1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2019, Intel Corporation. */
3
4 #include <linux/bpf_trace.h>
5 #include <net/xdp_sock_drv.h>
6 #include <net/xdp.h>
7 #include "ice.h"
8 #include "ice_base.h"
9 #include "ice_type.h"
10 #include "ice_xsk.h"
11 #include "ice_txrx.h"
12 #include "ice_txrx_lib.h"
13 #include "ice_lib.h"
14
ice_xdp_buf(struct ice_rx_ring *rx_ring, u32 idx)15 static struct xdp_buff **ice_xdp_buf(struct ice_rx_ring *rx_ring, u32 idx)
16 {
17 return &rx_ring->xdp_buf[idx];
18 }
19
20 /**
21 * ice_qp_reset_stats - Resets all stats for rings of given index
22 * @vsi: VSI that contains rings of interest
23 * @q_idx: ring index in array
24 */
ice_qp_reset_stats(struct ice_vsi *vsi, u16 q_idx)25 static void ice_qp_reset_stats(struct ice_vsi *vsi, u16 q_idx)
26 {
27 struct ice_vsi_stats *vsi_stat;
28 struct ice_pf *pf;
29
30 pf = vsi->back;
31 if (!pf->vsi_stats)
32 return;
33
34 vsi_stat = pf->vsi_stats[vsi->idx];
35 if (!vsi_stat)
36 return;
37
38 memset(&vsi_stat->rx_ring_stats[q_idx]->rx_stats, 0,
39 sizeof(vsi_stat->rx_ring_stats[q_idx]->rx_stats));
40 memset(&vsi_stat->tx_ring_stats[q_idx]->stats, 0,
41 sizeof(vsi_stat->tx_ring_stats[q_idx]->stats));
42 if (ice_is_xdp_ena_vsi(vsi))
43 memset(&vsi->xdp_rings[q_idx]->ring_stats->stats, 0,
44 sizeof(vsi->xdp_rings[q_idx]->ring_stats->stats));
45 }
46
47 /**
48 * ice_qp_clean_rings - Cleans all the rings of a given index
49 * @vsi: VSI that contains rings of interest
50 * @q_idx: ring index in array
51 */
ice_qp_clean_rings(struct ice_vsi *vsi, u16 q_idx)52 static void ice_qp_clean_rings(struct ice_vsi *vsi, u16 q_idx)
53 {
54 ice_clean_tx_ring(vsi->tx_rings[q_idx]);
55 if (ice_is_xdp_ena_vsi(vsi)) {
56 synchronize_rcu();
57 ice_clean_tx_ring(vsi->xdp_rings[q_idx]);
58 }
59 ice_clean_rx_ring(vsi->rx_rings[q_idx]);
60 }
61
62 /**
63 * ice_qvec_toggle_napi - Enables/disables NAPI for a given q_vector
64 * @vsi: VSI that has netdev
65 * @q_vector: q_vector that has NAPI context
66 * @enable: true for enable, false for disable
67 */
68 static void
ice_qvec_toggle_napi(struct ice_vsi *vsi, struct ice_q_vector *q_vector, bool enable)69 ice_qvec_toggle_napi(struct ice_vsi *vsi, struct ice_q_vector *q_vector,
70 bool enable)
71 {
72 if (!vsi->netdev || !q_vector)
73 return;
74
75 if (enable)
76 napi_enable(&q_vector->napi);
77 else
78 napi_disable(&q_vector->napi);
79 }
80
81 /**
82 * ice_qvec_dis_irq - Mask off queue interrupt generation on given ring
83 * @vsi: the VSI that contains queue vector being un-configured
84 * @rx_ring: Rx ring that will have its IRQ disabled
85 * @q_vector: queue vector
86 */
87 static void
ice_qvec_dis_irq(struct ice_vsi *vsi, struct ice_rx_ring *rx_ring, struct ice_q_vector *q_vector)88 ice_qvec_dis_irq(struct ice_vsi *vsi, struct ice_rx_ring *rx_ring,
89 struct ice_q_vector *q_vector)
90 {
91 struct ice_pf *pf = vsi->back;
92 struct ice_hw *hw = &pf->hw;
93 u16 reg;
94 u32 val;
95
96 /* QINT_TQCTL is being cleared in ice_vsi_stop_tx_ring, so handle
97 * here only QINT_RQCTL
98 */
99 reg = rx_ring->reg_idx;
100 val = rd32(hw, QINT_RQCTL(reg));
101 val &= ~QINT_RQCTL_CAUSE_ENA_M;
102 wr32(hw, QINT_RQCTL(reg), val);
103
104 if (q_vector) {
105 wr32(hw, GLINT_DYN_CTL(q_vector->reg_idx), 0);
106 ice_flush(hw);
107 synchronize_irq(q_vector->irq.virq);
108 }
109 }
110
111 /**
112 * ice_qvec_cfg_msix - Enable IRQ for given queue vector
113 * @vsi: the VSI that contains queue vector
114 * @q_vector: queue vector
115 */
116 static void
ice_qvec_cfg_msix(struct ice_vsi *vsi, struct ice_q_vector *q_vector)117 ice_qvec_cfg_msix(struct ice_vsi *vsi, struct ice_q_vector *q_vector)
118 {
119 u16 reg_idx = q_vector->reg_idx;
120 struct ice_pf *pf = vsi->back;
121 struct ice_hw *hw = &pf->hw;
122 struct ice_tx_ring *tx_ring;
123 struct ice_rx_ring *rx_ring;
124
125 ice_cfg_itr(hw, q_vector);
126
127 ice_for_each_tx_ring(tx_ring, q_vector->tx)
128 ice_cfg_txq_interrupt(vsi, tx_ring->reg_idx, reg_idx,
129 q_vector->tx.itr_idx);
130
131 ice_for_each_rx_ring(rx_ring, q_vector->rx)
132 ice_cfg_rxq_interrupt(vsi, rx_ring->reg_idx, reg_idx,
133 q_vector->rx.itr_idx);
134
135 ice_flush(hw);
136 }
137
138 /**
139 * ice_qvec_ena_irq - Enable IRQ for given queue vector
140 * @vsi: the VSI that contains queue vector
141 * @q_vector: queue vector
142 */
ice_qvec_ena_irq(struct ice_vsi *vsi, struct ice_q_vector *q_vector)143 static void ice_qvec_ena_irq(struct ice_vsi *vsi, struct ice_q_vector *q_vector)
144 {
145 struct ice_pf *pf = vsi->back;
146 struct ice_hw *hw = &pf->hw;
147
148 ice_irq_dynamic_ena(hw, vsi, q_vector);
149
150 ice_flush(hw);
151 }
152
153 /**
154 * ice_qp_dis - Disables a queue pair
155 * @vsi: VSI of interest
156 * @q_idx: ring index in array
157 *
158 * Returns 0 on success, negative on failure.
