xref: /kernel/linux/linux-6.6/drivers/net/phy/sfp.c (revision 62306a36)
1// SPDX-License-Identifier: GPL-2.0
2#include <linux/debugfs.h>
3#include <linux/delay.h>
4#include <linux/gpio/consumer.h>
5#include <linux/hwmon.h>
6#include <linux/i2c.h>
7#include <linux/interrupt.h>
8#include <linux/jiffies.h>
9#include <linux/mdio/mdio-i2c.h>
10#include <linux/module.h>
11#include <linux/mutex.h>
12#include <linux/of.h>
13#include <linux/phy.h>
14#include <linux/platform_device.h>
15#include <linux/rtnetlink.h>
16#include <linux/slab.h>
17#include <linux/workqueue.h>
18
19#include "sfp.h"
20#include "swphy.h"
21
22enum {
23	GPIO_MODDEF0,
24	GPIO_LOS,
25	GPIO_TX_FAULT,
26	GPIO_TX_DISABLE,
27	GPIO_RS0,
28	GPIO_RS1,
29	GPIO_MAX,
30
31	SFP_F_PRESENT = BIT(GPIO_MODDEF0),
32	SFP_F_LOS = BIT(GPIO_LOS),
33	SFP_F_TX_FAULT = BIT(GPIO_TX_FAULT),
34	SFP_F_TX_DISABLE = BIT(GPIO_TX_DISABLE),
35	SFP_F_RS0 = BIT(GPIO_RS0),
36	SFP_F_RS1 = BIT(GPIO_RS1),
37
38	SFP_F_OUTPUTS = SFP_F_TX_DISABLE | SFP_F_RS0 | SFP_F_RS1,
39
40	SFP_E_INSERT = 0,
41	SFP_E_REMOVE,
42	SFP_E_DEV_ATTACH,
43	SFP_E_DEV_DETACH,
44	SFP_E_DEV_DOWN,
45	SFP_E_DEV_UP,
46	SFP_E_TX_FAULT,
47	SFP_E_TX_CLEAR,
48	SFP_E_LOS_HIGH,
49	SFP_E_LOS_LOW,
50	SFP_E_TIMEOUT,
51
52	SFP_MOD_EMPTY = 0,
53	SFP_MOD_ERROR,
54	SFP_MOD_PROBE,
55	SFP_MOD_WAITDEV,
56	SFP_MOD_HPOWER,
57	SFP_MOD_WAITPWR,
58	SFP_MOD_PRESENT,
59
60	SFP_DEV_DETACHED = 0,
61	SFP_DEV_DOWN,
62	SFP_DEV_UP,
63
64	SFP_S_DOWN = 0,
65	SFP_S_FAIL,
66	SFP_S_WAIT,
67	SFP_S_INIT,
68	SFP_S_INIT_PHY,
69	SFP_S_INIT_TX_FAULT,
70	SFP_S_WAIT_LOS,
71	SFP_S_LINK_UP,
72	SFP_S_TX_FAULT,
73	SFP_S_REINIT,
74	SFP_S_TX_DISABLE,
75};
76
77static const char  * const mod_state_strings[] = {
78	[SFP_MOD_EMPTY] = "empty",
79	[SFP_MOD_ERROR] = "error",
80	[SFP_MOD_PROBE] = "probe",
81	[SFP_MOD_WAITDEV] = "waitdev",
82	[SFP_MOD_HPOWER] = "hpower",
83	[SFP_MOD_WAITPWR] = "waitpwr",
84	[SFP_MOD_PRESENT] = "present",
85};
86
87static const char *mod_state_to_str(unsigned short mod_state)
88{
89	if (mod_state >= ARRAY_SIZE(mod_state_strings))
90		return "Unknown module state";
91	return mod_state_strings[mod_state];
92}
93
94static const char * const dev_state_strings[] = {
95	[SFP_DEV_DETACHED] = "detached",
96	[SFP_DEV_DOWN] = "down",
97	[SFP_DEV_UP] = "up",
98};
99
100static const char *dev_state_to_str(unsigned short dev_state)
101{
102	if (dev_state >= ARRAY_SIZE(dev_state_strings))
103		return "Unknown device state";
104	return dev_state_strings[dev_state];
105}
106
107static const char * const event_strings[] = {
108	[SFP_E_INSERT] = "insert",
109	[SFP_E_REMOVE] = "remove",
110	[SFP_E_DEV_ATTACH] = "dev_attach",
111	[SFP_E_DEV_DETACH] = "dev_detach",
112	[SFP_E_DEV_DOWN] = "dev_down",
113	[SFP_E_DEV_UP] = "dev_up",
114	[SFP_E_TX_FAULT] = "tx_fault",
115	[SFP_E_TX_CLEAR] = "tx_clear",
116	[SFP_E_LOS_HIGH] = "los_high",
117	[SFP_E_LOS_LOW] = "los_low",
118	[SFP_E_TIMEOUT] = "timeout",
119};
120
121static const char *event_to_str(unsigned short event)
122{
123	if (event >= ARRAY_SIZE(event_strings))
124		return "Unknown event";
125	return event_strings[event];
126}
127
128static const char * const sm_state_strings[] = {
129	[SFP_S_DOWN] = "down",
130	[SFP_S_FAIL] = "fail",
131	[SFP_S_WAIT] = "wait",
132	[SFP_S_INIT] = "init",
133	[SFP_S_INIT_PHY] = "init_phy",
134	[SFP_S_INIT_TX_FAULT] = "init_tx_fault",
135	[SFP_S_WAIT_LOS] = "wait_los",
136	[SFP_S_LINK_UP] = "link_up",
137	[SFP_S_TX_FAULT] = "tx_fault",
138	[SFP_S_REINIT] = "reinit",
139	[SFP_S_TX_DISABLE] = "tx_disable",
140};
141
142static const char *sm_state_to_str(unsigned short sm_state)
143{
144	if (sm_state >= ARRAY_SIZE(sm_state_strings))
145		return "Unknown state";
146	return sm_state_strings[sm_state];
147}
148
149static const char *gpio_names[] = {
150	"mod-def0",
151	"los",
152	"tx-fault",
153	"tx-disable",
154	"rate-select0",
155	"rate-select1",
156};
157
158static const enum gpiod_flags gpio_flags[] = {
159	GPIOD_IN,
160	GPIOD_IN,
161	GPIOD_IN,
162	GPIOD_ASIS,
163	GPIOD_ASIS,
164	GPIOD_ASIS,
165};
166
167/* t_start_up (SFF-8431) or t_init (SFF-8472) is the time required for a
168 * non-cooled module to initialise its laser safety circuitry. We wait
169 * an initial T_WAIT period before we check the tx fault to give any PHY
170 * on board (for a copper SFP) time to initialise.
171 */
172#define T_WAIT			msecs_to_jiffies(50)
173#define T_START_UP		msecs_to_jiffies(300)
174#define T_START_UP_BAD_GPON	msecs_to_jiffies(60000)
175
176/* t_reset is the time required to assert the TX_DISABLE signal to reset
177 * an indicated TX_FAULT.
178 */
179#define T_RESET_US		10
180#define T_FAULT_RECOVER		msecs_to_jiffies(1000)
181
182/* N_FAULT_INIT is the number of recovery attempts at module initialisation
183 * time. If the TX_FAULT signal is not deasserted after this number of
184 * attempts at clearing it, we decide that the module is faulty.
185 * N_FAULT is the same but after the module has initialised.
186 */
187#define N_FAULT_INIT		5
188#define N_FAULT			5
189
190/* T_PHY_RETRY is the time interval between attempts to probe the PHY.
191 * R_PHY_RETRY is the number of attempts.
192 */
193#define T_PHY_RETRY		msecs_to_jiffies(50)
194#define R_PHY_RETRY		12
195
196/* SFP module presence detection is poor: the three MOD DEF signals are
197 * the same length on the PCB, which means it's possible for MOD DEF 0 to
198 * connect before the I2C bus on MOD DEF 1/2.
199 *
200 * The SFF-8472 specifies t_serial ("Time from power on until module is
201 * ready for data transmission over the two wire serial bus.") as 300ms.
202 */
203#define T_SERIAL		msecs_to_jiffies(300)
204#define T_HPOWER_LEVEL		msecs_to_jiffies(300)
205#define T_PROBE_RETRY_INIT	msecs_to_jiffies(100)
206#define R_PROBE_RETRY_INIT	10
207#define T_PROBE_RETRY_SLOW	msecs_to_jiffies(5000)
208#define R_PROBE_RETRY_SLOW	12
209
210/* SFP modules appear to always have their PHY configured for bus address
211 * 0x56 (which with mdio-i2c, translates to a PHY address of 22).
212 * RollBall SFPs access phy via SFP Enhanced Digital Diagnostic Interface
213 * via address 0x51 (mdio-i2c will use RollBall protocol on this address).
214 */
215#define SFP_PHY_ADDR		22
216#define SFP_PHY_ADDR_ROLLBALL	17
217
218/* SFP_EEPROM_BLOCK_SIZE is the size of data chunk to read the EEPROM
219 * at a time. Some SFP modules and also some Linux I2C drivers do not like
220 * reads longer than 16 bytes.
221 */
222#define SFP_EEPROM_BLOCK_SIZE	16
223
224struct sff_data {
225	unsigned int gpios;
226	bool (*module_supported)(const struct sfp_eeprom_id *id);
227};
228
229struct sfp {
230	struct device *dev;
231	struct i2c_adapter *i2c;
232	struct mii_bus *i2c_mii;
233	struct sfp_bus *sfp_bus;
234	enum mdio_i2c_proto mdio_protocol;
235	struct phy_device *mod_phy;
236	const struct sff_data *type;
237	size_t i2c_block_size;
238	u32 max_power_mW;
239
240	unsigned int (*get_state)(struct sfp *);
241	void (*set_state)(struct sfp *, unsigned int);
242	int (*read)(struct sfp *, bool, u8, void *, size_t);
243	int (*write)(struct sfp *, bool, u8, void *, size_t);
244
245	struct gpio_desc *gpio[GPIO_MAX];
246	int gpio_irq[GPIO_MAX];
247
248	bool need_poll;
249
250	/* Access rules:
251	 * state_hw_drive: st_mutex held
252	 * state_hw_mask: st_mutex held
253	 * state_soft_mask: st_mutex held
254	 * state: st_mutex held unless reading input bits
255	 */
256	struct mutex st_mutex;			/* Protects state */
257	unsigned int state_hw_drive;
258	unsigned int state_hw_mask;
259	unsigned int state_soft_mask;
260	unsigned int state;
261
262	struct delayed_work poll;
263	struct delayed_work timeout;
264	struct mutex sm_mutex;			/* Protects state machine */
265	unsigned char sm_mod_state;
266	unsigned char sm_mod_tries_init;
267	unsigned char sm_mod_tries;
268	unsigned char sm_dev_state;
269	unsigned short sm_state;
270	unsigned char sm_fault_retries;
271	unsigned char sm_phy_retries;
272
273	struct sfp_eeprom_id id;
274	unsigned int module_power_mW;
275	unsigned int module_t_start_up;
276	unsigned int module_t_wait;
277
278	unsigned int rate_kbd;
279	unsigned int rs_threshold_kbd;
280	unsigned int rs_state_mask;
281
282	bool have_a2;
283	bool tx_fault_ignore;
284
285	const struct sfp_quirk *quirk;
286
287#if IS_ENABLED(CONFIG_HWMON)
288	struct sfp_diag diag;
289	struct delayed_work hwmon_probe;
290	unsigned int hwmon_tries;
291	struct device *hwmon_dev;
292	char *hwmon_name;
293#endif
294
295#if IS_ENABLED(CONFIG_DEBUG_FS)
296	struct dentry *debugfs_dir;
297#endif
298};
299
300static bool sff_module_supported(const struct sfp_eeprom_id *id)
301{
302	return id->base.phys_id == SFF8024_ID_SFF_8472 &&
303	       id->base.phys_ext_id == SFP_PHYS_EXT_ID_SFP;
304}
305
306static const struct sff_data sff_data = {
307	.gpios = SFP_F_LOS | SFP_F_TX_FAULT | SFP_F_TX_DISABLE,
308	.module_supported = sff_module_supported,
309};
310
311static bool sfp_module_supported(const struct sfp_eeprom_id *id)
312{
313	if (id->base.phys_id == SFF8024_ID_SFP &&
314	    id->base.phys_ext_id == SFP_PHYS_EXT_ID_SFP)
315		return true;
316
317	/* SFP GPON module Ubiquiti U-Fiber Instant has in its EEPROM stored
318	 * phys id SFF instead of SFP. Therefore mark this module explicitly
319	 * as supported based on vendor name and pn match.
320	 */
321	if (id->base.phys_id == SFF8024_ID_SFF_8472 &&
322	    id->base.phys_ext_id == SFP_PHYS_EXT_ID_SFP &&
323	    !memcmp(id->base.vendor_name, "UBNT            ", 16) &&
324	    !memcmp(id->base.vendor_pn, "UF-INSTANT      ", 16))
325		return true;
326
327	return false;
328}
329
330static const struct sff_data sfp_data = {
331	.gpios = SFP_F_PRESENT | SFP_F_LOS | SFP_F_TX_FAULT |
332		 SFP_F_TX_DISABLE | SFP_F_RS0 | SFP_F_RS1,
333	.module_supported = sfp_module_supported,
334};
335
336static const struct of_device_id sfp_of_match[] = {
337	{ .compatible = "sff,sff", .data = &sff_data, },
338	{ .compatible = "sff,sfp", .data = &sfp_data, },
339	{ },
340};
341MODULE_DEVICE_TABLE(of, sfp_of_match);
342
343static void sfp_fixup_long_startup(struct sfp *sfp)
344{
345	sfp->module_t_start_up = T_START_UP_BAD_GPON;
346}
347
348static void sfp_fixup_ignore_tx_fault(struct sfp *sfp)
349{
350	sfp->tx_fault_ignore = true;
351}
352
353// For 10GBASE-T short-reach modules
354static void sfp_fixup_10gbaset_30m(struct sfp *sfp)
355{
356	sfp->id.base.connector = SFF8024_CONNECTOR_RJ45;
357	sfp->id.base.extended_cc = SFF8024_ECC_10GBASE_T_SR;
358}
359
360static void sfp_fixup_rollball_proto(struct sfp *sfp, unsigned int secs)
361{
362	sfp->mdio_protocol = MDIO_I2C_ROLLBALL;
363	sfp->module_t_wait = msecs_to_jiffies(secs * 1000);
364}
365
366static void sfp_fixup_fs_10gt(struct sfp *sfp)
367{
368	sfp_fixup_10gbaset_30m(sfp);
369
370	// These SFPs need 4 seconds before the PHY can be accessed
371	sfp_fixup_rollball_proto(sfp, 4);
372}
373
374static void sfp_fixup_halny_gsfp(struct sfp *sfp)
375{
376	/* Ignore the TX_FAULT and LOS signals on this module.
377	 * these are possibly used for other purposes on this
378	 * module, e.g. a serial port.
