1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * nvmem framework core.
4 *
5 * Copyright (C) 2015 Srinivas Kandagatla <srinivas.kandagatla@linaro.org>
6 * Copyright (C) 2013 Maxime Ripard <maxime.ripard@free-electrons.com>
7 */
8
9 #include <linux/device.h>
10 #include <linux/export.h>
11 #include <linux/fs.h>
12 #include <linux/idr.h>
13 #include <linux/init.h>
14 #include <linux/kref.h>
15 #include <linux/module.h>
16 #include <linux/nvmem-consumer.h>
17 #include <linux/nvmem-provider.h>
18 #include <linux/gpio/consumer.h>
19 #include <linux/of.h>
20 #include <linux/slab.h>
21
22 struct nvmem_device {
23 struct module *owner;
24 struct device dev;
25 int stride;
26 int word_size;
27 int id;
28 struct kref refcnt;
29 size_t size;
30 bool read_only;
31 bool root_only;
32 int flags;
33 enum nvmem_type type;
34 struct bin_attribute eeprom;
35 struct device *base_dev;
36 struct list_head cells;
37 const struct nvmem_keepout *keepout;
38 unsigned int nkeepout;
39 nvmem_reg_read_t reg_read;
40 nvmem_reg_write_t reg_write;
41 struct gpio_desc *wp_gpio;
42 struct nvmem_layout *layout;
43 void *priv;
44 };
45
46 #define to_nvmem_device(d) container_of(d, struct nvmem_device, dev)
47
48 #define FLAG_COMPAT BIT(0)
49 struct nvmem_cell_entry {
50 const char *name;
51 int offset;
52 size_t raw_len;
53 int bytes;
54 int bit_offset;
55 int nbits;
56 nvmem_cell_post_process_t read_post_process;
57 void *priv;
58 struct device_node *np;
59 struct nvmem_device *nvmem;
60 struct list_head node;
61 };
62
63 struct nvmem_cell {
64 struct nvmem_cell_entry *entry;
65 const char *id;
66 int index;
67 };
68
69 static DEFINE_MUTEX(nvmem_mutex);
70 static DEFINE_IDA(nvmem_ida);
71
72 static DEFINE_MUTEX(nvmem_cell_mutex);
73 static LIST_HEAD(nvmem_cell_tables);
74
75 static DEFINE_MUTEX(nvmem_lookup_mutex);
76 static LIST_HEAD(nvmem_lookup_list);
77
78 static BLOCKING_NOTIFIER_HEAD(nvmem_notifier);
79
80 static DEFINE_SPINLOCK(nvmem_layout_lock);
81 static LIST_HEAD(nvmem_layouts);
82
__nvmem_reg_read(struct nvmem_device *nvmem, unsigned int offset, void *val, size_t bytes)83 static int __nvmem_reg_read(struct nvmem_device *nvmem, unsigned int offset,
84 void *val, size_t bytes)
85 {
86 if (nvmem->reg_read)
87 return nvmem->reg_read(nvmem->priv, offset, val, bytes);
88
89 return -EINVAL;
90 }
91
__nvmem_reg_write(struct nvmem_device *nvmem, unsigned int offset, void *val, size_t bytes)92 static int __nvmem_reg_write(struct nvmem_device *nvmem, unsigned int offset,
93 void *val, size_t bytes)
94 {
95 int ret;
96
97 if (nvmem->reg_write) {
98 gpiod_set_value_cansleep(nvmem->wp_gpio, 0);
99 ret = nvmem->reg_write(nvmem->priv, offset, val, bytes);
100 gpiod_set_value_cansleep(nvmem->wp_gpio, 1);
101 return ret;
102 }
103
104 return -EINVAL;
105 }
106
nvmem_access_with_keepouts(struct nvmem_device *nvmem, unsigned int offset, void *val, size_t bytes, int write)107 static int nvmem_access_with_keepouts(struct nvmem_device *nvmem,
108 unsigned int offset, void *val,
109 size_t bytes, int write)
110 {
111
112 unsigned int end = offset + bytes;
113 unsigned int kend, ksize;
114 const struct nvmem_keepout *keepout = nvmem->keepout;
115 const struct nvmem_keepout *keepoutend = keepout + nvmem->nkeepout;
116 int rc;
117
118 /*
119 * Skip all keepouts before the range being accessed.
120 * Keepouts are sorted.
121 */
122 while ((keepout < keepoutend) && (keepout->end <= offset))
123 keepout++;
124
125 while ((offset < end) && (keepout < keepoutend)) {
126 /* Access the valid portion before the keepout. */
127 if (offset < keepout->start) {
128 kend = min(end, keepout->start);
129 ksize = kend - offset;
130 if (write)
131 rc = __nvmem_reg_write(nvmem, offset, val, ksize);
132 else
133 rc = __nvmem_reg_read(nvmem, offset, val, ksize);
134
135 if (rc)
136 return rc;
137
138 offset += ksize;
139 val += ksize;
140 }
141
142 /*
143 * Now we're aligned to the start of this keepout zone. Go
144 * through it.
145 */
146 kend = min(end, keepout->end);
147 ksize = kend - offset;
148 if (!write)
149 memset(val, keepout->value, ksize);
150
151 val += ksize;
152 offset += ksize;
153 keepout++;
154 }
155
156 /*
157 * If we ran out of keepouts but there's still stuff to do, send it
158 * down directly
159 */
160 if (offset < end) {
161 ksize = end - offset;
162 if (write)
163 return __nvmem_reg_write(nvmem, offset, val, ksize);
164 else
165 return __nvmem_reg_read(nvmem, offset, val, ksize);
166 }
167
168 return 0;
169 }
170
nvmem_reg_read(struct nvmem_device *nvmem, unsigned int offset, void *val, size_t bytes)171 static int nvmem_reg_read(struct nvmem_device *nvmem, unsigned int offset,
172 void *val, size_t bytes)
173 {
174 if (!nvmem->nkeepout)
175 return __nvmem_reg_read(nvmem, offset, val, bytes);
176
177 return nvmem_access_with_keepouts(nvmem, offset, val, bytes, false);
178 }
179
nvmem_reg_write(struct nvmem_device *nvmem, unsigned int offset, void *val, size_t bytes)180 static int nvmem_reg_write(struct nvmem_device *nvmem, unsigned int offset,
181 void *val, size_t bytes)
182 {
183 if (!nvmem->nkeepout)
184 return __nvmem_reg_write(nvmem, offset, val, bytes);
185
186 return nvmem_access_with_keepouts(nvmem, offset, val, bytes, true);
187 }
188
189 #ifdef CONFIG_NVMEM_SYSFS
190 static const char * const nvmem_type_str[] = {
191 [NVMEM_TYPE_UNKNOWN] = "Unknown",
192 [NVMEM_TYPE_EEPROM] = "EEPROM",
193 [NVMEM_TYPE_OTP] = "OTP",
194 [NVMEM_TYPE_BATTERY_BACKED] = "Battery backed",
195 [NVMEM_TYPE_FRAM] = "FRAM",
196 };
197
198 #ifdef CONFIG_DEBUG_LOCK_ALLOC
199 static struct lock_class_key eeprom_lock_key;
200 #endif
201
type_show(struct device *dev, struct device_attribute *attr, char *buf)202 static ssize_t type_show(struct device *dev,
203 struct device_attribute *attr, char *buf)
204 {
205 struct nvmem_device *nvmem = to_nvmem_device(dev);
206
207 return sprintf(buf, "%s\n", nvmem_type_str[nvmem->type]);
208 }
209
210 static DEVICE_ATTR_RO(type);
211
212 static struct attribute *nvmem_attrs[] = {
213 &dev_attr_type.attr,
214 NULL,
215 };
216
bin_attr_nvmem_read(struct file *filp, struct kobject *kobj, struct bin_attribute *attr, char *buf, loff_t pos, size_t count)217 static ssize_t bin_attr_nvmem_read(struct file *filp, struct kobject *kobj,
218 struct bin_attribute *attr, char *buf,
219 loff_t pos, size_t count)
220 {
221 struct device *dev;
222 struct nvmem_device *nvmem;
223 int rc;
224
225 if (attr->private)
226 dev = attr->private;
227 else
228 dev = kobj_to_dev(kobj);
229 nvmem = to_nvmem_device(dev);
230
231 /* Stop the user from reading */
232 if (pos >= nvmem->size)
233 return 0;
234
235 if (!IS_ALIGNED(pos, nvmem->stride))
236 return -EINVAL;
237
238 if (count < nvmem->word_size)
239 return -EINVAL;
240
241 if (pos + count > nvmem->size)
242 count = nvmem->size - pos;
243
244 count = round_down(count, nvmem->word_size);
245
246 if (!nvmem->reg_read)
247 return -EPERM;
248
249 rc = nvmem_reg_read(nvmem, pos, buf, count);
250
251 if (rc)
252 return rc;
253
254 return count;
255 }
256
bin_attr_nvmem_write(struct file *filp, struct kobject *kobj, struct bin_attribute *attr, char *buf, loff_t pos, size_t count)257 static ssize_t bin_attr_nvmem_write(struct file *filp, struct kobject *kobj,
258 struct bin_attribute *attr, char *buf,
259 loff_t pos, size_t count)
260 {
261 struct device *dev;
262 struct nvmem_device *nvmem;
263 int rc;
264
265 if (attr->private)
266 dev = attr->private;
267 else
268 dev = kobj_to_dev(kobj);
269 nvmem = to_nvmem_device(dev);
270
271 /* Stop the user from writing */
272 if (pos >= nvmem->size)
273 return -EFBIG;
274
275 if (!IS_ALIGNED(pos, nvmem->stride))
276 return -EINVAL;
277
278 if (count < nvmem->word_size)
279 return -EINVAL;
280
281 if (pos + count > nvmem->size)
282 count = nvmem->size - pos;
283
284 count = round_down(count, nvmem->word_size);
285
286 if (!nvmem->reg_write)
287 return -EPERM;
288
289 rc = nvmem_reg_write(nvmem, pos, buf, count);
290
291 if (rc)
292 return rc;
293
294 return count;
295 }
296
nvmem_bin_attr_get_umode(struct nvmem_device *nvmem)297 static umode_t nvmem_bin_attr_get_umode(struct nvmem_device *nvmem)
298 {
299 umode_t mode = 0400;
300
301 if (!nvmem->root_only)
302 mode |= 0044;
303
304 if (!nvmem->read_only)
305 mode |= 0200;
306
307 if (!nvmem->reg_write)
308 mode &= ~0200;
309
310 if (!nvmem->reg_read)
311 mode &= ~0444;
312
313 return mode;
314 }
315
nvmem_bin_attr_is_visible(struct kobject *kobj, struct bin_attribute *attr, int i)316 static umode_t nvmem_bin_attr_is_visible(struct kobject *kobj,
317 struct bin_attribute *attr, int i)
318 {
319 struct device *dev = kobj_to_dev(kobj);
320 struct nvmem_device *nvmem = to_nvmem_device(dev);
321
322 attr->size = nvmem->size;
323
324 return nvmem_bin_attr_get_umode(nvmem);
325 }
326
327 /* default read/write permissions */
328 static struct bin_attribute bin_attr_rw_nvmem = {
329 .attr = {
330 .name = "nvmem",
331 .mode = 0644,
332 },
333 .read = bin_attr_nvmem_read,
334 .write = bin_attr_nvmem_write,
335 };
336
337 static struct bin_attribute *nvmem_bin_attributes[] = {
338 &bin_attr_rw_nvmem,
339 NULL,
340 };
341
342 static const struct attribute_group nvmem_bin_group = {
343 .bin_attrs = nvmem_bin_attributes,
344 .attrs = nvmem_attrs,
345 .is_bin_visible = nvmem_bin_attr_is_visible,
346 };
347
348 static const struct attribute_group *nvmem_dev_groups[] = {
349 &nvmem_bin_group,
350 NULL,
351 };
352
353 static struct bin_attribute bin_attr_nvmem_eeprom_compat = {
354 .attr = {
355 .name = "eeprom",
356 },
357 .read = bin_attr_nvmem_read,
358 .write = bin_attr_nvmem_write,
359 };
360
361 /*
362 * nvmem_setup_compat() - Create an additional binary entry in
363 * drivers sys directory, to be backwards compatible with the older
364 * drivers/misc/eeprom drivers.
