1 // SPDX-License-Identifier: GPL-2.0
2 #include <linux/debugfs.h>
3 #include <linux/delay.h>
4 #include <linux/gpio/consumer.h>
5 #include <linux/hwmon.h>
6 #include <linux/i2c.h>
7 #include <linux/interrupt.h>
8 #include <linux/jiffies.h>
9 #include <linux/mdio/mdio-i2c.h>
10 #include <linux/module.h>
11 #include <linux/mutex.h>
12 #include <linux/of.h>
13 #include <linux/phy.h>
14 #include <linux/platform_device.h>
15 #include <linux/rtnetlink.h>
16 #include <linux/slab.h>
17 #include <linux/workqueue.h>
18
19 #include "sfp.h"
20 #include "swphy.h"
21
22 enum {
23 GPIO_MODDEF0,
24 GPIO_LOS,
25 GPIO_TX_FAULT,
26 GPIO_TX_DISABLE,
27 GPIO_RS0,
28 GPIO_RS1,
29 GPIO_MAX,
30
31 SFP_F_PRESENT = BIT(GPIO_MODDEF0),
32 SFP_F_LOS = BIT(GPIO_LOS),
33 SFP_F_TX_FAULT = BIT(GPIO_TX_FAULT),
34 SFP_F_TX_DISABLE = BIT(GPIO_TX_DISABLE),
35 SFP_F_RS0 = BIT(GPIO_RS0),
36 SFP_F_RS1 = BIT(GPIO_RS1),
37
38 SFP_F_OUTPUTS = SFP_F_TX_DISABLE | SFP_F_RS0 | SFP_F_RS1,
39
40 SFP_E_INSERT = 0,
41 SFP_E_REMOVE,
42 SFP_E_DEV_ATTACH,
43 SFP_E_DEV_DETACH,
44 SFP_E_DEV_DOWN,
45 SFP_E_DEV_UP,
46 SFP_E_TX_FAULT,
47 SFP_E_TX_CLEAR,
48 SFP_E_LOS_HIGH,
49 SFP_E_LOS_LOW,
50 SFP_E_TIMEOUT,
51
52 SFP_MOD_EMPTY = 0,
53 SFP_MOD_ERROR,
54 SFP_MOD_PROBE,
55 SFP_MOD_WAITDEV,
56 SFP_MOD_HPOWER,
57 SFP_MOD_WAITPWR,
58 SFP_MOD_PRESENT,
59
60 SFP_DEV_DETACHED = 0,
61 SFP_DEV_DOWN,
62 SFP_DEV_UP,
63
64 SFP_S_DOWN = 0,
65 SFP_S_FAIL,
66 SFP_S_WAIT,
67 SFP_S_INIT,
68 SFP_S_INIT_PHY,
69 SFP_S_INIT_TX_FAULT,
70 SFP_S_WAIT_LOS,
71 SFP_S_LINK_UP,
72 SFP_S_TX_FAULT,
73 SFP_S_REINIT,
74 SFP_S_TX_DISABLE,
75 };
76
77 static const char * const mod_state_strings[] = {
78 [SFP_MOD_EMPTY] = "empty",
79 [SFP_MOD_ERROR] = "error",
80 [SFP_MOD_PROBE] = "probe",
81 [SFP_MOD_WAITDEV] = "waitdev",
82 [SFP_MOD_HPOWER] = "hpower",
83 [SFP_MOD_WAITPWR] = "waitpwr",
84 [SFP_MOD_PRESENT] = "present",
85 };
86
mod_state_to_str(unsigned short mod_state)87 static const char *mod_state_to_str(unsigned short mod_state)
88 {
89 if (mod_state >= ARRAY_SIZE(mod_state_strings))
90 return "Unknown module state";
91 return mod_state_strings[mod_state];
92 }
93
94 static const char * const dev_state_strings[] = {
95 [SFP_DEV_DETACHED] = "detached",
96 [SFP_DEV_DOWN] = "down",
97 [SFP_DEV_UP] = "up",
98 };
99
dev_state_to_str(unsigned short dev_state)100 static const char *dev_state_to_str(unsigned short dev_state)
101 {
102 if (dev_state >= ARRAY_SIZE(dev_state_strings))
103 return "Unknown device state";
104 return dev_state_strings[dev_state];
105 }
106
107 static const char * const event_strings[] = {
108 [SFP_E_INSERT] = "insert",
109 [SFP_E_REMOVE] = "remove",
110 [SFP_E_DEV_ATTACH] = "dev_attach",
111 [SFP_E_DEV_DETACH] = "dev_detach",
112 [SFP_E_DEV_DOWN] = "dev_down",
113 [SFP_E_DEV_UP] = "dev_up",
114 [SFP_E_TX_FAULT] = "tx_fault",
115 [SFP_E_TX_CLEAR] = "tx_clear",
116 [SFP_E_LOS_HIGH] = "los_high",
117 [SFP_E_LOS_LOW] = "los_low",
118 [SFP_E_TIMEOUT] = "timeout",
119 };
120
event_to_str(unsigned short event)121 static const char *event_to_str(unsigned short event)
122 {
123 if (event >= ARRAY_SIZE(event_strings))
124 return "Unknown event";
125 return event_strings[event];
126 }
127
128 static const char * const sm_state_strings[] = {
129 [SFP_S_DOWN] = "down",
130 [SFP_S_FAIL] = "fail",
131 [SFP_S_WAIT] = "wait",
132 [SFP_S_INIT] = "init",
133 [SFP_S_INIT_PHY] = "init_phy",
134 [SFP_S_INIT_TX_FAULT] = "init_tx_fault",
135 [SFP_S_WAIT_LOS] = "wait_los",
136 [SFP_S_LINK_UP] = "link_up",
137 [SFP_S_TX_FAULT] = "tx_fault",
138 [SFP_S_REINIT] = "reinit",
139 [SFP_S_TX_DISABLE] = "tx_disable",
140 };
141
sm_state_to_str(unsigned short sm_state)142 static const char *sm_state_to_str(unsigned short sm_state)
143 {
144 if (sm_state >= ARRAY_SIZE(sm_state_strings))
145 return "Unknown state";
146 return sm_state_strings[sm_state];
147 }
148
149 static const char *gpio_names[] = {
150 "mod-def0",
151 "los",
152 "tx-fault",
153 "tx-disable",
154 "rate-select0",
155 "rate-select1",
156 };
157
158 static const enum gpiod_flags gpio_flags[] = {
159 GPIOD_IN,
160 GPIOD_IN,
161 GPIOD_IN,
162 GPIOD_ASIS,
163 GPIOD_ASIS,
164 GPIOD_ASIS,
165 };
166
167 /* t_start_up (SFF-8431) or t_init (SFF-8472) is the time required for a
168 * non-cooled module to initialise its laser safety circuitry. We wait
169 * an initial T_WAIT period before we check the tx fault to give any PHY
170 * on board (for a copper SFP) time to initialise.
171 */
172 #define T_WAIT msecs_to_jiffies(50)
173 #define T_START_UP msecs_to_jiffies(300)
174 #define T_START_UP_BAD_GPON msecs_to_jiffies(60000)
175
176 /* t_reset is the time required to assert the TX_DISABLE signal to reset
177 * an indicated TX_FAULT.
178 */
179 #define T_RESET_US 10
180 #define T_FAULT_RECOVER msecs_to_jiffies(1000)
181
182 /* N_FAULT_INIT is the number of recovery attempts at module initialisation
183 * time. If the TX_FAULT signal is not deasserted after this number of
184 * attempts at clearing it, we decide that the module is faulty.
185 * N_FAULT is the same but after the module has initialised.
186 */
187 #define N_FAULT_INIT 5
188 #define N_FAULT 5
189
190 /* T_PHY_RETRY is the time interval between attempts to probe the PHY.
191 * R_PHY_RETRY is the number of attempts.
192 */
193 #define T_PHY_RETRY msecs_to_jiffies(50)
194 #define R_PHY_RETRY 12
195
196 /* SFP module presence detection is poor: the three MOD DEF signals are
197 * the same length on the PCB, which means it's possible for MOD DEF 0 to
198 * connect before the I2C bus on MOD DEF 1/2.
199 *
200 * The SFF-8472 specifies t_serial ("Time from power on until module is
201 * ready for data transmission over the two wire serial bus.") as 300ms.
202 */
203 #define T_SERIAL msecs_to_jiffies(300)
204 #define T_HPOWER_LEVEL msecs_to_jiffies(300)
205 #define T_PROBE_RETRY_INIT msecs_to_jiffies(100)
206 #define R_PROBE_RETRY_INIT 10
207 #define T_PROBE_RETRY_SLOW msecs_to_jiffies(5000)
208 #define R_PROBE_RETRY_SLOW 12
209
210 /* SFP modules appear to always have their PHY configured for bus address
211 * 0x56 (which with mdio-i2c, translates to a PHY address of 22).
212 * RollBall SFPs access phy via SFP Enhanced Digital Diagnostic Interface
213 * via address 0x51 (mdio-i2c will use RollBall protocol on this address).
214 */
215 #define SFP_PHY_ADDR 22
216 #define SFP_PHY_ADDR_ROLLBALL 17
217
218 /* SFP_EEPROM_BLOCK_SIZE is the size of data chunk to read the EEPROM
219 * at a time. Some SFP modules and also some Linux I2C drivers do not like
220 * reads longer than 16 bytes.
221 */
222 #define SFP_EEPROM_BLOCK_SIZE 16
223
224 struct sff_data {
225 unsigned int gpios;
226 bool (*module_supported)(const struct sfp_eeprom_id *id);
227 };
228
229 struct sfp {
230 struct device *dev;
231 struct i2c_adapter *i2c;
232 struct mii_bus *i2c_mii;
233 struct sfp_bus *sfp_bus;
234 enum mdio_i2c_proto mdio_protocol;
235 struct phy_device *mod_phy;
236 const struct sff_data *type;
237 size_t i2c_block_size;
238 u32 max_power_mW;
239
240 unsigned int (*get_state)(struct sfp *);
241 void (*set_state)(struct sfp *, unsigned int);
242 int (*read)(struct sfp *, bool, u8, void *, size_t);
243 int (*write)(struct sfp *, bool, u8, void *, size_t);
244
245 struct gpio_desc *gpio[GPIO_MAX];
246 int gpio_irq[GPIO_MAX];
247
248 bool need_poll;
249
250 /* Access rules:
251 * state_hw_drive: st_mutex held
252 * state_hw_mask: st_mutex held
253 * state_soft_mask: st_mutex held
254 * state: st_mutex held unless reading input bits
255 */
256 struct mutex st_mutex; /* Protects state */
257 unsigned int state_hw_drive;
258 unsigned int state_hw_mask;
259 unsigned int state_soft_mask;
260 unsigned int state;
261
262 struct delayed_work poll;
263 struct delayed_work timeout;
264 struct mutex sm_mutex; /* Protects state machine */
265 unsigned char sm_mod_state;
266 unsigned char sm_mod_tries_init;
267 unsigned char sm_mod_tries;
268 unsigned char sm_dev_state;
269 unsigned short sm_state;
270 unsigned char sm_fault_retries;
271 unsigned char sm_phy_retries;
272
273 struct sfp_eeprom_id id;
274 unsigned int module_power_mW;
275 unsigned int module_t_start_up;
276 unsigned int module_t_wait;
277
278 unsigned int rate_kbd;
279 unsigned int rs_threshold_kbd;
280 unsigned int rs_state_mask;
281
282 bool have_a2;
283 bool tx_fault_ignore;
284
285 const struct sfp_quirk *quirk;
286
287 #if IS_ENABLED(CONFIG_HWMON)
288 struct sfp_diag diag;
289 struct delayed_work hwmon_probe;
290 unsigned int hwmon_tries;
291 struct device *hwmon_dev;
292 char *hwmon_name;
293 #endif
294
295 #if IS_ENABLED(CONFIG_DEBUG_FS)
296 struct dentry *debugfs_dir;
297 #endif
298 };
299
sff_module_supported(const struct sfp_eeprom_id *id)300 static bool sff_module_supported(const struct sfp_eeprom_id *id)
301 {
302 return id->base.phys_id == SFF8024_ID_SFF_8472 &&
303 id->base.phys_ext_id == SFP_PHYS_EXT_ID_SFP;
304 }
305
306 static const struct sff_data sff_data = {
307 .gpios = SFP_F_LOS | SFP_F_TX_FAULT | SFP_F_TX_DISABLE,
308 .module_supported = sff_module_supported,
309 };
310
sfp_module_supported(const struct sfp_eeprom_id *id)311 static bool sfp_module_supported(const struct sfp_eeprom_id *id)
312 {
313 if (id->base.phys_id == SFF8024_ID_SFP &&
314 id->base.phys_ext_id == SFP_PHYS_EXT_ID_SFP)
315 return true;
316
317 /* SFP GPON module Ubiquiti U-Fiber Instant has in its EEPROM stored
318 * phys id SFF instead of SFP. Therefore mark this module explicitly
319 * as supported based on vendor name and pn match.
320 */
321 if (id->base.phys_id == SFF8024_ID_SFF_8472 &&
322 id->base.phys_ext_id == SFP_PHYS_EXT_ID_SFP &&
323 !memcmp(id->base.vendor_name, "UBNT ", 16) &&
324 !memcmp(id->base.vendor_pn, "UF-INSTANT ", 16))
325 return true;
326
327 return false;
328 }
329
330 static const struct sff_data sfp_data = {
331 .gpios = SFP_F_PRESENT | SFP_F_LOS | SFP_F_TX_FAULT |
332 SFP_F_TX_DISABLE | SFP_F_RS0 | SFP_F_RS1,
333 .module_supported = sfp_module_supported,
334 };
335
336 static const struct of_device_id sfp_of_match[] = {
337 { .compatible = "sff,sff", .data = &sff_data, },
338 { .compatible = "sff,sfp", .data = &sfp_data, },
339 { },
340 };
341 MODULE_DEVICE_TABLE(of, sfp_of_match);
342
sfp_fixup_long_startup(struct sfp *sfp)343 static void sfp_fixup_long_startup(struct sfp *sfp)
344 {
345 sfp->module_t_start_up = T_START_UP_BAD_GPON;
346 }
347
sfp_fixup_ignore_tx_fault(struct sfp *sfp)348 static void sfp_fixup_ignore_tx_fault(struct sfp *sfp)
349 {
350 sfp->tx_fault_ignore = true;
351 }
352
353 // For 10GBASE-T short-reach modules
sfp_fixup_10gbaset_30m(struct sfp *sfp)354 static void sfp_fixup_10gbaset_30m(struct sfp *sfp)
355 {
356 sfp->id.base.connector = SFF8024_CONNECTOR_RJ45;
357 sfp->id.base.extended_cc = SFF8024_ECC_10GBASE_T_SR;
358 }
359
sfp_fixup_rollball_proto(struct sfp *sfp, unsigned int secs)360 static void sfp_fixup_rollball_proto(struct sfp *sfp, unsigned int secs)
361 {
362 sfp->mdio_protocol = MDIO_I2C_ROLLBALL;
363 sfp->module_t_wait = msecs_to_jiffies(secs * 1000);
364 }
365
sfp_fixup_fs_10gt(struct sfp *sfp)366 static void sfp_fixup_fs_10gt(struct sfp *sfp)
367 {
368 sfp_fixup_10gbaset_30m(sfp);
369
370 // These SFPs need 4 seconds before the PHY can be accessed
371 sfp_fixup_rollball_proto(sfp, 4);
372 }
373
sfp_fixup_halny_gsfp(struct sfp *sfp)374 static void sfp_fixup_halny_gsfp(struct sfp *sfp)
375 {
376 /* Ignore the TX_FAULT and LOS signals on this module.
377 * these are possibly used for other purposes on this
378 * module, e.g. a serial port.
379 */
380 sfp->state_hw_mask &= ~(SFP_F_TX_FAULT | SFP_F_LOS);
381 }
382
sfp_fixup_rollball(struct sfp *sfp)383 static void sfp_fixup_rollball(struct sfp *sfp)
384 {
385 // Rollball SFPs need 25 seconds before the PHY can be accessed
386 sfp_fixup_rollball_proto(sfp, 25);
387 }
388
sfp_fixup_rollball_cc(struct sfp *sfp)389 static void sfp_fixup_rollball_cc(struct sfp *sfp)
390 {
391 sfp_fixup_rollball(sfp);
392
393 /* Some RollBall SFPs may have wrong (zero) extended compliance code
394 * burned in EEPROM. For PHY probing we need the correct one.
