operations proc_pid_maps_operations = {
373	.open		= pid_maps_open,
374	.read		= seq_read,
375	.llseek		= seq_lseek,
376	.release	= proc_map_release,
377};
378
379/*
380 * Proportional Set Size(PSS): my share of RSS.
381 *
382 * PSS of a process is the count of pages it has in memory, where each
383 * page is divided by the number of processes sharing it.  So if a
384 * process has 1000 pages all to itself, and 1000 shared with one other
385 * process, its PSS will be 1500.
386 *
387 * To keep (accumulated) division errors low, we adopt a 64bit
388 * fixed-point pss counter to minimize division errors. So (pss >>
389 * PSS_SHIFT) would be the real byte count.
390 *
391 * A shift of 12 before division means (assuming 4K page size):
392 * 	- 1M 3-user-pages add up to 8KB errors;
393 * 	- supports mapcount up to 2^24, or 16M;
394 * 	- supports PSS up to 2^52 bytes, or 4PB.
395 */
396#define PSS_SHIFT 12
397
398#ifdef CONFIG_PROC_PAGE_MONITOR
399struct mem_size_stats {
400	unsigned long resident;
401	unsigned long shared_clean;
402	unsigned long shared_dirty;
403	unsigned long private_clean;
404	unsigned long private_dirty;
405	unsigned long referenced;
406	unsigned long anonymous;
407	unsigned long lazyfree;
408	unsigned long anonymous_thp;
409	unsigned long shmem_thp;
410	unsigned long file_thp;
411	unsigned long swap;
412	unsigned long shared_hugetlb;
413	unsigned long private_hugetlb;
414	unsigned long ksm;
415	u64 pss;
416	u64 pss_anon;
417	u64 pss_file;
418	u64 pss_shmem;
419	u64 pss_dirty;
420	u64 pss_locked;
421	u64 swap_pss;
422};
423
424static void smaps_page_accumulate(struct mem_size_stats *mss,
425		struct page *page, unsigned long size, unsigned long pss,
426		bool dirty, bool locked, bool private)
427{
428	mss->pss += pss;
429
430	if (PageAnon(page))
431		mss->pss_anon += pss;
432	else if (PageSwapBacked(page))
433		mss->pss_shmem += pss;
434	else
435		mss->pss_file += pss;
436
437	if (locked)
438		mss->pss_locked += pss;
439
440	if (dirty || PageDirty(page)) {
441		mss->pss_dirty += pss;
442		if (private)
443			mss->private_dirty += size;
444		else
445			mss->shared_dirty += size;
446	} else {
447		if (private)
448			mss->private_clean += size;
449		else
450			mss->shared_clean += size;
451	}
452}
453
454static void smaps_account(struct mem_size_stats *mss, struct page *page,
455		bool compound, bool young, bool dirty, bool locked,
456		bool migration)
457{
458	int i, nr = compound ? compound_nr(page) : 1;
459	unsigned long size = nr * PAGE_SIZE;
460
461	/*
462	 * First accumulate quantities that depend only on |size| and the type
463	 * of the compound page.
464	 */
465	if (PageAnon(page)) {
466		mss->anonymous += size;
467		if (!PageSwapBacked(page) && !dirty && !PageDirty(page))
468			mss->lazyfree += size;
469	}
470
471	if (PageKsm(page))
472		mss->ksm += size;
473
474	mss->resident += size;
475	/* Accumulate the size in pages that have been accessed. */
476	if (young || page_is_young(page) || PageReferenced(page))
477		mss->referenced += size;
478
479	/*
480	 * Then accumulate quantities that may depend on sharing, or that may
481	 * differ page-by-page.
482	 *
483	 * page_count(page) == 1 guarantees the page is mapped exactly once.
484	 * If any subpage of the compound page mapped with PTE it would elevate
485	 * page_count().
486	 *
487	 * The page_mapcount() is called to get a snapshot of the mapcount.
488	 * Without holding the page lock this snapshot can be slightly wrong as
489	 * we cannot always read the mapcount atomically.  It is not safe to
490	 * call page_mapcount() even with PTL held if the page is not mapped,
491	 * especially for migration entries.  Treat regular migration entries
492	 * as mapcount == 1.
493	 */
494	if ((page_count(page) == 1) || migration) {
495		smaps_page_accumulate(mss, page, size, size << PSS_SHIFT, dirty,
496			locked, true);
497		return;
498	}
499	for (i = 0; i < nr; i++, page++) {
500		int mapcount = page_mapcount(page);
501		unsigned long pss = PAGE_SIZE << PSS_SHIFT;
502		if (mapcount >= 2)
503			pss /= mapcount;
504		smaps_page_accumulate(mss, page, PAGE_SIZE, pss, dirty, locked,
505				      mapcount < 2);
506	}
507}
508
509#ifdef CONFIG_SHMEM
510static int smaps_pte_hole(unsigned long addr, unsigned long end,
511			  __always_unused int depth, struct mm_walk *walk)
512{
513	struct mem_size_stats *mss = walk->private;
514	struct vm_area_struct *vma = walk->vma;
515
516	mss->swap += shmem_partial_swap_usage(walk->vma->vm_file->f_mapping,
517					      linear_page_index(vma, addr),
518					      linear_page_index(vma, end));
519
520	return 0;
521}
522#else
523#define smaps_pte_hole		NULL
524#endif /* CONFIG_SHMEM */
525
526static void smaps_pte_hole_lookup(unsigned long addr, struct mm_walk *walk)
527{
528#ifdef CONFIG_SHMEM
529	if (walk->ops->pte_hole) {
530		/* depth is not used */
531		smaps_pte_hole(addr, addr + PAGE_SIZE, 0, walk);
532	}
533#endif
534}
535
536static void smaps_pte_entry(pte_t *pte, unsigned long addr,
537		struct mm_walk *walk)
538{
539	struct mem_size_stats *mss = walk->private;
540	struct vm_area_struct *vma = walk->vma;
541	bool locked = !!(vma->vm_flags & VM_LOCKED);
542	struct page *page = NULL;
543	bool migration = false, young = false, dirty = false;
544	pte_t ptent = ptep_get(pte);
545
546	if (pte_present(ptent)) {
547		page = vm_normal_page(vma, addr, ptent);
548		young = pte_young(ptent);
549		dirty = pte_dirty(ptent);
550	} else if (is_swap_pte(ptent)) {
551		swp_entry_t swpent = pte_to_swp_entry(ptent);
552
553		if (!non_swap_entry(swpent)) {
554			int mapcount;
555
556			mss->swap += PAGE_SIZE;
557			mapcount = swp_swapcount(swpent);
558			if (mapcount >= 2) {
559				u64 pss_delta = (u64)PAGE_SIZE << PSS_SHIFT;
560
561				do_div(pss_delta, mapcount);
562				mss->swap_pss += pss_delta;
563			} else {
564				mss->swap_pss += (u64)PAGE_SIZE << PSS_SHIFT;
565			}
566		} else if (is_pfn_swap_entry(swpent)) {
567			if (is_migration_entry(swpent))
568				migration = true;
569			page = pfn_swap_entry_to_page(swpent);
570		}
571	} else {
572		smaps_pte_hole_lookup(addr, walk);
573		return;
574	}
575
576	if (!page)
577		return;
578
579	smaps_account(mss, page, false, young, dirty, locked, migration);
580}
581
582#ifdef CONFIG_TRANSPARENT_HUGEPAGE
583static void smaps_pmd_entry(pmd_t *pmd, unsigned long addr,
584		struct mm_walk *walk)
585{
586	struct mem_size_stats *mss = walk->private;
587	struct vm_area_struct *vma = walk->vma;
588	bool locked = !!(vma->vm_flags & VM_LOCKED);
589	struct page *page = NULL;
590	bool migration = false;
591
592	if (pmd_present(*pmd)) {
593		page = vm_normal_page_pmd(vma, addr, *pmd);
594	} else if (unlikely(thp_migration_supported() && is_swap_pmd(*pmd))) {
595		swp_entry_t entry = pmd_to_swp_entry(*pmd);
596
597		if (is_migration_entry(entry)) {
598			migration = true;
599			page = pfn_swap_entry_to_page(entry);
600		}
601	}
602	if (IS_ERR_OR_NULL(page))
603		return;
604	if (PageAnon(page))
605		mss->anonymous_thp += HPAGE_PMD_SIZE;
606	else if (PageSwapBacked(page))
607		mss->shmem_thp += HPAGE_PMD_SIZE;
608	else if (is_zone_device_page(page))
609		/* pass */;
610	else
611		mss->file_thp += HPAGE_PMD_SIZE;
612
613	smaps_account(mss, page, true, pmd_young(*pmd), pmd_dirty(*pmd),
614		      locked, migration);
615}
616#else
617static void smaps_pmd_entry(pmd_t *pmd, unsigned long addr,
618		struct mm_walk *walk)
619{
620}
621#endif
622
623static int smaps_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
624			   struct mm_walk *walk)
625{
626	struct vm_area_struct *vma = walk->vma;
627	pte_t *pte;
628	spinlock_t *ptl;
629
630	ptl = pmd_trans_huge_lock(pmd, vma);
631	if (ptl) {
632		smaps_pmd_entry(pmd, addr, walk);
633		spin_unlock(ptl);
634		goto out;
635	}
636
637	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
638	if (!pte) {
639		walk->action = ACTION_AGAIN;
640		return 0;
641	}
642	for (; addr != end; pte++, addr += PAGE_SIZE)
643		smaps_pte_entry(pte, addr, walk);
644	pte_unmap_unlock(pte - 1, ptl);
645out:
646	cond_resched();
647	return 0;
648}
649
650static void show_smap_vma_flags(struct seq_file *m, struct vm_area_struct *vma)
651{
652	/*
653	 * Don't forget to update Documentation/ on changes.
