1 // SPDX-License-Identifier: GPL-2.0
2 #include <linux/pagewalk.h>
3 #include <linux/mm_inline.h>
4 #include <linux/hugetlb.h>
5 #include <linux/huge_mm.h>
6 #include <linux/mount.h>
7 #include <linux/ksm.h>
8 #include <linux/seq_file.h>
9 #include <linux/highmem.h>
10 #include <linux/ptrace.h>
11 #include <linux/slab.h>
12 #include <linux/pagemap.h>
13 #include <linux/mempolicy.h>
14 #include <linux/rmap.h>
15 #include <linux/swap.h>
16 #include <linux/sched/mm.h>
17 #include <linux/swapops.h>
18 #include <linux/mmu_notifier.h>
19 #include <linux/page_idle.h>
20 #include <linux/shmem_fs.h>
21 #include <linux/uaccess.h>
22 #include <linux/pkeys.h>
23 #ifdef CONFIG_MEM_PURGEABLE
24 #include <linux/mm_purgeable.h>
25 #endif
26
27 #include <asm/elf.h>
28 #include <asm/tlb.h>
29 #include <asm/tlbflush.h>
30 #include "internal.h"
31 #include <linux/hck/lite_hck_hideaddr.h>
32
33 #define SEQ_PUT_DEC(str, val) \
34 seq_put_decimal_ull_width(m, str, (val) << (PAGE_SHIFT-10), 8)
task_mem(struct seq_file *m, struct mm_struct *mm)35 void task_mem(struct seq_file *m, struct mm_struct *mm)
36 {
37 unsigned long text, lib, swap, anon, file, shmem;
38 unsigned long hiwater_vm, total_vm, hiwater_rss, total_rss;
39 #ifdef CONFIG_MEM_PURGEABLE
40 unsigned long nr_purg_sum = 0, nr_purg_pin = 0;
41
42 mm_purg_pages_info(mm, &nr_purg_sum, &nr_purg_pin);
43 #endif
44
45 anon = get_mm_counter(mm, MM_ANONPAGES);
46 file = get_mm_counter(mm, MM_FILEPAGES);
47 shmem = get_mm_counter(mm, MM_SHMEMPAGES);
48
49 /*
50 * Note: to minimize their overhead, mm maintains hiwater_vm and
51 * hiwater_rss only when about to *lower* total_vm or rss. Any
52 * collector of these hiwater stats must therefore get total_vm
53 * and rss too, which will usually be the higher. Barriers? not
54 * worth the effort, such snapshots can always be inconsistent.
55 */
56 hiwater_vm = total_vm = mm->total_vm;
57 if (hiwater_vm < mm->hiwater_vm)
58 hiwater_vm = mm->hiwater_vm;
59 hiwater_rss = total_rss = anon + file + shmem;
60 if (hiwater_rss < mm->hiwater_rss)
61 hiwater_rss = mm->hiwater_rss;
62
63 /* split executable areas between text and lib */
64 text = PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK);
65 text = min(text, mm->exec_vm << PAGE_SHIFT);
66 lib = (mm->exec_vm << PAGE_SHIFT) - text;
67
68 swap = get_mm_counter(mm, MM_SWAPENTS);
69 SEQ_PUT_DEC("VmPeak:\t", hiwater_vm);
70 SEQ_PUT_DEC(" kB\nVmSize:\t", total_vm);
71 SEQ_PUT_DEC(" kB\nVmLck:\t", mm->locked_vm);
72 SEQ_PUT_DEC(" kB\nVmPin:\t", atomic64_read(&mm->pinned_vm));
73 SEQ_PUT_DEC(" kB\nVmHWM:\t", hiwater_rss);
74 SEQ_PUT_DEC(" kB\nVmRSS:\t", total_rss);
75 SEQ_PUT_DEC(" kB\nRssAnon:\t", anon);
76 SEQ_PUT_DEC(" kB\nRssFile:\t", file);
77 SEQ_PUT_DEC(" kB\nRssShmem:\t", shmem);
78 SEQ_PUT_DEC(" kB\nVmData:\t", mm->data_vm);
79 SEQ_PUT_DEC(" kB\nVmStk:\t", mm->stack_vm);
80 seq_put_decimal_ull_width(m,
81 " kB\nVmExe:\t", text >> 10, 8);
82 seq_put_decimal_ull_width(m,
83 " kB\nVmLib:\t", lib >> 10, 8);
84 seq_put_decimal_ull_width(m,
85 " kB\nVmPTE:\t", mm_pgtables_bytes(mm) >> 10, 8);
86 SEQ_PUT_DEC(" kB\nVmSwap:\t", swap);
87 #ifdef CONFIG_MEM_PURGEABLE
88 SEQ_PUT_DEC(" kB\nPurgSum:\t", nr_purg_sum);
89 SEQ_PUT_DEC(" kB\nPurgPin:\t", nr_purg_pin);
90 #endif
91 seq_puts(m, " kB\n");
92 hugetlb_report_usage(m, mm);
93 }
94 #undef SEQ_PUT_DEC
95
task_vsize(struct mm_struct *mm)96 unsigned long task_vsize(struct mm_struct *mm)
97 {
98 return PAGE_SIZE * mm->total_vm;
99 }
100
task_statm(struct mm_struct *mm, unsigned long *shared, unsigned long *text, unsigned long *data, unsigned long *resident)101 unsigned long task_statm(struct mm_struct *mm,
102 unsigned long *shared, unsigned long *text,
103 unsigned long *data, unsigned long *resident)
104 {
105 *shared = get_mm_counter(mm, MM_FILEPAGES) +
106 get_mm_counter(mm, MM_SHMEMPAGES);
107 *text = (PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK))
108 >> PAGE_SHIFT;
109 *data = mm->data_vm + mm->stack_vm;
110 *resident = *shared + get_mm_counter(mm, MM_ANONPAGES);
111 return mm->total_vm;
112 }
113
114 #ifdef CONFIG_NUMA
115 /*
116 * Save get_task_policy() for show_numa_map().
117 */
hold_task_mempolicy(struct proc_maps_private *priv)118 static void hold_task_mempolicy(struct proc_maps_private *priv)
119 {
120 struct task_struct *task = priv->task;
121
122 task_lock(task);
123 priv->task_mempolicy = get_task_policy(task);
124 mpol_get(priv->task_mempolicy);
125 task_unlock(task);
126 }
release_task_mempolicy(struct proc_maps_private *priv)127 static void release_task_mempolicy(struct proc_maps_private *priv)
128 {
129 mpol_put(priv->task_mempolicy);
130 }
131 #else
hold_task_mempolicy(struct proc_maps_private *priv)132 static void hold_task_mempolicy(struct proc_maps_private *priv)
133 {
134 }
release_task_mempolicy(struct proc_maps_private *priv)135 static void release_task_mempolicy(struct proc_maps_private *priv)
136 {
137 }
138 #endif
139
proc_get_vma(struct proc_maps_private *priv, loff_t *ppos)140 static struct vm_area_struct *proc_get_vma(struct proc_maps_private *priv,
141 loff_t *ppos)
142 {
143 struct vm_area_struct *vma = vma_next(&priv->iter);
144
145 if (vma) {
146 *ppos = vma->vm_start;
147 } else {
148 *ppos = -2UL;
149 vma = get_gate_vma(priv->mm);
150 }
151
152 return vma;
153 }
154
m_start(struct seq_file *m, loff_t *ppos)155 static void *m_start(struct seq_file *m, loff_t *ppos)
156 {
157 struct proc_maps_private *priv = m->private;
158 unsigned long last_addr = *ppos;
159 struct mm_struct *mm;
160
161 /* See m_next(). Zero at the start or after lseek. */
162 if (last_addr == -1UL)
163 return NULL;
164
165 priv->task = get_proc_task(priv->inode);
166 if (!priv->task)
167 return ERR_PTR(-ESRCH);
168
169 mm = priv->mm;
170 if (!mm || !mmget_not_zero(mm)) {
171 put_task_struct(priv->task);
172 priv->task = NULL;
173 return NULL;
174 }
175
176 if (mmap_read_lock_killable(mm)) {
177 mmput(mm);
178 put_task_struct(priv->task);
179 priv->task = NULL;
180 return ERR_PTR(-EINTR);
181 }
182
183 vma_iter_init(&priv->iter, mm, last_addr);
184 hold_task_mempolicy(priv);
185 if (last_addr == -2UL)
186 return get_gate_vma(mm);
187
188 return proc_get_vma(priv, ppos);
189 }
190
m_next(struct seq_file *m, void *v, loff_t *ppos)191 static void *m_next(struct seq_file *m, void *v, loff_t *ppos)
192 {
193 if (*ppos == -2UL) {
194 *ppos = -1UL;
195 return NULL;
196 }
197 return proc_get_vma(m->private, ppos);
198 }
199
m_stop(struct seq_file *m, void *v)200 static void m_stop(struct seq_file *m, void *v)
201 {
202 struct proc_maps_private *priv = m->private;
203 struct mm_struct *mm = priv->mm;
204
205 if (!priv->task)
206 return;
207
208 release_task_mempolicy(priv);
209 mmap_read_unlock(mm);
210 mmput(mm);
211 put_task_struct(priv->task);
212 priv->task = NULL;
213 }
214
proc_maps_open(struct inode *inode, struct file *file, const struct seq_operations *ops, int psize)215 static int proc_maps_open(struct inode *inode, struct file *file,
216 const struct seq_operations *ops, int psize)
217 {
218 struct proc_maps_private *priv = __seq_open_private(file, ops, psize);
219
220 if (!priv)
221 return -ENOMEM;
222
223 priv->inode = inode;
224 priv->mm = proc_mem_open(inode, PTRACE_MODE_READ);
225 if (IS_ERR(priv->mm)) {
226 int err = PTR_ERR(priv->mm);
227
228 seq_release_private(inode, file);
229 return err;
230 }
231
232 return 0;
233 }
234
proc_map_release(struct inode *inode, struct file *file)235 static int proc_map_release(struct inode *inode, struct file *file)
236 {
237 struct seq_file *seq = file->private_data;
238 struct proc_maps_private *priv = seq->private;
239
240 if (priv->mm)