365 */
nvmem_sysfs_setup_compat(struct nvmem_device *nvmem, const struct nvmem_config *config)366 static int nvmem_sysfs_setup_compat(struct nvmem_device *nvmem,
367 const struct nvmem_config *config)
368 {
369 int rval;
370
371 if (!config->compat)
372 return 0;
373
374 if (!config->base_dev)
375 return -EINVAL;
376
377 if (config->type == NVMEM_TYPE_FRAM)
378 bin_attr_nvmem_eeprom_compat.attr.name = "fram";
379
380 nvmem->eeprom = bin_attr_nvmem_eeprom_compat;
381 nvmem->eeprom.attr.mode = nvmem_bin_attr_get_umode(nvmem);
382 nvmem->eeprom.size = nvmem->size;
383 #ifdef CONFIG_DEBUG_LOCK_ALLOC
384 nvmem->eeprom.attr.key = &eeprom_lock_key;
385 #endif
386 nvmem->eeprom.private = &nvmem->dev;
387 nvmem->base_dev = config->base_dev;
388
389 rval = device_create_bin_file(nvmem->base_dev, &nvmem->eeprom);
390 if (rval) {
391 dev_err(&nvmem->dev,
392 "Failed to create eeprom binary file %d\n", rval);
393 return rval;
394 }
395
396 nvmem->flags |= FLAG_COMPAT;
397
398 return 0;
399 }
400
nvmem_sysfs_remove_compat(struct nvmem_device *nvmem, const struct nvmem_config *config)401 static void nvmem_sysfs_remove_compat(struct nvmem_device *nvmem,
402 const struct nvmem_config *config)
403 {
404 if (config->compat)
405 device_remove_bin_file(nvmem->base_dev, &nvmem->eeprom);
406 }
407
408 #else /* CONFIG_NVMEM_SYSFS */
409
nvmem_sysfs_setup_compat(struct nvmem_device *nvmem, const struct nvmem_config *config)410 static int nvmem_sysfs_setup_compat(struct nvmem_device *nvmem,
411 const struct nvmem_config *config)
412 {
413 return -ENOSYS;
414 }
nvmem_sysfs_remove_compat(struct nvmem_device *nvmem, const struct nvmem_config *config)415 static void nvmem_sysfs_remove_compat(struct nvmem_device *nvmem,
416 const struct nvmem_config *config)
417 {
418 }
419
420 #endif /* CONFIG_NVMEM_SYSFS */
421
nvmem_release(struct device *dev)422 static void nvmem_release(struct device *dev)
423 {
424 struct nvmem_device *nvmem = to_nvmem_device(dev);
425
426 ida_free(&nvmem_ida, nvmem->id);
427 gpiod_put(nvmem->wp_gpio);
428 kfree(nvmem);
429 }
430
431 static const struct device_type nvmem_provider_type = {
432 .release = nvmem_release,
433 };
434
435 static struct bus_type nvmem_bus_type = {
436 .name = "nvmem",
437 };
438
nvmem_cell_entry_drop(struct nvmem_cell_entry *cell)439 static void nvmem_cell_entry_drop(struct nvmem_cell_entry *cell)
440 {
441 blocking_notifier_call_chain(&nvmem_notifier, NVMEM_CELL_REMOVE, cell);
442 mutex_lock(&nvmem_mutex);
443 list_del(&cell->node);
444 mutex_unlock(&nvmem_mutex);
445 of_node_put(cell->np);
446 kfree_const(cell->name);
447 kfree(cell);
448 }
449
nvmem_device_remove_all_cells(const struct nvmem_device *nvmem)450 static void nvmem_device_remove_all_cells(const struct nvmem_device *nvmem)
451 {
452 struct nvmem_cell_entry *cell, *p;
453
454 list_for_each_entry_safe(cell, p, &nvmem->cells, node)
455 nvmem_cell_entry_drop(cell);
456 }
457
nvmem_cell_entry_add(struct nvmem_cell_entry *cell)458 static void nvmem_cell_entry_add(struct nvmem_cell_entry *cell)
459 {
460 mutex_lock(&nvmem_mutex);
461 list_add_tail(&cell->node, &cell->nvmem->cells);
462 mutex_unlock(&nvmem_mutex);
463 blocking_notifier_call_chain(&nvmem_notifier, NVMEM_CELL_ADD, cell);
464 }
465
nvmem_cell_info_to_nvmem_cell_entry_nodup(struct nvmem_device *nvmem, const struct nvmem_cell_info *info, struct nvmem_cell_entry *cell)466 static int nvmem_cell_info_to_nvmem_cell_entry_nodup(struct nvmem_device *nvmem,
467 const struct nvmem_cell_info *info,
468 struct nvmem_cell_entry *cell)
469 {
470 cell->nvmem = nvmem;
471 cell->offset = info->offset;
472 cell->raw_len = info->raw_len ?: info->bytes;
473 cell->bytes = info->bytes;
474 cell->name = info->name;
475 cell->read_post_process = info->read_post_process;
476 cell->priv = info->priv;
477
478 cell->bit_offset = info->bit_offset;
479 cell->nbits = info->nbits;
480 cell->np = info->np;
481
482 if (cell->nbits)
483 cell->bytes = DIV_ROUND_UP(cell->nbits + cell->bit_offset,
484 BITS_PER_BYTE);
485
486 if (!IS_ALIGNED(cell->offset, nvmem->stride)) {
487 dev_err(&nvmem->dev,
488 "cell %s unaligned to nvmem stride %d\n",
489 cell->name ?: "<unknown>", nvmem->stride);
490 return -EINVAL;
491 }
492
493 return 0;
494 }
495
nvmem_cell_info_to_nvmem_cell_entry(struct nvmem_device *nvmem, const struct nvmem_cell_info *info, struct nvmem_cell_entry *cell)496 static int nvmem_cell_info_to_nvmem_cell_entry(struct nvmem_device *nvmem,
497 const struct nvmem_cell_info *info,
498 struct nvmem_cell_entry *cell)
499 {
500 int err;
501
502 err = nvmem_cell_info_to_nvmem_cell_entry_nodup(nvmem, info, cell);
503 if (err)
504 return err;
505
506 cell->name = kstrdup_const(info->name, GFP_KERNEL);
507 if (!cell->name)
508 return -ENOMEM;
509
510 return 0;
511 }
512
513 /**
514 * nvmem_add_one_cell() - Add one cell information to an nvmem device
515 *
516 * @nvmem: nvmem device to add cells to.
517 * @info: nvmem cell info to add to the device
518 *
519 * Return: 0 or negative error code on failure.
520 */
nvmem_add_one_cell(struct nvmem_device *nvmem, const struct nvmem_cell_info *info)521 int nvmem_add_one_cell(struct nvmem_device *nvmem,
522 const struct nvmem_cell_info *info)
523 {
524 struct nvmem_cell_entry *cell;
525 int rval;
526
527 cell = kzalloc(sizeof(*cell), GFP_KERNEL);
528 if (!cell)
529 return -ENOMEM;
530
531 rval = nvmem_cell_info_to_nvmem_cell_entry(nvmem, info, cell);
532 if (rval) {
533 kfree(cell);
534 return rval;
535 }
536
537 nvmem_cell_entry_add(cell);
538
539 return 0;
540 }
541 EXPORT_SYMBOL_GPL(nvmem_add_one_cell);
542
543 /**
544 * nvmem_add_cells() - Add cell information to an nvmem device
545 *
546 * @nvmem: nvmem device to add cells to.
547 * @info: nvmem cell info to add to the device
548 * @ncells: number of cells in info
549 *
550 * Return: 0 or negative error code on failure.
551 */
nvmem_add_cells(struct nvmem_device *nvmem, const struct nvmem_cell_info *info, int ncells)552 static int nvmem_add_cells(struct nvmem_device *nvmem,
553 const struct nvmem_cell_info *info,
554 int ncells)
555 {
556 int i, rval;
557
558 for (i = 0; i < ncells; i++) {
559 rval = nvmem_add_one_cell(nvmem, &info[i]);
560 if (rval)
561 return rval;
562 }
563
564 return 0;
565 }
566
567 /**
568 * nvmem_register_notifier() - Register a notifier block for nvmem events.