159 */
ice_qp_dis(struct ice_vsi *vsi, u16 q_idx)160 static int ice_qp_dis(struct ice_vsi *vsi, u16 q_idx)
161 {
162 struct ice_txq_meta txq_meta = { };
163 struct ice_q_vector *q_vector;
164 struct ice_tx_ring *tx_ring;
165 struct ice_rx_ring *rx_ring;
166 int timeout = 50;
167 int err;
168
169 if (q_idx >= vsi->num_rxq || q_idx >= vsi->num_txq)
170 return -EINVAL;
171
172 tx_ring = vsi->tx_rings[q_idx];
173 rx_ring = vsi->rx_rings[q_idx];
174 q_vector = rx_ring->q_vector;
175
176 while (test_and_set_bit(ICE_CFG_BUSY, vsi->state)) {
177 timeout--;
178 if (!timeout)
179 return -EBUSY;
180 usleep_range(1000, 2000);
181 }
182
183 ice_qvec_dis_irq(vsi, rx_ring, q_vector);
184 ice_qvec_toggle_napi(vsi, q_vector, false);
185
186 netif_tx_stop_queue(netdev_get_tx_queue(vsi->netdev, q_idx));
187
188 ice_fill_txq_meta(vsi, tx_ring, &txq_meta);
189 err = ice_vsi_stop_tx_ring(vsi, ICE_NO_RESET, 0, tx_ring, &txq_meta);
190 if (err)
191 return err;
192 if (ice_is_xdp_ena_vsi(vsi)) {
193 struct ice_tx_ring *xdp_ring = vsi->xdp_rings[q_idx];
194
195 memset(&txq_meta, 0, sizeof(txq_meta));
196 ice_fill_txq_meta(vsi, xdp_ring, &txq_meta);
197 err = ice_vsi_stop_tx_ring(vsi, ICE_NO_RESET, 0, xdp_ring,
198 &txq_meta);
199 if (err)
200 return err;
201 }
202 err = ice_vsi_ctrl_one_rx_ring(vsi, false, q_idx, true);
203 if (err)
204 return err;
205
206 ice_qp_clean_rings(vsi, q_idx);
207 ice_qp_reset_stats(vsi, q_idx);
208
209 return 0;
210 }
211
212 /**
213 * ice_qp_ena - Enables a queue pair
214 * @vsi: VSI of interest
215 * @q_idx: ring index in array
216 *
217 * Returns 0 on success, negative on failure.
218 */
ice_qp_ena(struct ice_vsi *vsi, u16 q_idx)219 static int ice_qp_ena(struct ice_vsi *vsi, u16 q_idx)
220 {
221 struct ice_aqc_add_tx_qgrp *qg_buf;
222 struct ice_q_vector *q_vector;
223 struct ice_tx_ring *tx_ring;
224 struct ice_rx_ring *rx_ring;
225 u16 size;
226 int err;
227
228 if (q_idx >= vsi->num_rxq || q_idx >= vsi->num_txq)
229 return -EINVAL;
230
231 size = struct_size(qg_buf, txqs, 1);
232 qg_buf = kzalloc(size, GFP_KERNEL);
233 if (!qg_buf)
234 return -ENOMEM;
235
236 qg_buf->num_txqs = 1;
237
238 tx_ring = vsi->tx_rings[q_idx];
239 rx_ring = vsi->rx_rings[q_idx];
240 q_vector = rx_ring->q_vector;
241
242 err = ice_vsi_cfg_txq(vsi, tx_ring, qg_buf);
243 if (err)
244 goto free_buf;
245
246 if (ice_is_xdp_ena_vsi(vsi)) {
247 struct ice_tx_ring *xdp_ring = vsi->xdp_rings[q_idx];
248
249 memset(qg_buf, 0, size);
250 qg_buf->num_txqs = 1;
251 err = ice_vsi_cfg_txq(vsi, xdp_ring, qg_buf);
252 if (err)
253 goto free_buf;
254 ice_set_ring_xdp(xdp_ring);
255 ice_tx_xsk_pool(vsi, q_idx);
256 }
257
258 err = ice_vsi_cfg_rxq(rx_ring);
259 if (err)
260 goto free_buf;
261
262 ice_qvec_cfg_msix(vsi, q_vector);
263
264 err = ice_vsi_ctrl_one_rx_ring(vsi, true, q_idx, true);
265 if (err)
266 goto free_buf;
267
268 ice_qvec_toggle_napi(vsi, q_vector, true);
269 ice_qvec_ena_irq(vsi, q_vector);
270
271 netif_tx_start_queue(netdev_get_tx_queue(vsi->netdev, q_idx));
272 clear_bit(ICE_CFG_BUSY, vsi->state);
273 free_buf:
274 kfree(qg_buf);
275 return err;
276 }
277
278 /**
279 * ice_xsk_pool_disable - disable a buffer pool region
280 * @vsi: Current VSI
281 * @qid: queue ID
282 *
283 * Returns 0 on success, negative on failure
284 */
ice_xsk_pool_disable(struct ice_vsi *vsi, u16 qid)285 static int ice_xsk_pool_disable(struct ice_vsi *vsi, u16 qid)
286 {
287 struct xsk_buff_pool *pool = xsk_get_pool_from_qid(vsi->netdev, qid);
288
289 if (!pool)
290 return -EINVAL;
291
292 clear_bit(qid, vsi->af_xdp_zc_qps);
293 xsk_pool_dma_unmap(pool, ICE_RX_DMA_ATTR);
294
295 return 0;
296 }
297
298 /**
299 * ice_xsk_pool_enable - enable a buffer pool region
300 * @vsi: Current VSI
301 * @pool: pointer to a requested buffer pool region
302 * @qid: queue ID
303 *
304 * Returns 0 on success, negative on failure
305 */
306 static int
ice_xsk_pool_enable(struct ice_vsi *vsi, struct xsk_buff_pool *pool, u16 qid)307 ice_xsk_pool_enable(struct ice_vsi *vsi, struct xsk_buff_pool *pool, u16 qid)
308 {
309 int err;
310
311 if (vsi->type != ICE_VSI_PF)
312 return -EINVAL;
313
314 if (qid >= vsi->netdev->real_num_rx_queues ||
315 qid >= vsi->netdev->real_num_tx_queues)
316 return -EINVAL;
317
318 err = xsk_pool_dma_map(pool, ice_pf_to_dev(vsi->back),
319 ICE_RX_DMA_ATTR);
320 if (err)
321 return err;
322
323 set_bit(qid, vsi->af_xdp_zc_qps);
324
325 return 0;
326 }
327
328 /**
329 * ice_realloc_rx_xdp_bufs - reallocate for either XSK or normal buffer
330 * @rx_ring: Rx ring
331 * @pool_present: is pool for XSK present
332 *
333 * Try allocating memory and return ENOMEM, if failed to allocate.