241 mmdrop(priv->mm);
242
243 return seq_release_private(inode, file);
244 }
245
do_maps_open(struct inode *inode, struct file *file, const struct seq_operations *ops)246 static int do_maps_open(struct inode *inode, struct file *file,
247 const struct seq_operations *ops)
248 {
249 return proc_maps_open(inode, file, ops,
250 sizeof(struct proc_maps_private));
251 }
252
show_vma_header_prefix(struct seq_file *m, unsigned long start, unsigned long end, vm_flags_t flags, unsigned long long pgoff, dev_t dev, unsigned long ino)253 static void show_vma_header_prefix(struct seq_file *m,
254 unsigned long start, unsigned long end,
255 vm_flags_t flags, unsigned long long pgoff,
256 dev_t dev, unsigned long ino)
257 {
258 seq_setwidth(m, 25 + sizeof(void *) * 6 - 1);
259 seq_put_hex_ll(m, NULL, start, 8);
260 seq_put_hex_ll(m, "-", end, 8);
261 seq_putc(m, ' ');
262 seq_putc(m, flags & VM_READ ? 'r' : '-');
263 seq_putc(m, flags & VM_WRITE ? 'w' : '-');
264 seq_putc(m, flags & VM_EXEC ? 'x' : '-');
265 seq_putc(m, flags & VM_MAYSHARE ? 's' : 'p');
266 seq_put_hex_ll(m, " ", pgoff, 8);
267 seq_put_hex_ll(m, " ", MAJOR(dev), 2);
268 seq_put_hex_ll(m, ":", MINOR(dev), 2);
269 seq_put_decimal_ull(m, " ", ino);
270 seq_putc(m, ' ');
271 }
272
273 static void
show_map_vma(struct seq_file *m, struct vm_area_struct *vma)274 show_map_vma(struct seq_file *m, struct vm_area_struct *vma)
275 {
276 struct anon_vma_name *anon_name = NULL;
277 struct mm_struct *mm = vma->vm_mm;
278 struct file *file = vma->vm_file;
279 vm_flags_t flags = vma->vm_flags;
280 unsigned long ino = 0;
281 unsigned long long pgoff = 0;
282 unsigned long start, end;
283 dev_t dev = 0;
284 const char *name = NULL;
285
286 if (file) {
287 struct inode *inode = file_inode(vma->vm_file);
288 dev = inode->i_sb->s_dev;
289 ino = inode->i_ino;
290 pgoff = ((loff_t)vma->vm_pgoff) << PAGE_SHIFT;
291 }
292
293 start = vma->vm_start;
294 end = vma->vm_end;
295 CALL_HCK_LITE_HOOK(hideaddr_header_prefix_lhck, &start, &end, &flags, m, vma);
296 show_vma_header_prefix(m, start, end, flags, pgoff, dev, ino);
297 if (mm)
298 anon_name = anon_vma_name(vma);
299
300 /*
301 * Print the dentry name for named mappings, and a
302 * special [heap] marker for the heap:
303 */
304 if (file) {
305 seq_pad(m, ' ');
306 /*
307 * If user named this anon shared memory via
308 * prctl(PR_SET_VMA ..., use the provided name.
309 */
310 if (anon_name)
311 seq_printf(m, "[anon_shmem:%s]", anon_name->name);
312 else
313 seq_file_path(m, file, "\n");
314 goto done;
315 }
316
317 if (vma->vm_ops && vma->vm_ops->name) {
318 name = vma->vm_ops->name(vma);
319 if (name)
320 goto done;
321 }
322
323 name = arch_vma_name(vma);
324 if (!name) {
325 if (!mm) {
326 name = "[vdso]";
327 goto done;
328 }
329
330 if (vma_is_initial_heap(vma)) {
331 name = "[heap]";
332 goto done;
333 }
334
335 if (vma_is_initial_stack(vma)) {
336 name = "[stack]";
337 goto done;
338 }
339
340 if (anon_name) {
341 seq_pad(m, ' ');
342 seq_printf(m, "[anon:%s]", anon_name->name);
343 }
344 }
345
346 done:
347 if (name) {
348 seq_pad(m, ' ');
349 seq_puts(m, name);
350 }
351 seq_putc(m, '\n');
352 }
353
show_map(struct seq_file *m, void *v)354 static int show_map(struct seq_file *m, void *v)
355 {
356 show_map_vma(m, v);
357 return 0;
358 }
359
360 static const struct seq_operations proc_pid_maps_op = {
361 .start = m_start,
362 .next = m_next,
363 .stop = m_stop,
364 .show = show_map
365 };
366
pid_maps_open(struct inode *inode, struct file *file)367 static int pid_maps_open(struct inode *inode, struct file *file)
368 {
369 return do_maps_open(inode, file, &proc_pid_maps_op);
370 }
371
372 const struct file_operations proc_pid_maps_operations = {
373 .open = pid_maps_open,
374 .read = seq_read,
375 .llseek = seq_lseek,
376 .release = proc_map_release,
377 };
378
379 /*
380 * Proportional Set Size(PSS): my share of RSS.
381 *
382 * PSS of a process is the count of pages it has in memory, where each
383 * page is divided by the number of processes sharing it. So if a
384 * process has 1000 pages all to itself, and 1000 shared with one other
385 * process, its PSS will be 1500.
386 *
387 * To keep (accumulated) division errors low, we adopt a 64bit
388 * fixed-point pss counter to minimize division errors. So (pss >>
389 * PSS_SHIFT) would be the real byte count.
390 *
391 * A shift of 12 before division means (assuming 4K page size):
392 * - 1M 3-user-pages add up to 8KB errors;
393 * - supports mapcount up to 2^24, or 16M;
394 * - supports PSS up to 2^52 bytes, or 4PB.
395 */
396 #define PSS_SHIFT 12
397
398 #ifdef CONFIG_PROC_PAGE_MONITOR
399 struct mem_size_stats {
400 unsigned long resident;
401 unsigned long shared_clean;
402 unsigned long shared_dirty;
403 unsigned long private_clean;
404 unsigned long private_dirty;
405 unsigned long referenced;
406 unsigned long anonymous;
407 unsigned long lazyfree;
408 unsigned long anonymous_thp;
409 unsigned long shmem_thp;
410 unsigned long file_thp;
411 unsigned long swap;
412 unsigned long shared_hugetlb;
413 unsigned long private_hugetlb;
414 unsigned long ksm;
415 u64 pss;
416 u64 pss_anon;
417 u64 pss_file;
418 u64 pss_shmem;
419 u64 pss_dirty;
420 u64 pss_locked;
421 u64 swap_pss;
422 };
423
smaps_page_accumulate(struct mem_size_stats *mss, struct page *page, unsigned long size, unsigned long pss, bool dirty, bool locked, bool private)424 static void smaps_page_accumulate(struct mem_size_stats *mss,
425 struct page *page, unsigned long size, unsigned long pss,
426 bool dirty, bool locked, bool private)
427 {
428 mss->pss += pss;
429
430 if (PageAnon(page))
431 mss->pss_anon += pss;
432 else if (PageSwapBacked(page))
433 mss->pss_shmem += pss;
434 else
435 mss->pss_file += pss;
436
437 if (locked)
438 mss->pss_locked += pss;
439
440 if (dirty || PageDirty(page)) {
441 mss->pss_dirty += pss;
442 if (private)
443 mss->private_dirty += size;
444 else
445 mss->shared_dirty += size;
446 } else {
447 if (private)
448 mss->private_clean += size;
449 else
450 mss->shared_clean += size;
451 }
452 }
453
smaps_account(struct mem_size_stats *mss, struct page *page, bool compound, bool young, bool dirty, bool locked, bool migration)454 static void smaps_account(struct mem_size_stats *mss, struct page *page,
455 bool compound, bool young, bool dirty, bool locked,
456 bool migration)
457 {
458 int i, nr = compound ? compound_nr(page) : 1;
459 unsigned long size = nr * PAGE_SIZE;
460
461 /*
462 * First accumulate quantities that depend only on |size| and the type
463 * of the compound page.
464 */
465 if (PageAnon(page)) {
466 mss->anonymous += size;
467 if (!PageSwapBacked(page) && !dirty && !PageDirty(page))
468 mss->lazyfree += size;
469 }
470
471 if (PageKsm(page))
472 mss->ksm += size;
473
474 mss->resident += size;
475 /* Accumulate the size in pages that have been accessed. */
476 if (young || page_is_young(page) || PageReferenced(page))
477 mss->referenced += size;
478
479 /*
480 * Then accumulate quantities that may depend on sharing, or that may
481 * differ page-by-page.
482 *
483 * page_count(page) == 1 guarantees the page is mapped exactly once.
484 * If any subpage of the compound page mapped with PTE it would elevate
485 * page_count().
486 *
487 * The page_mapcount() is called to get a snapshot of the mapcount.
488 * Without holding the page lock this snapshot can be slightly wrong as
489 * we cannot always read the mapcount atomically. It is not safe to
490 * call page_mapcount() even with PTL held if the page is not mapped,
491 * especially for migration entries. Treat regular migration entries
492 * as mapcount == 1.