569 *
570 * @nb: notifier block to be called on nvmem events.
571 *
572 * Return: 0 on success, negative error number on failure.
573 */
nvmem_register_notifier(struct notifier_block *nb)574 int nvmem_register_notifier(struct notifier_block *nb)
575 {
576 return blocking_notifier_chain_register(&nvmem_notifier, nb);
577 }
578 EXPORT_SYMBOL_GPL(nvmem_register_notifier);
579
580 /**
581 * nvmem_unregister_notifier() - Unregister a notifier block for nvmem events.
582 *
583 * @nb: notifier block to be unregistered.
584 *
585 * Return: 0 on success, negative error number on failure.
586 */
nvmem_unregister_notifier(struct notifier_block *nb)587 int nvmem_unregister_notifier(struct notifier_block *nb)
588 {
589 return blocking_notifier_chain_unregister(&nvmem_notifier, nb);
590 }
591 EXPORT_SYMBOL_GPL(nvmem_unregister_notifier);
592
nvmem_add_cells_from_table(struct nvmem_device *nvmem)593 static int nvmem_add_cells_from_table(struct nvmem_device *nvmem)
594 {
595 const struct nvmem_cell_info *info;
596 struct nvmem_cell_table *table;
597 struct nvmem_cell_entry *cell;
598 int rval = 0, i;
599
600 mutex_lock(&nvmem_cell_mutex);
601 list_for_each_entry(table, &nvmem_cell_tables, node) {
602 if (strcmp(nvmem_dev_name(nvmem), table->nvmem_name) == 0) {
603 for (i = 0; i < table->ncells; i++) {
604 info = &table->cells[i];
605
606 cell = kzalloc(sizeof(*cell), GFP_KERNEL);
607 if (!cell) {
608 rval = -ENOMEM;
609 goto out;
610 }
611
612 rval = nvmem_cell_info_to_nvmem_cell_entry(nvmem, info, cell);
613 if (rval) {
614 kfree(cell);
615 goto out;
616 }
617
618 nvmem_cell_entry_add(cell);
619 }
620 }
621 }
622
623 out:
624 mutex_unlock(&nvmem_cell_mutex);
625 return rval;
626 }
627
628 static struct nvmem_cell_entry *
nvmem_find_cell_entry_by_name(struct nvmem_device *nvmem, const char *cell_id)629 nvmem_find_cell_entry_by_name(struct nvmem_device *nvmem, const char *cell_id)
630 {
631 struct nvmem_cell_entry *iter, *cell = NULL;
632
633 mutex_lock(&nvmem_mutex);
634 list_for_each_entry(iter, &nvmem->cells, node) {
635 if (strcmp(cell_id, iter->name) == 0) {
636 cell = iter;
637 break;
638 }
639 }
640 mutex_unlock(&nvmem_mutex);
641
642 return cell;
643 }
644
nvmem_validate_keepouts(struct nvmem_device *nvmem)645 static int nvmem_validate_keepouts(struct nvmem_device *nvmem)
646 {
647 unsigned int cur = 0;
648 const struct nvmem_keepout *keepout = nvmem->keepout;
649 const struct nvmem_keepout *keepoutend = keepout + nvmem->nkeepout;
650
651 while (keepout < keepoutend) {
652 /* Ensure keepouts are sorted and don't overlap. */
653 if (keepout->start < cur) {
654 dev_err(&nvmem->dev,
655 "Keepout regions aren't sorted or overlap.\n");
656
657 return -ERANGE;
658 }
659
660 if (keepout->end < keepout->start) {
661 dev_err(&nvmem->dev,
662 "Invalid keepout region.\n");
663
664 return -EINVAL;
665 }
666
667 /*
668 * Validate keepouts (and holes between) don't violate
669 * word_size constraints.
670 */
671 if ((keepout->end - keepout->start < nvmem->word_size) ||
672 ((keepout->start != cur) &&
673 (keepout->start - cur < nvmem->word_size))) {
674
675 dev_err(&nvmem->dev,
676 "Keepout regions violate word_size constraints.\n");
677
678 return -ERANGE;
679 }
680
681 /* Validate keepouts don't violate stride (alignment). */
682 if (!IS_ALIGNED(keepout->start, nvmem->stride) ||
683 !IS_ALIGNED(keepout->end, nvmem->stride)) {
684
685 dev_err(&nvmem->dev,
686 "Keepout regions violate stride.\n");
687
688 return -EINVAL;
689 }
690
691 cur = keepout->end;
692 keepout++;
693 }
694
695 return 0;
696 }
697
nvmem_add_cells_from_dt(struct nvmem_device *nvmem, struct device_node *np)698 static int nvmem_add_cells_from_dt(struct nvmem_device *nvmem, struct device_node *np)
699 {
700 struct nvmem_layout *layout = nvmem->layout;
701 struct device *dev = &nvmem->dev;
702 struct device_node *child;
703 const __be32 *addr;
704 int len, ret;
705
706 for_each_child_of_node(np, child) {
707 struct nvmem_cell_info info = {0};
708
709 addr = of_get_property(child, "reg", &len);
710 if (!addr)
711 continue;
712 if (len < 2 * sizeof(u32)) {
713 dev_err(dev, "nvmem: invalid reg on %pOF\n", child);
714 of_node_put(child);
715 return -EINVAL;
716 }
717
718 info.offset = be32_to_cpup(addr++);
719 info.bytes = be32_to_cpup(addr);
720 info.name = kasprintf(GFP_KERNEL, "%pOFn", child);
721
722 addr = of_get_property(child, "bits", &len);
723 if (addr && len == (2 * sizeof(u32))) {
724 info.bit_offset = be32_to_cpup(addr++);
725 info.nbits = be32_to_cpup(addr);
726 }
727
728 info.np = of_node_get(child);
729
730 if (layout && layout->fixup_cell_info)
731 layout->fixup_cell_info(nvmem, layout, &info);
732
733 ret = nvmem_add_one_cell(nvmem, &info);
734 kfree(info.name);
735 if (ret) {
736 of_node_put(child);
737 return ret;
738 }
739 }
740
741 return 0;
742 }
743
nvmem_add_cells_from_legacy_of(struct nvmem_device *nvmem)744 static int nvmem_add_cells_from_legacy_of(struct nvmem_device *nvmem)
745 {
746 return nvmem_add_cells_from_dt(nvmem, nvmem->dev.of_node);
747 }
748
nvmem_add_cells_from_fixed_layout(struct nvmem_device *nvmem)749 static int nvmem_add_cells_from_fixed_layout(struct nvmem_device *nvmem)
750 {
751 struct device_node *layout_np;
752 int err = 0;
753
754 layout_np = of_nvmem_layout_get_container(nvmem);
755 if (!layout_np)
756 return 0;
757
758 if (of_device_is_compatible(layout_np, "fixed-layout"))
759 err = nvmem_add_cells_from_dt(nvmem, layout_np);
760
761 of_node_put(layout_np);
762
763 return err;
764 }
765
__nvmem_layout_register(struct nvmem_layout *layout, struct module *owner)766 int __nvmem_layout_register(struct nvmem_layout *layout, struct module *owner)
767 {
768 layout->owner = owner;
769
770 spin_lock(&nvmem_layout_lock);
771 list_add(&layout->node, &nvmem_layouts);
772 spin_unlock(&nvmem_layout_lock);
773
774 blocking_notifier_call_chain(&nvmem_notifier, NVMEM_LAYOUT_ADD, layout);
775
776 return 0;
777 }
778 EXPORT_SYMBOL_GPL(__nvmem_layout_register);
779
nvmem_layout_unregister(struct nvmem_layout *layout)780 void nvmem_layout_unregister(struct nvmem_layout *layout)
781 {
782 blocking_notifier_call_chain(&nvmem_notifier, NVMEM_LAYOUT_REMOVE, layout);
783
784 spin_lock(&nvmem_layout_lock);
785 list_del(&layout->node);
786 spin_unlock(&nvmem_layout_lock);
787 }
788 EXPORT_SYMBOL_GPL(nvmem_layout_unregister);
789
nvmem_layout_get(struct nvmem_device *nvmem)790 static struct nvmem_layout *nvmem_layout_get(struct nvmem_device *nvmem)
791 {
792 struct device_node *layout_np;
793 struct nvmem_layout *l, *layout = ERR_PTR(-EPROBE_DEFER);
794
795 layout_np = of_nvmem_layout_get_container(nvmem);
796 if (!layout_np)
797 return NULL;
798
799 /* Fixed layouts don't have a matching driver */
800 if (of_device_is_compatible(layout_np, "fixed-layout")) {
801 of_node_put(layout_np);
802 return NULL;
803 }
804
805 /*
806 * In case the nvmem device was built-in while the layout was built as a
807 * module, we shall manually request the layout driver loading otherwise
808 * we'll never have any match.
809 */
810 of_request_module(layout_np);
811
812 spin_lock(&nvmem_layout_lock);
813
814 list_for_each_entry(l, &nvmem_layouts, node) {
815 if (of_match_node(l->of_match_table, layout_np)) {
816 if (try_module_get(l->owner))
817 layout = l;
818
819 break;
820 }
821 }
822
823 spin_unlock(&nvmem_layout_lock);
824 of_node_put(layout_np);
825
826 return layout;
827 }
828
nvmem_layout_put(struct nvmem_layout *layout)829 static void nvmem_layout_put(struct nvmem_layout *layout)
830 {
831 if (layout)
832 module_put(layout->owner);
833 }
834
nvmem_add_cells_from_layout(struct nvmem_device *nvmem)835 static int nvmem_add_cells_from_layout(struct nvmem_device *nvmem)
836 {
837 struct nvmem_layout *layout = nvmem->layout;
838 int ret;
839
840 if (layout && layout->add_cells) {
841 ret = layout->add_cells(&nvmem->dev, nvmem, layout);
842 if (ret)
843 return ret;
844 }
845
846 return 0;
847 }
848
849 #if IS_ENABLED(CONFIG_OF)
850 /**
851 * of_nvmem_layout_get_container() - Get OF node to layout container.
852 *
853 * @nvmem: nvmem device.
