1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * BPF JIT compiler
4 *
5 * Copyright (C) 2011-2013 Eric Dumazet (eric.dumazet@gmail.com)
6 * Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
7 */
8#include <linux/netdevice.h>
9#include <linux/filter.h>
10#include <linux/if_vlan.h>
11#include <linux/bpf.h>
12#include <linux/memory.h>
13#include <linux/sort.h>
14#include <asm/extable.h>
15#include <asm/ftrace.h>
16#include <asm/set_memory.h>
17#include <asm/nospec-branch.h>
18#include <asm/text-patching.h>
19
20static u8 *emit_code(u8 *ptr, u32 bytes, unsigned int len)
21{
22	if (len == 1)
23		*ptr = bytes;
24	else if (len == 2)
25		*(u16 *)ptr = bytes;
26	else {
27		*(u32 *)ptr = bytes;
28		barrier();
29	}
30	return ptr + len;
31}
32
33#define EMIT(bytes, len) \
34	do { prog = emit_code(prog, bytes, len); } while (0)
35
36#define EMIT1(b1)		EMIT(b1, 1)
37#define EMIT2(b1, b2)		EMIT((b1) + ((b2) << 8), 2)
38#define EMIT3(b1, b2, b3)	EMIT((b1) + ((b2) << 8) + ((b3) << 16), 3)
39#define EMIT4(b1, b2, b3, b4)   EMIT((b1) + ((b2) << 8) + ((b3) << 16) + ((b4) << 24), 4)
40
41#define EMIT1_off32(b1, off) \
42	do { EMIT1(b1); EMIT(off, 4); } while (0)
43#define EMIT2_off32(b1, b2, off) \
44	do { EMIT2(b1, b2); EMIT(off, 4); } while (0)
45#define EMIT3_off32(b1, b2, b3, off) \
46	do { EMIT3(b1, b2, b3); EMIT(off, 4); } while (0)
47#define EMIT4_off32(b1, b2, b3, b4, off) \
48	do { EMIT4(b1, b2, b3, b4); EMIT(off, 4); } while (0)
49
50#ifdef CONFIG_X86_KERNEL_IBT
51#define EMIT_ENDBR()	EMIT(gen_endbr(), 4)
52#else
53#define EMIT_ENDBR()
54#endif
55
56static bool is_imm8(int value)
57{
58	return value <= 127 && value >= -128;
59}
60
61static bool is_simm32(s64 value)
62{
63	return value == (s64)(s32)value;
64}
65
66static bool is_uimm32(u64 value)
67{
68	return value == (u64)(u32)value;
69}
70
71/* mov dst, src */
72#define EMIT_mov(DST, SRC)								 \
73	do {										 \
74		if (DST != SRC)								 \
75			EMIT3(add_2mod(0x48, DST, SRC), 0x89, add_2reg(0xC0, DST, SRC)); \
76	} while (0)
77
78static int bpf_size_to_x86_bytes(int bpf_size)
79{
80	if (bpf_size == BPF_W)
81		return 4;
82	else if (bpf_size == BPF_H)
83		return 2;
84	else if (bpf_size == BPF_B)
85		return 1;
86	else if (bpf_size == BPF_DW)
87		return 4; /* imm32 */
88	else
89		return 0;
90}
91
92/*
93 * List of x86 cond jumps opcodes (. + s8)
94 * Add 0x10 (and an extra 0x0f) to generate far jumps (. + s32)
95 */
96#define X86_JB  0x72
97#define X86_JAE 0x73
98#define X86_JE  0x74
99#define X86_JNE 0x75
100#define X86_JBE 0x76
101#define X86_JA  0x77
102#define X86_JL  0x7C
103#define X86_JGE 0x7D
104#define X86_JLE 0x7E
105#define X86_JG  0x7F
106
107/* Pick a register outside of BPF range for JIT internal work */
108#define AUX_REG (MAX_BPF_JIT_REG + 1)
109#define X86_REG_R9 (MAX_BPF_JIT_REG + 2)
110
111/*
112 * The following table maps BPF registers to x86-64 registers.
113 *
114 * x86-64 register R12 is unused, since if used as base address
115 * register in load/store instructions, it always needs an
116 * extra byte of encoding and is callee saved.
117 *
118 * x86-64 register R9 is not used by BPF programs, but can be used by BPF
119 * trampoline. x86-64 register R10 is used for blinding (if enabled).
120 */
121static const int reg2hex[] = {
122	[BPF_REG_0] = 0,  /* RAX */
123	[BPF_REG_1] = 7,  /* RDI */
124	[BPF_REG_2] = 6,  /* RSI */
125	[BPF_REG_3] = 2,  /* RDX */
126	[BPF_REG_4] = 1,  /* RCX */
127	[BPF_REG_5] = 0,  /* R8  */
128	[BPF_REG_6] = 3,  /* RBX callee saved */
129	[BPF_REG_7] = 5,  /* R13 callee saved */
130	[BPF_REG_8] = 6,  /* R14 callee saved */
131	[BPF_REG_9] = 7,  /* R15 callee saved */
132	[BPF_REG_FP] = 5, /* RBP readonly */
133	[BPF_REG_AX] = 2, /* R10 temp register */
134	[AUX_REG] = 3,    /* R11 temp register */
135	[X86_REG_R9] = 1, /* R9 register, 6th function argument */
136};
137
138static const int reg2pt_regs[] = {
139	[BPF_REG_0] = offsetof(struct pt_regs, ax),
140	[BPF_REG_1] = offsetof(struct pt_regs, di),
141	[BPF_REG_2] = offsetof(struct pt_regs, si),
142	[BPF_REG_3] = offsetof(struct pt_regs, dx),
143	[BPF_REG_4] = offsetof(struct pt_regs, cx),
144	[BPF_REG_5] = offsetof(struct pt_regs, r8),
145	[BPF_REG_6] = offsetof(struct pt_regs, bx),
146	[BPF_REG_7] = offsetof(struct pt_regs, r13),
147	[BPF_REG_8] = offsetof(struct pt_regs, r14),
148	[BPF_REG_9] = offsetof(struct pt_regs, r15),
149};
150
151/*
152 * is_ereg() == true if BPF register 'reg' maps to x86-64 r8..r15
153 * which need extra byte of encoding.
154 * rax,rcx,...,rbp have simpler encoding
155 */
156static bool is_ereg(u32 reg)
157{
158	return (1 << reg) & (BIT(BPF_REG_5) |
159			     BIT(AUX_REG) |
160			     BIT(BPF_REG_7) |
161			     BIT(BPF_REG_8) |
162			     BIT(BPF_REG_9) |
163			     BIT(X86_REG_R9) |
164			     BIT(BPF_REG_AX));
165}
166
167/*
168 * is_ereg_8l() == true if BPF register 'reg' is mapped to access x86-64
169 * lower 8-bit registers dil,sil,bpl,spl,r8b..r15b, which need extra byte
170 * of encoding. al,cl,dl,bl have simpler encoding.
171 */
172static bool is_ereg_8l(u32 reg)
173{
174	return is_ereg(reg) ||
175	    (1 << reg) & (BIT(BPF_REG_1) |
176			  BIT(BPF_REG_2) |
177			  BIT(BPF_REG_FP));
178}
179
180static bool is_axreg(u32 reg)
181{
182	return reg == BPF_REG_0;
183}
184
185/* Add modifiers if 'reg' maps to x86-64 registers R8..R15 */
186static u8 add_1mod(u8 byte, u32 reg)
187{
188	if (is_ereg(reg))
189		byte |= 1;
190	return byte;
191}
192
193static u8 add_2mod(u8 byte, u32 r1, u32 r2)
194{
195	if (is_ereg(r1))
196		byte |= 1;
197	if (is_ereg(r2))
198		byte |= 4;
199	return byte;
200}
201
202/* Encode 'dst_reg' register into x86-64 opcode 'byte' */
203static u8 add_1reg(u8 byte, u32 dst_reg)
204{
205	return byte + reg2hex[dst_reg];
206}
207
208/* Encode 'dst_reg' and 'src_reg' registers into x86-64 opcode 'byte' */
209static u8 add_2reg(u8 byte, u32 dst_reg, u32 src_reg)
210{
211	return byte + reg2hex[dst_reg] + (reg2hex[src_reg] << 3);
212}
213
214/* Some 1-byte opcodes for binary ALU operations */
215static u8 simple_alu_opcodes[] = {
216	[BPF_ADD] = 0x01,
217	[BPF_SUB] = 0x29,
218	[BPF_AND] = 0x21,
219	[BPF_OR] = 0x09,
220	[BPF_XOR] = 0x31,
221	[BPF_LSH] = 0xE0,
222	[BPF_RSH] = 0xE8,
223	[BPF_ARSH] = 0xF8,
224};
225
226static void jit_fill_hole(void *area, unsigned int size)
227{
228	/* Fill whole space with INT3 instructions */
229	memset(area, 0xcc, size);
230}
231
232int bpf_arch_text_invalidate(void *dst, size_t len)
233{
234	return IS_ERR_OR_NULL(text_poke_set(dst, 0xcc, len));
235}
236
237struct jit_context {
238	int cleanup_addr; /* Epilogue code offset */
239
240	/*
241	 * Program specific offsets of labels in the code; these rely on the
242	 * JIT doing at least 2 passes, recording the position on the first
243	 * pass, only to generate the correct offset on the second pass.
244	 */
245	int tail_call_direct_label;
246	int tail_call_indirect_label;
247};
248
249/* Maximum number of bytes emitted while JITing one eBPF insn */
250#define BPF_MAX_INSN_SIZE	128
251#define BPF_INSN_SAFETY		64
252
253/* Number of bytes emit_patch() needs to generate instructions */
254#define X86_PATCH_SIZE		5
255/* Number of bytes that will be skipped on tailcall */
256#define X86_TAIL_CALL_OFFSET	(11 + ENDBR_INSN_SIZE)
257
258static void push_callee_regs(u8 **pprog, bool *callee_regs_used)
259{
260	u8 *prog = *pprog;
261
262	if (callee_regs_used[0])
263		EMIT1(0x53);         /* push rbx */
264	if (callee_regs_used[1])
265		EMIT2(0x41, 0x55);   /* push r13 */
266	if (callee_regs_used[2])
267		EMIT2(0x41, 0x56);   /* push r14 */
268	if (callee_regs_used[3])
269		EMIT2(0x41, 0x57);   /* push r15 */
270	*pprog = prog;
271}
272
273static void pop_callee_regs(u8 **pprog, bool *callee_regs_used)
274{
275	u8 *prog = *pprog;
276
277	if (callee_regs_used[3])
278		EMIT2(0x41, 0x5F);   /* pop r15 */
279	if (callee_regs_used[2])
280		EMIT2(0x41, 0x5E);   /* pop r14 */
281	if (callee_regs_used[1])
282		EMIT2(0x41, 0x5D);   /* pop r13 */
283	if (callee_regs_used[0])
284		EMIT1(0x5B);         /* pop rbx */
285	*pprog = prog;
286}
287
288/*
289 * Emit x86-64 prologue code for BPF program.
290 * bpf_tail_call helper will skip the first X86_TAIL_CALL_OFFSET bytes
291 * while jumping to another program
292 */
293static void emit_prologue(u8 **pprog, u32 stack_depth, bool ebpf_from_cbpf,
294			  bool tail_call_reachable, bool is_subprog)
295{
296	u8 *prog = *pprog;
297
298	/* BPF trampoline can be made to work without these nops,
299	 * but let's waste 5 bytes for now and optimize later
300	 */
301	EMIT_ENDBR();
302	memcpy(prog, x86_nops[5], X86_PATCH_SIZE);
303	prog += X86_PATCH_SIZE;
304	if (!ebpf_from_cbpf) {
305		if (tail_call_reachable && !is_subprog)
306			EMIT2(0x31, 0xC0); /* xor eax, eax */
307		else
308			EMIT2(0x66, 0x90); /* nop2 */
309	}
310	EMIT1(0x55);             /* push rbp */
311	EMIT3(0x48, 0x89, 0xE5); /* mov rbp, rsp */
312
313	/* X86_TAIL_CALL_OFFSET is here */
314	EMIT_ENDBR();
315
316	/* sub rsp, rounded_stack_depth */
317	if (stack_depth)
318		EMIT3_off32(0x48, 0x81, 0xEC, round_up(stack_depth, 8));
319	if (tail_call_reachable)
320		EMIT1(0x50);         /* push rax */
321	*pprog = prog;
322}
323
324static int emit_patch(u8 **pprog, void *func, void *ip, u8 opcode)
325{
326	u8 *prog = *pprog;
327	s64 offset;
328
329	offset = func - (ip + X86_PATCH_SIZE);
330	if (!is_simm32(offset)) {
331		pr_err("Target call %p is out of range\n", func);
332		return -ERANGE;
333	}
334	EMIT1_off32(opcode, offset);
335	*pprog = prog;
336	return 0;
337}
338
339static int emit_call(u8 **pprog, void *func, void *ip)
340{
341	return emit_patch(pprog, func, ip, 0xE8);
342}
343
344static int emit_rsb_call(u8 **pprog, void *func, void *ip)
345{
346	OPTIMIZER_HIDE_VAR(func);
347	x86_call_depth_emit_accounting(pprog, func);
348	return emit_patch(pprog, func, ip, 0xE8);
349}
350
351static int emit_jump(u8 **pprog, void *func, void *ip)
352{
353	return emit_patch(pprog, func, ip, 0xE9);
354}
355
356static int __bpf_arch_text_poke(void *ip, enum bpf_text_poke_type t,
357				void *old_addr, void *new_addr)
358{
359	const u8 *nop_insn = x86_nops[5];
360	u8 old_insn[X86_PATCH_SIZE];
361	u8 new_insn[X86_PATCH_SIZE];
362	u8 *prog;
363	int ret;
364
365	memcpy(old_insn, nop_insn, X86_PATCH_SIZE);
366	if (old_addr) {
367		prog = old_insn;
368		ret = t == BPF_MOD_CALL ?
369		      emit_call(&prog, old_addr, ip) :
370		      emit_jump(&prog, old_addr, ip);
371		if (ret)
372			return ret;
373	}
374
375	memcpy(new_insn, nop_insn, X86_PATCH_SIZE);
376	if (new_addr) {
377		prog = new_insn;
378		ret = t == BPF_MOD_CALL ?
379		      emit_call(&prog, new_addr, ip) :
380		      emit_jump(&prog, new_addr, ip);
381		if (ret)
382			return ret;
383	}
384
385	ret = -EBUSY;
386	mutex_lock(&text_mutex);
387	if (memcmp(ip, old_insn, X86_PATCH_SIZE))
388		goto out;
389	ret = 1;
390	if (memcmp(ip, new_insn, X86_PATCH_SIZE)) {
391		text_poke_bp(ip, new_insn, X86_PATCH_SIZE, NULL);
392		ret = 0;
393	}
394out:
395	mutex_unlock(&text_mutex);
396	return ret;
397}
398
399int bpf_arch_text_poke(void *ip, enum bpf_text_poke_type t,
400		       void *old_addr, void *new_addr)
401{
402	if (!is_kernel_text((long)ip) &&
403	    !is_bpf_text_address((long)ip))
404		/* BPF poking in modules is not supported */
405		return -EINVAL;
406
407	/*
408	 * See emit_prologue(), for IBT builds the trampoline hook is preceded
409	 * with an ENDBR instruction.