334 * If allocation was successful, substitute buffer with allocated one.
335 * Returns 0 on success, negative on failure
336 */
337 static int
ice_realloc_rx_xdp_bufs(struct ice_rx_ring *rx_ring, bool pool_present)338 ice_realloc_rx_xdp_bufs(struct ice_rx_ring *rx_ring, bool pool_present)
339 {
340 size_t elem_size = pool_present ? sizeof(*rx_ring->xdp_buf) :
341 sizeof(*rx_ring->rx_buf);
342 void *sw_ring = kcalloc(rx_ring->count, elem_size, GFP_KERNEL);
343
344 if (!sw_ring)
345 return -ENOMEM;
346
347 if (pool_present) {
348 kfree(rx_ring->rx_buf);
349 rx_ring->rx_buf = NULL;
350 rx_ring->xdp_buf = sw_ring;
351 } else {
352 kfree(rx_ring->xdp_buf);
353 rx_ring->xdp_buf = NULL;
354 rx_ring->rx_buf = sw_ring;
355 }
356
357 return 0;
358 }
359
360 /**
361 * ice_realloc_zc_buf - reallocate XDP ZC queue pairs
362 * @vsi: Current VSI
363 * @zc: is zero copy set
364 *
365 * Reallocate buffer for rx_rings that might be used by XSK.
366 * XDP requires more memory, than rx_buf provides.
367 * Returns 0 on success, negative on failure
368 */
ice_realloc_zc_buf(struct ice_vsi *vsi, bool zc)369 int ice_realloc_zc_buf(struct ice_vsi *vsi, bool zc)
370 {
371 struct ice_rx_ring *rx_ring;
372 unsigned long q;
373
374 for_each_set_bit(q, vsi->af_xdp_zc_qps,
375 max_t(int, vsi->alloc_txq, vsi->alloc_rxq)) {
376 rx_ring = vsi->rx_rings[q];
377 if (ice_realloc_rx_xdp_bufs(rx_ring, zc))
378 return -ENOMEM;
379 }
380
381 return 0;
382 }
383
384 /**
385 * ice_xsk_pool_setup - enable/disable a buffer pool region depending on its state
386 * @vsi: Current VSI
387 * @pool: buffer pool to enable/associate to a ring, NULL to disable
388 * @qid: queue ID
389 *
390 * Returns 0 on success, negative on failure
391 */
ice_xsk_pool_setup(struct ice_vsi *vsi, struct xsk_buff_pool *pool, u16 qid)392 int ice_xsk_pool_setup(struct ice_vsi *vsi, struct xsk_buff_pool *pool, u16 qid)
393 {
394 bool if_running, pool_present = !!pool;
395 int ret = 0, pool_failure = 0;
396
397 if (qid >= vsi->num_rxq || qid >= vsi->num_txq) {
398 netdev_err(vsi->netdev, "Please use queue id in scope of combined queues count\n");
399 pool_failure = -EINVAL;
400 goto failure;
401 }
402
403 if_running = netif_running(vsi->netdev) && ice_is_xdp_ena_vsi(vsi);
404
405 if (if_running) {
406 struct ice_rx_ring *rx_ring = vsi->rx_rings[qid];
407
408 ret = ice_qp_dis(vsi, qid);
409 if (ret) {
410 netdev_err(vsi->netdev, "ice_qp_dis error = %d\n", ret);
411 goto xsk_pool_if_up;
412 }
413
414 ret = ice_realloc_rx_xdp_bufs(rx_ring, pool_present);
415 if (ret)
416 goto xsk_pool_if_up;
417 }
418
419 pool_failure = pool_present ? ice_xsk_pool_enable(vsi, pool, qid) :
420 ice_xsk_pool_disable(vsi, qid);
421
422 xsk_pool_if_up:
423 if (if_running) {
424 ret = ice_qp_ena(vsi, qid);
425 if (!ret && pool_present)
426 napi_schedule(&vsi->rx_rings[qid]->xdp_ring->q_vector->napi);
427 else if (ret)
428 netdev_err(vsi->netdev, "ice_qp_ena error = %d\n", ret);
429 }
430
431 failure:
432 if (pool_failure) {
433 netdev_err(vsi->netdev, "Could not %sable buffer pool, error = %d\n",
434 pool_present ? "en" : "dis", pool_failure);
435 return pool_failure;
436 }
437
438 return ret;
439 }
440
441 /**
442 * ice_fill_rx_descs - pick buffers from XSK buffer pool and use it
443 * @pool: XSK Buffer pool to pull the buffers from
444 * @xdp: SW ring of xdp_buff that will hold the buffers
445 * @rx_desc: Pointer to Rx descriptors that will be filled
446 * @count: The number of buffers to allocate
447 *
448 * This function allocates a number of Rx buffers from the fill ring
449 * or the internal recycle mechanism and places them on the Rx ring.
450 *
451 * Note that ring wrap should be handled by caller of this function.