854 *
855 * Return: a node pointer with refcount incremented or NULL if no
856 * container exists. Use of_node_put() on it when done.
857 */
of_nvmem_layout_get_container(struct nvmem_device *nvmem)858 struct device_node *of_nvmem_layout_get_container(struct nvmem_device *nvmem)
859 {
860 return of_get_child_by_name(nvmem->dev.of_node, "nvmem-layout");
861 }
862 EXPORT_SYMBOL_GPL(of_nvmem_layout_get_container);
863 #endif
864
nvmem_layout_get_match_data(struct nvmem_device *nvmem, struct nvmem_layout *layout)865 const void *nvmem_layout_get_match_data(struct nvmem_device *nvmem,
866 struct nvmem_layout *layout)
867 {
868 struct device_node __maybe_unused *layout_np;
869 const struct of_device_id *match;
870
871 layout_np = of_nvmem_layout_get_container(nvmem);
872 match = of_match_node(layout->of_match_table, layout_np);
873
874 return match ? match->data : NULL;
875 }
876 EXPORT_SYMBOL_GPL(nvmem_layout_get_match_data);
877
878 /**
879 * nvmem_register() - Register a nvmem device for given nvmem_config.
880 * Also creates a binary entry in /sys/bus/nvmem/devices/dev-name/nvmem
881 *
882 * @config: nvmem device configuration with which nvmem device is created.
883 *
884 * Return: Will be an ERR_PTR() on error or a valid pointer to nvmem_device
885 * on success.
886 */
887
nvmem_register(const struct nvmem_config *config)888 struct nvmem_device *nvmem_register(const struct nvmem_config *config)
889 {
890 struct nvmem_device *nvmem;
891 int rval;
892
893 if (!config->dev)
894 return ERR_PTR(-EINVAL);
895
896 if (!config->reg_read && !config->reg_write)
897 return ERR_PTR(-EINVAL);
898
899 nvmem = kzalloc(sizeof(*nvmem), GFP_KERNEL);
900 if (!nvmem)
901 return ERR_PTR(-ENOMEM);
902
903 rval = ida_alloc(&nvmem_ida, GFP_KERNEL);
904 if (rval < 0) {
905 kfree(nvmem);
906 return ERR_PTR(rval);
907 }
908
909 nvmem->id = rval;
910
911 nvmem->dev.type = &nvmem_provider_type;
912 nvmem->dev.bus = &nvmem_bus_type;
913 nvmem->dev.parent = config->dev;
914
915 device_initialize(&nvmem->dev);
916
917 if (!config->ignore_wp)
918 nvmem->wp_gpio = gpiod_get_optional(config->dev, "wp",
919 GPIOD_OUT_HIGH);
920 if (IS_ERR(nvmem->wp_gpio)) {
921 rval = PTR_ERR(nvmem->wp_gpio);
922 nvmem->wp_gpio = NULL;
923 goto err_put_device;
924 }
925
926 kref_init(&nvmem->refcnt);
927 INIT_LIST_HEAD(&nvmem->cells);
928
929 nvmem->owner = config->owner;
930 if (!nvmem->owner && config->dev->driver)
931 nvmem->owner = config->dev->driver->owner;
932 nvmem->stride = config->stride ?: 1;
933 nvmem->word_size = config->word_size ?: 1;
934 nvmem->size = config->size;
935 nvmem->root_only = config->root_only;
936 nvmem->priv = config->priv;
937 nvmem->type = config->type;
938 nvmem->reg_read = config->reg_read;
939 nvmem->reg_write = config->reg_write;
940 nvmem->keepout = config->keepout;
941 nvmem->nkeepout = config->nkeepout;
942 if (config->of_node)
943 nvmem->dev.of_node = config->of_node;
944 else if (!config->no_of_node)
945 nvmem->dev.of_node = config->dev->of_node;
946
947 switch (config->id) {
948 case NVMEM_DEVID_NONE:
949 rval = dev_set_name(&nvmem->dev, "%s", config->name);
950 break;
951 case NVMEM_DEVID_AUTO:
952 rval = dev_set_name(&nvmem->dev, "%s%d", config->name, nvmem->id);
953 break;
954 default:
955 rval = dev_set_name(&nvmem->dev, "%s%d",
956 config->name ? : "nvmem",
957 config->name ? config->id : nvmem->id);
958 break;
959 }
960
961 if (rval)
962 goto err_put_device;
963
964 nvmem->read_only = device_property_present(config->dev, "read-only") ||
965 config->read_only || !nvmem->reg_write;
966
967 #ifdef CONFIG_NVMEM_SYSFS
968 nvmem->dev.groups = nvmem_dev_groups;
969 #endif
970
971 if (nvmem->nkeepout) {
972 rval = nvmem_validate_keepouts(nvmem);
973 if (rval)
974 goto err_put_device;
975 }
976
977 if (config->compat) {
978 rval = nvmem_sysfs_setup_compat(nvmem, config);
979 if (rval)
980 goto err_put_device;
981 }
982
983 /*
984 * If the driver supplied a layout by config->layout, the module
985 * pointer will be NULL and nvmem_layout_put() will be a noop.
986 */
987 nvmem->layout = config->layout ?: nvmem_layout_get(nvmem);
988 if (IS_ERR(nvmem->layout)) {
989 rval = PTR_ERR(nvmem->layout);
990 nvmem->layout = NULL;
991
992 if (rval == -EPROBE_DEFER)
993 goto err_teardown_compat;
994 }
995
996 if (config->cells) {
997 rval = nvmem_add_cells(nvmem, config->cells, config->ncells);
998 if (rval)
999 goto err_remove_cells;
1000 }
1001
1002 rval = nvmem_add_cells_from_table(nvmem);
1003 if (rval)
1004 goto err_remove_cells;
1005
1006 rval = nvmem_add_cells_from_legacy_of(nvmem);
1007 if (rval)
1008 goto err_remove_cells;
1009
1010 rval = nvmem_add_cells_from_fixed_layout(nvmem);
1011 if (rval)
1012 goto err_remove_cells;
1013
1014 rval = nvmem_add_cells_from_layout(nvmem);
1015 if (rval)
1016 goto err_remove_cells;
1017
1018 dev_dbg(&nvmem->dev, "Registering nvmem device %s\n", config->name);
1019
1020 rval = device_add(&nvmem->dev);
1021 if (rval)
1022 goto err_remove_cells;
1023
1024 blocking_notifier_call_chain(&nvmem_notifier, NVMEM_ADD, nvmem);
1025
1026 return nvmem;
1027
1028 err_remove_cells:
1029 nvmem_device_remove_all_cells(nvmem);
1030 nvmem_layout_put(nvmem->layout);
1031 err_teardown_compat:
1032 if (config->compat)
1033 nvmem_sysfs_remove_compat(nvmem, config);
1034 err_put_device:
1035 put_device(&nvmem->dev);
1036
1037 return ERR_PTR(rval);
1038 }
1039 EXPORT_SYMBOL_GPL(nvmem_register);
1040
nvmem_device_release(struct kref *kref)1041 static void nvmem_device_release(struct kref *kref)
1042 {
1043 struct nvmem_device *nvmem;
1044
1045 nvmem = container_of(kref, struct nvmem_device, refcnt);
1046
1047 blocking_notifier_call_chain(&nvmem_notifier, NVMEM_REMOVE, nvmem);
1048
1049 if (nvmem->flags & FLAG_COMPAT)
1050 device_remove_bin_file(nvmem->base_dev, &nvmem->eeprom);
1051
1052 nvmem_device_remove_all_cells(nvmem);
1053 nvmem_layout_put(nvmem->layout);
1054 device_unregister(&nvmem->dev);
1055 }
1056
1057 /**
1058 * nvmem_unregister() - Unregister previously registered nvmem device
1059 *
1060 * @nvmem: Pointer to previously registered nvmem device.
1061 */
nvmem_unregister(struct nvmem_device *nvmem)1062 void nvmem_unregister(struct nvmem_device *nvmem)
1063 {
1064 if (nvmem)
1065 kref_put(&nvmem->refcnt, nvmem_device_release);
1066 }
1067 EXPORT_SYMBOL_GPL(nvmem_unregister);
1068
devm_nvmem_unregister(void *nvmem)1069 static void devm_nvmem_unregister(void *nvmem)
1070 {
1071 nvmem_unregister(nvmem);
1072 }
1073
1074 /**
1075 * devm_nvmem_register() - Register a managed nvmem device for given
1076 * nvmem_config.
1077 * Also creates a binary entry in /sys/bus/nvmem/devices/dev-name/nvmem
1078 *
1079 * @dev: Device that uses the nvmem device.
1080 * @config: nvmem device configuration with which nvmem device is created.
1081 *
1082 * Return: Will be an ERR_PTR() on error or a valid pointer to nvmem_device
1083 * on success.
1084 */
devm_nvmem_register(struct device *dev, const struct nvmem_config *config)1085 struct nvmem_device *devm_nvmem_register(struct device *dev,
1086 const struct nvmem_config *config)
1087 {
1088 struct nvmem_device *nvmem;
1089 int ret;
1090
1091 nvmem = nvmem_register(config);
1092 if (IS_ERR(nvmem))
1093 return nvmem;
1094
1095 ret = devm_add_action_or_reset(dev, devm_nvmem_unregister, nvmem);
1096 if (ret)
1097 return ERR_PTR(ret);
1098
1099 return nvmem;
1100 }
1101 EXPORT_SYMBOL_GPL(devm_nvmem_register);
1102
__nvmem_device_get(void *data, int (*match)(struct device *dev, const void *data))1103 static struct nvmem_device *__nvmem_device_get(void *data,
1104 int (*match)(struct device *dev, const void *data))
1105 {
1106 struct nvmem_device *nvmem = NULL;
1107 struct device *dev;
1108
1109 mutex_lock(&nvmem_mutex);
1110 dev = bus_find_device(&nvmem_bus_type, NULL, data, match);
1111 if (dev)
1112 nvmem = to_nvmem_device(dev);
1113 mutex_unlock(&nvmem_mutex);
1114 if (!nvmem)
1115 return ERR_PTR(-EPROBE_DEFER);
1116
1117 if (!try_module_get(nvmem->owner)) {
1118 dev_err(&nvmem->dev,
1119 "could not increase module refcount for cell %s\n",
1120 nvmem_dev_name(nvmem));
1121
1122 put_device(&nvmem->dev);
1123 return ERR_PTR(-EINVAL);
1124 }
1125
1126 kref_get(&nvmem->refcnt);
1127
1128 return nvmem;
1129 }
1130
__nvmem_device_put(struct nvmem_device *nvmem)1131 static void __nvmem_device_put(struct nvmem_device *nvmem)
1132 {
1133 put_device(&nvmem->dev);
1134 module_put(nvmem->owner);
1135 kref_put(&nvmem->refcnt, nvmem_device_release);
1136 }
1137
1138 #if IS_ENABLED(CONFIG_OF)
1139 /**
1140 * of_nvmem_device_get() - Get nvmem device from a given id
1141 *
1142 * @np: Device tree node that uses the nvmem device.