379	 */
380	sfp->state_hw_mask &= ~(SFP_F_TX_FAULT | SFP_F_LOS);
381}
382
383static void sfp_fixup_rollball(struct sfp *sfp)
384{
385	// Rollball SFPs need 25 seconds before the PHY can be accessed
386	sfp_fixup_rollball_proto(sfp, 25);
387}
388
389static void sfp_fixup_rollball_cc(struct sfp *sfp)
390{
391	sfp_fixup_rollball(sfp);
392
393	/* Some RollBall SFPs may have wrong (zero) extended compliance code
394	 * burned in EEPROM. For PHY probing we need the correct one.
395	 */
396	sfp->id.base.extended_cc = SFF8024_ECC_10GBASE_T_SFI;
397}
398
399static void sfp_quirk_2500basex(const struct sfp_eeprom_id *id,
400				unsigned long *modes,
401				unsigned long *interfaces)
402{
403	linkmode_set_bit(ETHTOOL_LINK_MODE_2500baseX_Full_BIT, modes);
404	__set_bit(PHY_INTERFACE_MODE_2500BASEX, interfaces);
405}
406
407static void sfp_quirk_disable_autoneg(const struct sfp_eeprom_id *id,
408				      unsigned long *modes,
409				      unsigned long *interfaces)
410{
411	linkmode_clear_bit(ETHTOOL_LINK_MODE_Autoneg_BIT, modes);
412}
413
414static void sfp_quirk_oem_2_5g(const struct sfp_eeprom_id *id,
415			       unsigned long *modes,
416			       unsigned long *interfaces)
417{
418	/* Copper 2.5G SFP */
419	linkmode_set_bit(ETHTOOL_LINK_MODE_2500baseT_Full_BIT, modes);
420	__set_bit(PHY_INTERFACE_MODE_2500BASEX, interfaces);
421	sfp_quirk_disable_autoneg(id, modes, interfaces);
422}
423
424static void sfp_quirk_ubnt_uf_instant(const struct sfp_eeprom_id *id,
425				      unsigned long *modes,
426				      unsigned long *interfaces)
427{
428	/* Ubiquiti U-Fiber Instant module claims that support all transceiver
429	 * types including 10G Ethernet which is not truth. So clear all claimed
430	 * modes and set only one mode which module supports: 1000baseX_Full.
431	 */
432	linkmode_zero(modes);
433	linkmode_set_bit(ETHTOOL_LINK_MODE_1000baseX_Full_BIT, modes);
434}
435
436#define SFP_QUIRK(_v, _p, _m, _f) \
437	{ .vendor = _v, .part = _p, .modes = _m, .fixup = _f, }
438#define SFP_QUIRK_M(_v, _p, _m) SFP_QUIRK(_v, _p, _m, NULL)
439#define SFP_QUIRK_F(_v, _p, _f) SFP_QUIRK(_v, _p, NULL, _f)
440
441static const struct sfp_quirk sfp_quirks[] = {
442	// Alcatel Lucent G-010S-P can operate at 2500base-X, but incorrectly
443	// report 2500MBd NRZ in their EEPROM
444	SFP_QUIRK_M("ALCATELLUCENT", "G010SP", sfp_quirk_2500basex),
445
446	// Alcatel Lucent G-010S-A can operate at 2500base-X, but report 3.2GBd
447	// NRZ in their EEPROM
448	SFP_QUIRK("ALCATELLUCENT", "3FE46541AA", sfp_quirk_2500basex,
449		  sfp_fixup_long_startup),
450
451	// Fiberstore SFP-10G-T doesn't identify as copper, and uses the
452	// Rollball protocol to talk to the PHY.
453	SFP_QUIRK_F("FS", "SFP-10G-T", sfp_fixup_fs_10gt),
454
455	// Fiberstore GPON-ONU-34-20BI can operate at 2500base-X, but report 1.2GBd
456	// NRZ in their EEPROM
457	SFP_QUIRK("FS", "GPON-ONU-34-20BI", sfp_quirk_2500basex,
458		  sfp_fixup_ignore_tx_fault),
459
460	SFP_QUIRK_F("HALNy", "HL-GSFP", sfp_fixup_halny_gsfp),
461
462	// HG MXPD-483II-F 2.5G supports 2500Base-X, but incorrectly reports
463	// 2600MBd in their EERPOM
464	SFP_QUIRK_M("HG GENUINE", "MXPD-483II", sfp_quirk_2500basex),
465
466	// Huawei MA5671A can operate at 2500base-X, but report 1.2GBd NRZ in
467	// their EEPROM
468	SFP_QUIRK("HUAWEI", "MA5671A", sfp_quirk_2500basex,
469		  sfp_fixup_ignore_tx_fault),
470
471	// FS 2.5G Base-T
472	SFP_QUIRK_M("FS", "SFP-2.5G-T", sfp_quirk_oem_2_5g),
473
474	// Lantech 8330-262D-E can operate at 2500base-X, but incorrectly report
475	// 2500MBd NRZ in their EEPROM
476	SFP_QUIRK_M("Lantech", "8330-262D-E", sfp_quirk_2500basex),
477
478	SFP_QUIRK_M("UBNT", "UF-INSTANT", sfp_quirk_ubnt_uf_instant),
479
480	// Walsun HXSX-ATR[CI]-1 don't identify as copper, and use the
481	// Rollball protocol to talk to the PHY.
482	SFP_QUIRK_F("Walsun", "HXSX-ATRC-1", sfp_fixup_fs_10gt),
483	SFP_QUIRK_F("Walsun", "HXSX-ATRI-1", sfp_fixup_fs_10gt),
484
485	SFP_QUIRK_F("OEM", "SFP-10G-T", sfp_fixup_rollball_cc),
486	SFP_QUIRK_M("OEM", "SFP-2.5G-T", sfp_quirk_oem_2_5g),
487	SFP_QUIRK_F("OEM", "RTSFP-10", sfp_fixup_rollball_cc),
488	SFP_QUIRK_F("OEM", "RTSFP-10G", sfp_fixup_rollball_cc),
489	SFP_QUIRK_F("Turris", "RTSFP-10", sfp_fixup_rollball),
490	SFP_QUIRK_F("Turris", "RTSFP-10G", sfp_fixup_rollball),
491};
492
493static size_t sfp_strlen(const char *str, size_t maxlen)
494{
495	size_t size, i;
496
497	/* Trailing characters should be filled with space chars, but
498	 * some manufacturers can't read SFF-8472 and use NUL.
499	 */
500	for (i = 0, size = 0; i < maxlen; i++)
501		if (str[i] != ' ' && str[i] != '\0')
502			size = i + 1;
503
504	return size;
505}
506
507static bool sfp_match(const char *qs, const char *str, size_t len)
508{
509	if (!qs)
510		return true;
511	if (strlen(qs) != len)
512		return false;
513	return !strncmp(qs, str, len);
514}
515
516static const struct sfp_quirk *sfp_lookup_quirk(const struct sfp_eeprom_id *id)
517{
518	const struct sfp_quirk *q;
519	unsigned int i;
520	size_t vs, ps;
521
522	vs = sfp_strlen(id->base.vendor_name, ARRAY_SIZE(id->base.vendor_name));
523	ps = sfp_strlen(id->base.vendor_pn, ARRAY_SIZE(id->base.vendor_pn));
524
525	for (i = 0, q = sfp_quirks; i < ARRAY_SIZE(sfp_quirks); i++, q++)
526		if (sfp_match(q->vendor, id->base.vendor_name, vs) &&
527		    sfp_match(q->part, id->base.vendor_pn, ps))
528			return q;
529
530	return NULL;
531}
532
533static unsigned long poll_jiffies;
534
535static unsigned int sfp_gpio_get_state(struct sfp *sfp)
536{
537	unsigned int i, state, v;
538
539	for (i = state = 0; i < GPIO_MAX; i++) {
540		if (gpio_flags[i] != GPIOD_IN || !sfp->gpio[i])
541			continue;
542
543		v = gpiod_get_value_cansleep(sfp->gpio[i]);
544		if (v)
545			state |= BIT(i);
546	}
547
548	return state;
549}
550
551static unsigned int sff_gpio_get_state(struct sfp *sfp)
552{
553	return sfp_gpio_get_state(sfp) | SFP_F_PRESENT;
554}
555
556static void sfp_gpio_set_state(struct sfp *sfp, unsigned int state)
557{
558	unsigned int drive;
559
560	if (state & SFP_F_PRESENT)
561		/* If the module is present, drive the requested signals */
562		drive = sfp->state_hw_drive;
563	else
564		/* Otherwise, let them float to the pull-ups */
565		drive = 0;
566
567	if (sfp->gpio[GPIO_TX_DISABLE]) {
568		if (drive & SFP_F_TX_DISABLE)
569			gpiod_direction_output(sfp->gpio[GPIO_TX_DISABLE],
570					       state & SFP_F_TX_DISABLE);
571		else
572			gpiod_direction_input(sfp->gpio[GPIO_TX_DISABLE]);
573	}
574
575	if (sfp->gpio[GPIO_RS0]) {
576		if (drive & SFP_F_RS0)
577			gpiod_direction_output(sfp->gpio[GPIO_RS0],
578					       state & SFP_F_RS0);
579		else
580			gpiod_direction_input(sfp->gpio[GPIO_RS0]);
581	}
582
583	if (sfp->gpio[GPIO_RS1]) {
584		if (drive & SFP_F_RS1)
585			gpiod_direction_output(sfp->gpio[GPIO_RS1],
586					       state & SFP_F_RS1);
587		else
588			gpiod_direction_input(sfp->gpio[GPIO_RS1]);
589	}
590}
591
592static int sfp_i2c_read(struct sfp *sfp, bool a2, u8 dev_addr, void *buf,
593			size_t len)
594{
595	struct i2c_msg msgs[2];
596	u8 bus_addr = a2 ? 0x51 : 0x50;
597	size_t block_size = sfp->i2c_block_size;
598	size_t this_len;
599	int ret;
600
601	msgs[0].addr = bus_addr;
602	msgs[0].flags = 0;
603	msgs[0].len = 1;
604	msgs[0].buf = &dev_addr;
605	msgs[1].addr = bus_addr;
606	msgs[1].flags = I2C_M_RD;
607	msgs[1].len = len;
608	msgs[1].buf = buf;
609
610	while (len) {
611		this_len = len;
612		if (this_len > block_size)
613			this_len = block_size;
614
615		msgs[1].len = this_len;
616
617		ret = i2c_transfer(sfp->i2c, msgs, ARRAY_SIZE(msgs));
618		if (ret < 0)
619			return ret;
620
621		if (ret != ARRAY_SIZE(msgs))
622			break;
623
624		msgs[1].buf += this_len;
625		dev_addr += this_len;
626		len -= this_len;
627	}
628
629	return msgs[1].buf - (u8 *)buf;
630}
631
632static int sfp_i2c_write(struct sfp *sfp, bool a2, u8 dev_addr, void *buf,
633	size_t len)
634{
635	struct i2c_msg msgs[1];
636	u8 bus_addr = a2 ? 0x51 : 0x50;
637	int ret;
638
639	msgs[0].addr = bus_addr;
640	msgs[0].flags = 0;
641	msgs[0].len = 1 + len;
642	msgs[0].buf = kmalloc(1 + len, GFP_KERNEL);
643	if (!msgs[0].buf)
644		return -ENOMEM;
645
646	msgs[0].buf[0] = dev_addr;
647	memcpy(&msgs[0].buf[1], buf, len);
648
649	ret = i2c_transfer(sfp->i2c, msgs, ARRAY_SIZE(msgs));
650
651	kfree(msgs[0].buf);
652
653	if (ret < 0)
654		return ret;
655
656	return ret == ARRAY_SIZE(msgs) ? len : 0;
657}
658
659static int sfp_i2c_configure(struct sfp *sfp, struct i2c_adapter *i2c)
660{
661	if (!i2c_check_functionality(i2c, I2C_FUNC_I2C))
662		return -EINVAL;
663
664	sfp->i2c = i2c;
665	sfp->read = sfp_i2c_read;
666	sfp->write = sfp_i2c_write;
667
668	return 0;
669}
670
671static int sfp_i2c_mdiobus_create(struct sfp *sfp)
672{
673	struct mii_bus *i2c_mii;
674	int ret;
675
676	i2c_mii = mdio_i2c_alloc(sfp->dev, sfp->i2c, sfp->mdio_protocol);
677	if (IS_ERR(i2c_mii))
678		return PTR_ERR(i2c_mii);
679
680	i2c_mii->name = "SFP I2C Bus";
681	i2c_mii->phy_mask = ~0;
682
683	ret = mdiobus_register(i2c_mii);
684	if (ret < 0) {
685		mdiobus_free(i2c_mii);
686		return ret;
687	}
688
689	sfp->i2c_mii = i2c_mii;
690
691	return 0;
692}
693
694static void sfp_i2c_mdiobus_destroy(struct sfp *sfp)
695{
696	mdiobus_unregister(sfp->i2c_mii);
697	sfp->i2c_mii = NULL;
698}
699
700/* Interface */
701static int sfp_read(struct sfp *sfp, bool a2, u8 addr, void *buf, size_t len)
702{
703	return sfp->read(sfp, a2, addr, buf, len);
704}
705
706static int sfp_write(struct sfp *sfp, bool a2, u8 addr, void *buf, size_t len)
707{
708	return sfp->write(sfp, a2, addr, buf, len);
709}
710
711static int sfp_modify_u8(struct sfp *sfp, bool a2, u8 addr, u8 mask, u8 val)
712{
713	int ret;
714	u8 old, v;
715
716	ret = sfp_read(sfp, a2, addr, &old, sizeof(old));
717	if (ret != sizeof(old))
718		return ret;
719
720	v = (old & ~mask) | (val & mask);
721	if (v == old)
722		return sizeof(v);
723
724	return sfp_write(sfp, a2, addr, &v, sizeof(v));
725}
726
727static unsigned int sfp_soft_get_state(struct sfp *sfp)
728{
729	unsigned int state = 0;
730	u8 status;
731	int ret;
732
733	ret = sfp_read(sfp, true, SFP_STATUS, &status, sizeof(status));
734	if (ret == sizeof(status)) {
735		if (status & SFP_STATUS_RX_LOS)
736			state |= SFP_F_LOS;
737		if (status & SFP_STATUS_TX_FAULT)
738			state |= SFP_F_TX_FAULT;
739	} else {
740		dev_err_ratelimited(sfp->dev,
741				    "failed to read SFP soft status: %pe\n",
742				    ERR_PTR(ret));
743		/* Preserve the current state */
744		state = sfp->state;
745	}
746
747	return state & sfp->state_soft_mask;
748}
749
750static void sfp_soft_set_state(struct sfp *sfp, unsigned int state,
751			       unsigned int soft)
752{
753	u8 mask = 0;
754	u8 val = 0;
755
756	if (soft & SFP_F_TX_DISABLE)
757		mask |= SFP_STATUS_TX_DISABLE_FORCE;
758	if (state & SFP_F_TX_DISABLE)
759		val |= SFP_STATUS_TX_DISABLE_FORCE;
760
761	if (soft & SFP_F_RS0)
762		mask |= SFP_STATUS_RS0_SELECT;
763	if (state & SFP_F_RS0)
764		val |= SFP_STATUS_RS0_SELECT;
765
766	if (mask)
767		sfp_modify_u8(sfp, true, SFP_STATUS, mask, val);
768
769	val = mask = 0;
770	if (soft & SFP_F_RS1)
771		mask |= SFP_EXT_STATUS_RS1_SELECT;
772	if (state & SFP_F_RS1)
773		val |= SFP_EXT_STATUS_RS1_SELECT;
774
775	if (mask)
776		sfp_modify_u8(sfp, true, SFP_EXT_STATUS, mask, val);
777}
778
779static void sfp_soft_start_poll(struct sfp *sfp)
780{
781	const struct sfp_eeprom_id *id = &sfp->id;
782	unsigned int mask = 0;
783
784	if (id->ext.enhopts & SFP_ENHOPTS_SOFT_TX_DISABLE)
785		mask |= SFP_F_TX_DISABLE;
786	if (id->ext.enhopts & SFP_ENHOPTS_SOFT_TX_FAULT)
787		mask |= SFP_F_TX_FAULT;
788	if (id->ext.enhopts & SFP_ENHOPTS_SOFT_RX_LOS)
789		mask |= SFP_F_LOS;
790	if (id->ext.enhopts & SFP_ENHOPTS_SOFT_RATE_SELECT)
791		mask |= sfp->rs_state_mask;
792
793	mutex_lock(&sfp->st_mutex);
794	// Poll the soft state for hardware pins we want to ignore
795	sfp->state_soft_mask = ~sfp->state_hw_mask & mask;
796
797	if (sfp->state_soft_mask & (SFP_F_LOS | SFP_F_TX_FAULT) &&
798	    !sfp->need_poll)
799		mod_delayed_work(system_wq, &sfp->poll, poll_jiffies);
800	mutex_unlock(&sfp->st_mutex);
801}
802
803static void sfp_soft_stop_poll(struct sfp *sfp)
804{
805	mutex_lock(&sfp->st_mutex);
806	sfp->state_soft_mask = 0;
807	mutex_unlock(&sfp->st_mutex);
808}
809
810/* sfp_get_state() - must be called with st_mutex held, or in the
811 * initialisation path.
