1// SPDX-License-Identifier: GPL-2.0
2/* Copyright (c) 2019, Intel Corporation. */
3
4#include <linux/bpf_trace.h>
5#include <net/xdp_sock_drv.h>
6#include <net/xdp.h>
7#include "ice.h"
8#include "ice_base.h"
9#include "ice_type.h"
10#include "ice_xsk.h"
11#include "ice_txrx.h"
12#include "ice_txrx_lib.h"
13#include "ice_lib.h"
14
15static struct xdp_buff **ice_xdp_buf(struct ice_rx_ring *rx_ring, u32 idx)
16{
17	return &rx_ring->xdp_buf[idx];
18}
19
20/**
21 * ice_qp_reset_stats - Resets all stats for rings of given index
22 * @vsi: VSI that contains rings of interest
23 * @q_idx: ring index in array
24 */
25static void ice_qp_reset_stats(struct ice_vsi *vsi, u16 q_idx)
26{
27	struct ice_vsi_stats *vsi_stat;
28	struct ice_pf *pf;
29
30	pf = vsi->back;
31	if (!pf->vsi_stats)
32		return;
33
34	vsi_stat = pf->vsi_stats[vsi->idx];
35	if (!vsi_stat)
36		return;
37
38	memset(&vsi_stat->rx_ring_stats[q_idx]->rx_stats, 0,
39	       sizeof(vsi_stat->rx_ring_stats[q_idx]->rx_stats));
40	memset(&vsi_stat->tx_ring_stats[q_idx]->stats, 0,
41	       sizeof(vsi_stat->tx_ring_stats[q_idx]->stats));
42	if (ice_is_xdp_ena_vsi(vsi))
43		memset(&vsi->xdp_rings[q_idx]->ring_stats->stats, 0,
44		       sizeof(vsi->xdp_rings[q_idx]->ring_stats->stats));
45}
46
47/**
48 * ice_qp_clean_rings - Cleans all the rings of a given index
49 * @vsi: VSI that contains rings of interest
50 * @q_idx: ring index in array
51 */
52static void ice_qp_clean_rings(struct ice_vsi *vsi, u16 q_idx)
53{
54	ice_clean_tx_ring(vsi->tx_rings[q_idx]);
55	if (ice_is_xdp_ena_vsi(vsi)) {
56		synchronize_rcu();
57		ice_clean_tx_ring(vsi->xdp_rings[q_idx]);
58	}
59	ice_clean_rx_ring(vsi->rx_rings[q_idx]);
60}
61
62/**
63 * ice_qvec_toggle_napi - Enables/disables NAPI for a given q_vector
64 * @vsi: VSI that has netdev
65 * @q_vector: q_vector that has NAPI context
66 * @enable: true for enable, false for disable
67 */
68static void
69ice_qvec_toggle_napi(struct ice_vsi *vsi, struct ice_q_vector *q_vector,
70		     bool enable)
71{
72	if (!vsi->netdev || !q_vector)
73		return;
74
75	if (enable)
76		napi_enable(&q_vector->napi);
77	else
78		napi_disable(&q_vector->napi);
79}
80
81/**
82 * ice_qvec_dis_irq - Mask off queue interrupt generation on given ring
83 * @vsi: the VSI that contains queue vector being un-configured
84 * @rx_ring: Rx ring that will have its IRQ disabled
85 * @q_vector: queue vector
86 */
87static void
88ice_qvec_dis_irq(struct ice_vsi *vsi, struct ice_rx_ring *rx_ring,
89		 struct ice_q_vector *q_vector)
90{
91	struct ice_pf *pf = vsi->back;
92	struct ice_hw *hw = &pf->hw;
93	u16 reg;
94	u32 val;
95
96	/* QINT_TQCTL is being cleared in ice_vsi_stop_tx_ring, so handle
97	 * here only QINT_RQCTL
98	 */
99	reg = rx_ring->reg_idx;
100	val = rd32(hw, QINT_RQCTL(reg));
101	val &= ~QINT_RQCTL_CAUSE_ENA_M;
102	wr32(hw, QINT_RQCTL(reg), val);
103
104	if (q_vector) {
105		wr32(hw, GLINT_DYN_CTL(q_vector->reg_idx), 0);
106		ice_flush(hw);
107		synchronize_irq(q_vector->irq.virq);
108	}
109}
110
111/**
112 * ice_qvec_cfg_msix - Enable IRQ for given queue vector
113 * @vsi: the VSI that contains queue vector
114 * @q_vector: queue vector
115 */
116static void
117ice_qvec_cfg_msix(struct ice_vsi *vsi, struct ice_q_vector *q_vector)
118{
119	u16 reg_idx = q_vector->reg_idx;
120	struct ice_pf *pf = vsi->back;
121	struct ice_hw *hw = &pf->hw;
122	struct ice_tx_ring *tx_ring;
123	struct ice_rx_ring *rx_ring;
124
125	ice_cfg_itr(hw, q_vector);
126
127	ice_for_each_tx_ring(tx_ring, q_vector->tx)
128		ice_cfg_txq_interrupt(vsi, tx_ring->reg_idx, reg_idx,
129				      q_vector->tx.itr_idx);
130
131	ice_for_each_rx_ring(rx_ring, q_vector->rx)
132		ice_cfg_rxq_interrupt(vsi, rx_ring->reg_idx, reg_idx,
133				      q_vector->rx.itr_idx);
134
135	ice_flush(hw);
136}
137
138/**
139 * ice_qvec_ena_irq - Enable IRQ for given queue vector
140 * @vsi: the VSI that contains queue vector
141 * @q_vector: queue vector
142 */
143static void ice_qvec_ena_irq(struct ice_vsi *vsi, struct ice_q_vector *q_vector)
144{
145	struct ice_pf *pf = vsi->back;
146	struct ice_hw *hw = &pf->hw;
147
148	ice_irq_dynamic_ena(hw, vsi, q_vector);
149
150	ice_flush(hw);
151}
152
153/**
154 * ice_qp_dis - Disables a queue pair
155 * @vsi: VSI of interest
156 * @q_idx: ring index in array
157 *
158 * Returns 0 on success, negative on failure.