395 */
396 sfp->id.base.extended_cc = SFF8024_ECC_10GBASE_T_SFI;
397 }
398
sfp_quirk_2500basex(const struct sfp_eeprom_id *id, unsigned long *modes, unsigned long *interfaces)399 static void sfp_quirk_2500basex(const struct sfp_eeprom_id *id,
400 unsigned long *modes,
401 unsigned long *interfaces)
402 {
403 linkmode_set_bit(ETHTOOL_LINK_MODE_2500baseX_Full_BIT, modes);
404 __set_bit(PHY_INTERFACE_MODE_2500BASEX, interfaces);
405 }
406
sfp_quirk_disable_autoneg(const struct sfp_eeprom_id *id, unsigned long *modes, unsigned long *interfaces)407 static void sfp_quirk_disable_autoneg(const struct sfp_eeprom_id *id,
408 unsigned long *modes,
409 unsigned long *interfaces)
410 {
411 linkmode_clear_bit(ETHTOOL_LINK_MODE_Autoneg_BIT, modes);
412 }
413
sfp_quirk_oem_2_5g(const struct sfp_eeprom_id *id, unsigned long *modes, unsigned long *interfaces)414 static void sfp_quirk_oem_2_5g(const struct sfp_eeprom_id *id,
415 unsigned long *modes,
416 unsigned long *interfaces)
417 {
418 /* Copper 2.5G SFP */
419 linkmode_set_bit(ETHTOOL_LINK_MODE_2500baseT_Full_BIT, modes);
420 __set_bit(PHY_INTERFACE_MODE_2500BASEX, interfaces);
421 sfp_quirk_disable_autoneg(id, modes, interfaces);
422 }
423
sfp_quirk_ubnt_uf_instant(const struct sfp_eeprom_id *id, unsigned long *modes, unsigned long *interfaces)424 static void sfp_quirk_ubnt_uf_instant(const struct sfp_eeprom_id *id,
425 unsigned long *modes,
426 unsigned long *interfaces)
427 {
428 /* Ubiquiti U-Fiber Instant module claims that support all transceiver
429 * types including 10G Ethernet which is not truth. So clear all claimed
430 * modes and set only one mode which module supports: 1000baseX_Full.
431 */
432 linkmode_zero(modes);
433 linkmode_set_bit(ETHTOOL_LINK_MODE_1000baseX_Full_BIT, modes);
434 }
435
436 #define SFP_QUIRK(_v, _p, _m, _f) \
437 { .vendor = _v, .part = _p, .modes = _m, .fixup = _f, }
438 #define SFP_QUIRK_M(_v, _p, _m) SFP_QUIRK(_v, _p, _m, NULL)
439 #define SFP_QUIRK_F(_v, _p, _f) SFP_QUIRK(_v, _p, NULL, _f)
440
441 static const struct sfp_quirk sfp_quirks[] = {
442 // Alcatel Lucent G-010S-P can operate at 2500base-X, but incorrectly
443 // report 2500MBd NRZ in their EEPROM
444 SFP_QUIRK_M("ALCATELLUCENT", "G010SP", sfp_quirk_2500basex),
445
446 // Alcatel Lucent G-010S-A can operate at 2500base-X, but report 3.2GBd
447 // NRZ in their EEPROM
448 SFP_QUIRK("ALCATELLUCENT", "3FE46541AA", sfp_quirk_2500basex,
449 sfp_fixup_long_startup),
450
451 // Fiberstore SFP-10G-T doesn't identify as copper, and uses the
452 // Rollball protocol to talk to the PHY.
453 SFP_QUIRK_F("FS", "SFP-10G-T", sfp_fixup_fs_10gt),
454
455 // Fiberstore GPON-ONU-34-20BI can operate at 2500base-X, but report 1.2GBd
456 // NRZ in their EEPROM
457 SFP_QUIRK("FS", "GPON-ONU-34-20BI", sfp_quirk_2500basex,
458 sfp_fixup_ignore_tx_fault),
459
460 SFP_QUIRK_F("HALNy", "HL-GSFP", sfp_fixup_halny_gsfp),
461
462 // HG MXPD-483II-F 2.5G supports 2500Base-X, but incorrectly reports
463 // 2600MBd in their EERPOM
464 SFP_QUIRK_M("HG GENUINE", "MXPD-483II", sfp_quirk_2500basex),
465
466 // Huawei MA5671A can operate at 2500base-X, but report 1.2GBd NRZ in
467 // their EEPROM
468 SFP_QUIRK("HUAWEI", "MA5671A", sfp_quirk_2500basex,
469 sfp_fixup_ignore_tx_fault),
470
471 // FS 2.5G Base-T
472 SFP_QUIRK_M("FS", "SFP-2.5G-T", sfp_quirk_oem_2_5g),
473
474 // Lantech 8330-262D-E can operate at 2500base-X, but incorrectly report
475 // 2500MBd NRZ in their EEPROM
476 SFP_QUIRK_M("Lantech", "8330-262D-E", sfp_quirk_2500basex),
477
478 SFP_QUIRK_M("UBNT", "UF-INSTANT", sfp_quirk_ubnt_uf_instant),
479
480 // Walsun HXSX-ATR[CI]-1 don't identify as copper, and use the
481 // Rollball protocol to talk to the PHY.
482 SFP_QUIRK_F("Walsun", "HXSX-ATRC-1", sfp_fixup_fs_10gt),
483 SFP_QUIRK_F("Walsun", "HXSX-ATRI-1", sfp_fixup_fs_10gt),
484
485 SFP_QUIRK_F("OEM", "SFP-10G-T", sfp_fixup_rollball_cc),
486 SFP_QUIRK_M("OEM", "SFP-2.5G-T", sfp_quirk_oem_2_5g),
487 SFP_QUIRK_F("OEM", "RTSFP-10", sfp_fixup_rollball_cc),
488 SFP_QUIRK_F("OEM", "RTSFP-10G", sfp_fixup_rollball_cc),
489 SFP_QUIRK_F("Turris", "RTSFP-10", sfp_fixup_rollball),
490 SFP_QUIRK_F("Turris", "RTSFP-10G", sfp_fixup_rollball),
491 };
492
sfp_strlen(const char *str, size_t maxlen)493 static size_t sfp_strlen(const char *str, size_t maxlen)
494 {
495 size_t size, i;
496
497 /* Trailing characters should be filled with space chars, but
498 * some manufacturers can't read SFF-8472 and use NUL.
499 */
500 for (i = 0, size = 0; i < maxlen; i++)
501 if (str[i] != ' ' && str[i] != '\0')
502 size = i + 1;
503
504 return size;
505 }
506
sfp_match(const char *qs, const char *str, size_t len)507 static bool sfp_match(const char *qs, const char *str, size_t len)
508 {
509 if (!qs)
510 return true;
511 if (strlen(qs) != len)
512 return false;
513 return !strncmp(qs, str, len);
514 }
515
sfp_lookup_quirk(const struct sfp_eeprom_id *id)516 static const struct sfp_quirk *sfp_lookup_quirk(const struct sfp_eeprom_id *id)
517 {
518 const struct sfp_quirk *q;
519 unsigned int i;
520 size_t vs, ps;
521
522 vs = sfp_strlen(id->base.vendor_name, ARRAY_SIZE(id->base.vendor_name));
523 ps = sfp_strlen(id->base.vendor_pn, ARRAY_SIZE(id->base.vendor_pn));
524
525 for (i = 0, q = sfp_quirks; i < ARRAY_SIZE(sfp_quirks); i++, q++)
526 if (sfp_match(q->vendor, id->base.vendor_name, vs) &&
527 sfp_match(q->part, id->base.vendor_pn, ps))
528 return q;
529
530 return NULL;
531 }
532
533 static unsigned long poll_jiffies;
534
sfp_gpio_get_state(struct sfp *sfp)535 static unsigned int sfp_gpio_get_state(struct sfp *sfp)
536 {
537 unsigned int i, state, v;
538
539 for (i = state = 0; i < GPIO_MAX; i++) {
540 if (gpio_flags[i] != GPIOD_IN || !sfp->gpio[i])
541 continue;
542
543 v = gpiod_get_value_cansleep(sfp->gpio[i]);
544 if (v)
545 state |= BIT(i);
546 }
547
548 return state;
549 }
550
sff_gpio_get_state(struct sfp *sfp)551 static unsigned int sff_gpio_get_state(struct sfp *sfp)
552 {
553 return sfp_gpio_get_state(sfp) | SFP_F_PRESENT;
554 }
555
sfp_gpio_set_state(struct sfp *sfp, unsigned int state)556 static void sfp_gpio_set_state(struct sfp *sfp, unsigned int state)
557 {
558 unsigned int drive;
559
560 if (state & SFP_F_PRESENT)
561 /* If the module is present, drive the requested signals */
562 drive = sfp->state_hw_drive;
563 else
564 /* Otherwise, let them float to the pull-ups */
565 drive = 0;
566
567 if (sfp->gpio[GPIO_TX_DISABLE]) {
568 if (drive & SFP_F_TX_DISABLE)
569 gpiod_direction_output(sfp->gpio[GPIO_TX_DISABLE],
570 state & SFP_F_TX_DISABLE);
571 else
572 gpiod_direction_input(sfp->gpio[GPIO_TX_DISABLE]);
573 }
574
575 if (sfp->gpio[GPIO_RS0]) {
576 if (drive & SFP_F_RS0)
577 gpiod_direction_output(sfp->gpio[GPIO_RS0],
578 state & SFP_F_RS0);
579 else
580 gpiod_direction_input(sfp->gpio[GPIO_RS0]);
581 }
582
583 if (sfp->gpio[GPIO_RS1]) {
584 if (drive & SFP_F_RS1)
585 gpiod_direction_output(sfp->gpio[GPIO_RS1],
586 state & SFP_F_RS1);
587 else
588 gpiod_direction_input(sfp->gpio[GPIO_RS1]);
589 }
590 }
591
sfp_i2c_read(struct sfp *sfp, bool a2, u8 dev_addr, void *buf, size_t len)592 static int sfp_i2c_read(struct sfp *sfp, bool a2, u8 dev_addr, void *buf,
593 size_t len)
594 {
595 struct i2c_msg msgs[2];
596 u8 bus_addr = a2 ? 0x51 : 0x50;
597 size_t block_size = sfp->i2c_block_size;
598 size_t this_len;
599 int ret;
600
601 msgs[0].addr = bus_addr;
602 msgs[0].flags = 0;
603 msgs[0].len = 1;
604 msgs[0].buf = &dev_addr;
605 msgs[1].addr = bus_addr;
606 msgs[1].flags = I2C_M_RD;
607 msgs[1].len = len;
608 msgs[1].buf = buf;
609
610 while (len) {
611 this_len = len;
612 if (this_len > block_size)
613 this_len = block_size;
614
615 msgs[1].len = this_len;
616
617 ret = i2c_transfer(sfp->i2c, msgs, ARRAY_SIZE(msgs));
618 if (ret < 0)
619 return ret;
620
621 if (ret != ARRAY_SIZE(msgs))
622 break;
623
624 msgs[1].buf += this_len;
625 dev_addr += this_len;
626 len -= this_len;
627 }
628
629 return msgs[1].buf - (u8 *)buf;
630 }
631
sfp_i2c_write(struct sfp *sfp, bool a2, u8 dev_addr, void *buf, size_t len)632 static int sfp_i2c_write(struct sfp *sfp, bool a2, u8 dev_addr, void *buf,
633 size_t len)
634 {
635 struct i2c_msg msgs[1];
636 u8 bus_addr = a2 ? 0x51 : 0x50;
637 int ret;
638
639 msgs[0].addr = bus_addr;
640 msgs[0].flags = 0;
641 msgs[0].len = 1 + len;
642 msgs[0].buf = kmalloc(1 + len, GFP_KERNEL);
643 if (!msgs[0].buf)
644 return -ENOMEM;
645
646 msgs[0].buf[0] = dev_addr;
647 memcpy(&msgs[0].buf[1], buf, len);
648
649 ret = i2c_transfer(sfp->i2c, msgs, ARRAY_SIZE(msgs));
650
651 kfree(msgs[0].buf);
652
653 if (ret < 0)
654 return ret;
655
656 return ret == ARRAY_SIZE(msgs) ? len : 0;
657 }
658
sfp_i2c_configure(struct sfp *sfp, struct i2c_adapter *i2c)659 static int sfp_i2c_configure(struct sfp *sfp, struct i2c_adapter *i2c)
660 {
661 if (!i2c_check_functionality(i2c, I2C_FUNC_I2C))
662 return -EINVAL;
663
664 sfp->i2c = i2c;
665 sfp->read = sfp_i2c_read;
666 sfp->write = sfp_i2c_write;
667
668 return 0;
669 }
670
sfp_i2c_mdiobus_create(struct sfp *sfp)671 static int sfp_i2c_mdiobus_create(struct sfp *sfp)
672 {
673 struct mii_bus *i2c_mii;
674 int ret;
675
676 i2c_mii = mdio_i2c_alloc(sfp->dev, sfp->i2c, sfp->mdio_protocol);
677 if (IS_ERR(i2c_mii))
678 return PTR_ERR(i2c_mii);
679
680 i2c_mii->name = "SFP I2C Bus";
681 i2c_mii->phy_mask = ~0;
682
683 ret = mdiobus_register(i2c_mii);
684 if (ret < 0) {
685 mdiobus_free(i2c_mii);
686 return ret;
687 }
688
689 sfp->i2c_mii = i2c_mii;
690
691 return 0;
692 }
693
sfp_i2c_mdiobus_destroy(struct sfp *sfp)694 static void sfp_i2c_mdiobus_destroy(struct sfp *sfp)
695 {
696 mdiobus_unregister(sfp->i2c_mii);
697 sfp->i2c_mii = NULL;
698 }
699
700 /* Interface */
sfp_read(struct sfp *sfp, bool a2, u8 addr, void *buf, size_t len)701 static int sfp_read(struct sfp *sfp, bool a2, u8 addr, void *buf, size_t len)
702 {
703 return sfp->read(sfp, a2, addr, buf, len);
704 }
705
sfp_write(struct sfp *sfp, bool a2, u8 addr, void *buf, size_t len)706 static int sfp_write(struct sfp *sfp, bool a2, u8 addr, void *buf, size_t len)
707 {
708 return sfp->write(sfp, a2, addr, buf, len);
709 }
710
sfp_modify_u8(struct sfp *sfp, bool a2, u8 addr, u8 mask, u8 val)711 static int sfp_modify_u8(struct sfp *sfp, bool a2, u8 addr, u8 mask, u8 val)
712 {
713 int ret;
714 u8 old, v;
715
716 ret = sfp_read(sfp, a2, addr, &old, sizeof(old));
717 if (ret != sizeof(old))
718 return ret;
719
720 v = (old & ~mask) | (val & mask);
721 if (v == old)
722 return sizeof(v);
723
724 return sfp_write(sfp, a2, addr, &v, sizeof(v));
725 }
726
sfp_soft_get_state(struct sfp *sfp)727 static unsigned int sfp_soft_get_state(struct sfp *sfp)
728 {
729 unsigned int state = 0;
730 u8 status;
731 int ret;
732
733 ret = sfp_read(sfp, true, SFP_STATUS, &status, sizeof(status));
734 if (ret == sizeof(status)) {
735 if (status & SFP_STATUS_RX_LOS)
736 state |= SFP_F_LOS;
737 if (status & SFP_STATUS_TX_FAULT)
738 state |= SFP_F_TX_FAULT;
739 } else {
740 dev_err_ratelimited(sfp->dev,
741 "failed to read SFP soft status: %pe\n",
742 ERR_PTR(ret));
743 /* Preserve the current state */
744 state = sfp->state;
745 }
746
747 return state & sfp->state_soft_mask;
748 }
749
sfp_soft_set_state(struct sfp *sfp, unsigned int state, unsigned int soft)750 static void sfp_soft_set_state(struct sfp *sfp, unsigned int state,
751 unsigned int soft)
752 {
753 u8 mask = 0;
754 u8 val = 0;
755
756 if (soft & SFP_F_TX_DISABLE)
757 mask |= SFP_STATUS_TX_DISABLE_FORCE;
758 if (state & SFP_F_TX_DISABLE)
759 val |= SFP_STATUS_TX_DISABLE_FORCE;
760
761 if (soft & SFP_F_RS0)
762 mask |= SFP_STATUS_RS0_SELECT;
763 if (state & SFP_F_RS0)
764 val |= SFP_STATUS_RS0_SELECT;
765
766 if (mask)
767 sfp_modify_u8(sfp, true, SFP_STATUS, mask, val);
768
769 val = mask = 0;
770 if (soft & SFP_F_RS1)
771 mask |= SFP_EXT_STATUS_RS1_SELECT;
772 if (state & SFP_F_RS1)
773 val |= SFP_EXT_STATUS_RS1_SELECT;
774
775 if (mask)
776 sfp_modify_u8(sfp, true, SFP_EXT_STATUS, mask, val);
777 }
778
sfp_soft_start_poll(struct sfp *sfp)779 static void sfp_soft_start_poll(struct sfp *sfp)
780 {
781 const struct sfp_eeprom_id *id = &sfp->id;
782 unsigned int mask = 0;
783
784 if (id->ext.enhopts & SFP_ENHOPTS_SOFT_TX_DISABLE)
785 mask |= SFP_F_TX_DISABLE;
786 if (id->ext.enhopts & SFP_ENHOPTS_SOFT_TX_FAULT)
787 mask |= SFP_F_TX_FAULT;
788 if (id->ext.enhopts & SFP_ENHOPTS_SOFT_RX_LOS)
789 mask |= SFP_F_LOS;
790 if (id->ext.enhopts & SFP_ENHOPTS_SOFT_RATE_SELECT)
791 mask |= sfp->rs_state_mask;
792
793 mutex_lock(&sfp->st_mutex);
794 // Poll the soft state for hardware pins we want to ignore
795 sfp->state_soft_mask = ~sfp->state_hw_mask & mask;
796
797 if (sfp->state_soft_mask & (SFP_F_LOS | SFP_F_TX_FAULT) &&
798 !sfp->need_poll)
799 mod_delayed_work(system_wq, &sfp->poll, poll_jiffies);
800 mutex_unlock(&sfp->st_mutex);
801 }
802
sfp_soft_stop_poll(struct sfp *sfp)803 static void sfp_soft_stop_poll(struct sfp *sfp)
804 {
805 mutex_lock(&sfp->st_mutex);
806 sfp->state_soft_mask = 0;
807 mutex_unlock(&sfp->st_mutex);
808 }
809
810 /* sfp_get_state() - must be called with st_mutex held, or in the
811 * initialisation path.