654	 */
655	static const char mnemonics[BITS_PER_LONG][2] = {
656		/*
657		 * In case if we meet a flag we don't know about.
658		 */
659		[0 ... (BITS_PER_LONG-1)] = "??",
660
661		[ilog2(VM_READ)]	= "rd",
662		[ilog2(VM_WRITE)]	= "wr",
663		[ilog2(VM_EXEC)]	= "ex",
664		[ilog2(VM_SHARED)]	= "sh",
665		[ilog2(VM_MAYREAD)]	= "mr",
666		[ilog2(VM_MAYWRITE)]	= "mw",
667		[ilog2(VM_MAYEXEC)]	= "me",
668		[ilog2(VM_MAYSHARE)]	= "ms",
669		[ilog2(VM_GROWSDOWN)]	= "gd",
670		[ilog2(VM_PFNMAP)]	= "pf",
671		[ilog2(VM_LOCKED)]	= "lo",
672		[ilog2(VM_IO)]		= "io",
673		[ilog2(VM_SEQ_READ)]	= "sr",
674		[ilog2(VM_RAND_READ)]	= "rr",
675		[ilog2(VM_DONTCOPY)]	= "dc",
676		[ilog2(VM_DONTEXPAND)]	= "de",
677		[ilog2(VM_LOCKONFAULT)]	= "lf",
678		[ilog2(VM_ACCOUNT)]	= "ac",
679		[ilog2(VM_NORESERVE)]	= "nr",
680		[ilog2(VM_HUGETLB)]	= "ht",
681		[ilog2(VM_SYNC)]	= "sf",
682		[ilog2(VM_ARCH_1)]	= "ar",
683		[ilog2(VM_WIPEONFORK)]	= "wf",
684		[ilog2(VM_DONTDUMP)]	= "dd",
685#ifdef CONFIG_ARM64_BTI
686		[ilog2(VM_ARM64_BTI)]	= "bt",
687#endif
688#ifdef CONFIG_MEM_SOFT_DIRTY
689		[ilog2(VM_SOFTDIRTY)]	= "sd",
690#endif
691		[ilog2(VM_MIXEDMAP)]	= "mm",
692		[ilog2(VM_HUGEPAGE)]	= "hg",
693		[ilog2(VM_NOHUGEPAGE)]	= "nh",
694		[ilog2(VM_MERGEABLE)]	= "mg",
695		[ilog2(VM_UFFD_MISSING)]= "um",
696		[ilog2(VM_UFFD_WP)]	= "uw",
697#ifdef CONFIG_ARM64_MTE
698		[ilog2(VM_MTE)]		= "mt",
699		[ilog2(VM_MTE_ALLOWED)]	= "",
700#endif
701#ifdef CONFIG_ARCH_HAS_PKEYS
702		/* These come out via ProtectionKey: */
703		[ilog2(VM_PKEY_BIT0)]	= "",
704		[ilog2(VM_PKEY_BIT1)]	= "",
705		[ilog2(VM_PKEY_BIT2)]	= "",
706		[ilog2(VM_PKEY_BIT3)]	= "",
707#if VM_PKEY_BIT4
708		[ilog2(VM_PKEY_BIT4)]	= "",
709#endif
710#endif /* CONFIG_ARCH_HAS_PKEYS */
711#ifdef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR
712		[ilog2(VM_UFFD_MINOR)]	= "ui",
713#endif /* CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */
714#ifdef CONFIG_X86_USER_SHADOW_STACK
715		[ilog2(VM_SHADOW_STACK)] = "ss",
716#endif
717	};
718	size_t i;
719
720	seq_puts(m, "VmFlags: ");
721	for (i = 0; i < BITS_PER_LONG; i++) {
722		if (!mnemonics[i][0])
723			continue;
724		if (vma->vm_flags & (1UL << i)) {
725			seq_putc(m, mnemonics[i][0]);
726			seq_putc(m, mnemonics[i][1]);
727			seq_putc(m, ' ');
728		}
729	}
730	seq_putc(m, '\n');
731}
732
733#ifdef CONFIG_HUGETLB_PAGE
734static int smaps_hugetlb_range(pte_t *pte, unsigned long hmask,
735				 unsigned long addr, unsigned long end,
736				 struct mm_walk *walk)
737{
738	struct mem_size_stats *mss = walk->private;
739	struct vm_area_struct *vma = walk->vma;
740	struct page *page = NULL;
741	pte_t ptent = ptep_get(pte);
742
743	if (pte_present(ptent)) {
744		page = vm_normal_page(vma, addr, ptent);
745	} else if (is_swap_pte(ptent)) {
746		swp_entry_t swpent = pte_to_swp_entry(ptent);
747
748		if (is_pfn_swap_entry(swpent))
749			page = pfn_swap_entry_to_page(swpent);
750	}
751	if (page) {
752		if (page_mapcount(page) >= 2 || hugetlb_pmd_shared(pte))
753			mss->shared_hugetlb += huge_page_size(hstate_vma(vma));
754		else
755			mss->private_hugetlb += huge_page_size(hstate_vma(vma));
756	}
757	return 0;
758}
759#else
760#define smaps_hugetlb_range	NULL
761#endif /* HUGETLB_PAGE */
762
763static const struct mm_walk_ops smaps_walk_ops = {
764	.pmd_entry		= smaps_pte_range,
765	.hugetlb_entry		= smaps_hugetlb_range,
766	.walk_lock		= PGWALK_RDLOCK,
767};
768
769static const struct mm_walk_ops smaps_shmem_walk_ops = {
770	.pmd_entry		= smaps_pte_range,
771	.hugetlb_entry		= smaps_hugetlb_range,
772	.pte_hole		= smaps_pte_hole,
773	.walk_lock		= PGWALK_RDLOCK,
774};
775
776/*
777 * Gather mem stats from @vma with the indicated beginning
778 * address @start, and keep them in @mss.
779 *
780 * Use vm_start of @vma as the beginning address if @start is 0.