410	 */
411	if (is_endbr(*(u32 *)ip))
412		ip += ENDBR_INSN_SIZE;
413
414	return __bpf_arch_text_poke(ip, t, old_addr, new_addr);
415}
416
417#define EMIT_LFENCE()	EMIT3(0x0F, 0xAE, 0xE8)
418
419static void emit_indirect_jump(u8 **pprog, int reg, u8 *ip)
420{
421	u8 *prog = *pprog;
422
423	if (cpu_feature_enabled(X86_FEATURE_RETPOLINE_LFENCE)) {
424		EMIT_LFENCE();
425		EMIT2(0xFF, 0xE0 + reg);
426	} else if (cpu_feature_enabled(X86_FEATURE_RETPOLINE)) {
427		OPTIMIZER_HIDE_VAR(reg);
428		if (cpu_feature_enabled(X86_FEATURE_CALL_DEPTH))
429			emit_jump(&prog, &__x86_indirect_jump_thunk_array[reg], ip);
430		else
431			emit_jump(&prog, &__x86_indirect_thunk_array[reg], ip);
432	} else {
433		EMIT2(0xFF, 0xE0 + reg);	/* jmp *%\reg */
434		if (IS_ENABLED(CONFIG_RETPOLINE) || IS_ENABLED(CONFIG_SLS))
435			EMIT1(0xCC);		/* int3 */
436	}
437
438	*pprog = prog;
439}
440
441static void emit_return(u8 **pprog, u8 *ip)
442{
443	u8 *prog = *pprog;
444
445	if (cpu_feature_enabled(X86_FEATURE_RETHUNK)) {
446		emit_jump(&prog, x86_return_thunk, ip);
447	} else {
448		EMIT1(0xC3);		/* ret */
449		if (IS_ENABLED(CONFIG_SLS))
450			EMIT1(0xCC);	/* int3 */
451	}
452
453	*pprog = prog;
454}
455
456/*
457 * Generate the following code:
458 *
459 * ... bpf_tail_call(void *ctx, struct bpf_array *array, u64 index) ...
460 *   if (index >= array->map.max_entries)
461 *     goto out;
462 *   if (tail_call_cnt++ >= MAX_TAIL_CALL_CNT)
463 *     goto out;
464 *   prog = array->ptrs[index];
465 *   if (prog == NULL)
466 *     goto out;
467 *   goto *(prog->bpf_func + prologue_size);
468 * out:
469 */
470static void emit_bpf_tail_call_indirect(u8 **pprog, bool *callee_regs_used,
471					u32 stack_depth, u8 *ip,
472					struct jit_context *ctx)
473{
474	int tcc_off = -4 - round_up(stack_depth, 8);
475	u8 *prog = *pprog, *start = *pprog;
476	int offset;
477
478	/*
479	 * rdi - pointer to ctx
480	 * rsi - pointer to bpf_array
481	 * rdx - index in bpf_array
482	 */
483
484	/*
485	 * if (index >= array->map.max_entries)
486	 *	goto out;
487	 */
488	EMIT2(0x89, 0xD2);                        /* mov edx, edx */
489	EMIT3(0x39, 0x56,                         /* cmp dword ptr [rsi + 16], edx */
490	      offsetof(struct bpf_array, map.max_entries));
491
492	offset = ctx->tail_call_indirect_label - (prog + 2 - start);
493	EMIT2(X86_JBE, offset);                   /* jbe out */
494
495	/*
496	 * if (tail_call_cnt++ >= MAX_TAIL_CALL_CNT)
497	 *	goto out;
498	 */
499	EMIT2_off32(0x8B, 0x85, tcc_off);         /* mov eax, dword ptr [rbp - tcc_off] */
500	EMIT3(0x83, 0xF8, MAX_TAIL_CALL_CNT);     /* cmp eax, MAX_TAIL_CALL_CNT */
501
502	offset = ctx->tail_call_indirect_label - (prog + 2 - start);
503	EMIT2(X86_JAE, offset);                   /* jae out */
504	EMIT3(0x83, 0xC0, 0x01);                  /* add eax, 1 */
505	EMIT2_off32(0x89, 0x85, tcc_off);         /* mov dword ptr [rbp - tcc_off], eax */
506
507	/* prog = array->ptrs[index]; */
508	EMIT4_off32(0x48, 0x8B, 0x8C, 0xD6,       /* mov rcx, [rsi + rdx * 8 + offsetof(...)] */
509		    offsetof(struct bpf_array, ptrs));
510
511	/*
512	 * if (prog == NULL)
513	 *	goto out;
514	 */
515	EMIT3(0x48, 0x85, 0xC9);                  /* test rcx,rcx */
516
517	offset = ctx->tail_call_indirect_label - (prog + 2 - start);
518	EMIT2(X86_JE, offset);                    /* je out */
519
520	pop_callee_regs(&prog, callee_regs_used);
521
522	EMIT1(0x58);                              /* pop rax */
523	if (stack_depth)
524		EMIT3_off32(0x48, 0x81, 0xC4,     /* add rsp, sd */
525			    round_up(stack_depth, 8));
526
527	/* goto *(prog->bpf_func + X86_TAIL_CALL_OFFSET); */
528	EMIT4(0x48, 0x8B, 0x49,                   /* mov rcx, qword ptr [rcx + 32] */
529	      offsetof(struct bpf_prog, bpf_func));
530	EMIT4(0x48, 0x83, 0xC1,                   /* add rcx, X86_TAIL_CALL_OFFSET */
531	      X86_TAIL_CALL_OFFSET);
532	/*
533	 * Now we're ready to jump into next BPF program
534	 * rdi == ctx (1st arg)
535	 * rcx == prog->bpf_func + X86_TAIL_CALL_OFFSET
536	 */
537	emit_indirect_jump(&prog, 1 /* rcx */, ip + (prog - start));
538
539	/* out: */
540	ctx->tail_call_indirect_label = prog - start;
541	*pprog = prog;
542}
543
544static void emit_bpf_tail_call_direct(struct bpf_jit_poke_descriptor *poke,
545				      u8 **pprog, u8 *ip,
546				      bool *callee_regs_used, u32 stack_depth,
547				      struct jit_context *ctx)
548{
549	int tcc_off = -4 - round_up(stack_depth, 8);
550	u8 *prog = *pprog, *start = *pprog;
551	int offset;
552
553	/*
554	 * if (tail_call_cnt++ >= MAX_TAIL_CALL_CNT)
555	 *	goto out;
556	 */
557	EMIT2_off32(0x8B, 0x85, tcc_off);             /* mov eax, dword ptr [rbp - tcc_off] */
558	EMIT3(0x83, 0xF8, MAX_TAIL_CALL_CNT);         /* cmp eax, MAX_TAIL_CALL_CNT */
559
560	offset = ctx->tail_call_direct_label - (prog + 2 - start);
561	EMIT2(X86_JAE, offset);                       /* jae out */
562	EMIT3(0x83, 0xC0, 0x01);                      /* add eax, 1 */
563	EMIT2_off32(0x89, 0x85, tcc_off);             /* mov dword ptr [rbp - tcc_off], eax */
564
565	poke->tailcall_bypass = ip + (prog - start);
566	poke->adj_off = X86_TAIL_CALL_OFFSET;
567	poke->tailcall_target = ip + ctx->tail_call_direct_label - X86_PATCH_SIZE;
568	poke->bypass_addr = (u8 *)poke->tailcall_target + X86_PATCH_SIZE;
569
570	emit_jump(&prog, (u8 *)poke->tailcall_target + X86_PATCH_SIZE,
571		  poke->tailcall_bypass);
572
573	pop_callee_regs(&prog, callee_regs_used);
574	EMIT1(0x58);                                  /* pop rax */
575	if (stack_depth)
576		EMIT3_off32(0x48, 0x81, 0xC4, round_up(stack_depth, 8));
577
578	memcpy(prog, x86_nops[5], X86_PATCH_SIZE);
579	prog += X86_PATCH_SIZE;
580
581	/* out: */
582	ctx->tail_call_direct_label = prog - start;
583
584	*pprog = prog;
585}
586
587static void bpf_tail_call_direct_fixup(struct bpf_prog *prog)
588{
589	struct bpf_jit_poke_descriptor *poke;
590	struct bpf_array *array;
591	struct bpf_prog *target;
592	int i, ret;
593
594	for (i = 0; i < prog->aux->size_poke_tab; i++) {
595		poke = &prog->aux->poke_tab[i];
596		if (poke->aux && poke->aux != prog->aux)
597			continue;
598
599		WARN_ON_ONCE(READ_ONCE(poke->tailcall_target_stable));
600
601		if (poke->reason != BPF_POKE_REASON_TAIL_CALL)
602			continue;
603
604		array = container_of(poke->tail_call.map, struct bpf_array, map);
605		mutex_lock(&array->aux->poke_mutex);
606		target = array->ptrs[poke->tail_call.key];
607		if (target) {
608			ret = __bpf_arch_text_poke(poke->tailcall_target,
609						   BPF_MOD_JUMP, NULL,
610						   (u8 *)target->bpf_func +
611						   poke->adj_off);
612			BUG_ON(ret < 0);
613			ret = __bpf_arch_text_poke(poke->tailcall_bypass,
614						   BPF_MOD_JUMP,
615						   (u8 *)poke->tailcall_target +
616						   X86_PATCH_SIZE, NULL);
617			BUG_ON(ret < 0);
618		}
619		WRITE_ONCE(poke->tailcall_target_stable, true);
620		mutex_unlock(&array->aux->poke_mutex);
621	}
622}
623
624static void emit_mov_imm32(u8 **pprog, bool sign_propagate,
625			   u32 dst_reg, const u32 imm32)
626{
627	u8 *prog = *pprog;
628	u8 b1, b2, b3;
629
630	/*
631	 * Optimization: if imm32 is positive, use 'mov %eax, imm32'
632	 * (which zero-extends imm32) to save 2 bytes.
633	 */
634	if (sign_propagate && (s32)imm32 < 0) {
635		/* 'mov %rax, imm32' sign extends imm32 */
636		b1 = add_1mod(0x48, dst_reg);
637		b2 = 0xC7;
638		b3 = 0xC0;
639		EMIT3_off32(b1, b2, add_1reg(b3, dst_reg), imm32);
640		goto done;
641	}
642
643	/*
644	 * Optimization: if imm32 is zero, use 'xor %eax, %eax'
645	 * to save 3 bytes.
646	 */
647	if (imm32 == 0) {
648		if (is_ereg(dst_reg))
649			EMIT1(add_2mod(0x40, dst_reg, dst_reg));
650		b2 = 0x31; /* xor */
651		b3 = 0xC0;
652		EMIT2(b2, add_2reg(b3, dst_reg, dst_reg));
653		goto done;
654	}
655
656	/* mov %eax, imm32 */
657	if (is_ereg(dst_reg))
658		EMIT1(add_1mod(0x40, dst_reg));
659	EMIT1_off32(add_1reg(0xB8, dst_reg), imm32);
660done:
661	*pprog = prog;
662}
663
664static void emit_mov_imm64(u8 **pprog, u32 dst_reg,
665			   const u32 imm32_hi, const u32 imm32_lo)
666{
667	u8 *prog = *pprog;
668
669	if (is_uimm32(((u64)imm32_hi << 32) | (u32)imm32_lo)) {
670		/*
671		 * For emitting plain u32, where sign bit must not be
672		 * propagated LLVM tends to load imm64 over mov32
673		 * directly, so save couple of bytes by just doing
674		 * 'mov %eax, imm32' instead.
675		 */
676		emit_mov_imm32(&prog, false, dst_reg, imm32_lo);
677	} else {
678		/* movabsq rax, imm64 */
679		EMIT2(add_1mod(0x48, dst_reg), add_1reg(0xB8, dst_reg));
680		EMIT(imm32_lo, 4);
681		EMIT(imm32_hi, 4);
682	}
683
684	*pprog = prog;
685}
686
687static void emit_mov_reg(u8 **pprog, bool is64, u32 dst_reg, u32 src_reg)
688{
689	u8 *prog = *pprog;
690
691	if (is64) {
692		/* mov dst, src */
693		EMIT_mov(dst_reg, src_reg);
694	} else {
695		/* mov32 dst, src */
696		if (is_ereg(dst_reg) || is_ereg(src_reg))
697			EMIT1(add_2mod(0x40, dst_reg, src_reg));
698		EMIT2(0x89, add_2reg(0xC0, dst_reg, src_reg));
699	}
700
701	*pprog = prog;
702}
703
704static void emit_movsx_reg(u8 **pprog, int num_bits, bool is64, u32 dst_reg,
705			   u32 src_reg)
706{
707	u8 *prog = *pprog;
708
709	if (is64) {
710		/* movs[b,w,l]q dst, src */
711		if (num_bits == 8)
712			EMIT4(add_2mod(0x48, src_reg, dst_reg), 0x0f, 0xbe,
713			      add_2reg(0xC0, src_reg, dst_reg));
714		else if (num_bits == 16)
715			EMIT4(add_2mod(0x48, src_reg, dst_reg), 0x0f, 0xbf,
716			      add_2reg(0xC0, src_reg, dst_reg));
717		else if (num_bits == 32)
718			EMIT3(add_2mod(0x48, src_reg, dst_reg), 0x63,
719			      add_2reg(0xC0, src_reg, dst_reg));
720	} else {
721		/* movs[b,w]l dst, src */
722		if (num_bits == 8) {
723			EMIT4(add_2mod(0x40, src_reg, dst_reg), 0x0f, 0xbe,
724			      add_2reg(0xC0, src_reg, dst_reg));
725		} else if (num_bits == 16) {
726			if (is_ereg(dst_reg) || is_ereg(src_reg))
727				EMIT1(add_2mod(0x40, src_reg, dst_reg));
728			EMIT3(add_2mod(0x0f, src_reg, dst_reg), 0xbf,
729			      add_2reg(0xC0, src_reg, dst_reg));
730		}
731	}
732
733	*pprog = prog;
734}
735
736/* Emit the suffix (ModR/M etc) for addressing *(ptr_reg + off) and val_reg */
737static void emit_insn_suffix(u8 **pprog, u32 ptr_reg, u32 val_reg, int off)
738{
739	u8 *prog = *pprog;
740
741	if (is_imm8(off)) {
742		/* 1-byte signed displacement.