812 */
813static unsigned int sfp_get_state(struct sfp *sfp)
814{
815	unsigned int soft = sfp->state_soft_mask & (SFP_F_LOS | SFP_F_TX_FAULT);
816	unsigned int state;
817
818	state = sfp->get_state(sfp) & sfp->state_hw_mask;
819	if (state & SFP_F_PRESENT && soft)
820		state |= sfp_soft_get_state(sfp);
821
822	return state;
823}
824
825/* sfp_set_state() - must be called with st_mutex held, or in the
826 * initialisation path.
827 */
828static void sfp_set_state(struct sfp *sfp, unsigned int state)
829{
830	unsigned int soft;
831
832	sfp->set_state(sfp, state);
833
834	soft = sfp->state_soft_mask & SFP_F_OUTPUTS;
835	if (state & SFP_F_PRESENT && soft)
836		sfp_soft_set_state(sfp, state, soft);
837}
838
839static void sfp_mod_state(struct sfp *sfp, unsigned int mask, unsigned int set)
840{
841	mutex_lock(&sfp->st_mutex);
842	sfp->state = (sfp->state & ~mask) | set;
843	sfp_set_state(sfp, sfp->state);
844	mutex_unlock(&sfp->st_mutex);
845}
846
847static unsigned int sfp_check(void *buf, size_t len)
848{
849	u8 *p, check;
850
851	for (p = buf, check = 0; len; p++, len--)
852		check += *p;
853
854	return check;
855}
856
857/* hwmon */
858#if IS_ENABLED(CONFIG_HWMON)
859static umode_t sfp_hwmon_is_visible(const void *data,
860				    enum hwmon_sensor_types type,
861				    u32 attr, int channel)
862{
863	const struct sfp *sfp = data;
864
865	switch (type) {
866	case hwmon_temp:
867		switch (attr) {
868		case hwmon_temp_min_alarm:
869		case hwmon_temp_max_alarm:
870		case hwmon_temp_lcrit_alarm:
871		case hwmon_temp_crit_alarm:
872		case hwmon_temp_min:
873		case hwmon_temp_max:
874		case hwmon_temp_lcrit:
875		case hwmon_temp_crit:
876			if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN))
877				return 0;
878			fallthrough;
879		case hwmon_temp_input:
880		case hwmon_temp_label:
881			return 0444;
882		default:
883			return 0;
884		}
885	case hwmon_in:
886		switch (attr) {
887		case hwmon_in_min_alarm:
888		case hwmon_in_max_alarm:
889		case hwmon_in_lcrit_alarm:
890		case hwmon_in_crit_alarm:
891		case hwmon_in_min:
892		case hwmon_in_max:
893		case hwmon_in_lcrit:
894		case hwmon_in_crit:
895			if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN))
896				return 0;
897			fallthrough;
898		case hwmon_in_input:
899		case hwmon_in_label:
900			return 0444;
901		default:
902			return 0;
903		}
904	case hwmon_curr:
905		switch (attr) {
906		case hwmon_curr_min_alarm:
907		case hwmon_curr_max_alarm:
908		case hwmon_curr_lcrit_alarm:
909		case hwmon_curr_crit_alarm:
910		case hwmon_curr_min:
911		case hwmon_curr_max:
912		case hwmon_curr_lcrit:
913		case hwmon_curr_crit:
914			if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN))
915				return 0;
916			fallthrough;
917		case hwmon_curr_input:
918		case hwmon_curr_label:
919			return 0444;
920		default:
921			return 0;
922		}
923	case hwmon_power:
924		/* External calibration of receive power requires
925		 * floating point arithmetic. Doing that in the kernel
926		 * is not easy, so just skip it. If the module does
927		 * not require external calibration, we can however
928		 * show receiver power, since FP is then not needed.
929		 */
930		if (sfp->id.ext.diagmon & SFP_DIAGMON_EXT_CAL &&
931		    channel == 1)
932			return 0;
933		switch (attr) {
934		case hwmon_power_min_alarm:
935		case hwmon_power_max_alarm:
936		case hwmon_power_lcrit_alarm:
937		case hwmon_power_crit_alarm:
938		case hwmon_power_min:
939		case hwmon_power_max:
940		case hwmon_power_lcrit:
941		case hwmon_power_crit:
942			if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN))
943				return 0;
944			fallthrough;
945		case hwmon_power_input:
946		case hwmon_power_label:
947			return 0444;
948		default:
949			return 0;
950		}
951	default:
952		return 0;
953	}
954}
955
956static int sfp_hwmon_read_sensor(struct sfp *sfp, int reg, long *value)
957{
958	__be16 val;
959	int err;
960
961	err = sfp_read(sfp, true, reg, &val, sizeof(val));
962	if (err < 0)
963		return err;
964
965	*value = be16_to_cpu(val);
966
967	return 0;
968}
969
970static void sfp_hwmon_to_rx_power(long *value)
971{
972	*value = DIV_ROUND_CLOSEST(*value, 10);
973}
974
975static void sfp_hwmon_calibrate(struct sfp *sfp, unsigned int slope, int offset,
976				long *value)
977{
978	if (sfp->id.ext.diagmon & SFP_DIAGMON_EXT_CAL)
979		*value = DIV_ROUND_CLOSEST(*value * slope, 256) + offset;
980}
981
982static void sfp_hwmon_calibrate_temp(struct sfp *sfp, long *value)
983{
984	sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_t_slope),
985			    be16_to_cpu(sfp->diag.cal_t_offset), value);
986
987	if (*value >= 0x8000)
988		*value -= 0x10000;
989
990	*value = DIV_ROUND_CLOSEST(*value * 1000, 256);
991}
992
993static void sfp_hwmon_calibrate_vcc(struct sfp *sfp, long *value)
994{
995	sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_v_slope),
996			    be16_to_cpu(sfp->diag.cal_v_offset), value);
997
998	*value = DIV_ROUND_CLOSEST(*value, 10);
999}
1000
1001static void sfp_hwmon_calibrate_bias(struct sfp *sfp, long *value)
1002{
1003	sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_txi_slope),
1004			    be16_to_cpu(sfp->diag.cal_txi_offset), value);
1005
1006	*value = DIV_ROUND_CLOSEST(*value, 500);
1007}
1008
1009static void sfp_hwmon_calibrate_tx_power(struct sfp *sfp, long *value)
1010{
1011	sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_txpwr_slope),
1012			    be16_to_cpu(sfp->diag.cal_txpwr_offset), value);
1013
1014	*value = DIV_ROUND_CLOSEST(*value, 10);
1015}
1016
1017static int sfp_hwmon_read_temp(struct sfp *sfp, int reg, long *value)
1018{
1019	int err;
1020
1021	err = sfp_hwmon_read_sensor(sfp, reg, value);
1022	if (err < 0)
1023		return err;
1024
1025	sfp_hwmon_calibrate_temp(sfp, value);
1026
1027	return 0;
1028}
1029
1030static int sfp_hwmon_read_vcc(struct sfp *sfp, int reg, long *value)
1031{
1032	int err;
1033
1034	err = sfp_hwmon_read_sensor(sfp, reg, value);
1035	if (err < 0)
1036		return err;
1037
1038	sfp_hwmon_calibrate_vcc(sfp, value);
1039
1040	return 0;
1041}
1042
1043static int sfp_hwmon_read_bias(struct sfp *sfp, int reg, long *value)
1044{
1045	int err;
1046
1047	err = sfp_hwmon_read_sensor(sfp, reg, value);
1048	if (err < 0)
1049		return err;
1050
1051	sfp_hwmon_calibrate_bias(sfp, value);
1052
1053	return 0;
1054}
1055
1056static int sfp_hwmon_read_tx_power(struct sfp *sfp, int reg, long *value)
1057{
1058	int err;
1059
1060	err = sfp_hwmon_read_sensor(sfp, reg, value);
1061	if (err < 0)
1062		return err;
1063
1064	sfp_hwmon_calibrate_tx_power(sfp, value);
1065
1066	return 0;
1067}
1068
1069static int sfp_hwmon_read_rx_power(struct sfp *sfp, int reg, long *value)
1070{
1071	int err;
1072
1073	err = sfp_hwmon_read_sensor(sfp, reg, value);
1074	if (err < 0)
1075		return err;
1076
1077	sfp_hwmon_to_rx_power(value);
1078
1079	return 0;
1080}
1081
1082static int sfp_hwmon_temp(struct sfp *sfp, u32 attr, long *value)
1083{
1084	u8 status;
1085	int err;
1086
1087	switch (attr) {
1088	case hwmon_temp_input:
1089		return sfp_hwmon_read_temp(sfp, SFP_TEMP, value);
1090
1091	case hwmon_temp_lcrit:
1092		*value = be16_to_cpu(sfp->diag.temp_low_alarm);
1093		sfp_hwmon_calibrate_temp(sfp, value);
1094		return 0;
1095
1096	case hwmon_temp_min:
1097		*value = be16_to_cpu(sfp->diag.temp_low_warn);
1098		sfp_hwmon_calibrate_temp(sfp, value);
1099		return 0;
1100	case hwmon_temp_max:
1101		*value = be16_to_cpu(sfp->diag.temp_high_warn);
1102		sfp_hwmon_calibrate_temp(sfp, value);
1103		return 0;
1104
1105	case hwmon_temp_crit:
1106		*value = be16_to_cpu(sfp->diag.temp_high_alarm);
1107		sfp_hwmon_calibrate_temp(sfp, value);
1108		return 0;
1109
1110	case hwmon_temp_lcrit_alarm:
1111		err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
1112		if (err < 0)
1113			return err;
1114
1115		*value = !!(status & SFP_ALARM0_TEMP_LOW);
1116		return 0;
1117
1118	case hwmon_temp_min_alarm:
1119		err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
1120		if (err < 0)
1121			return err;
1122
1123		*value = !!(status & SFP_WARN0_TEMP_LOW);
1124		return 0;
1125
1126	case hwmon_temp_max_alarm:
1127		err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
1128		if (err < 0)
1129			return err;
1130
1131		*value = !!(status & SFP_WARN0_TEMP_HIGH);
1132		return 0;
1133
1134	case hwmon_temp_crit_alarm:
1135		err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
1136		if (err < 0)
1137			return err;
1138
1139		*value = !!(status & SFP_ALARM0_TEMP_HIGH);
1140		return 0;
1141	default:
1142		return -EOPNOTSUPP;
1143	}
1144
1145	return -EOPNOTSUPP;
1146}
1147
1148static int sfp_hwmon_vcc(struct sfp *sfp, u32 attr, long *value)
1149{
1150	u8 status;
1151	int err;
1152
1153	switch (attr) {
1154	case hwmon_in_input:
1155		return sfp_hwmon_read_vcc(sfp, SFP_VCC, value);
1156
1157	case hwmon_in_lcrit:
1158		*value = be16_to_cpu(sfp->diag.volt_low_alarm);
1159		sfp_hwmon_calibrate_vcc(sfp, value);
1160		return 0;
1161
1162	case hwmon_in_min:
1163		*value = be16_to_cpu(sfp->diag.volt_low_warn);
1164		sfp_hwmon_calibrate_vcc(sfp, value);
1165		return 0;
1166
1167	case hwmon_in_max:
1168		*value = be16_to_cpu(sfp->diag.volt_high_warn);
1169		sfp_hwmon_calibrate_vcc(sfp, value);
1170		return 0;
1171
1172	case hwmon_in_crit:
1173		*value = be16_to_cpu(sfp->diag.volt_high_alarm);
1174		sfp_hwmon_calibrate_vcc(sfp, value);
1175		return 0;
1176
1177	case hwmon_in_lcrit_alarm:
1178		err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
1179		if (err < 0)
1180			return err;
1181
1182		*value = !!(status & SFP_ALARM0_VCC_LOW);
1183		return 0;
1184
1185	case hwmon_in_min_alarm:
1186		err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
1187		if (err < 0)
1188			return err;
1189
1190		*value = !!(status & SFP_WARN0_VCC_LOW);
1191		return 0;
1192
1193	case hwmon_in_max_alarm:
1194		err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
1195		if (err < 0)
1196			return err;
1197
1198		*value = !!(status & SFP_WARN0_VCC_HIGH);
1199		return 0;
1200
1201	case hwmon_in_crit_alarm:
1202		err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
1203		if (err < 0)
1204			return err;
1205
1206		*value = !!(status & SFP_ALARM0_VCC_HIGH);
1207		return 0;
1208	default:
1209		return -EOPNOTSUPP;
1210	}
1211
1212	return -EOPNOTSUPP;
1213}
1214
1215static int sfp_hwmon_bias(struct sfp *sfp, u32 attr, long *value)
1216{
1217	u8 status;
1218	int err;
1219
1220	switch (attr) {
1221	case hwmon_curr_input:
1222		return sfp_hwmon_read_bias(sfp, SFP_TX_BIAS, value);
1223
1224	case hwmon_curr_lcrit:
1225		*value = be16_to_cpu(sfp->diag.bias_low_alarm);
1226		sfp_hwmon_calibrate_bias(sfp, value);
1227		return 0;
1228
1229	case hwmon_curr_min:
1230		*value = be16_to_cpu(sfp->diag.bias_low_warn);
1231		sfp_hwmon_calibrate_bias(sfp, value);
1232		return 0;
1233
1234	case hwmon_curr_max:
1235		*value = be16_to_cpu(sfp->diag.bias_high_warn);
1236		sfp_hwmon_calibrate_bias(sfp, value);
1237		return 0;
1238
1239	case hwmon_curr_crit:
1240		*value = be16_to_cpu(sfp->diag.bias_high_alarm);
1241		sfp_hwmon_calibrate_bias(sfp, value);
1242		return 0;
1243
1244	case hwmon_curr_lcrit_alarm:
1245		err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
1246		if (err < 0)
1247			return err;
1248
1249		*value = !!(status & SFP_ALARM0_TX_BIAS_LOW);
1250		return 0;
1251
1252	case hwmon_curr_min_alarm:
1253		err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
1254		if (err < 0)
1255			return err;
1256
1257		*value = !!(status & SFP_WARN0_TX_BIAS_LOW);
1258		return 0;
1259
1260	case hwmon_curr_max_alarm:
1261		err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
1262		if (err < 0)
1263			return err;
1264
1265		*value = !!(status & SFP_WARN0_TX_BIAS_HIGH);
1266		return 0;
1267
1268	case hwmon_curr_crit_alarm:
1269		err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
1270		if (err < 0)
1271			return err;
1272
1273		*value = !!(status & SFP_ALARM0_TX_BIAS_HIGH);
1274		return 0;
1275	default:
1276		return -EOPNOTSUPP;
1277	}
1278
1279	return -EOPNOTSUPP;
1280}
1281
1282static int sfp_hwmon_tx_power(struct sfp *sfp, u32 attr, long *value)
1283{
1284	u8 status;
1285	int err;
1286
1287	switch (attr) {
1288	case hwmon_power_input:
1289		return sfp_hwmon_read_tx_power(sfp, SFP_TX_POWER, value);
1290
1291	case hwmon_power_lcrit:
1292		*value = be16_to_cpu(sfp->diag.txpwr_low_alarm);
1293		sfp_hwmon_calibrate_tx_power(sfp, value);
1294		return 0;
1295
1296	case hwmon_power_min:
1297		*value = be16_to_cpu(sfp->diag.txpwr_low_warn);
1298		sfp_hwmon_calibrate_tx_power(sfp, value);
1299		return 0;
1300
1301	case hwmon_power_max:
1302		*value = be16_to_cpu(sfp->diag.txpwr_high_warn);
1303		sfp_hwmon_calibrate_tx_power(sfp, value);
1304		return 0;
1305
1306	case hwmon_power_crit:
1307		*value = be16_to_cpu(sfp->diag.txpwr_high_alarm);
1308		sfp_hwmon_calibrate_tx_power(sfp, value);
1309		return 0;
1310
1311	case hwmon_power_lcrit_alarm:
1312		err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
1313		if (err < 0)
1314			return err;
1315
1316		*value = !!(status & SFP_ALARM0_TXPWR_LOW);
1317		return 0;
1318
1319	case hwmon_power_min_alarm:
1320		err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
1321		if (err < 0)
1322			return err;
1323
1324		*value = !!(status & SFP_WARN0_TXPWR_LOW);
1325		return 0;
1326
1327	case hwmon_power_max_alarm:
1328		err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
1329		if (err < 0)
1330			return err;
1331
1332		*value = !!(status & SFP_WARN0_TXPWR_HIGH);
1333		return 0;
1334
1335	case hwmon_power_crit_alarm:
1336		err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
1337		if (err < 0)
1338			return err;
1339
1340		*value = !!(status & SFP_ALARM0_TXPWR_HIGH);
1341		return 0;
1342	default:
1343		return -EOPNOTSUPP;
1344	}
1345
1346	return -EOPNOTSUPP;
1347}
1348
1349static int sfp_hwmon_rx_power(struct sfp *sfp, u32 attr, long *value)
1350{
1351	u8 status;
1352	int err;
1353
1354	switch (attr) {
1355	case hwmon_power_input:
1356		return sfp_hwmon_read_rx_power(sfp, SFP_RX_POWER, value);
1357
1358	case hwmon_power_lcrit:
1359		*value = be16_to_cpu(sfp->diag.rxpwr_low_alarm);
1360		sfp_hwmon_to_rx_power(value);
1361		return 0;
1362
1363	case hwmon_power_min:
1364		*value = be16_to_cpu(sfp->diag.rxpwr_low_warn);
1365		sfp_hwmon_to_rx_power(value);
1366		return 0;
1367
1368	case hwmon_power_max:
1369		*value = be16_to_cpu(sfp->diag.rxpwr_high_warn);
1370		sfp_hwmon_to_rx_power(value);
1371		return 0;
1372
1373	case hwmon_power_crit:
1374		*value = be16_to_cpu(sfp->diag.rxpwr_high_alarm);
1375		sfp_hwmon_to_rx_power(value);
1376		return 0;
1377
1378	case hwmon_power_lcrit_alarm:
1379		err = sfp_read(sfp, true, SFP_ALARM1, &status, sizeof(status));
1380		if (err < 0)
1381			return err;
1382
1383		*value = !!(status & SFP_ALARM1_RXPWR_LOW);
1384		return 0;
1385
1386	case hwmon_power_min_alarm:
1387		err = sfp_read(sfp, true, SFP_WARN1, &status, sizeof(status));
1388		if (err < 0)
1389			return err;
1390
1391		*value = !!(status & SFP_WARN1_RXPWR_LOW);
1392		return 0;
1393
1394	case hwmon_power_max_alarm:
1395		err = sfp_read(sfp, true, SFP_WARN1, &status, sizeof(status));
1396		if (err < 0)
1397			return err;
1398
1399		*value = !!(status & SFP_WARN1_RXPWR_HIGH);
1400		return 0;
1401
1402	case hwmon_power_crit_alarm:
1403		err = sfp_read(sfp, true, SFP_ALARM1, &status, sizeof(status));
1404		if (err < 0)
1405			return err;
1406
1407		*value = !!(status & SFP_ALARM1_RXPWR_HIGH);
1408		return 0;
1409	default:
1410		return -EOPNOTSUPP;
1411	}
1412
1413	return -EOPNOTSUPP;
1414}
1415
1416static int sfp_hwmon_read(struct device *dev, enum hwmon_sensor_types type,
1417			  u32 attr, int channel, long *value)
1418{
1419	struct sfp *sfp = dev_get_drvdata(dev);
1420
1421	switch (type) {
1422	case hwmon_temp:
1423		return sfp_hwmon_temp(sfp, attr, value);
1424	case hwmon_in:
1425		return sfp_hwmon_vcc(sfp, attr, value);
1426	case hwmon_curr:
1427		return sfp_hwmon_bias(sfp, attr, value);
1428	case hwmon_power:
1429		switch (channel) {
1430		case 0:
1431			return sfp_hwmon_tx_power(sfp, attr, value);
1432		case 1:
1433			return sfp_hwmon_rx_power(sfp, attr, value);
1434		default:
1435			return -EOPNOTSUPP;
1436		}
1437	default:
1438		return -EOPNOTSUPP;
1439	}
1440}
1441
1442static const char *const sfp_hwmon_power_labels[] = {
1443	"TX_power",
1444	"RX_power",
1445};
1446
1447static int sfp_hwmon_read_string(struct device *dev,
1448				 enum hwmon_sensor_types type,
1449				 u32 attr, int channel, const char **str)
1450{
1451	switch (type) {
1452	case hwmon_curr:
1453		switch (attr) {
1454		case hwmon_curr_label:
1455			*str = "bias";
1456			return 0;
1457		default:
1458			return -EOPNOTSUPP;
1459		}
1460		break;
1461	case hwmon_temp:
1462		switch (attr) {
1463		case hwmon_temp_label:
1464			*str = "temperature";
1465			return 0;
1466		default:
1467			return -EOPNOTSUPP;
1468		}
1469		break;
1470	case hwmon_in:
1471		switch (attr) {
1472		case hwmon_in_label:
1473			*str = "VCC";
1474			return 0;
1475		default:
1476			return -EOPNOTSUPP;
1477		}
1478		break;
1479	case hwmon_power:
1480		switch (attr) {
1481		case hwmon_power_label:
1482			*str = sfp_hwmon_power_labels[channel];
1483			return 0;
1484		default:
1485			return -EOPNOTSUPP;
1486		}
1487		break;
1488	default:
1489		return -EOPNOTSUPP;
1490	}
1491
1492	return -EOPNOTSUPP;
1493}
1494
1495static const struct hwmon_ops sfp_hwmon_ops = {
1496	.is_visible = sfp_hwmon_is_visible,
1497	.read = sfp_hwmon_read,
1498	.read_string = sfp_hwmon_read_string,
1499};
1500
1501static const struct hwmon_channel_info * const sfp_hwmon_info[] = {
1502	HWMON_CHANNEL_INFO(chip,
1503			   HWMON_C_REGISTER_TZ),
1504	HWMON_CHANNEL_INFO(in,
1505			   HWMON_I_INPUT |
1506			   HWMON_I_MAX | HWMON_I_MIN |
1507			   HWMON_I_MAX_ALARM | HWMON_I_MIN_ALARM |
1508			   HWMON_I_CRIT | HWMON_I_LCRIT |
1509			   HWMON_I_CRIT_ALARM | HWMON_I_LCRIT_ALARM |
1510			   HWMON_I_LABEL),
1511	HWMON_CHANNEL_INFO(temp,
1512			   HWMON_T_INPUT |
1513			   HWMON_T_MAX | HWMON_T_MIN |
1514			   HWMON_T_MAX_ALARM | HWMON_T_MIN_ALARM |
1515			   HWMON_T_CRIT | HWMON_T_LCRIT |
1516			   HWMON_T_CRIT_ALARM | HWMON_T_LCRIT_ALARM |
1517			   HWMON_T_LABEL),
1518	HWMON_CHANNEL_INFO(curr,
1519			   HWMON_C_INPUT |
1520			   HWMON_C_MAX | HWMON_C_MIN |
1521			   HWMON_C_MAX_ALARM | HWMON_C_MIN_ALARM |
1522			   HWMON_C_CRIT | HWMON_C_LCRIT |
1523			   HWMON_C_CRIT_ALARM | HWMON_C_LCRIT_ALARM |
1524			   HWMON_C_LABEL),
1525	HWMON_CHANNEL_INFO(power,
1526			   /* Transmit power */
1527			   HWMON_P_INPUT |
1528			   HWMON_P_MAX | HWMON_P_MIN |
1529			   HWMON_P_MAX_ALARM | HWMON_P_MIN_ALARM |
1530			   HWMON_P_CRIT | HWMON_P_LCRIT |
1531			   HWMON_P_CRIT_ALARM | HWMON_P_LCRIT_ALARM |
1532			   HWMON_P_LABEL,
1533			   /* Receive power */
1534			   HWMON_P_INPUT |
1535			   HWMON_P_MAX | HWMON_P_MIN |
1536			   HWMON_P_MAX_ALARM | HWMON_P_MIN_ALARM |
1537			   HWMON_P_CRIT | HWMON_P_LCRIT |
1538			   HWMON_P_CRIT_ALARM | HWMON_P_LCRIT_ALARM |
1539			   HWMON_P_LABEL),
1540	NULL,
1541};
1542
1543static const struct hwmon_chip_info sfp_hwmon_chip_info = {
1544	.ops = &sfp_hwmon_ops,
1545	.info = sfp_hwmon_info,
1546};
1547
1548static void sfp_hwmon_probe(struct work_struct *work)
1549{
1550	struct sfp *sfp = container_of(work, struct sfp, hwmon_probe.work);
1551	int err;
1552
1553	/* hwmon interface needs to access 16bit registers in atomic way to
1554	 * guarantee coherency of the diagnostic monitoring data. If it is not
1555	 * possible to guarantee coherency because EEPROM is broken in such way
1556	 * that does not support atomic 16bit read operation then we have to
1557	 * skip registration of hwmon device.