812 */
sfp_get_state(struct sfp *sfp)813 static unsigned int sfp_get_state(struct sfp *sfp)
814 {
815 unsigned int soft = sfp->state_soft_mask & (SFP_F_LOS | SFP_F_TX_FAULT);
816 unsigned int state;
817
818 state = sfp->get_state(sfp) & sfp->state_hw_mask;
819 if (state & SFP_F_PRESENT && soft)
820 state |= sfp_soft_get_state(sfp);
821
822 return state;
823 }
824
825 /* sfp_set_state() - must be called with st_mutex held, or in the
826 * initialisation path.
827 */
sfp_set_state(struct sfp *sfp, unsigned int state)828 static void sfp_set_state(struct sfp *sfp, unsigned int state)
829 {
830 unsigned int soft;
831
832 sfp->set_state(sfp, state);
833
834 soft = sfp->state_soft_mask & SFP_F_OUTPUTS;
835 if (state & SFP_F_PRESENT && soft)
836 sfp_soft_set_state(sfp, state, soft);
837 }
838
sfp_mod_state(struct sfp *sfp, unsigned int mask, unsigned int set)839 static void sfp_mod_state(struct sfp *sfp, unsigned int mask, unsigned int set)
840 {
841 mutex_lock(&sfp->st_mutex);
842 sfp->state = (sfp->state & ~mask) | set;
843 sfp_set_state(sfp, sfp->state);
844 mutex_unlock(&sfp->st_mutex);
845 }
846
sfp_check(void *buf, size_t len)847 static unsigned int sfp_check(void *buf, size_t len)
848 {
849 u8 *p, check;
850
851 for (p = buf, check = 0; len; p++, len--)
852 check += *p;
853
854 return check;
855 }
856
857 /* hwmon */
858 #if IS_ENABLED(CONFIG_HWMON)
sfp_hwmon_is_visible(const void *data, enum hwmon_sensor_types type, u32 attr, int channel)859 static umode_t sfp_hwmon_is_visible(const void *data,
860 enum hwmon_sensor_types type,
861 u32 attr, int channel)
862 {
863 const struct sfp *sfp = data;
864
865 switch (type) {
866 case hwmon_temp:
867 switch (attr) {
868 case hwmon_temp_min_alarm:
869 case hwmon_temp_max_alarm:
870 case hwmon_temp_lcrit_alarm:
871 case hwmon_temp_crit_alarm:
872 case hwmon_temp_min:
873 case hwmon_temp_max:
874 case hwmon_temp_lcrit:
875 case hwmon_temp_crit:
876 if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN))
877 return 0;
878 fallthrough;
879 case hwmon_temp_input:
880 case hwmon_temp_label:
881 return 0444;
882 default:
883 return 0;
884 }
885 case hwmon_in:
886 switch (attr) {
887 case hwmon_in_min_alarm:
888 case hwmon_in_max_alarm:
889 case hwmon_in_lcrit_alarm:
890 case hwmon_in_crit_alarm:
891 case hwmon_in_min:
892 case hwmon_in_max:
893 case hwmon_in_lcrit:
894 case hwmon_in_crit:
895 if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN))
896 return 0;
897 fallthrough;
898 case hwmon_in_input:
899 case hwmon_in_label:
900 return 0444;
901 default:
902 return 0;
903 }
904 case hwmon_curr:
905 switch (attr) {
906 case hwmon_curr_min_alarm:
907 case hwmon_curr_max_alarm:
908 case hwmon_curr_lcrit_alarm:
909 case hwmon_curr_crit_alarm:
910 case hwmon_curr_min:
911 case hwmon_curr_max:
912 case hwmon_curr_lcrit:
913 case hwmon_curr_crit:
914 if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN))
915 return 0;
916 fallthrough;
917 case hwmon_curr_input:
918 case hwmon_curr_label:
919 return 0444;
920 default:
921 return 0;
922 }
923 case hwmon_power:
924 /* External calibration of receive power requires
925 * floating point arithmetic. Doing that in the kernel
926 * is not easy, so just skip it. If the module does
927 * not require external calibration, we can however
928 * show receiver power, since FP is then not needed.
929 */
930 if (sfp->id.ext.diagmon & SFP_DIAGMON_EXT_CAL &&
931 channel == 1)
932 return 0;
933 switch (attr) {
934 case hwmon_power_min_alarm:
935 case hwmon_power_max_alarm:
936 case hwmon_power_lcrit_alarm:
937 case hwmon_power_crit_alarm:
938 case hwmon_power_min:
939 case hwmon_power_max:
940 case hwmon_power_lcrit:
941 case hwmon_power_crit:
942 if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN))
943 return 0;
944 fallthrough;
945 case hwmon_power_input:
946 case hwmon_power_label:
947 return 0444;
948 default:
949 return 0;
950 }
951 default:
952 return 0;
953 }
954 }
955
sfp_hwmon_read_sensor(struct sfp *sfp, int reg, long *value)956 static int sfp_hwmon_read_sensor(struct sfp *sfp, int reg, long *value)
957 {
958 __be16 val;
959 int err;
960
961 err = sfp_read(sfp, true, reg, &val, sizeof(val));
962 if (err < 0)
963 return err;
964
965 *value = be16_to_cpu(val);
966
967 return 0;
968 }
969
sfp_hwmon_to_rx_power(long *value)970 static void sfp_hwmon_to_rx_power(long *value)
971 {
972 *value = DIV_ROUND_CLOSEST(*value, 10);
973 }
974
sfp_hwmon_calibrate(struct sfp *sfp, unsigned int slope, int offset, long *value)975 static void sfp_hwmon_calibrate(struct sfp *sfp, unsigned int slope, int offset,
976 long *value)
977 {
978 if (sfp->id.ext.diagmon & SFP_DIAGMON_EXT_CAL)
979 *value = DIV_ROUND_CLOSEST(*value * slope, 256) + offset;
980 }
981
sfp_hwmon_calibrate_temp(struct sfp *sfp, long *value)982 static void sfp_hwmon_calibrate_temp(struct sfp *sfp, long *value)
983 {
984 sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_t_slope),
985 be16_to_cpu(sfp->diag.cal_t_offset), value);
986
987 if (*value >= 0x8000)
988 *value -= 0x10000;
989
990 *value = DIV_ROUND_CLOSEST(*value * 1000, 256);
991 }
992
sfp_hwmon_calibrate_vcc(struct sfp *sfp, long *value)993 static void sfp_hwmon_calibrate_vcc(struct sfp *sfp, long *value)
994 {
995 sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_v_slope),
996 be16_to_cpu(sfp->diag.cal_v_offset), value);
997
998 *value = DIV_ROUND_CLOSEST(*value, 10);
999 }
1000
sfp_hwmon_calibrate_bias(struct sfp *sfp, long *value)1001 static void sfp_hwmon_calibrate_bias(struct sfp *sfp, long *value)
1002 {
1003 sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_txi_slope),
1004 be16_to_cpu(sfp->diag.cal_txi_offset), value);
1005
1006 *value = DIV_ROUND_CLOSEST(*value, 500);
1007 }
1008
sfp_hwmon_calibrate_tx_power(struct sfp *sfp, long *value)1009 static void sfp_hwmon_calibrate_tx_power(struct sfp *sfp, long *value)
1010 {
1011 sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_txpwr_slope),
1012 be16_to_cpu(sfp->diag.cal_txpwr_offset), value);
1013
1014 *value = DIV_ROUND_CLOSEST(*value, 10);
1015 }
1016
sfp_hwmon_read_temp(struct sfp *sfp, int reg, long *value)1017 static int sfp_hwmon_read_temp(struct sfp *sfp, int reg, long *value)
1018 {
1019 int err;
1020
1021 err = sfp_hwmon_read_sensor(sfp, reg, value);
1022 if (err < 0)
1023 return err;
1024
1025 sfp_hwmon_calibrate_temp(sfp, value);
1026
1027 return 0;
1028 }
1029
sfp_hwmon_read_vcc(struct sfp *sfp, int reg, long *value)1030 static int sfp_hwmon_read_vcc(struct sfp *sfp, int reg, long *value)
1031 {
1032 int err;
1033
1034 err = sfp_hwmon_read_sensor(sfp, reg, value);
1035 if (err < 0)
1036 return err;
1037
1038 sfp_hwmon_calibrate_vcc(sfp, value);
1039
1040 return 0;
1041 }
1042
sfp_hwmon_read_bias(struct sfp *sfp, int reg, long *value)1043 static int sfp_hwmon_read_bias(struct sfp *sfp, int reg, long *value)
1044 {
1045 int err;
1046
1047 err = sfp_hwmon_read_sensor(sfp, reg, value);
1048 if (err < 0)
1049 return err;
1050
1051 sfp_hwmon_calibrate_bias(sfp, value);
1052
1053 return 0;
1054 }
1055
sfp_hwmon_read_tx_power(struct sfp *sfp, int reg, long *value)1056 static int sfp_hwmon_read_tx_power(struct sfp *sfp, int reg, long *value)
1057 {
1058 int err;
1059
1060 err = sfp_hwmon_read_sensor(sfp, reg, value);
1061 if (err < 0)
1062 return err;
1063
1064 sfp_hwmon_calibrate_tx_power(sfp, value);
1065
1066 return 0;
1067 }
1068
sfp_hwmon_read_rx_power(struct sfp *sfp, int reg, long *value)1069 static int sfp_hwmon_read_rx_power(struct sfp *sfp, int reg, long *value)
1070 {
1071 int err;
1072
1073 err = sfp_hwmon_read_sensor(sfp, reg, value);
1074 if (err < 0)
1075 return err;
1076
1077 sfp_hwmon_to_rx_power(value);
1078
1079 return 0;
1080 }
1081
sfp_hwmon_temp(struct sfp *sfp, u32 attr, long *value)1082 static int sfp_hwmon_temp(struct sfp *sfp, u32 attr, long *value)
1083 {
1084 u8 status;
1085 int err;
1086
1087 switch (attr) {
1088 case hwmon_temp_input:
1089 return sfp_hwmon_read_temp(sfp, SFP_TEMP, value);
1090
1091 case hwmon_temp_lcrit:
1092 *value = be16_to_cpu(sfp->diag.temp_low_alarm);
1093 sfp_hwmon_calibrate_temp(sfp, value);
1094 return 0;
1095
1096 case hwmon_temp_min:
1097 *value = be16_to_cpu(sfp->diag.temp_low_warn);
1098 sfp_hwmon_calibrate_temp(sfp, value);
1099 return 0;
1100 case hwmon_temp_max:
1101 *value = be16_to_cpu(sfp->diag.temp_high_warn);
1102 sfp_hwmon_calibrate_temp(sfp, value);
1103 return 0;
1104
1105 case hwmon_temp_crit:
1106 *value = be16_to_cpu(sfp->diag.temp_high_alarm);
1107 sfp_hwmon_calibrate_temp(sfp, value);
1108 return 0;
1109
1110 case hwmon_temp_lcrit_alarm:
1111 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
1112 if (err < 0)
1113 return err;
1114
1115 *value = !!(status & SFP_ALARM0_TEMP_LOW);
1116 return 0;
1117
1118 case hwmon_temp_min_alarm:
1119 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
1120 if (err < 0)
1121 return err;
1122
1123 *value = !!(status & SFP_WARN0_TEMP_LOW);
1124 return 0;
1125
1126 case hwmon_temp_max_alarm:
1127 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
1128 if (err < 0)
1129 return err;
1130
1131 *value = !!(status & SFP_WARN0_TEMP_HIGH);
1132 return 0;
1133
1134 case hwmon_temp_crit_alarm:
1135 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
1136 if (err < 0)
1137 return err;
1138
1139 *value = !!(status & SFP_ALARM0_TEMP_HIGH);
1140 return 0;
1141 default:
1142 return -EOPNOTSUPP;
1143 }
1144
1145 return -EOPNOTSUPP;
1146 }
1147
sfp_hwmon_vcc(struct sfp *sfp, u32 attr, long *value)1148 static int sfp_hwmon_vcc(struct sfp *sfp, u32 attr, long *value)
1149 {
1150 u8 status;
1151 int err;
1152
1153 switch (attr) {
1154 case hwmon_in_input:
1155 return sfp_hwmon_read_vcc(sfp, SFP_VCC, value);
1156
1157 case hwmon_in_lcrit:
1158 *value = be16_to_cpu(sfp->diag.volt_low_alarm);
1159 sfp_hwmon_calibrate_vcc(sfp, value);
1160 return 0;
1161
1162 case hwmon_in_min:
1163 *value = be16_to_cpu(sfp->diag.volt_low_warn);
1164 sfp_hwmon_calibrate_vcc(sfp, value);
1165 return 0;
1166
1167 case hwmon_in_max:
1168 *value = be16_to_cpu(sfp->diag.volt_high_warn);
1169 sfp_hwmon_calibrate_vcc(sfp, value);
1170 return 0;
1171
1172 case hwmon_in_crit:
1173 *value = be16_to_cpu(sfp->diag.volt_high_alarm);
1174 sfp_hwmon_calibrate_vcc(sfp, value);
1175 return 0;
1176
1177 case hwmon_in_lcrit_alarm:
1178 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
1179 if (err < 0)
1180 return err;
1181
1182 *value = !!(status & SFP_ALARM0_VCC_LOW);
1183 return 0;
1184
1185 case hwmon_in_min_alarm:
1186 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
1187 if (err < 0)
1188 return err;
1189
1190 *value = !!(status & SFP_WARN0_VCC_LOW);
1191 return 0;
1192
1193 case hwmon_in_max_alarm:
1194 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
1195 if (err < 0)
1196 return err;
1197
1198 *value = !!(status & SFP_WARN0_VCC_HIGH);
1199 return 0;
1200
1201 case hwmon_in_crit_alarm:
1202 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
1203 if (err < 0)
1204 return err;
1205
1206 *value = !!(status & SFP_ALARM0_VCC_HIGH);
1207 return 0;
1208 default:
1209 return -EOPNOTSUPP;
1210 }
1211
1212 return -EOPNOTSUPP;
1213 }
1214
sfp_hwmon_bias(struct sfp *sfp, u32 attr, long *value)1215 static int sfp_hwmon_bias(struct sfp *sfp, u32 attr, long *value)
1216 {
1217 u8 status;
1218 int err;
1219
1220 switch (attr) {
1221 case hwmon_curr_input:
1222 return sfp_hwmon_read_bias(sfp, SFP_TX_BIAS, value);
1223
1224 case hwmon_curr_lcrit:
1225 *value = be16_to_cpu(sfp->diag.bias_low_alarm);
1226 sfp_hwmon_calibrate_bias(sfp, value);
1227 return 0;
1228
1229 case hwmon_curr_min:
1230 *value = be16_to_cpu(sfp->diag.bias_low_warn);
1231 sfp_hwmon_calibrate_bias(sfp, value);
1232 return 0;
1233
1234 case hwmon_curr_max:
1235 *value = be16_to_cpu(sfp->diag.bias_high_warn);
1236 sfp_hwmon_calibrate_bias(sfp, value);
1237 return 0;
1238
1239 case hwmon_curr_crit:
1240 *value = be16_to_cpu(sfp->diag.bias_high_alarm);
1241 sfp_hwmon_calibrate_bias(sfp, value);
1242 return 0;
1243
1244 case hwmon_curr_lcrit_alarm:
1245 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
1246 if (err < 0)
1247 return err;
1248
1249 *value = !!(status & SFP_ALARM0_TX_BIAS_LOW);
1250 return 0;
1251
1252 case hwmon_curr_min_alarm:
1253 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
1254 if (err < 0)
1255 return err;
1256
1257 *value = !!(status & SFP_WARN0_TX_BIAS_LOW);
1258 return 0;
1259
1260 case hwmon_curr_max_alarm:
1261 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
1262 if (err < 0)
1263 return err;
1264
1265 *value = !!(status & SFP_WARN0_TX_BIAS_HIGH);
1266 return 0;
1267
1268 case hwmon_curr_crit_alarm:
1269 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
1270 if (err < 0)
1271 return err;
1272
1273 *value = !!(status & SFP_ALARM0_TX_BIAS_HIGH);
1274 return 0;
1275 default:
1276 return -EOPNOTSUPP;
1277 }
1278
1279 return -EOPNOTSUPP;
1280 }
1281
sfp_hwmon_tx_power(struct sfp *sfp, u32 attr, long *value)1282 static int sfp_hwmon_tx_power(struct sfp *sfp, u32 attr, long *value)
1283 {
1284 u8 status;
1285 int err;
1286
1287 switch (attr) {
1288 case hwmon_power_input:
1289 return sfp_hwmon_read_tx_power(sfp, SFP_TX_POWER, value);
1290
1291 case hwmon_power_lcrit:
1292 *value = be16_to_cpu(sfp->diag.txpwr_low_alarm);
1293 sfp_hwmon_calibrate_tx_power(sfp, value);
1294 return 0;
1295
1296 case hwmon_power_min:
1297 *value = be16_to_cpu(sfp->diag.txpwr_low_warn);
1298 sfp_hwmon_calibrate_tx_power(sfp, value);
1299 return 0;
1300
1301 case hwmon_power_max:
1302 *value = be16_to_cpu(sfp->diag.txpwr_high_warn);
1303 sfp_hwmon_calibrate_tx_power(sfp, value);
1304 return 0;
1305
1306 case hwmon_power_crit:
1307 *value = be16_to_cpu(sfp->diag.txpwr_high_alarm);
1308 sfp_hwmon_calibrate_tx_power(sfp, value);
1309 return 0;
1310
1311 case hwmon_power_lcrit_alarm:
1312 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
1313 if (err < 0)
1314 return err;
1315
1316 *value = !!(status & SFP_ALARM0_TXPWR_LOW);
1317 return 0;
1318
1319 case hwmon_power_min_alarm:
1320 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
1321 if (err < 0)
1322 return err;
1323
1324 *value = !!(status & SFP_WARN0_TXPWR_LOW);
1325 return 0;
1326
1327 case hwmon_power_max_alarm:
1328 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
1329 if (err < 0)
1330 return err;
1331
1332 *value = !!(status & SFP_WARN0_TXPWR_HIGH);
1333 return 0;
1334
1335 case hwmon_power_crit_alarm:
1336 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
1337 if (err < 0)
1338 return err;
1339
1340 *value = !!(status & SFP_ALARM0_TXPWR_HIGH);
1341 return 0;
1342 default:
1343 return -EOPNOTSUPP;
1344 }
1345
1346 return -EOPNOTSUPP;
1347 }
1348
sfp_hwmon_rx_power(struct sfp *sfp, u32 attr, long *value)1349 static int sfp_hwmon_rx_power(struct sfp *sfp, u32 attr, long *value)
1350 {
1351 u8 status;
1352 int err;
1353
1354 switch (attr) {
1355 case hwmon_power_input:
1356 return sfp_hwmon_read_rx_power(sfp, SFP_RX_POWER, value);
1357
1358 case hwmon_power_lcrit:
1359 *value = be16_to_cpu(sfp->diag.rxpwr_low_alarm);
1360 sfp_hwmon_to_rx_power(value);
1361 return 0;
1362
1363 case hwmon_power_min:
1364 *value = be16_to_cpu(sfp->diag.rxpwr_low_warn);
1365 sfp_hwmon_to_rx_power(value);
1366 return 0;
1367
1368 case hwmon_power_max:
1369 *value = be16_to_cpu(sfp->diag.rxpwr_high_warn);
1370 sfp_hwmon_to_rx_power(value);
1371 return 0;
1372
1373 case hwmon_power_crit:
1374 *value = be16_to_cpu(sfp->diag.rxpwr_high_alarm);
1375 sfp_hwmon_to_rx_power(value);
1376 return 0;
1377
1378 case hwmon_power_lcrit_alarm:
1379 err = sfp_read(sfp, true, SFP_ALARM1, &status, sizeof(status));
1380 if (err < 0)
1381 return err;
1382
1383 *value = !!(status & SFP_ALARM1_RXPWR_LOW);
1384 return 0;
1385
1386 case hwmon_power_min_alarm:
1387 err = sfp_read(sfp, true, SFP_WARN1, &status, sizeof(status));
1388 if (err < 0)
1389 return err;
1390
1391 *value = !!(status & SFP_WARN1_RXPWR_LOW);
1392 return 0;
1393
1394 case hwmon_power_max_alarm:
1395 err = sfp_read(sfp, true, SFP_WARN1, &status, sizeof(status));
1396 if (err < 0)
1397 return err;
1398
1399 *value = !!(status & SFP_WARN1_RXPWR_HIGH);
1400 return 0;
1401
1402 case hwmon_power_crit_alarm:
1403 err = sfp_read(sfp, true, SFP_ALARM1, &status, sizeof(status));
1404 if (err < 0)
1405 return err;
1406
1407 *value = !!(status & SFP_ALARM1_RXPWR_HIGH);
1408 return 0;
1409 default:
1410 return -EOPNOTSUPP;
1411 }
1412
1413 return -EOPNOTSUPP;
1414 }
1415
sfp_hwmon_read(struct device *dev, enum hwmon_sensor_types type, u32 attr, int channel, long *value)1416 static int sfp_hwmon_read(struct device *dev, enum hwmon_sensor_types type,
1417 u32 attr, int channel, long *value)
1418 {
1419 struct sfp *sfp = dev_get_drvdata(dev);
1420
1421 switch (type) {
1422 case hwmon_temp:
1423 return sfp_hwmon_temp(sfp, attr, value);
1424 case hwmon_in:
1425 return sfp_hwmon_vcc(sfp, attr, value);
1426 case hwmon_curr:
1427 return sfp_hwmon_bias(sfp, attr, value);
1428 case hwmon_power:
1429 switch (channel) {
1430 case 0:
1431 return sfp_hwmon_tx_power(sfp, attr, value);
1432 case 1:
1433 return sfp_hwmon_rx_power(sfp, attr, value);
1434 default:
1435 return -EOPNOTSUPP;
1436 }
1437 default:
1438 return -EOPNOTSUPP;
1439 }
1440 }
1441
1442 static const char *const sfp_hwmon_power_labels[] = {
1443 "TX_power",
1444 "RX_power",
1445 };
1446
sfp_hwmon_read_string(struct device *dev, enum hwmon_sensor_types type, u32 attr, int channel, const char **str)1447 static int sfp_hwmon_read_string(struct device *dev,
1448 enum hwmon_sensor_types type,
1449 u32 attr, int channel, const char **str)
1450 {
1451 switch (type) {
1452 case hwmon_curr:
1453 switch (attr) {
1454 case hwmon_curr_label:
1455 *str = "bias";
1456 return 0;
1457 default:
1458 return -EOPNOTSUPP;
1459 }
1460 break;
1461 case hwmon_temp:
1462 switch (attr) {
1463 case hwmon_temp_label:
1464 *str = "temperature";
1465 return 0;
1466 default:
1467 return -EOPNOTSUPP;
1468 }
1469 break;
1470 case hwmon_in:
1471 switch (attr) {
1472 case hwmon_in_label:
1473 *str = "VCC";
1474 return 0;
1475 default:
1476 return -EOPNOTSUPP;
1477 }
1478 break;
1479 case hwmon_power:
1480 switch (attr) {
1481 case hwmon_power_label:
1482 *str = sfp_hwmon_power_labels[channel];
1483 return 0;
1484 default:
1485 return -EOPNOTSUPP;
1486 }
1487 break;
1488 default:
1489 return -EOPNOTSUPP;
1490 }
1491
1492 return -EOPNOTSUPP;
1493 }
1494
1495 static const struct hwmon_ops sfp_hwmon_ops = {
1496 .is_visible = sfp_hwmon_is_visible,
1497 .read = sfp_hwmon_read,
1498 .read_string = sfp_hwmon_read_string,
1499 };
1500
1501 static const struct hwmon_channel_info * const sfp_hwmon_info[] = {
1502 HWMON_CHANNEL_INFO(chip,
1503 HWMON_C_REGISTER_TZ),
1504 HWMON_CHANNEL_INFO(in,
1505 HWMON_I_INPUT |
1506 HWMON_I_MAX | HWMON_I_MIN |
1507 HWMON_I_MAX_ALARM | HWMON_I_MIN_ALARM |
1508 HWMON_I_CRIT | HWMON_I_LCRIT |
1509 HWMON_I_CRIT_ALARM | HWMON_I_LCRIT_ALARM |
1510 HWMON_I_LABEL),
1511 HWMON_CHANNEL_INFO(temp,
1512 HWMON_T_INPUT |
1513 HWMON_T_MAX | HWMON_T_MIN |
1514 HWMON_T_MAX_ALARM | HWMON_T_MIN_ALARM |
1515 HWMON_T_CRIT | HWMON_T_LCRIT |
1516 HWMON_T_CRIT_ALARM | HWMON_T_LCRIT_ALARM |
1517 HWMON_T_LABEL),
1518 HWMON_CHANNEL_INFO(curr,
1519 HWMON_C_INPUT |
1520 HWMON_C_MAX | HWMON_C_MIN |
1521 HWMON_C_MAX_ALARM | HWMON_C_MIN_ALARM |
1522 HWMON_C_CRIT | HWMON_C_LCRIT |
1523 HWMON_C_CRIT_ALARM | HWMON_C_LCRIT_ALARM |
1524 HWMON_C_LABEL),
1525 HWMON_CHANNEL_INFO(power,
1526 /* Transmit power */
1527 HWMON_P_INPUT |
1528 HWMON_P_MAX | HWMON_P_MIN |
1529 HWMON_P_MAX_ALARM | HWMON_P_MIN_ALARM |
1530 HWMON_P_CRIT | HWMON_P_LCRIT |
1531 HWMON_P_CRIT_ALARM | HWMON_P_LCRIT_ALARM |
1532 HWMON_P_LABEL,
1533 /* Receive power */
1534 HWMON_P_INPUT |
1535 HWMON_P_MAX | HWMON_P_MIN |
1536 HWMON_P_MAX_ALARM | HWMON_P_MIN_ALARM |
1537 HWMON_P_CRIT | HWMON_P_LCRIT |
1538 HWMON_P_CRIT_ALARM | HWMON_P_LCRIT_ALARM |
1539 HWMON_P_LABEL),
1540 NULL,
1541 };
1542
1543 static const struct hwmon_chip_info sfp_hwmon_chip_info = {
1544 .ops = &sfp_hwmon_ops,
1545 .info = sfp_hwmon_info,
1546 };
1547
sfp_hwmon_probe(struct work_struct *work)1548 static void sfp_hwmon_probe(struct work_struct *work)
1549 {
1550 struct sfp *sfp = container_of(work, struct sfp, hwmon_probe.work);
1551 int err;
1552
1553 /* hwmon interface needs to access 16bit registers in atomic way to
1554 * guarantee coherency of the diagnostic monitoring data. If it is not
1555 * possible to guarantee coherency because EEPROM is broken in such way
1556 * that does not support atomic 16bit read operation then we have to
1557 * skip registration of hwmon device.