743		 *
744		 * If off == 0 we could skip this and save one extra byte, but
745		 * special case of x86 R13 which always needs an offset is not
746		 * worth the hassle
747		 */
748		EMIT2(add_2reg(0x40, ptr_reg, val_reg), off);
749	} else {
750		/* 4-byte signed displacement */
751		EMIT1_off32(add_2reg(0x80, ptr_reg, val_reg), off);
752	}
753	*pprog = prog;
754}
755
756/*
757 * Emit a REX byte if it will be necessary to address these registers
758 */
759static void maybe_emit_mod(u8 **pprog, u32 dst_reg, u32 src_reg, bool is64)
760{
761	u8 *prog = *pprog;
762
763	if (is64)
764		EMIT1(add_2mod(0x48, dst_reg, src_reg));
765	else if (is_ereg(dst_reg) || is_ereg(src_reg))
766		EMIT1(add_2mod(0x40, dst_reg, src_reg));
767	*pprog = prog;
768}
769
770/*
771 * Similar version of maybe_emit_mod() for a single register
772 */
773static void maybe_emit_1mod(u8 **pprog, u32 reg, bool is64)
774{
775	u8 *prog = *pprog;
776
777	if (is64)
778		EMIT1(add_1mod(0x48, reg));
779	else if (is_ereg(reg))
780		EMIT1(add_1mod(0x40, reg));
781	*pprog = prog;
782}
783
784/* LDX: dst_reg = *(u8*)(src_reg + off) */
785static void emit_ldx(u8 **pprog, u32 size, u32 dst_reg, u32 src_reg, int off)
786{
787	u8 *prog = *pprog;
788
789	switch (size) {
790	case BPF_B:
791		/* Emit 'movzx rax, byte ptr [rax + off]' */
792		EMIT3(add_2mod(0x48, src_reg, dst_reg), 0x0F, 0xB6);
793		break;
794	case BPF_H:
795		/* Emit 'movzx rax, word ptr [rax + off]' */
796		EMIT3(add_2mod(0x48, src_reg, dst_reg), 0x0F, 0xB7);
797		break;
798	case BPF_W:
799		/* Emit 'mov eax, dword ptr [rax+0x14]' */
800		if (is_ereg(dst_reg) || is_ereg(src_reg))
801			EMIT2(add_2mod(0x40, src_reg, dst_reg), 0x8B);
802		else
803			EMIT1(0x8B);
804		break;
805	case BPF_DW:
806		/* Emit 'mov rax, qword ptr [rax+0x14]' */
807		EMIT2(add_2mod(0x48, src_reg, dst_reg), 0x8B);
808		break;
809	}
810	emit_insn_suffix(&prog, src_reg, dst_reg, off);
811	*pprog = prog;
812}
813
814/* LDSX: dst_reg = *(s8*)(src_reg + off) */
815static void emit_ldsx(u8 **pprog, u32 size, u32 dst_reg, u32 src_reg, int off)
816{
817	u8 *prog = *pprog;
818
819	switch (size) {
820	case BPF_B:
821		/* Emit 'movsx rax, byte ptr [rax + off]' */
822		EMIT3(add_2mod(0x48, src_reg, dst_reg), 0x0F, 0xBE);
823		break;
824	case BPF_H:
825		/* Emit 'movsx rax, word ptr [rax + off]' */
826		EMIT3(add_2mod(0x48, src_reg, dst_reg), 0x0F, 0xBF);
827		break;
828	case BPF_W:
829		/* Emit 'movsx rax, dword ptr [rax+0x14]' */
830		EMIT2(add_2mod(0x48, src_reg, dst_reg), 0x63);
831		break;
832	}
833	emit_insn_suffix(&prog, src_reg, dst_reg, off);
834	*pprog = prog;
835}
836
837/* STX: *(u8*)(dst_reg + off) = src_reg */
838static void emit_stx(u8 **pprog, u32 size, u32 dst_reg, u32 src_reg, int off)
839{
840	u8 *prog = *pprog;
841
842	switch (size) {
843	case BPF_B:
844		/* Emit 'mov byte ptr [rax + off], al' */
845		if (is_ereg(dst_reg) || is_ereg_8l(src_reg))
846			/* Add extra byte for eregs or SIL,DIL,BPL in src_reg */
847			EMIT2(add_2mod(0x40, dst_reg, src_reg), 0x88);
848		else
849			EMIT1(0x88);
850		break;
851	case BPF_H:
852		if (is_ereg(dst_reg) || is_ereg(src_reg))
853			EMIT3(0x66, add_2mod(0x40, dst_reg, src_reg), 0x89);
854		else
855			EMIT2(0x66, 0x89);
856		break;
857	case BPF_W:
858		if (is_ereg(dst_reg) || is_ereg(src_reg))
859			EMIT2(add_2mod(0x40, dst_reg, src_reg), 0x89);
860		else
861			EMIT1(0x89);
862		break;
863	case BPF_DW:
864		EMIT2(add_2mod(0x48, dst_reg, src_reg), 0x89);
865		break;
866	}
867	emit_insn_suffix(&prog, dst_reg, src_reg, off);
868	*pprog = prog;
869}
870
871static int emit_atomic(u8 **pprog, u8 atomic_op,
872		       u32 dst_reg, u32 src_reg, s16 off, u8 bpf_size)
873{
874	u8 *prog = *pprog;
875
876	EMIT1(0xF0); /* lock prefix */
877
878	maybe_emit_mod(&prog, dst_reg, src_reg, bpf_size == BPF_DW);
879
880	/* emit opcode */
881	switch (atomic_op) {
882	case BPF_ADD:
883	case BPF_AND:
884	case BPF_OR:
885	case BPF_XOR:
886		/* lock *(u32/u64*)(dst_reg + off) <op>= src_reg */
887		EMIT1(simple_alu_opcodes[atomic_op]);
888		break;
889	case BPF_ADD | BPF_FETCH:
890		/* src_reg = atomic_fetch_add(dst_reg + off, src_reg); */
891		EMIT2(0x0F, 0xC1);
892		break;
893	case BPF_XCHG:
894		/* src_reg = atomic_xchg(dst_reg + off, src_reg); */
895		EMIT1(0x87);
896		break;
897	case BPF_CMPXCHG:
898		/* r0 = atomic_cmpxchg(dst_reg + off, r0, src_reg); */
899		EMIT2(0x0F, 0xB1);
900		break;
901	default:
902		pr_err("bpf_jit: unknown atomic opcode %02x\n", atomic_op);
903		return -EFAULT;
904	}
905
906	emit_insn_suffix(&prog, dst_reg, src_reg, off);
907
908	*pprog = prog;
909	return 0;
910}
911
912bool ex_handler_bpf(const struct exception_table_entry *x, struct pt_regs *regs)
913{
914	u32 reg = x->fixup >> 8;
915
916	/* jump over faulting load and clear dest register */
917	*(unsigned long *)((void *)regs + reg) = 0;
918	regs->ip += x->fixup & 0xff;
919	return true;
920}
921
922static void detect_reg_usage(struct bpf_insn *insn, int insn_cnt,
923			     bool *regs_used, bool *tail_call_seen)
924{
925	int i;
926
927	for (i = 1; i <= insn_cnt; i++, insn++) {
928		if (insn->code == (BPF_JMP | BPF_TAIL_CALL))
929			*tail_call_seen = true;
930		if (insn->dst_reg == BPF_REG_6 || insn->src_reg == BPF_REG_6)
931			regs_used[0] = true;
932		if (insn->dst_reg == BPF_REG_7 || insn->src_reg == BPF_REG_7)
933			regs_used[1] = true;
934		if (insn->dst_reg == BPF_REG_8 || insn->src_reg == BPF_REG_8)
935			regs_used[2] = true;
936		if (insn->dst_reg == BPF_REG_9 || insn->src_reg == BPF_REG_9)
937			regs_used[3] = true;
938	}
939}
940
941static void emit_nops(u8 **pprog, int len)
942{
943	u8 *prog = *pprog;
944	int i, noplen;
945
946	while (len > 0) {
947		noplen = len;
948
949		if (noplen > ASM_NOP_MAX)
950			noplen = ASM_NOP_MAX;
951
952		for (i = 0; i < noplen; i++)
953			EMIT1(x86_nops[noplen][i]);
954		len -= noplen;
955	}
956
957	*pprog = prog;
958}
959
960/* emit the 3-byte VEX prefix
961 *
962 * r: same as rex.r, extra bit for ModRM reg field
963 * x: same as rex.x, extra bit for SIB index field
964 * b: same as rex.b, extra bit for ModRM r/m, or SIB base
965 * m: opcode map select, encoding escape bytes e.g. 0x0f38
966 * w: same as rex.w (32 bit or 64 bit) or opcode specific
967 * src_reg2: additional source reg (encoded as BPF reg)
968 * l: vector length (128 bit or 256 bit) or reserved
969 * pp: opcode prefix (none, 0x66, 0xf2 or 0xf3)
970 */
971static void emit_3vex(u8 **pprog, bool r, bool x, bool b, u8 m,
972		      bool w, u8 src_reg2, bool l, u8 pp)
973{
974	u8 *prog = *pprog;
975	const u8 b0 = 0xc4; /* first byte of 3-byte VEX prefix */
976	u8 b1, b2;
977	u8 vvvv = reg2hex[src_reg2];
978
979	/* reg2hex gives only the lower 3 bit of vvvv */
980	if (is_ereg(src_reg2))
981		vvvv |= 1 << 3;
982
983	/*
984	 * 2nd byte of 3-byte VEX prefix
985	 * ~ means bit inverted encoding
986	 *
987	 *    7                           0
988	 *  +---+---+---+---+---+---+---+---+
989	 *  |~R |~X |~B |         m         |
990	 *  +---+---+---+---+---+---+---+---+
991	 */
992	b1 = (!r << 7) | (!x << 6) | (!b << 5) | (m & 0x1f);
993	/*
994	 * 3rd byte of 3-byte VEX prefix
995	 *
996	 *    7                           0
997	 *  +---+---+---+---+---+---+---+---+
998	 *  | W |     ~vvvv     | L |   pp  |
999	 *  +---+---+---+---+---+---+---+---+
1000	 */
1001	b2 = (w << 7) | ((~vvvv & 0xf) << 3) | (l << 2) | (pp & 3);
1002
1003	EMIT3(b0, b1, b2);
1004	*pprog = prog;
1005}
1006
1007/* emit BMI2 shift instruction */
1008static void emit_shiftx(u8 **pprog, u32 dst_reg, u8 src_reg, bool is64, u8 op)
1009{
1010	u8 *prog = *pprog;
1011	bool r = is_ereg(dst_reg);
1012	u8 m = 2; /* escape code 0f38 */
1013
1014	emit_3vex(&prog, r, false, r, m, is64, src_reg, false, op);
1015	EMIT2(0xf7, add_2reg(0xC0, dst_reg, dst_reg));
1016	*pprog = prog;
1017}
1018
1019#define INSN_SZ_DIFF (((addrs[i] - addrs[i - 1]) - (prog - temp)))
1020
1021/* mov rax, qword ptr [rbp - rounded_stack_depth - 8] */
1022#define RESTORE_TAIL_CALL_CNT(stack)				\
1023	EMIT3_off32(0x48, 0x8B, 0x85, -round_up(stack, 8) - 8)
1024
1025static int do_jit(struct bpf_prog *bpf_prog, int *addrs, u8 *image, u8 *rw_image,
1026		  int oldproglen, struct jit_context *ctx, bool jmp_padding)
1027{
1028	bool tail_call_reachable = bpf_prog->aux->tail_call_reachable;
1029	struct bpf_insn *insn = bpf_prog->insnsi;
1030	bool callee_regs_used[4] = {};
1031	int insn_cnt = bpf_prog->len;
1032	bool tail_call_seen = false;
1033	bool seen_exit = false;
1034	u8 temp[BPF_MAX_INSN_SIZE + BPF_INSN_SAFETY];
1035	int i, excnt = 0;
1036	int ilen, proglen = 0;
1037	u8 *prog = temp;
1038	int err;
1039
1040	detect_reg_usage(insn, insn_cnt, callee_regs_used,
1041			 &tail_call_seen);
1042
1043	/* tail call's presence in current prog implies it is reachable */
1044	tail_call_reachable |= tail_call_seen;
1045
1046	emit_prologue(&prog, bpf_prog->aux->stack_depth,
1047		      bpf_prog_was_classic(bpf_prog), tail_call_reachable,
1048		      bpf_prog->aux->func_idx != 0);
1049	push_callee_regs(&prog, callee_regs_used);
1050
1051	ilen = prog - temp;
1052	if (rw_image)
1053		memcpy(rw_image + proglen, temp, ilen);
1054	proglen += ilen;
1055	addrs[0] = proglen;
1056	prog = temp;
1057
1058	for (i = 1; i <= insn_cnt; i++, insn++) {
1059		const s32 imm32 = insn->imm;
1060		u32 dst_reg = insn->dst_reg;
1061		u32 src_reg = insn->src_reg;
1062		u8 b2 = 0, b3 = 0;
1063		u8 *start_of_ldx;
1064		s64 jmp_offset;
1065		s16 insn_off;
1066		u8 jmp_cond;
1067		u8 *func;
1068		int nops;
1069
1070		switch (insn->code) {
1071			/* ALU */
1072		case BPF_ALU | BPF_ADD | BPF_X:
1073		case BPF_ALU | BPF_SUB | BPF_X:
1074		case BPF_ALU | BPF_AND | BPF_X:
1075		case BPF_ALU | BPF_OR | BPF_X:
1076		case BPF_ALU | BPF_XOR | BPF_X:
1077		case BPF_ALU64 | BPF_ADD | BPF_X:
1078		case BPF_ALU64 | BPF_SUB | BPF_X:
1079		case BPF_ALU64 | BPF_AND | BPF_X:
1080		case BPF_ALU64 | BPF_OR | BPF_X:
1081		case BPF_ALU64 | BPF_XOR | BPF_X:
1082			maybe_emit_mod(&prog, dst_reg, src_reg,
1083				       BPF_CLASS(insn->code) == BPF_ALU64);
1084			b2 = simple_alu_opcodes[BPF_OP(insn->code)];
1085			EMIT2(b2, add_2reg(0xC0, dst_reg, src_reg));
1086			break;
1087
1088		case BPF_ALU64 | BPF_MOV | BPF_X:
1089		case BPF_ALU | BPF_MOV | BPF_X:
1090			if (insn->off == 0)
1091				emit_mov_reg(&prog,
1092					     BPF_CLASS(insn->code) == BPF_ALU64,
1093					     dst_reg, src_reg);
1094			else
1095				emit_movsx_reg(&prog, insn->off,
1096					       BPF_CLASS(insn->code) == BPF_ALU64,
1097					       dst_reg, src_reg);
1098			break;
1099
1100			/* neg dst */
1101		case BPF_ALU | BPF_NEG:
1102		case BPF_ALU64 | BPF_NEG:
1103			maybe_emit_1mod(&prog, dst_reg,
1104					BPF_CLASS(insn->code) == BPF_ALU64);
1105			EMIT2(0xF7, add_1reg(0xD8, dst_reg));
1106			break;
1107
1108		case BPF_ALU | BPF_ADD | BPF_K:
1109		case BPF_ALU | BPF_SUB | BPF_K:
1110		case BPF_ALU | BPF_AND | BPF_K:
1111		case BPF_ALU | BPF_OR | BPF_K:
1112		case BPF_ALU | BPF_XOR | BPF_K:
1113		case BPF_ALU64 | BPF_ADD | BPF_K:
1114		case BPF_ALU64 | BPF_SUB | BPF_K:
1115		case BPF_ALU64 | BPF_AND | BPF_K:
1116		case BPF_ALU64 | BPF_OR | BPF_K:
1117		case BPF_ALU64 | BPF_XOR | BPF_K:
1118			maybe_emit_1mod(&prog, dst_reg,
1119					BPF_CLASS(insn->code) == BPF_ALU64);
1120
1121			/*
1122			 * b3 holds 'normal' opcode, b2 short form only valid
1123			 * in case dst is eax/rax.