452 *
453 * Returns the amount of allocated Rx descriptors
454 */
ice_fill_rx_descs(struct xsk_buff_pool *pool, struct xdp_buff **xdp, union ice_32b_rx_flex_desc *rx_desc, u16 count)455 static u16 ice_fill_rx_descs(struct xsk_buff_pool *pool, struct xdp_buff **xdp,
456 union ice_32b_rx_flex_desc *rx_desc, u16 count)
457 {
458 dma_addr_t dma;
459 u16 buffs;
460 int i;
461
462 buffs = xsk_buff_alloc_batch(pool, xdp, count);
463 for (i = 0; i < buffs; i++) {
464 dma = xsk_buff_xdp_get_dma(*xdp);
465 rx_desc->read.pkt_addr = cpu_to_le64(dma);
466 rx_desc->wb.status_error0 = 0;
467
468 rx_desc++;
469 xdp++;
470 }
471
472 return buffs;
473 }
474
475 /**
476 * __ice_alloc_rx_bufs_zc - allocate a number of Rx buffers
477 * @rx_ring: Rx ring
478 * @count: The number of buffers to allocate
479 *
480 * Place the @count of descriptors onto Rx ring. Handle the ring wrap
481 * for case where space from next_to_use up to the end of ring is less
482 * than @count. Finally do a tail bump.
483 *
484 * Returns true if all allocations were successful, false if any fail.
485 */
__ice_alloc_rx_bufs_zc(struct ice_rx_ring *rx_ring, u16 count)486 static bool __ice_alloc_rx_bufs_zc(struct ice_rx_ring *rx_ring, u16 count)
487 {
488 u32 nb_buffs_extra = 0, nb_buffs = 0;
489 union ice_32b_rx_flex_desc *rx_desc;
490 u16 ntu = rx_ring->next_to_use;
491 u16 total_count = count;
492 struct xdp_buff **xdp;
493
494 rx_desc = ICE_RX_DESC(rx_ring, ntu);
495 xdp = ice_xdp_buf(rx_ring, ntu);
496
497 if (ntu + count >= rx_ring->count) {
498 nb_buffs_extra = ice_fill_rx_descs(rx_ring->xsk_pool, xdp,
499 rx_desc,
500 rx_ring->count - ntu);
501 if (nb_buffs_extra != rx_ring->count - ntu) {
502 ntu += nb_buffs_extra;
503 goto exit;
504 }
505 rx_desc = ICE_RX_DESC(rx_ring, 0);
506 xdp = ice_xdp_buf(rx_ring, 0);
507 ntu = 0;
508 count -= nb_buffs_extra;
509 ice_release_rx_desc(rx_ring, 0);
510 }
511
512 nb_buffs = ice_fill_rx_descs(rx_ring->xsk_pool, xdp, rx_desc, count);
513
514 ntu += nb_buffs;
515 if (ntu == rx_ring->count)
516 ntu = 0;
517
518 exit:
519 if (rx_ring->next_to_use != ntu)
520 ice_release_rx_desc(rx_ring, ntu);
521
522 return total_count == (nb_buffs_extra + nb_buffs);
523 }
524
525 /**
526 * ice_alloc_rx_bufs_zc - allocate a number of Rx buffers
527 * @rx_ring: Rx ring
528 * @count: The number of buffers to allocate
529 *
530 * Wrapper for internal allocation routine; figure out how many tail
531 * bumps should take place based on the given threshold
532 *
533 * Returns true if all calls to internal alloc routine succeeded
534 */
ice_alloc_rx_bufs_zc(struct ice_rx_ring *rx_ring, u16 count)535 bool ice_alloc_rx_bufs_zc(struct ice_rx_ring *rx_ring, u16 count)
536 {
537 u16 rx_thresh = ICE_RING_QUARTER(rx_ring);
538 u16 leftover, i, tail_bumps;
539
540 tail_bumps = count / rx_thresh;
541 leftover = count - (tail_bumps * rx_thresh);
542
543 for (i = 0; i < tail_bumps; i++)
544 if (!__ice_alloc_rx_bufs_zc(rx_ring, rx_thresh))
545 return false;
546 return __ice_alloc_rx_bufs_zc(rx_ring, leftover);
547 }
548
549 /**
550 * ice_construct_skb_zc - Create an sk_buff from zero-copy buffer
551 * @rx_ring: Rx ring
552 * @xdp: Pointer to XDP buffer
553 *
554 * This function allocates a new skb from a zero-copy Rx buffer.
555 *
556 * Returns the skb on success, NULL on failure.
557 */
558 static struct sk_buff *
ice_construct_skb_zc(struct ice_rx_ring *rx_ring, struct xdp_buff *xdp)559 ice_construct_skb_zc(struct ice_rx_ring *rx_ring, struct xdp_buff *xdp)
560 {
561 unsigned int totalsize = xdp->data_end - xdp->data_meta;
562 unsigned int metasize = xdp->data - xdp->data_meta;
563 struct skb_shared_info *sinfo = NULL;
564 struct sk_buff *skb;
565 u32 nr_frags = 0;
566
567 if (unlikely(xdp_buff_has_frags(xdp))) {
568 sinfo = xdp_get_shared_info_from_buff(xdp);
569 nr_frags = sinfo->nr_frags;
570 }
571 net_prefetch(xdp->data_meta);
572
573 skb = __napi_alloc_skb(&rx_ring->q_vector->napi, totalsize,
574 GFP_ATOMIC | __GFP_NOWARN);
575 if (unlikely(!skb))
576 return NULL;
577
578 memcpy(__skb_put(skb, totalsize), xdp->data_meta,
579 ALIGN(totalsize, sizeof(long)));
580
581 if (metasize) {
582 skb_metadata_set(skb, metasize);
583 __skb_pull(skb, metasize);
584 }
585
586 if (likely(!xdp_buff_has_frags(xdp)))
587 goto out;
588