493 */
494 if ((page_count(page) == 1) || migration) {
495 smaps_page_accumulate(mss, page, size, size << PSS_SHIFT, dirty,
496 locked, true);
497 return;
498 }
499 for (i = 0; i < nr; i++, page++) {
500 int mapcount = page_mapcount(page);
501 unsigned long pss = PAGE_SIZE << PSS_SHIFT;
502 if (mapcount >= 2)
503 pss /= mapcount;
504 smaps_page_accumulate(mss, page, PAGE_SIZE, pss, dirty, locked,
505 mapcount < 2);
506 }
507 }
508
509 #ifdef CONFIG_SHMEM
smaps_pte_hole(unsigned long addr, unsigned long end, __always_unused int depth, struct mm_walk *walk)510 static int smaps_pte_hole(unsigned long addr, unsigned long end,
511 __always_unused int depth, struct mm_walk *walk)
512 {
513 struct mem_size_stats *mss = walk->private;
514 struct vm_area_struct *vma = walk->vma;
515
516 mss->swap += shmem_partial_swap_usage(walk->vma->vm_file->f_mapping,
517 linear_page_index(vma, addr),
518 linear_page_index(vma, end));
519
520 return 0;
521 }
522 #else
523 #define smaps_pte_hole NULL
524 #endif /* CONFIG_SHMEM */
525
smaps_pte_hole_lookup(unsigned long addr, struct mm_walk *walk)526 static void smaps_pte_hole_lookup(unsigned long addr, struct mm_walk *walk)
527 {
528 #ifdef CONFIG_SHMEM
529 if (walk->ops->pte_hole) {
530 /* depth is not used */
531 smaps_pte_hole(addr, addr + PAGE_SIZE, 0, walk);
532 }
533 #endif
534 }
535
smaps_pte_entry(pte_t *pte, unsigned long addr, struct mm_walk *walk)536 static void smaps_pte_entry(pte_t *pte, unsigned long addr,
537 struct mm_walk *walk)
538 {
539 struct mem_size_stats *mss = walk->private;
540 struct vm_area_struct *vma = walk->vma;
541 bool locked = !!(vma->vm_flags & VM_LOCKED);
542 struct page *page = NULL;
543 bool migration = false, young = false, dirty = false;
544 pte_t ptent = ptep_get(pte);
545
546 if (pte_present(ptent)) {
547 page = vm_normal_page(vma, addr, ptent);
548 young = pte_young(ptent);
549 dirty = pte_dirty(ptent);
550 } else if (is_swap_pte(ptent)) {
551 swp_entry_t swpent = pte_to_swp_entry(ptent);
552
553 if (!non_swap_entry(swpent)) {
554 int mapcount;
555
556 mss->swap += PAGE_SIZE;
557 mapcount = swp_swapcount(swpent);
558 if (mapcount >= 2) {
559 u64 pss_delta = (u64)PAGE_SIZE << PSS_SHIFT;
560
561 do_div(pss_delta, mapcount);
562 mss->swap_pss += pss_delta;
563 } else {
564 mss->swap_pss += (u64)PAGE_SIZE << PSS_SHIFT;
565 }
566 } else if (is_pfn_swap_entry(swpent)) {
567 if (is_migration_entry(swpent))
568 migration = true;
569 page = pfn_swap_entry_to_page(swpent);
570 }
571 } else {
572 smaps_pte_hole_lookup(addr, walk);
573 return;
574 }
575
576 if (!page)
577 return;
578
579 smaps_account(mss, page, false, young, dirty, locked, migration);
580 }
581
582 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
smaps_pmd_entry(pmd_t *pmd, unsigned long addr, struct mm_walk *walk)583 static void smaps_pmd_entry(pmd_t *pmd, unsigned long addr,
584 struct mm_walk *walk)
585 {
586 struct mem_size_stats *mss = walk->private;
587 struct vm_area_struct *vma = walk->vma;
588 bool locked = !!(vma->vm_flags & VM_LOCKED);
589 struct page *page = NULL;
590 bool migration = false;
591
592 if (pmd_present(*pmd)) {
593 page = vm_normal_page_pmd(vma, addr, *pmd);
594 } else if (unlikely(thp_migration_supported() && is_swap_pmd(*pmd))) {
595 swp_entry_t entry = pmd_to_swp_entry(*pmd);
596
597 if (is_migration_entry(entry)) {
598 migration = true;
599 page = pfn_swap_entry_to_page(entry);
600 }
601 }
602 if (IS_ERR_OR_NULL(page))
603 return;
604 if (PageAnon(page))
605 mss->anonymous_thp += HPAGE_PMD_SIZE;
606 else if (PageSwapBacked(page))
607 mss->shmem_thp += HPAGE_PMD_SIZE;
608 else if (is_zone_device_page(page))
609 /* pass */;
610 else
611 mss->file_thp += HPAGE_PMD_SIZE;
612
613 smaps_account(mss, page, true, pmd_young(*pmd), pmd_dirty(*pmd),
614 locked, migration);
615 }
616 #else
smaps_pmd_entry(pmd_t *pmd, unsigned long addr, struct mm_walk *walk)617 static void smaps_pmd_entry(pmd_t *pmd, unsigned long addr,
618 struct mm_walk *walk)
619 {
620 }
621 #endif
622
smaps_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end, struct mm_walk *walk)623 static int smaps_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
624 struct mm_walk *walk)
625 {
626 struct vm_area_struct *vma = walk->vma;
627 pte_t *pte;
628 spinlock_t *ptl;
629
630 ptl = pmd_trans_huge_lock(pmd, vma);
631 if (ptl) {
632 smaps_pmd_entry(pmd, addr, walk);
633 spin_unlock(ptl);
634 goto out;
635 }
636
637 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
638 if (!pte) {
639 walk->action = ACTION_AGAIN;
640 return 0;
641 }
642 for (; addr != end; pte++, addr += PAGE_SIZE)
643 smaps_pte_entry(pte, addr, walk);
644 pte_unmap_unlock(pte - 1, ptl);
645 out:
646 cond_resched();
647 return 0;
648 }
649
show_smap_vma_flags(struct seq_file *m, struct vm_area_struct *vma)650 static void show_smap_vma_flags(struct seq_file *m, struct vm_area_struct *vma)
651 {
652 /*
653 * Don't forget to update Documentation/ on changes.
654 */
655 static const char mnemonics[BITS_PER_LONG][2] = {
656 /*
657 * In case if we meet a flag we don't know about.
658 */
659 [0 ... (BITS_PER_LONG-1)] = "??",
660
661 [ilog2(VM_READ)] = "rd",
662 [ilog2(VM_WRITE)] = "wr",
663 [ilog2(VM_EXEC)] = "ex",
664 [ilog2(VM_SHARED)] = "sh",
665 [ilog2(VM_MAYREAD)] = "mr",
666 [ilog2(VM_MAYWRITE)] = "mw",
667 [ilog2(VM_MAYEXEC)] = "me",
668 [ilog2(VM_MAYSHARE)] = "ms",
669 [ilog2(VM_GROWSDOWN)] = "gd",
670 [ilog2(VM_PFNMAP)] = "pf",
671 [ilog2(VM_LOCKED)] = "lo",
672 [ilog2(VM_IO)] = "io",
673 [ilog2(VM_SEQ_READ)] = "sr",
674 [ilog2(VM_RAND_READ)] = "rr",
675 [ilog2(VM_DONTCOPY)] = "dc",
676 [ilog2(VM_DONTEXPAND)] = "de",
677 [ilog2(VM_LOCKONFAULT)] = "lf",
678 [ilog2(VM_ACCOUNT)] = "ac",
679 [ilog2(VM_NORESERVE)] = "nr",
680 [ilog2(VM_HUGETLB)] = "ht",
681 [ilog2(VM_SYNC)] = "sf",
682 [ilog2(VM_ARCH_1)] = "ar",
683 [ilog2(VM_WIPEONFORK)] = "wf",
684 [ilog2(VM_DONTDUMP)] = "dd",
685 #ifdef CONFIG_ARM64_BTI
686 [ilog2(VM_ARM64_BTI)] = "bt",
687 #endif
688 #ifdef CONFIG_MEM_SOFT_DIRTY
689 [ilog2(VM_SOFTDIRTY)] = "sd",
690 #endif
691 [ilog2(VM_MIXEDMAP)] = "mm",
692 [ilog2(VM_HUGEPAGE)] = "hg",
693 [ilog2(VM_NOHUGEPAGE)] = "nh",
694 [ilog2(VM_MERGEABLE)] = "mg",
695 [ilog2(VM_UFFD_MISSING)]= "um",
696 [ilog2(VM_UFFD_WP)] = "uw",
697 #ifdef CONFIG_ARM64_MTE
698 [ilog2(VM_MTE)] = "mt",
699 [ilog2(VM_MTE_ALLOWED)] = "",
700 #endif
701 #ifdef CONFIG_ARCH_HAS_PKEYS
702 /* These come out via ProtectionKey: */
703 [ilog2(VM_PKEY_BIT0)] = "",
704 [ilog2(VM_PKEY_BIT1)] = "",
705 [ilog2(VM_PKEY_BIT2)] = "",
706 [ilog2(VM_PKEY_BIT3)] = "",
707 #if VM_PKEY_BIT4
708 [ilog2(VM_PKEY_BIT4)] = "",
709 #endif
710 #endif /* CONFIG_ARCH_HAS_PKEYS */
711 #ifdef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR
712 [ilog2(VM_UFFD_MINOR)] = "ui",
713 #endif /* CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */
714 #ifdef CONFIG_X86_USER_SHADOW_STACK
715 [ilog2(VM_SHADOW_STACK)] = "ss",
716 #endif
717 };
718 size_t i;
719
720 seq_puts(m, "VmFlags: ");
721 for (i = 0; i < BITS_PER_LONG; i++) {
722 if (!mnemonics[i][0])
723 continue;
724 if (vma->vm_flags & (1UL << i)) {
725 seq_putc(m, mnemonics[i][0]);
726 seq_putc(m, mnemonics[i][1]);
727 seq_putc(m, ' ');
728 }
729 }
730 seq_putc(m, '\n');
731 }
732
733 #ifdef CONFIG_HUGETLB_PAGE
smaps_hugetlb_range(pte_t *pte, unsigned long hmask, unsigned long addr, unsigned long end, struct mm_walk *walk)734 static int smaps_hugetlb_range(pte_t *pte, unsigned long hmask,
735 unsigned long addr, unsigned long end,
736 struct mm_walk *walk)
737 {
738 struct mem_size_stats *mss = walk->private;
739 struct vm_area_struct *vma = walk->vma;
740 struct page *page = NULL;
741 pte_t ptent = ptep_get(pte);
742
743 if (pte_present(ptent)) {
744 page = vm_normal_page(vma, addr, ptent);
745 } else if (is_swap_pte(ptent)) {
746 swp_entry_t swpent = pte_to_swp_entry(ptent);
747
748 if (is_pfn_swap_entry(swpent))
749 page = pfn_swap_entry_to_page(swpent);
750 }
751 if (page) {
752 if (page_mapcount(page) >= 2 || hugetlb_pmd_shared(pte))
753 mss->shared_hugetlb += huge_page_size(hstate_vma(vma));
754 else
755 mss->private_hugetlb += huge_page_size(hstate_vma(vma));
756 }
757 return 0;
758 }
759 #else
760 #define smaps_hugetlb_range NULL
761 #endif /* HUGETLB_PAGE */
762
763 static const struct mm_walk_ops smaps_walk_ops = {
764 .pmd_entry = smaps_pte_range,
765 .hugetlb_entry = smaps_hugetlb_range,
766 .walk_lock = PGWALK_RDLOCK,
767 };
768
769 static const struct mm_walk_ops smaps_shmem_walk_ops = {
770 .pmd_entry = smaps_pte_range,
771 .hugetlb_entry = smaps_hugetlb_range,
772 .pte_hole = smaps_pte_hole,
773 .walk_lock = PGWALK_RDLOCK,
774 };
775
776 /*
777 * Gather mem stats from @vma with the indicated beginning
778 * address @start, and keep them in @mss.