159 */
160static int ice_qp_dis(struct ice_vsi *vsi, u16 q_idx)
161{
162	struct ice_txq_meta txq_meta = { };
163	struct ice_q_vector *q_vector;
164	struct ice_tx_ring *tx_ring;
165	struct ice_rx_ring *rx_ring;
166	int timeout = 50;
167	int err;
168
169	if (q_idx >= vsi->num_rxq || q_idx >= vsi->num_txq)
170		return -EINVAL;
171
172	tx_ring = vsi->tx_rings[q_idx];
173	rx_ring = vsi->rx_rings[q_idx];
174	q_vector = rx_ring->q_vector;
175
176	while (test_and_set_bit(ICE_CFG_BUSY, vsi->state)) {
177		timeout--;
178		if (!timeout)
179			return -EBUSY;
180		usleep_range(1000, 2000);
181	}
182
183	ice_qvec_dis_irq(vsi, rx_ring, q_vector);
184	ice_qvec_toggle_napi(vsi, q_vector, false);
185
186	netif_tx_stop_queue(netdev_get_tx_queue(vsi->netdev, q_idx));
187
188	ice_fill_txq_meta(vsi, tx_ring, &txq_meta);
189	err = ice_vsi_stop_tx_ring(vsi, ICE_NO_RESET, 0, tx_ring, &txq_meta);
190	if (err)
191		return err;
192	if (ice_is_xdp_ena_vsi(vsi)) {
193		struct ice_tx_ring *xdp_ring = vsi->xdp_rings[q_idx];
194
195		memset(&txq_meta, 0, sizeof(txq_meta));
196		ice_fill_txq_meta(vsi, xdp_ring, &txq_meta);
197		err = ice_vsi_stop_tx_ring(vsi, ICE_NO_RESET, 0, xdp_ring,
198					   &txq_meta);
199		if (err)
200			return err;
201	}
202	err = ice_vsi_ctrl_one_rx_ring(vsi, false, q_idx, true);
203	if (err)
204		return err;
205
206	ice_qp_clean_rings(vsi, q_idx);
207	ice_qp_reset_stats(vsi, q_idx);
208
209	return 0;
210}
211
212/**
213 * ice_qp_ena - Enables a queue pair
214 * @vsi: VSI of interest
215 * @q_idx: ring index in array
216 *
217 * Returns 0 on success, negative on failure.
218 */
219static int ice_qp_ena(struct ice_vsi *vsi, u16 q_idx)
220{
221	struct ice_aqc_add_tx_qgrp *qg_buf;
222	struct ice_q_vector *q_vector;
223	struct ice_tx_ring *tx_ring;
224	struct ice_rx_ring *rx_ring;
225	u16 size;
226	int err;
227
228	if (q_idx >= vsi->num_rxq || q_idx >= vsi->num_txq)
229		return -EINVAL;
230
231	size = struct_size(qg_buf, txqs, 1);
232	qg_buf = kzalloc(size, GFP_KERNEL);
233	if (!qg_buf)
234		return -ENOMEM;
235
236	qg_buf->num_txqs = 1;
237
238	tx_ring = vsi->tx_rings[q_idx];
239	rx_ring = vsi->rx_rings[q_idx];
240	q_vector = rx_ring->q_vector;
241
242	err = ice_vsi_cfg_txq(vsi, tx_ring, qg_buf);
243	if (err)
244		goto free_buf;
245
246	if (ice_is_xdp_ena_vsi(vsi)) {
247		struct ice_tx_ring *xdp_ring = vsi->xdp_rings[q_idx];
248
249		memset(qg_buf, 0, size);
250		qg_buf->num_txqs = 1;
251		err = ice_vsi_cfg_txq(vsi, xdp_ring, qg_buf);
252		if (err)
253			goto free_buf;
254		ice_set_ring_xdp(xdp_ring);
255		ice_tx_xsk_pool(vsi, q_idx);
256	}
257
258	err = ice_vsi_cfg_rxq(rx_ring);
259	if (err)
260		goto free_buf;
261
262	ice_qvec_cfg_msix(vsi, q_vector);
263
264	err = ice_vsi_ctrl_one_rx_ring(vsi, true, q_idx, true);
265	if (err)
266		goto free_buf;
267
268	ice_qvec_toggle_napi(vsi, q_vector, true);
269	ice_qvec_ena_irq(vsi, q_vector);
270
271	netif_tx_start_queue(netdev_get_tx_queue(vsi->netdev, q_idx));
272	clear_bit(ICE_CFG_BUSY, vsi->state);
273free_buf:
274	kfree(qg_buf);
275	return err;
276}
277
278/**
279 * ice_xsk_pool_disable - disable a buffer pool region
280 * @vsi: Current VSI
281 * @qid: queue ID
282 *
283 * Returns 0 on success, negative on failure
284 */
285static int ice_xsk_pool_disable(struct ice_vsi *vsi, u16 qid)
286{
287	struct xsk_buff_pool *pool = xsk_get_pool_from_qid(vsi->netdev, qid);
288
289	if (!pool)
290		return -EINVAL;
291
292	clear_bit(qid, vsi->af_xdp_zc_qps);
293	xsk_pool_dma_unmap(pool, ICE_RX_DMA_ATTR);
294
295	return 0;
296}
297
298/**
299 * ice_xsk_pool_enable - enable a buffer pool region
300 * @vsi: Current VSI
301 * @pool: pointer to a requested buffer pool region
302 * @qid: queue ID
303 *
304 * Returns 0 on success, negative on failure
305 */
306static int
307ice_xsk_pool_enable(struct ice_vsi *vsi, struct xsk_buff_pool *pool, u16 qid)
308{
309	int err;
310
311	if (vsi->type != ICE_VSI_PF)
312		return -EINVAL;
313
314	if (qid >= vsi->netdev->real_num_rx_queues ||
315	    qid >= vsi->netdev->real_num_tx_queues)
316		return -EINVAL;
317
318	err = xsk_pool_dma_map(pool, ice_pf_to_dev(vsi->back),
319			       ICE_RX_DMA_ATTR);
320	if (err)
321		return err;
322
323	set_bit(qid, vsi->af_xdp_zc_qps);
324
325	return 0;
326}
327
328/**
329 * ice_realloc_rx_xdp_bufs - reallocate for either XSK or normal buffer
330 * @rx_ring: Rx ring
331 * @pool_present: is pool for XSK present
332 *
333 * Try allocating memory and return ENOMEM, if failed to allocate.