781 */
782static void smap_gather_stats(struct vm_area_struct *vma,
783		struct mem_size_stats *mss, unsigned long start)
784{
785	const struct mm_walk_ops *ops = &smaps_walk_ops;
786
787	/* Invalid start */
788	if (start >= vma->vm_end)
789		return;
790
791	if (vma->vm_file && shmem_mapping(vma->vm_file->f_mapping)) {
792		/*
793		 * For shared or readonly shmem mappings we know that all
794		 * swapped out pages belong to the shmem object, and we can
795		 * obtain the swap value much more efficiently. For private
796		 * writable mappings, we might have COW pages that are
797		 * not affected by the parent swapped out pages of the shmem
798		 * object, so we have to distinguish them during the page walk.
799		 * Unless we know that the shmem object (or the part mapped by
800		 * our VMA) has no swapped out pages at all.
801		 */
802		unsigned long shmem_swapped = shmem_swap_usage(vma);
803
804		if (!start && (!shmem_swapped || (vma->vm_flags & VM_SHARED) ||
805					!(vma->vm_flags & VM_WRITE))) {
806			mss->swap += shmem_swapped;
807		} else {
808			ops = &smaps_shmem_walk_ops;
809		}
810	}
811
812	/* mmap_lock is held in m_start */
813	if (!start)
814		walk_page_vma(vma, ops, mss);
815	else
816		walk_page_range(vma->vm_mm, start, vma->vm_end, ops, mss);
817}
818
819#define SEQ_PUT_DEC(str, val) \
820		seq_put_decimal_ull_width(m, str, (val) >> 10, 8)
821
822/* Show the contents common for smaps and smaps_rollup */
823static void __show_smap(struct seq_file *m, const struct mem_size_stats *mss,
824	bool rollup_mode)
825{
826	SEQ_PUT_DEC("Rss:            ", mss->resident);
827	SEQ_PUT_DEC(" kB\nPss:            ", mss->pss >> PSS_SHIFT);
828	SEQ_PUT_DEC(" kB\nPss_Dirty:      ", mss->pss_dirty >> PSS_SHIFT);
829	if (rollup_mode) {
830		/*
831		 * These are meaningful only for smaps_rollup, otherwise two of
832		 * them are zero, and the other one is the same as Pss.
833		 */
834		SEQ_PUT_DEC(" kB\nPss_Anon:       ",
835			mss->pss_anon >> PSS_SHIFT);
836		SEQ_PUT_DEC(" kB\nPss_File:       ",
837			mss->pss_file >> PSS_SHIFT);
838		SEQ_PUT_DEC(" kB\nPss_Shmem:      ",
839			mss->pss_shmem >> PSS_SHIFT);
840	}
841	SEQ_PUT_DEC(" kB\nShared_Clean:   ", mss->shared_clean);
842	SEQ_PUT_DEC(" kB\nShared_Dirty:   ", mss->shared_dirty);
843	SEQ_PUT_DEC(" kB\nPrivate_Clean:  ", mss->private_clean);
844	SEQ_PUT_DEC(" kB\nPrivate_Dirty:  ", mss->private_dirty);
845	SEQ_PUT_DEC(" kB\nReferenced:     ", mss->referenced);
846	SEQ_PUT_DEC(" kB\nAnonymous:      ", mss->anonymous);
847	SEQ_PUT_DEC(" kB\nKSM:            ", mss->ksm);
848	SEQ_PUT_DEC(" kB\nLazyFree:       ", mss->lazyfree);
849	SEQ_PUT_DEC(" kB\nAnonHugePages:  ", mss->anonymous_thp);
850	SEQ_PUT_DEC(" kB\nShmemPmdMapped: ", mss->shmem_thp);
851	SEQ_PUT_DEC(" kB\nFilePmdMapped:  ", mss->file_thp);
852	SEQ_PUT_DEC(" kB\nShared_Hugetlb: ", mss->shared_hugetlb);
853	seq_put_decimal_ull_width(m, " kB\nPrivate_Hugetlb: ",
854				  mss->private_hugetlb >> 10, 7);
855	SEQ_PUT_DEC(" kB\nSwap:           ", mss->swap);
856	SEQ_PUT_DEC(" kB\nSwapPss:        ",
857					mss->swap_pss >> PSS_SHIFT);
858	SEQ_PUT_DEC(" kB\nLocked:         ",
859					mss->pss_locked >> PSS_SHIFT);
860	seq_puts(m, " kB\n");
861}
862
863static int show_smap(struct seq_file *m, void *v)
864{
865	struct vm_area_struct *vma = v;
866	struct mem_size_stats mss;
867
868	memset(&mss, 0, sizeof(mss));
869
870	smap_gather_stats(vma, &mss, 0);
871
872	show_map_vma(m, vma);
873
874	SEQ_PUT_DEC("Size:           ", vma->vm_end - vma->vm_start);
875	SEQ_PUT_DEC(" kB\nKernelPageSize: ", vma_kernel_pagesize(vma));
876	SEQ_PUT_DEC(" kB\nMMUPageSize:    ", vma_mmu_pagesize(vma));
877	seq_puts(m, " kB\n");
878
879	__show_smap(m, &mss, false);
880
881	seq_printf(m, "THPeligible:    %8u\n",
882		   hugepage_vma_check(vma, vma->vm_flags, true, false, true));
883
884	if (arch_pkeys_enabled())
885		seq_printf(m, "ProtectionKey:  %8u\n", vma_pkey(vma));
886	show_smap_vma_flags(m, vma);
887
888	return 0;
889}
890
891static int show_smaps_rollup(struct seq_file *m, void *v)
892{
893	struct proc_maps_private *priv = m->private;
894	struct mem_size_stats mss;
895	struct mm_struct *mm = priv->mm;
896	struct vm_area_struct *vma;
897	unsigned long vma_start = 0, last_vma_end = 0;
898	int ret = 0;
899	VMA_ITERATOR(vmi, mm, 0);
900
901	priv->task = get_proc_task(priv->inode);
902	if (!priv->task)
903		return -ESRCH;
904
905	if (!mm || !mmget_not_zero(mm)) {
906		ret = -ESRCH;
907		goto out_put_task;
908	}
909
910	memset(&mss, 0, sizeof(mss));
911
912	ret = mmap_read_lock_killable(mm);
913	if (ret)
914		goto out_put_mm;
915
916	hold_task_mempolicy(priv);
917	vma = vma_next(&vmi);
918
919	if (unlikely(!vma))
920		goto empty_set;
921
922	vma_start = vma->vm_start;
923	do {
924		smap_gather_stats(vma, &mss, 0);
925		last_vma_end = vma->vm_end;
926
927		/*
928		 * Release mmap_lock temporarily if someone wants to
929		 * access it for write request.
930		 */
931		if (mmap_lock_is_contended(mm)) {
932			vma_iter_invalidate(&vmi);
933			mmap_read_unlock(mm);
934			ret = mmap_read_lock_killable(mm);
935			if (ret) {
936				release_task_mempolicy(priv);
937				goto out_put_mm;
938			}
939
940			/*
941			 * After dropping the lock, there are four cases to
942			 * consider. See the following example for explanation.
943			 *
944			 *   +------+------+-----------+
945			 *   | VMA1 | VMA2 | VMA3      |
946			 *   +------+------+-----------+
947			 *   |      |      |           |
948			 *  4k     8k     16k         400k
949			 *
950			 * Suppose we drop the lock after reading VMA2 due to
951			 * contention, then we get:
952			 *
953			 *	last_vma_end = 16k
954			 *
955			 * 1) VMA2 is freed, but VMA3 exists:
956			 *
957			 *    vma_next(vmi) will return VMA3.
958			 *    In this case, just continue from VMA3.
959			 *
960			 * 2) VMA2 still exists:
961			 *
962			 *    vma_next(vmi) will return VMA3.
963			 *    In this case, just continue from VMA3.