1124			 */
1125			switch (BPF_OP(insn->code)) {
1126			case BPF_ADD:
1127				b3 = 0xC0;
1128				b2 = 0x05;
1129				break;
1130			case BPF_SUB:
1131				b3 = 0xE8;
1132				b2 = 0x2D;
1133				break;
1134			case BPF_AND:
1135				b3 = 0xE0;
1136				b2 = 0x25;
1137				break;
1138			case BPF_OR:
1139				b3 = 0xC8;
1140				b2 = 0x0D;
1141				break;
1142			case BPF_XOR:
1143				b3 = 0xF0;
1144				b2 = 0x35;
1145				break;
1146			}
1147
1148			if (is_imm8(imm32))
1149				EMIT3(0x83, add_1reg(b3, dst_reg), imm32);
1150			else if (is_axreg(dst_reg))
1151				EMIT1_off32(b2, imm32);
1152			else
1153				EMIT2_off32(0x81, add_1reg(b3, dst_reg), imm32);
1154			break;
1155
1156		case BPF_ALU64 | BPF_MOV | BPF_K:
1157		case BPF_ALU | BPF_MOV | BPF_K:
1158			emit_mov_imm32(&prog, BPF_CLASS(insn->code) == BPF_ALU64,
1159				       dst_reg, imm32);
1160			break;
1161
1162		case BPF_LD | BPF_IMM | BPF_DW:
1163			emit_mov_imm64(&prog, dst_reg, insn[1].imm, insn[0].imm);
1164			insn++;
1165			i++;
1166			break;
1167
1168			/* dst %= src, dst /= src, dst %= imm32, dst /= imm32 */
1169		case BPF_ALU | BPF_MOD | BPF_X:
1170		case BPF_ALU | BPF_DIV | BPF_X:
1171		case BPF_ALU | BPF_MOD | BPF_K:
1172		case BPF_ALU | BPF_DIV | BPF_K:
1173		case BPF_ALU64 | BPF_MOD | BPF_X:
1174		case BPF_ALU64 | BPF_DIV | BPF_X:
1175		case BPF_ALU64 | BPF_MOD | BPF_K:
1176		case BPF_ALU64 | BPF_DIV | BPF_K: {
1177			bool is64 = BPF_CLASS(insn->code) == BPF_ALU64;
1178
1179			if (dst_reg != BPF_REG_0)
1180				EMIT1(0x50); /* push rax */
1181			if (dst_reg != BPF_REG_3)
1182				EMIT1(0x52); /* push rdx */
1183
1184			if (BPF_SRC(insn->code) == BPF_X) {
1185				if (src_reg == BPF_REG_0 ||
1186				    src_reg == BPF_REG_3) {
1187					/* mov r11, src_reg */
1188					EMIT_mov(AUX_REG, src_reg);
1189					src_reg = AUX_REG;
1190				}
1191			} else {
1192				/* mov r11, imm32 */
1193				EMIT3_off32(0x49, 0xC7, 0xC3, imm32);
1194				src_reg = AUX_REG;
1195			}
1196
1197			if (dst_reg != BPF_REG_0)
1198				/* mov rax, dst_reg */
1199				emit_mov_reg(&prog, is64, BPF_REG_0, dst_reg);
1200
1201			if (insn->off == 0) {
1202				/*
1203				 * xor edx, edx
1204				 * equivalent to 'xor rdx, rdx', but one byte less
1205				 */
1206				EMIT2(0x31, 0xd2);
1207
1208				/* div src_reg */
1209				maybe_emit_1mod(&prog, src_reg, is64);
1210				EMIT2(0xF7, add_1reg(0xF0, src_reg));
1211			} else {
1212				if (BPF_CLASS(insn->code) == BPF_ALU)
1213					EMIT1(0x99); /* cdq */
1214				else
1215					EMIT2(0x48, 0x99); /* cqo */
1216
1217				/* idiv src_reg */
1218				maybe_emit_1mod(&prog, src_reg, is64);
1219				EMIT2(0xF7, add_1reg(0xF8, src_reg));
1220			}
1221
1222			if (BPF_OP(insn->code) == BPF_MOD &&
1223			    dst_reg != BPF_REG_3)
1224				/* mov dst_reg, rdx */
1225				emit_mov_reg(&prog, is64, dst_reg, BPF_REG_3);
1226			else if (BPF_OP(insn->code) == BPF_DIV &&
1227				 dst_reg != BPF_REG_0)
1228				/* mov dst_reg, rax */
1229				emit_mov_reg(&prog, is64, dst_reg, BPF_REG_0);
1230
1231			if (dst_reg != BPF_REG_3)
1232				EMIT1(0x5A); /* pop rdx */
1233			if (dst_reg != BPF_REG_0)
1234				EMIT1(0x58); /* pop rax */
1235			break;
1236		}
1237
1238		case BPF_ALU | BPF_MUL | BPF_K:
1239		case BPF_ALU64 | BPF_MUL | BPF_K:
1240			maybe_emit_mod(&prog, dst_reg, dst_reg,
1241				       BPF_CLASS(insn->code) == BPF_ALU64);
1242
1243			if (is_imm8(imm32))
1244				/* imul dst_reg, dst_reg, imm8 */
1245				EMIT3(0x6B, add_2reg(0xC0, dst_reg, dst_reg),
1246				      imm32);
1247			else
1248				/* imul dst_reg, dst_reg, imm32 */
1249				EMIT2_off32(0x69,
1250					    add_2reg(0xC0, dst_reg, dst_reg),
1251					    imm32);
1252			break;
1253
1254		case BPF_ALU | BPF_MUL | BPF_X:
1255		case BPF_ALU64 | BPF_MUL | BPF_X:
1256			maybe_emit_mod(&prog, src_reg, dst_reg,
1257				       BPF_CLASS(insn->code) == BPF_ALU64);
1258
1259			/* imul dst_reg, src_reg */
1260			EMIT3(0x0F, 0xAF, add_2reg(0xC0, src_reg, dst_reg));
1261			break;
1262
1263			/* Shifts */
1264		case BPF_ALU | BPF_LSH | BPF_K:
1265		case BPF_ALU | BPF_RSH | BPF_K:
1266		case BPF_ALU | BPF_ARSH | BPF_K:
1267		case BPF_ALU64 | BPF_LSH | BPF_K:
1268		case BPF_ALU64 | BPF_RSH | BPF_K:
1269		case BPF_ALU64 | BPF_ARSH | BPF_K:
1270			maybe_emit_1mod(&prog, dst_reg,
1271					BPF_CLASS(insn->code) == BPF_ALU64);
1272
1273			b3 = simple_alu_opcodes[BPF_OP(insn->code)];
1274			if (imm32 == 1)
1275				EMIT2(0xD1, add_1reg(b3, dst_reg));
1276			else
1277				EMIT3(0xC1, add_1reg(b3, dst_reg), imm32);
1278			break;
1279
1280		case BPF_ALU | BPF_LSH | BPF_X:
1281		case BPF_ALU | BPF_RSH | BPF_X:
1282		case BPF_ALU | BPF_ARSH | BPF_X:
1283		case BPF_ALU64 | BPF_LSH | BPF_X:
1284		case BPF_ALU64 | BPF_RSH | BPF_X:
1285		case BPF_ALU64 | BPF_ARSH | BPF_X:
1286			/* BMI2 shifts aren't better when shift count is already in rcx */
1287			if (boot_cpu_has(X86_FEATURE_BMI2) && src_reg != BPF_REG_4) {
1288				/* shrx/sarx/shlx dst_reg, dst_reg, src_reg */
1289				bool w = (BPF_CLASS(insn->code) == BPF_ALU64);
1290				u8 op;
1291
1292				switch (BPF_OP(insn->code)) {
1293				case BPF_LSH:
1294					op = 1; /* prefix 0x66 */
1295					break;
1296				case BPF_RSH:
1297					op = 3; /* prefix 0xf2 */
1298					break;
1299				case BPF_ARSH:
1300					op = 2; /* prefix 0xf3 */
1301					break;
1302				}
1303
1304				emit_shiftx(&prog, dst_reg, src_reg, w, op);
1305
1306				break;
1307			}
1308
1309			if (src_reg != BPF_REG_4) { /* common case */
1310				/* Check for bad case when dst_reg == rcx */
1311				if (dst_reg == BPF_REG_4) {
1312					/* mov r11, dst_reg */
1313					EMIT_mov(AUX_REG, dst_reg);
1314					dst_reg = AUX_REG;
1315				} else {
1316					EMIT1(0x51); /* push rcx */
1317				}
1318				/* mov rcx, src_reg */
1319				EMIT_mov(BPF_REG_4, src_reg);
1320			}
1321
1322			/* shl %rax, %cl | shr %rax, %cl | sar %rax, %cl */
1323			maybe_emit_1mod(&prog, dst_reg,
1324					BPF_CLASS(insn->code) == BPF_ALU64);
1325
1326			b3 = simple_alu_opcodes[BPF_OP(insn->code)];
1327			EMIT2(0xD3, add_1reg(b3, dst_reg));
1328
1329			if (src_reg != BPF_REG_4) {
1330				if (insn->dst_reg == BPF_REG_4)
1331					/* mov dst_reg, r11 */
1332					EMIT_mov(insn->dst_reg, AUX_REG);
1333				else
1334					EMIT1(0x59); /* pop rcx */
1335			}
1336
1337			break;
1338
1339		case BPF_ALU | BPF_END | BPF_FROM_BE:
1340		case BPF_ALU64 | BPF_END | BPF_FROM_LE:
1341			switch (imm32) {
1342			case 16:
1343				/* Emit 'ror %ax, 8' to swap lower 2 bytes */
1344				EMIT1(0x66);
1345				if (is_ereg(dst_reg))
1346					EMIT1(0x41);
1347				EMIT3(0xC1, add_1reg(0xC8, dst_reg), 8);
1348
1349				/* Emit 'movzwl eax, ax' */
1350				if (is_ereg(dst_reg))
1351					EMIT3(0x45, 0x0F, 0xB7);
1352				else
1353					EMIT2(0x0F, 0xB7);
1354				EMIT1(add_2reg(0xC0, dst_reg, dst_reg));
1355				break;
1356			case 32:
1357				/* Emit 'bswap eax' to swap lower 4 bytes */
1358				if (is_ereg(dst_reg))
1359					EMIT2(0x41, 0x0F);
1360				else
1361					EMIT1(0x0F);
1362				EMIT1(add_1reg(0xC8, dst_reg));
1363				break;
1364			case 64:
1365				/* Emit 'bswap rax' to swap 8 bytes */
1366				EMIT3(add_1mod(0x48, dst_reg), 0x0F,
1367				      add_1reg(0xC8, dst_reg));
1368				break;
1369			}
1370			break;
1371
1372		case BPF_ALU | BPF_END | BPF_FROM_LE:
1373			switch (imm32) {
1374			case 16:
1375				/*
1376				 * Emit 'movzwl eax, ax' to zero extend 16-bit
1377				 * into 64 bit
1378				 */
1379				if (is_ereg(dst_reg))
1380					EMIT3(0x45, 0x0F, 0xB7);
1381				else
1382					EMIT2(0x0F, 0xB7);
1383				EMIT1(add_2reg(0xC0, dst_reg, dst_reg));
1384				break;
1385			case 32:
1386				/* Emit 'mov eax, eax' to clear upper 32-bits */
1387				if (is_ereg(dst_reg))
1388					EMIT1(0x45);
1389				EMIT2(0x89, add_2reg(0xC0, dst_reg, dst_reg));
1390				break;
1391			case 64:
1392				/* nop */
1393				break;
1394			}
1395			break;
1396
1397			/* speculation barrier */
1398		case BPF_ST | BPF_NOSPEC:
1399			EMIT_LFENCE();
1400			break;
1401
1402			/* ST: *(u8*)(dst_reg + off) = imm */
1403		case BPF_ST | BPF_MEM | BPF_B:
1404			if (is_ereg(dst_reg))
1405				EMIT2(0x41, 0xC6);
1406			else
1407				EMIT1(0xC6);
1408			goto st;
1409		case BPF_ST | BPF_MEM | BPF_H:
1410			if (is_ereg(dst_reg))
1411				EMIT3(0x66, 0x41, 0xC7);
1412			else
1413				EMIT2(0x66, 0xC7);
1414			goto st;
1415		case BPF_ST | BPF_MEM | BPF_W:
1416			if (is_ereg(dst_reg))
1417				EMIT2(0x41, 0xC7);
1418			else
1419				EMIT1(0xC7);
1420			goto st;
1421		case BPF_ST | BPF_MEM | BPF_DW:
1422			EMIT2(add_1mod(0x48, dst_reg), 0xC7);
1423
1424st:			if (is_imm8(insn->off))
1425				EMIT2(add_1reg(0x40, dst_reg), insn->off);
1426			else
1427				EMIT1_off32(add_1reg(0x80, dst_reg), insn->off);
1428
1429			EMIT(imm32, bpf_size_to_x86_bytes(BPF_SIZE(insn->code)));
1430			break;
1431
1432			/* STX: *(u8*)(dst_reg + off) = src_reg */
1433		case BPF_STX | BPF_MEM | BPF_B:
1434		case BPF_STX | BPF_MEM | BPF_H:
1435		case BPF_STX | BPF_MEM | BPF_W:
1436		case BPF_STX | BPF_MEM | BPF_DW:
1437			emit_stx(&prog, BPF_SIZE(insn->code), dst_reg, src_reg, insn->off);
1438			break;
1439
1440			/* LDX: dst_reg = *(u8*)(src_reg + off) */
1441		case BPF_LDX | BPF_MEM | BPF_B:
1442		case BPF_LDX | BPF_PROBE_MEM | BPF_B:
1443		case BPF_LDX | BPF_MEM | BPF_H:
1444		case BPF_LDX | BPF_PROBE_MEM | BPF_H:
1445		case BPF_LDX | BPF_MEM | BPF_W:
1446		case BPF_LDX | BPF_PROBE_MEM | BPF_W:
1447		case BPF_LDX | BPF_MEM | BPF_DW:
1448		case BPF_LDX | BPF_PROBE_MEM | BPF_DW:
1449			/* LDXS: dst_reg = *(s8*)(src_reg + off) */
1450		case BPF_LDX | BPF_MEMSX | BPF_B:
1451		case BPF_LDX | BPF_MEMSX | BPF_H:
1452		case BPF_LDX | BPF_MEMSX | BPF_W:
1453		case BPF_LDX | BPF_PROBE_MEMSX | BPF_B:
1454		case BPF_LDX | BPF_PROBE_MEMSX | BPF_H:
1455		case BPF_LDX | BPF_PROBE_MEMSX | BPF_W:
1456			insn_off = insn->off;
1457
1458			if (BPF_MODE(insn->code) == BPF_PROBE_MEM ||
1459			    BPF_MODE(insn->code) == BPF_PROBE_MEMSX) {
1460				/* Conservatively check that src_reg + insn->off is a kernel address:
1461				 *   src_reg + insn->off >= TASK_SIZE_MAX + PAGE_SIZE
1462				 * src_reg is used as scratch for src_reg += insn->off and restored
1463				 * after emit_ldx if necessary
1464				 */
1465
1466				u64 limit = TASK_SIZE_MAX + PAGE_SIZE;
1467				u8 *end_of_jmp;
1468
1469				/* At end of these emitted checks, insn->off will have been added
1470				 * to src_reg, so no need to do relative load with insn->off offset
1471				 */
1472				insn_off = 0;
1473
1474				/* movabsq r11, limit */
1475				EMIT2(add_1mod(0x48, AUX_REG), add_1reg(0xB8, AUX_REG));
1476				EMIT((u32)limit, 4);
1477				EMIT(limit >> 32, 4);
1478
1479				if (insn->off) {
1480					/* add src_reg, insn->off */
1481					maybe_emit_1mod(&prog, src_reg, true);
1482					EMIT2_off32(0x81, add_1reg(0xC0, src_reg), insn->off);
1483				}
1484
1485				/* cmp src_reg, r11 */
1486				maybe_emit_mod(&prog, src_reg, AUX_REG, true);
1487				EMIT2(0x39, add_2reg(0xC0, src_reg, AUX_REG));
1488
1489				/* if unsigned '>=', goto load */
1490				EMIT2(X86_JAE, 0);
1491				end_of_jmp = prog;
1492
1493				/* xor dst_reg, dst_reg */
1494				emit_mov_imm32(&prog, false, dst_reg, 0);
1495				/* jmp byte_after_ldx */
1496				EMIT2(0xEB, 0);
1497
1498				/* populate jmp_offset for JAE above to jump to start_of_ldx */
1499				start_of_ldx = prog;
1500				end_of_jmp[-1] = start_of_ldx - end_of_jmp;
1501			}
1502			if (BPF_MODE(insn->code) == BPF_PROBE_MEMSX ||
1503			    BPF_MODE(insn->code) == BPF_MEMSX)
1504				emit_ldsx(&prog, BPF_SIZE(insn->code), dst_reg, src_reg, insn_off);
1505			else
1506				emit_ldx(&prog, BPF_SIZE(insn->code), dst_reg, src_reg, insn_off);
1507			if (BPF_MODE(insn->code) == BPF_PROBE_MEM ||
1508			    BPF_MODE(insn->code) == BPF_PROBE_MEMSX) {
1509				struct exception_table_entry *ex;
1510				u8 *_insn = image + proglen + (start_of_ldx - temp);
1511				s64 delta;
1512
1513				/* populate jmp_offset for JMP above */
1514				start_of_ldx[-1] = prog - start_of_ldx;
1515
1516				if (insn->off && src_reg != dst_reg) {
1517					/* sub src_reg, insn->off
1518					 * Restore src_reg after "add src_reg, insn->off" in prev
1519					 * if statement. But if src_reg == dst_reg, emit_ldx
1520					 * above already clobbered src_reg, so no need to restore.