334 * If allocation was successful, substitute buffer with allocated one.
335 * Returns 0 on success, negative on failure
336 */
337static int
338ice_realloc_rx_xdp_bufs(struct ice_rx_ring *rx_ring, bool pool_present)
339{
340	size_t elem_size = pool_present ? sizeof(*rx_ring->xdp_buf) :
341					  sizeof(*rx_ring->rx_buf);
342	void *sw_ring = kcalloc(rx_ring->count, elem_size, GFP_KERNEL);
343
344	if (!sw_ring)
345		return -ENOMEM;
346
347	if (pool_present) {
348		kfree(rx_ring->rx_buf);
349		rx_ring->rx_buf = NULL;
350		rx_ring->xdp_buf = sw_ring;
351	} else {
352		kfree(rx_ring->xdp_buf);
353		rx_ring->xdp_buf = NULL;
354		rx_ring->rx_buf = sw_ring;
355	}
356
357	return 0;
358}
359
360/**
361 * ice_realloc_zc_buf - reallocate XDP ZC queue pairs
362 * @vsi: Current VSI
363 * @zc: is zero copy set
364 *
365 * Reallocate buffer for rx_rings that might be used by XSK.
366 * XDP requires more memory, than rx_buf provides.
367 * Returns 0 on success, negative on failure
368 */
369int ice_realloc_zc_buf(struct ice_vsi *vsi, bool zc)
370{
371	struct ice_rx_ring *rx_ring;
372	unsigned long q;
373
374	for_each_set_bit(q, vsi->af_xdp_zc_qps,
375			 max_t(int, vsi->alloc_txq, vsi->alloc_rxq)) {
376		rx_ring = vsi->rx_rings[q];
377		if (ice_realloc_rx_xdp_bufs(rx_ring, zc))
378			return -ENOMEM;
379	}
380
381	return 0;
382}
383
384/**
385 * ice_xsk_pool_setup - enable/disable a buffer pool region depending on its state
386 * @vsi: Current VSI
387 * @pool: buffer pool to enable/associate to a ring, NULL to disable
388 * @qid: queue ID
389 *
390 * Returns 0 on success, negative on failure
391 */
392int ice_xsk_pool_setup(struct ice_vsi *vsi, struct xsk_buff_pool *pool, u16 qid)
393{
394	bool if_running, pool_present = !!pool;
395	int ret = 0, pool_failure = 0;
396
397	if (qid >= vsi->num_rxq || qid >= vsi->num_txq) {
398		netdev_err(vsi->netdev, "Please use queue id in scope of combined queues count\n");
399		pool_failure = -EINVAL;
400		goto failure;
401	}
402
403	if_running = netif_running(vsi->netdev) && ice_is_xdp_ena_vsi(vsi);
404
405	if (if_running) {
406		struct ice_rx_ring *rx_ring = vsi->rx_rings[qid];
407
408		ret = ice_qp_dis(vsi, qid);
409		if (ret) {
410			netdev_err(vsi->netdev, "ice_qp_dis error = %d\n", ret);
411			goto xsk_pool_if_up;
412		}
413
414		ret = ice_realloc_rx_xdp_bufs(rx_ring, pool_present);
415		if (ret)
416			goto xsk_pool_if_up;
417	}
418
419	pool_failure = pool_present ? ice_xsk_pool_enable(vsi, pool, qid) :
420				      ice_xsk_pool_disable(vsi, qid);
421
422xsk_pool_if_up:
423	if (if_running) {
424		ret = ice_qp_ena(vsi, qid);
425		if (!ret && pool_present)
426			napi_schedule(&vsi->rx_rings[qid]->xdp_ring->q_vector->napi);
427		else if (ret)
428			netdev_err(vsi->netdev, "ice_qp_ena error = %d\n", ret);
429	}
430
431failure:
432	if (pool_failure) {
433		netdev_err(vsi->netdev, "Could not %sable buffer pool, error = %d\n",
434			   pool_present ? "en" : "dis", pool_failure);
435		return pool_failure;
436	}
437
438	return ret;
439}
440
441/**
442 * ice_fill_rx_descs - pick buffers from XSK buffer pool and use it
443 * @pool: XSK Buffer pool to pull the buffers from
444 * @xdp: SW ring of xdp_buff that will hold the buffers
445 * @rx_desc: Pointer to Rx descriptors that will be filled
446 * @count: The number of buffers to allocate
447 *
448 * This function allocates a number of Rx buffers from the fill ring
449 * or the internal recycle mechanism and places them on the Rx ring.
450 *
451 * Note that ring wrap should be handled by caller of this function.
452 *
453 * Returns the amount of allocated Rx descriptors
454 */
455static u16 ice_fill_rx_descs(struct xsk_buff_pool *pool, struct xdp_buff **xdp,
456			     union ice_32b_rx_flex_desc *rx_desc, u16 count)
457{
458	dma_addr_t dma;
459	u16 buffs;
460	int i;
461
462	buffs = xsk_buff_alloc_batch(pool, xdp, count);
463	for (i = 0; i < buffs; i++) {
464		dma = xsk_buff_xdp_get_dma(*xdp);
465		rx_desc->read.pkt_addr = cpu_to_le64(dma);
466		rx_desc->wb.status_error0 = 0;
467
468		rx_desc++;
469		xdp++;
470	}
471
472	return buffs;
473}
474
475/**
476 * __ice_alloc_rx_bufs_zc - allocate a number of Rx buffers
477 * @rx_ring: Rx ring
478 * @count: The number of buffers to allocate
479 *
480 * Place the @count of descriptors onto Rx ring. Handle the ring wrap
481 * for case where space from next_to_use up to the end of ring is less
482 * than @count. Finally do a tail bump.