589 for (int i = 0; i < nr_frags; i++) {
590 struct skb_shared_info *skinfo = skb_shinfo(skb);
591 skb_frag_t *frag = &sinfo->frags[i];
592 struct page *page;
593 void *addr;
594
595 page = dev_alloc_page();
596 if (!page) {
597 dev_kfree_skb(skb);
598 return NULL;
599 }
600 addr = page_to_virt(page);
601
602 memcpy(addr, skb_frag_page(frag), skb_frag_size(frag));
603
604 __skb_fill_page_desc_noacc(skinfo, skinfo->nr_frags++,
605 addr, 0, skb_frag_size(frag));
606 }
607
608 out:
609 xsk_buff_free(xdp);
610 return skb;
611 }
612
613 /**
614 * ice_clean_xdp_irq_zc - produce AF_XDP descriptors to CQ
615 * @xdp_ring: XDP Tx ring
616 */
ice_clean_xdp_irq_zc(struct ice_tx_ring *xdp_ring)617 static u32 ice_clean_xdp_irq_zc(struct ice_tx_ring *xdp_ring)
618 {
619 u16 ntc = xdp_ring->next_to_clean;
620 struct ice_tx_desc *tx_desc;
621 u16 cnt = xdp_ring->count;
622 struct ice_tx_buf *tx_buf;
623 u16 completed_frames = 0;
624 u16 xsk_frames = 0;
625 u16 last_rs;
626 int i;
627
628 last_rs = xdp_ring->next_to_use ? xdp_ring->next_to_use - 1 : cnt - 1;
629 tx_desc = ICE_TX_DESC(xdp_ring, last_rs);
630 if (tx_desc->cmd_type_offset_bsz &
631 cpu_to_le64(ICE_TX_DESC_DTYPE_DESC_DONE)) {
632 if (last_rs >= ntc)
633 completed_frames = last_rs - ntc + 1;
634 else
635 completed_frames = last_rs + cnt - ntc + 1;
636 }
637
638 if (!completed_frames)
639 return 0;
640
641 if (likely(!xdp_ring->xdp_tx_active)) {
642 xsk_frames = completed_frames;
643 goto skip;
644 }
645
646 ntc = xdp_ring->next_to_clean;
647 for (i = 0; i < completed_frames; i++) {
648 tx_buf = &xdp_ring->tx_buf[ntc];
649
650 if (tx_buf->type == ICE_TX_BUF_XSK_TX) {
651 tx_buf->type = ICE_TX_BUF_EMPTY;
652 xsk_buff_free(tx_buf->xdp);
653 xdp_ring->xdp_tx_active--;
654 } else {
655 xsk_frames++;
656 }
657
658 ntc++;
659 if (ntc >= xdp_ring->count)
660 ntc = 0;
661 }
662 skip:
663 tx_desc->cmd_type_offset_bsz = 0;
664 xdp_ring->next_to_clean += completed_frames;
665 if (xdp_ring->next_to_clean >= cnt)
666 xdp_ring->next_to_clean -= cnt;
667 if (xsk_frames)
668 xsk_tx_completed(xdp_ring->xsk_pool, xsk_frames);
669
670 return completed_frames;
671 }
672
673 /**
674 * ice_xmit_xdp_tx_zc - AF_XDP ZC handler for XDP_TX
675 * @xdp: XDP buffer to xmit
676 * @xdp_ring: XDP ring to produce descriptor onto
677 *
678 * note that this function works directly on xdp_buff, no need to convert
679 * it to xdp_frame. xdp_buff pointer is stored to ice_tx_buf so that cleaning
680 * side will be able to xsk_buff_free() it.
681 *
682 * Returns ICE_XDP_TX for successfully produced desc, ICE_XDP_CONSUMED if there
683 * was not enough space on XDP ring
684 */
ice_xmit_xdp_tx_zc(struct xdp_buff *xdp, struct ice_tx_ring *xdp_ring)685 static int ice_xmit_xdp_tx_zc(struct xdp_buff *xdp,
686 struct ice_tx_ring *xdp_ring)
687 {
688 struct skb_shared_info *sinfo = NULL;
689 u32 size = xdp->data_end - xdp->data;
690 u32 ntu = xdp_ring->next_to_use;
691 struct ice_tx_desc *tx_desc;
692 struct ice_tx_buf *tx_buf;
693 struct xdp_buff *head;
694 u32 nr_frags = 0;
695 u32 free_space;
696 u32 frag = 0;
697
698 free_space = ICE_DESC_UNUSED(xdp_ring);
699 if (free_space < ICE_RING_QUARTER(xdp_ring))
700 free_space += ice_clean_xdp_irq_zc(xdp_ring);
701
702 if (unlikely(!free_space))
703 goto busy;
704
705 if (unlikely(xdp_buff_has_frags(xdp))) {
706 sinfo = xdp_get_shared_info_from_buff(xdp);
707 nr_frags = sinfo->nr_frags;
708 if (free_space < nr_frags + 1)
709 goto busy;
710 }
711
712 tx_desc = ICE_TX_DESC(xdp_ring, ntu);
713 tx_buf = &xdp_ring->tx_buf[ntu];
714 head = xdp;
715
716 for (;;) {
717 dma_addr_t dma;
718
719 dma = xsk_buff_xdp_get_dma(xdp);
720 xsk_buff_raw_dma_sync_for_device(xdp_ring->xsk_pool, dma, size);
721
722 tx_buf->xdp = xdp;
723 tx_buf->type = ICE_TX_BUF_XSK_TX;
724 tx_desc->buf_addr = cpu_to_le64(dma);
725 tx_desc->cmd_type_offset_bsz = ice_build_ctob(0, 0, size, 0);
726 /* account for each xdp_buff from xsk_buff_pool */
727 xdp_ring->xdp_tx_active++;
728
729 if (++ntu == xdp_ring->count)
730 ntu = 0;
731
732 if (frag == nr_frags)
733 break;
734
735 tx_desc = ICE_TX_DESC(xdp_ring, ntu);
736 tx_buf = &xdp_ring->tx_buf[ntu];
737
738 xdp = xsk_buff_get_frag(head);
739 size = skb_frag_size(&sinfo->frags[frag]);
740 frag++;
741 }
742
743 xdp_ring->next_to_use = ntu;