964			 *
965			 * 3) No more VMAs can be found:
966			 *
967			 *    vma_next(vmi) will return NULL.
968			 *    No more things to do, just break.
969			 *
970			 * 4) (last_vma_end - 1) is the middle of a vma (VMA'):
971			 *
972			 *    vma_next(vmi) will return VMA' whose range
973			 *    contains last_vma_end.
974			 *    Iterate VMA' from last_vma_end.
975			 */
976			vma = vma_next(&vmi);
977			/* Case 3 above */
978			if (!vma)
979				break;
980
981			/* Case 1 and 2 above */
982			if (vma->vm_start >= last_vma_end)
983				continue;
984
985			/* Case 4 above */
986			if (vma->vm_end > last_vma_end)
987				smap_gather_stats(vma, &mss, last_vma_end);
988		}
989	} for_each_vma(vmi, vma);
990
991empty_set:
992	show_vma_header_prefix(m, vma_start, last_vma_end, 0, 0, 0, 0);
993	seq_pad(m, ' ');
994	seq_puts(m, "[rollup]\n");
995
996	__show_smap(m, &mss, true);
997
998	release_task_mempolicy(priv);
999	mmap_read_unlock(mm);
1000
1001out_put_mm:
1002	mmput(mm);
1003out_put_task:
1004	put_task_struct(priv->task);
1005	priv->task = NULL;
1006
1007	return ret;
1008}
1009#undef SEQ_PUT_DEC
1010
1011static const struct seq_operations proc_pid_smaps_op = {
1012	.start	= m_start,
1013	.next	= m_next,
1014	.stop	= m_stop,
1015	.show	= show_smap
1016};
1017
1018static int pid_smaps_open(struct inode *inode, struct file *file)
1019{
1020	return do_maps_open(inode, file, &proc_pid_smaps_op);
1021}
1022
1023static int smaps_rollup_open(struct inode *inode, struct file *file)
1024{
1025	int ret;
1026	struct proc_maps_private *priv;
1027
1028	priv = kzalloc(sizeof(*priv), GFP_KERNEL_ACCOUNT);
1029	if (!priv)
1030		return -ENOMEM;
1031
1032	ret = single_open(file, show_smaps_rollup, priv);
1033	if (ret)
1034		goto out_free;
1035
1036	priv->inode = inode;
1037	priv->mm = proc_mem_open(inode, PTRACE_MODE_READ);
1038	if (IS_ERR(priv->mm)) {
1039		ret = PTR_ERR(priv->mm);
1040
1041		single_release(inode, file);
1042		goto out_free;
1043	}
1044
1045	return 0;
1046
1047out_free:
1048	kfree(priv);
1049	return ret;
1050}
1051
1052static int smaps_rollup_release(struct inode *inode, struct file *file)
1053{
1054	struct seq_file *seq = file->private_data;
1055	struct proc_maps_private *priv = seq->private;
1056
1057	if (priv->mm)
1058		mmdrop(priv->mm);
1059
1060	kfree(priv);
1061	return single_release(inode, file);
1062}
1063
1064const struct file_operations proc_pid_smaps_operations = {
1065	.open		= pid_smaps_open,
1066	.read		= seq_read,
1067	.llseek		= seq_lseek,
1068	.release	= proc_map_release,
1069};
1070
1071const struct file_operations proc_pid_smaps_rollup_operations = {
1072	.open		= smaps_rollup_open,
1073	.read		= seq_read,
1074	.llseek		= seq_lseek,
1075	.release	= smaps_rollup_release,
1076};
1077
1078enum clear_refs_types {
1079	CLEAR_REFS_ALL = 1,
1080	CLEAR_REFS_ANON,
1081	CLEAR_REFS_MAPPED,
1082	CLEAR_REFS_SOFT_DIRTY,
1083	CLEAR_REFS_MM_HIWATER_RSS,
1084	CLEAR_REFS_LAST,
1085};
1086
1087struct clear_refs_private {
1088	enum clear_refs_types type;
1089};
1090
1091#ifdef CONFIG_MEM_SOFT_DIRTY
1092
1093static inline bool pte_is_pinned(struct vm_area_struct *vma, unsigned long addr, pte_t pte)
1094{
1095	struct page *page;
1096
1097	if (!pte_write(pte))
1098		return false;
1099	if (!is_cow_mapping(vma->vm_flags))
1100		return false;
1101	if (likely(!test_bit(MMF_HAS_PINNED, &vma->vm_mm->flags)))
1102		return false;
1103	page = vm_normal_page(vma, addr, pte);
1104	if (!page)
1105		return false;
1106	return page_maybe_dma_pinned(page);
1107}
1108
1109static inline void clear_soft_dirty(struct vm_area_struct *vma,
1110		unsigned long addr, pte_t *pte)
1111{
1112	/*
1113	 * The soft-dirty tracker uses #PF-s to catch writes
1114	 * to pages, so write-protect the pte as well. See the
1115	 * Documentation/admin-guide/mm/soft-dirty.rst for full description
1116	 * of how soft-dirty works.
1117	 */
1118	pte_t ptent = ptep_get(pte);
1119
1120	if (pte_present(ptent)) {
1121		pte_t old_pte;
1122
1123		if (pte_is_pinned(vma, addr, ptent))
1124			return;
1125		old_pte = ptep_modify_prot_start(vma, addr, pte);
1126		ptent = pte_wrprotect(old_pte);
1127		ptent = pte_clear_soft_dirty(ptent);
1128		ptep_modify_prot_commit(vma, addr, pte, old_pte, ptent);
1129	} else if (is_swap_pte(ptent)) {
1130		ptent = pte_swp_clear_soft_dirty(ptent);
1131		set_pte_at(vma->vm_mm, addr, pte, ptent);
1132	}
1133}
1134#else
1135static inline void clear_soft_dirty(struct vm_area_struct *vma,
1136		unsigned long addr, pte_t *pte)
1137{
1138}
1139#endif
1140
1141#if defined(CONFIG_MEM_SOFT_DIRTY) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
1142static inline void clear_soft_dirty_pmd(struct vm_area_struct *vma,
1143		unsigned long addr, pmd_t *pmdp)
1144{
1145	pmd_t old, pmd = *pmdp;
1146
1147	if (pmd_present(pmd)) {
1148		/* See comment in change_huge_pmd() */
1149		old = pmdp_invalidate(vma, addr, pmdp);
1150		if (pmd_dirty(old))
1151			pmd = pmd_mkdirty(pmd);
1152		if (pmd_young(old))
1153			pmd = pmd_mkyoung(pmd);
1154
1155		pmd = pmd_wrprotect(pmd);
1156		pmd = pmd_clear_soft_dirty(pmd);
1157
1158		set_pmd_at(vma->vm_mm, addr, pmdp, pmd);
1159	} else if (is_migration_entry(pmd_to_swp_entry(pmd))) {
1160		pmd = pmd_swp_clear_soft_dirty(pmd);
1161		set_pmd_at(vma->vm_mm, addr, pmdp, pmd);
1162	}
1163}
1164#else
1165static inline void clear_soft_dirty_pmd(struct vm_area_struct *vma,
1166		unsigned long addr, pmd_t *pmdp)
1167{
1168}
1169#endif
1170
1171static int clear_refs_pte_range(pmd_t *pmd, unsigned long addr,
1172				unsigned long end, struct mm_walk *walk)
1173{
1174	struct clear_refs_private *cp = walk->private;
1175	struct vm_area_struct *vma = walk->vma;
1176	pte_t *pte, ptent;
1177	spinlock_t *ptl;
1178	struct page *page;
1179
1180	ptl = pmd_trans_huge_lock(pmd, vma);
1181	if (ptl) {
1182		if (cp->type == CLEAR_REFS_SOFT_DIRTY) {
1183			clear_soft_dirty_pmd(vma, addr, pmd);
1184			goto out;
1185		}
1186
1187		if (!pmd_present(*pmd))
1188			goto out;
1189
1190		page = pmd_page(*pmd);
1191
1192		/* Clear accessed and referenced bits. */
1193		pmdp_test_and_clear_young(vma, addr, pmd);
1194		test_and_clear_page_young(page);
1195		ClearPageReferenced(page);
1196out:
1197		spin_unlock(ptl);
1198		return 0;
1199	}
1200
1201	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
1202	if (!pte) {
1203		walk->action = ACTION_AGAIN;
1204		return 0;
1205	}
1206	for (; addr != end; pte++, addr += PAGE_SIZE) {
1207		ptent = ptep_get(pte);
1208
1209		if (cp->type == CLEAR_REFS_SOFT_DIRTY) {
1210			clear_soft_dirty(vma, addr, pte);
1211			continue;
1212		}
1213
1214		if (!pte_present(ptent))
1215			continue;
1216
1217		page = vm_normal_page(vma, addr, ptent);
1218		if (!page)
1219			continue;
1220
1221		/* Clear accessed and referenced bits. */
1222		ptep_test_and_clear_young(vma, addr, pte);
1223		test_and_clear_page_young(page);
1224		ClearPageReferenced(page);
1225	}
1226	pte_unmap_unlock(pte - 1, ptl);
1227	cond_resched();
1228	return 0;
1229}
1230
1231static int clear_refs_test_walk(unsigned long start, unsigned long end,
1232				struct mm_walk *walk)
1233{
1234	struct clear_refs_private *cp = walk->private;
1235	struct vm_area_struct *vma = walk->vma;
1236
1237	if (vma->vm_flags & VM_PFNMAP)
1238		return 1;
1239
1240	/*
1241	 * Writing 1 to /proc/pid/clear_refs affects all pages.