1558	 */
1559	if (sfp->i2c_block_size < 2) {
1560		dev_info(sfp->dev,
1561			 "skipping hwmon device registration due to broken EEPROM\n");
1562		dev_info(sfp->dev,
1563			 "diagnostic EEPROM area cannot be read atomically to guarantee data coherency\n");
1564		return;
1565	}
1566
1567	err = sfp_read(sfp, true, 0, &sfp->diag, sizeof(sfp->diag));
1568	if (err < 0) {
1569		if (sfp->hwmon_tries--) {
1570			mod_delayed_work(system_wq, &sfp->hwmon_probe,
1571					 T_PROBE_RETRY_SLOW);
1572		} else {
1573			dev_warn(sfp->dev, "hwmon probe failed: %pe\n",
1574				 ERR_PTR(err));
1575		}
1576		return;
1577	}
1578
1579	sfp->hwmon_name = hwmon_sanitize_name(dev_name(sfp->dev));
1580	if (IS_ERR(sfp->hwmon_name)) {
1581		dev_err(sfp->dev, "out of memory for hwmon name\n");
1582		return;
1583	}
1584
1585	sfp->hwmon_dev = hwmon_device_register_with_info(sfp->dev,
1586							 sfp->hwmon_name, sfp,
1587							 &sfp_hwmon_chip_info,
1588							 NULL);
1589	if (IS_ERR(sfp->hwmon_dev))
1590		dev_err(sfp->dev, "failed to register hwmon device: %ld\n",
1591			PTR_ERR(sfp->hwmon_dev));
1592}
1593
1594static int sfp_hwmon_insert(struct sfp *sfp)
1595{
1596	if (sfp->have_a2 && sfp->id.ext.diagmon & SFP_DIAGMON_DDM) {
1597		mod_delayed_work(system_wq, &sfp->hwmon_probe, 1);
1598		sfp->hwmon_tries = R_PROBE_RETRY_SLOW;
1599	}
1600
1601	return 0;
1602}
1603
1604static void sfp_hwmon_remove(struct sfp *sfp)
1605{
1606	cancel_delayed_work_sync(&sfp->hwmon_probe);
1607	if (!IS_ERR_OR_NULL(sfp->hwmon_dev)) {
1608		hwmon_device_unregister(sfp->hwmon_dev);
1609		sfp->hwmon_dev = NULL;
1610		kfree(sfp->hwmon_name);
1611	}
1612}
1613
1614static int sfp_hwmon_init(struct sfp *sfp)
1615{
1616	INIT_DELAYED_WORK(&sfp->hwmon_probe, sfp_hwmon_probe);
1617
1618	return 0;
1619}
1620
1621static void sfp_hwmon_exit(struct sfp *sfp)
1622{
1623	cancel_delayed_work_sync(&sfp->hwmon_probe);
1624}
1625#else
1626static int sfp_hwmon_insert(struct sfp *sfp)
1627{
1628	return 0;
1629}
1630
1631static void sfp_hwmon_remove(struct sfp *sfp)
1632{
1633}
1634
1635static int sfp_hwmon_init(struct sfp *sfp)
1636{
1637	return 0;
1638}
1639
1640static void sfp_hwmon_exit(struct sfp *sfp)
1641{
1642}
1643#endif
1644
1645/* Helpers */
1646static void sfp_module_tx_disable(struct sfp *sfp)
1647{
1648	dev_dbg(sfp->dev, "tx disable %u -> %u\n",
1649		sfp->state & SFP_F_TX_DISABLE ? 1 : 0, 1);
1650	sfp_mod_state(sfp, SFP_F_TX_DISABLE, SFP_F_TX_DISABLE);
1651}
1652
1653static void sfp_module_tx_enable(struct sfp *sfp)
1654{
1655	dev_dbg(sfp->dev, "tx disable %u -> %u\n",
1656		sfp->state & SFP_F_TX_DISABLE ? 1 : 0, 0);
1657	sfp_mod_state(sfp, SFP_F_TX_DISABLE, 0);
1658}
1659
1660#if IS_ENABLED(CONFIG_DEBUG_FS)
1661static int sfp_debug_state_show(struct seq_file *s, void *data)
1662{
1663	struct sfp *sfp = s->private;
1664
1665	seq_printf(s, "Module state: %s\n",
1666		   mod_state_to_str(sfp->sm_mod_state));
1667	seq_printf(s, "Module probe attempts: %d %d\n",
1668		   R_PROBE_RETRY_INIT - sfp->sm_mod_tries_init,
1669		   R_PROBE_RETRY_SLOW - sfp->sm_mod_tries);
1670	seq_printf(s, "Device state: %s\n",
1671		   dev_state_to_str(sfp->sm_dev_state));
1672	seq_printf(s, "Main state: %s\n",
1673		   sm_state_to_str(sfp->sm_state));
1674	seq_printf(s, "Fault recovery remaining retries: %d\n",
1675		   sfp->sm_fault_retries);
1676	seq_printf(s, "PHY probe remaining retries: %d\n",
1677		   sfp->sm_phy_retries);
1678	seq_printf(s, "Signalling rate: %u kBd\n", sfp->rate_kbd);
1679	seq_printf(s, "Rate select threshold: %u kBd\n",
1680		   sfp->rs_threshold_kbd);
1681	seq_printf(s, "moddef0: %d\n", !!(sfp->state & SFP_F_PRESENT));
1682	seq_printf(s, "rx_los: %d\n", !!(sfp->state & SFP_F_LOS));
1683	seq_printf(s, "tx_fault: %d\n", !!(sfp->state & SFP_F_TX_FAULT));
1684	seq_printf(s, "tx_disable: %d\n", !!(sfp->state & SFP_F_TX_DISABLE));
1685	seq_printf(s, "rs0: %d\n", !!(sfp->state & SFP_F_RS0));
1686	seq_printf(s, "rs1: %d\n", !!(sfp->state & SFP_F_RS1));
1687	return 0;
1688}
1689DEFINE_SHOW_ATTRIBUTE(sfp_debug_state);
1690
1691static void sfp_debugfs_init(struct sfp *sfp)
1692{
1693	sfp->debugfs_dir = debugfs_create_dir(dev_name(sfp->dev), NULL);
1694
1695	debugfs_create_file("state", 0600, sfp->debugfs_dir, sfp,
1696			    &sfp_debug_state_fops);
1697}
1698
1699static void sfp_debugfs_exit(struct sfp *sfp)
1700{
1701	debugfs_remove_recursive(sfp->debugfs_dir);
1702}
1703#else
1704static void sfp_debugfs_init(struct sfp *sfp)
1705{
1706}
1707
1708static void sfp_debugfs_exit(struct sfp *sfp)
1709{
1710}
1711#endif
1712
1713static void sfp_module_tx_fault_reset(struct sfp *sfp)
1714{
1715	unsigned int state;
1716
1717	mutex_lock(&sfp->st_mutex);
1718	state = sfp->state;
1719	if (!(state & SFP_F_TX_DISABLE)) {
1720		sfp_set_state(sfp, state | SFP_F_TX_DISABLE);
1721
1722		udelay(T_RESET_US);
1723
1724		sfp_set_state(sfp, state);
1725	}
1726	mutex_unlock(&sfp->st_mutex);
1727}
1728
1729/* SFP state machine */
1730static void sfp_sm_set_timer(struct sfp *sfp, unsigned int timeout)
1731{
1732	if (timeout)
1733		mod_delayed_work(system_power_efficient_wq, &sfp->timeout,
1734				 timeout);
1735	else
1736		cancel_delayed_work(&sfp->timeout);
1737}
1738
1739static void sfp_sm_next(struct sfp *sfp, unsigned int state,
1740			unsigned int timeout)
1741{
1742	sfp->sm_state = state;
1743	sfp_sm_set_timer(sfp, timeout);
1744}
1745
1746static void sfp_sm_mod_next(struct sfp *sfp, unsigned int state,
1747			    unsigned int timeout)
1748{
1749	sfp->sm_mod_state = state;
1750	sfp_sm_set_timer(sfp, timeout);
1751}
1752
1753static void sfp_sm_phy_detach(struct sfp *sfp)
1754{
1755	sfp_remove_phy(sfp->sfp_bus);
1756	phy_device_remove(sfp->mod_phy);
1757	phy_device_free(sfp->mod_phy);
1758	sfp->mod_phy = NULL;
1759}
1760
1761static int sfp_sm_probe_phy(struct sfp *sfp, int addr, bool is_c45)
1762{
1763	struct phy_device *phy;
1764	int err;
1765
1766	phy = get_phy_device(sfp->i2c_mii, addr, is_c45);
1767	if (phy == ERR_PTR(-ENODEV))
1768		return PTR_ERR(phy);
1769	if (IS_ERR(phy)) {
1770		dev_err(sfp->dev, "mdiobus scan returned %pe\n", phy);
1771		return PTR_ERR(phy);
1772	}
1773
1774	/* Mark this PHY as being on a SFP module */
1775	phy->is_on_sfp_module = true;
1776
1777	err = phy_device_register(phy);
1778	if (err) {
1779		phy_device_free(phy);
1780		dev_err(sfp->dev, "phy_device_register failed: %pe\n",
1781			ERR_PTR(err));
1782		return err;
1783	}
1784
1785	err = sfp_add_phy(sfp->sfp_bus, phy);
1786	if (err) {
1787		phy_device_remove(phy);
1788		phy_device_free(phy);
1789		dev_err(sfp->dev, "sfp_add_phy failed: %pe\n", ERR_PTR(err));
1790		return err;
1791	}
1792
1793	sfp->mod_phy = phy;
1794
1795	return 0;
1796}
1797
1798static void sfp_sm_link_up(struct sfp *sfp)
1799{
1800	sfp_link_up(sfp->sfp_bus);
1801	sfp_sm_next(sfp, SFP_S_LINK_UP, 0);
1802}
1803
1804static void sfp_sm_link_down(struct sfp *sfp)
1805{
1806	sfp_link_down(sfp->sfp_bus);
1807}
1808
1809static void sfp_sm_link_check_los(struct sfp *sfp)
1810{
1811	const __be16 los_inverted = cpu_to_be16(SFP_OPTIONS_LOS_INVERTED);
1812	const __be16 los_normal = cpu_to_be16(SFP_OPTIONS_LOS_NORMAL);
1813	__be16 los_options = sfp->id.ext.options & (los_inverted | los_normal);
1814	bool los = false;
1815
1816	/* If neither SFP_OPTIONS_LOS_INVERTED nor SFP_OPTIONS_LOS_NORMAL
1817	 * are set, we assume that no LOS signal is available. If both are
1818	 * set, we assume LOS is not implemented (and is meaningless.)
1819	 */
1820	if (los_options == los_inverted)
1821		los = !(sfp->state & SFP_F_LOS);
1822	else if (los_options == los_normal)
1823		los = !!(sfp->state & SFP_F_LOS);
1824
1825	if (los)
1826		sfp_sm_next(sfp, SFP_S_WAIT_LOS, 0);
1827	else
1828		sfp_sm_link_up(sfp);
1829}
1830
1831static bool sfp_los_event_active(struct sfp *sfp, unsigned int event)
1832{
1833	const __be16 los_inverted = cpu_to_be16(SFP_OPTIONS_LOS_INVERTED);
1834	const __be16 los_normal = cpu_to_be16(SFP_OPTIONS_LOS_NORMAL);
1835	__be16 los_options = sfp->id.ext.options & (los_inverted | los_normal);
1836
1837	return (los_options == los_inverted && event == SFP_E_LOS_LOW) ||
1838	       (los_options == los_normal && event == SFP_E_LOS_HIGH);
1839}
1840
1841static bool sfp_los_event_inactive(struct sfp *sfp, unsigned int event)
1842{
1843	const __be16 los_inverted = cpu_to_be16(SFP_OPTIONS_LOS_INVERTED);
1844	const __be16 los_normal = cpu_to_be16(SFP_OPTIONS_LOS_NORMAL);
1845	__be16 los_options = sfp->id.ext.options & (los_inverted | los_normal);
1846
1847	return (los_options == los_inverted && event == SFP_E_LOS_HIGH) ||
1848	       (los_options == los_normal && event == SFP_E_LOS_LOW);
1849}
1850
1851static void sfp_sm_fault(struct sfp *sfp, unsigned int next_state, bool warn)
1852{
1853	if (sfp->sm_fault_retries && !--sfp->sm_fault_retries) {
1854		dev_err(sfp->dev,
1855			"module persistently indicates fault, disabling\n");
1856		sfp_sm_next(sfp, SFP_S_TX_DISABLE, 0);
1857	} else {
1858		if (warn)
1859			dev_err(sfp->dev, "module transmit fault indicated\n");
1860
1861		sfp_sm_next(sfp, next_state, T_FAULT_RECOVER);
1862	}
1863}
1864
1865static int sfp_sm_add_mdio_bus(struct sfp *sfp)
1866{
1867	if (sfp->mdio_protocol != MDIO_I2C_NONE)
1868		return sfp_i2c_mdiobus_create(sfp);
1869
1870	return 0;
1871}
1872
1873/* Probe a SFP for a PHY device if the module supports copper - the PHY
1874 * normally sits at I2C bus address 0x56, and may either be a clause 22
1875 * or clause 45 PHY.
1876 *
1877 * Clause 22 copper SFP modules normally operate in Cisco SGMII mode with
1878 * negotiation enabled, but some may be in 1000base-X - which is for the
1879 * PHY driver to determine.
1880 *
1881 * Clause 45 copper SFP+ modules (10G) appear to switch their interface
1882 * mode according to the negotiated line speed.
1883 */
1884static int sfp_sm_probe_for_phy(struct sfp *sfp)
1885{
1886	int err = 0;
1887
1888	switch (sfp->mdio_protocol) {
1889	case MDIO_I2C_NONE:
1890		break;
1891
1892	case MDIO_I2C_MARVELL_C22:
1893		err = sfp_sm_probe_phy(sfp, SFP_PHY_ADDR, false);
1894		break;
1895
1896	case MDIO_I2C_C45:
1897		err = sfp_sm_probe_phy(sfp, SFP_PHY_ADDR, true);
1898		break;
1899
1900	case MDIO_I2C_ROLLBALL:
1901		err = sfp_sm_probe_phy(sfp, SFP_PHY_ADDR_ROLLBALL, true);
1902		break;
1903	}
1904
1905	return err;
1906}
1907
1908static int sfp_module_parse_power(struct sfp *sfp)
1909{
1910	u32 power_mW = 1000;
1911	bool supports_a2;
1912
1913	if (sfp->id.ext.sff8472_compliance >= SFP_SFF8472_COMPLIANCE_REV10_2 &&
1914	    sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_POWER_DECL))
1915		power_mW = 1500;
1916	/* Added in Rev 11.9, but there is no compliance code for this */
1917	if (sfp->id.ext.sff8472_compliance >= SFP_SFF8472_COMPLIANCE_REV11_4 &&
1918	    sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_HIGH_POWER_LEVEL))
1919		power_mW = 2000;
1920
1921	/* Power level 1 modules (max. 1W) are always supported. */
1922	if (power_mW <= 1000) {
1923		sfp->module_power_mW = power_mW;
1924		return 0;
1925	}
1926
1927	supports_a2 = sfp->id.ext.sff8472_compliance !=
1928				SFP_SFF8472_COMPLIANCE_NONE ||
1929		      sfp->id.ext.diagmon & SFP_DIAGMON_DDM;
1930
1931	if (power_mW > sfp->max_power_mW) {
1932		/* Module power specification exceeds the allowed maximum. */
1933		if (!supports_a2) {
1934			/* The module appears not to implement bus address
1935			 * 0xa2, so assume that the module powers up in the
1936			 * indicated mode.
1937			 */
1938			dev_err(sfp->dev,
1939				"Host does not support %u.%uW modules\n",
1940				power_mW / 1000, (power_mW / 100) % 10);
1941			return -EINVAL;
1942		} else {
1943			dev_warn(sfp->dev,
1944				 "Host does not support %u.%uW modules, module left in power mode 1\n",
1945				 power_mW / 1000, (power_mW / 100) % 10);
1946			return 0;
1947		}
1948	}
1949
1950	if (!supports_a2) {
1951		/* The module power level is below the host maximum and the
1952		 * module appears not to implement bus address 0xa2, so assume
1953		 * that the module powers up in the indicated mode.
1954		 */
1955		return 0;
1956	}
1957
1958	/* If the module requires a higher power mode, but also requires
1959	 * an address change sequence, warn the user that the module may
1960	 * not be functional.
1961	 */
1962	if (sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE) {
1963		dev_warn(sfp->dev,
1964			 "Address Change Sequence not supported but module requires %u.%uW, module may not be functional\n",
1965			 power_mW / 1000, (power_mW / 100) % 10);
1966		return 0;
1967	}
1968
1969	sfp->module_power_mW = power_mW;
1970
1971	return 0;
1972}
1973
1974static int sfp_sm_mod_hpower(struct sfp *sfp, bool enable)
1975{
1976	int err;
1977
1978	err = sfp_modify_u8(sfp, true, SFP_EXT_STATUS,
1979			    SFP_EXT_STATUS_PWRLVL_SELECT,
1980			    enable ? SFP_EXT_STATUS_PWRLVL_SELECT : 0);
1981	if (err != sizeof(u8)) {
1982		dev_err(sfp->dev, "failed to %sable high power: %pe\n",
1983			enable ? "en" : "dis", ERR_PTR(err));
1984		return -EAGAIN;
1985	}
1986
1987	if (enable)
1988		dev_info(sfp->dev, "Module switched to %u.%uW power level\n",
1989			 sfp->module_power_mW / 1000,
1990			 (sfp->module_power_mW / 100) % 10);
1991
1992	return 0;
1993}
1994
1995static void sfp_module_parse_rate_select(struct sfp *sfp)
1996{
1997	u8 rate_id;
1998
1999	sfp->rs_threshold_kbd = 0;
2000	sfp->rs_state_mask = 0;
2001
2002	if (!(sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_RATE_SELECT)))
2003		/* No support for RateSelect */
2004		return;
2005
2006	/* Default to INF-8074 RateSelect operation. The signalling threshold
2007	 * rate is not well specified, so always select "Full Bandwidth", but
2008	 * SFF-8079 reveals that it is understood that RS0 will be low for
2009	 * 1.0625Gb/s and high for 2.125Gb/s. Choose a value half-way between.
2010	 * This method exists prior to SFF-8472.
2011	 */
2012	sfp->rs_state_mask = SFP_F_RS0;
2013	sfp->rs_threshold_kbd = 1594;
2014
2015	/* Parse the rate identifier, which is complicated due to history:
2016	 * SFF-8472 rev 9.5 marks this field as reserved.
2017	 * SFF-8079 references SFF-8472 rev 9.5 and defines bit 0. SFF-8472
2018	 *  compliance is not required.