744 /* update last descriptor from a frame with EOP */
745 tx_desc->cmd_type_offset_bsz |=
746 cpu_to_le64(ICE_TX_DESC_CMD_EOP << ICE_TXD_QW1_CMD_S);
747
748 return ICE_XDP_TX;
749
750 busy:
751 xdp_ring->ring_stats->tx_stats.tx_busy++;
752
753 return ICE_XDP_CONSUMED;
754 }
755
756 /**
757 * ice_run_xdp_zc - Executes an XDP program in zero-copy path
758 * @rx_ring: Rx ring
759 * @xdp: xdp_buff used as input to the XDP program
760 * @xdp_prog: XDP program to run
761 * @xdp_ring: ring to be used for XDP_TX action
762 *
763 * Returns any of ICE_XDP_{PASS, CONSUMED, TX, REDIR}
764 */
765 static int
ice_run_xdp_zc(struct ice_rx_ring *rx_ring, struct xdp_buff *xdp, struct bpf_prog *xdp_prog, struct ice_tx_ring *xdp_ring)766 ice_run_xdp_zc(struct ice_rx_ring *rx_ring, struct xdp_buff *xdp,
767 struct bpf_prog *xdp_prog, struct ice_tx_ring *xdp_ring)
768 {
769 int err, result = ICE_XDP_PASS;
770 u32 act;
771
772 act = bpf_prog_run_xdp(xdp_prog, xdp);
773
774 if (likely(act == XDP_REDIRECT)) {
775 err = xdp_do_redirect(rx_ring->netdev, xdp, xdp_prog);
776 if (!err)
777 return ICE_XDP_REDIR;
778 if (xsk_uses_need_wakeup(rx_ring->xsk_pool) && err == -ENOBUFS)
779 result = ICE_XDP_EXIT;
780 else
781 result = ICE_XDP_CONSUMED;
782 goto out_failure;
783 }
784
785 switch (act) {
786 case XDP_PASS:
787 break;
788 case XDP_TX:
789 result = ice_xmit_xdp_tx_zc(xdp, xdp_ring);
790 if (result == ICE_XDP_CONSUMED)
791 goto out_failure;
792 break;
793 case XDP_DROP:
794 result = ICE_XDP_CONSUMED;
795 break;
796 default:
797 bpf_warn_invalid_xdp_action(rx_ring->netdev, xdp_prog, act);
798 fallthrough;
799 case XDP_ABORTED:
800 result = ICE_XDP_CONSUMED;
801 out_failure:
802 trace_xdp_exception(rx_ring->netdev, xdp_prog, act);
803 break;
804 }
805
806 return result;
807 }
808
809 static int
ice_add_xsk_frag(struct ice_rx_ring *rx_ring, struct xdp_buff *first, struct xdp_buff *xdp, const unsigned int size)810 ice_add_xsk_frag(struct ice_rx_ring *rx_ring, struct xdp_buff *first,
811 struct xdp_buff *xdp, const unsigned int size)
812 {
813 struct skb_shared_info *sinfo = xdp_get_shared_info_from_buff(first);
814
815 if (!size)
816 return 0;
817
818 if (!xdp_buff_has_frags(first)) {
819 sinfo->nr_frags = 0;
820 sinfo->xdp_frags_size = 0;
821 xdp_buff_set_frags_flag(first);
822 }
823
824 if (unlikely(sinfo->nr_frags == MAX_SKB_FRAGS)) {
825 xsk_buff_free(first);
826 return -ENOMEM;
827 }
828
829 __skb_fill_page_desc_noacc(sinfo, sinfo->nr_frags++,
830 virt_to_page(xdp->data_hard_start),
831 XDP_PACKET_HEADROOM, size);
832 sinfo->xdp_frags_size += size;
833 xsk_buff_add_frag(xdp);
834
835 return 0;
836 }
837
838 /**
839 * ice_clean_rx_irq_zc - consumes packets from the hardware ring
840 * @rx_ring: AF_XDP Rx ring
841 * @budget: NAPI budget
842 *
843 * Returns number of processed packets on success, remaining budget on failure.
844 */
ice_clean_rx_irq_zc(struct ice_rx_ring *rx_ring, int budget)845 int ice_clean_rx_irq_zc(struct ice_rx_ring *rx_ring, int budget)
846 {
847 unsigned int total_rx_bytes = 0, total_rx_packets = 0;
848 struct xsk_buff_pool *xsk_pool = rx_ring->xsk_pool;
849 u32 ntc = rx_ring->next_to_clean;
850 u32 ntu = rx_ring->next_to_use;
851 struct xdp_buff *first = NULL;
852 struct ice_tx_ring *xdp_ring;
853 unsigned int xdp_xmit = 0;
854 struct bpf_prog *xdp_prog;
855 u32 cnt = rx_ring->count;
856 bool failure = false;
857 int entries_to_alloc;
858
859 /* ZC patch is enabled only when XDP program is set,
860 * so here it can not be NULL
861 */
862 xdp_prog = READ_ONCE(rx_ring->xdp_prog);
863 xdp_ring = rx_ring->xdp_ring;
864
865 if (ntc != rx_ring->first_desc)
866 first = *ice_xdp_buf(rx_ring, rx_ring->first_desc);
867
868 while (likely(total_rx_packets < (unsigned int)budget)) {
869 union ice_32b_rx_flex_desc *rx_desc;
870 unsigned int size, xdp_res = 0;
871 struct xdp_buff *xdp;
872 struct sk_buff *skb;
873 u16 stat_err_bits;
874 u16 vlan_tag = 0;
875 u16 rx_ptype;
876
877 rx_desc = ICE_RX_DESC(rx_ring, ntc);
878
879 stat_err_bits = BIT(ICE_RX_FLEX_DESC_STATUS0_DD_S);
880 if (!ice_test_staterr(rx_desc->wb.status_error0, stat_err_bits))
881 break;
882
883 /* This memory barrier is needed to keep us from reading
884 * any other fields out of the rx_desc until we have
885 * verified the descriptor has been written back.