779 *
780 * Use vm_start of @vma as the beginning address if @start is 0.
781 */
smap_gather_stats(struct vm_area_struct *vma, struct mem_size_stats *mss, unsigned long start)782 static void smap_gather_stats(struct vm_area_struct *vma,
783 struct mem_size_stats *mss, unsigned long start)
784 {
785 const struct mm_walk_ops *ops = &smaps_walk_ops;
786
787 /* Invalid start */
788 if (start >= vma->vm_end)
789 return;
790
791 if (vma->vm_file && shmem_mapping(vma->vm_file->f_mapping)) {
792 /*
793 * For shared or readonly shmem mappings we know that all
794 * swapped out pages belong to the shmem object, and we can
795 * obtain the swap value much more efficiently. For private
796 * writable mappings, we might have COW pages that are
797 * not affected by the parent swapped out pages of the shmem
798 * object, so we have to distinguish them during the page walk.
799 * Unless we know that the shmem object (or the part mapped by
800 * our VMA) has no swapped out pages at all.
801 */
802 unsigned long shmem_swapped = shmem_swap_usage(vma);
803
804 if (!start && (!shmem_swapped || (vma->vm_flags & VM_SHARED) ||
805 !(vma->vm_flags & VM_WRITE))) {
806 mss->swap += shmem_swapped;
807 } else {
808 ops = &smaps_shmem_walk_ops;
809 }
810 }
811
812 /* mmap_lock is held in m_start */
813 if (!start)
814 walk_page_vma(vma, ops, mss);
815 else
816 walk_page_range(vma->vm_mm, start, vma->vm_end, ops, mss);
817 }
818
819 #define SEQ_PUT_DEC(str, val) \
820 seq_put_decimal_ull_width(m, str, (val) >> 10, 8)
821
822 /* Show the contents common for smaps and smaps_rollup */
__show_smap(struct seq_file *m, const struct mem_size_stats *mss, bool rollup_mode)823 static void __show_smap(struct seq_file *m, const struct mem_size_stats *mss,
824 bool rollup_mode)
825 {
826 SEQ_PUT_DEC("Rss: ", mss->resident);
827 SEQ_PUT_DEC(" kB\nPss: ", mss->pss >> PSS_SHIFT);
828 SEQ_PUT_DEC(" kB\nPss_Dirty: ", mss->pss_dirty >> PSS_SHIFT);
829 if (rollup_mode) {
830 /*
831 * These are meaningful only for smaps_rollup, otherwise two of
832 * them are zero, and the other one is the same as Pss.
833 */
834 SEQ_PUT_DEC(" kB\nPss_Anon: ",
835 mss->pss_anon >> PSS_SHIFT);
836 SEQ_PUT_DEC(" kB\nPss_File: ",
837 mss->pss_file >> PSS_SHIFT);
838 SEQ_PUT_DEC(" kB\nPss_Shmem: ",
839 mss->pss_shmem >> PSS_SHIFT);
840 }
841 SEQ_PUT_DEC(" kB\nShared_Clean: ", mss->shared_clean);
842 SEQ_PUT_DEC(" kB\nShared_Dirty: ", mss->shared_dirty);
843 SEQ_PUT_DEC(" kB\nPrivate_Clean: ", mss->private_clean);
844 SEQ_PUT_DEC(" kB\nPrivate_Dirty: ", mss->private_dirty);
845 SEQ_PUT_DEC(" kB\nReferenced: ", mss->referenced);
846 SEQ_PUT_DEC(" kB\nAnonymous: ", mss->anonymous);
847 SEQ_PUT_DEC(" kB\nKSM: ", mss->ksm);
848 SEQ_PUT_DEC(" kB\nLazyFree: ", mss->lazyfree);
849 SEQ_PUT_DEC(" kB\nAnonHugePages: ", mss->anonymous_thp);
850 SEQ_PUT_DEC(" kB\nShmemPmdMapped: ", mss->shmem_thp);
851 SEQ_PUT_DEC(" kB\nFilePmdMapped: ", mss->file_thp);
852 SEQ_PUT_DEC(" kB\nShared_Hugetlb: ", mss->shared_hugetlb);
853 seq_put_decimal_ull_width(m, " kB\nPrivate_Hugetlb: ",
854 mss->private_hugetlb >> 10, 7);
855 SEQ_PUT_DEC(" kB\nSwap: ", mss->swap);
856 SEQ_PUT_DEC(" kB\nSwapPss: ",
857 mss->swap_pss >> PSS_SHIFT);
858 SEQ_PUT_DEC(" kB\nLocked: ",
859 mss->pss_locked >> PSS_SHIFT);
860 seq_puts(m, " kB\n");
861 }
862
show_smap(struct seq_file *m, void *v)863 static int show_smap(struct seq_file *m, void *v)
864 {
865 struct vm_area_struct *vma = v;
866 struct mem_size_stats mss;
867
868 memset(&mss, 0, sizeof(mss));
869
870 smap_gather_stats(vma, &mss, 0);
871
872 show_map_vma(m, vma);
873
874 SEQ_PUT_DEC("Size: ", vma->vm_end - vma->vm_start);
875 SEQ_PUT_DEC(" kB\nKernelPageSize: ", vma_kernel_pagesize(vma));
876 SEQ_PUT_DEC(" kB\nMMUPageSize: ", vma_mmu_pagesize(vma));
877 seq_puts(m, " kB\n");
878
879 __show_smap(m, &mss, false);
880
881 seq_printf(m, "THPeligible: %8u\n",
882 hugepage_vma_check(vma, vma->vm_flags, true, false, true));
883
884 if (arch_pkeys_enabled())
885 seq_printf(m, "ProtectionKey: %8u\n", vma_pkey(vma));
886 show_smap_vma_flags(m, vma);
887
888 return 0;
889 }
890
show_smaps_rollup(struct seq_file *m, void *v)891 static int show_smaps_rollup(struct seq_file *m, void *v)
892 {
893 struct proc_maps_private *priv = m->private;
894 struct mem_size_stats mss;
895 struct mm_struct *mm = priv->mm;
896 struct vm_area_struct *vma;
897 unsigned long vma_start = 0, last_vma_end = 0;
898 int ret = 0;
899 VMA_ITERATOR(vmi, mm, 0);
900
901 priv->task = get_proc_task(priv->inode);
902 if (!priv->task)
903 return -ESRCH;
904
905 if (!mm || !mmget_not_zero(mm)) {
906 ret = -ESRCH;
907 goto out_put_task;
908 }
909
910 memset(&mss, 0, sizeof(mss));
911
912 ret = mmap_read_lock_killable(mm);
913 if (ret)
914 goto out_put_mm;
915
916 hold_task_mempolicy(priv);
917 vma = vma_next(&vmi);
918
919 if (unlikely(!vma))
920 goto empty_set;
921
922 vma_start = vma->vm_start;
923 do {
924 smap_gather_stats(vma, &mss, 0);
925 last_vma_end = vma->vm_end;
926
927 /*
928 * Release mmap_lock temporarily if someone wants to
929 * access it for write request.
930 */
931 if (mmap_lock_is_contended(mm)) {
932 vma_iter_invalidate(&vmi);
933 mmap_read_unlock(mm);
934 ret = mmap_read_lock_killable(mm);
935 if (ret) {
936 release_task_mempolicy(priv);
937 goto out_put_mm;
938 }
939
940 /*
941 * After dropping the lock, there are four cases to
942 * consider. See the following example for explanation.
943 *
944 * +------+------+-----------+
945 * | VMA1 | VMA2 | VMA3 |
946 * +------+------+-----------+
947 * | | | |
948 * 4k 8k 16k 400k
949 *
950 * Suppose we drop the lock after reading VMA2 due to
951 * contention, then we get:
952 *
953 * last_vma_end = 16k
954 *
955 * 1) VMA2 is freed, but VMA3 exists:
956 *
957 * vma_next(vmi) will return VMA3.
958 * In this case, just continue from VMA3.
959 *
960 * 2) VMA2 still exists:
961 *
962 * vma_next(vmi) will return VMA3.
963 * In this case, just continue from VMA3.
964 *
965 * 3) No more VMAs can be found:
966 *
967 * vma_next(vmi) will return NULL.
968 * No more things to do, just break.
969 *
970 * 4) (last_vma_end - 1) is the middle of a vma (VMA'):
971 *
972 * vma_next(vmi) will return VMA' whose range
973 * contains last_vma_end.
974 * Iterate VMA' from last_vma_end.