2019	 * SFF-8472 rev 10.2 defines this field using values 0..4
2020	 * SFF-8472 rev 11.0 redefines this field with bit 0 for SFF-8079
2021	 * and even values.
2022	 */
2023	rate_id = sfp->id.base.rate_id;
2024	if (rate_id == 0)
2025		/* Unspecified */
2026		return;
2027
2028	/* SFF-8472 rev 10.0..10.4 did not account for SFF-8079 using bit 0,
2029	 * and allocated value 3 to SFF-8431 independent tx/rx rate select.
2030	 * Convert this to a SFF-8472 rev 11.0 rate identifier.
2031	 */
2032	if (sfp->id.ext.sff8472_compliance >= SFP_SFF8472_COMPLIANCE_REV10_2 &&
2033	    sfp->id.ext.sff8472_compliance < SFP_SFF8472_COMPLIANCE_REV11_0 &&
2034	    rate_id == 3)
2035		rate_id = SFF_RID_8431;
2036
2037	if (rate_id & SFF_RID_8079) {
2038		/* SFF-8079 RateSelect / Application Select in conjunction with
2039		 * SFF-8472 rev 9.5. SFF-8079 defines rate_id as a bitfield
2040		 * with only bit 0 used, which takes precedence over SFF-8472.
2041		 */
2042		if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_APP_SELECT_SFF8079)) {
2043			/* SFF-8079 Part 1 - rate selection between Fibre
2044			 * Channel 1.0625/2.125/4.25 Gbd modes. Note that RS0
2045			 * is high for 2125, so we have to subtract 1 to
2046			 * include it.
2047			 */
2048			sfp->rs_threshold_kbd = 2125 - 1;
2049			sfp->rs_state_mask = SFP_F_RS0;
2050		}
2051		return;
2052	}
2053
2054	/* SFF-8472 rev 9.5 does not define the rate identifier */
2055	if (sfp->id.ext.sff8472_compliance <= SFP_SFF8472_COMPLIANCE_REV9_5)
2056		return;
2057
2058	/* SFF-8472 rev 11.0 defines rate_id as a numerical value which will
2059	 * always have bit 0 clear due to SFF-8079's bitfield usage of rate_id.
2060	 */
2061	switch (rate_id) {
2062	case SFF_RID_8431_RX_ONLY:
2063		sfp->rs_threshold_kbd = 4250;
2064		sfp->rs_state_mask = SFP_F_RS0;
2065		break;
2066
2067	case SFF_RID_8431_TX_ONLY:
2068		sfp->rs_threshold_kbd = 4250;
2069		sfp->rs_state_mask = SFP_F_RS1;
2070		break;
2071
2072	case SFF_RID_8431:
2073		sfp->rs_threshold_kbd = 4250;
2074		sfp->rs_state_mask = SFP_F_RS0 | SFP_F_RS1;
2075		break;
2076
2077	case SFF_RID_10G8G:
2078		sfp->rs_threshold_kbd = 9000;
2079		sfp->rs_state_mask = SFP_F_RS0 | SFP_F_RS1;
2080		break;
2081	}
2082}
2083
2084/* GPON modules based on Realtek RTL8672 and RTL9601C chips (e.g. V-SOL
2085 * V2801F, CarlitoxxPro CPGOS03-0490, Ubiquiti U-Fiber Instant, ...) do
2086 * not support multibyte reads from the EEPROM. Each multi-byte read
2087 * operation returns just one byte of EEPROM followed by zeros. There is
2088 * no way to identify which modules are using Realtek RTL8672 and RTL9601C
2089 * chips. Moreover every OEM of V-SOL V2801F module puts its own vendor
2090 * name and vendor id into EEPROM, so there is even no way to detect if
2091 * module is V-SOL V2801F. Therefore check for those zeros in the read
2092 * data and then based on check switch to reading EEPROM to one byte
2093 * at a time.
2094 */
2095static bool sfp_id_needs_byte_io(struct sfp *sfp, void *buf, size_t len)
2096{
2097	size_t i, block_size = sfp->i2c_block_size;
2098
2099	/* Already using byte IO */
2100	if (block_size == 1)
2101		return false;
2102
2103	for (i = 1; i < len; i += block_size) {
2104		if (memchr_inv(buf + i, '\0', min(block_size - 1, len - i)))
2105			return false;
2106	}
2107	return true;
2108}
2109
2110static int sfp_cotsworks_fixup_check(struct sfp *sfp, struct sfp_eeprom_id *id)
2111{
2112	u8 check;
2113	int err;
2114
2115	if (id->base.phys_id != SFF8024_ID_SFF_8472 ||
2116	    id->base.phys_ext_id != SFP_PHYS_EXT_ID_SFP ||
2117	    id->base.connector != SFF8024_CONNECTOR_LC) {
2118		dev_warn(sfp->dev, "Rewriting fiber module EEPROM with corrected values\n");
2119		id->base.phys_id = SFF8024_ID_SFF_8472;
2120		id->base.phys_ext_id = SFP_PHYS_EXT_ID_SFP;
2121		id->base.connector = SFF8024_CONNECTOR_LC;
2122		err = sfp_write(sfp, false, SFP_PHYS_ID, &id->base, 3);
2123		if (err != 3) {
2124			dev_err(sfp->dev,
2125				"Failed to rewrite module EEPROM: %pe\n",
2126				ERR_PTR(err));
2127			return err;
2128		}
2129
2130		/* Cotsworks modules have been found to require a delay between write operations. */
2131		mdelay(50);
2132
2133		/* Update base structure checksum */
2134		check = sfp_check(&id->base, sizeof(id->base) - 1);
2135		err = sfp_write(sfp, false, SFP_CC_BASE, &check, 1);
2136		if (err != 1) {
2137			dev_err(sfp->dev,
2138				"Failed to update base structure checksum in fiber module EEPROM: %pe\n",
2139				ERR_PTR(err));
2140			return err;
2141		}
2142	}
2143	return 0;
2144}
2145
2146static int sfp_module_parse_sff8472(struct sfp *sfp)
2147{
2148	/* If the module requires address swap mode, warn about it */
2149	if (sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE)
2150		dev_warn(sfp->dev,
2151			 "module address swap to access page 0xA2 is not supported.\n");
2152	else
2153		sfp->have_a2 = true;
2154
2155	return 0;
2156}
2157
2158static int sfp_sm_mod_probe(struct sfp *sfp, bool report)
2159{
2160	/* SFP module inserted - read I2C data */
2161	struct sfp_eeprom_id id;
2162	bool cotsworks_sfbg;
2163	unsigned int mask;
2164	bool cotsworks;
2165	u8 check;
2166	int ret;
2167
2168	sfp->i2c_block_size = SFP_EEPROM_BLOCK_SIZE;
2169
2170	ret = sfp_read(sfp, false, 0, &id.base, sizeof(id.base));
2171	if (ret < 0) {
2172		if (report)
2173			dev_err(sfp->dev, "failed to read EEPROM: %pe\n",
2174				ERR_PTR(ret));
2175		return -EAGAIN;
2176	}
2177
2178	if (ret != sizeof(id.base)) {
2179		dev_err(sfp->dev, "EEPROM short read: %pe\n", ERR_PTR(ret));
2180		return -EAGAIN;
2181	}
2182
2183	/* Some SFP modules (e.g. Nokia 3FE46541AA) lock up if read from
2184	 * address 0x51 is just one byte at a time. Also SFF-8472 requires
2185	 * that EEPROM supports atomic 16bit read operation for diagnostic
2186	 * fields, so do not switch to one byte reading at a time unless it
2187	 * is really required and we have no other option.
2188	 */
2189	if (sfp_id_needs_byte_io(sfp, &id.base, sizeof(id.base))) {
2190		dev_info(sfp->dev,
2191			 "Detected broken RTL8672/RTL9601C emulated EEPROM\n");
2192		dev_info(sfp->dev,
2193			 "Switching to reading EEPROM to one byte at a time\n");
2194		sfp->i2c_block_size = 1;
2195
2196		ret = sfp_read(sfp, false, 0, &id.base, sizeof(id.base));
2197		if (ret < 0) {
2198			if (report)
2199				dev_err(sfp->dev,
2200					"failed to read EEPROM: %pe\n",
2201					ERR_PTR(ret));
2202			return -EAGAIN;
2203		}
2204
2205		if (ret != sizeof(id.base)) {
2206			dev_err(sfp->dev, "EEPROM short read: %pe\n",
2207				ERR_PTR(ret));
2208			return -EAGAIN;
2209		}
2210	}
2211
2212	/* Cotsworks do not seem to update the checksums when they
2213	 * do the final programming with the final module part number,
2214	 * serial number and date code.
2215	 */
2216	cotsworks = !memcmp(id.base.vendor_name, "COTSWORKS       ", 16);
2217	cotsworks_sfbg = !memcmp(id.base.vendor_pn, "SFBG", 4);
2218
2219	/* Cotsworks SFF module EEPROM do not always have valid phys_id,
2220	 * phys_ext_id, and connector bytes.  Rewrite SFF EEPROM bytes if
2221	 * Cotsworks PN matches and bytes are not correct.
2222	 */
2223	if (cotsworks && cotsworks_sfbg) {
2224		ret = sfp_cotsworks_fixup_check(sfp, &id);
2225		if (ret < 0)
2226			return ret;
2227	}
2228
2229	/* Validate the checksum over the base structure */
2230	check = sfp_check(&id.base, sizeof(id.base) - 1);
2231	if (check != id.base.cc_base) {
2232		if (cotsworks) {
2233			dev_warn(sfp->dev,
2234				 "EEPROM base structure checksum failure (0x%02x != 0x%02x)\n",
2235				 check, id.base.cc_base);
2236		} else {
2237			dev_err(sfp->dev,
2238				"EEPROM base structure checksum failure: 0x%02x != 0x%02x\n",
2239				check, id.base.cc_base);
2240			print_hex_dump(KERN_ERR, "sfp EE: ", DUMP_PREFIX_OFFSET,
2241				       16, 1, &id, sizeof(id), true);
2242			return -EINVAL;
2243		}
2244	}
2245
2246	ret = sfp_read(sfp, false, SFP_CC_BASE + 1, &id.ext, sizeof(id.ext));
2247	if (ret < 0) {
2248		if (report)
2249			dev_err(sfp->dev, "failed to read EEPROM: %pe\n",
2250				ERR_PTR(ret));
2251		return -EAGAIN;
2252	}
2253
2254	if (ret != sizeof(id.ext)) {
2255		dev_err(sfp->dev, "EEPROM short read: %pe\n", ERR_PTR(ret));
2256		return -EAGAIN;
2257	}
2258
2259	check = sfp_check(&id.ext, sizeof(id.ext) - 1);
2260	if (check != id.ext.cc_ext) {
2261		if (cotsworks) {
2262			dev_warn(sfp->dev,
2263				 "EEPROM extended structure checksum failure (0x%02x != 0x%02x)\n",
2264				 check, id.ext.cc_ext);
2265		} else {
2266			dev_err(sfp->dev,
2267				"EEPROM extended structure checksum failure: 0x%02x != 0x%02x\n",
2268				check, id.ext.cc_ext);
2269			print_hex_dump(KERN_ERR, "sfp EE: ", DUMP_PREFIX_OFFSET,
2270				       16, 1, &id, sizeof(id), true);
2271			memset(&id.ext, 0, sizeof(id.ext));
2272		}
2273	}
2274
2275	sfp->id = id;
2276
2277	dev_info(sfp->dev, "module %.*s %.*s rev %.*s sn %.*s dc %.*s\n",
2278		 (int)sizeof(id.base.vendor_name), id.base.vendor_name,
2279		 (int)sizeof(id.base.vendor_pn), id.base.vendor_pn,
2280		 (int)sizeof(id.base.vendor_rev), id.base.vendor_rev,
2281		 (int)sizeof(id.ext.vendor_sn), id.ext.vendor_sn,
2282		 (int)sizeof(id.ext.datecode), id.ext.datecode);
2283
2284	/* Check whether we support this module */
2285	if (!sfp->type->module_supported(&id)) {
2286		dev_err(sfp->dev,
2287			"module is not supported - phys id 0x%02x 0x%02x\n",
2288			sfp->id.base.phys_id, sfp->id.base.phys_ext_id);
2289		return -EINVAL;
2290	}
2291
2292	if (sfp->id.ext.sff8472_compliance != SFP_SFF8472_COMPLIANCE_NONE) {
2293		ret = sfp_module_parse_sff8472(sfp);
2294		if (ret < 0)
2295			return ret;
2296	}
2297
2298	/* Parse the module power requirement */
2299	ret = sfp_module_parse_power(sfp);
2300	if (ret < 0)
2301		return ret;
2302
2303	sfp_module_parse_rate_select(sfp);
2304
2305	mask = SFP_F_PRESENT;
2306	if (sfp->gpio[GPIO_TX_DISABLE])
2307		mask |= SFP_F_TX_DISABLE;
2308	if (sfp->gpio[GPIO_TX_FAULT])
2309		mask |= SFP_F_TX_FAULT;
2310	if (sfp->gpio[GPIO_LOS])
2311		mask |= SFP_F_LOS;
2312	if (sfp->gpio[GPIO_RS0])
2313		mask |= SFP_F_RS0;
2314	if (sfp->gpio[GPIO_RS1])
2315		mask |= SFP_F_RS1;
2316
2317	sfp->module_t_start_up = T_START_UP;
2318	sfp->module_t_wait = T_WAIT;
2319
2320	sfp->tx_fault_ignore = false;
2321
2322	if (sfp->id.base.extended_cc == SFF8024_ECC_10GBASE_T_SFI ||
2323	    sfp->id.base.extended_cc == SFF8024_ECC_10GBASE_T_SR ||
2324	    sfp->id.base.extended_cc == SFF8024_ECC_5GBASE_T ||
2325	    sfp->id.base.extended_cc == SFF8024_ECC_2_5GBASE_T)
2326		sfp->mdio_protocol = MDIO_I2C_C45;
2327	else if (sfp->id.base.e1000_base_t)
2328		sfp->mdio_protocol = MDIO_I2C_MARVELL_C22;
2329	else
2330		sfp->mdio_protocol = MDIO_I2C_NONE;
2331
2332	sfp->quirk = sfp_lookup_quirk(&id);
2333
2334	mutex_lock(&sfp->st_mutex);
2335	/* Initialise state bits to use from hardware */
2336	sfp->state_hw_mask = mask;
2337
2338	/* We want to drive the rate select pins that the module is using */
2339	sfp->state_hw_drive |= sfp->rs_state_mask;
2340
2341	if (sfp->quirk && sfp->quirk->fixup)
2342		sfp->quirk->fixup(sfp);
2343	mutex_unlock(&sfp->st_mutex);
2344
2345	return 0;
2346}
2347
2348static void sfp_sm_mod_remove(struct sfp *sfp)
2349{
2350	if (sfp->sm_mod_state > SFP_MOD_WAITDEV)
2351		sfp_module_remove(sfp->sfp_bus);
2352
2353	sfp_hwmon_remove(sfp);
2354
2355	memset(&sfp->id, 0, sizeof(sfp->id));
2356	sfp->module_power_mW = 0;
2357	sfp->state_hw_drive = SFP_F_TX_DISABLE;
2358	sfp->have_a2 = false;
2359
2360	dev_info(sfp->dev, "module removed\n");
2361}
2362
2363/* This state machine tracks the upstream's state */
2364static void sfp_sm_device(struct sfp *sfp, unsigned int event)
2365{
2366	switch (sfp->sm_dev_state) {
2367	default:
2368		if (event == SFP_E_DEV_ATTACH)
2369			sfp->sm_dev_state = SFP_DEV_DOWN;
2370		break;
2371
2372	case SFP_DEV_DOWN:
2373		if (event == SFP_E_DEV_DETACH)
2374			sfp->sm_dev_state = SFP_DEV_DETACHED;
2375		else if (event == SFP_E_DEV_UP)
2376			sfp->sm_dev_state = SFP_DEV_UP;
2377		break;
2378
2379	case SFP_DEV_UP:
2380		if (event == SFP_E_DEV_DETACH)
2381			sfp->sm_dev_state = SFP_DEV_DETACHED;
2382		else if (event == SFP_E_DEV_DOWN)
2383			sfp->sm_dev_state = SFP_DEV_DOWN;
2384		break;
2385	}
2386}
2387
2388/* This state machine tracks the insert/remove state of the module, probes
2389 * the on-board EEPROM, and sets up the power level.