1143 * @id: nvmem name from nvmem-names property.
1144 *
1145 * Return: ERR_PTR() on error or a valid pointer to a struct nvmem_device
1146 * on success.
1147 */
of_nvmem_device_get(struct device_node *np, const char *id)1148 struct nvmem_device *of_nvmem_device_get(struct device_node *np, const char *id)
1149 {
1150
1151 struct device_node *nvmem_np;
1152 struct nvmem_device *nvmem;
1153 int index = 0;
1154
1155 if (id)
1156 index = of_property_match_string(np, "nvmem-names", id);
1157
1158 nvmem_np = of_parse_phandle(np, "nvmem", index);
1159 if (!nvmem_np)
1160 return ERR_PTR(-ENOENT);
1161
1162 nvmem = __nvmem_device_get(nvmem_np, device_match_of_node);
1163 of_node_put(nvmem_np);
1164 return nvmem;
1165 }
1166 EXPORT_SYMBOL_GPL(of_nvmem_device_get);
1167 #endif
1168
1169 /**
1170 * nvmem_device_get() - Get nvmem device from a given id
1171 *
1172 * @dev: Device that uses the nvmem device.
1173 * @dev_name: name of the requested nvmem device.
1174 *
1175 * Return: ERR_PTR() on error or a valid pointer to a struct nvmem_device
1176 * on success.
1177 */
nvmem_device_get(struct device *dev, const char *dev_name)1178 struct nvmem_device *nvmem_device_get(struct device *dev, const char *dev_name)
1179 {
1180 if (dev->of_node) { /* try dt first */
1181 struct nvmem_device *nvmem;
1182
1183 nvmem = of_nvmem_device_get(dev->of_node, dev_name);
1184
1185 if (!IS_ERR(nvmem) || PTR_ERR(nvmem) == -EPROBE_DEFER)
1186 return nvmem;
1187
1188 }
1189
1190 return __nvmem_device_get((void *)dev_name, device_match_name);
1191 }
1192 EXPORT_SYMBOL_GPL(nvmem_device_get);
1193
1194 /**
1195 * nvmem_device_find() - Find nvmem device with matching function
1196 *
1197 * @data: Data to pass to match function
1198 * @match: Callback function to check device
1199 *
1200 * Return: ERR_PTR() on error or a valid pointer to a struct nvmem_device
1201 * on success.
1202 */
nvmem_device_find(void *data, int (*match)(struct device *dev, const void *data))1203 struct nvmem_device *nvmem_device_find(void *data,
1204 int (*match)(struct device *dev, const void *data))
1205 {
1206 return __nvmem_device_get(data, match);
1207 }
1208 EXPORT_SYMBOL_GPL(nvmem_device_find);
1209
devm_nvmem_device_match(struct device *dev, void *res, void *data)1210 static int devm_nvmem_device_match(struct device *dev, void *res, void *data)
1211 {
1212 struct nvmem_device **nvmem = res;
1213
1214 if (WARN_ON(!nvmem || !*nvmem))
1215 return 0;
1216
1217 return *nvmem == data;
1218 }
1219
devm_nvmem_device_release(struct device *dev, void *res)1220 static void devm_nvmem_device_release(struct device *dev, void *res)
1221 {
1222 nvmem_device_put(*(struct nvmem_device **)res);
1223 }
1224
1225 /**
1226 * devm_nvmem_device_put() - put alredy got nvmem device
1227 *
1228 * @dev: Device that uses the nvmem device.
1229 * @nvmem: pointer to nvmem device allocated by devm_nvmem_cell_get(),
1230 * that needs to be released.
1231 */
devm_nvmem_device_put(struct device *dev, struct nvmem_device *nvmem)1232 void devm_nvmem_device_put(struct device *dev, struct nvmem_device *nvmem)
1233 {
1234 int ret;
1235
1236 ret = devres_release(dev, devm_nvmem_device_release,
1237 devm_nvmem_device_match, nvmem);
1238
1239 WARN_ON(ret);
1240 }
1241 EXPORT_SYMBOL_GPL(devm_nvmem_device_put);
1242
1243 /**
1244 * nvmem_device_put() - put alredy got nvmem device
1245 *
1246 * @nvmem: pointer to nvmem device that needs to be released.
1247 */
nvmem_device_put(struct nvmem_device *nvmem)1248 void nvmem_device_put(struct nvmem_device *nvmem)
1249 {
1250 __nvmem_device_put(nvmem);
1251 }
1252 EXPORT_SYMBOL_GPL(nvmem_device_put);
1253
1254 /**
1255 * devm_nvmem_device_get() - Get nvmem cell of device form a given id
1256 *
1257 * @dev: Device that requests the nvmem device.
1258 * @id: name id for the requested nvmem device.
1259 *
1260 * Return: ERR_PTR() on error or a valid pointer to a struct nvmem_cell
1261 * on success. The nvmem_cell will be freed by the automatically once the
1262 * device is freed.
1263 */
devm_nvmem_device_get(struct device *dev, const char *id)1264 struct nvmem_device *devm_nvmem_device_get(struct device *dev, const char *id)
1265 {
1266 struct nvmem_device **ptr, *nvmem;
1267
1268 ptr = devres_alloc(devm_nvmem_device_release, sizeof(*ptr), GFP_KERNEL);
1269 if (!ptr)
1270 return ERR_PTR(-ENOMEM);
1271
1272 nvmem = nvmem_device_get(dev, id);
1273 if (!IS_ERR(nvmem)) {
1274 *ptr = nvmem;
1275 devres_add(dev, ptr);
1276 } else {
1277 devres_free(ptr);
1278 }
1279
1280 return nvmem;
1281 }
1282 EXPORT_SYMBOL_GPL(devm_nvmem_device_get);
1283
nvmem_create_cell(struct nvmem_cell_entry *entry, const char *id, int index)1284 static struct nvmem_cell *nvmem_create_cell(struct nvmem_cell_entry *entry,
1285 const char *id, int index)
1286 {
1287 struct nvmem_cell *cell;
1288 const char *name = NULL;
1289
1290 cell = kzalloc(sizeof(*cell), GFP_KERNEL);
1291 if (!cell)
1292 return ERR_PTR(-ENOMEM);
1293
1294 if (id) {
1295 name = kstrdup_const(id, GFP_KERNEL);
1296 if (!name) {
1297 kfree(cell);
1298 return ERR_PTR(-ENOMEM);
1299 }
1300 }
1301
1302 cell->id = name;
1303 cell->entry = entry;
1304 cell->index = index;
1305
1306 return cell;
1307 }
1308
1309 static struct nvmem_cell *
nvmem_cell_get_from_lookup(struct device *dev, const char *con_id)1310 nvmem_cell_get_from_lookup(struct device *dev, const char *con_id)
1311 {
1312 struct nvmem_cell_entry *cell_entry;
1313 struct nvmem_cell *cell = ERR_PTR(-ENOENT);
1314 struct nvmem_cell_lookup *lookup;
1315 struct nvmem_device *nvmem;
1316 const char *dev_id;
1317
1318 if (!dev)
1319 return ERR_PTR(-EINVAL);
1320
1321 dev_id = dev_name(dev);
1322
1323 mutex_lock(&nvmem_lookup_mutex);
1324
1325 list_for_each_entry(lookup, &nvmem_lookup_list, node) {
1326 if ((strcmp(lookup->dev_id, dev_id) == 0) &&
1327 (strcmp(lookup->con_id, con_id) == 0)) {
1328 /* This is the right entry. */
1329 nvmem = __nvmem_device_get((void *)lookup->nvmem_name,
1330 device_match_name);
1331 if (IS_ERR(nvmem)) {
1332 /* Provider may not be registered yet. */
1333 cell = ERR_CAST(nvmem);
1334 break;
1335 }
1336
1337 cell_entry = nvmem_find_cell_entry_by_name(nvmem,
1338 lookup->cell_name);
1339 if (!cell_entry) {
1340 __nvmem_device_put(nvmem);
1341 cell = ERR_PTR(-ENOENT);
1342 } else {
1343 cell = nvmem_create_cell(cell_entry, con_id, 0);
1344 if (IS_ERR(cell))
1345 __nvmem_device_put(nvmem);
1346 }
1347 break;
1348 }
1349 }
1350
1351 mutex_unlock(&nvmem_lookup_mutex);
1352 return cell;
1353 }
1354
1355 #if IS_ENABLED(CONFIG_OF)
1356 static struct nvmem_cell_entry *
nvmem_find_cell_entry_by_node(struct nvmem_device *nvmem, struct device_node *np)1357 nvmem_find_cell_entry_by_node(struct nvmem_device *nvmem, struct device_node *np)
1358 {
1359 struct nvmem_cell_entry *iter, *cell = NULL;
1360
1361 mutex_lock(&nvmem_mutex);
1362 list_for_each_entry(iter, &nvmem->cells, node) {
1363 if (np == iter->np) {
1364 cell = iter;
1365 break;
1366 }
1367 }
1368 mutex_unlock(&nvmem_mutex);
1369
1370 return cell;
1371 }
1372
1373 /**
1374 * of_nvmem_cell_get() - Get a nvmem cell from given device node and cell id
1375 *
1376 * @np: Device tree node that uses the nvmem cell.
1377 * @id: nvmem cell name from nvmem-cell-names property, or NULL
1378 * for the cell at index 0 (the lone cell with no accompanying
1379 * nvmem-cell-names property).