975 */
976 vma = vma_next(&vmi);
977 /* Case 3 above */
978 if (!vma)
979 break;
980
981 /* Case 1 and 2 above */
982 if (vma->vm_start >= last_vma_end)
983 continue;
984
985 /* Case 4 above */
986 if (vma->vm_end > last_vma_end)
987 smap_gather_stats(vma, &mss, last_vma_end);
988 }
989 } for_each_vma(vmi, vma);
990
991 empty_set:
992 show_vma_header_prefix(m, vma_start, last_vma_end, 0, 0, 0, 0);
993 seq_pad(m, ' ');
994 seq_puts(m, "[rollup]\n");
995
996 __show_smap(m, &mss, true);
997
998 release_task_mempolicy(priv);
999 mmap_read_unlock(mm);
1000
1001 out_put_mm:
1002 mmput(mm);
1003 out_put_task:
1004 put_task_struct(priv->task);
1005 priv->task = NULL;
1006
1007 return ret;
1008 }
1009 #undef SEQ_PUT_DEC
1010
1011 static const struct seq_operations proc_pid_smaps_op = {
1012 .start = m_start,
1013 .next = m_next,
1014 .stop = m_stop,
1015 .show = show_smap
1016 };
1017
pid_smaps_open(struct inode *inode, struct file *file)1018 static int pid_smaps_open(struct inode *inode, struct file *file)
1019 {
1020 return do_maps_open(inode, file, &proc_pid_smaps_op);
1021 }
1022
smaps_rollup_open(struct inode *inode, struct file *file)1023 static int smaps_rollup_open(struct inode *inode, struct file *file)
1024 {
1025 int ret;
1026 struct proc_maps_private *priv;
1027
1028 priv = kzalloc(sizeof(*priv), GFP_KERNEL_ACCOUNT);
1029 if (!priv)
1030 return -ENOMEM;
1031
1032 ret = single_open(file, show_smaps_rollup, priv);
1033 if (ret)
1034 goto out_free;
1035
1036 priv->inode = inode;
1037 priv->mm = proc_mem_open(inode, PTRACE_MODE_READ);
1038 if (IS_ERR(priv->mm)) {
1039 ret = PTR_ERR(priv->mm);
1040
1041 single_release(inode, file);
1042 goto out_free;
1043 }
1044
1045 return 0;
1046
1047 out_free:
1048 kfree(priv);
1049 return ret;
1050 }
1051
smaps_rollup_release(struct inode *inode, struct file *file)1052 static int smaps_rollup_release(struct inode *inode, struct file *file)
1053 {
1054 struct seq_file *seq = file->private_data;
1055 struct proc_maps_private *priv = seq->private;
1056
1057 if (priv->mm)
1058 mmdrop(priv->mm);
1059
1060 kfree(priv);
1061 return single_release(inode, file);
1062 }
1063
1064 const struct file_operations proc_pid_smaps_operations = {
1065 .open = pid_smaps_open,
1066 .read = seq_read,
1067 .llseek = seq_lseek,
1068 .release = proc_map_release,
1069 };
1070
1071 const struct file_operations proc_pid_smaps_rollup_operations = {
1072 .open = smaps_rollup_open,
1073 .read = seq_read,
1074 .llseek = seq_lseek,
1075 .release = smaps_rollup_release,
1076 };
1077
1078 enum clear_refs_types {
1079 CLEAR_REFS_ALL = 1,
1080 CLEAR_REFS_ANON,
1081 CLEAR_REFS_MAPPED,
1082 CLEAR_REFS_SOFT_DIRTY,
1083 CLEAR_REFS_MM_HIWATER_RSS,
1084 CLEAR_REFS_LAST,
1085 };
1086
1087 struct clear_refs_private {
1088 enum clear_refs_types type;
1089 };
1090
1091 #ifdef CONFIG_MEM_SOFT_DIRTY
1092
pte_is_pinned(struct vm_area_struct *vma, unsigned long addr, pte_t pte)1093 static inline bool pte_is_pinned(struct vm_area_struct *vma, unsigned long addr, pte_t pte)
1094 {
1095 struct page *page;
1096
1097 if (!pte_write(pte))
1098 return false;
1099 if (!is_cow_mapping(vma->vm_flags))
1100 return false;
1101 if (likely(!test_bit(MMF_HAS_PINNED, &vma->vm_mm->flags)))
1102 return false;
1103 page = vm_normal_page(vma, addr, pte);
1104 if (!page)
1105 return false;
1106 return page_maybe_dma_pinned(page);
1107 }
1108
clear_soft_dirty(struct vm_area_struct *vma, unsigned long addr, pte_t *pte)1109 static inline void clear_soft_dirty(struct vm_area_struct *vma,
1110 unsigned long addr, pte_t *pte)
1111 {
1112 /*
1113 * The soft-dirty tracker uses #PF-s to catch writes
1114 * to pages, so write-protect the pte as well. See the
1115 * Documentation/admin-guide/mm/soft-dirty.rst for full description
1116 * of how soft-dirty works.
1117 */
1118 pte_t ptent = ptep_get(pte);
1119
1120 if (pte_present(ptent)) {
1121 pte_t old_pte;
1122
1123 if (pte_is_pinned(vma, addr, ptent))
1124 return;
1125 old_pte = ptep_modify_prot_start(vma, addr, pte);
1126 ptent = pte_wrprotect(old_pte);
1127 ptent = pte_clear_soft_dirty(ptent);
1128 ptep_modify_prot_commit(vma, addr, pte, old_pte, ptent);
1129 } else if (is_swap_pte(ptent)) {
1130 ptent = pte_swp_clear_soft_dirty(ptent);
1131 set_pte_at(vma->vm_mm, addr, pte, ptent);
1132 }
1133 }
1134 #else
clear_soft_dirty(struct vm_area_struct *vma, unsigned long addr, pte_t *pte)1135 static inline void clear_soft_dirty(struct vm_area_struct *vma,
1136 unsigned long addr, pte_t *pte)
1137 {
1138 }
1139 #endif
1140
1141 #if defined(CONFIG_MEM_SOFT_DIRTY) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
clear_soft_dirty_pmd(struct vm_area_struct *vma, unsigned long addr, pmd_t *pmdp)1142 static inline void clear_soft_dirty_pmd(struct vm_area_struct *vma,
1143 unsigned long addr, pmd_t *pmdp)
1144 {
1145 pmd_t old, pmd = *pmdp;
1146
1147 if (pmd_present(pmd)) {
1148 /* See comment in change_huge_pmd() */
1149 old = pmdp_invalidate(vma, addr, pmdp);
1150 if (pmd_dirty(old))
1151 pmd = pmd_mkdirty(pmd);
1152 if (pmd_young(old))
1153 pmd = pmd_mkyoung(pmd);
1154
1155 pmd = pmd_wrprotect(pmd);
1156 pmd = pmd_clear_soft_dirty(pmd);
1157
1158 set_pmd_at(vma->vm_mm, addr, pmdp, pmd);
1159 } else if (is_migration_entry(pmd_to_swp_entry(pmd))) {
1160 pmd = pmd_swp_clear_soft_dirty(pmd);
1161 set_pmd_at(vma->vm_mm, addr, pmdp, pmd);
1162 }
1163 }
1164 #else
clear_soft_dirty_pmd(struct vm_area_struct *vma, unsigned long addr, pmd_t *pmdp)1165 static inline void clear_soft_dirty_pmd(struct vm_area_struct *vma,
1166 unsigned long addr, pmd_t *pmdp)
1167 {
1168 }
1169 #endif
1170
clear_refs_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end, struct mm_walk *walk)1171 static int clear_refs_pte_range(pmd_t *pmd, unsigned long addr,
1172 unsigned long end, struct mm_walk *walk)
1173 {
1174 struct clear_refs_private *cp = walk->private;
1175 struct vm_area_struct *vma = walk->vma;
1176 pte_t *pte, ptent;
1177 spinlock_t *ptl;
1178 struct page *page;
1179
1180 ptl = pmd_trans_huge_lock(pmd, vma);
1181 if (ptl) {
1182 if (cp->type == CLEAR_REFS_SOFT_DIRTY) {
1183 clear_soft_dirty_pmd(vma, addr, pmd);
1184 goto out;
1185 }
1186
1187 if (!pmd_present(*pmd))
1188 goto out;
1189
1190 page = pmd_page(*pmd);
1191
1192 /* Clear accessed and referenced bits. */
1193 pmdp_test_and_clear_young(vma, addr, pmd);
1194 test_and_clear_page_young(page);
1195 ClearPageReferenced(page);
1196 out:
1197 spin_unlock(ptl);
1198 return 0;
1199 }
1200
1201 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
1202 if (!pte) {
1203 walk->action = ACTION_AGAIN;
1204 return 0;
1205 }
1206 for (; addr != end; pte++, addr += PAGE_SIZE) {
1207 ptent = ptep_get(pte);
1208
1209 if (cp->type == CLEAR_REFS_SOFT_DIRTY) {
1210 clear_soft_dirty(vma, addr, pte);
1211 continue;
1212 }
1213
1214 if (!pte_present(ptent))
1215 continue;
1216
1217 page = vm_normal_page(vma, addr, ptent);
1218 if (!page)
1219 continue;
1220
1221 /* Clear accessed and referenced bits. */
1222 ptep_test_and_clear_young(vma, addr, pte);
1223 test_and_clear_page_young(page);
1224 ClearPageReferenced(page);
1225 }
1226 pte_unmap_unlock(pte - 1, ptl);
1227 cond_resched();
1228 return 0;
1229 }
1230
clear_refs_test_walk(unsigned long start, unsigned long end, struct mm_walk *walk)1231 static int clear_refs_test_walk(unsigned long start, unsigned long end,
1232 struct mm_walk *walk)
1233 {
1234 struct clear_refs_private *cp = walk->private;
1235 struct vm_area_struct *vma = walk->vma;
1236
1237 if (vma->vm_flags & VM_PFNMAP)
1238 return 1;
1239
1240 /*
1241 * Writing 1 to /proc/pid/clear_refs affects all pages.
1242 * Writing 2 to /proc/pid/clear_refs only affects anonymous pages.
1243 * Writing 3 to /proc/pid/clear_refs only affects file mapped pages.
1244 * Writing 4 to /proc/pid/clear_refs affects all pages.