1521					 * If add src_reg, insn->off was unnecessary, no need to
1522					 * restore either.
1523					 */
1524					maybe_emit_1mod(&prog, src_reg, true);
1525					EMIT2_off32(0x81, add_1reg(0xE8, src_reg), insn->off);
1526				}
1527
1528				if (!bpf_prog->aux->extable)
1529					break;
1530
1531				if (excnt >= bpf_prog->aux->num_exentries) {
1532					pr_err("ex gen bug\n");
1533					return -EFAULT;
1534				}
1535				ex = &bpf_prog->aux->extable[excnt++];
1536
1537				delta = _insn - (u8 *)&ex->insn;
1538				if (!is_simm32(delta)) {
1539					pr_err("extable->insn doesn't fit into 32-bit\n");
1540					return -EFAULT;
1541				}
1542				/* switch ex to rw buffer for writes */
1543				ex = (void *)rw_image + ((void *)ex - (void *)image);
1544
1545				ex->insn = delta;
1546
1547				ex->data = EX_TYPE_BPF;
1548
1549				if (dst_reg > BPF_REG_9) {
1550					pr_err("verifier error\n");
1551					return -EFAULT;
1552				}
1553				/*
1554				 * Compute size of x86 insn and its target dest x86 register.
1555				 * ex_handler_bpf() will use lower 8 bits to adjust
1556				 * pt_regs->ip to jump over this x86 instruction
1557				 * and upper bits to figure out which pt_regs to zero out.
1558				 * End result: x86 insn "mov rbx, qword ptr [rax+0x14]"
1559				 * of 4 bytes will be ignored and rbx will be zero inited.
1560				 */
1561				ex->fixup = (prog - start_of_ldx) | (reg2pt_regs[dst_reg] << 8);
1562			}
1563			break;
1564
1565		case BPF_STX | BPF_ATOMIC | BPF_W:
1566		case BPF_STX | BPF_ATOMIC | BPF_DW:
1567			if (insn->imm == (BPF_AND | BPF_FETCH) ||
1568			    insn->imm == (BPF_OR | BPF_FETCH) ||
1569			    insn->imm == (BPF_XOR | BPF_FETCH)) {
1570				bool is64 = BPF_SIZE(insn->code) == BPF_DW;
1571				u32 real_src_reg = src_reg;
1572				u32 real_dst_reg = dst_reg;
1573				u8 *branch_target;
1574
1575				/*
1576				 * Can't be implemented with a single x86 insn.
1577				 * Need to do a CMPXCHG loop.
1578				 */
1579
1580				/* Will need RAX as a CMPXCHG operand so save R0 */
1581				emit_mov_reg(&prog, true, BPF_REG_AX, BPF_REG_0);
1582				if (src_reg == BPF_REG_0)
1583					real_src_reg = BPF_REG_AX;
1584				if (dst_reg == BPF_REG_0)
1585					real_dst_reg = BPF_REG_AX;
1586
1587				branch_target = prog;
1588				/* Load old value */
1589				emit_ldx(&prog, BPF_SIZE(insn->code),
1590					 BPF_REG_0, real_dst_reg, insn->off);
1591				/*
1592				 * Perform the (commutative) operation locally,
1593				 * put the result in the AUX_REG.
1594				 */
1595				emit_mov_reg(&prog, is64, AUX_REG, BPF_REG_0);
1596				maybe_emit_mod(&prog, AUX_REG, real_src_reg, is64);
1597				EMIT2(simple_alu_opcodes[BPF_OP(insn->imm)],
1598				      add_2reg(0xC0, AUX_REG, real_src_reg));
1599				/* Attempt to swap in new value */
1600				err = emit_atomic(&prog, BPF_CMPXCHG,
1601						  real_dst_reg, AUX_REG,
1602						  insn->off,
1603						  BPF_SIZE(insn->code));
1604				if (WARN_ON(err))
1605					return err;
1606				/*
1607				 * ZF tells us whether we won the race. If it's
1608				 * cleared we need to try again.
1609				 */
1610				EMIT2(X86_JNE, -(prog - branch_target) - 2);
1611				/* Return the pre-modification value */
1612				emit_mov_reg(&prog, is64, real_src_reg, BPF_REG_0);
1613				/* Restore R0 after clobbering RAX */
1614				emit_mov_reg(&prog, true, BPF_REG_0, BPF_REG_AX);
1615				break;
1616			}
1617
1618			err = emit_atomic(&prog, insn->imm, dst_reg, src_reg,
1619					  insn->off, BPF_SIZE(insn->code));
1620			if (err)
1621				return err;
1622			break;
1623
1624			/* call */
1625		case BPF_JMP | BPF_CALL: {
1626			int offs;
1627
1628			func = (u8 *) __bpf_call_base + imm32;
1629			if (tail_call_reachable) {
1630				RESTORE_TAIL_CALL_CNT(bpf_prog->aux->stack_depth);
1631				if (!imm32)
1632					return -EINVAL;
1633				offs = 7 + x86_call_depth_emit_accounting(&prog, func);
1634			} else {
1635				if (!imm32)
1636					return -EINVAL;
1637				offs = x86_call_depth_emit_accounting(&prog, func);
1638			}
1639			if (emit_call(&prog, func, image + addrs[i - 1] + offs))
1640				return -EINVAL;
1641			break;
1642		}
1643
1644		case BPF_JMP | BPF_TAIL_CALL:
1645			if (imm32)
1646				emit_bpf_tail_call_direct(&bpf_prog->aux->poke_tab[imm32 - 1],
1647							  &prog, image + addrs[i - 1],
1648							  callee_regs_used,
1649							  bpf_prog->aux->stack_depth,
1650							  ctx);
1651			else
1652				emit_bpf_tail_call_indirect(&prog,
1653							    callee_regs_used,
1654							    bpf_prog->aux->stack_depth,
1655							    image + addrs[i - 1],
1656							    ctx);
1657			break;
1658
1659			/* cond jump */
1660		case BPF_JMP | BPF_JEQ | BPF_X:
1661		case BPF_JMP | BPF_JNE | BPF_X:
1662		case BPF_JMP | BPF_JGT | BPF_X:
1663		case BPF_JMP | BPF_JLT | BPF_X:
1664		case BPF_JMP | BPF_JGE | BPF_X:
1665		case BPF_JMP | BPF_JLE | BPF_X:
1666		case BPF_JMP | BPF_JSGT | BPF_X:
1667		case BPF_JMP | BPF_JSLT | BPF_X:
1668		case BPF_JMP | BPF_JSGE | BPF_X:
1669		case BPF_JMP | BPF_JSLE | BPF_X:
1670		case BPF_JMP32 | BPF_JEQ | BPF_X:
1671		case BPF_JMP32 | BPF_JNE | BPF_X:
1672		case BPF_JMP32 | BPF_JGT | BPF_X:
1673		case BPF_JMP32 | BPF_JLT | BPF_X:
1674		case BPF_JMP32 | BPF_JGE | BPF_X:
1675		case BPF_JMP32 | BPF_JLE | BPF_X:
1676		case BPF_JMP32 | BPF_JSGT | BPF_X:
1677		case BPF_JMP32 | BPF_JSLT | BPF_X:
1678		case BPF_JMP32 | BPF_JSGE | BPF_X:
1679		case BPF_JMP32 | BPF_JSLE | BPF_X:
1680			/* cmp dst_reg, src_reg */
1681			maybe_emit_mod(&prog, dst_reg, src_reg,
1682				       BPF_CLASS(insn->code) == BPF_JMP);
1683			EMIT2(0x39, add_2reg(0xC0, dst_reg, src_reg));
1684			goto emit_cond_jmp;
1685
1686		case BPF_JMP | BPF_JSET | BPF_X:
1687		case BPF_JMP32 | BPF_JSET | BPF_X:
1688			/* test dst_reg, src_reg */
1689			maybe_emit_mod(&prog, dst_reg, src_reg,
1690				       BPF_CLASS(insn->code) == BPF_JMP);
1691			EMIT2(0x85, add_2reg(0xC0, dst_reg, src_reg));
1692			goto emit_cond_jmp;
1693
1694		case BPF_JMP | BPF_JSET | BPF_K:
1695		case BPF_JMP32 | BPF_JSET | BPF_K:
1696			/* test dst_reg, imm32 */
1697			maybe_emit_1mod(&prog, dst_reg,
1698					BPF_CLASS(insn->code) == BPF_JMP);
1699			EMIT2_off32(0xF7, add_1reg(0xC0, dst_reg), imm32);
1700			goto emit_cond_jmp;
1701
1702		case BPF_JMP | BPF_JEQ | BPF_K:
1703		case BPF_JMP | BPF_JNE | BPF_K:
1704		case BPF_JMP | BPF_JGT | BPF_K:
1705		case BPF_JMP | BPF_JLT | BPF_K:
1706		case BPF_JMP | BPF_JGE | BPF_K:
1707		case BPF_JMP | BPF_JLE | BPF_K:
1708		case BPF_JMP | BPF_JSGT | BPF_K:
1709		case BPF_JMP | BPF_JSLT | BPF_K:
1710		case BPF_JMP | BPF_JSGE | BPF_K:
1711		case BPF_JMP | BPF_JSLE | BPF_K:
1712		case BPF_JMP32 | BPF_JEQ | BPF_K:
1713		case BPF_JMP32 | BPF_JNE | BPF_K:
1714		case BPF_JMP32 | BPF_JGT | BPF_K:
1715		case BPF_JMP32 | BPF_JLT | BPF_K:
1716		case BPF_JMP32 | BPF_JGE | BPF_K:
1717		case BPF_JMP32 | BPF_JLE | BPF_K:
1718		case BPF_JMP32 | BPF_JSGT | BPF_K:
1719		case BPF_JMP32 | BPF_JSLT | BPF_K:
1720		case BPF_JMP32 | BPF_JSGE | BPF_K:
1721		case BPF_JMP32 | BPF_JSLE | BPF_K:
1722			/* test dst_reg, dst_reg to save one extra byte */
1723			if (imm32 == 0) {
1724				maybe_emit_mod(&prog, dst_reg, dst_reg,
1725					       BPF_CLASS(insn->code) == BPF_JMP);
1726				EMIT2(0x85, add_2reg(0xC0, dst_reg, dst_reg));
1727				goto emit_cond_jmp;
1728			}
1729
1730			/* cmp dst_reg, imm8/32 */
1731			maybe_emit_1mod(&prog, dst_reg,
1732					BPF_CLASS(insn->code) == BPF_JMP);
1733
1734			if (is_imm8(imm32))
1735				EMIT3(0x83, add_1reg(0xF8, dst_reg), imm32);
1736			else
1737				EMIT2_off32(0x81, add_1reg(0xF8, dst_reg), imm32);
1738
1739emit_cond_jmp:		/* Convert BPF opcode to x86 */
1740			switch (BPF_OP(insn->code)) {
1741			case BPF_JEQ:
1742				jmp_cond = X86_JE;
1743				break;
1744			case BPF_JSET:
1745			case BPF_JNE:
1746				jmp_cond = X86_JNE;
1747				break;
1748			case BPF_JGT:
1749				/* GT is unsigned '>', JA in x86 */
1750				jmp_cond = X86_JA;
1751				break;
1752			case BPF_JLT:
1753				/* LT is unsigned '<', JB in x86 */
1754				jmp_cond = X86_JB;
1755				break;
1756			case BPF_JGE:
1757				/* GE is unsigned '>=', JAE in x86 */
1758				jmp_cond = X86_JAE;
1759				break;
1760			case BPF_JLE:
1761				/* LE is unsigned '<=', JBE in x86 */
1762				jmp_cond = X86_JBE;
1763				break;
1764			case BPF_JSGT:
1765				/* Signed '>', GT in x86 */
1766				jmp_cond = X86_JG;
1767				break;
1768			case BPF_JSLT:
1769				/* Signed '<', LT in x86 */
1770				jmp_cond = X86_JL;
1771				break;
1772			case BPF_JSGE:
1773				/* Signed '>=', GE in x86 */
1774				jmp_cond = X86_JGE;
1775				break;
1776			case BPF_JSLE:
1777				/* Signed '<=', LE in x86 */
1778				jmp_cond = X86_JLE;
1779				break;
1780			default: /* to silence GCC warning */
1781				return -EFAULT;
1782			}
1783			jmp_offset = addrs[i + insn->off] - addrs[i];
1784			if (is_imm8(jmp_offset)) {
1785				if (jmp_padding) {
1786					/* To keep the jmp_offset valid, the extra bytes are
1787					 * padded before the jump insn, so we subtract the
1788					 * 2 bytes of jmp_cond insn from INSN_SZ_DIFF.
1789					 *
1790					 * If the previous pass already emits an imm8
1791					 * jmp_cond, then this BPF insn won't shrink, so
1792					 * "nops" is 0.
1793					 *
1794					 * On the other hand, if the previous pass emits an
1795					 * imm32 jmp_cond, the extra 4 bytes(*) is padded to
1796					 * keep the image from shrinking further.
1797					 *
1798					 * (*) imm32 jmp_cond is 6 bytes, and imm8 jmp_cond
1799					 *     is 2 bytes, so the size difference is 4 bytes.
1800					 */
1801					nops = INSN_SZ_DIFF - 2;
1802					if (nops != 0 && nops != 4) {
1803						pr_err("unexpected jmp_cond padding: %d bytes\n",
1804						       nops);
1805						return -EFAULT;
1806					}
1807					emit_nops(&prog, nops);
1808				}
1809				EMIT2(jmp_cond, jmp_offset);
1810			} else if (is_simm32(jmp_offset)) {
1811				EMIT2_off32(0x0F, jmp_cond + 0x10, jmp_offset);
1812			} else {
1813				pr_err("cond_jmp gen bug %llx\n", jmp_offset);
1814				return -EFAULT;
1815			}
1816
1817			break;
1818
1819		case BPF_JMP | BPF_JA:
1820		case BPF_JMP32 | BPF_JA:
1821			if (BPF_CLASS(insn->code) == BPF_JMP) {
1822				if (insn->off == -1)
1823					/* -1 jmp instructions will always jump
1824					 * backwards two bytes. Explicitly handling
1825					 * this case avoids wasting too many passes
1826					 * when there are long sequences of replaced
1827					 * dead code.
1828					 */
1829					jmp_offset = -2;
1830				else
1831					jmp_offset = addrs[i + insn->off] - addrs[i];
1832			} else {
1833				if (insn->imm == -1)
1834					jmp_offset = -2;
1835				else
1836					jmp_offset = addrs[i + insn->imm] - addrs[i];
1837			}
1838
1839			if (!jmp_offset) {
1840				/*
1841				 * If jmp_padding is enabled, the extra nops will
1842				 * be inserted. Otherwise, optimize out nop jumps.
1843				 */
1844				if (jmp_padding) {
1845					/* There are 3 possible conditions.
1846					 * (1) This BPF_JA is already optimized out in
1847					 *     the previous run, so there is no need
1848					 *     to pad any extra byte (0 byte).
1849					 * (2) The previous pass emits an imm8 jmp,
1850					 *     so we pad 2 bytes to match the previous
1851					 *     insn size.
1852					 * (3) Similarly, the previous pass emits an
1853					 *     imm32 jmp, and 5 bytes is padded.