1242	 * Writing 2 to /proc/pid/clear_refs only affects anonymous pages.
1243	 * Writing 3 to /proc/pid/clear_refs only affects file mapped pages.
1244	 * Writing 4 to /proc/pid/clear_refs affects all pages.
1245	 */
1246	if (cp->type == CLEAR_REFS_ANON && vma->vm_file)
1247		return 1;
1248	if (cp->type == CLEAR_REFS_MAPPED && !vma->vm_file)
1249		return 1;
1250	return 0;
1251}
1252
1253static const struct mm_walk_ops clear_refs_walk_ops = {
1254	.pmd_entry		= clear_refs_pte_range,
1255	.test_walk		= clear_refs_test_walk,
1256	.walk_lock		= PGWALK_WRLOCK,
1257};
1258
1259static ssize_t clear_refs_write(struct file *file, const char __user *buf,
1260				size_t count, loff_t *ppos)
1261{
1262	struct task_struct *task;
1263	char buffer[PROC_NUMBUF];
1264	struct mm_struct *mm;
1265	struct vm_area_struct *vma;
1266	enum clear_refs_types type;
1267	int itype;
1268	int rv;
1269
1270	memset(buffer, 0, sizeof(buffer));
1271	if (count > sizeof(buffer) - 1)
1272		count = sizeof(buffer) - 1;
1273	if (copy_from_user(buffer, buf, count))
1274		return -EFAULT;
1275	rv = kstrtoint(strstrip(buffer), 10, &itype);
1276	if (rv < 0)
1277		return rv;
1278	type = (enum clear_refs_types)itype;
1279	if (type < CLEAR_REFS_ALL || type >= CLEAR_REFS_LAST)
1280		return -EINVAL;
1281
1282	task = get_proc_task(file_inode(file));
1283	if (!task)
1284		return -ESRCH;
1285	mm = get_task_mm(task);
1286	if (mm) {
1287		VMA_ITERATOR(vmi, mm, 0);
1288		struct mmu_notifier_range range;
1289		struct clear_refs_private cp = {
1290			.type = type,
1291		};
1292
1293		if (mmap_write_lock_killable(mm)) {
1294			count = -EINTR;
1295			goto out_mm;
1296		}
1297		if (type == CLEAR_REFS_MM_HIWATER_RSS) {
1298			/*
1299			 * Writing 5 to /proc/pid/clear_refs resets the peak
1300			 * resident set size to this mm's current rss value.
1301			 */
1302			reset_mm_hiwater_rss(mm);
1303			goto out_unlock;
1304		}
1305
1306		if (type == CLEAR_REFS_SOFT_DIRTY) {
1307			for_each_vma(vmi, vma) {
1308				if (!(vma->vm_flags & VM_SOFTDIRTY))
1309					continue;
1310				vm_flags_clear(vma, VM_SOFTDIRTY);
1311				vma_set_page_prot(vma);
1312			}
1313
1314			inc_tlb_flush_pending(mm);
1315			mmu_notifier_range_init(&range, MMU_NOTIFY_SOFT_DIRTY,
1316						0, mm, 0, -1UL);
1317			mmu_notifier_invalidate_range_start(&range);
1318		}
1319		walk_page_range(mm, 0, -1, &clear_refs_walk_ops, &cp);
1320		if (type == CLEAR_REFS_SOFT_DIRTY) {
1321			mmu_notifier_invalidate_range_end(&range);
1322			flush_tlb_mm(mm);
1323			dec_tlb_flush_pending(mm);
1324		}
1325out_unlock:
1326		mmap_write_unlock(mm);
1327out_mm:
1328		mmput(mm);
1329	}
1330	put_task_struct(task);
1331
1332	return count;
1333}
1334
1335const struct file_operations proc_clear_refs_operations = {
1336	.write		= clear_refs_write,
1337	.llseek		= noop_llseek,
1338};
1339
1340typedef struct {
1341	u64 pme;
1342} pagemap_entry_t;
1343
1344struct pagemapread {
1345	int pos, len;		/* units: PM_ENTRY_BYTES, not bytes */
1346	pagemap_entry_t *buffer;
1347	bool show_pfn;
1348};
1349
1350#define PAGEMAP_WALK_SIZE	(PMD_SIZE)
1351#define PAGEMAP_WALK_MASK	(PMD_MASK)
1352
1353#define PM_ENTRY_BYTES		sizeof(pagemap_entry_t)
1354#define PM_PFRAME_BITS		55
1355#define PM_PFRAME_MASK		GENMASK_ULL(PM_PFRAME_BITS - 1, 0)
1356#define PM_SOFT_DIRTY		BIT_ULL(55)
1357#define PM_MMAP_EXCLUSIVE	BIT_ULL(56)
1358#define PM_UFFD_WP		BIT_ULL(57)
1359#define PM_FILE			BIT_ULL(61)
1360#define PM_SWAP			BIT_ULL(62)
1361#define PM_PRESENT		BIT_ULL(63)
1362
1363#define PM_END_OF_BUFFER    1
1364
1365static inline pagemap_entry_t make_pme(u64 frame, u64 flags)
1366{
1367	return (pagemap_entry_t) { .pme = (frame & PM_PFRAME_MASK) | flags };
1368}
1369
1370static int add_to_pagemap(unsigned long addr, pagemap_entry_t *pme,
1371			  struct pagemapread *pm)
1372{
1373	pm->buffer[pm->pos++] = *pme;
1374	if (pm->pos >= pm->len)
1375		return PM_END_OF_BUFFER;
1376	return 0;
1377}
1378
1379static int pagemap_pte_hole(unsigned long start, unsigned long end,
1380			    __always_unused int depth, struct mm_walk *walk)
1381{
1382	struct pagemapread *pm = walk->private;
1383	unsigned long addr = start;
1384	int err = 0;
1385
1386	while (addr < end) {
1387		struct vm_area_struct *vma = find_vma(walk->mm, addr);
1388		pagemap_entry_t pme = make_pme(0, 0);
1389		/* End of address space hole, which we mark as non-present. */
1390		unsigned long hole_end;
1391
1392		if (vma)
1393			hole_end = min(end, vma->vm_start);
1394		else
1395			hole_end = end;
1396
1397		for (; addr < hole_end; addr += PAGE_SIZE) {
1398			err = add_to_pagemap(addr, &pme, pm);
1399			if (err)
1400				goto out;
1401		}
1402
1403		if (!vma)
1404			break;
1405
1406		/* Addresses in the VMA. */
1407		if (vma->vm_flags & VM_SOFTDIRTY)
1408			pme = make_pme(0, PM_SOFT_DIRTY);
1409		for (; addr < min(end, vma->vm_end); addr += PAGE_SIZE) {
1410			err = add_to_pagemap(addr, &pme, pm);
1411			if (err)
1412				goto out;
1413		}
1414	}
1415out:
1416	return err;
1417}
1418
1419static pagemap_entry_t pte_to_pagemap_entry(struct pagemapread *pm,
1420		struct vm_area_struct *vma, unsigned long addr, pte_t pte)
1421{
1422	u64 frame = 0, flags = 0;
1423	struct page *page = NULL;
1424	bool migration = false;
1425
1426	if (pte_present(pte)) {
1427		if (pm->show_pfn)
1428			frame = pte_pfn(pte);
1429		flags |= PM_PRESENT;
1430		page = vm_normal_page(vma, addr, pte);
1431		if (pte_soft_dirty(pte))
1432			flags |= PM_SOFT_DIRTY;
1433		if (pte_uffd_wp(pte))
1434			flags |= PM_UFFD_WP;
1435	} else if (is_swap_pte(pte)) {
1436		swp_entry_t entry;
1437		if (pte_swp_soft_dirty(pte))
1438			flags |= PM_SOFT_DIRTY;
1439		if (pte_swp_uffd_wp(pte))
1440			flags |= PM_UFFD_WP;
1441		entry = pte_to_swp_entry(pte);
1442		if (pm->show_pfn) {
1443			pgoff_t offset;
1444			/*
1445			 * For PFN swap offsets, keeping the offset field
1446			 * to be PFN only to be compatible with old smaps.