1380 *
1381 * Return: Will be an ERR_PTR() on error or a valid pointer
1382 * to a struct nvmem_cell. The nvmem_cell will be freed by the
1383 * nvmem_cell_put().
1384 */
of_nvmem_cell_get(struct device_node *np, const char *id)1385 struct nvmem_cell *of_nvmem_cell_get(struct device_node *np, const char *id)
1386 {
1387 struct device_node *cell_np, *nvmem_np;
1388 struct nvmem_device *nvmem;
1389 struct nvmem_cell_entry *cell_entry;
1390 struct nvmem_cell *cell;
1391 struct of_phandle_args cell_spec;
1392 int index = 0;
1393 int cell_index = 0;
1394 int ret;
1395
1396 /* if cell name exists, find index to the name */
1397 if (id)
1398 index = of_property_match_string(np, "nvmem-cell-names", id);
1399
1400 ret = of_parse_phandle_with_optional_args(np, "nvmem-cells",
1401 "#nvmem-cell-cells",
1402 index, &cell_spec);
1403 if (ret)
1404 return ERR_PTR(-ENOENT);
1405
1406 if (cell_spec.args_count > 1)
1407 return ERR_PTR(-EINVAL);
1408
1409 cell_np = cell_spec.np;
1410 if (cell_spec.args_count)
1411 cell_index = cell_spec.args[0];
1412
1413 nvmem_np = of_get_parent(cell_np);
1414 if (!nvmem_np) {
1415 of_node_put(cell_np);
1416 return ERR_PTR(-EINVAL);
1417 }
1418
1419 /* nvmem layouts produce cells within the nvmem-layout container */
1420 if (of_node_name_eq(nvmem_np, "nvmem-layout")) {
1421 nvmem_np = of_get_next_parent(nvmem_np);
1422 if (!nvmem_np) {
1423 of_node_put(cell_np);
1424 return ERR_PTR(-EINVAL);
1425 }
1426 }
1427
1428 nvmem = __nvmem_device_get(nvmem_np, device_match_of_node);
1429 of_node_put(nvmem_np);
1430 if (IS_ERR(nvmem)) {
1431 of_node_put(cell_np);
1432 return ERR_CAST(nvmem);
1433 }
1434
1435 cell_entry = nvmem_find_cell_entry_by_node(nvmem, cell_np);
1436 of_node_put(cell_np);
1437 if (!cell_entry) {
1438 __nvmem_device_put(nvmem);
1439 return ERR_PTR(-ENOENT);
1440 }
1441
1442 cell = nvmem_create_cell(cell_entry, id, cell_index);
1443 if (IS_ERR(cell))
1444 __nvmem_device_put(nvmem);
1445
1446 return cell;
1447 }
1448 EXPORT_SYMBOL_GPL(of_nvmem_cell_get);
1449 #endif
1450
1451 /**
1452 * nvmem_cell_get() - Get nvmem cell of device form a given cell name
1453 *
1454 * @dev: Device that requests the nvmem cell.
1455 * @id: nvmem cell name to get (this corresponds with the name from the
1456 * nvmem-cell-names property for DT systems and with the con_id from
1457 * the lookup entry for non-DT systems).
1458 *
1459 * Return: Will be an ERR_PTR() on error or a valid pointer
1460 * to a struct nvmem_cell. The nvmem_cell will be freed by the
1461 * nvmem_cell_put().
1462 */
nvmem_cell_get(struct device *dev, const char *id)1463 struct nvmem_cell *nvmem_cell_get(struct device *dev, const char *id)
1464 {
1465 struct nvmem_cell *cell;
1466
1467 if (dev->of_node) { /* try dt first */
1468 cell = of_nvmem_cell_get(dev->of_node, id);
1469 if (!IS_ERR(cell) || PTR_ERR(cell) == -EPROBE_DEFER)
1470 return cell;
1471 }
1472
1473 /* NULL cell id only allowed for device tree; invalid otherwise */
1474 if (!id)
1475 return ERR_PTR(-EINVAL);
1476
1477 return nvmem_cell_get_from_lookup(dev, id);
1478 }
1479 EXPORT_SYMBOL_GPL(nvmem_cell_get);
1480
devm_nvmem_cell_release(struct device *dev, void *res)1481 static void devm_nvmem_cell_release(struct device *dev, void *res)
1482 {
1483 nvmem_cell_put(*(struct nvmem_cell **)res);
1484 }
1485
1486 /**
1487 * devm_nvmem_cell_get() - Get nvmem cell of device form a given id
1488 *
1489 * @dev: Device that requests the nvmem cell.
1490 * @id: nvmem cell name id to get.
1491 *
1492 * Return: Will be an ERR_PTR() on error or a valid pointer
1493 * to a struct nvmem_cell. The nvmem_cell will be freed by the
1494 * automatically once the device is freed.
1495 */
devm_nvmem_cell_get(struct device *dev, const char *id)1496 struct nvmem_cell *devm_nvmem_cell_get(struct device *dev, const char *id)
1497 {
1498 struct nvmem_cell **ptr, *cell;
1499
1500 ptr = devres_alloc(devm_nvmem_cell_release, sizeof(*ptr), GFP_KERNEL);
1501 if (!ptr)
1502 return ERR_PTR(-ENOMEM);
1503
1504 cell = nvmem_cell_get(dev, id);
1505 if (!IS_ERR(cell)) {
1506 *ptr = cell;
1507 devres_add(dev, ptr);
1508 } else {
1509 devres_free(ptr);
1510 }
1511
1512 return cell;
1513 }
1514 EXPORT_SYMBOL_GPL(devm_nvmem_cell_get);
1515
devm_nvmem_cell_match(struct device *dev, void *res, void *data)1516 static int devm_nvmem_cell_match(struct device *dev, void *res, void *data)
1517 {
1518 struct nvmem_cell **c = res;
1519
1520 if (WARN_ON(!c || !*c))
1521 return 0;
1522
1523 return *c == data;
1524 }
1525
1526 /**
1527 * devm_nvmem_cell_put() - Release previously allocated nvmem cell
1528 * from devm_nvmem_cell_get.
1529 *
1530 * @dev: Device that requests the nvmem cell.
1531 * @cell: Previously allocated nvmem cell by devm_nvmem_cell_get().
1532 */
devm_nvmem_cell_put(struct device *dev, struct nvmem_cell *cell)1533 void devm_nvmem_cell_put(struct device *dev, struct nvmem_cell *cell)
1534 {
1535 int ret;
1536
1537 ret = devres_release(dev, devm_nvmem_cell_release,
1538 devm_nvmem_cell_match, cell);
1539
1540 WARN_ON(ret);
1541 }
1542 EXPORT_SYMBOL(devm_nvmem_cell_put);
1543
1544 /**
1545 * nvmem_cell_put() - Release previously allocated nvmem cell.
1546 *
1547 * @cell: Previously allocated nvmem cell by nvmem_cell_get().
1548 */
nvmem_cell_put(struct nvmem_cell *cell)1549 void nvmem_cell_put(struct nvmem_cell *cell)
1550 {
1551 struct nvmem_device *nvmem = cell->entry->nvmem;
1552
1553 if (cell->id)
1554 kfree_const(cell->id);
1555
1556 kfree(cell);
1557 __nvmem_device_put(nvmem);
1558 }
1559 EXPORT_SYMBOL_GPL(nvmem_cell_put);
1560
nvmem_shift_read_buffer_in_place(struct nvmem_cell_entry *cell, void *buf)1561 static void nvmem_shift_read_buffer_in_place(struct nvmem_cell_entry *cell, void *buf)
1562 {
1563 u8 *p, *b;
1564 int i, extra, bit_offset = cell->bit_offset;
1565
1566 p = b = buf;
1567 if (bit_offset) {
1568 /* First shift */
1569 *b++ >>= bit_offset;
1570
1571 /* setup rest of the bytes if any */
1572 for (i = 1; i < cell->bytes; i++) {
1573 /* Get bits from next byte and shift them towards msb */
1574 *p |= *b << (BITS_PER_BYTE - bit_offset);
1575
1576 p = b;
1577 *b++ >>= bit_offset;
1578 }
1579 } else {
1580 /* point to the msb */
1581 p += cell->bytes - 1;
1582 }
1583
1584 /* result fits in less bytes */
1585 extra = cell->bytes - DIV_ROUND_UP(cell->nbits, BITS_PER_BYTE);
1586 while (--extra >= 0)
1587 *p-- = 0;
1588
1589 /* clear msb bits if any leftover in the last byte */
1590 if (cell->nbits % BITS_PER_BYTE)
1591 *p &= GENMASK((cell->nbits % BITS_PER_BYTE) - 1, 0);
1592 }
1593
__nvmem_cell_read(struct nvmem_device *nvmem, struct nvmem_cell_entry *cell, void *buf, size_t *len, const char *id, int index)1594 static int __nvmem_cell_read(struct nvmem_device *nvmem,
1595 struct nvmem_cell_entry *cell,
1596 void *buf, size_t *len, const char *id, int index)
1597 {
1598 int rc;
1599
1600 rc = nvmem_reg_read(nvmem, cell->offset, buf, cell->raw_len);
1601
1602 if (rc)
1603 return rc;
1604
1605 /* shift bits in-place */
1606 if (cell->bit_offset || cell->nbits)
1607 nvmem_shift_read_buffer_in_place(cell, buf);
1608
1609 if (cell->read_post_process) {
1610 rc = cell->read_post_process(cell->priv, id, index,
1611 cell->offset, buf, cell->raw_len);
1612 if (rc)
1613 return rc;
1614 }
1615
1616 if (len)
1617 *len = cell->bytes;
1618
1619 return 0;
1620 }
1621
1622 /**
1623 * nvmem_cell_read() - Read a given nvmem cell
1624 *
1625 * @cell: nvmem cell to be read.
1626 * @len: pointer to length of cell which will be populated on successful read;
1627 * can be NULL.
1628 *
1629 * Return: ERR_PTR() on error or a valid pointer to a buffer on success. The
1630 * buffer should be freed by the consumer with a kfree().