886 */
887 dma_rmb();
888
889 if (unlikely(ntc == ntu))
890 break;
891
892 xdp = *ice_xdp_buf(rx_ring, ntc);
893
894 size = le16_to_cpu(rx_desc->wb.pkt_len) &
895 ICE_RX_FLX_DESC_PKT_LEN_M;
896
897 xsk_buff_set_size(xdp, size);
898 xsk_buff_dma_sync_for_cpu(xdp, xsk_pool);
899
900 if (!first) {
901 first = xdp;
902 } else if (ice_add_xsk_frag(rx_ring, first, xdp, size)) {
903 break;
904 }
905
906 if (++ntc == cnt)
907 ntc = 0;
908
909 if (ice_is_non_eop(rx_ring, rx_desc))
910 continue;
911
912 xdp_res = ice_run_xdp_zc(rx_ring, first, xdp_prog, xdp_ring);
913 if (likely(xdp_res & (ICE_XDP_TX | ICE_XDP_REDIR))) {
914 xdp_xmit |= xdp_res;
915 } else if (xdp_res == ICE_XDP_EXIT) {
916 failure = true;
917 first = NULL;
918 rx_ring->first_desc = ntc;
919 break;
920 } else if (xdp_res == ICE_XDP_CONSUMED) {
921 xsk_buff_free(first);
922 } else if (xdp_res == ICE_XDP_PASS) {
923 goto construct_skb;
924 }
925
926 total_rx_bytes += xdp_get_buff_len(first);
927 total_rx_packets++;
928
929 first = NULL;
930 rx_ring->first_desc = ntc;
931 continue;
932
933 construct_skb:
934 /* XDP_PASS path */
935 skb = ice_construct_skb_zc(rx_ring, first);
936 if (!skb) {
937 rx_ring->ring_stats->rx_stats.alloc_buf_failed++;
938 break;
939 }
940
941 first = NULL;
942 rx_ring->first_desc = ntc;
943
944 if (eth_skb_pad(skb)) {
945 skb = NULL;
946 continue;
947 }
948
949 total_rx_bytes += skb->len;
950 total_rx_packets++;
951
952 vlan_tag = ice_get_vlan_tag_from_rx_desc(rx_desc);
953
954 rx_ptype = le16_to_cpu(rx_desc->wb.ptype_flex_flags0) &
955 ICE_RX_FLEX_DESC_PTYPE_M;
956
957 ice_process_skb_fields(rx_ring, rx_desc, skb, rx_ptype);
958 ice_receive_skb(rx_ring, skb, vlan_tag);
959 }
960
961 rx_ring->next_to_clean = ntc;
962 entries_to_alloc = ICE_RX_DESC_UNUSED(rx_ring);
963 if (entries_to_alloc > ICE_RING_QUARTER(rx_ring))
964 failure |= !ice_alloc_rx_bufs_zc(rx_ring, entries_to_alloc);
965
966 ice_finalize_xdp_rx(xdp_ring, xdp_xmit, 0);
967 ice_update_rx_ring_stats(rx_ring, total_rx_packets, total_rx_bytes);
968
969 if (xsk_uses_need_wakeup(xsk_pool)) {
970 /* ntu could have changed when allocating entries above, so
971 * use rx_ring value instead of stack based one
972 */
973 if (failure || ntc == rx_ring->next_to_use)
974 xsk_set_rx_need_wakeup(xsk_pool);
975 else
976 xsk_clear_rx_need_wakeup(xsk_pool);
977
978 return (int)total_rx_packets;
979 }
980
981 return failure ? budget : (int)total_rx_packets;
982 }
983
984 /**
985 * ice_xmit_pkt - produce a single HW Tx descriptor out of AF_XDP descriptor
986 * @xdp_ring: XDP ring to produce the HW Tx descriptor on
987 * @desc: AF_XDP descriptor to pull the DMA address and length from
988 * @total_bytes: bytes accumulator that will be used for stats update
989 */
ice_xmit_pkt(struct ice_tx_ring *xdp_ring, struct xdp_desc *desc, unsigned int *total_bytes)990 static void ice_xmit_pkt(struct ice_tx_ring *xdp_ring, struct xdp_desc *desc,
991 unsigned int *total_bytes)
992 {
993 struct ice_tx_desc *tx_desc;
994 dma_addr_t dma;
995
996 dma = xsk_buff_raw_get_dma(xdp_ring->xsk_pool, desc->addr);
997 xsk_buff_raw_dma_sync_for_device(xdp_ring->xsk_pool, dma, desc->len);
998
999 tx_desc = ICE_TX_DESC(xdp_ring, xdp_ring->next_to_use++);
1000 tx_desc->buf_addr = cpu_to_le64(dma);
1001 tx_desc->cmd_type_offset_bsz = ice_build_ctob(xsk_is_eop_desc(desc),
1002 0, desc->len, 0);
1003
1004 *total_bytes += desc->len;
1005 }
1006
1007 /**
1008 * ice_xmit_pkt_batch - produce a batch of HW Tx descriptors out of AF_XDP descriptors
1009 * @xdp_ring: XDP ring to produce the HW Tx descriptors on
1010 * @descs: AF_XDP descriptors to pull the DMA addresses and lengths from
1011 * @total_bytes: bytes accumulator that will be used for stats update
1012 */
ice_xmit_pkt_batch(struct ice_tx_ring *xdp_ring, struct xdp_desc *descs, unsigned int *total_bytes)1013 static void ice_xmit_pkt_batch(struct ice_tx_ring *xdp_ring, struct xdp_desc *descs,
1014 unsigned int *total_bytes)
1015 {
1016 u16 ntu = xdp_ring->next_to_use;
1017 struct ice_tx_desc *tx_desc;
1018 u32 i;
1019
1020 loop_unrolled_for(i = 0; i < PKTS_PER_BATCH; i++) {
1021 dma_addr_t dma;
1022
1023 dma = xsk_buff_raw_get_dma(xdp_ring->xsk_pool, descs[i].addr);
1024 xsk_buff_raw_dma_sync_for_device(xdp_ring->xsk_pool, dma, descs[i].len);
1025
1026 tx_desc = ICE_TX_DESC(xdp_ring, ntu++);
1027 tx_desc->buf_addr = cpu_to_le64(dma);
1028 tx_desc->cmd_type_offset_bsz = ice_build_ctob(xsk_is_eop_desc(&descs[i]),
1029 0, descs[i].len, 0);
1030
1031 *total_bytes += descs[i].len;
1032 }
1033
1034 xdp_ring->next_to_use = ntu;
1035 }
1036
1037 /**
1038 * ice_fill_tx_hw_ring - produce the number of Tx descriptors onto ring
1039 * @xdp_ring: XDP ring to produce the HW Tx descriptors on
1040 * @descs: AF_XDP descriptors to pull the DMA addresses and lengths from
1041 * @nb_pkts: count of packets to be send
1042 * @total_bytes: bytes accumulator that will be used for stats update
1043 */
ice_fill_tx_hw_ring(struct ice_tx_ring *xdp_ring, struct xdp_desc *descs, u32 nb_pkts, unsigned int *total_bytes)1044 static void ice_fill_tx_hw_ring(struct ice_tx_ring *xdp_ring, struct xdp_desc *descs,