1245 */
1246 if (cp->type == CLEAR_REFS_ANON && vma->vm_file)
1247 return 1;
1248 if (cp->type == CLEAR_REFS_MAPPED && !vma->vm_file)
1249 return 1;
1250 return 0;
1251 }
1252
1253 static const struct mm_walk_ops clear_refs_walk_ops = {
1254 .pmd_entry = clear_refs_pte_range,
1255 .test_walk = clear_refs_test_walk,
1256 .walk_lock = PGWALK_WRLOCK,
1257 };
1258
clear_refs_write(struct file *file, const char __user *buf, size_t count, loff_t *ppos)1259 static ssize_t clear_refs_write(struct file *file, const char __user *buf,
1260 size_t count, loff_t *ppos)
1261 {
1262 struct task_struct *task;
1263 char buffer[PROC_NUMBUF];
1264 struct mm_struct *mm;
1265 struct vm_area_struct *vma;
1266 enum clear_refs_types type;
1267 int itype;
1268 int rv;
1269
1270 memset(buffer, 0, sizeof(buffer));
1271 if (count > sizeof(buffer) - 1)
1272 count = sizeof(buffer) - 1;
1273 if (copy_from_user(buffer, buf, count))
1274 return -EFAULT;
1275 rv = kstrtoint(strstrip(buffer), 10, &itype);
1276 if (rv < 0)
1277 return rv;
1278 type = (enum clear_refs_types)itype;
1279 if (type < CLEAR_REFS_ALL || type >= CLEAR_REFS_LAST)
1280 return -EINVAL;
1281
1282 task = get_proc_task(file_inode(file));
1283 if (!task)
1284 return -ESRCH;
1285 mm = get_task_mm(task);
1286 if (mm) {
1287 VMA_ITERATOR(vmi, mm, 0);
1288 struct mmu_notifier_range range;
1289 struct clear_refs_private cp = {
1290 .type = type,
1291 };
1292
1293 if (mmap_write_lock_killable(mm)) {
1294 count = -EINTR;
1295 goto out_mm;
1296 }
1297 if (type == CLEAR_REFS_MM_HIWATER_RSS) {
1298 /*
1299 * Writing 5 to /proc/pid/clear_refs resets the peak
1300 * resident set size to this mm's current rss value.
1301 */
1302 reset_mm_hiwater_rss(mm);
1303 goto out_unlock;
1304 }
1305
1306 if (type == CLEAR_REFS_SOFT_DIRTY) {
1307 for_each_vma(vmi, vma) {
1308 if (!(vma->vm_flags & VM_SOFTDIRTY))
1309 continue;
1310 vm_flags_clear(vma, VM_SOFTDIRTY);
1311 vma_set_page_prot(vma);
1312 }
1313
1314 inc_tlb_flush_pending(mm);
1315 mmu_notifier_range_init(&range, MMU_NOTIFY_SOFT_DIRTY,
1316 0, mm, 0, -1UL);
1317 mmu_notifier_invalidate_range_start(&range);
1318 }
1319 walk_page_range(mm, 0, -1, &clear_refs_walk_ops, &cp);
1320 if (type == CLEAR_REFS_SOFT_DIRTY) {
1321 mmu_notifier_invalidate_range_end(&range);
1322 flush_tlb_mm(mm);
1323 dec_tlb_flush_pending(mm);
1324 }
1325 out_unlock:
1326 mmap_write_unlock(mm);
1327 out_mm:
1328 mmput(mm);
1329 }
1330 put_task_struct(task);
1331
1332 return count;
1333 }
1334
1335 const struct file_operations proc_clear_refs_operations = {
1336 .write = clear_refs_write,
1337 .llseek = noop_llseek,
1338 };
1339
1340 typedef struct {
1341 u64 pme;
1342 } pagemap_entry_t;
1343
1344 struct pagemapread {
1345 int pos, len; /* units: PM_ENTRY_BYTES, not bytes */
1346 pagemap_entry_t *buffer;
1347 bool show_pfn;
1348 };
1349
1350 #define PAGEMAP_WALK_SIZE (PMD_SIZE)
1351 #define PAGEMAP_WALK_MASK (PMD_MASK)
1352
1353 #define PM_ENTRY_BYTES sizeof(pagemap_entry_t)
1354 #define PM_PFRAME_BITS 55
1355 #define PM_PFRAME_MASK GENMASK_ULL(PM_PFRAME_BITS - 1, 0)
1356 #define PM_SOFT_DIRTY BIT_ULL(55)
1357 #define PM_MMAP_EXCLUSIVE BIT_ULL(56)
1358 #define PM_UFFD_WP BIT_ULL(57)
1359 #define PM_FILE BIT_ULL(61)
1360 #define PM_SWAP BIT_ULL(62)
1361 #define PM_PRESENT BIT_ULL(63)
1362
1363 #define PM_END_OF_BUFFER 1
1364
make_pme(u64 frame, u64 flags)1365 static inline pagemap_entry_t make_pme(u64 frame, u64 flags)
1366 {
1367 return (pagemap_entry_t) { .pme = (frame & PM_PFRAME_MASK) | flags };
1368 }
1369
add_to_pagemap(unsigned long addr, pagemap_entry_t *pme, struct pagemapread *pm)1370 static int add_to_pagemap(unsigned long addr, pagemap_entry_t *pme,
1371 struct pagemapread *pm)
1372 {
1373 pm->buffer[pm->pos++] = *pme;
1374 if (pm->pos >= pm->len)
1375 return PM_END_OF_BUFFER;
1376 return 0;
1377 }
1378
pagemap_pte_hole(unsigned long start, unsigned long end, __always_unused int depth, struct mm_walk *walk)1379 static int pagemap_pte_hole(unsigned long start, unsigned long end,
1380 __always_unused int depth, struct mm_walk *walk)
1381 {
1382 struct pagemapread *pm = walk->private;
1383 unsigned long addr = start;
1384 int err = 0;
1385
1386 while (addr < end) {
1387 struct vm_area_struct *vma = find_vma(walk->mm, addr);
1388 pagemap_entry_t pme = make_pme(0, 0);
1389 /* End of address space hole, which we mark as non-present. */
1390 unsigned long hole_end;
1391
1392 if (vma)
1393 hole_end = min(end, vma->vm_start);
1394 else
1395 hole_end = end;
1396
1397 for (; addr < hole_end; addr += PAGE_SIZE) {
1398 err = add_to_pagemap(addr, &pme, pm);
1399 if (err)
1400 goto out;
1401 }
1402
1403 if (!vma)
1404 break;
1405
1406 /* Addresses in the VMA. */
1407 if (vma->vm_flags & VM_SOFTDIRTY)
1408 pme = make_pme(0, PM_SOFT_DIRTY);
1409 for (; addr < min(end, vma->vm_end); addr += PAGE_SIZE) {
1410 err = add_to_pagemap(addr, &pme, pm);
1411 if (err)
1412 goto out;
1413 }
1414 }
1415 out:
1416 return err;
1417 }
1418
pte_to_pagemap_entry(struct pagemapread *pm, struct vm_area_struct *vma, unsigned long addr, pte_t pte)1419 static pagemap_entry_t pte_to_pagemap_entry(struct pagemapread *pm,
1420 struct vm_area_struct *vma, unsigned long addr, pte_t pte)
1421 {
1422 u64 frame = 0, flags = 0;
1423 struct page *page = NULL;
1424 bool migration = false;
1425
1426 if (pte_present(pte)) {
1427 if (pm->show_pfn)
1428 frame = pte_pfn(pte);
1429 flags |= PM_PRESENT;
1430 page = vm_normal_page(vma, addr, pte);
1431 if (pte_soft_dirty(pte))
1432 flags |= PM_SOFT_DIRTY;
1433 if (pte_uffd_wp(pte))
1434 flags |= PM_UFFD_WP;
1435 } else if (is_swap_pte(pte)) {
1436 swp_entry_t entry;
1437 if (pte_swp_soft_dirty(pte))
1438 flags |= PM_SOFT_DIRTY;
1439 if (pte_swp_uffd_wp(pte))
1440 flags |= PM_UFFD_WP;
1441 entry = pte_to_swp_entry(pte);
1442 if (pm->show_pfn) {
1443 pgoff_t offset;
1444 /*
1445 * For PFN swap offsets, keeping the offset field
1446 * to be PFN only to be compatible with old smaps.
1447 */
1448 if (is_pfn_swap_entry(entry))
1449 offset = swp_offset_pfn(entry);
1450 else
1451 offset = swp_offset(entry);
1452 frame = swp_type(entry) |
1453 (offset << MAX_SWAPFILES_SHIFT);
1454 }
1455 flags |= PM_SWAP;
1456 migration = is_migration_entry(entry);
1457 if (is_pfn_swap_entry(entry))
1458 page = pfn_swap_entry_to_page(entry);
1459 if (pte_marker_entry_uffd_wp(entry))
1460 flags |= PM_UFFD_WP;
1461 }
1462
1463 if (page && !PageAnon(page))
1464 flags |= PM_FILE;
1465 if (page && !migration && page_mapcount(page) == 1)
1466 flags |= PM_MMAP_EXCLUSIVE;
1467 if (vma->vm_flags & VM_SOFTDIRTY)
1468 flags |= PM_SOFT_DIRTY;
1469
1470 return make_pme(frame, flags);
1471 }
1472
pagemap_pmd_range(pmd_t *pmdp, unsigned long addr, unsigned long end, struct mm_walk *walk)1473 static int pagemap_pmd_range(pmd_t *pmdp, unsigned long addr, unsigned long end,
1474 struct mm_walk *walk)
1475 {
1476 struct vm_area_struct *vma = walk->vma;
1477 struct pagemapread *pm = walk->private;
1478 spinlock_t *ptl;
1479 pte_t *pte, *orig_pte;
1480 int err = 0;
1481 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1482 bool migration = false;
1483
1484 ptl = pmd_trans_huge_lock(pmdp, vma);
1485 if (ptl) {
1486 u64 flags = 0, frame = 0;
1487 pmd_t pmd = *pmdp;
1488 struct page *page = NULL;
1489
1490 if (vma->vm_flags & VM_SOFTDIRTY)
1491 flags |= PM_SOFT_DIRTY;
1492
1493 if (pmd_present(pmd)) {
1494 page = pmd_page(pmd);
1495
1496 flags |= PM_PRESENT;
1497 if (pmd_soft_dirty(pmd))
1498 flags |= PM_SOFT_DIRTY;
1499 if (pmd_uffd_wp(pmd))
1500 flags |= PM_UFFD_WP;
1501 if (pm->show_pfn)
1502 frame = pmd_pfn(pmd) +
1503 ((addr & ~PMD_MASK) >> PAGE_SHIFT);
1504 }
1505 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1506 else if (is_swap_pmd(pmd)) {
1507 swp_entry_t entry = pmd_to_swp_entry(pmd);
1508 unsigned long offset;
1509
1510 if (pm->show_pfn) {
1511 if (is_pfn_swap_entry(entry))
1512 offset = swp_offset_pfn(entry);
1513 else
1514 offset = swp_offset(entry);
1515 offset = offset +
1516 ((addr & ~PMD_MASK) >> PAGE_SHIFT);
1517 frame = swp_type(entry) |
1518 (offset << MAX_SWAPFILES_SHIFT);
1519 }
1520 flags |= PM_SWAP;
1521 if (pmd_swp_soft_dirty(pmd))
1522 flags |= PM_SOFT_DIRTY;
1523 if (pmd_swp_uffd_wp(pmd))
1524 flags |= PM_UFFD_WP;
1525 VM_BUG_ON(!is_pmd_migration_entry(pmd));
1526 migration = is_migration_entry(entry);
1527 page = pfn_swap_entry_to_page(entry);
1528 }
1529 #endif
1530
1531 if (page && !migration && page_mapcount(page) == 1)
1532 flags |= PM_MMAP_EXCLUSIVE;
1533
1534 for (; addr != end; addr += PAGE_SIZE) {
1535 pagemap_entry_t pme = make_pme(frame, flags);
1536
1537 err = add_to_pagemap(addr, &pme, pm);
1538 if (err)
1539 break;
1540 if (pm->show_pfn) {
1541 if (flags & PM_PRESENT)
1542 frame++;
1543 else if (flags & PM_SWAP)
1544 frame += (1 << MAX_SWAPFILES_SHIFT);
1545 }
1546 }
1547 spin_unlock(ptl);
1548 return err;
1549 }
1550 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1551
1552 /*
1553 * We can assume that @vma always points to a valid one and @end never
1554 * goes beyond vma->vm_end.