1447			 */
1448			if (is_pfn_swap_entry(entry))
1449				offset = swp_offset_pfn(entry);
1450			else
1451				offset = swp_offset(entry);
1452			frame = swp_type(entry) |
1453			    (offset << MAX_SWAPFILES_SHIFT);
1454		}
1455		flags |= PM_SWAP;
1456		migration = is_migration_entry(entry);
1457		if (is_pfn_swap_entry(entry))
1458			page = pfn_swap_entry_to_page(entry);
1459		if (pte_marker_entry_uffd_wp(entry))
1460			flags |= PM_UFFD_WP;
1461	}
1462
1463	if (page && !PageAnon(page))
1464		flags |= PM_FILE;
1465	if (page && !migration && page_mapcount(page) == 1)
1466		flags |= PM_MMAP_EXCLUSIVE;
1467	if (vma->vm_flags & VM_SOFTDIRTY)
1468		flags |= PM_SOFT_DIRTY;
1469
1470	return make_pme(frame, flags);
1471}
1472
1473static int pagemap_pmd_range(pmd_t *pmdp, unsigned long addr, unsigned long end,
1474			     struct mm_walk *walk)
1475{
1476	struct vm_area_struct *vma = walk->vma;
1477	struct pagemapread *pm = walk->private;
1478	spinlock_t *ptl;
1479	pte_t *pte, *orig_pte;
1480	int err = 0;
1481#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1482	bool migration = false;
1483
1484	ptl = pmd_trans_huge_lock(pmdp, vma);
1485	if (ptl) {
1486		u64 flags = 0, frame = 0;
1487		pmd_t pmd = *pmdp;
1488		struct page *page = NULL;
1489
1490		if (vma->vm_flags & VM_SOFTDIRTY)
1491			flags |= PM_SOFT_DIRTY;
1492
1493		if (pmd_present(pmd)) {
1494			page = pmd_page(pmd);
1495
1496			flags |= PM_PRESENT;
1497			if (pmd_soft_dirty(pmd))
1498				flags |= PM_SOFT_DIRTY;
1499			if (pmd_uffd_wp(pmd))
1500				flags |= PM_UFFD_WP;
1501			if (pm->show_pfn)
1502				frame = pmd_pfn(pmd) +
1503					((addr & ~PMD_MASK) >> PAGE_SHIFT);
1504		}
1505#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1506		else if (is_swap_pmd(pmd)) {
1507			swp_entry_t entry = pmd_to_swp_entry(pmd);
1508			unsigned long offset;
1509
1510			if (pm->show_pfn) {
1511				if (is_pfn_swap_entry(entry))
1512					offset = swp_offset_pfn(entry);
1513				else
1514					offset = swp_offset(entry);
1515				offset = offset +
1516					((addr & ~PMD_MASK) >> PAGE_SHIFT);
1517				frame = swp_type(entry) |
1518					(offset << MAX_SWAPFILES_SHIFT);
1519			}
1520			flags |= PM_SWAP;
1521			if (pmd_swp_soft_dirty(pmd))
1522				flags |= PM_SOFT_DIRTY;
1523			if (pmd_swp_uffd_wp(pmd))
1524				flags |= PM_UFFD_WP;
1525			VM_BUG_ON(!is_pmd_migration_entry(pmd));
1526			migration = is_migration_entry(entry);
1527			page = pfn_swap_entry_to_page(entry);
1528		}
1529#endif
1530
1531		if (page && !migration && page_mapcount(page) == 1)
1532			flags |= PM_MMAP_EXCLUSIVE;
1533
1534		for (; addr != end; addr += PAGE_SIZE) {
1535			pagemap_entry_t pme = make_pme(frame, flags);
1536
1537			err = add_to_pagemap(addr, &pme, pm);
1538			if (err)
1539				break;
1540			if (pm->show_pfn) {
1541				if (flags & PM_PRESENT)
1542					frame++;
1543				else if (flags & PM_SWAP)
1544					frame += (1 << MAX_SWAPFILES_SHIFT);
1545			}
1546		}
1547		spin_unlock(ptl);
1548		return err;
1549	}
1550#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1551
1552	/*
1553	 * We can assume that @vma always points to a valid one and @end never
1554	 * goes beyond vma->vm_end.