483 *
484 * Returns true if all allocations were successful, false if any fail.
485 */
486static bool __ice_alloc_rx_bufs_zc(struct ice_rx_ring *rx_ring, u16 count)
487{
488	u32 nb_buffs_extra = 0, nb_buffs = 0;
489	union ice_32b_rx_flex_desc *rx_desc;
490	u16 ntu = rx_ring->next_to_use;
491	u16 total_count = count;
492	struct xdp_buff **xdp;
493
494	rx_desc = ICE_RX_DESC(rx_ring, ntu);
495	xdp = ice_xdp_buf(rx_ring, ntu);
496
497	if (ntu + count >= rx_ring->count) {
498		nb_buffs_extra = ice_fill_rx_descs(rx_ring->xsk_pool, xdp,
499						   rx_desc,
500						   rx_ring->count - ntu);
501		if (nb_buffs_extra != rx_ring->count - ntu) {
502			ntu += nb_buffs_extra;
503			goto exit;
504		}
505		rx_desc = ICE_RX_DESC(rx_ring, 0);
506		xdp = ice_xdp_buf(rx_ring, 0);
507		ntu = 0;
508		count -= nb_buffs_extra;
509		ice_release_rx_desc(rx_ring, 0);
510	}
511
512	nb_buffs = ice_fill_rx_descs(rx_ring->xsk_pool, xdp, rx_desc, count);
513
514	ntu += nb_buffs;
515	if (ntu == rx_ring->count)
516		ntu = 0;
517
518exit:
519	if (rx_ring->next_to_use != ntu)
520		ice_release_rx_desc(rx_ring, ntu);
521
522	return total_count == (nb_buffs_extra + nb_buffs);
523}
524
525/**
526 * ice_alloc_rx_bufs_zc - allocate a number of Rx buffers
527 * @rx_ring: Rx ring
528 * @count: The number of buffers to allocate
529 *
530 * Wrapper for internal allocation routine; figure out how many tail
531 * bumps should take place based on the given threshold
532 *
533 * Returns true if all calls to internal alloc routine succeeded
534 */
535bool ice_alloc_rx_bufs_zc(struct ice_rx_ring *rx_ring, u16 count)
536{
537	u16 rx_thresh = ICE_RING_QUARTER(rx_ring);
538	u16 leftover, i, tail_bumps;
539
540	tail_bumps = count / rx_thresh;
541	leftover = count - (tail_bumps * rx_thresh);
542
543	for (i = 0; i < tail_bumps; i++)
544		if (!__ice_alloc_rx_bufs_zc(rx_ring, rx_thresh))
545			return false;
546	return __ice_alloc_rx_bufs_zc(rx_ring, leftover);
547}
548
549/**
550 * ice_construct_skb_zc - Create an sk_buff from zero-copy buffer
551 * @rx_ring: Rx ring
552 * @xdp: Pointer to XDP buffer
553 *
554 * This function allocates a new skb from a zero-copy Rx buffer.
555 *
556 * Returns the skb on success, NULL on failure.
557 */
558static struct sk_buff *
559ice_construct_skb_zc(struct ice_rx_ring *rx_ring, struct xdp_buff *xdp)
560{
561	unsigned int totalsize = xdp->data_end - xdp->data_meta;
562	unsigned int metasize = xdp->data - xdp->data_meta;
563	struct skb_shared_info *sinfo = NULL;
564	struct sk_buff *skb;
565	u32 nr_frags = 0;
566
567	if (unlikely(xdp_buff_has_frags(xdp))) {
568		sinfo = xdp_get_shared_info_from_buff(xdp);
569		nr_frags = sinfo->nr_frags;
570	}
571	net_prefetch(xdp->data_meta);
572
573	skb = __napi_alloc_skb(&rx_ring->q_vector->napi, totalsize,
574			       GFP_ATOMIC | __GFP_NOWARN);
575	if (unlikely(!skb))
576		return NULL;
577
578	memcpy(__skb_put(skb, totalsize), xdp->data_meta,
579	       ALIGN(totalsize, sizeof(long)));
580
581	if (metasize) {
582		skb_metadata_set(skb, metasize);
583		__skb_pull(skb, metasize);
584	}
585
586	if (likely(!xdp_buff_has_frags(xdp)))
587		goto out;
588
589	for (int i = 0; i < nr_frags; i++) {
590		struct skb_shared_info *skinfo = skb_shinfo(skb);
591		skb_frag_t *frag = &sinfo->frags[i];
592		struct page *page;
593		void *addr;
594
595		page = dev_alloc_page();
596		if (!page) {
597			dev_kfree_skb(skb);
598			return NULL;
599		}
600		addr = page_to_virt(page);
601
602		memcpy(addr, skb_frag_page(frag), skb_frag_size(frag));
603
604		__skb_fill_page_desc_noacc(skinfo, skinfo->nr_frags++,
605					   addr, 0, skb_frag_size(frag));
606	}
607
608out:
609	xsk_buff_free(xdp);
610	return skb;
611}
612
613/**
614 * ice_clean_xdp_irq_zc - produce AF_XDP descriptors to CQ
615 * @xdp_ring: XDP Tx ring
616 */