1558 */
1559 if (sfp->i2c_block_size < 2) {
1560 dev_info(sfp->dev,
1561 "skipping hwmon device registration due to broken EEPROM\n");
1562 dev_info(sfp->dev,
1563 "diagnostic EEPROM area cannot be read atomically to guarantee data coherency\n");
1564 return;
1565 }
1566
1567 err = sfp_read(sfp, true, 0, &sfp->diag, sizeof(sfp->diag));
1568 if (err < 0) {
1569 if (sfp->hwmon_tries--) {
1570 mod_delayed_work(system_wq, &sfp->hwmon_probe,
1571 T_PROBE_RETRY_SLOW);
1572 } else {
1573 dev_warn(sfp->dev, "hwmon probe failed: %pe\n",
1574 ERR_PTR(err));
1575 }
1576 return;
1577 }
1578
1579 sfp->hwmon_name = hwmon_sanitize_name(dev_name(sfp->dev));
1580 if (IS_ERR(sfp->hwmon_name)) {
1581 dev_err(sfp->dev, "out of memory for hwmon name\n");
1582 return;
1583 }
1584
1585 sfp->hwmon_dev = hwmon_device_register_with_info(sfp->dev,
1586 sfp->hwmon_name, sfp,
1587 &sfp_hwmon_chip_info,
1588 NULL);
1589 if (IS_ERR(sfp->hwmon_dev))
1590 dev_err(sfp->dev, "failed to register hwmon device: %ld\n",
1591 PTR_ERR(sfp->hwmon_dev));
1592 }
1593
sfp_hwmon_insert(struct sfp *sfp)1594 static int sfp_hwmon_insert(struct sfp *sfp)
1595 {
1596 if (sfp->have_a2 && sfp->id.ext.diagmon & SFP_DIAGMON_DDM) {
1597 mod_delayed_work(system_wq, &sfp->hwmon_probe, 1);
1598 sfp->hwmon_tries = R_PROBE_RETRY_SLOW;
1599 }
1600
1601 return 0;
1602 }
1603
sfp_hwmon_remove(struct sfp *sfp)1604 static void sfp_hwmon_remove(struct sfp *sfp)
1605 {
1606 cancel_delayed_work_sync(&sfp->hwmon_probe);
1607 if (!IS_ERR_OR_NULL(sfp->hwmon_dev)) {
1608 hwmon_device_unregister(sfp->hwmon_dev);
1609 sfp->hwmon_dev = NULL;
1610 kfree(sfp->hwmon_name);
1611 }
1612 }
1613
sfp_hwmon_init(struct sfp *sfp)1614 static int sfp_hwmon_init(struct sfp *sfp)
1615 {
1616 INIT_DELAYED_WORK(&sfp->hwmon_probe, sfp_hwmon_probe);
1617
1618 return 0;
1619 }
1620
sfp_hwmon_exit(struct sfp *sfp)1621 static void sfp_hwmon_exit(struct sfp *sfp)
1622 {
1623 cancel_delayed_work_sync(&sfp->hwmon_probe);
1624 }
1625 #else
sfp_hwmon_insert(struct sfp *sfp)1626 static int sfp_hwmon_insert(struct sfp *sfp)
1627 {
1628 return 0;
1629 }
1630
sfp_hwmon_remove(struct sfp *sfp)1631 static void sfp_hwmon_remove(struct sfp *sfp)
1632 {
1633 }
1634
sfp_hwmon_init(struct sfp *sfp)1635 static int sfp_hwmon_init(struct sfp *sfp)
1636 {
1637 return 0;
1638 }
1639
sfp_hwmon_exit(struct sfp *sfp)1640 static void sfp_hwmon_exit(struct sfp *sfp)
1641 {
1642 }
1643 #endif
1644
1645 /* Helpers */
sfp_module_tx_disable(struct sfp *sfp)1646 static void sfp_module_tx_disable(struct sfp *sfp)
1647 {
1648 dev_dbg(sfp->dev, "tx disable %u -> %u\n",
1649 sfp->state & SFP_F_TX_DISABLE ? 1 : 0, 1);
1650 sfp_mod_state(sfp, SFP_F_TX_DISABLE, SFP_F_TX_DISABLE);
1651 }
1652
sfp_module_tx_enable(struct sfp *sfp)1653 static void sfp_module_tx_enable(struct sfp *sfp)
1654 {
1655 dev_dbg(sfp->dev, "tx disable %u -> %u\n",
1656 sfp->state & SFP_F_TX_DISABLE ? 1 : 0, 0);
1657 sfp_mod_state(sfp, SFP_F_TX_DISABLE, 0);
1658 }
1659
1660 #if IS_ENABLED(CONFIG_DEBUG_FS)
sfp_debug_state_show(struct seq_file *s, void *data)1661 static int sfp_debug_state_show(struct seq_file *s, void *data)
1662 {
1663 struct sfp *sfp = s->private;
1664
1665 seq_printf(s, "Module state: %s\n",
1666 mod_state_to_str(sfp->sm_mod_state));
1667 seq_printf(s, "Module probe attempts: %d %d\n",
1668 R_PROBE_RETRY_INIT - sfp->sm_mod_tries_init,
1669 R_PROBE_RETRY_SLOW - sfp->sm_mod_tries);
1670 seq_printf(s, "Device state: %s\n",
1671 dev_state_to_str(sfp->sm_dev_state));
1672 seq_printf(s, "Main state: %s\n",
1673 sm_state_to_str(sfp->sm_state));
1674 seq_printf(s, "Fault recovery remaining retries: %d\n",
1675 sfp->sm_fault_retries);
1676 seq_printf(s, "PHY probe remaining retries: %d\n",
1677 sfp->sm_phy_retries);
1678 seq_printf(s, "Signalling rate: %u kBd\n", sfp->rate_kbd);
1679 seq_printf(s, "Rate select threshold: %u kBd\n",
1680 sfp->rs_threshold_kbd);
1681 seq_printf(s, "moddef0: %d\n", !!(sfp->state & SFP_F_PRESENT));
1682 seq_printf(s, "rx_los: %d\n", !!(sfp->state & SFP_F_LOS));
1683 seq_printf(s, "tx_fault: %d\n", !!(sfp->state & SFP_F_TX_FAULT));
1684 seq_printf(s, "tx_disable: %d\n", !!(sfp->state & SFP_F_TX_DISABLE));
1685 seq_printf(s, "rs0: %d\n", !!(sfp->state & SFP_F_RS0));
1686 seq_printf(s, "rs1: %d\n", !!(sfp->state & SFP_F_RS1));
1687 return 0;
1688 }
1689 DEFINE_SHOW_ATTRIBUTE(sfp_debug_state);
1690
sfp_debugfs_init(struct sfp *sfp)1691 static void sfp_debugfs_init(struct sfp *sfp)
1692 {
1693 sfp->debugfs_dir = debugfs_create_dir(dev_name(sfp->dev), NULL);
1694
1695 debugfs_create_file("state", 0600, sfp->debugfs_dir, sfp,
1696 &sfp_debug_state_fops);
1697 }
1698
sfp_debugfs_exit(struct sfp *sfp)1699 static void sfp_debugfs_exit(struct sfp *sfp)
1700 {
1701 debugfs_remove_recursive(sfp->debugfs_dir);
1702 }
1703 #else
sfp_debugfs_init(struct sfp *sfp)1704 static void sfp_debugfs_init(struct sfp *sfp)
1705 {
1706 }
1707
sfp_debugfs_exit(struct sfp *sfp)1708 static void sfp_debugfs_exit(struct sfp *sfp)
1709 {
1710 }
1711 #endif
1712
sfp_module_tx_fault_reset(struct sfp *sfp)1713 static void sfp_module_tx_fault_reset(struct sfp *sfp)
1714 {
1715 unsigned int state;
1716
1717 mutex_lock(&sfp->st_mutex);
1718 state = sfp->state;
1719 if (!(state & SFP_F_TX_DISABLE)) {
1720 sfp_set_state(sfp, state | SFP_F_TX_DISABLE);
1721
1722 udelay(T_RESET_US);
1723
1724 sfp_set_state(sfp, state);
1725 }
1726 mutex_unlock(&sfp->st_mutex);
1727 }
1728
1729 /* SFP state machine */
sfp_sm_set_timer(struct sfp *sfp, unsigned int timeout)1730 static void sfp_sm_set_timer(struct sfp *sfp, unsigned int timeout)
1731 {
1732 if (timeout)
1733 mod_delayed_work(system_power_efficient_wq, &sfp->timeout,
1734 timeout);
1735 else
1736 cancel_delayed_work(&sfp->timeout);
1737 }
1738
sfp_sm_next(struct sfp *sfp, unsigned int state, unsigned int timeout)1739 static void sfp_sm_next(struct sfp *sfp, unsigned int state,
1740 unsigned int timeout)
1741 {
1742 sfp->sm_state = state;
1743 sfp_sm_set_timer(sfp, timeout);
1744 }
1745
sfp_sm_mod_next(struct sfp *sfp, unsigned int state, unsigned int timeout)1746 static void sfp_sm_mod_next(struct sfp *sfp, unsigned int state,
1747 unsigned int timeout)
1748 {
1749 sfp->sm_mod_state = state;
1750 sfp_sm_set_timer(sfp, timeout);
1751 }
1752
sfp_sm_phy_detach(struct sfp *sfp)1753 static void sfp_sm_phy_detach(struct sfp *sfp)
1754 {
1755 sfp_remove_phy(sfp->sfp_bus);
1756 phy_device_remove(sfp->mod_phy);
1757 phy_device_free(sfp->mod_phy);
1758 sfp->mod_phy = NULL;
1759 }
1760
sfp_sm_probe_phy(struct sfp *sfp, int addr, bool is_c45)1761 static int sfp_sm_probe_phy(struct sfp *sfp, int addr, bool is_c45)
1762 {
1763 struct phy_device *phy;
1764 int err;
1765
1766 phy = get_phy_device(sfp->i2c_mii, addr, is_c45);
1767 if (phy == ERR_PTR(-ENODEV))
1768 return PTR_ERR(phy);
1769 if (IS_ERR(phy)) {
1770 dev_err(sfp->dev, "mdiobus scan returned %pe\n", phy);
1771 return PTR_ERR(phy);
1772 }
1773
1774 /* Mark this PHY as being on a SFP module */
1775 phy->is_on_sfp_module = true;
1776
1777 err = phy_device_register(phy);
1778 if (err) {
1779 phy_device_free(phy);
1780 dev_err(sfp->dev, "phy_device_register failed: %pe\n",
1781 ERR_PTR(err));
1782 return err;
1783 }
1784
1785 err = sfp_add_phy(sfp->sfp_bus, phy);
1786 if (err) {
1787 phy_device_remove(phy);
1788 phy_device_free(phy);
1789 dev_err(sfp->dev, "sfp_add_phy failed: %pe\n", ERR_PTR(err));
1790 return err;
1791 }
1792
1793 sfp->mod_phy = phy;
1794
1795 return 0;
1796 }
1797
sfp_sm_link_up(struct sfp *sfp)1798 static void sfp_sm_link_up(struct sfp *sfp)
1799 {
1800 sfp_link_up(sfp->sfp_bus);
1801 sfp_sm_next(sfp, SFP_S_LINK_UP, 0);
1802 }
1803
sfp_sm_link_down(struct sfp *sfp)1804 static void sfp_sm_link_down(struct sfp *sfp)
1805 {
1806 sfp_link_down(sfp->sfp_bus);
1807 }
1808
sfp_sm_link_check_los(struct sfp *sfp)1809 static void sfp_sm_link_check_los(struct sfp *sfp)
1810 {
1811 const __be16 los_inverted = cpu_to_be16(SFP_OPTIONS_LOS_INVERTED);
1812 const __be16 los_normal = cpu_to_be16(SFP_OPTIONS_LOS_NORMAL);
1813 __be16 los_options = sfp->id.ext.options & (los_inverted | los_normal);
1814 bool los = false;
1815
1816 /* If neither SFP_OPTIONS_LOS_INVERTED nor SFP_OPTIONS_LOS_NORMAL
1817 * are set, we assume that no LOS signal is available. If both are
1818 * set, we assume LOS is not implemented (and is meaningless.)
1819 */
1820 if (los_options == los_inverted)
1821 los = !(sfp->state & SFP_F_LOS);
1822 else if (los_options == los_normal)
1823 los = !!(sfp->state & SFP_F_LOS);
1824
1825 if (los)
1826 sfp_sm_next(sfp, SFP_S_WAIT_LOS, 0);
1827 else
1828 sfp_sm_link_up(sfp);
1829 }
1830
sfp_los_event_active(struct sfp *sfp, unsigned int event)1831 static bool sfp_los_event_active(struct sfp *sfp, unsigned int event)
1832 {
1833 const __be16 los_inverted = cpu_to_be16(SFP_OPTIONS_LOS_INVERTED);
1834 const __be16 los_normal = cpu_to_be16(SFP_OPTIONS_LOS_NORMAL);
1835 __be16 los_options = sfp->id.ext.options & (los_inverted | los_normal);
1836
1837 return (los_options == los_inverted && event == SFP_E_LOS_LOW) ||
1838 (los_options == los_normal && event == SFP_E_LOS_HIGH);
1839 }
1840
sfp_los_event_inactive(struct sfp *sfp, unsigned int event)1841 static bool sfp_los_event_inactive(struct sfp *sfp, unsigned int event)
1842 {
1843 const __be16 los_inverted = cpu_to_be16(SFP_OPTIONS_LOS_INVERTED);
1844 const __be16 los_normal = cpu_to_be16(SFP_OPTIONS_LOS_NORMAL);
1845 __be16 los_options = sfp->id.ext.options & (los_inverted | los_normal);
1846
1847 return (los_options == los_inverted && event == SFP_E_LOS_HIGH) ||
1848 (los_options == los_normal && event == SFP_E_LOS_LOW);
1849 }
1850
sfp_sm_fault(struct sfp *sfp, unsigned int next_state, bool warn)1851 static void sfp_sm_fault(struct sfp *sfp, unsigned int next_state, bool warn)
1852 {
1853 if (sfp->sm_fault_retries && !--sfp->sm_fault_retries) {
1854 dev_err(sfp->dev,
1855 "module persistently indicates fault, disabling\n");
1856 sfp_sm_next(sfp, SFP_S_TX_DISABLE, 0);
1857 } else {
1858 if (warn)
1859 dev_err(sfp->dev, "module transmit fault indicated\n");
1860
1861 sfp_sm_next(sfp, next_state, T_FAULT_RECOVER);
1862 }
1863 }
1864
sfp_sm_add_mdio_bus(struct sfp *sfp)1865 static int sfp_sm_add_mdio_bus(struct sfp *sfp)
1866 {
1867 if (sfp->mdio_protocol != MDIO_I2C_NONE)
1868 return sfp_i2c_mdiobus_create(sfp);
1869
1870 return 0;
1871 }
1872
1873 /* Probe a SFP for a PHY device if the module supports copper - the PHY
1874 * normally sits at I2C bus address 0x56, and may either be a clause 22
1875 * or clause 45 PHY.
1876 *
1877 * Clause 22 copper SFP modules normally operate in Cisco SGMII mode with
1878 * negotiation enabled, but some may be in 1000base-X - which is for the
1879 * PHY driver to determine.
1880 *
1881 * Clause 45 copper SFP+ modules (10G) appear to switch their interface
1882 * mode according to the negotiated line speed.
1883 */
sfp_sm_probe_for_phy(struct sfp *sfp)1884 static int sfp_sm_probe_for_phy(struct sfp *sfp)
1885 {
1886 int err = 0;
1887
1888 switch (sfp->mdio_protocol) {
1889 case MDIO_I2C_NONE:
1890 break;
1891
1892 case MDIO_I2C_MARVELL_C22:
1893 err = sfp_sm_probe_phy(sfp, SFP_PHY_ADDR, false);
1894 break;
1895
1896 case MDIO_I2C_C45:
1897 err = sfp_sm_probe_phy(sfp, SFP_PHY_ADDR, true);
1898 break;
1899
1900 case MDIO_I2C_ROLLBALL:
1901 err = sfp_sm_probe_phy(sfp, SFP_PHY_ADDR_ROLLBALL, true);
1902 break;
1903 }
1904
1905 return err;
1906 }
1907
sfp_module_parse_power(struct sfp *sfp)1908 static int sfp_module_parse_power(struct sfp *sfp)
1909 {
1910 u32 power_mW = 1000;
1911 bool supports_a2;
1912
1913 if (sfp->id.ext.sff8472_compliance >= SFP_SFF8472_COMPLIANCE_REV10_2 &&
1914 sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_POWER_DECL))
1915 power_mW = 1500;
1916 /* Added in Rev 11.9, but there is no compliance code for this */
1917 if (sfp->id.ext.sff8472_compliance >= SFP_SFF8472_COMPLIANCE_REV11_4 &&
1918 sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_HIGH_POWER_LEVEL))
1919 power_mW = 2000;
1920
1921 /* Power level 1 modules (max. 1W) are always supported. */
1922 if (power_mW <= 1000) {
1923 sfp->module_power_mW = power_mW;
1924 return 0;
1925 }
1926
1927 supports_a2 = sfp->id.ext.sff8472_compliance !=
1928 SFP_SFF8472_COMPLIANCE_NONE ||
1929 sfp->id.ext.diagmon & SFP_DIAGMON_DDM;
1930
1931 if (power_mW > sfp->max_power_mW) {
1932 /* Module power specification exceeds the allowed maximum. */
1933 if (!supports_a2) {
1934 /* The module appears not to implement bus address
1935 * 0xa2, so assume that the module powers up in the
1936 * indicated mode.
1937 */
1938 dev_err(sfp->dev,
1939 "Host does not support %u.%uW modules\n",
1940 power_mW / 1000, (power_mW / 100) % 10);
1941 return -EINVAL;
1942 } else {
1943 dev_warn(sfp->dev,
1944 "Host does not support %u.%uW modules, module left in power mode 1\n",
1945 power_mW / 1000, (power_mW / 100) % 10);
1946 return 0;
1947 }
1948 }
1949
1950 if (!supports_a2) {
1951 /* The module power level is below the host maximum and the
1952 * module appears not to implement bus address 0xa2, so assume
1953 * that the module powers up in the indicated mode.
1954 */
1955 return 0;
1956 }
1957
1958 /* If the module requires a higher power mode, but also requires
1959 * an address change sequence, warn the user that the module may
1960 * not be functional.