1854					 */
1855					nops = INSN_SZ_DIFF;
1856					if (nops != 0 && nops != 2 && nops != 5) {
1857						pr_err("unexpected nop jump padding: %d bytes\n",
1858						       nops);
1859						return -EFAULT;
1860					}
1861					emit_nops(&prog, nops);
1862				}
1863				break;
1864			}
1865emit_jmp:
1866			if (is_imm8(jmp_offset)) {
1867				if (jmp_padding) {
1868					/* To avoid breaking jmp_offset, the extra bytes
1869					 * are padded before the actual jmp insn, so
1870					 * 2 bytes is subtracted from INSN_SZ_DIFF.
1871					 *
1872					 * If the previous pass already emits an imm8
1873					 * jmp, there is nothing to pad (0 byte).
1874					 *
1875					 * If it emits an imm32 jmp (5 bytes) previously
1876					 * and now an imm8 jmp (2 bytes), then we pad
1877					 * (5 - 2 = 3) bytes to stop the image from
1878					 * shrinking further.
1879					 */
1880					nops = INSN_SZ_DIFF - 2;
1881					if (nops != 0 && nops != 3) {
1882						pr_err("unexpected jump padding: %d bytes\n",
1883						       nops);
1884						return -EFAULT;
1885					}
1886					emit_nops(&prog, INSN_SZ_DIFF - 2);
1887				}
1888				EMIT2(0xEB, jmp_offset);
1889			} else if (is_simm32(jmp_offset)) {
1890				EMIT1_off32(0xE9, jmp_offset);
1891			} else {
1892				pr_err("jmp gen bug %llx\n", jmp_offset);
1893				return -EFAULT;
1894			}
1895			break;
1896
1897		case BPF_JMP | BPF_EXIT:
1898			if (seen_exit) {
1899				jmp_offset = ctx->cleanup_addr - addrs[i];
1900				goto emit_jmp;
1901			}
1902			seen_exit = true;
1903			/* Update cleanup_addr */
1904			ctx->cleanup_addr = proglen;
1905			pop_callee_regs(&prog, callee_regs_used);
1906			EMIT1(0xC9);         /* leave */
1907			emit_return(&prog, image + addrs[i - 1] + (prog - temp));
1908			break;
1909
1910		default:
1911			/*
1912			 * By design x86-64 JIT should support all BPF instructions.
1913			 * This error will be seen if new instruction was added
1914			 * to the interpreter, but not to the JIT, or if there is
1915			 * junk in bpf_prog.
1916			 */
1917			pr_err("bpf_jit: unknown opcode %02x\n", insn->code);
1918			return -EINVAL;
1919		}
1920
1921		ilen = prog - temp;
1922		if (ilen > BPF_MAX_INSN_SIZE) {
1923			pr_err("bpf_jit: fatal insn size error\n");
1924			return -EFAULT;
1925		}
1926
1927		if (image) {
1928			/*
1929			 * When populating the image, assert that:
1930			 *
1931			 *  i) We do not write beyond the allocated space, and
1932			 * ii) addrs[i] did not change from the prior run, in order
1933			 *     to validate assumptions made for computing branch
1934			 *     displacements.
1935			 */
1936			if (unlikely(proglen + ilen > oldproglen ||
1937				     proglen + ilen != addrs[i])) {
1938				pr_err("bpf_jit: fatal error\n");
1939				return -EFAULT;
1940			}
1941			memcpy(rw_image + proglen, temp, ilen);
1942		}
1943		proglen += ilen;
1944		addrs[i] = proglen;
1945		prog = temp;
1946	}
1947
1948	if (image && excnt != bpf_prog->aux->num_exentries) {
1949		pr_err("extable is not populated\n");
1950		return -EFAULT;
1951	}
1952	return proglen;
1953}
1954
1955static void clean_stack_garbage(const struct btf_func_model *m,
1956				u8 **pprog, int nr_stack_slots,
1957				int stack_size)
1958{
1959	int arg_size, off;
1960	u8 *prog;
1961
1962	/* Generally speaking, the compiler will pass the arguments
1963	 * on-stack with "push" instruction, which will take 8-byte
1964	 * on the stack. In this case, there won't be garbage values
1965	 * while we copy the arguments from origin stack frame to current
1966	 * in BPF_DW.
1967	 *
1968	 * However, sometimes the compiler will only allocate 4-byte on
1969	 * the stack for the arguments. For now, this case will only
1970	 * happen if there is only one argument on-stack and its size
1971	 * not more than 4 byte. In this case, there will be garbage
1972	 * values on the upper 4-byte where we store the argument on
1973	 * current stack frame.
1974	 *
1975	 * arguments on origin stack:
1976	 *
1977	 * stack_arg_1(4-byte) xxx(4-byte)
1978	 *
1979	 * what we copy:
1980	 *
1981	 * stack_arg_1(8-byte): stack_arg_1(origin) xxx
1982	 *
1983	 * and the xxx is the garbage values which we should clean here.
1984	 */
1985	if (nr_stack_slots != 1)
1986		return;
1987
1988	/* the size of the last argument */
1989	arg_size = m->arg_size[m->nr_args - 1];
1990	if (arg_size <= 4) {
1991		off = -(stack_size - 4);
1992		prog = *pprog;
1993		/* mov DWORD PTR [rbp + off], 0 */
1994		if (!is_imm8(off))
1995			EMIT2_off32(0xC7, 0x85, off);
1996		else
1997			EMIT3(0xC7, 0x45, off);
1998		EMIT(0, 4);
1999		*pprog = prog;
2000	}
2001}
2002
2003/* get the count of the regs that are used to pass arguments */
2004static int get_nr_used_regs(const struct btf_func_model *m)
2005{
2006	int i, arg_regs, nr_used_regs = 0;
2007
2008	for (i = 0; i < min_t(int, m->nr_args, MAX_BPF_FUNC_ARGS); i++) {
2009		arg_regs = (m->arg_size[i] + 7) / 8;
2010		if (nr_used_regs + arg_regs <= 6)
2011			nr_used_regs += arg_regs;
2012
2013		if (nr_used_regs >= 6)
2014			break;
2015	}
2016
2017	return nr_used_regs;
2018}
2019
2020static void save_args(const struct btf_func_model *m, u8 **prog,
2021		      int stack_size, bool for_call_origin)
2022{
2023	int arg_regs, first_off = 0, nr_regs = 0, nr_stack_slots = 0;
2024	int i, j;
2025
2026	/* Store function arguments to stack.
2027	 * For a function that accepts two pointers the sequence will be:
2028	 * mov QWORD PTR [rbp-0x10],rdi
2029	 * mov QWORD PTR [rbp-0x8],rsi
2030	 */
2031	for (i = 0; i < min_t(int, m->nr_args, MAX_BPF_FUNC_ARGS); i++) {
2032		arg_regs = (m->arg_size[i] + 7) / 8;
2033
2034		/* According to the research of Yonghong, struct members
2035		 * should be all in register or all on the stack.
2036		 * Meanwhile, the compiler will pass the argument on regs
2037		 * if the remaining regs can hold the argument.
2038		 *
2039		 * Disorder of the args can happen. For example:
2040		 *
2041		 * struct foo_struct {
2042		 *     long a;
2043		 *     int b;
2044		 * };
2045		 * int foo(char, char, char, char, char, struct foo_struct,
2046		 *         char);
2047		 *
2048		 * the arg1-5,arg7 will be passed by regs, and arg6 will
2049		 * by stack.
2050		 */
2051		if (nr_regs + arg_regs > 6) {
2052			/* copy function arguments from origin stack frame
2053			 * into current stack frame.
2054			 *
2055			 * The starting address of the arguments on-stack
2056			 * is:
2057			 *   rbp + 8(push rbp) +
2058			 *   8(return addr of origin call) +
2059			 *   8(return addr of the caller)
2060			 * which means: rbp + 24
2061			 */
2062			for (j = 0; j < arg_regs; j++) {
2063				emit_ldx(prog, BPF_DW, BPF_REG_0, BPF_REG_FP,
2064					 nr_stack_slots * 8 + 0x18);
2065				emit_stx(prog, BPF_DW, BPF_REG_FP, BPF_REG_0,
2066					 -stack_size);
2067
2068				if (!nr_stack_slots)
2069					first_off = stack_size;
2070				stack_size -= 8;
2071				nr_stack_slots++;
2072			}
2073		} else {
2074			/* Only copy the arguments on-stack to current
2075			 * 'stack_size' and ignore the regs, used to
2076			 * prepare the arguments on-stack for orign call.
2077			 */
2078			if (for_call_origin) {
2079				nr_regs += arg_regs;
2080				continue;
2081			}
2082
2083			/* copy the arguments from regs into stack */
2084			for (j = 0; j < arg_regs; j++) {
2085				emit_stx(prog, BPF_DW, BPF_REG_FP,
2086					 nr_regs == 5 ? X86_REG_R9 : BPF_REG_1 + nr_regs,
2087					 -stack_size);
2088				stack_size -= 8;
2089				nr_regs++;
2090			}
2091		}
2092	}
2093
2094	clean_stack_garbage(m, prog, nr_stack_slots, first_off);
2095}
2096
2097static void restore_regs(const struct btf_func_model *m, u8 **prog,
2098			 int stack_size)
2099{
2100	int i, j, arg_regs, nr_regs = 0;
2101
2102	/* Restore function arguments from stack.
2103	 * For a function that accepts two pointers the sequence will be:
2104	 * EMIT4(0x48, 0x8B, 0x7D, 0xF0); mov rdi,QWORD PTR [rbp-0x10]
2105	 * EMIT4(0x48, 0x8B, 0x75, 0xF8); mov rsi,QWORD PTR [rbp-0x8]
2106	 *
2107	 * The logic here is similar to what we do in save_args()
2108	 */
2109	for (i = 0; i < min_t(int, m->nr_args, MAX_BPF_FUNC_ARGS); i++) {
2110		arg_regs = (m->arg_size[i] + 7) / 8;
2111		if (nr_regs + arg_regs <= 6) {
2112			for (j = 0; j < arg_regs; j++) {
2113				emit_ldx(prog, BPF_DW,
2114					 nr_regs == 5 ? X86_REG_R9 : BPF_REG_1 + nr_regs,
2115					 BPF_REG_FP,
2116					 -stack_size);
2117				stack_size -= 8;
2118				nr_regs++;
2119			}
2120		} else {
2121			stack_size -= 8 * arg_regs;
2122		}
2123
2124		if (nr_regs >= 6)
2125			break;
2126	}
2127}
2128
2129static int invoke_bpf_prog(const struct btf_func_model *m, u8 **pprog,
2130			   struct bpf_tramp_link *l, int stack_size,
2131			   int run_ctx_off, bool save_ret)
2132{
2133	u8 *prog = *pprog;
2134	u8 *jmp_insn;
2135	int ctx_cookie_off = offsetof(struct bpf_tramp_run_ctx, bpf_cookie);
2136	struct bpf_prog *p = l->link.prog;
2137	u64 cookie = l->cookie;
2138
2139	/* mov rdi, cookie */
2140	emit_mov_imm64(&prog, BPF_REG_1, (long) cookie >> 32, (u32) (long) cookie);
2141
2142	/* Prepare struct bpf_tramp_run_ctx.
2143	 *
2144	 * bpf_tramp_run_ctx is already preserved by
2145	 * arch_prepare_bpf_trampoline().
2146	 *
2147	 * mov QWORD PTR [rbp - run_ctx_off + ctx_cookie_off], rdi
2148	 */
2149	emit_stx(&prog, BPF_DW, BPF_REG_FP, BPF_REG_1, -run_ctx_off + ctx_cookie_off);
2150
2151	/* arg1: mov rdi, progs[i] */
2152	emit_mov_imm64(&prog, BPF_REG_1, (long) p >> 32, (u32) (long) p);
2153	/* arg2: lea rsi, [rbp - ctx_cookie_off] */
2154	if (!is_imm8(-run_ctx_off))
2155		EMIT3_off32(0x48, 0x8D, 0xB5, -run_ctx_off);
2156	else
2157		EMIT4(0x48, 0x8D, 0x75, -run_ctx_off);
2158
2159	if (emit_rsb_call(&prog, bpf_trampoline_enter(p), prog))
2160		return -EINVAL;
2161	/* remember prog start time returned by __bpf_prog_enter */
2162	emit_mov_reg(&prog, true, BPF_REG_6, BPF_REG_0);
2163
2164	/* if (__bpf_prog_enter*(prog) == 0)
2165	 *	goto skip_exec_of_prog;
2166	 */
2167	EMIT3(0x48, 0x85, 0xC0);  /* test rax,rax */
2168	/* emit 2 nops that will be replaced with JE insn */
2169	jmp_insn = prog;
2170	emit_nops(&prog, 2);
2171
2172	/* arg1: lea rdi, [rbp - stack_size] */
2173	if (!is_imm8(-stack_size))
2174		EMIT3_off32(0x48, 0x8D, 0xBD, -stack_size);
2175	else
2176		EMIT4(0x48, 0x8D, 0x7D, -stack_size);
2177	/* arg2: progs[i]->insnsi for interpreter */
2178	if (!p->jited)
2179		emit_mov_imm64(&prog, BPF_REG_2,
2180			       (long) p->insnsi >> 32,
2181			       (u32) (long) p->insnsi);
2182	/* call JITed bpf program or interpreter */
2183	if (emit_rsb_call(&prog, p->bpf_func, prog))
2184		return -EINVAL;
2185
2186	/*
2187	 * BPF_TRAMP_MODIFY_RETURN trampolines can modify the return
2188	 * of the previous call which is then passed on the stack to
2189	 * the next BPF program.
2190	 *
2191	 * BPF_TRAMP_FENTRY trampoline may need to return the return
2192	 * value of BPF_PROG_TYPE_STRUCT_OPS prog.
2193	 */
2194	if (save_ret)
2195		emit_stx(&prog, BPF_DW, BPF_REG_FP, BPF_REG_0, -8);
2196
2197	/* replace 2 nops with JE insn, since jmp target is known */
2198	jmp_insn[0] = X86_JE;
2199	jmp_insn[1] = prog - jmp_insn - 2;
2200
2201	/* arg1: mov rdi, progs[i] */
2202	emit_mov_imm64(&prog, BPF_REG_1, (long) p >> 32, (u32) (long) p);
2203	/* arg2: mov rsi, rbx <- start time in nsec */
2204	emit_mov_reg(&prog, true, BPF_REG_2, BPF_REG_6);
2205	/* arg3: lea rdx, [rbp - run_ctx_off] */
2206	if (!is_imm8(-run_ctx_off))
2207		EMIT3_off32(0x48, 0x8D, 0x95, -run_ctx_off);
2208	else
2209		EMIT4(0x48, 0x8D, 0x55, -run_ctx_off);
2210	if (emit_rsb_call(&prog, bpf_trampoline_exit(p), prog))
2211		return -EINVAL;
2212
2213	*pprog = prog;
2214	return 0;
2215}
2216
2217static void emit_align(u8 **pprog, u32 align)
2218{
2219	u8 *target, *prog = *pprog;
2220
2221	target = PTR_ALIGN(prog, align);
2222	if (target != prog)
2223		emit_nops(&prog, target - prog);
2224
2225	*pprog = prog;
2226}
2227
2228static int emit_cond_near_jump(u8 **pprog, void *func, void *ip, u8 jmp_cond)
2229{
2230	u8 *prog = *pprog;
2231	s64 offset;
2232
2233	offset = func - (ip + 2 + 4);
2234	if (!is_simm32(offset)) {
2235		pr_err("Target %p is out of range\n", func);
2236		return -EINVAL;
2237	}
2238	EMIT2_off32(0x0F, jmp_cond + 0x10, offset);
2239	*pprog = prog;
2240	return 0;
2241}
2242
2243static int invoke_bpf(const struct btf_func_model *m, u8 **pprog,
2244		      struct bpf_tramp_links *tl, int stack_size,
2245		      int run_ctx_off, bool save_ret)
2246{
2247	int i;
2248	u8 *prog = *pprog;
2249
2250	for (i = 0; i < tl->nr_links; i++) {
2251		if (invoke_bpf_prog(m, &prog, tl->links[i], stack_size,
2252				    run_ctx_off, save_ret))
2253			return -EINVAL;
2254	}
2255	*pprog = prog;
2256	return 0;
2257}
2258
2259static int invoke_bpf_mod_ret(const struct btf_func_model *m, u8 **pprog,
2260			      struct bpf_tramp_links *tl, int stack_size,
2261			      int run_ctx_off, u8 **branches)
2262{
2263	u8 *prog = *pprog;
2264	int i;
2265
2266	/* The first fmod_ret program will receive a garbage return value.