617static u32 ice_clean_xdp_irq_zc(struct ice_tx_ring *xdp_ring)
618{
619	u16 ntc = xdp_ring->next_to_clean;
620	struct ice_tx_desc *tx_desc;
621	u16 cnt = xdp_ring->count;
622	struct ice_tx_buf *tx_buf;
623	u16 completed_frames = 0;
624	u16 xsk_frames = 0;
625	u16 last_rs;
626	int i;
627
628	last_rs = xdp_ring->next_to_use ? xdp_ring->next_to_use - 1 : cnt - 1;
629	tx_desc = ICE_TX_DESC(xdp_ring, last_rs);
630	if (tx_desc->cmd_type_offset_bsz &
631	    cpu_to_le64(ICE_TX_DESC_DTYPE_DESC_DONE)) {
632		if (last_rs >= ntc)
633			completed_frames = last_rs - ntc + 1;
634		else
635			completed_frames = last_rs + cnt - ntc + 1;
636	}
637
638	if (!completed_frames)
639		return 0;
640
641	if (likely(!xdp_ring->xdp_tx_active)) {
642		xsk_frames = completed_frames;
643		goto skip;
644	}
645
646	ntc = xdp_ring->next_to_clean;
647	for (i = 0; i < completed_frames; i++) {
648		tx_buf = &xdp_ring->tx_buf[ntc];
649
650		if (tx_buf->type == ICE_TX_BUF_XSK_TX) {
651			tx_buf->type = ICE_TX_BUF_EMPTY;
652			xsk_buff_free(tx_buf->xdp);
653			xdp_ring->xdp_tx_active--;
654		} else {
655			xsk_frames++;
656		}
657
658		ntc++;
659		if (ntc >= xdp_ring->count)
660			ntc = 0;
661	}
662skip:
663	tx_desc->cmd_type_offset_bsz = 0;
664	xdp_ring->next_to_clean += completed_frames;
665	if (xdp_ring->next_to_clean >= cnt)
666		xdp_ring->next_to_clean -= cnt;
667	if (xsk_frames)
668		xsk_tx_completed(xdp_ring->xsk_pool, xsk_frames);
669
670	return completed_frames;
671}
672
673/**
674 * ice_xmit_xdp_tx_zc - AF_XDP ZC handler for XDP_TX
675 * @xdp: XDP buffer to xmit
676 * @xdp_ring: XDP ring to produce descriptor onto
677 *
678 * note that this function works directly on xdp_buff, no need to convert
679 * it to xdp_frame. xdp_buff pointer is stored to ice_tx_buf so that cleaning
680 * side will be able to xsk_buff_free() it.
681 *
682 * Returns ICE_XDP_TX for successfully produced desc, ICE_XDP_CONSUMED if there
683 * was not enough space on XDP ring
684 */
685static int ice_xmit_xdp_tx_zc(struct xdp_buff *xdp,
686			      struct ice_tx_ring *xdp_ring)
687{
688	struct skb_shared_info *sinfo = NULL;
689	u32 size = xdp->data_end - xdp->data;
690	u32 ntu = xdp_ring->next_to_use;
691	struct ice_tx_desc *tx_desc;
692	struct ice_tx_buf *tx_buf;
693	struct xdp_buff *head;
694	u32 nr_frags = 0;
695	u32 free_space;
696	u32 frag = 0;
697
698	free_space = ICE_DESC_UNUSED(xdp_ring);
699	if (free_space < ICE_RING_QUARTER(xdp_ring))
700		free_space += ice_clean_xdp_irq_zc(xdp_ring);
701
702	if (unlikely(!free_space))
703		goto busy;
704
705	if (unlikely(xdp_buff_has_frags(xdp))) {
706		sinfo = xdp_get_shared_info_from_buff(xdp);
707		nr_frags = sinfo->nr_frags;
708		if (free_space < nr_frags + 1)
709			goto busy;
710	}
711
712	tx_desc = ICE_TX_DESC(xdp_ring, ntu);
713	tx_buf = &xdp_ring->tx_buf[ntu];
714	head = xdp;
715
716	for (;;) {
717		dma_addr_t dma;
718
719		dma = xsk_buff_xdp_get_dma(xdp);
720		xsk_buff_raw_dma_sync_for_device(xdp_ring->xsk_pool, dma, size);
721
722		tx_buf->xdp = xdp;
723		tx_buf->type = ICE_TX_BUF_XSK_TX;
724		tx_desc->buf_addr = cpu_to_le64(dma);
725		tx_desc->cmd_type_offset_bsz = ice_build_ctob(0, 0, size, 0);
726		/* account for each xdp_buff from xsk_buff_pool */
727		xdp_ring->xdp_tx_active++;
728
729		if (++ntu == xdp_ring->count)
730			ntu = 0;
731
732		if (frag == nr_frags)
733			break;
734
735		tx_desc = ICE_TX_DESC(xdp_ring, ntu);
736		tx_buf = &xdp_ring->tx_buf[ntu];
737
738		xdp = xsk_buff_get_frag(head);
739		size = skb_frag_size(&sinfo->frags[frag]);
740		frag++;
741	}
742
743	xdp_ring->next_to_use = ntu;
744	/* update last descriptor from a frame with EOP */
745	tx_desc->cmd_type_offset_bsz |=
746		cpu_to_le64(ICE_TX_DESC_CMD_EOP << ICE_TXD_QW1_CMD_S);
747
748	return ICE_XDP_TX;
749
750busy:
751	xdp_ring->ring_stats->tx_stats.tx_busy++;
752