1961 */
1962 if (sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE) {
1963 dev_warn(sfp->dev,
1964 "Address Change Sequence not supported but module requires %u.%uW, module may not be functional\n",
1965 power_mW / 1000, (power_mW / 100) % 10);
1966 return 0;
1967 }
1968
1969 sfp->module_power_mW = power_mW;
1970
1971 return 0;
1972 }
1973
sfp_sm_mod_hpower(struct sfp *sfp, bool enable)1974 static int sfp_sm_mod_hpower(struct sfp *sfp, bool enable)
1975 {
1976 int err;
1977
1978 err = sfp_modify_u8(sfp, true, SFP_EXT_STATUS,
1979 SFP_EXT_STATUS_PWRLVL_SELECT,
1980 enable ? SFP_EXT_STATUS_PWRLVL_SELECT : 0);
1981 if (err != sizeof(u8)) {
1982 dev_err(sfp->dev, "failed to %sable high power: %pe\n",
1983 enable ? "en" : "dis", ERR_PTR(err));
1984 return -EAGAIN;
1985 }
1986
1987 if (enable)
1988 dev_info(sfp->dev, "Module switched to %u.%uW power level\n",
1989 sfp->module_power_mW / 1000,
1990 (sfp->module_power_mW / 100) % 10);
1991
1992 return 0;
1993 }
1994
sfp_module_parse_rate_select(struct sfp *sfp)1995 static void sfp_module_parse_rate_select(struct sfp *sfp)
1996 {
1997 u8 rate_id;
1998
1999 sfp->rs_threshold_kbd = 0;
2000 sfp->rs_state_mask = 0;
2001
2002 if (!(sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_RATE_SELECT)))
2003 /* No support for RateSelect */
2004 return;
2005
2006 /* Default to INF-8074 RateSelect operation. The signalling threshold
2007 * rate is not well specified, so always select "Full Bandwidth", but
2008 * SFF-8079 reveals that it is understood that RS0 will be low for
2009 * 1.0625Gb/s and high for 2.125Gb/s. Choose a value half-way between.
2010 * This method exists prior to SFF-8472.
2011 */
2012 sfp->rs_state_mask = SFP_F_RS0;
2013 sfp->rs_threshold_kbd = 1594;
2014
2015 /* Parse the rate identifier, which is complicated due to history:
2016 * SFF-8472 rev 9.5 marks this field as reserved.
2017 * SFF-8079 references SFF-8472 rev 9.5 and defines bit 0. SFF-8472
2018 * compliance is not required.
2019 * SFF-8472 rev 10.2 defines this field using values 0..4
2020 * SFF-8472 rev 11.0 redefines this field with bit 0 for SFF-8079
2021 * and even values.
2022 */
2023 rate_id = sfp->id.base.rate_id;
2024 if (rate_id == 0)
2025 /* Unspecified */
2026 return;
2027
2028 /* SFF-8472 rev 10.0..10.4 did not account for SFF-8079 using bit 0,
2029 * and allocated value 3 to SFF-8431 independent tx/rx rate select.
2030 * Convert this to a SFF-8472 rev 11.0 rate identifier.
2031 */
2032 if (sfp->id.ext.sff8472_compliance >= SFP_SFF8472_COMPLIANCE_REV10_2 &&
2033 sfp->id.ext.sff8472_compliance < SFP_SFF8472_COMPLIANCE_REV11_0 &&
2034 rate_id == 3)
2035 rate_id = SFF_RID_8431;
2036
2037 if (rate_id & SFF_RID_8079) {
2038 /* SFF-8079 RateSelect / Application Select in conjunction with
2039 * SFF-8472 rev 9.5. SFF-8079 defines rate_id as a bitfield
2040 * with only bit 0 used, which takes precedence over SFF-8472.
2041 */
2042 if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_APP_SELECT_SFF8079)) {
2043 /* SFF-8079 Part 1 - rate selection between Fibre
2044 * Channel 1.0625/2.125/4.25 Gbd modes. Note that RS0
2045 * is high for 2125, so we have to subtract 1 to
2046 * include it.
2047 */
2048 sfp->rs_threshold_kbd = 2125 - 1;
2049 sfp->rs_state_mask = SFP_F_RS0;
2050 }
2051 return;
2052 }
2053
2054 /* SFF-8472 rev 9.5 does not define the rate identifier */
2055 if (sfp->id.ext.sff8472_compliance <= SFP_SFF8472_COMPLIANCE_REV9_5)
2056 return;
2057
2058 /* SFF-8472 rev 11.0 defines rate_id as a numerical value which will
2059 * always have bit 0 clear due to SFF-8079's bitfield usage of rate_id.
2060 */
2061 switch (rate_id) {
2062 case SFF_RID_8431_RX_ONLY:
2063 sfp->rs_threshold_kbd = 4250;
2064 sfp->rs_state_mask = SFP_F_RS0;
2065 break;
2066
2067 case SFF_RID_8431_TX_ONLY:
2068 sfp->rs_threshold_kbd = 4250;
2069 sfp->rs_state_mask = SFP_F_RS1;
2070 break;
2071
2072 case SFF_RID_8431:
2073 sfp->rs_threshold_kbd = 4250;
2074 sfp->rs_state_mask = SFP_F_RS0 | SFP_F_RS1;
2075 break;
2076
2077 case SFF_RID_10G8G:
2078 sfp->rs_threshold_kbd = 9000;
2079 sfp->rs_state_mask = SFP_F_RS0 | SFP_F_RS1;
2080 break;
2081 }
2082 }
2083
2084 /* GPON modules based on Realtek RTL8672 and RTL9601C chips (e.g. V-SOL
2085 * V2801F, CarlitoxxPro CPGOS03-0490, Ubiquiti U-Fiber Instant, ...) do
2086 * not support multibyte reads from the EEPROM. Each multi-byte read
2087 * operation returns just one byte of EEPROM followed by zeros. There is
2088 * no way to identify which modules are using Realtek RTL8672 and RTL9601C
2089 * chips. Moreover every OEM of V-SOL V2801F module puts its own vendor
2090 * name and vendor id into EEPROM, so there is even no way to detect if
2091 * module is V-SOL V2801F. Therefore check for those zeros in the read
2092 * data and then based on check switch to reading EEPROM to one byte
2093 * at a time.
2094 */
sfp_id_needs_byte_io(struct sfp *sfp, void *buf, size_t len)2095 static bool sfp_id_needs_byte_io(struct sfp *sfp, void *buf, size_t len)
2096 {
2097 size_t i, block_size = sfp->i2c_block_size;
2098
2099 /* Already using byte IO */
2100 if (block_size == 1)
2101 return false;
2102
2103 for (i = 1; i < len; i += block_size) {
2104 if (memchr_inv(buf + i, '\0', min(block_size - 1, len - i)))
2105 return false;
2106 }
2107 return true;
2108 }
2109
sfp_cotsworks_fixup_check(struct sfp *sfp, struct sfp_eeprom_id *id)2110 static int sfp_cotsworks_fixup_check(struct sfp *sfp, struct sfp_eeprom_id *id)
2111 {
2112 u8 check;
2113 int err;
2114
2115 if (id->base.phys_id != SFF8024_ID_SFF_8472 ||
2116 id->base.phys_ext_id != SFP_PHYS_EXT_ID_SFP ||
2117 id->base.connector != SFF8024_CONNECTOR_LC) {
2118 dev_warn(sfp->dev, "Rewriting fiber module EEPROM with corrected values\n");
2119 id->base.phys_id = SFF8024_ID_SFF_8472;
2120 id->base.phys_ext_id = SFP_PHYS_EXT_ID_SFP;
2121 id->base.connector = SFF8024_CONNECTOR_LC;
2122 err = sfp_write(sfp, false, SFP_PHYS_ID, &id->base, 3);
2123 if (err != 3) {
2124 dev_err(sfp->dev,
2125 "Failed to rewrite module EEPROM: %pe\n",
2126 ERR_PTR(err));
2127 return err;
2128 }
2129
2130 /* Cotsworks modules have been found to require a delay between write operations. */
2131 mdelay(50);
2132
2133 /* Update base structure checksum */
2134 check = sfp_check(&id->base, sizeof(id->base) - 1);
2135 err = sfp_write(sfp, false, SFP_CC_BASE, &check, 1);
2136 if (err != 1) {
2137 dev_err(sfp->dev,
2138 "Failed to update base structure checksum in fiber module EEPROM: %pe\n",
2139 ERR_PTR(err));
2140 return err;
2141 }
2142 }
2143 return 0;
2144 }
2145
sfp_module_parse_sff8472(struct sfp *sfp)2146 static int sfp_module_parse_sff8472(struct sfp *sfp)
2147 {
2148 /* If the module requires address swap mode, warn about it */
2149 if (sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE)
2150 dev_warn(sfp->dev,
2151 "module address swap to access page 0xA2 is not supported.\n");
2152 else
2153 sfp->have_a2 = true;
2154
2155 return 0;
2156 }
2157
sfp_sm_mod_probe(struct sfp *sfp, bool report)2158 static int sfp_sm_mod_probe(struct sfp *sfp, bool report)
2159 {
2160 /* SFP module inserted - read I2C data */
2161 struct sfp_eeprom_id id;
2162 bool cotsworks_sfbg;
2163 unsigned int mask;
2164 bool cotsworks;
2165 u8 check;
2166 int ret;
2167
2168 sfp->i2c_block_size = SFP_EEPROM_BLOCK_SIZE;
2169
2170 ret = sfp_read(sfp, false, 0, &id.base, sizeof(id.base));
2171 if (ret < 0) {
2172 if (report)
2173 dev_err(sfp->dev, "failed to read EEPROM: %pe\n",
2174 ERR_PTR(ret));
2175 return -EAGAIN;
2176 }
2177
2178 if (ret != sizeof(id.base)) {
2179 dev_err(sfp->dev, "EEPROM short read: %pe\n", ERR_PTR(ret));
2180 return -EAGAIN;
2181 }
2182
2183 /* Some SFP modules (e.g. Nokia 3FE46541AA) lock up if read from
2184 * address 0x51 is just one byte at a time. Also SFF-8472 requires
2185 * that EEPROM supports atomic 16bit read operation for diagnostic
2186 * fields, so do not switch to one byte reading at a time unless it
2187 * is really required and we have no other option.
2188 */
2189 if (sfp_id_needs_byte_io(sfp, &id.base, sizeof(id.base))) {
2190 dev_info(sfp->dev,
2191 "Detected broken RTL8672/RTL9601C emulated EEPROM\n");
2192 dev_info(sfp->dev,
2193 "Switching to reading EEPROM to one byte at a time\n");
2194 sfp->i2c_block_size = 1;
2195
2196 ret = sfp_read(sfp, false, 0, &id.base, sizeof(id.base));
2197 if (ret < 0) {
2198 if (report)
2199 dev_err(sfp->dev,
2200 "failed to read EEPROM: %pe\n",
2201 ERR_PTR(ret));
2202 return -EAGAIN;
2203 }
2204
2205 if (ret != sizeof(id.base)) {
2206 dev_err(sfp->dev, "EEPROM short read: %pe\n",
2207 ERR_PTR(ret));
2208 return -EAGAIN;
2209 }
2210 }
2211
2212 /* Cotsworks do not seem to update the checksums when they
2213 * do the final programming with the final module part number,
2214 * serial number and date code.
2215 */
2216 cotsworks = !memcmp(id.base.vendor_name, "COTSWORKS ", 16);
2217 cotsworks_sfbg = !memcmp(id.base.vendor_pn, "SFBG", 4);
2218
2219 /* Cotsworks SFF module EEPROM do not always have valid phys_id,
2220 * phys_ext_id, and connector bytes. Rewrite SFF EEPROM bytes if
2221 * Cotsworks PN matches and bytes are not correct.
2222 */
2223 if (cotsworks && cotsworks_sfbg) {
2224 ret = sfp_cotsworks_fixup_check(sfp, &id);
2225 if (ret < 0)
2226 return ret;
2227 }
2228
2229 /* Validate the checksum over the base structure */
2230 check = sfp_check(&id.base, sizeof(id.base) - 1);
2231 if (check != id.base.cc_base) {
2232 if (cotsworks) {
2233 dev_warn(sfp->dev,
2234 "EEPROM base structure checksum failure (0x%02x != 0x%02x)\n",
2235 check, id.base.cc_base);
2236 } else {
2237 dev_err(sfp->dev,
2238 "EEPROM base structure checksum failure: 0x%02x != 0x%02x\n",
2239 check, id.base.cc_base);
2240 print_hex_dump(KERN_ERR, "sfp EE: ", DUMP_PREFIX_OFFSET,
2241 16, 1, &id, sizeof(id), true);
2242 return -EINVAL;
2243 }
2244 }
2245
2246 ret = sfp_read(sfp, false, SFP_CC_BASE + 1, &id.ext, sizeof(id.ext));
2247 if (ret < 0) {
2248 if (report)
2249 dev_err(sfp->dev, "failed to read EEPROM: %pe\n",
2250 ERR_PTR(ret));
2251 return -EAGAIN;
2252 }
2253
2254 if (ret != sizeof(id.ext)) {
2255 dev_err(sfp->dev, "EEPROM short read: %pe\n", ERR_PTR(ret));
2256 return -EAGAIN;
2257 }
2258
2259 check = sfp_check(&id.ext, sizeof(id.ext) - 1);
2260 if (check != id.ext.cc_ext) {
2261 if (cotsworks) {
2262 dev_warn(sfp->dev,
2263 "EEPROM extended structure checksum failure (0x%02x != 0x%02x)\n",
2264 check, id.ext.cc_ext);
2265 } else {
2266 dev_err(sfp->dev,
2267 "EEPROM extended structure checksum failure: 0x%02x != 0x%02x\n",
2268 check, id.ext.cc_ext);
2269 print_hex_dump(KERN_ERR, "sfp EE: ", DUMP_PREFIX_OFFSET,
2270 16, 1, &id, sizeof(id), true);
2271 memset(&id.ext, 0, sizeof(id.ext));
2272 }
2273 }
2274
2275 sfp->id = id;
2276
2277 dev_info(sfp->dev, "module %.*s %.*s rev %.*s sn %.*s dc %.*s\n",
2278 (int)sizeof(id.base.vendor_name), id.base.vendor_name,
2279 (int)sizeof(id.base.vendor_pn), id.base.vendor_pn,
2280 (int)sizeof(id.base.vendor_rev), id.base.vendor_rev,
2281 (int)sizeof(id.ext.vendor_sn), id.ext.vendor_sn,
2282 (int)sizeof(id.ext.datecode), id.ext.datecode);
2283
2284 /* Check whether we support this module */
2285 if (!sfp->type->module_supported(&id)) {
2286 dev_err(sfp->dev,
2287 "module is not supported - phys id 0x%02x 0x%02x\n",
2288 sfp->id.base.phys_id, sfp->id.base.phys_ext_id);
2289 return -EINVAL;
2290 }
2291
2292 if (sfp->id.ext.sff8472_compliance != SFP_SFF8472_COMPLIANCE_NONE) {
2293 ret = sfp_module_parse_sff8472(sfp);
2294 if (ret < 0)
2295 return ret;
2296 }
2297
2298 /* Parse the module power requirement */
2299 ret = sfp_module_parse_power(sfp);
2300 if (ret < 0)
2301 return ret;
2302
2303 sfp_module_parse_rate_select(sfp);
2304
2305 mask = SFP_F_PRESENT;
2306 if (sfp->gpio[GPIO_TX_DISABLE])
2307 mask |= SFP_F_TX_DISABLE;
2308 if (sfp->gpio[GPIO_TX_FAULT])
2309 mask |= SFP_F_TX_FAULT;
2310 if (sfp->gpio[GPIO_LOS])
2311 mask |= SFP_F_LOS;
2312 if (sfp->gpio[GPIO_RS0])
2313 mask |= SFP_F_RS0;
2314 if (sfp->gpio[GPIO_RS1])
2315 mask |= SFP_F_RS1;
2316
2317 sfp->module_t_start_up = T_START_UP;
2318 sfp->module_t_wait = T_WAIT;
2319
2320 sfp->tx_fault_ignore = false;
2321
2322 if (sfp->id.base.extended_cc == SFF8024_ECC_10GBASE_T_SFI ||
2323 sfp->id.base.extended_cc == SFF8024_ECC_10GBASE_T_SR ||
2324 sfp->id.base.extended_cc == SFF8024_ECC_5GBASE_T ||
2325 sfp->id.base.extended_cc == SFF8024_ECC_2_5GBASE_T)
2326 sfp->mdio_protocol = MDIO_I2C_C45;
2327 else if (sfp->id.base.e1000_base_t)
2328 sfp->mdio_protocol = MDIO_I2C_MARVELL_C22;
2329 else
2330 sfp->mdio_protocol = MDIO_I2C_NONE;
2331
2332 sfp->quirk = sfp_lookup_quirk(&id);
2333
2334 mutex_lock(&sfp->st_mutex);
2335 /* Initialise state bits to use from hardware */
2336 sfp->state_hw_mask = mask;
2337
2338 /* We want to drive the rate select pins that the module is using */
2339 sfp->state_hw_drive |= sfp->rs_state_mask;
2340
2341 if (sfp->quirk && sfp->quirk->fixup)
2342 sfp->quirk->fixup(sfp);
2343 mutex_unlock(&sfp->st_mutex);
2344
2345 return 0;
2346 }
2347
sfp_sm_mod_remove(struct sfp *sfp)2348 static void sfp_sm_mod_remove(struct sfp *sfp)
2349 {
2350 if (sfp->sm_mod_state > SFP_MOD_WAITDEV)
2351 sfp_module_remove(sfp->sfp_bus);
2352
2353 sfp_hwmon_remove(sfp);
2354
2355 memset(&sfp->id, 0, sizeof(sfp->id));
2356 sfp->module_power_mW = 0;
2357 sfp->state_hw_drive = SFP_F_TX_DISABLE;
2358 sfp->have_a2 = false;
2359
2360 dev_info(sfp->dev, "module removed\n");
2361 }
2362
2363 /* This state machine tracks the upstream's state */
sfp_sm_device(struct sfp *sfp, unsigned int event)2364 static void sfp_sm_device(struct sfp *sfp, unsigned int event)
2365 {
2366 switch (sfp->sm_dev_state) {
2367 default:
2368 if (event == SFP_E_DEV_ATTACH)
2369 sfp->sm_dev_state = SFP_DEV_DOWN;
2370 break;
2371
2372 case SFP_DEV_DOWN:
2373 if (event == SFP_E_DEV_DETACH)
2374 sfp->sm_dev_state = SFP_DEV_DETACHED;
2375 else if (event == SFP_E_DEV_UP)
2376 sfp->sm_dev_state = SFP_DEV_UP;
2377 break;
2378
2379 case SFP_DEV_UP:
2380 if (event == SFP_E_DEV_DETACH)
2381 sfp->sm_dev_state = SFP_DEV_DETACHED;
2382 else if (event == SFP_E_DEV_DOWN)
2383 sfp->sm_dev_state = SFP_DEV_DOWN;
2384 break;
2385 }
2386 }
2387
2388 /* This state machine tracks the insert/remove state of the module, probes
2389 * the on-board EEPROM, and sets up the power level.