1555 */
1556 orig_pte = pte = pte_offset_map_lock(walk->mm, pmdp, addr, &ptl);
1557 if (!pte) {
1558 walk->action = ACTION_AGAIN;
1559 return err;
1560 }
1561 for (; addr < end; pte++, addr += PAGE_SIZE) {
1562 pagemap_entry_t pme;
1563
1564 pme = pte_to_pagemap_entry(pm, vma, addr, ptep_get(pte));
1565 err = add_to_pagemap(addr, &pme, pm);
1566 if (err)
1567 break;
1568 }
1569 pte_unmap_unlock(orig_pte, ptl);
1570
1571 cond_resched();
1572
1573 return err;
1574 }
1575
1576 #ifdef CONFIG_HUGETLB_PAGE
1577 /* This function walks within one hugetlb entry in the single call */
pagemap_hugetlb_range(pte_t *ptep, unsigned long hmask, unsigned long addr, unsigned long end, struct mm_walk *walk)1578 static int pagemap_hugetlb_range(pte_t *ptep, unsigned long hmask,
1579 unsigned long addr, unsigned long end,
1580 struct mm_walk *walk)
1581 {
1582 struct pagemapread *pm = walk->private;
1583 struct vm_area_struct *vma = walk->vma;
1584 u64 flags = 0, frame = 0;
1585 int err = 0;
1586 pte_t pte;
1587
1588 if (vma->vm_flags & VM_SOFTDIRTY)
1589 flags |= PM_SOFT_DIRTY;
1590
1591 pte = huge_ptep_get(ptep);
1592 if (pte_present(pte)) {
1593 struct page *page = pte_page(pte);
1594
1595 if (!PageAnon(page))
1596 flags |= PM_FILE;
1597
1598 if (page_mapcount(page) == 1)
1599 flags |= PM_MMAP_EXCLUSIVE;
1600
1601 if (huge_pte_uffd_wp(pte))
1602 flags |= PM_UFFD_WP;
1603
1604 flags |= PM_PRESENT;
1605 if (pm->show_pfn)
1606 frame = pte_pfn(pte) +
1607 ((addr & ~hmask) >> PAGE_SHIFT);
1608 } else if (pte_swp_uffd_wp_any(pte)) {
1609 flags |= PM_UFFD_WP;
1610 }
1611
1612 for (; addr != end; addr += PAGE_SIZE) {
1613 pagemap_entry_t pme = make_pme(frame, flags);
1614
1615 err = add_to_pagemap(addr, &pme, pm);
1616 if (err)
1617 return err;
1618 if (pm->show_pfn && (flags & PM_PRESENT))
1619 frame++;
1620 }
1621
1622 cond_resched();
1623
1624 return err;
1625 }
1626 #else
1627 #define pagemap_hugetlb_range NULL
1628 #endif /* HUGETLB_PAGE */
1629
1630 static const struct mm_walk_ops pagemap_ops = {
1631 .pmd_entry = pagemap_pmd_range,
1632 .pte_hole = pagemap_pte_hole,
1633 .hugetlb_entry = pagemap_hugetlb_range,
1634 .walk_lock = PGWALK_RDLOCK,
1635 };
1636
1637 /*
1638 * /proc/pid/pagemap - an array mapping virtual pages to pfns
1639 *
1640 * For each page in the address space, this file contains one 64-bit entry
1641 * consisting of the following:
1642 *
1643 * Bits 0-54 page frame number (PFN) if present
1644 * Bits 0-4 swap type if swapped
1645 * Bits 5-54 swap offset if swapped
1646 * Bit 55 pte is soft-dirty (see Documentation/admin-guide/mm/soft-dirty.rst)
1647 * Bit 56 page exclusively mapped
1648 * Bit 57 pte is uffd-wp write-protected
1649 * Bits 58-60 zero
1650 * Bit 61 page is file-page or shared-anon
1651 * Bit 62 page swapped
1652 * Bit 63 page present
1653 *
1654 * If the page is not present but in swap, then the PFN contains an
1655 * encoding of the swap file number and the page's offset into the
1656 * swap. Unmapped pages return a null PFN. This allows determining
1657 * precisely which pages are mapped (or in swap) and comparing mapped
1658 * pages between processes.
1659 *
1660 * Efficient users of this interface will use /proc/pid/maps to
1661 * determine which areas of memory are actually mapped and llseek to
1662 * skip over unmapped regions.
1663 */
pagemap_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)1664 static ssize_t pagemap_read(struct file *file, char __user *buf,
1665 size_t count, loff_t *ppos)
1666 {
1667 struct mm_struct *mm = file->private_data;
1668 struct pagemapread pm;
1669 unsigned long src;
1670 unsigned long svpfn;
1671 unsigned long start_vaddr;
1672 unsigned long end_vaddr;
1673 int ret = 0, copied = 0;
1674
1675 if (!mm || !mmget_not_zero(mm))
1676 goto out;
1677
1678 ret = -EINVAL;
1679 /* file position must be aligned */
1680 if ((*ppos % PM_ENTRY_BYTES) || (count % PM_ENTRY_BYTES))
1681 goto out_mm;
1682
1683 ret = 0;
1684 if (!count)
1685 goto out_mm;
1686
1687 /* do not disclose physical addresses: attack vector */
1688 pm.show_pfn = file_ns_capable(file, &init_user_ns, CAP_SYS_ADMIN);
1689
1690 pm.len = (PAGEMAP_WALK_SIZE >> PAGE_SHIFT);
1691 pm.buffer = kmalloc_array(pm.len, PM_ENTRY_BYTES, GFP_KERNEL);
1692 ret = -ENOMEM;
1693 if (!pm.buffer)
1694 goto out_mm;
1695
1696 src = *ppos;
1697 svpfn = src / PM_ENTRY_BYTES;
1698 end_vaddr = mm->task_size;
1699
1700 /* watch out for wraparound */
1701 start_vaddr = end_vaddr;
1702 if (svpfn <= (ULONG_MAX >> PAGE_SHIFT)) {
1703 unsigned long end;
1704
1705 ret = mmap_read_lock_killable(mm);
1706 if (ret)
1707 goto out_free;
1708 start_vaddr = untagged_addr_remote(mm, svpfn << PAGE_SHIFT);
1709 mmap_read_unlock(mm);
1710
1711 end = start_vaddr + ((count / PM_ENTRY_BYTES) << PAGE_SHIFT);
1712 if (end >= start_vaddr && end < mm->task_size)
1713 end_vaddr = end;
1714 }
1715
1716 /* Ensure the address is inside the task */
1717 if (start_vaddr > mm->task_size)
1718 start_vaddr = end_vaddr;
1719
1720 ret = 0;
1721 while (count && (start_vaddr < end_vaddr)) {
1722 int len;
1723 unsigned long end;
1724
1725 pm.pos = 0;
1726 end = (start_vaddr + PAGEMAP_WALK_SIZE) & PAGEMAP_WALK_MASK;
1727 /* overflow ? */
1728 if (end < start_vaddr || end > end_vaddr)
1729 end = end_vaddr;
1730 ret = mmap_read_lock_killable(mm);
1731 if (ret)
1732 goto out_free;
1733 ret = walk_page_range(mm, start_vaddr, end, &pagemap_ops, &pm);
1734 mmap_read_unlock(mm);
1735 start_vaddr = end;
1736
1737 len = min(count, PM_ENTRY_BYTES * pm.pos);
1738 if (copy_to_user(buf, pm.buffer, len)) {
1739 ret = -EFAULT;
1740 goto out_free;
1741 }
1742 copied += len;
1743 buf += len;
1744 count -= len;
1745 }
1746 *ppos += copied;
1747 if (!ret || ret == PM_END_OF_BUFFER)
1748 ret = copied;
1749
1750 out_free:
1751 kfree(pm.buffer);
1752 out_mm:
1753 mmput(mm);
1754 out:
1755 return ret;
1756 }
1757
pagemap_open(struct inode *inode, struct file *file)1758 static int pagemap_open(struct inode *inode, struct file *file)
1759 {
1760 struct mm_struct *mm;
1761
1762 mm = proc_mem_open(inode, PTRACE_MODE_READ);
1763 if (IS_ERR(mm))
1764 return PTR_ERR(mm);
1765 file->private_data = mm;
1766 return 0;
1767 }
1768
pagemap_release(struct inode *inode, struct file *file)1769 static int pagemap_release(struct inode *inode, struct file *file)
1770 {
1771 struct mm_struct *mm = file->private_data;
1772
1773 if (mm)
1774 mmdrop(mm);
1775 return 0;
1776 }
1777
1778 const struct file_operations proc_pagemap_operations = {
1779 .llseek = mem_lseek, /* borrow this */
1780 .read = pagemap_read,
1781 .open = pagemap_open,
1782 .release = pagemap_release,
1783 };
1784 #endif /* CONFIG_PROC_PAGE_MONITOR */
1785
1786 #ifdef CONFIG_NUMA
1787
1788 struct numa_maps {
1789 unsigned long pages;
1790 unsigned long anon;
1791 unsigned long active;
1792 unsigned long writeback;
1793 unsigned long mapcount_max;
1794 unsigned long dirty;
1795 unsigned long swapcache;
1796 unsigned long node[MAX_NUMNODES];
1797 };
1798
1799 struct numa_maps_private {
1800 struct proc_maps_private proc_maps;
1801 struct numa_maps md;
1802 };
1803