2390 */
2391static void sfp_sm_module(struct sfp *sfp, unsigned int event)
2392{
2393	int err;
2394
2395	/* Handle remove event globally, it resets this state machine */
2396	if (event == SFP_E_REMOVE) {
2397		if (sfp->sm_mod_state > SFP_MOD_PROBE)
2398			sfp_sm_mod_remove(sfp);
2399		sfp_sm_mod_next(sfp, SFP_MOD_EMPTY, 0);
2400		return;
2401	}
2402
2403	/* Handle device detach globally */
2404	if (sfp->sm_dev_state < SFP_DEV_DOWN &&
2405	    sfp->sm_mod_state > SFP_MOD_WAITDEV) {
2406		if (sfp->module_power_mW > 1000 &&
2407		    sfp->sm_mod_state > SFP_MOD_HPOWER)
2408			sfp_sm_mod_hpower(sfp, false);
2409		sfp_sm_mod_next(sfp, SFP_MOD_WAITDEV, 0);
2410		return;
2411	}
2412
2413	switch (sfp->sm_mod_state) {
2414	default:
2415		if (event == SFP_E_INSERT) {
2416			sfp_sm_mod_next(sfp, SFP_MOD_PROBE, T_SERIAL);
2417			sfp->sm_mod_tries_init = R_PROBE_RETRY_INIT;
2418			sfp->sm_mod_tries = R_PROBE_RETRY_SLOW;
2419		}
2420		break;
2421
2422	case SFP_MOD_PROBE:
2423		/* Wait for T_PROBE_INIT to time out */
2424		if (event != SFP_E_TIMEOUT)
2425			break;
2426
2427		err = sfp_sm_mod_probe(sfp, sfp->sm_mod_tries == 1);
2428		if (err == -EAGAIN) {
2429			if (sfp->sm_mod_tries_init &&
2430			   --sfp->sm_mod_tries_init) {
2431				sfp_sm_set_timer(sfp, T_PROBE_RETRY_INIT);
2432				break;
2433			} else if (sfp->sm_mod_tries && --sfp->sm_mod_tries) {
2434				if (sfp->sm_mod_tries == R_PROBE_RETRY_SLOW - 1)
2435					dev_warn(sfp->dev,
2436						 "please wait, module slow to respond\n");
2437				sfp_sm_set_timer(sfp, T_PROBE_RETRY_SLOW);
2438				break;
2439			}
2440		}
2441		if (err < 0) {
2442			sfp_sm_mod_next(sfp, SFP_MOD_ERROR, 0);
2443			break;
2444		}
2445
2446		/* Force a poll to re-read the hardware signal state after
2447		 * sfp_sm_mod_probe() changed state_hw_mask.
2448		 */
2449		mod_delayed_work(system_wq, &sfp->poll, 1);
2450
2451		err = sfp_hwmon_insert(sfp);
2452		if (err)
2453			dev_warn(sfp->dev, "hwmon probe failed: %pe\n",
2454				 ERR_PTR(err));
2455
2456		sfp_sm_mod_next(sfp, SFP_MOD_WAITDEV, 0);
2457		fallthrough;
2458	case SFP_MOD_WAITDEV:
2459		/* Ensure that the device is attached before proceeding */
2460		if (sfp->sm_dev_state < SFP_DEV_DOWN)
2461			break;
2462
2463		/* Report the module insertion to the upstream device */
2464		err = sfp_module_insert(sfp->sfp_bus, &sfp->id,
2465					sfp->quirk);
2466		if (err < 0) {
2467			sfp_sm_mod_next(sfp, SFP_MOD_ERROR, 0);
2468			break;
2469		}
2470
2471		/* If this is a power level 1 module, we are done */
2472		if (sfp->module_power_mW <= 1000)
2473			goto insert;
2474
2475		sfp_sm_mod_next(sfp, SFP_MOD_HPOWER, 0);
2476		fallthrough;
2477	case SFP_MOD_HPOWER:
2478		/* Enable high power mode */
2479		err = sfp_sm_mod_hpower(sfp, true);
2480		if (err < 0) {
2481			if (err != -EAGAIN) {
2482				sfp_module_remove(sfp->sfp_bus);
2483				sfp_sm_mod_next(sfp, SFP_MOD_ERROR, 0);
2484			} else {
2485				sfp_sm_set_timer(sfp, T_PROBE_RETRY_INIT);
2486			}
2487			break;
2488		}
2489
2490		sfp_sm_mod_next(sfp, SFP_MOD_WAITPWR, T_HPOWER_LEVEL);
2491		break;
2492
2493	case SFP_MOD_WAITPWR:
2494		/* Wait for T_HPOWER_LEVEL to time out */
2495		if (event != SFP_E_TIMEOUT)
2496			break;
2497
2498	insert:
2499		sfp_sm_mod_next(sfp, SFP_MOD_PRESENT, 0);
2500		break;
2501
2502	case SFP_MOD_PRESENT:
2503	case SFP_MOD_ERROR:
2504		break;
2505	}
2506}
2507
2508static void sfp_sm_main(struct sfp *sfp, unsigned int event)
2509{
2510	unsigned long timeout;
2511	int ret;
2512
2513	/* Some events are global */
2514	if (sfp->sm_state != SFP_S_DOWN &&
2515	    (sfp->sm_mod_state != SFP_MOD_PRESENT ||
2516	     sfp->sm_dev_state != SFP_DEV_UP)) {
2517		if (sfp->sm_state == SFP_S_LINK_UP &&
2518		    sfp->sm_dev_state == SFP_DEV_UP)
2519			sfp_sm_link_down(sfp);
2520		if (sfp->sm_state > SFP_S_INIT)
2521			sfp_module_stop(sfp->sfp_bus);
2522		if (sfp->mod_phy)
2523			sfp_sm_phy_detach(sfp);
2524		if (sfp->i2c_mii)
2525			sfp_i2c_mdiobus_destroy(sfp);
2526		sfp_module_tx_disable(sfp);
2527		sfp_soft_stop_poll(sfp);
2528		sfp_sm_next(sfp, SFP_S_DOWN, 0);
2529		return;
2530	}
2531
2532	/* The main state machine */
2533	switch (sfp->sm_state) {
2534	case SFP_S_DOWN:
2535		if (sfp->sm_mod_state != SFP_MOD_PRESENT ||
2536		    sfp->sm_dev_state != SFP_DEV_UP)
2537			break;
2538
2539		/* Only use the soft state bits if we have access to the A2h
2540		 * memory, which implies that we have some level of SFF-8472
2541		 * compliance.
2542		 */
2543		if (sfp->have_a2)
2544			sfp_soft_start_poll(sfp);
2545
2546		sfp_module_tx_enable(sfp);
2547
2548		/* Initialise the fault clearance retries */
2549		sfp->sm_fault_retries = N_FAULT_INIT;
2550
2551		/* We need to check the TX_FAULT state, which is not defined
2552		 * while TX_DISABLE is asserted. The earliest we want to do
2553		 * anything (such as probe for a PHY) is 50ms (or more on
2554		 * specific modules).
2555		 */
2556		sfp_sm_next(sfp, SFP_S_WAIT, sfp->module_t_wait);
2557		break;
2558
2559	case SFP_S_WAIT:
2560		if (event != SFP_E_TIMEOUT)
2561			break;
2562
2563		if (sfp->state & SFP_F_TX_FAULT) {
2564			/* Wait up to t_init (SFF-8472) or t_start_up (SFF-8431)
2565			 * from the TX_DISABLE deassertion for the module to
2566			 * initialise, which is indicated by TX_FAULT
2567			 * deasserting.
2568			 */
2569			timeout = sfp->module_t_start_up;
2570			if (timeout > sfp->module_t_wait)
2571				timeout -= sfp->module_t_wait;
2572			else
2573				timeout = 1;
2574
2575			sfp_sm_next(sfp, SFP_S_INIT, timeout);
2576		} else {
2577			/* TX_FAULT is not asserted, assume the module has
2578			 * finished initialising.
2579			 */
2580			goto init_done;
2581		}
2582		break;
2583
2584	case SFP_S_INIT:
2585		if (event == SFP_E_TIMEOUT && sfp->state & SFP_F_TX_FAULT) {
2586			/* TX_FAULT is still asserted after t_init
2587			 * or t_start_up, so assume there is a fault.
2588			 */
2589			sfp_sm_fault(sfp, SFP_S_INIT_TX_FAULT,
2590				     sfp->sm_fault_retries == N_FAULT_INIT);
2591		} else if (event == SFP_E_TIMEOUT || event == SFP_E_TX_CLEAR) {
2592	init_done:
2593			/* Create mdiobus and start trying for PHY */
2594			ret = sfp_sm_add_mdio_bus(sfp);
2595			if (ret < 0) {
2596				sfp_sm_next(sfp, SFP_S_FAIL, 0);
2597				break;
2598			}
2599			sfp->sm_phy_retries = R_PHY_RETRY;
2600			goto phy_probe;
2601		}
2602		break;
2603
2604	case SFP_S_INIT_PHY:
2605		if (event != SFP_E_TIMEOUT)
2606			break;
2607	phy_probe:
2608		/* TX_FAULT deasserted or we timed out with TX_FAULT
2609		 * clear.  Probe for the PHY and check the LOS state.
2610		 */
2611		ret = sfp_sm_probe_for_phy(sfp);
2612		if (ret == -ENODEV) {
2613			if (--sfp->sm_phy_retries) {
2614				sfp_sm_next(sfp, SFP_S_INIT_PHY, T_PHY_RETRY);
2615				break;
2616			} else {
2617				dev_info(sfp->dev, "no PHY detected\n");
2618			}
2619		} else if (ret) {
2620			sfp_sm_next(sfp, SFP_S_FAIL, 0);
2621			break;
2622		}
2623		if (sfp_module_start(sfp->sfp_bus)) {
2624			sfp_sm_next(sfp, SFP_S_FAIL, 0);
2625			break;
2626		}
2627		sfp_sm_link_check_los(sfp);
2628
2629		/* Reset the fault retry count */
2630		sfp->sm_fault_retries = N_FAULT;
2631		break;
2632
2633	case SFP_S_INIT_TX_FAULT:
2634		if (event == SFP_E_TIMEOUT) {
2635			sfp_module_tx_fault_reset(sfp);
2636			sfp_sm_next(sfp, SFP_S_INIT, sfp->module_t_start_up);
2637		}
2638		break;
2639
2640	case SFP_S_WAIT_LOS:
2641		if (event == SFP_E_TX_FAULT)
2642			sfp_sm_fault(sfp, SFP_S_TX_FAULT, true);
2643		else if (sfp_los_event_inactive(sfp, event))
2644			sfp_sm_link_up(sfp);
2645		break;
2646
2647	case SFP_S_LINK_UP:
2648		if (event == SFP_E_TX_FAULT) {
2649			sfp_sm_link_down(sfp);
2650			sfp_sm_fault(sfp, SFP_S_TX_FAULT, true);
2651		} else if (sfp_los_event_active(sfp, event)) {
2652			sfp_sm_link_down(sfp);
2653			sfp_sm_next(sfp, SFP_S_WAIT_LOS, 0);
2654		}
2655		break;
2656
2657	case SFP_S_TX_FAULT:
2658		if (event == SFP_E_TIMEOUT) {
2659			sfp_module_tx_fault_reset(sfp);
2660			sfp_sm_next(sfp, SFP_S_REINIT, sfp->module_t_start_up);
2661		}
2662		break;
2663
2664	case SFP_S_REINIT:
2665		if (event == SFP_E_TIMEOUT && sfp->state & SFP_F_TX_FAULT) {
2666			sfp_sm_fault(sfp, SFP_S_TX_FAULT, false);
2667		} else if (event == SFP_E_TIMEOUT || event == SFP_E_TX_CLEAR) {
2668			dev_info(sfp->dev, "module transmit fault recovered\n");
2669			sfp_sm_link_check_los(sfp);
2670		}
2671		break;
2672
2673	case SFP_S_TX_DISABLE:
2674		break;
2675	}
2676}
2677
2678static void __sfp_sm_event(struct sfp *sfp, unsigned int event)
2679{
2680	dev_dbg(sfp->dev, "SM: enter %s:%s:%s event %s\n",
2681		mod_state_to_str(sfp->sm_mod_state),
2682		dev_state_to_str(sfp->sm_dev_state),
2683		sm_state_to_str(sfp->sm_state),
2684		event_to_str(event));
2685
2686	sfp_sm_device(sfp, event);
2687	sfp_sm_module(sfp, event);
2688	sfp_sm_main(sfp, event);
2689
2690	dev_dbg(sfp->dev, "SM: exit %s:%s:%s\n",
2691		mod_state_to_str(sfp->sm_mod_state),
2692		dev_state_to_str(sfp->sm_dev_state),
2693		sm_state_to_str(sfp->sm_state));
2694}
2695
2696static void sfp_sm_event(struct sfp *sfp, unsigned int event)
2697{
2698	mutex_lock(&sfp->sm_mutex);
2699	__sfp_sm_event(sfp, event);
2700	mutex_unlock(&sfp->sm_mutex);
2701}
2702
2703static void sfp_attach(struct sfp *sfp)
2704{
2705	sfp_sm_event(sfp, SFP_E_DEV_ATTACH);
2706}
2707
2708static void sfp_detach(struct sfp *sfp)
2709{
2710	sfp_sm_event(sfp, SFP_E_DEV_DETACH);
2711}
2712
2713static void sfp_start(struct sfp *sfp)
2714{
2715	sfp_sm_event(sfp, SFP_E_DEV_UP);
2716}
2717
2718static void sfp_stop(struct sfp *sfp)
2719{
2720	sfp_sm_event(sfp, SFP_E_DEV_DOWN);
2721}
2722
2723static void sfp_set_signal_rate(struct sfp *sfp, unsigned int rate_kbd)
2724{
2725	unsigned int set;
2726
2727	sfp->rate_kbd = rate_kbd;
2728
2729	if (rate_kbd > sfp->rs_threshold_kbd)
2730		set = sfp->rs_state_mask;
2731	else
2732		set = 0;
2733
2734	sfp_mod_state(sfp, SFP_F_RS0 | SFP_F_RS1, set);
2735}
2736
2737static int sfp_module_info(struct sfp *sfp, struct ethtool_modinfo *modinfo)
2738{
2739	/* locking... and check module is present */
2740
2741	if (sfp->id.ext.sff8472_compliance &&
2742	    !(sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE)) {
2743		modinfo->type = ETH_MODULE_SFF_8472;
2744		modinfo->eeprom_len = ETH_MODULE_SFF_8472_LEN;
2745	} else {
2746		modinfo->type = ETH_MODULE_SFF_8079;
2747		modinfo->eeprom_len = ETH_MODULE_SFF_8079_LEN;
2748	}
2749	return 0;
2750}
2751