2390 */
sfp_sm_module(struct sfp *sfp, unsigned int event)2391 static void sfp_sm_module(struct sfp *sfp, unsigned int event)
2392 {
2393 int err;
2394
2395 /* Handle remove event globally, it resets this state machine */
2396 if (event == SFP_E_REMOVE) {
2397 if (sfp->sm_mod_state > SFP_MOD_PROBE)
2398 sfp_sm_mod_remove(sfp);
2399 sfp_sm_mod_next(sfp, SFP_MOD_EMPTY, 0);
2400 return;
2401 }
2402
2403 /* Handle device detach globally */
2404 if (sfp->sm_dev_state < SFP_DEV_DOWN &&
2405 sfp->sm_mod_state > SFP_MOD_WAITDEV) {
2406 if (sfp->module_power_mW > 1000 &&
2407 sfp->sm_mod_state > SFP_MOD_HPOWER)
2408 sfp_sm_mod_hpower(sfp, false);
2409 sfp_sm_mod_next(sfp, SFP_MOD_WAITDEV, 0);
2410 return;
2411 }
2412
2413 switch (sfp->sm_mod_state) {
2414 default:
2415 if (event == SFP_E_INSERT) {
2416 sfp_sm_mod_next(sfp, SFP_MOD_PROBE, T_SERIAL);
2417 sfp->sm_mod_tries_init = R_PROBE_RETRY_INIT;
2418 sfp->sm_mod_tries = R_PROBE_RETRY_SLOW;
2419 }
2420 break;
2421
2422 case SFP_MOD_PROBE:
2423 /* Wait for T_PROBE_INIT to time out */
2424 if (event != SFP_E_TIMEOUT)
2425 break;
2426
2427 err = sfp_sm_mod_probe(sfp, sfp->sm_mod_tries == 1);
2428 if (err == -EAGAIN) {
2429 if (sfp->sm_mod_tries_init &&
2430 --sfp->sm_mod_tries_init) {
2431 sfp_sm_set_timer(sfp, T_PROBE_RETRY_INIT);
2432 break;
2433 } else if (sfp->sm_mod_tries && --sfp->sm_mod_tries) {
2434 if (sfp->sm_mod_tries == R_PROBE_RETRY_SLOW - 1)
2435 dev_warn(sfp->dev,
2436 "please wait, module slow to respond\n");
2437 sfp_sm_set_timer(sfp, T_PROBE_RETRY_SLOW);
2438 break;
2439 }
2440 }
2441 if (err < 0) {
2442 sfp_sm_mod_next(sfp, SFP_MOD_ERROR, 0);
2443 break;
2444 }
2445
2446 /* Force a poll to re-read the hardware signal state after
2447 * sfp_sm_mod_probe() changed state_hw_mask.
2448 */
2449 mod_delayed_work(system_wq, &sfp->poll, 1);
2450
2451 err = sfp_hwmon_insert(sfp);
2452 if (err)
2453 dev_warn(sfp->dev, "hwmon probe failed: %pe\n",
2454 ERR_PTR(err));
2455
2456 sfp_sm_mod_next(sfp, SFP_MOD_WAITDEV, 0);
2457 fallthrough;
2458 case SFP_MOD_WAITDEV:
2459 /* Ensure that the device is attached before proceeding */
2460 if (sfp->sm_dev_state < SFP_DEV_DOWN)
2461 break;
2462
2463 /* Report the module insertion to the upstream device */
2464 err = sfp_module_insert(sfp->sfp_bus, &sfp->id,
2465 sfp->quirk);
2466 if (err < 0) {
2467 sfp_sm_mod_next(sfp, SFP_MOD_ERROR, 0);
2468 break;
2469 }
2470
2471 /* If this is a power level 1 module, we are done */
2472 if (sfp->module_power_mW <= 1000)
2473 goto insert;
2474
2475 sfp_sm_mod_next(sfp, SFP_MOD_HPOWER, 0);
2476 fallthrough;
2477 case SFP_MOD_HPOWER:
2478 /* Enable high power mode */
2479 err = sfp_sm_mod_hpower(sfp, true);
2480 if (err < 0) {
2481 if (err != -EAGAIN) {
2482 sfp_module_remove(sfp->sfp_bus);
2483 sfp_sm_mod_next(sfp, SFP_MOD_ERROR, 0);
2484 } else {
2485 sfp_sm_set_timer(sfp, T_PROBE_RETRY_INIT);
2486 }
2487 break;
2488 }
2489
2490 sfp_sm_mod_next(sfp, SFP_MOD_WAITPWR, T_HPOWER_LEVEL);
2491 break;
2492
2493 case SFP_MOD_WAITPWR:
2494 /* Wait for T_HPOWER_LEVEL to time out */
2495 if (event != SFP_E_TIMEOUT)
2496 break;
2497
2498 insert:
2499 sfp_sm_mod_next(sfp, SFP_MOD_PRESENT, 0);
2500 break;
2501
2502 case SFP_MOD_PRESENT:
2503 case SFP_MOD_ERROR:
2504 break;
2505 }
2506 }
2507
sfp_sm_main(struct sfp *sfp, unsigned int event)2508 static void sfp_sm_main(struct sfp *sfp, unsigned int event)
2509 {
2510 unsigned long timeout;
2511 int ret;
2512
2513 /* Some events are global */
2514 if (sfp->sm_state != SFP_S_DOWN &&
2515 (sfp->sm_mod_state != SFP_MOD_PRESENT ||
2516 sfp->sm_dev_state != SFP_DEV_UP)) {
2517 if (sfp->sm_state == SFP_S_LINK_UP &&
2518 sfp->sm_dev_state == SFP_DEV_UP)
2519 sfp_sm_link_down(sfp);
2520 if (sfp->sm_state > SFP_S_INIT)
2521 sfp_module_stop(sfp->sfp_bus);
2522 if (sfp->mod_phy)
2523 sfp_sm_phy_detach(sfp);
2524 if (sfp->i2c_mii)
2525 sfp_i2c_mdiobus_destroy(sfp);
2526 sfp_module_tx_disable(sfp);
2527 sfp_soft_stop_poll(sfp);
2528 sfp_sm_next(sfp, SFP_S_DOWN, 0);
2529 return;
2530 }
2531
2532 /* The main state machine */
2533 switch (sfp->sm_state) {
2534 case SFP_S_DOWN:
2535 if (sfp->sm_mod_state != SFP_MOD_PRESENT ||
2536 sfp->sm_dev_state != SFP_DEV_UP)
2537 break;
2538
2539 /* Only use the soft state bits if we have access to the A2h
2540 * memory, which implies that we have some level of SFF-8472
2541 * compliance.
2542 */
2543 if (sfp->have_a2)
2544 sfp_soft_start_poll(sfp);
2545
2546 sfp_module_tx_enable(sfp);
2547
2548 /* Initialise the fault clearance retries */
2549 sfp->sm_fault_retries = N_FAULT_INIT;
2550
2551 /* We need to check the TX_FAULT state, which is not defined
2552 * while TX_DISABLE is asserted. The earliest we want to do
2553 * anything (such as probe for a PHY) is 50ms (or more on
2554 * specific modules).
2555 */
2556 sfp_sm_next(sfp, SFP_S_WAIT, sfp->module_t_wait);
2557 break;
2558
2559 case SFP_S_WAIT:
2560 if (event != SFP_E_TIMEOUT)
2561 break;
2562
2563 if (sfp->state & SFP_F_TX_FAULT) {
2564 /* Wait up to t_init (SFF-8472) or t_start_up (SFF-8431)
2565 * from the TX_DISABLE deassertion for the module to
2566 * initialise, which is indicated by TX_FAULT
2567 * deasserting.
2568 */
2569 timeout = sfp->module_t_start_up;
2570 if (timeout > sfp->module_t_wait)
2571 timeout -= sfp->module_t_wait;
2572 else
2573 timeout = 1;
2574
2575 sfp_sm_next(sfp, SFP_S_INIT, timeout);
2576 } else {
2577 /* TX_FAULT is not asserted, assume the module has
2578 * finished initialising.
2579 */
2580 goto init_done;
2581 }
2582 break;
2583
2584 case SFP_S_INIT:
2585 if (event == SFP_E_TIMEOUT && sfp->state & SFP_F_TX_FAULT) {
2586 /* TX_FAULT is still asserted after t_init
2587 * or t_start_up, so assume there is a fault.
2588 */
2589 sfp_sm_fault(sfp, SFP_S_INIT_TX_FAULT,
2590 sfp->sm_fault_retries == N_FAULT_INIT);
2591 } else if (event == SFP_E_TIMEOUT || event == SFP_E_TX_CLEAR) {
2592 init_done:
2593 /* Create mdiobus and start trying for PHY */
2594 ret = sfp_sm_add_mdio_bus(sfp);
2595 if (ret < 0) {
2596 sfp_sm_next(sfp, SFP_S_FAIL, 0);
2597 break;
2598 }
2599 sfp->sm_phy_retries = R_PHY_RETRY;
2600 goto phy_probe;
2601 }
2602 break;
2603
2604 case SFP_S_INIT_PHY:
2605 if (event != SFP_E_TIMEOUT)
2606 break;
2607 phy_probe:
2608 /* TX_FAULT deasserted or we timed out with TX_FAULT
2609 * clear. Probe for the PHY and check the LOS state.
2610 */
2611 ret = sfp_sm_probe_for_phy(sfp);
2612 if (ret == -ENODEV) {
2613 if (--sfp->sm_phy_retries) {
2614 sfp_sm_next(sfp, SFP_S_INIT_PHY, T_PHY_RETRY);
2615 break;
2616 } else {
2617 dev_info(sfp->dev, "no PHY detected\n");
2618 }
2619 } else if (ret) {
2620 sfp_sm_next(sfp, SFP_S_FAIL, 0);
2621 break;
2622 }
2623 if (sfp_module_start(sfp->sfp_bus)) {
2624 sfp_sm_next(sfp, SFP_S_FAIL, 0);
2625 break;
2626 }
2627 sfp_sm_link_check_los(sfp);
2628
2629 /* Reset the fault retry count */
2630 sfp->sm_fault_retries = N_FAULT;
2631 break;
2632
2633 case SFP_S_INIT_TX_FAULT:
2634 if (event == SFP_E_TIMEOUT) {
2635 sfp_module_tx_fault_reset(sfp);
2636 sfp_sm_next(sfp, SFP_S_INIT, sfp->module_t_start_up);
2637 }
2638 break;
2639
2640 case SFP_S_WAIT_LOS:
2641 if (event == SFP_E_TX_FAULT)
2642 sfp_sm_fault(sfp, SFP_S_TX_FAULT, true);
2643 else if (sfp_los_event_inactive(sfp, event))
2644 sfp_sm_link_up(sfp);
2645 break;
2646
2647 case SFP_S_LINK_UP:
2648 if (event == SFP_E_TX_FAULT) {
2649 sfp_sm_link_down(sfp);
2650 sfp_sm_fault(sfp, SFP_S_TX_FAULT, true);
2651 } else if (sfp_los_event_active(sfp, event)) {
2652 sfp_sm_link_down(sfp);
2653 sfp_sm_next(sfp, SFP_S_WAIT_LOS, 0);
2654 }
2655 break;
2656
2657 case SFP_S_TX_FAULT:
2658 if (event == SFP_E_TIMEOUT) {
2659 sfp_module_tx_fault_reset(sfp);
2660 sfp_sm_next(sfp, SFP_S_REINIT, sfp->module_t_start_up);
2661 }
2662 break;
2663
2664 case SFP_S_REINIT:
2665 if (event == SFP_E_TIMEOUT && sfp->state & SFP_F_TX_FAULT) {
2666 sfp_sm_fault(sfp, SFP_S_TX_FAULT, false);
2667 } else if (event == SFP_E_TIMEOUT || event == SFP_E_TX_CLEAR) {
2668 dev_info(sfp->dev, "module transmit fault recovered\n");
2669 sfp_sm_link_check_los(sfp);
2670 }
2671 break;
2672
2673 case SFP_S_TX_DISABLE:
2674 break;
2675 }
2676 }
2677
__sfp_sm_event(struct sfp *sfp, unsigned int event)2678 static void __sfp_sm_event(struct sfp *sfp, unsigned int event)
2679 {
2680 dev_dbg(sfp->dev, "SM: enter %s:%s:%s event %s\n",
2681 mod_state_to_str(sfp->sm_mod_state),
2682 dev_state_to_str(sfp->sm_dev_state),
2683 sm_state_to_str(sfp->sm_state),
2684 event_to_str(event));
2685
2686 sfp_sm_device(sfp, event);
2687 sfp_sm_module(sfp, event);
2688 sfp_sm_main(sfp, event);
2689
2690 dev_dbg(sfp->dev, "SM: exit %s:%s:%s\n",
2691 mod_state_to_str(sfp->sm_mod_state),
2692 dev_state_to_str(sfp->sm_dev_state),
2693 sm_state_to_str(sfp->sm_state));
2694 }
2695
sfp_sm_event(struct sfp *sfp, unsigned int event)2696 static void sfp_sm_event(struct sfp *sfp, unsigned int event)
2697 {
2698 mutex_lock(&sfp->sm_mutex);
2699 __sfp_sm_event(sfp, event);
2700 mutex_unlock(&sfp->sm_mutex);
2701 }
2702
sfp_attach(struct sfp *sfp)2703 static void sfp_attach(struct sfp *sfp)
2704 {
2705 sfp_sm_event(sfp, SFP_E_DEV_ATTACH);
2706 }
2707
sfp_detach(struct sfp *sfp)2708 static void sfp_detach(struct sfp *sfp)
2709 {
2710 sfp_sm_event(sfp, SFP_E_DEV_DETACH);
2711 }
2712
sfp_start(struct sfp *sfp)2713 static void sfp_start(struct sfp *sfp)
2714 {
2715 sfp_sm_event(sfp, SFP_E_DEV_UP);
2716 }
2717
sfp_stop(struct sfp *sfp)2718 static void sfp_stop(struct sfp *sfp)
2719 {
2720 sfp_sm_event(sfp, SFP_E_DEV_DOWN);
2721 }
2722
sfp_set_signal_rate(struct sfp *sfp, unsigned int rate_kbd)2723 static void sfp_set_signal_rate(struct sfp *sfp, unsigned int rate_kbd)
2724 {
2725 unsigned int set;
2726
2727 sfp->rate_kbd = rate_kbd;
2728
2729 if (rate_kbd > sfp->rs_threshold_kbd)
2730 set = sfp->rs_state_mask;
2731 else
2732 set = 0;
2733
2734 sfp_mod_state(sfp, SFP_F_RS0 | SFP_F_RS1, set);
2735 }
2736
sfp_module_info(struct sfp *sfp, struct ethtool_modinfo *modinfo)2737 static int sfp_module_info(struct sfp *sfp, struct ethtool_modinfo *modinfo)
2738 {
2739 /* locking... and check module is present */
2740
2741 if (sfp->id.ext.sff8472_compliance &&
2742 !(sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE)) {
2743 modinfo->type = ETH_MODULE_SFF_8472;
2744 modinfo->eeprom_len = ETH_MODULE_SFF_8472_LEN;
2745 } else {
2746 modinfo->type = ETH_MODULE_SFF_8079;
2747 modinfo->eeprom_len = ETH_MODULE_SFF_8079_LEN;
2748 }
2749 return 0;
2750 }
2751
sfp_module_eeprom(struct sfp *sfp, struct ethtool_eeprom *ee, u8 *data)2752 static int sfp_module_eeprom(struct sfp *sfp, struct ethtool_eeprom *ee,
2753 u8 *data)