gather_stats(struct page *page, struct numa_maps *md, int pte_dirty, unsigned long nr_pages)1804 static void gather_stats(struct page *page, struct numa_maps *md, int pte_dirty,
1805 unsigned long nr_pages)
1806 {
1807 int count = page_mapcount(page);
1808
1809 md->pages += nr_pages;
1810 if (pte_dirty || PageDirty(page))
1811 md->dirty += nr_pages;
1812
1813 if (PageSwapCache(page))
1814 md->swapcache += nr_pages;
1815
1816 if (PageActive(page) || PageUnevictable(page))
1817 md->active += nr_pages;
1818
1819 if (PageWriteback(page))
1820 md->writeback += nr_pages;
1821
1822 if (PageAnon(page))
1823 md->anon += nr_pages;
1824
1825 if (count > md->mapcount_max)
1826 md->mapcount_max = count;
1827
1828 md->node[page_to_nid(page)] += nr_pages;
1829 }
1830
can_gather_numa_stats(pte_t pte, struct vm_area_struct *vma, unsigned long addr)1831 static struct page *can_gather_numa_stats(pte_t pte, struct vm_area_struct *vma,
1832 unsigned long addr)
1833 {
1834 struct page *page;
1835 int nid;
1836
1837 if (!pte_present(pte))
1838 return NULL;
1839
1840 page = vm_normal_page(vma, addr, pte);
1841 if (!page || is_zone_device_page(page))
1842 return NULL;
1843
1844 if (PageReserved(page))
1845 return NULL;
1846
1847 nid = page_to_nid(page);
1848 if (!node_isset(nid, node_states[N_MEMORY]))
1849 return NULL;
1850
1851 return page;
1852 }
1853
1854 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
can_gather_numa_stats_pmd(pmd_t pmd, struct vm_area_struct *vma, unsigned long addr)1855 static struct page *can_gather_numa_stats_pmd(pmd_t pmd,
1856 struct vm_area_struct *vma,
1857 unsigned long addr)
1858 {
1859 struct page *page;
1860 int nid;
1861
1862 if (!pmd_present(pmd))
1863 return NULL;
1864
1865 page = vm_normal_page_pmd(vma, addr, pmd);
1866 if (!page)
1867 return NULL;
1868
1869 if (PageReserved(page))
1870 return NULL;
1871
1872 nid = page_to_nid(page);
1873 if (!node_isset(nid, node_states[N_MEMORY]))
1874 return NULL;
1875
1876 return page;
1877 }
1878 #endif
1879
gather_pte_stats(pmd_t *pmd, unsigned long addr, unsigned long end, struct mm_walk *walk)1880 static int gather_pte_stats(pmd_t *pmd, unsigned long addr,
1881 unsigned long end, struct mm_walk *walk)
1882 {
1883 struct numa_maps *md = walk->private;
1884 struct vm_area_struct *vma = walk->vma;
1885 spinlock_t *ptl;
1886 pte_t *orig_pte;
1887 pte_t *pte;
1888
1889 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1890 ptl = pmd_trans_huge_lock(pmd, vma);
1891 if (ptl) {
1892 struct page *page;
1893
1894 page = can_gather_numa_stats_pmd(*pmd, vma, addr);
1895 if (page)
1896 gather_stats(page, md, pmd_dirty(*pmd),
1897 HPAGE_PMD_SIZE/PAGE_SIZE);
1898 spin_unlock(ptl);
1899 return 0;
1900 }
1901 #endif
1902 orig_pte = pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
1903 if (!pte) {
1904 walk->action = ACTION_AGAIN;
1905 return 0;
1906 }
1907 do {
1908 pte_t ptent = ptep_get(pte);
1909 struct page *page = can_gather_numa_stats(ptent, vma, addr);
1910 if (!page)
1911 continue;
1912 gather_stats(page, md, pte_dirty(ptent), 1);
1913
1914 } while (pte++, addr += PAGE_SIZE, addr != end);
1915 pte_unmap_unlock(orig_pte, ptl);
1916 cond_resched();
1917 return 0;
1918 }
1919 #ifdef CONFIG_HUGETLB_PAGE
gather_hugetlb_stats(pte_t *pte, unsigned long hmask, unsigned long addr, unsigned long end, struct mm_walk *walk)1920 static int gather_hugetlb_stats(pte_t *pte, unsigned long hmask,
1921 unsigned long addr, unsigned long end, struct mm_walk *walk)
1922 {
1923 pte_t huge_pte = huge_ptep_get(pte);
1924 struct numa_maps *md;
1925 struct page *page;
1926
1927 if (!pte_present(huge_pte))
1928 return 0;
1929
1930 page = pte_page(huge_pte);
1931
1932 md = walk->private;
1933 gather_stats(page, md, pte_dirty(huge_pte), 1);
1934 return 0;
1935 }
1936
1937 #else
gather_hugetlb_stats(pte_t *pte, unsigned long hmask, unsigned long addr, unsigned long end, struct mm_walk *walk)1938 static int gather_hugetlb_stats(pte_t *pte, unsigned long hmask,
1939 unsigned long addr, unsigned long end, struct mm_walk *walk)
1940 {
1941 return 0;
1942 }
1943 #endif
1944
1945 static const struct mm_walk_ops show_numa_ops = {
1946 .hugetlb_entry = gather_hugetlb_stats,
1947 .pmd_entry = gather_pte_stats,
1948 .walk_lock = PGWALK_RDLOCK,
1949 };
1950
1951 /*
1952 * Display pages allocated per node and memory policy via /proc.
1953 */
show_numa_map(struct seq_file *m, void *v)1954 static int show_numa_map(struct seq_file *m, void *v)
1955 {
1956 struct numa_maps_private *numa_priv = m->private;
1957 struct proc_maps_private *proc_priv = &numa_priv->proc_maps;
1958 struct vm_area_struct *vma = v;
1959 struct numa_maps *md = &numa_priv->md;
1960 struct file *file = vma->vm_file;
1961 struct mm_struct *mm = vma->vm_mm;
1962 struct mempolicy *pol;
1963 char buffer[64];
1964 int nid;
1965
1966 if (!mm)
1967 return 0;
1968
1969 /* Ensure we start with an empty set of numa_maps statistics. */
1970 memset(md, 0, sizeof(*md));
1971
1972 pol = __get_vma_policy(vma, vma->vm_start);
1973 if (pol) {
1974 mpol_to_str(buffer, sizeof(buffer), pol);
1975 mpol_cond_put(pol);
1976 } else {
1977 mpol_to_str(buffer, sizeof(buffer), proc_priv->task_mempolicy);
1978 }
1979
1980 seq_printf(m, "%08lx %s", vma->vm_start, buffer);
1981
1982 if (file) {
1983 seq_puts(m, " file=");
1984 seq_file_path(m, file, "\n\t= ");
1985 } else if (vma_is_initial_heap(vma)) {
1986 seq_puts(m, " heap");
1987 } else if (vma_is_initial_stack(vma)) {
1988 seq_puts(m, " stack");
1989 }
1990
1991 if (is_vm_hugetlb_page(vma))
1992 seq_puts(m, " huge");
1993
1994 /* mmap_lock is held by m_start */
1995 walk_page_vma(vma, &show_numa_ops, md);
1996
1997 if (!md->pages)
1998 goto out;
1999
2000 if (md->anon)
2001 seq_printf(m, " anon=%lu", md->anon);
2002
2003 if (md->dirty)
2004 seq_printf(m, " dirty=%lu", md->dirty);
2005
2006 if (md->pages != md->anon && md->pages != md->dirty)
2007 seq_printf(m, " mapped=%lu", md->pages);
2008
2009 if (md->mapcount_max > 1)
2010 seq_printf(m, " mapmax=%lu", md->mapcount_max);
2011
2012 if (md->swapcache)
2013 seq_printf(m, " swapcache=%lu", md->swapcache);
2014
2015 if (md->active < md->pages && !is_vm_hugetlb_page(vma))
2016 seq_printf(m, " active=%lu", md->active);
2017
2018 if (md->writeback)
2019 seq_printf(m, " writeback=%lu", md->writeback);
2020
2021 for_each_node_state(nid, N_MEMORY)
2022 if (md->node[nid])
2023 seq_printf(m, " N%d=%lu", nid, md->node[nid]);
2024
2025 seq_printf(m, " kernelpagesize_kB=%lu", vma_kernel_pagesize(vma) >> 10);
2026 out:
2027 seq_putc(m, '\n');
2028 return 0;
2029 }
2030
2031 static const struct seq_operations proc_pid_numa_maps_op = {
2032 .start = m_start,
2033 .next = m_next,
2034 .stop = m_stop,
2035 .show = show_numa_map,
2036 };
2037
pid_numa_maps_open(struct inode *inode, struct file *file)2038 static int pid_numa_maps_open(struct inode *inode, struct file *file)
2039 {
2040 return proc_maps_open(inode, file, &proc_pid_numa_maps_op,
2041 sizeof(struct numa_maps_private));
2042 }
2043
2044 const struct file_operations proc_pid_numa_maps_operations = {
2045 .open = pid_numa_maps_open,
2046 .read = seq_read,
2047 .llseek = seq_lseek,
2048 .release = proc_map_release,
2049 };
2050
2051 #endif /* CONFIG_NUMA */
2052