2752static int sfp_module_eeprom(struct sfp *sfp, struct ethtool_eeprom *ee,
2753			     u8 *data)
2754{
2755	unsigned int first, last, len;
2756	int ret;
2757
2758	if (!(sfp->state & SFP_F_PRESENT))
2759		return -ENODEV;
2760
2761	if (ee->len == 0)
2762		return -EINVAL;
2763
2764	first = ee->offset;
2765	last = ee->offset + ee->len;
2766	if (first < ETH_MODULE_SFF_8079_LEN) {
2767		len = min_t(unsigned int, last, ETH_MODULE_SFF_8079_LEN);
2768		len -= first;
2769
2770		ret = sfp_read(sfp, false, first, data, len);
2771		if (ret < 0)
2772			return ret;
2773
2774		first += len;
2775		data += len;
2776	}
2777	if (first < ETH_MODULE_SFF_8472_LEN && last > ETH_MODULE_SFF_8079_LEN) {
2778		len = min_t(unsigned int, last, ETH_MODULE_SFF_8472_LEN);
2779		len -= first;
2780		first -= ETH_MODULE_SFF_8079_LEN;
2781
2782		ret = sfp_read(sfp, true, first, data, len);
2783		if (ret < 0)
2784			return ret;
2785	}
2786	return 0;
2787}
2788
2789static int sfp_module_eeprom_by_page(struct sfp *sfp,
2790				     const struct ethtool_module_eeprom *page,
2791				     struct netlink_ext_ack *extack)
2792{
2793	if (!(sfp->state & SFP_F_PRESENT))
2794		return -ENODEV;
2795
2796	if (page->bank) {
2797		NL_SET_ERR_MSG(extack, "Banks not supported");
2798		return -EOPNOTSUPP;
2799	}
2800
2801	if (page->page) {
2802		NL_SET_ERR_MSG(extack, "Only page 0 supported");
2803		return -EOPNOTSUPP;
2804	}
2805
2806	if (page->i2c_address != 0x50 &&
2807	    page->i2c_address != 0x51) {
2808		NL_SET_ERR_MSG(extack, "Only address 0x50 and 0x51 supported");
2809		return -EOPNOTSUPP;
2810	}
2811
2812	return sfp_read(sfp, page->i2c_address == 0x51, page->offset,
2813			page->data, page->length);
2814};
2815
2816static const struct sfp_socket_ops sfp_module_ops = {
2817	.attach = sfp_attach,
2818	.detach = sfp_detach,
2819	.start = sfp_start,
2820	.stop = sfp_stop,
2821	.set_signal_rate = sfp_set_signal_rate,
2822	.module_info = sfp_module_info,
2823	.module_eeprom = sfp_module_eeprom,
2824	.module_eeprom_by_page = sfp_module_eeprom_by_page,
2825};
2826
2827static void sfp_timeout(struct work_struct *work)
2828{
2829	struct sfp *sfp = container_of(work, struct sfp, timeout.work);
2830
2831	rtnl_lock();
2832	sfp_sm_event(sfp, SFP_E_TIMEOUT);
2833	rtnl_unlock();
2834}
2835
2836static void sfp_check_state(struct sfp *sfp)
2837{
2838	unsigned int state, i, changed;
2839
2840	rtnl_lock();
2841	mutex_lock(&sfp->st_mutex);
2842	state = sfp_get_state(sfp);
2843	changed = state ^ sfp->state;
2844	if (sfp->tx_fault_ignore)
2845		changed &= SFP_F_PRESENT | SFP_F_LOS;
2846	else
2847		changed &= SFP_F_PRESENT | SFP_F_LOS | SFP_F_TX_FAULT;
2848
2849	for (i = 0; i < GPIO_MAX; i++)
2850		if (changed & BIT(i))
2851			dev_dbg(sfp->dev, "%s %u -> %u\n", gpio_names[i],
2852				!!(sfp->state & BIT(i)), !!(state & BIT(i)));
2853
2854	state |= sfp->state & SFP_F_OUTPUTS;
2855	sfp->state = state;
2856	mutex_unlock(&sfp->st_mutex);
2857
2858	mutex_lock(&sfp->sm_mutex);
2859	if (changed & SFP_F_PRESENT)
2860		__sfp_sm_event(sfp, state & SFP_F_PRESENT ?
2861				    SFP_E_INSERT : SFP_E_REMOVE);
2862
2863	if (changed & SFP_F_TX_FAULT)
2864		__sfp_sm_event(sfp, state & SFP_F_TX_FAULT ?
2865				    SFP_E_TX_FAULT : SFP_E_TX_CLEAR);
2866
2867	if (changed & SFP_F_LOS)
2868		__sfp_sm_event(sfp, state & SFP_F_LOS ?
2869				    SFP_E_LOS_HIGH : SFP_E_LOS_LOW);
2870	mutex_unlock(&sfp->sm_mutex);
2871	rtnl_unlock();
2872}
2873
2874static irqreturn_t sfp_irq(int irq, void *data)
2875{
2876	struct sfp *sfp = data;
2877
2878	sfp_check_state(sfp);
2879
2880	return IRQ_HANDLED;
2881}
2882
2883static void sfp_poll(struct work_struct *work)
2884{
2885	struct sfp *sfp = container_of(work, struct sfp, poll.work);
2886
2887	sfp_check_state(sfp);
2888
2889	// st_mutex doesn't need to be held here for state_soft_mask,
2890	// it's unimportant if we race while reading this.
2891	if (sfp->state_soft_mask & (SFP_F_LOS | SFP_F_TX_FAULT) ||
2892	    sfp->need_poll)
2893		mod_delayed_work(system_wq, &sfp->poll, poll_jiffies);
2894}
2895
2896static struct sfp *sfp_alloc(struct device *dev)
2897{
2898	struct sfp *sfp;
2899
2900	sfp = kzalloc(sizeof(*sfp), GFP_KERNEL);
2901	if (!sfp)
2902		return ERR_PTR(-ENOMEM);
2903
2904	sfp->dev = dev;
2905	sfp->i2c_block_size = SFP_EEPROM_BLOCK_SIZE;
2906
2907	mutex_init(&sfp->sm_mutex);
2908	mutex_init(&sfp->st_mutex);
2909	INIT_DELAYED_WORK(&sfp->poll, sfp_poll);
2910	INIT_DELAYED_WORK(&sfp->timeout, sfp_timeout);
2911
2912	sfp_hwmon_init(sfp);
2913
2914	return sfp;
2915}
2916
2917static void sfp_cleanup(void *data)
2918{
2919	struct sfp *sfp = data;
2920
2921	sfp_hwmon_exit(sfp);
2922
2923	cancel_delayed_work_sync(&sfp->poll);
2924	cancel_delayed_work_sync(&sfp->timeout);
2925	if (sfp->i2c_mii) {
2926		mdiobus_unregister(sfp->i2c_mii);
2927		mdiobus_free(sfp->i2c_mii);
2928	}
2929	if (sfp->i2c)
2930		i2c_put_adapter(sfp->i2c);
2931	kfree(sfp);
2932}
2933
2934static int sfp_i2c_get(struct sfp *sfp)
2935{
2936	struct fwnode_handle *h;
2937	struct i2c_adapter *i2c;
2938	int err;
2939
2940	h = fwnode_find_reference(dev_fwnode(sfp->dev), "i2c-bus", 0);
2941	if (IS_ERR(h)) {
2942		dev_err(sfp->dev, "missing 'i2c-bus' property\n");
2943		return -ENODEV;
2944	}
2945
2946	i2c = i2c_get_adapter_by_fwnode(h);
2947	if (!i2c) {
2948		err = -EPROBE_DEFER;
2949		goto put;
2950	}
2951
2952	err = sfp_i2c_configure(sfp, i2c);
2953	if (err)
2954		i2c_put_adapter(i2c);
2955put:
2956	fwnode_handle_put(h);
2957	return err;
2958}
2959
2960static int sfp_probe(struct platform_device *pdev)
2961{
2962	const struct sff_data *sff;
2963	char *sfp_irq_name;
2964	struct sfp *sfp;
2965	int err, i;
2966
2967	sfp = sfp_alloc(&pdev->dev);
2968	if (IS_ERR(sfp))
2969		return PTR_ERR(sfp);
2970
2971	platform_set_drvdata(pdev, sfp);
2972
2973	err = devm_add_action_or_reset(sfp->dev, sfp_cleanup, sfp);
2974	if (err < 0)
2975		return err;
2976
2977	sff = device_get_match_data(sfp->dev);
2978	if (!sff)
2979		sff = &sfp_data;
2980
2981	sfp->type = sff;
2982
2983	err = sfp_i2c_get(sfp);
2984	if (err)
2985		return err;
2986
2987	for (i = 0; i < GPIO_MAX; i++)
2988		if (sff->gpios & BIT(i)) {
2989			sfp->gpio[i] = devm_gpiod_get_optional(sfp->dev,
2990					   gpio_names[i], gpio_flags[i]);
2991			if (IS_ERR(sfp->gpio[i]))
2992				return PTR_ERR(sfp->gpio[i]);
2993		}
2994
2995	sfp->state_hw_mask = SFP_F_PRESENT;
2996	sfp->state_hw_drive = SFP_F_TX_DISABLE;
2997
2998	sfp->get_state = sfp_gpio_get_state;
2999	sfp->set_state = sfp_gpio_set_state;
3000
3001	/* Modules that have no detect signal are always present */
3002	if (!(sfp->gpio[GPIO_MODDEF0]))
3003		sfp->get_state = sff_gpio_get_state;
3004
3005	device_property_read_u32(&pdev->dev, "maximum-power-milliwatt",
3006				 &sfp->max_power_mW);
3007	if (sfp->max_power_mW < 1000) {
3008		if (sfp->max_power_mW)
3009			dev_warn(sfp->dev,
3010				 "Firmware bug: host maximum power should be at least 1W\n");
3011		sfp->max_power_mW = 1000;
3012	}
3013
3014	dev_info(sfp->dev, "Host maximum power %u.%uW\n",
3015		 sfp->max_power_mW / 1000, (sfp->max_power_mW / 100) % 10);
3016
3017	/* Get the initial state, and always signal TX disable,
3018	 * since the network interface will not be up.
3019	 */
3020	sfp->state = sfp_get_state(sfp) | SFP_F_TX_DISABLE;
3021
3022	if (sfp->gpio[GPIO_RS0] &&
3023	    gpiod_get_value_cansleep(sfp->gpio[GPIO_RS0]))
3024		sfp->state |= SFP_F_RS0;
3025	sfp_set_state(sfp, sfp->state);
3026	sfp_module_tx_disable(sfp);
3027	if (sfp->state & SFP_F_PRESENT) {
3028		rtnl_lock();
3029		sfp_sm_event(sfp, SFP_E_INSERT);
3030		rtnl_unlock();
3031	}
3032
3033	for (i = 0; i < GPIO_MAX; i++) {
3034		if (gpio_flags[i] != GPIOD_IN || !sfp->gpio[i])
3035			continue;
3036
3037		sfp->gpio_irq[i] = gpiod_to_irq(sfp->gpio[i]);
3038		if (sfp->gpio_irq[i] < 0) {
3039			sfp->gpio_irq[i] = 0;
3040			sfp->need_poll = true;
3041			continue;
3042		}
3043
3044		sfp_irq_name = devm_kasprintf(sfp->dev, GFP_KERNEL,
3045					      "%s-%s", dev_name(sfp->dev),
3046					      gpio_names[i]);
3047
3048		if (!sfp_irq_name)
3049			return -ENOMEM;
3050
3051		err = devm_request_threaded_irq(sfp->dev, sfp->gpio_irq[i],
3052						NULL, sfp_irq,
3053						IRQF_ONESHOT |
3054						IRQF_TRIGGER_RISING |
3055						IRQF_TRIGGER_FALLING,
3056						sfp_irq_name, sfp);
3057		if (err) {
3058			sfp->gpio_irq[i] = 0;
3059			sfp->need_poll = true;
3060		}
3061	}
3062
3063	if (sfp->need_poll)
3064		mod_delayed_work(system_wq, &sfp->poll, poll_jiffies);
3065
3066	/* We could have an issue in cases no Tx disable pin is available or
3067	 * wired as modules using a laser as their light source will continue to
3068	 * be active when the fiber is removed. This could be a safety issue and
3069	 * we should at least warn the user about that.
3070	 */
3071	if (!sfp->gpio[GPIO_TX_DISABLE])
3072		dev_warn(sfp->dev,
3073			 "No tx_disable pin: SFP modules will always be emitting.\n");
3074
3075	sfp->sfp_bus = sfp_register_socket(sfp->dev, sfp, &sfp_module_ops);
3076	if (!sfp->sfp_bus)
3077		return -ENOMEM;
3078
3079	sfp_debugfs_init(sfp);
3080
3081	return 0;
3082}
3083
3084static int sfp_remove(struct platform_device *pdev)
3085{
3086	struct sfp *sfp = platform_get_drvdata(pdev);
3087
3088	sfp_debugfs_exit(sfp);
3089	sfp_unregister_socket(sfp->sfp_bus);
3090
3091	rtnl_lock();
3092	sfp_sm_event(sfp, SFP_E_REMOVE);
3093	rtnl_unlock();
3094
3095	return 0;
3096}
3097
3098static void sfp_shutdown(struct platform_device *pdev)
3099{
3100	struct sfp *sfp = platform_get_drvdata(pdev);
3101	int i;
3102
3103	for (i = 0; i < GPIO_MAX; i++) {
3104		if (!sfp->gpio_irq[i])
3105			continue;
3106
3107		devm_free_irq(sfp->dev, sfp->gpio_irq[i], sfp);
3108	}
3109
3110	cancel_delayed_work_sync(&sfp->poll);
3111	cancel_delayed_work_sync(&sfp->timeout);
3112}
3113
3114static struct platform_driver sfp_driver = {
3115	.probe = sfp_probe,
3116	.remove = sfp_remove,
3117	.shutdown = sfp_shutdown,
3118	.driver = {
3119		.name = "sfp",
3120		.of_match_table = sfp_of_match,
3121	},
3122};
3123
3124static int sfp_init(void)
3125{
3126	poll_jiffies = msecs_to_jiffies(100);
3127
3128	return platform_driver_register(&sfp_driver);
3129}
3130module_init(sfp_init);
3131
3132static void sfp_exit(void)
3133{
3134	platform_driver_unregister(&sfp_driver);
3135}
3136module_exit(sfp_exit);
3137
3138MODULE_ALIAS("platform:sfp");
3139MODULE_AUTHOR("Russell King");
3140MODULE_LICENSE("GPL v2");
3141