1045 u32 nb_pkts, unsigned int *total_bytes)
1046 {
1047 u32 batched, leftover, i;
1048
1049 batched = ALIGN_DOWN(nb_pkts, PKTS_PER_BATCH);
1050 leftover = nb_pkts & (PKTS_PER_BATCH - 1);
1051 for (i = 0; i < batched; i += PKTS_PER_BATCH)
1052 ice_xmit_pkt_batch(xdp_ring, &descs[i], total_bytes);
1053 for (; i < batched + leftover; i++)
1054 ice_xmit_pkt(xdp_ring, &descs[i], total_bytes);
1055 }
1056
1057 /**
1058 * ice_xmit_zc - take entries from XSK Tx ring and place them onto HW Tx ring
1059 * @xdp_ring: XDP ring to produce the HW Tx descriptors on
1060 *
1061 * Returns true if there is no more work that needs to be done, false otherwise
1062 */
ice_xmit_zc(struct ice_tx_ring *xdp_ring)1063 bool ice_xmit_zc(struct ice_tx_ring *xdp_ring)
1064 {
1065 struct xdp_desc *descs = xdp_ring->xsk_pool->tx_descs;
1066 u32 nb_pkts, nb_processed = 0;
1067 unsigned int total_bytes = 0;
1068 int budget;
1069
1070 ice_clean_xdp_irq_zc(xdp_ring);
1071
1072 budget = ICE_DESC_UNUSED(xdp_ring);
1073 budget = min_t(u16, budget, ICE_RING_QUARTER(xdp_ring));
1074
1075 nb_pkts = xsk_tx_peek_release_desc_batch(xdp_ring->xsk_pool, budget);
1076 if (!nb_pkts)
1077 return true;
1078
1079 if (xdp_ring->next_to_use + nb_pkts >= xdp_ring->count) {
1080 nb_processed = xdp_ring->count - xdp_ring->next_to_use;
1081 ice_fill_tx_hw_ring(xdp_ring, descs, nb_processed, &total_bytes);
1082 xdp_ring->next_to_use = 0;
1083 }
1084
1085 ice_fill_tx_hw_ring(xdp_ring, &descs[nb_processed], nb_pkts - nb_processed,
1086 &total_bytes);
1087
1088 ice_set_rs_bit(xdp_ring);
1089 ice_xdp_ring_update_tail(xdp_ring);
1090 ice_update_tx_ring_stats(xdp_ring, nb_pkts, total_bytes);
1091
1092 if (xsk_uses_need_wakeup(xdp_ring->xsk_pool))
1093 xsk_set_tx_need_wakeup(xdp_ring->xsk_pool);
1094
1095 return nb_pkts < budget;
1096 }
1097
1098 /**
1099 * ice_xsk_wakeup - Implements ndo_xsk_wakeup
1100 * @netdev: net_device
1101 * @queue_id: queue to wake up
1102 * @flags: ignored in our case, since we have Rx and Tx in the same NAPI
1103 *
1104 * Returns negative on error, zero otherwise.
1105 */
1106 int
ice_xsk_wakeup(struct net_device *netdev, u32 queue_id, u32 __always_unused flags)1107 ice_xsk_wakeup(struct net_device *netdev, u32 queue_id,
1108 u32 __always_unused flags)
1109 {
1110 struct ice_netdev_priv *np = netdev_priv(netdev);
1111 struct ice_q_vector *q_vector;
1112 struct ice_vsi *vsi = np->vsi;
1113 struct ice_tx_ring *ring;
1114
1115 if (test_bit(ICE_VSI_DOWN, vsi->state))
1116 return -ENETDOWN;
1117
1118 if (!ice_is_xdp_ena_vsi(vsi))
1119 return -EINVAL;
1120
1121 if (queue_id >= vsi->num_txq || queue_id >= vsi->num_rxq)
1122 return -EINVAL;
1123
1124 ring = vsi->rx_rings[queue_id]->xdp_ring;
1125
1126 if (!ring->xsk_pool)
1127 return -EINVAL;
1128
1129 /* The idea here is that if NAPI is running, mark a miss, so
1130 * it will run again. If not, trigger an interrupt and
1131 * schedule the NAPI from interrupt context. If NAPI would be
1132 * scheduled here, the interrupt affinity would not be
1133 * honored.
1134 */
1135 q_vector = ring->q_vector;
1136 if (!napi_if_scheduled_mark_missed(&q_vector->napi))
1137 ice_trigger_sw_intr(&vsi->back->hw, q_vector);
1138
1139 return 0;
1140 }
1141
1142 /**
1143 * ice_xsk_any_rx_ring_ena - Checks if Rx rings have AF_XDP buff pool attached
1144 * @vsi: VSI to be checked
1145 *
1146 * Returns true if any of the Rx rings has an AF_XDP buff pool attached
1147 */
ice_xsk_any_rx_ring_ena(struct ice_vsi *vsi)1148 bool ice_xsk_any_rx_ring_ena(struct ice_vsi *vsi)
1149 {
1150 int i;
1151
1152 ice_for_each_rxq(vsi, i) {
1153 if (xsk_get_pool_from_qid(vsi->netdev, i))
1154 return true;
1155 }
1156
1157 return false;
1158 }
1159
1160 /**
1161 * ice_xsk_clean_rx_ring - clean buffer pool queues connected to a given Rx ring
1162 * @rx_ring: ring to be cleaned
1163 */
ice_xsk_clean_rx_ring(struct ice_rx_ring *rx_ring)1164 void ice_xsk_clean_rx_ring(struct ice_rx_ring *rx_ring)
1165 {
1166 u16 ntc = rx_ring->next_to_clean;
1167 u16 ntu = rx_ring->next_to_use;
1168
1169 while (ntc != ntu) {
1170 struct xdp_buff *xdp = *ice_xdp_buf(rx_ring, ntc);
1171
1172 xsk_buff_free(xdp);
1173 ntc++;
1174 if (ntc >= rx_ring->count)
1175 ntc = 0;
1176 }
1177 }
1178
1179 /**
1180 * ice_xsk_clean_xdp_ring - Clean the XDP Tx ring and its buffer pool queues
1181 * @xdp_ring: XDP_Tx ring
1182 */
ice_xsk_clean_xdp_ring(struct ice_tx_ring *xdp_ring)1183 void ice_xsk_clean_xdp_ring(struct ice_tx_ring *xdp_ring)
1184 {
1185 u16 ntc = xdp_ring->next_to_clean, ntu = xdp_ring->next_to_use;
1186 u32 xsk_frames = 0;
1187
1188 while (ntc != ntu) {
1189 struct ice_tx_buf *tx_buf = &xdp_ring->tx_buf[ntc];
1190
1191 if (tx_buf->type == ICE_TX_BUF_XSK_TX) {
1192 tx_buf->type = ICE_TX_BUF_EMPTY;
1193 xsk_buff_free(tx_buf->xdp);
1194 } else {
1195 xsk_frames++;
1196 }
1197
1198 ntc++;
1199 if (ntc >= xdp_ring->count)
1200 ntc = 0;
1201 }
1202
1203 if (xsk_frames)
1204 xsk_tx_completed(xdp_ring->xsk_pool, xsk_frames);
1205 }
1206