753	return ICE_XDP_CONSUMED;
754}
755
756/**
757 * ice_run_xdp_zc - Executes an XDP program in zero-copy path
758 * @rx_ring: Rx ring
759 * @xdp: xdp_buff used as input to the XDP program
760 * @xdp_prog: XDP program to run
761 * @xdp_ring: ring to be used for XDP_TX action
762 *
763 * Returns any of ICE_XDP_{PASS, CONSUMED, TX, REDIR}
764 */
765static int
766ice_run_xdp_zc(struct ice_rx_ring *rx_ring, struct xdp_buff *xdp,
767	       struct bpf_prog *xdp_prog, struct ice_tx_ring *xdp_ring)
768{
769	int err, result = ICE_XDP_PASS;
770	u32 act;
771
772	act = bpf_prog_run_xdp(xdp_prog, xdp);
773
774	if (likely(act == XDP_REDIRECT)) {
775		err = xdp_do_redirect(rx_ring->netdev, xdp, xdp_prog);
776		if (!err)
777			return ICE_XDP_REDIR;
778		if (xsk_uses_need_wakeup(rx_ring->xsk_pool) && err == -ENOBUFS)
779			result = ICE_XDP_EXIT;
780		else
781			result = ICE_XDP_CONSUMED;
782		goto out_failure;
783	}
784
785	switch (act) {
786	case XDP_PASS:
787		break;
788	case XDP_TX:
789		result = ice_xmit_xdp_tx_zc(xdp, xdp_ring);
790		if (result == ICE_XDP_CONSUMED)
791			goto out_failure;
792		break;
793	case XDP_DROP:
794		result = ICE_XDP_CONSUMED;
795		break;
796	default:
797		bpf_warn_invalid_xdp_action(rx_ring->netdev, xdp_prog, act);
798		fallthrough;
799	case XDP_ABORTED:
800		result = ICE_XDP_CONSUMED;
801out_failure:
802		trace_xdp_exception(rx_ring->netdev, xdp_prog, act);
803		break;
804	}
805
806	return result;
807}
808
809static int
810ice_add_xsk_frag(struct ice_rx_ring *rx_ring, struct xdp_buff *first,
811		 struct xdp_buff *xdp, const unsigned int size)
812{
813	struct skb_shared_info *sinfo = xdp_get_shared_info_from_buff(first);
814
815	if (!size)
816		return 0;
817
818	if (!xdp_buff_has_frags(first)) {
819		sinfo->nr_frags = 0;
820		sinfo->xdp_frags_size = 0;
821		xdp_buff_set_frags_flag(first);
822	}
823
824	if (unlikely(sinfo->nr_frags == MAX_SKB_FRAGS)) {
825		xsk_buff_free(first);
826		return -ENOMEM;
827	}
828
829	__skb_fill_page_desc_noacc(sinfo, sinfo->nr_frags++,
830				   virt_to_page(xdp->data_hard_start),
831				   XDP_PACKET_HEADROOM, size);
832	sinfo->xdp_frags_size += size;
833	xsk_buff_add_frag(xdp);
834
835	return 0;
836}
837
838/**
839 * ice_clean_rx_irq_zc - consumes packets from the hardware ring
840 * @rx_ring: AF_XDP Rx ring
841 * @budget: NAPI budget
842 *
843 * Returns number of processed packets on success, remaining budget on failure.
844 */
845int ice_clean_rx_irq_zc(struct ice_rx_ring *rx_ring, int budget)
846{
847	unsigned int total_rx_bytes = 0, total_rx_packets = 0;
848	struct xsk_buff_pool *xsk_pool = rx_ring->xsk_pool;
849	u32 ntc = rx_ring->next_to_clean;
850	u32 ntu = rx_ring->next_to_use;
851	struct xdp_buff *first = NULL;
852	struct ice_tx_ring *xdp_ring;
853	unsigned int xdp_xmit = 0;
854	struct bpf_prog *xdp_prog;
855	u32 cnt = rx_ring->count;
856	bool failure = false;
857	int entries_to_alloc;
858
859	/* ZC patch is enabled only when XDP program is set,
860	 * so here it can not be NULL
861	 */
862	xdp_prog = READ_ONCE(rx_ring->xdp_prog);
863	xdp_ring = rx_ring->xdp_ring;
864
865	if (ntc != rx_ring->first_desc)
866		first = *ice_xdp_buf(rx_ring, rx_ring->first_desc);
867
868	while (likely(total_rx_packets < (unsigned int)budget)) {
869		union ice_32b_rx_flex_desc *rx_desc;
870		unsigned int size, xdp_res = 0;
871		struct xdp_buff *xdp;
872		struct sk_buff *skb;
873		u16 stat_err_bits;
874		u16 vlan_tag = 0;
875		u16 rx_ptype;
876
877		rx_desc = ICE_RX_DESC(rx_ring, ntc);
878
879		stat_err_bits = BIT(ICE_RX_FLEX_DESC_STATUS0_DD_S);
880		if (!ice_test_staterr(rx_desc->wb.status_error0, stat_err_bits))
881			break;
882
883		/* This memory barrier is needed to keep us from reading
884		 * any other fields out of the rx_desc until we have
885		 * verified the descriptor has been written back.