2267	 * Set this to 0 to avoid confusing the program.
2268	 */
2269	emit_mov_imm32(&prog, false, BPF_REG_0, 0);
2270	emit_stx(&prog, BPF_DW, BPF_REG_FP, BPF_REG_0, -8);
2271	for (i = 0; i < tl->nr_links; i++) {
2272		if (invoke_bpf_prog(m, &prog, tl->links[i], stack_size, run_ctx_off, true))
2273			return -EINVAL;
2274
2275		/* mod_ret prog stored return value into [rbp - 8]. Emit:
2276		 * if (*(u64 *)(rbp - 8) !=  0)
2277		 *	goto do_fexit;
2278		 */
2279		/* cmp QWORD PTR [rbp - 0x8], 0x0 */
2280		EMIT4(0x48, 0x83, 0x7d, 0xf8); EMIT1(0x00);
2281
2282		/* Save the location of the branch and Generate 6 nops
2283		 * (4 bytes for an offset and 2 bytes for the jump) These nops
2284		 * are replaced with a conditional jump once do_fexit (i.e. the
2285		 * start of the fexit invocation) is finalized.
2286		 */
2287		branches[i] = prog;
2288		emit_nops(&prog, 4 + 2);
2289	}
2290
2291	*pprog = prog;
2292	return 0;
2293}
2294
2295/* Example:
2296 * __be16 eth_type_trans(struct sk_buff *skb, struct net_device *dev);
2297 * its 'struct btf_func_model' will be nr_args=2
2298 * The assembly code when eth_type_trans is executing after trampoline:
2299 *
2300 * push rbp
2301 * mov rbp, rsp
2302 * sub rsp, 16                     // space for skb and dev
2303 * push rbx                        // temp regs to pass start time
2304 * mov qword ptr [rbp - 16], rdi   // save skb pointer to stack
2305 * mov qword ptr [rbp - 8], rsi    // save dev pointer to stack
2306 * call __bpf_prog_enter           // rcu_read_lock and preempt_disable
2307 * mov rbx, rax                    // remember start time in bpf stats are enabled
2308 * lea rdi, [rbp - 16]             // R1==ctx of bpf prog
2309 * call addr_of_jited_FENTRY_prog
2310 * movabsq rdi, 64bit_addr_of_struct_bpf_prog  // unused if bpf stats are off
2311 * mov rsi, rbx                    // prog start time
2312 * call __bpf_prog_exit            // rcu_read_unlock, preempt_enable and stats math
2313 * mov rdi, qword ptr [rbp - 16]   // restore skb pointer from stack
2314 * mov rsi, qword ptr [rbp - 8]    // restore dev pointer from stack
2315 * pop rbx
2316 * leave
2317 * ret
2318 *
2319 * eth_type_trans has 5 byte nop at the beginning. These 5 bytes will be
2320 * replaced with 'call generated_bpf_trampoline'. When it returns
2321 * eth_type_trans will continue executing with original skb and dev pointers.
2322 *
2323 * The assembly code when eth_type_trans is called from trampoline:
2324 *
2325 * push rbp
2326 * mov rbp, rsp
2327 * sub rsp, 24                     // space for skb, dev, return value
2328 * push rbx                        // temp regs to pass start time
2329 * mov qword ptr [rbp - 24], rdi   // save skb pointer to stack
2330 * mov qword ptr [rbp - 16], rsi   // save dev pointer to stack
2331 * call __bpf_prog_enter           // rcu_read_lock and preempt_disable
2332 * mov rbx, rax                    // remember start time if bpf stats are enabled
2333 * lea rdi, [rbp - 24]             // R1==ctx of bpf prog
2334 * call addr_of_jited_FENTRY_prog  // bpf prog can access skb and dev
2335 * movabsq rdi, 64bit_addr_of_struct_bpf_prog  // unused if bpf stats are off
2336 * mov rsi, rbx                    // prog start time
2337 * call __bpf_prog_exit            // rcu_read_unlock, preempt_enable and stats math
2338 * mov rdi, qword ptr [rbp - 24]   // restore skb pointer from stack
2339 * mov rsi, qword ptr [rbp - 16]   // restore dev pointer from stack
2340 * call eth_type_trans+5           // execute body of eth_type_trans
2341 * mov qword ptr [rbp - 8], rax    // save return value
2342 * call __bpf_prog_enter           // rcu_read_lock and preempt_disable
2343 * mov rbx, rax                    // remember start time in bpf stats are enabled
2344 * lea rdi, [rbp - 24]             // R1==ctx of bpf prog
2345 * call addr_of_jited_FEXIT_prog   // bpf prog can access skb, dev, return value
2346 * movabsq rdi, 64bit_addr_of_struct_bpf_prog  // unused if bpf stats are off
2347 * mov rsi, rbx                    // prog start time
2348 * call __bpf_prog_exit            // rcu_read_unlock, preempt_enable and stats math
2349 * mov rax, qword ptr [rbp - 8]    // restore eth_type_trans's return value
2350 * pop rbx
2351 * leave
2352 * add rsp, 8                      // skip eth_type_trans's frame
2353 * ret                             // return to its caller
2354 */
2355int arch_prepare_bpf_trampoline(struct bpf_tramp_image *im, void *image, void *image_end,
2356				const struct btf_func_model *m, u32 flags,
2357				struct bpf_tramp_links *tlinks,
2358				void *func_addr)
2359{
2360	int i, ret, nr_regs = m->nr_args, stack_size = 0;
2361	int regs_off, nregs_off, ip_off, run_ctx_off, arg_stack_off, rbx_off;
2362	struct bpf_tramp_links *fentry = &tlinks[BPF_TRAMP_FENTRY];
2363	struct bpf_tramp_links *fexit = &tlinks[BPF_TRAMP_FEXIT];
2364	struct bpf_tramp_links *fmod_ret = &tlinks[BPF_TRAMP_MODIFY_RETURN];
2365	void *orig_call = func_addr;
2366	u8 **branches = NULL;
2367	u8 *prog;
2368	bool save_ret;
2369
2370	/* extra registers for struct arguments */
2371	for (i = 0; i < m->nr_args; i++)
2372		if (m->arg_flags[i] & BTF_FMODEL_STRUCT_ARG)
2373			nr_regs += (m->arg_size[i] + 7) / 8 - 1;
2374
2375	/* x86-64 supports up to MAX_BPF_FUNC_ARGS arguments. 1-6
2376	 * are passed through regs, the remains are through stack.
2377	 */
2378	if (nr_regs > MAX_BPF_FUNC_ARGS)
2379		return -ENOTSUPP;
2380
2381	/* Generated trampoline stack layout:
2382	 *
2383	 * RBP + 8         [ return address  ]
2384	 * RBP + 0         [ RBP             ]
2385	 *
2386	 * RBP - 8         [ return value    ]  BPF_TRAMP_F_CALL_ORIG or
2387	 *                                      BPF_TRAMP_F_RET_FENTRY_RET flags
2388	 *
2389	 *                 [ reg_argN        ]  always
2390	 *                 [ ...             ]
2391	 * RBP - regs_off  [ reg_arg1        ]  program's ctx pointer
2392	 *
2393	 * RBP - nregs_off [ regs count	     ]  always
2394	 *
2395	 * RBP - ip_off    [ traced function ]  BPF_TRAMP_F_IP_ARG flag
2396	 *
2397	 * RBP - rbx_off   [ rbx value       ]  always
2398	 *
2399	 * RBP - run_ctx_off [ bpf_tramp_run_ctx ]
2400	 *
2401	 *                     [ stack_argN ]  BPF_TRAMP_F_CALL_ORIG
2402	 *                     [ ...        ]
2403	 *                     [ stack_arg2 ]
2404	 * RBP - arg_stack_off [ stack_arg1 ]
2405	 * RSP                 [ tail_call_cnt ] BPF_TRAMP_F_TAIL_CALL_CTX
2406	 */
2407
2408	/* room for return value of orig_call or fentry prog */
2409	save_ret = flags & (BPF_TRAMP_F_CALL_ORIG | BPF_TRAMP_F_RET_FENTRY_RET);
2410	if (save_ret)
2411		stack_size += 8;
2412
2413	stack_size += nr_regs * 8;
2414	regs_off = stack_size;
2415
2416	/* regs count  */
2417	stack_size += 8;
2418	nregs_off = stack_size;
2419
2420	if (flags & BPF_TRAMP_F_IP_ARG)
2421		stack_size += 8; /* room for IP address argument */
2422
2423	ip_off = stack_size;
2424
2425	stack_size += 8;
2426	rbx_off = stack_size;
2427
2428	stack_size += (sizeof(struct bpf_tramp_run_ctx) + 7) & ~0x7;
2429	run_ctx_off = stack_size;
2430
2431	if (nr_regs > 6 && (flags & BPF_TRAMP_F_CALL_ORIG)) {
2432		/* the space that used to pass arguments on-stack */
2433		stack_size += (nr_regs - get_nr_used_regs(m)) * 8;
2434		/* make sure the stack pointer is 16-byte aligned if we
2435		 * need pass arguments on stack, which means
2436		 *  [stack_size + 8(rbp) + 8(rip) + 8(origin rip)]
2437		 * should be 16-byte aligned. Following code depend on
2438		 * that stack_size is already 8-byte aligned.
2439		 */
2440		stack_size += (stack_size % 16) ? 0 : 8;
2441	}
2442
2443	arg_stack_off = stack_size;
2444
2445	if (flags & BPF_TRAMP_F_SKIP_FRAME) {
2446		/* skip patched call instruction and point orig_call to actual
2447		 * body of the kernel function.
2448		 */
2449		if (is_endbr(*(u32 *)orig_call))
2450			orig_call += ENDBR_INSN_SIZE;
2451		orig_call += X86_PATCH_SIZE;
2452	}
2453
2454	prog = image;
2455
2456	EMIT_ENDBR();
2457	/*
2458	 * This is the direct-call trampoline, as such it needs accounting
2459	 * for the __fentry__ call.
2460	 */
2461	x86_call_depth_emit_accounting(&prog, NULL);
2462	EMIT1(0x55);		 /* push rbp */
2463	EMIT3(0x48, 0x89, 0xE5); /* mov rbp, rsp */
2464	if (!is_imm8(stack_size))
2465		/* sub rsp, stack_size */
2466		EMIT3_off32(0x48, 0x81, 0xEC, stack_size);
2467	else
2468		/* sub rsp, stack_size */
2469		EMIT4(0x48, 0x83, 0xEC, stack_size);
2470	if (flags & BPF_TRAMP_F_TAIL_CALL_CTX)
2471		EMIT1(0x50);		/* push rax */
2472	/* mov QWORD PTR [rbp - rbx_off], rbx */
2473	emit_stx(&prog, BPF_DW, BPF_REG_FP, BPF_REG_6, -rbx_off);
2474
2475	/* Store number of argument registers of the traced function:
2476	 *   mov rax, nr_regs
2477	 *   mov QWORD PTR [rbp - nregs_off], rax
2478	 */
2479	emit_mov_imm64(&prog, BPF_REG_0, 0, (u32) nr_regs);
2480	emit_stx(&prog, BPF_DW, BPF_REG_FP, BPF_REG_0, -nregs_off);
2481
2482	if (flags & BPF_TRAMP_F_IP_ARG) {
2483		/* Store IP address of the traced function:
2484		 * movabsq rax, func_addr
2485		 * mov QWORD PTR [rbp - ip_off], rax
2486		 */
2487		emit_mov_imm64(&prog, BPF_REG_0, (long) func_addr >> 32, (u32) (long) func_addr);
2488		emit_stx(&prog, BPF_DW, BPF_REG_FP, BPF_REG_0, -ip_off);
2489	}
2490
2491	save_args(m, &prog, regs_off, false);
2492
2493	if (flags & BPF_TRAMP_F_CALL_ORIG) {
2494		/* arg1: mov rdi, im */
2495		emit_mov_imm64(&prog, BPF_REG_1, (long) im >> 32, (u32) (long) im);
2496		if (emit_rsb_call(&prog, __bpf_tramp_enter, prog)) {
2497			ret = -EINVAL;
2498			goto cleanup;
2499		}
2500	}
2501
2502	if (fentry->nr_links)
2503		if (invoke_bpf(m, &prog, fentry, regs_off, run_ctx_off,
2504			       flags & BPF_TRAMP_F_RET_FENTRY_RET))
2505			return -EINVAL;
2506
2507	if (fmod_ret->nr_links) {
2508		branches = kcalloc(fmod_ret->nr_links, sizeof(u8 *),
2509				   GFP_KERNEL);
2510		if (!branches)
2511			return -ENOMEM;
2512
2513		if (invoke_bpf_mod_ret(m, &prog, fmod_ret, regs_off,
2514				       run_ctx_off, branches)) {
2515			ret = -EINVAL;
2516			goto cleanup;
2517		}
2518	}
2519
2520	if (flags & BPF_TRAMP_F_CALL_ORIG) {
2521		restore_regs(m, &prog, regs_off);
2522		save_args(m, &prog, arg_stack_off, true);
2523
2524		if (flags & BPF_TRAMP_F_TAIL_CALL_CTX)
2525			/* Before calling the original function, restore the
2526			 * tail_call_cnt from stack to rax.
2527			 */
2528			RESTORE_TAIL_CALL_CNT(stack_size);
2529
2530		if (flags & BPF_TRAMP_F_ORIG_STACK) {
2531			emit_ldx(&prog, BPF_DW, BPF_REG_6, BPF_REG_FP, 8);
2532			EMIT2(0xff, 0xd3); /* call *rbx */
2533		} else {
2534			/* call original function */
2535			if (emit_rsb_call(&prog, orig_call, prog)) {
2536				ret = -EINVAL;
2537				goto cleanup;
2538			}
2539		}
2540		/* remember return value in a stack for bpf prog to access */
2541		emit_stx(&prog, BPF_DW, BPF_REG_FP, BPF_REG_0, -8);
2542		im->ip_after_call = prog;
2543		memcpy(prog, x86_nops[5], X86_PATCH_SIZE);
2544		prog += X86_PATCH_SIZE;
2545	}
2546
2547	if (fmod_ret->nr_links) {
2548		/* From Intel 64 and IA-32 Architectures Optimization
2549		 * Reference Manual, 3.4.1.4 Code Alignment, Assembly/Compiler
2550		 * Coding Rule 11: All branch targets should be 16-byte
2551		 * aligned.
2552		 */
2553		emit_align(&prog, 16);
2554		/* Update the branches saved in invoke_bpf_mod_ret with the
2555		 * aligned address of do_fexit.