1631 */
nvmem_cell_read(struct nvmem_cell *cell, size_t *len)1632 void *nvmem_cell_read(struct nvmem_cell *cell, size_t *len)
1633 {
1634 struct nvmem_cell_entry *entry = cell->entry;
1635 struct nvmem_device *nvmem = entry->nvmem;
1636 u8 *buf;
1637 int rc;
1638
1639 if (!nvmem)
1640 return ERR_PTR(-EINVAL);
1641
1642 buf = kzalloc(max_t(size_t, entry->raw_len, entry->bytes), GFP_KERNEL);
1643 if (!buf)
1644 return ERR_PTR(-ENOMEM);
1645
1646 rc = __nvmem_cell_read(nvmem, cell->entry, buf, len, cell->id, cell->index);
1647 if (rc) {
1648 kfree(buf);
1649 return ERR_PTR(rc);
1650 }
1651
1652 return buf;
1653 }
1654 EXPORT_SYMBOL_GPL(nvmem_cell_read);
1655
nvmem_cell_prepare_write_buffer(struct nvmem_cell_entry *cell, u8 *_buf, int len)1656 static void *nvmem_cell_prepare_write_buffer(struct nvmem_cell_entry *cell,
1657 u8 *_buf, int len)
1658 {
1659 struct nvmem_device *nvmem = cell->nvmem;
1660 int i, rc, nbits, bit_offset = cell->bit_offset;
1661 u8 v, *p, *buf, *b, pbyte, pbits;
1662
1663 nbits = cell->nbits;
1664 buf = kzalloc(cell->bytes, GFP_KERNEL);
1665 if (!buf)
1666 return ERR_PTR(-ENOMEM);
1667
1668 memcpy(buf, _buf, len);
1669 p = b = buf;
1670
1671 if (bit_offset) {
1672 pbyte = *b;
1673 *b <<= bit_offset;
1674
1675 /* setup the first byte with lsb bits from nvmem */
1676 rc = nvmem_reg_read(nvmem, cell->offset, &v, 1);
1677 if (rc)
1678 goto err;
1679 *b++ |= GENMASK(bit_offset - 1, 0) & v;
1680
1681 /* setup rest of the byte if any */
1682 for (i = 1; i < cell->bytes; i++) {
1683 /* Get last byte bits and shift them towards lsb */
1684 pbits = pbyte >> (BITS_PER_BYTE - 1 - bit_offset);
1685 pbyte = *b;
1686 p = b;
1687 *b <<= bit_offset;
1688 *b++ |= pbits;
1689 }
1690 }
1691
1692 /* if it's not end on byte boundary */
1693 if ((nbits + bit_offset) % BITS_PER_BYTE) {
1694 /* setup the last byte with msb bits from nvmem */
1695 rc = nvmem_reg_read(nvmem,
1696 cell->offset + cell->bytes - 1, &v, 1);
1697 if (rc)
1698 goto err;
1699 *p |= GENMASK(7, (nbits + bit_offset) % BITS_PER_BYTE) & v;
1700
1701 }
1702
1703 return buf;
1704 err:
1705 kfree(buf);
1706 return ERR_PTR(rc);
1707 }
1708
__nvmem_cell_entry_write(struct nvmem_cell_entry *cell, void *buf, size_t len)1709 static int __nvmem_cell_entry_write(struct nvmem_cell_entry *cell, void *buf, size_t len)
1710 {
1711 struct nvmem_device *nvmem = cell->nvmem;
1712 int rc;
1713
1714 if (!nvmem || nvmem->read_only ||
1715 (cell->bit_offset == 0 && len != cell->bytes))
1716 return -EINVAL;
1717
1718 /*
1719 * Any cells which have a read_post_process hook are read-only because
1720 * we cannot reverse the operation and it might affect other cells,
1721 * too.
1722 */
1723 if (cell->read_post_process)
1724 return -EINVAL;
1725
1726 if (cell->bit_offset || cell->nbits) {
1727 buf = nvmem_cell_prepare_write_buffer(cell, buf, len);
1728 if (IS_ERR(buf))
1729 return PTR_ERR(buf);
1730 }
1731
1732 rc = nvmem_reg_write(nvmem, cell->offset, buf, cell->bytes);
1733
1734 /* free the tmp buffer */
1735 if (cell->bit_offset || cell->nbits)
1736 kfree(buf);
1737
1738 if (rc)
1739 return rc;
1740
1741 return len;
1742 }
1743
1744 /**
1745 * nvmem_cell_write() - Write to a given nvmem cell
1746 *
1747 * @cell: nvmem cell to be written.
1748 * @buf: Buffer to be written.
1749 * @len: length of buffer to be written to nvmem cell.
1750 *
1751 * Return: length of bytes written or negative on failure.
1752 */
nvmem_cell_write(struct nvmem_cell *cell, void *buf, size_t len)1753 int nvmem_cell_write(struct nvmem_cell *cell, void *buf, size_t len)
1754 {
1755 return __nvmem_cell_entry_write(cell->entry, buf, len);
1756 }
1757
1758 EXPORT_SYMBOL_GPL(nvmem_cell_write);
1759
nvmem_cell_read_common(struct device *dev, const char *cell_id, void *val, size_t count)1760 static int nvmem_cell_read_common(struct device *dev, const char *cell_id,
1761 void *val, size_t count)
1762 {
1763 struct nvmem_cell *cell;
1764 void *buf;
1765 size_t len;
1766
1767 cell = nvmem_cell_get(dev, cell_id);
1768 if (IS_ERR(cell))
1769 return PTR_ERR(cell);
1770
1771 buf = nvmem_cell_read(cell, &len);
1772 if (IS_ERR(buf)) {
1773 nvmem_cell_put(cell);
1774 return PTR_ERR(buf);
1775 }
1776 if (len != count) {
1777 kfree(buf);
1778 nvmem_cell_put(cell);
1779 return -EINVAL;
1780 }
1781 memcpy(val, buf, count);
1782 kfree(buf);
1783 nvmem_cell_put(cell);
1784
1785 return 0;
1786 }
1787
1788 /**
1789 * nvmem_cell_read_u8() - Read a cell value as a u8
1790 *
1791 * @dev: Device that requests the nvmem cell.
1792 * @cell_id: Name of nvmem cell to read.
1793 * @val: pointer to output value.
1794 *
1795 * Return: 0 on success or negative errno.
1796 */
nvmem_cell_read_u8(struct device *dev, const char *cell_id, u8 *val)1797 int nvmem_cell_read_u8(struct device *dev, const char *cell_id, u8 *val)
1798 {
1799 return nvmem_cell_read_common(dev, cell_id, val, sizeof(*val));
1800 }
1801 EXPORT_SYMBOL_GPL(nvmem_cell_read_u8);
1802
1803 /**
1804 * nvmem_cell_read_u16() - Read a cell value as a u16
1805 *
1806 * @dev: Device that requests the nvmem cell.
1807 * @cell_id: Name of nvmem cell to read.
1808 * @val: pointer to output value.
1809 *
1810 * Return: 0 on success or negative errno.
1811 */
nvmem_cell_read_u16(struct device *dev, const char *cell_id, u16 *val)1812 int nvmem_cell_read_u16(struct device *dev, const char *cell_id, u16 *val)
1813 {
1814 return nvmem_cell_read_common(dev, cell_id, val, sizeof(*val));
1815 }
1816 EXPORT_SYMBOL_GPL(nvmem_cell_read_u16);
1817
1818 /**
1819 * nvmem_cell_read_u32() - Read a cell value as a u32
1820 *
1821 * @dev: Device that requests the nvmem cell.
1822 * @cell_id: Name of nvmem cell to read.
1823 * @val: pointer to output value.
1824 *
1825 * Return: 0 on success or negative errno.
1826 */
nvmem_cell_read_u32(struct device *dev, const char *cell_id, u32 *val)1827 int nvmem_cell_read_u32(struct device *dev, const char *cell_id, u32 *val)
1828 {
1829 return nvmem_cell_read_common(dev, cell_id, val, sizeof(*val));
1830 }
1831 EXPORT_SYMBOL_GPL(nvmem_cell_read_u32);
1832
1833 /**
1834 * nvmem_cell_read_u64() - Read a cell value as a u64
1835 *
1836 * @dev: Device that requests the nvmem cell.
1837 * @cell_id: Name of nvmem cell to read.
1838 * @val: pointer to output value.
1839 *
1840 * Return: 0 on success or negative errno.
1841 */
nvmem_cell_read_u64(struct device *dev, const char *cell_id, u64 *val)1842 int nvmem_cell_read_u64(struct device *dev, const char *cell_id, u64 *val)
1843 {
1844 return nvmem_cell_read_common(dev, cell_id, val, sizeof(*val));
1845 }
1846 EXPORT_SYMBOL_GPL(nvmem_cell_read_u64);
1847
nvmem_cell_read_variable_common(struct device *dev, const char *cell_id, size_t max_len, size_t *len)1848 static const void *nvmem_cell_read_variable_common(struct device *dev,
1849 const char *cell_id,
1850 size_t max_len, size_t *len)
1851 {
1852 struct nvmem_cell *cell;
1853 int nbits;
1854 void *buf;
1855
1856 cell = nvmem_cell_get(dev, cell_id);
1857 if (IS_ERR(cell))
1858 return cell;
1859
1860 nbits = cell->entry->nbits;
1861 buf = nvmem_cell_read(cell, len);
1862 nvmem_cell_put(cell);
1863 if (IS_ERR(buf))
1864 return buf;
1865
1866 /*
1867 * If nbits is set then nvmem_cell_read() can significantly exaggerate
1868 * the length of the real data. Throw away the extra junk.
1869 */
1870 if (nbits)
1871 *len = DIV_ROUND_UP(nbits, 8);
1872
1873 if (*len > max_len) {
1874 kfree(buf);
1875 return ERR_PTR(-ERANGE);
1876 }
1877
1878 return buf;
1879 }
1880
1881 /**
1882 * nvmem_cell_read_variable_le_u32() - Read up to 32-bits of data as a little endian number.
1883 *
1884 * @dev: Device that requests the nvmem cell.
1885 * @cell_id: Name of nvmem cell to read.
1886 * @val: pointer to output value.
1887 *
1888 * Return: 0 on success or negative errno.