886		 */
887		dma_rmb();
888
889		if (unlikely(ntc == ntu))
890			break;
891
892		xdp = *ice_xdp_buf(rx_ring, ntc);
893
894		size = le16_to_cpu(rx_desc->wb.pkt_len) &
895				   ICE_RX_FLX_DESC_PKT_LEN_M;
896
897		xsk_buff_set_size(xdp, size);
898		xsk_buff_dma_sync_for_cpu(xdp, xsk_pool);
899
900		if (!first) {
901			first = xdp;
902		} else if (ice_add_xsk_frag(rx_ring, first, xdp, size)) {
903			break;
904		}
905
906		if (++ntc == cnt)
907			ntc = 0;
908
909		if (ice_is_non_eop(rx_ring, rx_desc))
910			continue;
911
912		xdp_res = ice_run_xdp_zc(rx_ring, first, xdp_prog, xdp_ring);
913		if (likely(xdp_res & (ICE_XDP_TX | ICE_XDP_REDIR))) {
914			xdp_xmit |= xdp_res;
915		} else if (xdp_res == ICE_XDP_EXIT) {
916			failure = true;
917			first = NULL;
918			rx_ring->first_desc = ntc;
919			break;
920		} else if (xdp_res == ICE_XDP_CONSUMED) {
921			xsk_buff_free(first);
922		} else if (xdp_res == ICE_XDP_PASS) {
923			goto construct_skb;
924		}
925
926		total_rx_bytes += xdp_get_buff_len(first);
927		total_rx_packets++;
928
929		first = NULL;
930		rx_ring->first_desc = ntc;
931		continue;
932
933construct_skb:
934		/* XDP_PASS path */
935		skb = ice_construct_skb_zc(rx_ring, first);
936		if (!skb) {
937			rx_ring->ring_stats->rx_stats.alloc_buf_failed++;
938			break;
939		}
940
941		first = NULL;
942		rx_ring->first_desc = ntc;
943
944		if (eth_skb_pad(skb)) {
945			skb = NULL;
946			continue;
947		}
948
949		total_rx_bytes += skb->len;
950		total_rx_packets++;
951
952		vlan_tag = ice_get_vlan_tag_from_rx_desc(rx_desc);
953
954		rx_ptype = le16_to_cpu(rx_desc->wb.ptype_flex_flags0) &
955				       ICE_RX_FLEX_DESC_PTYPE_M;
956
957		ice_process_skb_fields(rx_ring, rx_desc, skb, rx_ptype);
958		ice_receive_skb(rx_ring, skb, vlan_tag);
959	}
960
961	rx_ring->next_to_clean = ntc;
962	entries_to_alloc = ICE_RX_DESC_UNUSED(rx_ring);
963	if (entries_to_alloc > ICE_RING_QUARTER(rx_ring))
964		failure |= !ice_alloc_rx_bufs_zc(rx_ring, entries_to_alloc);
965
966	ice_finalize_xdp_rx(xdp_ring, xdp_xmit, 0);
967	ice_update_rx_ring_stats(rx_ring, total_rx_packets, total_rx_bytes);
968
969	if (xsk_uses_need_wakeup(xsk_pool)) {
970		/* ntu could have changed when allocating entries above, so
971		 * use rx_ring value instead of stack based one
972		 */
973		if (failure || ntc == rx_ring->next_to_use)
974			xsk_set_rx_need_wakeup(xsk_pool);
975		else
976			xsk_clear_rx_need_wakeup(xsk_pool);
977
978		return (int)total_rx_packets;
979	}
980
981	return failure ? budget : (int)total_rx_packets;
982}
983
984/**
985 * ice_xmit_pkt - produce a single HW Tx descriptor out of AF_XDP descriptor
986 * @xdp_ring: XDP ring to produce the HW Tx descriptor on
987 * @desc: AF_XDP descriptor to pull the DMA address and length from
988 * @total_bytes: bytes accumulator that will be used for stats update
989 */
990static void ice_xmit_pkt(struct ice_tx_ring *xdp_ring, struct xdp_desc *desc,
991			 unsigned int *total_bytes)
992{
993	struct ice_tx_desc *tx_desc;
994	dma_addr_t dma;
995
996	dma = xsk_buff_raw_get_dma(xdp_ring->xsk_pool, desc->addr);
997	xsk_buff_raw_dma_sync_for_device(xdp_ring->xsk_pool, dma, desc->len);
998
999	tx_desc = ICE_TX_DESC(xdp_ring, xdp_ring->next_to_use++);
1000	tx_desc->buf_addr = cpu_to_le64(dma);
1001	tx_desc->cmd_type_offset_bsz = ice_build_ctob(xsk_is_eop_desc(desc),
1002						      0, desc->len, 0);
1003
1004	*total_bytes += desc->len;
1005}
1006
1007/**
1008 * ice_xmit_pkt_batch - produce a batch of HW Tx descriptors out of AF_XDP descriptors
1009 * @xdp_ring: XDP ring to produce the HW Tx descriptors on
1010 * @descs: AF_XDP descriptors to pull the DMA addresses and lengths from
1011 * @total_bytes: bytes accumulator that will be used for stats update
1012 */
1013static void ice_xmit_pkt_batch(struct ice_tx_ring *xdp_ring, struct xdp_desc *descs,
1014			       unsigned int *total_bytes)
1015{
1016	u16 ntu = xdp_ring->next_to_use;
1017	struct ice_tx_desc *tx_desc;
1018	u32 i;
1019
1020	loop_unrolled_for(i = 0; i < PKTS_PER_BATCH; i++) {
1021		dma_addr_t dma;
1022
1023		dma = xsk_buff_raw_get_dma(xdp_ring->xsk_pool, descs[i].addr);
1024		xsk_buff_raw_dma_sync_for_device(xdp_ring->xsk_pool, dma, descs[i].len);
1025
1026		tx_desc = ICE_TX_DESC(xdp_ring, ntu++);
1027		tx_desc->buf_addr = cpu_to_le64(dma);
1028		tx_desc->cmd_type_offset_bsz = ice_build_ctob(xsk_is_eop_desc(&descs[i]),
1029							      0, descs[i].len, 0);
1030
1031		*total_bytes += descs[i].len;
1032	}
1033
1034	xdp_ring->next_to_use = ntu;
1035}
1036
1037/**
1038 * ice_fill_tx_hw_ring - produce the number of Tx descriptors onto ring
1039 * @xdp_ring: XDP ring to produce the HW Tx descriptors on
1040 * @descs: AF_XDP descriptors to pull the DMA addresses and lengths from
1041 * @nb_pkts: count of packets to be send
1042 * @total_bytes: bytes accumulator that will be used for stats update