1555	 */
1556	orig_pte = pte = pte_offset_map_lock(walk->mm, pmdp, addr, &ptl);
1557	if (!pte) {
1558		walk->action = ACTION_AGAIN;
1559		return err;
1560	}
1561	for (; addr < end; pte++, addr += PAGE_SIZE) {
1562		pagemap_entry_t pme;
1563
1564		pme = pte_to_pagemap_entry(pm, vma, addr, ptep_get(pte));
1565		err = add_to_pagemap(addr, &pme, pm);
1566		if (err)
1567			break;
1568	}
1569	pte_unmap_unlock(orig_pte, ptl);
1570
1571	cond_resched();
1572
1573	return err;
1574}
1575
1576#ifdef CONFIG_HUGETLB_PAGE
1577/* This function walks within one hugetlb entry in the single call */
1578static int pagemap_hugetlb_range(pte_t *ptep, unsigned long hmask,
1579				 unsigned long addr, unsigned long end,
1580				 struct mm_walk *walk)
1581{
1582	struct pagemapread *pm = walk->private;
1583	struct vm_area_struct *vma = walk->vma;
1584	u64 flags = 0, frame = 0;
1585	int err = 0;
1586	pte_t pte;
1587
1588	if (vma->vm_flags & VM_SOFTDIRTY)
1589		flags |= PM_SOFT_DIRTY;
1590
1591	pte = huge_ptep_get(ptep);
1592	if (pte_present(pte)) {
1593		struct page *page = pte_page(pte);
1594
1595		if (!PageAnon(page))
1596			flags |= PM_FILE;
1597
1598		if (page_mapcount(page) == 1)
1599			flags |= PM_MMAP_EXCLUSIVE;
1600
1601		if (huge_pte_uffd_wp(pte))
1602			flags |= PM_UFFD_WP;
1603
1604		flags |= PM_PRESENT;
1605		if (pm->show_pfn)
1606			frame = pte_pfn(pte) +
1607				((addr & ~hmask) >> PAGE_SHIFT);
1608	} else if (pte_swp_uffd_wp_any(pte)) {
1609		flags |= PM_UFFD_WP;
1610	}
1611
1612	for (; addr != end; addr += PAGE_SIZE) {
1613		pagemap_entry_t pme = make_pme(frame, flags);
1614
1615		err = add_to_pagemap(addr, &pme, pm);
1616		if (err)
1617			return err;
1618		if (pm->show_pfn && (flags & PM_PRESENT))
1619			frame++;
1620	}
1621
1622	cond_resched();
1623
1624	return err;
1625}
1626#else
1627#define pagemap_hugetlb_range	NULL
1628#endif /* HUGETLB_PAGE */
1629
1630static const struct mm_walk_ops pagemap_ops = {
1631	.pmd_entry	= pagemap_pmd_range,
1632	.pte_hole	= pagemap_pte_hole,
1633	.hugetlb_entry	= pagemap_hugetlb_range,
1634	.walk_lock	= PGWALK_RDLOCK,
1635};
1636
1637/*
1638 * /proc/pid/pagemap - an array mapping virtual pages to pfns
1639 *
1640 * For each page in the address space, this file contains one 64-bit entry
1641 * consisting of the following:
1642 *
1643 * Bits 0-54  page frame number (PFN) if present
1644 * Bits 0-4   swap type if swapped
1645 * Bits 5-54  swap offset if swapped
1646 * Bit  55    pte is soft-dirty (see Documentation/admin-guide/mm/soft-dirty.rst)
1647 * Bit  56    page exclusively mapped
1648 * Bit  57    pte is uffd-wp write-protected
1649 * Bits 58-60 zero
1650 * Bit  61    page is file-page or shared-anon
1651 * Bit  62    page swapped
1652 * Bit  63    page present
1653 *
1654 * If the page is not present but in swap, then the PFN contains an
1655 * encoding of the swap file number and the page's offset into the
1656 * swap. Unmapped pages return a null PFN. This allows determining
1657 * precisely which pages are mapped (or in swap) and comparing mapped
1658 * pages between processes.
1659 *
1660 * Efficient users of this interface will use /proc/pid/maps to
1661 * determine which areas of memory are actually mapped and llseek to
1662 * skip over unmapped regions.
1663 */
1664static ssize_t pagemap_read(struct file *file, char __user *buf,
1665			    size_t count, loff_t *ppos)
1666{
1667	struct mm_struct *mm = file->private_data;
1668	struct pagemapread pm;
1669	unsigned long src;
1670	unsigned long svpfn;
1671	unsigned long start_vaddr;
1672	unsigned long end_vaddr;
1673	int ret = 0, copied = 0;
1674
1675	if (!mm || !mmget_not_zero(mm))
1676		goto out;
1677
1678	ret = -EINVAL;
1679	/* file position must be aligned */
1680	if ((*ppos % PM_ENTRY_BYTES) || (count % PM_ENTRY_BYTES))
1681		goto out_mm;
1682
1683	ret = 0;
1684	if (!count)
1685		goto out_mm;
1686
1687	/* do not disclose physical addresses: attack vector */
1688	pm.show_pfn = file_ns_capable(file, &init_user_ns, CAP_SYS_ADMIN);
1689
1690	pm.len = (PAGEMAP_WALK_SIZE >> PAGE_SHIFT);
1691	pm.buffer = kmalloc_array(pm.len, PM_ENTRY_BYTES, GFP_KERNEL);
1692	ret = -ENOMEM;
1693	if (!pm.buffer)
1694		goto out_mm;
1695
1696	src = *ppos;
1697	svpfn = src / PM_ENTRY_BYTES;
1698	end_vaddr = mm->task_size;
1699
1700	/* watch out for wraparound */
1701	start_vaddr = end_vaddr;
1702	if (svpfn <= (ULONG_MAX >> PAGE_SHIFT)) {
1703		unsigned long end;
1704
1705		ret = mmap_read_lock_killable(mm);
1706		if (ret)
1707			goto out_free;
1708		start_vaddr = untagged_addr_remote(mm, svpfn << PAGE_SHIFT);
1709		mmap_read_unlock(mm);
1710
1711		end = start_vaddr + ((count / PM_ENTRY_BYTES) << PAGE_SHIFT);
1712		if (end >= start_vaddr && end < mm->task_size)
1713			end_vaddr = end;
1714	}
1715
1716	/* Ensure the address is inside the task */
1717	if (start_vaddr > mm->task_size)
1718		start_vaddr = end_vaddr;
1719
1720	ret = 0;
1721	while (count && (start_vaddr < end_vaddr)) {
1722		int len;
1723		unsigned long end;
1724
1725		pm.pos = 0;
1726		end = (start_vaddr + PAGEMAP_WALK_SIZE) & PAGEMAP_WALK_MASK;
1727		/* overflow ? */
1728		if (end < start_vaddr || end > end_vaddr)
1729			end = end_vaddr;
1730		ret = mmap_read_lock_killable(mm);
1731		if (ret)
1732			goto out_free;
1733		ret = walk_page_range(mm, start_vaddr, end, &pagemap_ops, &pm);
1734		mmap_read_unlock(mm);
1735		start_vaddr = end;
1736
1737		len = min(count, PM_ENTRY_BYTES * pm.pos);
1738		if (copy_to_user(buf, pm.buffer, len)) {
1739			ret = -EFAULT;
1740			goto out_free;
1741		}
1742		copied += len;
1743		buf += len;
1744		count -= len;
1745	}
1746	*ppos += copied;
1747	if (!ret || ret == PM_END_OF_BUFFER)
1748		ret = copied;
1749
1750out_free:
1751	kfree(pm.buffer);
1752out_mm:
1753	mmput(mm);
1754out:
1755	return ret;
1756}
1757
1758static int pagemap_open(struct inode *inode, struct file *file)
1759{
1760	struct mm_struct *mm;
1761
1762	mm = proc_mem_open(inode, PTRACE_MODE_READ);
1763	if (IS_ERR(mm))
1764		return PTR_ERR(mm);
1765	file->private_data = mm;
1766	return 0;
1767}
1768
1769static int pagemap_release(struct inode *inode, struct file *file)
1770{
1771	struct mm_struct *mm = file->private_data;
1772
1773	if (mm)
1774		mmdrop(mm);
1775	return 0;
1776}
1777
1778const struct file_operations proc_pagemap_operations = {
1779	.llseek		= mem_lseek, /* borrow this */
1780	.read		= pagemap_read,
1781	.open		= pagemap_open,
1782	.release	= pagemap_release,
1783};
1784#endif /* CONFIG_PROC_PAGE_MONITOR */
1785
1786#ifdef CONFIG_NUMA
1787
1788struct numa_maps {
1789	unsigned long pages;
1790	unsigned long anon;
1791	unsigned long active;
1792	unsigned long writeback;
1793	unsigned long mapcount_max;
1794	unsigned long dirty;
1795	unsigned long swapcache;