1889 */
nvmem_cell_read_variable_le_u32(struct device *dev, const char *cell_id, u32 *val)1890 int nvmem_cell_read_variable_le_u32(struct device *dev, const char *cell_id,
1891 u32 *val)
1892 {
1893 size_t len;
1894 const u8 *buf;
1895 int i;
1896
1897 buf = nvmem_cell_read_variable_common(dev, cell_id, sizeof(*val), &len);
1898 if (IS_ERR(buf))
1899 return PTR_ERR(buf);
1900
1901 /* Copy w/ implicit endian conversion */
1902 *val = 0;
1903 for (i = 0; i < len; i++)
1904 *val |= buf[i] << (8 * i);
1905
1906 kfree(buf);
1907
1908 return 0;
1909 }
1910 EXPORT_SYMBOL_GPL(nvmem_cell_read_variable_le_u32);
1911
1912 /**
1913 * nvmem_cell_read_variable_le_u64() - Read up to 64-bits of data as a little endian number.
1914 *
1915 * @dev: Device that requests the nvmem cell.
1916 * @cell_id: Name of nvmem cell to read.
1917 * @val: pointer to output value.
1918 *
1919 * Return: 0 on success or negative errno.
1920 */
nvmem_cell_read_variable_le_u64(struct device *dev, const char *cell_id, u64 *val)1921 int nvmem_cell_read_variable_le_u64(struct device *dev, const char *cell_id,
1922 u64 *val)
1923 {
1924 size_t len;
1925 const u8 *buf;
1926 int i;
1927
1928 buf = nvmem_cell_read_variable_common(dev, cell_id, sizeof(*val), &len);
1929 if (IS_ERR(buf))
1930 return PTR_ERR(buf);
1931
1932 /* Copy w/ implicit endian conversion */
1933 *val = 0;
1934 for (i = 0; i < len; i++)
1935 *val |= (uint64_t)buf[i] << (8 * i);
1936
1937 kfree(buf);
1938
1939 return 0;
1940 }
1941 EXPORT_SYMBOL_GPL(nvmem_cell_read_variable_le_u64);
1942
1943 /**
1944 * nvmem_device_cell_read() - Read a given nvmem device and cell
1945 *
1946 * @nvmem: nvmem device to read from.
1947 * @info: nvmem cell info to be read.
1948 * @buf: buffer pointer which will be populated on successful read.
1949 *
1950 * Return: length of successful bytes read on success and negative
1951 * error code on error.
1952 */
nvmem_device_cell_read(struct nvmem_device *nvmem, struct nvmem_cell_info *info, void *buf)1953 ssize_t nvmem_device_cell_read(struct nvmem_device *nvmem,
1954 struct nvmem_cell_info *info, void *buf)
1955 {
1956 struct nvmem_cell_entry cell;
1957 int rc;
1958 ssize_t len;
1959
1960 if (!nvmem)
1961 return -EINVAL;
1962
1963 rc = nvmem_cell_info_to_nvmem_cell_entry_nodup(nvmem, info, &cell);
1964 if (rc)
1965 return rc;
1966
1967 rc = __nvmem_cell_read(nvmem, &cell, buf, &len, NULL, 0);
1968 if (rc)
1969 return rc;
1970
1971 return len;
1972 }
1973 EXPORT_SYMBOL_GPL(nvmem_device_cell_read);
1974
1975 /**
1976 * nvmem_device_cell_write() - Write cell to a given nvmem device
1977 *
1978 * @nvmem: nvmem device to be written to.
1979 * @info: nvmem cell info to be written.
1980 * @buf: buffer to be written to cell.
1981 *
1982 * Return: length of bytes written or negative error code on failure.
1983 */
nvmem_device_cell_write(struct nvmem_device *nvmem, struct nvmem_cell_info *info, void *buf)1984 int nvmem_device_cell_write(struct nvmem_device *nvmem,
1985 struct nvmem_cell_info *info, void *buf)
1986 {
1987 struct nvmem_cell_entry cell;
1988 int rc;
1989
1990 if (!nvmem)
1991 return -EINVAL;
1992
1993 rc = nvmem_cell_info_to_nvmem_cell_entry_nodup(nvmem, info, &cell);
1994 if (rc)
1995 return rc;
1996
1997 return __nvmem_cell_entry_write(&cell, buf, cell.bytes);
1998 }
1999 EXPORT_SYMBOL_GPL(nvmem_device_cell_write);
2000
2001 /**
2002 * nvmem_device_read() - Read from a given nvmem device
2003 *
2004 * @nvmem: nvmem device to read from.
2005 * @offset: offset in nvmem device.
2006 * @bytes: number of bytes to read.
2007 * @buf: buffer pointer which will be populated on successful read.
2008 *
2009 * Return: length of successful bytes read on success and negative
2010 * error code on error.
2011 */
nvmem_device_read(struct nvmem_device *nvmem, unsigned int offset, size_t bytes, void *buf)2012 int nvmem_device_read(struct nvmem_device *nvmem,
2013 unsigned int offset,
2014 size_t bytes, void *buf)
2015 {
2016 int rc;
2017
2018 if (!nvmem)
2019 return -EINVAL;
2020
2021 rc = nvmem_reg_read(nvmem, offset, buf, bytes);
2022
2023 if (rc)
2024 return rc;
2025
2026 return bytes;
2027 }
2028 EXPORT_SYMBOL_GPL(nvmem_device_read);
2029
2030 /**
2031 * nvmem_device_write() - Write cell to a given nvmem device
2032 *
2033 * @nvmem: nvmem device to be written to.
2034 * @offset: offset in nvmem device.
2035 * @bytes: number of bytes to write.
2036 * @buf: buffer to be written.
2037 *
2038 * Return: length of bytes written or negative error code on failure.
2039 */
nvmem_device_write(struct nvmem_device *nvmem, unsigned int offset, size_t bytes, void *buf)2040 int nvmem_device_write(struct nvmem_device *nvmem,
2041 unsigned int offset,
2042 size_t bytes, void *buf)
2043 {
2044 int rc;
2045
2046 if (!nvmem)
2047 return -EINVAL;
2048
2049 rc = nvmem_reg_write(nvmem, offset, buf, bytes);
2050
2051 if (rc)
2052 return rc;
2053
2054
2055 return bytes;
2056 }
2057 EXPORT_SYMBOL_GPL(nvmem_device_write);
2058
2059 /**
2060 * nvmem_add_cell_table() - register a table of cell info entries
2061 *
2062 * @table: table of cell info entries
2063 */
nvmem_add_cell_table(struct nvmem_cell_table *table)2064 void nvmem_add_cell_table(struct nvmem_cell_table *table)
2065 {
2066 mutex_lock(&nvmem_cell_mutex);
2067 list_add_tail(&table->node, &nvmem_cell_tables);
2068 mutex_unlock(&nvmem_cell_mutex);
2069 }
2070 EXPORT_SYMBOL_GPL(nvmem_add_cell_table);
2071
2072 /**
2073 * nvmem_del_cell_table() - remove a previously registered cell info table
2074 *
2075 * @table: table of cell info entries
2076 */
nvmem_del_cell_table(struct nvmem_cell_table *table)2077 void nvmem_del_cell_table(struct nvmem_cell_table *table)
2078 {
2079 mutex_lock(&nvmem_cell_mutex);
2080 list_del(&table->node);
2081 mutex_unlock(&nvmem_cell_mutex);
2082 }
2083 EXPORT_SYMBOL_GPL(nvmem_del_cell_table);
2084
2085 /**
2086 * nvmem_add_cell_lookups() - register a list of cell lookup entries
2087 *
2088 * @entries: array of cell lookup entries
2089 * @nentries: number of cell lookup entries in the array
2090 */
nvmem_add_cell_lookups(struct nvmem_cell_lookup *entries, size_t nentries)2091 void nvmem_add_cell_lookups(struct nvmem_cell_lookup *entries, size_t nentries)
2092 {
2093 int i;
2094
2095 mutex_lock(&nvmem_lookup_mutex);
2096 for (i = 0; i < nentries; i++)
2097 list_add_tail(&entries[i].node, &nvmem_lookup_list);
2098 mutex_unlock(&nvmem_lookup_mutex);
2099 }
2100 EXPORT_SYMBOL_GPL(nvmem_add_cell_lookups);
2101
2102 /**
2103 * nvmem_del_cell_lookups() - remove a list of previously added cell lookup
2104 * entries
2105 *
2106 * @entries: array of cell lookup entries
2107 * @nentries: number of cell lookup entries in the array
2108 */
nvmem_del_cell_lookups(struct nvmem_cell_lookup *entries, size_t nentries)2109 void nvmem_del_cell_lookups(struct nvmem_cell_lookup *entries, size_t nentries)
2110 {
2111 int i;
2112
2113 mutex_lock(&nvmem_lookup_mutex);
2114 for (i = 0; i < nentries; i++)
2115 list_del(&entries[i].node);
2116 mutex_unlock(&nvmem_lookup_mutex);
2117 }
2118 EXPORT_SYMBOL_GPL(nvmem_del_cell_lookups);
2119
2120 /**
2121 * nvmem_dev_name() - Get the name of a given nvmem device.
2122 *
2123 * @nvmem: nvmem device.
2124 *
2125 * Return: name of the nvmem device.
2126 */
nvmem_dev_name(struct nvmem_device *nvmem)2127 const char *nvmem_dev_name(struct nvmem_device *nvmem)
2128 {
2129 return dev_name(&nvmem->dev);
2130 }
2131 EXPORT_SYMBOL_GPL(nvmem_dev_name);
2132
nvmem_init(void)2133 static int __init nvmem_init(void)
2134 {
2135 return bus_register(&nvmem_bus_type);
2136 }
2137
nvmem_exit(void)2138 static void __exit nvmem_exit(void)
2139 {
2140 bus_unregister(&nvmem_bus_type);
2141 }
2142
2143 subsys_initcall(nvmem_init);
2144 module_exit(nvmem_exit);
2145
2146 MODULE_AUTHOR("Srinivas Kandagatla <srinivas.kandagatla@linaro.org");
2147 MODULE_AUTHOR("Maxime Ripard <maxime.ripard@free-electrons.com");
2148 MODULE_DESCRIPTION("nvmem Driver Core");
2149