1043 */
1044static void ice_fill_tx_hw_ring(struct ice_tx_ring *xdp_ring, struct xdp_desc *descs,
1045				u32 nb_pkts, unsigned int *total_bytes)
1046{
1047	u32 batched, leftover, i;
1048
1049	batched = ALIGN_DOWN(nb_pkts, PKTS_PER_BATCH);
1050	leftover = nb_pkts & (PKTS_PER_BATCH - 1);
1051	for (i = 0; i < batched; i += PKTS_PER_BATCH)
1052		ice_xmit_pkt_batch(xdp_ring, &descs[i], total_bytes);
1053	for (; i < batched + leftover; i++)
1054		ice_xmit_pkt(xdp_ring, &descs[i], total_bytes);
1055}
1056
1057/**
1058 * ice_xmit_zc - take entries from XSK Tx ring and place them onto HW Tx ring
1059 * @xdp_ring: XDP ring to produce the HW Tx descriptors on
1060 *
1061 * Returns true if there is no more work that needs to be done, false otherwise
1062 */
1063bool ice_xmit_zc(struct ice_tx_ring *xdp_ring)
1064{
1065	struct xdp_desc *descs = xdp_ring->xsk_pool->tx_descs;
1066	u32 nb_pkts, nb_processed = 0;
1067	unsigned int total_bytes = 0;
1068	int budget;
1069
1070	ice_clean_xdp_irq_zc(xdp_ring);
1071
1072	budget = ICE_DESC_UNUSED(xdp_ring);
1073	budget = min_t(u16, budget, ICE_RING_QUARTER(xdp_ring));
1074
1075	nb_pkts = xsk_tx_peek_release_desc_batch(xdp_ring->xsk_pool, budget);
1076	if (!nb_pkts)
1077		return true;
1078
1079	if (xdp_ring->next_to_use + nb_pkts >= xdp_ring->count) {
1080		nb_processed = xdp_ring->count - xdp_ring->next_to_use;
1081		ice_fill_tx_hw_ring(xdp_ring, descs, nb_processed, &total_bytes);
1082		xdp_ring->next_to_use = 0;
1083	}
1084
1085	ice_fill_tx_hw_ring(xdp_ring, &descs[nb_processed], nb_pkts - nb_processed,
1086			    &total_bytes);
1087
1088	ice_set_rs_bit(xdp_ring);
1089	ice_xdp_ring_update_tail(xdp_ring);
1090	ice_update_tx_ring_stats(xdp_ring, nb_pkts, total_bytes);
1091
1092	if (xsk_uses_need_wakeup(xdp_ring->xsk_pool))
1093		xsk_set_tx_need_wakeup(xdp_ring->xsk_pool);
1094
1095	return nb_pkts < budget;
1096}
1097
1098/**
1099 * ice_xsk_wakeup - Implements ndo_xsk_wakeup
1100 * @netdev: net_device
1101 * @queue_id: queue to wake up
1102 * @flags: ignored in our case, since we have Rx and Tx in the same NAPI
1103 *
1104 * Returns negative on error, zero otherwise.
1105 */
1106int
1107ice_xsk_wakeup(struct net_device *netdev, u32 queue_id,
1108	       u32 __always_unused flags)
1109{
1110	struct ice_netdev_priv *np = netdev_priv(netdev);
1111	struct ice_q_vector *q_vector;
1112	struct ice_vsi *vsi = np->vsi;
1113	struct ice_tx_ring *ring;
1114
1115	if (test_bit(ICE_VSI_DOWN, vsi->state))
1116		return -ENETDOWN;
1117
1118	if (!ice_is_xdp_ena_vsi(vsi))
1119		return -EINVAL;
1120
1121	if (queue_id >= vsi->num_txq || queue_id >= vsi->num_rxq)
1122		return -EINVAL;
1123
1124	ring = vsi->rx_rings[queue_id]->xdp_ring;
1125
1126	if (!ring->xsk_pool)
1127		return -EINVAL;
1128
1129	/* The idea here is that if NAPI is running, mark a miss, so
1130	 * it will run again. If not, trigger an interrupt and
1131	 * schedule the NAPI from interrupt context. If NAPI would be
1132	 * scheduled here, the interrupt affinity would not be
1133	 * honored.
1134	 */
1135	q_vector = ring->q_vector;
1136	if (!napi_if_scheduled_mark_missed(&q_vector->napi))
1137		ice_trigger_sw_intr(&vsi->back->hw, q_vector);
1138
1139	return 0;
1140}
1141
1142/**
1143 * ice_xsk_any_rx_ring_ena - Checks if Rx rings have AF_XDP buff pool attached
1144 * @vsi: VSI to be checked
1145 *
1146 * Returns true if any of the Rx rings has an AF_XDP buff pool attached
1147 */
1148bool ice_xsk_any_rx_ring_ena(struct ice_vsi *vsi)
1149{
1150	int i;
1151
1152	ice_for_each_rxq(vsi, i) {
1153		if (xsk_get_pool_from_qid(vsi->netdev, i))
1154			return true;
1155	}
1156
1157	return false;
1158}
1159
1160/**
1161 * ice_xsk_clean_rx_ring - clean buffer pool queues connected to a given Rx ring
1162 * @rx_ring: ring to be cleaned
1163 */
1164void ice_xsk_clean_rx_ring(struct ice_rx_ring *rx_ring)
1165{
1166	u16 ntc = rx_ring->next_to_clean;
1167	u16 ntu = rx_ring->next_to_use;
1168
1169	while (ntc != ntu) {
1170		struct xdp_buff *xdp = *ice_xdp_buf(rx_ring, ntc);
1171
1172		xsk_buff_free(xdp);
1173		ntc++;
1174		if (ntc >= rx_ring->count)
1175			ntc = 0;
1176	}
1177}
1178
1179/**
1180 * ice_xsk_clean_xdp_ring - Clean the XDP Tx ring and its buffer pool queues
1181 * @xdp_ring: XDP_Tx ring
1182 */
1183void ice_xsk_clean_xdp_ring(struct ice_tx_ring *xdp_ring)
1184{
1185	u16 ntc = xdp_ring->next_to_clean, ntu = xdp_ring->next_to_use;
1186	u32 xsk_frames = 0;
1187
1188	while (ntc != ntu) {
1189		struct ice_tx_buf *tx_buf = &xdp_ring->tx_buf[ntc];
1190
1191		if (tx_buf->type == ICE_TX_BUF_XSK_TX) {
1192			tx_buf->type = ICE_TX_BUF_EMPTY;
1193			xsk_buff_free(tx_buf->xdp);
1194		} else {
1195			xsk_frames++;
1196		}
1197
1198		ntc++;
1199		if (ntc >= xdp_ring->count)
1200			ntc = 0;
1201	}
1202
1203	if (xsk_frames)
1204		xsk_tx_completed(xdp_ring->xsk_pool, xsk_frames);
1205}
1206