1796	unsigned long node[MAX_NUMNODES];
1797};
1798
1799struct numa_maps_private {
1800	struct proc_maps_private proc_maps;
1801	struct numa_maps md;
1802};
1803
1804static void gather_stats(struct page *page, struct numa_maps *md, int pte_dirty,
1805			unsigned long nr_pages)
1806{
1807	int count = page_mapcount(page);
1808
1809	md->pages += nr_pages;
1810	if (pte_dirty || PageDirty(page))
1811		md->dirty += nr_pages;
1812
1813	if (PageSwapCache(page))
1814		md->swapcache += nr_pages;
1815
1816	if (PageActive(page) || PageUnevictable(page))
1817		md->active += nr_pages;
1818
1819	if (PageWriteback(page))
1820		md->writeback += nr_pages;
1821
1822	if (PageAnon(page))
1823		md->anon += nr_pages;
1824
1825	if (count > md->mapcount_max)
1826		md->mapcount_max = count;
1827
1828	md->node[page_to_nid(page)] += nr_pages;
1829}
1830
1831static struct page *can_gather_numa_stats(pte_t pte, struct vm_area_struct *vma,
1832		unsigned long addr)
1833{
1834	struct page *page;
1835	int nid;
1836
1837	if (!pte_present(pte))
1838		return NULL;
1839
1840	page = vm_normal_page(vma, addr, pte);
1841	if (!page || is_zone_device_page(page))
1842		return NULL;
1843
1844	if (PageReserved(page))
1845		return NULL;
1846
1847	nid = page_to_nid(page);
1848	if (!node_isset(nid, node_states[N_MEMORY]))
1849		return NULL;
1850
1851	return page;
1852}
1853
1854#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1855static struct page *can_gather_numa_stats_pmd(pmd_t pmd,
1856					      struct vm_area_struct *vma,
1857					      unsigned long addr)
1858{
1859	struct page *page;
1860	int nid;
1861
1862	if (!pmd_present(pmd))
1863		return NULL;
1864
1865	page = vm_normal_page_pmd(vma, addr, pmd);
1866	if (!page)
1867		return NULL;
1868
1869	if (PageReserved(page))
1870		return NULL;
1871
1872	nid = page_to_nid(page);
1873	if (!node_isset(nid, node_states[N_MEMORY]))
1874		return NULL;
1875
1876	return page;
1877}
1878#endif
1879
1880static int gather_pte_stats(pmd_t *pmd, unsigned long addr,
1881		unsigned long end, struct mm_walk *walk)
1882{
1883	struct numa_maps *md = walk->private;
1884	struct vm_area_struct *vma = walk->vma;
1885	spinlock_t *ptl;
1886	pte_t *orig_pte;
1887	pte_t *pte;
1888
1889#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1890	ptl = pmd_trans_huge_lock(pmd, vma);
1891	if (ptl) {
1892		struct page *page;
1893
1894		page = can_gather_numa_stats_pmd(*pmd, vma, addr);
1895		if (page)
1896			gather_stats(page, md, pmd_dirty(*pmd),
1897				     HPAGE_PMD_SIZE/PAGE_SIZE);
1898		spin_unlock(ptl);
1899		return 0;
1900	}
1901#endif
1902	orig_pte = pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
1903	if (!pte) {
1904		walk->action = ACTION_AGAIN;
1905		return 0;
1906	}
1907	do {
1908		pte_t ptent = ptep_get(pte);
1909		struct page *page = can_gather_numa_stats(ptent, vma, addr);
1910		if (!page)
1911			continue;
1912		gather_stats(page, md, pte_dirty(ptent), 1);
1913
1914	} while (pte++, addr += PAGE_SIZE, addr != end);
1915	pte_unmap_unlock(orig_pte, ptl);
1916	cond_resched();
1917	return 0;
1918}
1919#ifdef CONFIG_HUGETLB_PAGE
1920static int gather_hugetlb_stats(pte_t *pte, unsigned long hmask,
1921		unsigned long addr, unsigned long end, struct mm_walk *walk)
1922{
1923	pte_t huge_pte = huge_ptep_get(pte);
1924	struct numa_maps *md;
1925	struct page *page;
1926
1927	if (!pte_present(huge_pte))
1928		return 0;
1929
1930	page = pte_page(huge_pte);
1931
1932	md = walk->private;
1933	gather_stats(page, md, pte_dirty(huge_pte), 1);
1934	return 0;
1935}
1936
1937#else
1938static int gather_hugetlb_stats(pte_t *pte, unsigned long hmask,
1939		unsigned long addr, unsigned long end, struct mm_walk *walk)
1940{
1941	return 0;
1942}
1943#endif
1944
1945static const struct mm_walk_ops show_numa_ops = {
1946	.hugetlb_entry = gather_hugetlb_stats,
1947	.pmd_entry = gather_pte_stats,
1948	.walk_lock = PGWALK_RDLOCK,
1949};
1950
1951/*
1952 * Display pages allocated per node and memory policy via /proc.
1953 */
1954static int show_numa_map(struct seq_file *m, void *v)
1955{
1956	struct numa_maps_private *numa_priv = m->private;
1957	struct proc_maps_private *proc_priv = &numa_priv->proc_maps;
1958	struct vm_area_struct *vma = v;
1959	struct numa_maps *md = &numa_priv->md;
1960	struct file *file = vma->vm_file;
1961	struct mm_struct *mm = vma->vm_mm;
1962	struct mempolicy *pol;
1963	char buffer[64];
1964	int nid;
1965
1966	if (!mm)
1967		return 0;
1968
1969	/* Ensure we start with an empty set of numa_maps statistics. */
1970	memset(md, 0, sizeof(*md));
1971
1972	pol = __get_vma_policy(vma, vma->vm_start);
1973	if (pol) {
1974		mpol_to_str(buffer, sizeof(buffer), pol);
1975		mpol_cond_put(pol);
1976	} else {
1977		mpol_to_str(buffer, sizeof(buffer), proc_priv->task_mempolicy);
1978	}
1979
1980	seq_printf(m, "%08lx %s", vma->vm_start, buffer);
1981
1982	if (file) {
1983		seq_puts(m, " file=");
1984		seq_file_path(m, file, "\n\t= ");
1985	} else if (vma_is_initial_heap(vma)) {
1986		seq_puts(m, " heap");
1987	} else if (vma_is_initial_stack(vma)) {
1988		seq_puts(m, " stack");
1989	}
1990
1991	if (is_vm_hugetlb_page(vma))
1992		seq_puts(m, " huge");
1993
1994	/* mmap_lock is held by m_start */
1995	walk_page_vma(vma, &show_numa_ops, md);
1996
1997	if (!md->pages)
1998		goto out;
1999
2000	if (md->anon)
2001		seq_printf(m, " anon=%lu", md->anon);
2002
2003	if (md->dirty)
2004		seq_printf(m, " dirty=%lu", md->dirty);
2005
2006	if (md->pages != md->anon && md->pages != md->dirty)
2007		seq_printf(m, " mapped=%lu", md->pages);
2008
2009	if (md->mapcount_max > 1)
2010		seq_printf(m, " mapmax=%lu", md->mapcount_max);
2011
2012	if (md->swapcache)
2013		seq_printf(m, " swapcache=%lu", md->swapcache);
2014
2015	if (md->active < md->pages && !is_vm_hugetlb_page(vma))
2016		seq_printf(m, " active=%lu", md->active);
2017
2018	if (md->writeback)
2019		seq_printf(m, " writeback=%lu", md->writeback);
2020
2021	for_each_node_state(nid, N_MEMORY)
2022		if (md->node[nid])
2023			seq_printf(m, " N%d=%lu", nid, md->node[nid]);
2024
2025	seq_printf(m, " kernelpagesize_kB=%lu", vma_kernel_pagesize(vma) >> 10);
2026out:
2027	seq_putc(m, '\n');
2028	return 0;
2029}
2030
2031static const struct seq_operations proc_pid_numa_maps_op = {
2032	.start  = m_start,
2033	.next   = m_next,
2034	.stop   = m_stop,
2035	.show   = show_numa_map,
2036};
2037
2038static int pid_numa_maps_open(struct inode *inode, struct file *file)
2039{
2040	return proc_maps_open(inode, file, &proc_pid_numa_maps_op,
2041				sizeof(struct numa_maps_private));
2042}
2043
2044const struct file_operations proc_pid_numa_maps_operations = {
2045	.open		= pid_numa_maps_open,
2046	.read		= seq_read,
2047	.llseek		= seq_lseek,
2048	.release	= proc_map_release,
2049};
2050
2051#endif /* CONFIG_NUMA */
2052