2556		 */
2557		for (i = 0; i < fmod_ret->nr_links; i++)
2558			emit_cond_near_jump(&branches[i], prog, branches[i],
2559					    X86_JNE);
2560	}
2561
2562	if (fexit->nr_links)
2563		if (invoke_bpf(m, &prog, fexit, regs_off, run_ctx_off, false)) {
2564			ret = -EINVAL;
2565			goto cleanup;
2566		}
2567
2568	if (flags & BPF_TRAMP_F_RESTORE_REGS)
2569		restore_regs(m, &prog, regs_off);
2570
2571	/* This needs to be done regardless. If there were fmod_ret programs,
2572	 * the return value is only updated on the stack and still needs to be
2573	 * restored to R0.
2574	 */
2575	if (flags & BPF_TRAMP_F_CALL_ORIG) {
2576		im->ip_epilogue = prog;
2577		/* arg1: mov rdi, im */
2578		emit_mov_imm64(&prog, BPF_REG_1, (long) im >> 32, (u32) (long) im);
2579		if (emit_rsb_call(&prog, __bpf_tramp_exit, prog)) {
2580			ret = -EINVAL;
2581			goto cleanup;
2582		}
2583	} else if (flags & BPF_TRAMP_F_TAIL_CALL_CTX)
2584		/* Before running the original function, restore the
2585		 * tail_call_cnt from stack to rax.
2586		 */
2587		RESTORE_TAIL_CALL_CNT(stack_size);
2588
2589	/* restore return value of orig_call or fentry prog back into RAX */
2590	if (save_ret)
2591		emit_ldx(&prog, BPF_DW, BPF_REG_0, BPF_REG_FP, -8);
2592
2593	emit_ldx(&prog, BPF_DW, BPF_REG_6, BPF_REG_FP, -rbx_off);
2594	EMIT1(0xC9); /* leave */
2595	if (flags & BPF_TRAMP_F_SKIP_FRAME)
2596		/* skip our return address and return to parent */
2597		EMIT4(0x48, 0x83, 0xC4, 8); /* add rsp, 8 */
2598	emit_return(&prog, prog);
2599	/* Make sure the trampoline generation logic doesn't overflow */
2600	if (WARN_ON_ONCE(prog > (u8 *)image_end - BPF_INSN_SAFETY)) {
2601		ret = -EFAULT;
2602		goto cleanup;
2603	}
2604	ret = prog - (u8 *)image;
2605
2606cleanup:
2607	kfree(branches);
2608	return ret;
2609}
2610
2611static int emit_bpf_dispatcher(u8 **pprog, int a, int b, s64 *progs, u8 *image, u8 *buf)
2612{
2613	u8 *jg_reloc, *prog = *pprog;
2614	int pivot, err, jg_bytes = 1;
2615	s64 jg_offset;
2616
2617	if (a == b) {
2618		/* Leaf node of recursion, i.e. not a range of indices
2619		 * anymore.
2620		 */
2621		EMIT1(add_1mod(0x48, BPF_REG_3));	/* cmp rdx,func */
2622		if (!is_simm32(progs[a]))
2623			return -1;
2624		EMIT2_off32(0x81, add_1reg(0xF8, BPF_REG_3),
2625			    progs[a]);
2626		err = emit_cond_near_jump(&prog,	/* je func */
2627					  (void *)progs[a], image + (prog - buf),
2628					  X86_JE);
2629		if (err)
2630			return err;
2631
2632		emit_indirect_jump(&prog, 2 /* rdx */, image + (prog - buf));
2633
2634		*pprog = prog;
2635		return 0;
2636	}
2637
2638	/* Not a leaf node, so we pivot, and recursively descend into
2639	 * the lower and upper ranges.
2640	 */
2641	pivot = (b - a) / 2;
2642	EMIT1(add_1mod(0x48, BPF_REG_3));		/* cmp rdx,func */
2643	if (!is_simm32(progs[a + pivot]))
2644		return -1;
2645	EMIT2_off32(0x81, add_1reg(0xF8, BPF_REG_3), progs[a + pivot]);
2646
2647	if (pivot > 2) {				/* jg upper_part */
2648		/* Require near jump. */
2649		jg_bytes = 4;
2650		EMIT2_off32(0x0F, X86_JG + 0x10, 0);
2651	} else {
2652		EMIT2(X86_JG, 0);
2653	}
2654	jg_reloc = prog;
2655
2656	err = emit_bpf_dispatcher(&prog, a, a + pivot,	/* emit lower_part */
2657				  progs, image, buf);
2658	if (err)
2659		return err;
2660
2661	/* From Intel 64 and IA-32 Architectures Optimization
2662	 * Reference Manual, 3.4.1.4 Code Alignment, Assembly/Compiler
2663	 * Coding Rule 11: All branch targets should be 16-byte
2664	 * aligned.
2665	 */
2666	emit_align(&prog, 16);
2667	jg_offset = prog - jg_reloc;
2668	emit_code(jg_reloc - jg_bytes, jg_offset, jg_bytes);
2669
2670	err = emit_bpf_dispatcher(&prog, a + pivot + 1,	/* emit upper_part */
2671				  b, progs, image, buf);
2672	if (err)
2673		return err;
2674
2675	*pprog = prog;
2676	return 0;
2677}
2678
2679static int cmp_ips(const void *a, const void *b)
2680{
2681	const s64 *ipa = a;
2682	const s64 *ipb = b;
2683
2684	if (*ipa > *ipb)
2685		return 1;
2686	if (*ipa < *ipb)
2687		return -1;
2688	return 0;
2689}
2690
2691int arch_prepare_bpf_dispatcher(void *image, void *buf, s64 *funcs, int num_funcs)
2692{
2693	u8 *prog = buf;
2694
2695	sort(funcs, num_funcs, sizeof(funcs[0]), cmp_ips, NULL);
2696	return emit_bpf_dispatcher(&prog, 0, num_funcs - 1, funcs, image, buf);
2697}
2698
2699struct x64_jit_data {
2700	struct bpf_binary_header *rw_header;
2701	struct bpf_binary_header *header;
2702	int *addrs;
2703	u8 *image;
2704	int proglen;
2705	struct jit_context ctx;
2706};
2707
2708#define MAX_PASSES 20
2709#define PADDING_PASSES (MAX_PASSES - 5)
2710
2711struct bpf_prog *bpf_int_jit_compile(struct bpf_prog *prog)
2712{
2713	struct bpf_binary_header *rw_header = NULL;
2714	struct bpf_binary_header *header = NULL;
2715	struct bpf_prog *tmp, *orig_prog = prog;
2716	struct x64_jit_data *jit_data;
2717	int proglen, oldproglen = 0;
2718	struct jit_context ctx = {};
2719	bool tmp_blinded = false;
2720	bool extra_pass = false;
2721	bool padding = false;
2722	u8 *rw_image = NULL;
2723	u8 *image = NULL;
2724	int *addrs;
2725	int pass;
2726	int i;
2727
2728	if (!prog->jit_requested)
2729		return orig_prog;
2730
2731	tmp = bpf_jit_blind_constants(prog);
2732	/*
2733	 * If blinding was requested and we failed during blinding,
2734	 * we must fall back to the interpreter.
2735	 */
2736	if (IS_ERR(tmp))
2737		return orig_prog;
2738	if (tmp != prog) {
2739		tmp_blinded = true;
2740		prog = tmp;
2741	}
2742
2743	jit_data = prog->aux->jit_data;
2744	if (!jit_data) {
2745		jit_data = kzalloc(sizeof(*jit_data), GFP_KERNEL);
2746		if (!jit_data) {
2747			prog = orig_prog;
2748			goto out;
2749		}
2750		prog->aux->jit_data = jit_data;
2751	}
2752	addrs = jit_data->addrs;
2753	if (addrs) {
2754		ctx = jit_data->ctx;
2755		oldproglen = jit_data->proglen;
2756		image = jit_data->image;
2757		header = jit_data->header;
2758		rw_header = jit_data->rw_header;
2759		rw_image = (void *)rw_header + ((void *)image - (void *)header);
2760		extra_pass = true;
2761		padding = true;
2762		goto skip_init_addrs;
2763	}
2764	addrs = kvmalloc_array(prog->len + 1, sizeof(*addrs), GFP_KERNEL);
2765	if (!addrs) {
2766		prog = orig_prog;
2767		goto out_addrs;
2768	}
2769
2770	/*
2771	 * Before first pass, make a rough estimation of addrs[]
2772	 * each BPF instruction is translated to less than 64 bytes
2773	 */
2774	for (proglen = 0, i = 0; i <= prog->len; i++) {
2775		proglen += 64;
2776		addrs[i] = proglen;
2777	}
2778	ctx.cleanup_addr = proglen;
2779skip_init_addrs:
2780
2781	/*
2782	 * JITed image shrinks with every pass and the loop iterates
2783	 * until the image stops shrinking. Very large BPF programs
2784	 * may converge on the last pass. In such case do one more
2785	 * pass to emit the final image.
2786	 */
2787	for (pass = 0; pass < MAX_PASSES || image; pass++) {
2788		if (!padding && pass >= PADDING_PASSES)
2789			padding = true;
2790		proglen = do_jit(prog, addrs, image, rw_image, oldproglen, &ctx, padding);
2791		if (proglen <= 0) {
2792out_image:
2793			image = NULL;
2794			if (header) {
2795				bpf_arch_text_copy(&header->size, &rw_header->size,
2796						   sizeof(rw_header->size));
2797				bpf_jit_binary_pack_free(header, rw_header);
2798			}
2799			/* Fall back to interpreter mode */
2800			prog = orig_prog;
2801			if (extra_pass) {
2802				prog->bpf_func = NULL;
2803				prog->jited = 0;
2804				prog->jited_len = 0;
2805			}
2806			goto out_addrs;
2807		}
2808		if (image) {
2809			if (proglen != oldproglen) {
2810				pr_err("bpf_jit: proglen=%d != oldproglen=%d\n",
2811				       proglen, oldproglen);
2812				goto out_image;
2813			}
2814			break;
2815		}
2816		if (proglen == oldproglen) {
2817			/*
2818			 * The number of entries in extable is the number of BPF_LDX
2819			 * insns that access kernel memory via "pointer to BTF type".
2820			 * The verifier changed their opcode from LDX|MEM|size
2821			 * to LDX|PROBE_MEM|size to make JITing easier.
2822			 */
2823			u32 align = __alignof__(struct exception_table_entry);
2824			u32 extable_size = prog->aux->num_exentries *
2825				sizeof(struct exception_table_entry);
2826
2827			/* allocate module memory for x86 insns and extable */
2828			header = bpf_jit_binary_pack_alloc(roundup(proglen, align) + extable_size,
2829							   &image, align, &rw_header, &rw_image,
2830							   jit_fill_hole);
2831			if (!header) {
2832				prog = orig_prog;
2833				goto out_addrs;
2834			}
2835			prog->aux->extable = (void *) image + roundup(proglen, align);
2836		}
2837		oldproglen = proglen;
2838		cond_resched();
2839	}
2840
2841	if (bpf_jit_enable > 1)
2842		bpf_jit_dump(prog->len, proglen, pass + 1, rw_image);
2843
2844	if (image) {
2845		if (!prog->is_func || extra_pass) {
2846			/*
2847			 * bpf_jit_binary_pack_finalize fails in two scenarios:
2848			 *   1) header is not pointing to proper module memory;
2849			 *   2) the arch doesn't support bpf_arch_text_copy().
2850			 *
2851			 * Both cases are serious bugs and justify WARN_ON.
2852			 */
2853			if (WARN_ON(bpf_jit_binary_pack_finalize(prog, header, rw_header))) {
2854				/* header has been freed */
2855				header = NULL;
2856				goto out_image;
2857			}
2858
2859			bpf_tail_call_direct_fixup(prog);
2860		} else {
2861			jit_data->addrs = addrs;
2862			jit_data->ctx = ctx;
2863			jit_data->proglen = proglen;
2864			jit_data->image = image;
2865			jit_data->header = header;
2866			jit_data->rw_header = rw_header;
2867		}
2868		prog->bpf_func = (void *)image;
2869		prog->jited = 1;
2870		prog->jited_len = proglen;
2871	} else {
2872		prog = orig_prog;
2873	}
2874
2875	if (!image || !prog->is_func || extra_pass) {
2876		if (image)
2877			bpf_prog_fill_jited_linfo(prog, addrs + 1);
2878out_addrs:
2879		kvfree(addrs);
2880		kfree(jit_data);
2881		prog->aux->jit_data = NULL;
2882	}
2883out:
2884	if (tmp_blinded)
2885		bpf_jit_prog_release_other(prog, prog == orig_prog ?
2886					   tmp : orig_prog);
2887	return prog;
2888}
2889
2890bool bpf_jit_supports_kfunc_call(void)
2891{
2892	return true;
2893}
2894
2895void *bpf_arch_text_copy(void *dst, void *src, size_t len)
2896{
2897	if (text_poke_copy(dst, src, len) == NULL)
2898		return ERR_PTR(-EINVAL);
2899	return dst;
2900}
2901
2902/* Indicate the JIT backend supports mixing bpf2bpf and tailcalls. */
2903bool bpf_jit_supports_subprog_tailcalls(void)
2904{
2905	return true;
2906}
2907
2908void bpf_jit_free(struct bpf_prog *prog)
2909{
2910	if (prog->jited) {
2911		struct x64_jit_data *jit_data = prog->aux->jit_data;
2912		struct bpf_binary_header *hdr;
2913
2914		/*
2915		 * If we fail the final pass of JIT (from jit_subprogs),
2916		 * the program may not be finalized yet. Call finalize here
2917		 * before freeing it.
2918		 */
2919		if (jit_data) {
2920			bpf_jit_binary_pack_finalize(prog, jit_data->header,
2921						     jit_data->rw_header);
2922			kvfree(jit_data->addrs);
2923			kfree(jit_data);
2924		}
2925		hdr = bpf_jit_binary_pack_hdr(prog);
2926		bpf_jit_binary_pack_free(hdr, NULL);
2927		WARN_ON_ONCE(!bpf_prog_kallsyms_verify_off(prog));
2928	}
2929
2930	bpf_prog_unlock_free(prog);
2931}
2932
2933void bpf_arch_poke_desc_update(struct bpf_jit_poke_descriptor *poke,
2934			       struct bpf_prog *new, struct bpf_prog *old)
2935{
2936	u8 *old_addr, *new_addr, *old_bypass_addr;
2937	int ret;
2938
2939	old_bypass_addr = old ? NULL : poke->bypass_addr;
2940	old_addr = old ? (u8 *)old->bpf_func + poke->adj_off : NULL;
2941	new_addr = new ? (u8 *)new->bpf_func + poke->adj_off : NULL;
2942
2943	/*
2944	 * On program loading or teardown, the program's kallsym entry
2945	 * might not be in place, so we use __bpf_arch_text_poke to skip
2946	 * the kallsyms check.
2947	 */
2948	if (new) {
2949		ret = __bpf_arch_text_poke(poke->tailcall_target,
2950					   BPF_MOD_JUMP,
2951					   old_addr, new_addr);
2952		BUG_ON(ret < 0);
2953		if (!old) {
2954			ret = __bpf_arch_text_poke(poke->tailcall_bypass,
2955						   BPF_MOD_JUMP,
2956						   poke->bypass_addr,
2957						   NULL);
2958			BUG_ON(ret < 0);
2959		}
2960	} else {
2961		ret = __bpf_arch_text_poke(poke->tailcall_bypass,
2962					   BPF_MOD_JUMP,
2963					   old_bypass_addr,
2964					   poke->bypass_addr);
2965		BUG_ON(ret < 0);
2966		/* let other CPUs finish the execution of program
2967		 * so that it will not possible to expose them
2968		 * to invalid nop, stack unwind, nop state
2969		 */
2970		if (!ret)
2971			synchronize_rcu();
2972		ret = __bpf_arch_text_poke(poke->tailcall_target,
2973					   BPF_MOD_JUMP,
2974					   old_addr, NULL);
2975		BUG_ON(ret < 0);
2976	}
2977}
2978