2754 {
2755 unsigned int first, last, len;
2756 int ret;
2757
2758 if (!(sfp->state & SFP_F_PRESENT))
2759 return -ENODEV;
2760
2761 if (ee->len == 0)
2762 return -EINVAL;
2763
2764 first = ee->offset;
2765 last = ee->offset + ee->len;
2766 if (first < ETH_MODULE_SFF_8079_LEN) {
2767 len = min_t(unsigned int, last, ETH_MODULE_SFF_8079_LEN);
2768 len -= first;
2769
2770 ret = sfp_read(sfp, false, first, data, len);
2771 if (ret < 0)
2772 return ret;
2773
2774 first += len;
2775 data += len;
2776 }
2777 if (first < ETH_MODULE_SFF_8472_LEN && last > ETH_MODULE_SFF_8079_LEN) {
2778 len = min_t(unsigned int, last, ETH_MODULE_SFF_8472_LEN);
2779 len -= first;
2780 first -= ETH_MODULE_SFF_8079_LEN;
2781
2782 ret = sfp_read(sfp, true, first, data, len);
2783 if (ret < 0)
2784 return ret;
2785 }
2786 return 0;
2787 }
2788
sfp_module_eeprom_by_page(struct sfp *sfp, const struct ethtool_module_eeprom *page, struct netlink_ext_ack *extack)2789 static int sfp_module_eeprom_by_page(struct sfp *sfp,
2790 const struct ethtool_module_eeprom *page,
2791 struct netlink_ext_ack *extack)
2792 {
2793 if (!(sfp->state & SFP_F_PRESENT))
2794 return -ENODEV;
2795
2796 if (page->bank) {
2797 NL_SET_ERR_MSG(extack, "Banks not supported");
2798 return -EOPNOTSUPP;
2799 }
2800
2801 if (page->page) {
2802 NL_SET_ERR_MSG(extack, "Only page 0 supported");
2803 return -EOPNOTSUPP;
2804 }
2805
2806 if (page->i2c_address != 0x50 &&
2807 page->i2c_address != 0x51) {
2808 NL_SET_ERR_MSG(extack, "Only address 0x50 and 0x51 supported");
2809 return -EOPNOTSUPP;
2810 }
2811
2812 return sfp_read(sfp, page->i2c_address == 0x51, page->offset,
2813 page->data, page->length);
2814 };
2815
2816 static const struct sfp_socket_ops sfp_module_ops = {
2817 .attach = sfp_attach,
2818 .detach = sfp_detach,
2819 .start = sfp_start,
2820 .stop = sfp_stop,
2821 .set_signal_rate = sfp_set_signal_rate,
2822 .module_info = sfp_module_info,
2823 .module_eeprom = sfp_module_eeprom,
2824 .module_eeprom_by_page = sfp_module_eeprom_by_page,
2825 };
2826
sfp_timeout(struct work_struct *work)2827 static void sfp_timeout(struct work_struct *work)
2828 {
2829 struct sfp *sfp = container_of(work, struct sfp, timeout.work);
2830
2831 rtnl_lock();
2832 sfp_sm_event(sfp, SFP_E_TIMEOUT);
2833 rtnl_unlock();
2834 }
2835
sfp_check_state(struct sfp *sfp)2836 static void sfp_check_state(struct sfp *sfp)
2837 {
2838 unsigned int state, i, changed;
2839
2840 rtnl_lock();
2841 mutex_lock(&sfp->st_mutex);
2842 state = sfp_get_state(sfp);
2843 changed = state ^ sfp->state;
2844 if (sfp->tx_fault_ignore)
2845 changed &= SFP_F_PRESENT | SFP_F_LOS;
2846 else
2847 changed &= SFP_F_PRESENT | SFP_F_LOS | SFP_F_TX_FAULT;
2848
2849 for (i = 0; i < GPIO_MAX; i++)
2850 if (changed & BIT(i))
2851 dev_dbg(sfp->dev, "%s %u -> %u\n", gpio_names[i],
2852 !!(sfp->state & BIT(i)), !!(state & BIT(i)));
2853
2854 state |= sfp->state & SFP_F_OUTPUTS;
2855 sfp->state = state;
2856 mutex_unlock(&sfp->st_mutex);
2857
2858 mutex_lock(&sfp->sm_mutex);
2859 if (changed & SFP_F_PRESENT)
2860 __sfp_sm_event(sfp, state & SFP_F_PRESENT ?
2861 SFP_E_INSERT : SFP_E_REMOVE);
2862
2863 if (changed & SFP_F_TX_FAULT)
2864 __sfp_sm_event(sfp, state & SFP_F_TX_FAULT ?
2865 SFP_E_TX_FAULT : SFP_E_TX_CLEAR);
2866
2867 if (changed & SFP_F_LOS)
2868 __sfp_sm_event(sfp, state & SFP_F_LOS ?
2869 SFP_E_LOS_HIGH : SFP_E_LOS_LOW);
2870 mutex_unlock(&sfp->sm_mutex);
2871 rtnl_unlock();
2872 }
2873
sfp_irq(int irq, void *data)2874 static irqreturn_t sfp_irq(int irq, void *data)
2875 {
2876 struct sfp *sfp = data;
2877
2878 sfp_check_state(sfp);
2879
2880 return IRQ_HANDLED;
2881 }
2882
sfp_poll(struct work_struct *work)2883 static void sfp_poll(struct work_struct *work)
2884 {
2885 struct sfp *sfp = container_of(work, struct sfp, poll.work);
2886
2887 sfp_check_state(sfp);
2888
2889 // st_mutex doesn't need to be held here for state_soft_mask,
2890 // it's unimportant if we race while reading this.
2891 if (sfp->state_soft_mask & (SFP_F_LOS | SFP_F_TX_FAULT) ||
2892 sfp->need_poll)
2893 mod_delayed_work(system_wq, &sfp->poll, poll_jiffies);
2894 }
2895
sfp_alloc(struct device *dev)2896 static struct sfp *sfp_alloc(struct device *dev)
2897 {
2898 struct sfp *sfp;
2899
2900 sfp = kzalloc(sizeof(*sfp), GFP_KERNEL);
2901 if (!sfp)
2902 return ERR_PTR(-ENOMEM);
2903
2904 sfp->dev = dev;
2905 sfp->i2c_block_size = SFP_EEPROM_BLOCK_SIZE;
2906
2907 mutex_init(&sfp->sm_mutex);
2908 mutex_init(&sfp->st_mutex);
2909 INIT_DELAYED_WORK(&sfp->poll, sfp_poll);
2910 INIT_DELAYED_WORK(&sfp->timeout, sfp_timeout);
2911
2912 sfp_hwmon_init(sfp);
2913
2914 return sfp;
2915 }
2916
sfp_cleanup(void *data)2917 static void sfp_cleanup(void *data)
2918 {
2919 struct sfp *sfp = data;
2920
2921 sfp_hwmon_exit(sfp);
2922
2923 cancel_delayed_work_sync(&sfp->poll);
2924 cancel_delayed_work_sync(&sfp->timeout);
2925 if (sfp->i2c_mii) {
2926 mdiobus_unregister(sfp->i2c_mii);
2927 mdiobus_free(sfp->i2c_mii);
2928 }
2929 if (sfp->i2c)
2930 i2c_put_adapter(sfp->i2c);
2931 kfree(sfp);
2932 }
2933
sfp_i2c_get(struct sfp *sfp)2934 static int sfp_i2c_get(struct sfp *sfp)
2935 {
2936 struct fwnode_handle *h;
2937 struct i2c_adapter *i2c;
2938 int err;
2939
2940 h = fwnode_find_reference(dev_fwnode(sfp->dev), "i2c-bus", 0);
2941 if (IS_ERR(h)) {
2942 dev_err(sfp->dev, "missing 'i2c-bus' property\n");
2943 return -ENODEV;
2944 }
2945
2946 i2c = i2c_get_adapter_by_fwnode(h);
2947 if (!i2c) {
2948 err = -EPROBE_DEFER;
2949 goto put;
2950 }
2951
2952 err = sfp_i2c_configure(sfp, i2c);
2953 if (err)
2954 i2c_put_adapter(i2c);
2955 put:
2956 fwnode_handle_put(h);
2957 return err;
2958 }
2959
sfp_probe(struct platform_device *pdev)2960 static int sfp_probe(struct platform_device *pdev)
2961 {
2962 const struct sff_data *sff;
2963 char *sfp_irq_name;
2964 struct sfp *sfp;
2965 int err, i;
2966
2967 sfp = sfp_alloc(&pdev->dev);
2968 if (IS_ERR(sfp))
2969 return PTR_ERR(sfp);
2970
2971 platform_set_drvdata(pdev, sfp);
2972
2973 err = devm_add_action_or_reset(sfp->dev, sfp_cleanup, sfp);
2974 if (err < 0)
2975 return err;
2976
2977 sff = device_get_match_data(sfp->dev);
2978 if (!sff)
2979 sff = &sfp_data;
2980
2981 sfp->type = sff;
2982
2983 err = sfp_i2c_get(sfp);
2984 if (err)
2985 return err;
2986
2987 for (i = 0; i < GPIO_MAX; i++)
2988 if (sff->gpios & BIT(i)) {
2989 sfp->gpio[i] = devm_gpiod_get_optional(sfp->dev,
2990 gpio_names[i], gpio_flags[i]);
2991 if (IS_ERR(sfp->gpio[i]))
2992 return PTR_ERR(sfp->gpio[i]);
2993 }
2994
2995 sfp->state_hw_mask = SFP_F_PRESENT;
2996 sfp->state_hw_drive = SFP_F_TX_DISABLE;
2997
2998 sfp->get_state = sfp_gpio_get_state;
2999 sfp->set_state = sfp_gpio_set_state;
3000
3001 /* Modules that have no detect signal are always present */
3002 if (!(sfp->gpio[GPIO_MODDEF0]))
3003 sfp->get_state = sff_gpio_get_state;
3004
3005 device_property_read_u32(&pdev->dev, "maximum-power-milliwatt",
3006 &sfp->max_power_mW);
3007 if (sfp->max_power_mW < 1000) {
3008 if (sfp->max_power_mW)
3009 dev_warn(sfp->dev,
3010 "Firmware bug: host maximum power should be at least 1W\n");
3011 sfp->max_power_mW = 1000;
3012 }
3013
3014 dev_info(sfp->dev, "Host maximum power %u.%uW\n",
3015 sfp->max_power_mW / 1000, (sfp->max_power_mW / 100) % 10);
3016
3017 /* Get the initial state, and always signal TX disable,
3018 * since the network interface will not be up.
3019 */
3020 sfp->state = sfp_get_state(sfp) | SFP_F_TX_DISABLE;
3021
3022 if (sfp->gpio[GPIO_RS0] &&
3023 gpiod_get_value_cansleep(sfp->gpio[GPIO_RS0]))
3024 sfp->state |= SFP_F_RS0;
3025 sfp_set_state(sfp, sfp->state);
3026 sfp_module_tx_disable(sfp);
3027 if (sfp->state & SFP_F_PRESENT) {
3028 rtnl_lock();
3029 sfp_sm_event(sfp, SFP_E_INSERT);
3030 rtnl_unlock();
3031 }
3032
3033 for (i = 0; i < GPIO_MAX; i++) {
3034 if (gpio_flags[i] != GPIOD_IN || !sfp->gpio[i])
3035 continue;
3036
3037 sfp->gpio_irq[i] = gpiod_to_irq(sfp->gpio[i]);
3038 if (sfp->gpio_irq[i] < 0) {
3039 sfp->gpio_irq[i] = 0;
3040 sfp->need_poll = true;
3041 continue;
3042 }
3043
3044 sfp_irq_name = devm_kasprintf(sfp->dev, GFP_KERNEL,
3045 "%s-%s", dev_name(sfp->dev),
3046 gpio_names[i]);
3047
3048 if (!sfp_irq_name)
3049 return -ENOMEM;
3050
3051 err = devm_request_threaded_irq(sfp->dev, sfp->gpio_irq[i],
3052 NULL, sfp_irq,
3053 IRQF_ONESHOT |
3054 IRQF_TRIGGER_RISING |
3055 IRQF_TRIGGER_FALLING,
3056 sfp_irq_name, sfp);
3057 if (err) {
3058 sfp->gpio_irq[i] = 0;
3059 sfp->need_poll = true;
3060 }
3061 }
3062
3063 if (sfp->need_poll)
3064 mod_delayed_work(system_wq, &sfp->poll, poll_jiffies);
3065
3066 /* We could have an issue in cases no Tx disable pin is available or
3067 * wired as modules using a laser as their light source will continue to
3068 * be active when the fiber is removed. This could be a safety issue and
3069 * we should at least warn the user about that.
3070 */
3071 if (!sfp->gpio[GPIO_TX_DISABLE])
3072 dev_warn(sfp->dev,
3073 "No tx_disable pin: SFP modules will always be emitting.\n");
3074
3075 sfp->sfp_bus = sfp_register_socket(sfp->dev, sfp, &sfp_module_ops);
3076 if (!sfp->sfp_bus)
3077 return -ENOMEM;
3078
3079 sfp_debugfs_init(sfp);
3080
3081 return 0;
3082 }
3083
sfp_remove(struct platform_device *pdev)3084 static int sfp_remove(struct platform_device *pdev)
3085 {
3086 struct sfp *sfp = platform_get_drvdata(pdev);
3087
3088 sfp_debugfs_exit(sfp);
3089 sfp_unregister_socket(sfp->sfp_bus);
3090
3091 rtnl_lock();
3092 sfp_sm_event(sfp, SFP_E_REMOVE);
3093 rtnl_unlock();
3094
3095 return 0;
3096 }
3097
sfp_shutdown(struct platform_device *pdev)3098 static void sfp_shutdown(struct platform_device *pdev)
3099 {
3100 struct sfp *sfp = platform_get_drvdata(pdev);
3101 int i;
3102
3103 for (i = 0; i < GPIO_MAX; i++) {
3104 if (!sfp->gpio_irq[i])
3105 continue;
3106
3107 devm_free_irq(sfp->dev, sfp->gpio_irq[i], sfp);
3108 }
3109
3110 cancel_delayed_work_sync(&sfp->poll);
3111 cancel_delayed_work_sync(&sfp->timeout);
3112 }
3113
3114 static struct platform_driver sfp_driver = {
3115 .probe = sfp_probe,
3116 .remove = sfp_remove,
3117 .shutdown = sfp_shutdown,
3118 .driver = {
3119 .name = "sfp",
3120 .of_match_table = sfp_of_match,
3121 },
3122 };
3123
sfp_init(void)3124 static int sfp_init(void)
3125 {
3126 poll_jiffies = msecs_to_jiffies(100);
3127
3128 return platform_driver_register(&sfp_driver);
3129 }
3130 module_init(sfp_init);
3131
sfp_exit(void)3132 static void sfp_exit(void)
3133 {
3134 platform_driver_unregister(&sfp_driver);
3135 }
3136 module_exit(sfp_exit);
3137
3138 MODULE_ALIAS("platform:sfp");
3139 MODULE_AUTHOR("Russell King");
3140 MODULE_LICENSE("GPL v2");
3141