1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * BPF JIT compiler
4 *
5 * Copyright (C) 2011-2013 Eric Dumazet (eric.dumazet@gmail.com)
6 * Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
7 */
8 #include <linux/netdevice.h>
9 #include <linux/filter.h>
10 #include <linux/if_vlan.h>
11 #include <linux/bpf.h>
12 #include <linux/memory.h>
13 #include <linux/sort.h>
14 #include <asm/extable.h>
15 #include <asm/ftrace.h>
16 #include <asm/set_memory.h>
17 #include <asm/nospec-branch.h>
18 #include <asm/text-patching.h>
19
emit_code(u8 *ptr, u32 bytes, unsigned int len)20 static u8 *emit_code(u8 *ptr, u32 bytes, unsigned int len)
21 {
22 if (len == 1)
23 *ptr = bytes;
24 else if (len == 2)
25 *(u16 *)ptr = bytes;
26 else {
27 *(u32 *)ptr = bytes;
28 barrier();
29 }
30 return ptr + len;
31 }
32
33 #define EMIT(bytes, len) \
34 do { prog = emit_code(prog, bytes, len); } while (0)
35
36 #define EMIT1(b1) EMIT(b1, 1)
37 #define EMIT2(b1, b2) EMIT((b1) + ((b2) << 8), 2)
38 #define EMIT3(b1, b2, b3) EMIT((b1) + ((b2) << 8) + ((b3) << 16), 3)
39 #define EMIT4(b1, b2, b3, b4) EMIT((b1) + ((b2) << 8) + ((b3) << 16) + ((b4) << 24), 4)
40
41 #define EMIT1_off32(b1, off) \
42 do { EMIT1(b1); EMIT(off, 4); } while (0)
43 #define EMIT2_off32(b1, b2, off) \
44 do { EMIT2(b1, b2); EMIT(off, 4); } while (0)
45 #define EMIT3_off32(b1, b2, b3, off) \
46 do { EMIT3(b1, b2, b3); EMIT(off, 4); } while (0)
47 #define EMIT4_off32(b1, b2, b3, b4, off) \
48 do { EMIT4(b1, b2, b3, b4); EMIT(off, 4); } while (0)
49
50 #ifdef CONFIG_X86_KERNEL_IBT
51 #define EMIT_ENDBR() EMIT(gen_endbr(), 4)
52 #else
53 #define EMIT_ENDBR()
54 #endif
55
is_imm8(int value)56 static bool is_imm8(int value)
57 {
58 return value <= 127 && value >= -128;
59 }
60
is_simm32(s64 value)61 static bool is_simm32(s64 value)
62 {
63 return value == (s64)(s32)value;
64 }
65
is_uimm32(u64 value)66 static bool is_uimm32(u64 value)
67 {
68 return value == (u64)(u32)value;
69 }
70
71 /* mov dst, src */
72 #define EMIT_mov(DST, SRC) \
73 do { \
74 if (DST != SRC) \
75 EMIT3(add_2mod(0x48, DST, SRC), 0x89, add_2reg(0xC0, DST, SRC)); \
76 } while (0)
77
bpf_size_to_x86_bytes(int bpf_size)78 static int bpf_size_to_x86_bytes(int bpf_size)
79 {
80 if (bpf_size == BPF_W)
81 return 4;
82 else if (bpf_size == BPF_H)
83 return 2;
84 else if (bpf_size == BPF_B)
85 return 1;
86 else if (bpf_size == BPF_DW)
87 return 4; /* imm32 */
88 else
89 return 0;
90 }
91
92 /*
93 * List of x86 cond jumps opcodes (. + s8)
94 * Add 0x10 (and an extra 0x0f) to generate far jumps (. + s32)
95 */
96 #define X86_JB 0x72
97 #define X86_JAE 0x73
98 #define X86_JE 0x74
99 #define X86_JNE 0x75
100 #define X86_JBE 0x76
101 #define X86_JA 0x77
102 #define X86_JL 0x7C
103 #define X86_JGE 0x7D
104 #define X86_JLE 0x7E
105 #define X86_JG 0x7F
106
107 /* Pick a register outside of BPF range for JIT internal work */
108 #define AUX_REG (MAX_BPF_JIT_REG + 1)
109 #define X86_REG_R9 (MAX_BPF_JIT_REG + 2)
110
111 /*
112 * The following table maps BPF registers to x86-64 registers.
113 *
114 * x86-64 register R12 is unused, since if used as base address
115 * register in load/store instructions, it always needs an
116 * extra byte of encoding and is callee saved.
117 *
118 * x86-64 register R9 is not used by BPF programs, but can be used by BPF
119 * trampoline. x86-64 register R10 is used for blinding (if enabled).
120 */
121 static const int reg2hex[] = {
122 [BPF_REG_0] = 0, /* RAX */
123 [BPF_REG_1] = 7, /* RDI */
124 [BPF_REG_2] = 6, /* RSI */
125 [BPF_REG_3] = 2, /* RDX */
126 [BPF_REG_4] = 1, /* RCX */
127 [BPF_REG_5] = 0, /* R8 */
128 [BPF_REG_6] = 3, /* RBX callee saved */
129 [BPF_REG_7] = 5, /* R13 callee saved */
130 [BPF_REG_8] = 6, /* R14 callee saved */
131 [BPF_REG_9] = 7, /* R15 callee saved */
132 [BPF_REG_FP] = 5, /* RBP readonly */
133 [BPF_REG_AX] = 2, /* R10 temp register */
134 [AUX_REG] = 3, /* R11 temp register */
135 [X86_REG_R9] = 1, /* R9 register, 6th function argument */
136 };
137
138 static const int reg2pt_regs[] = {
139 [BPF_REG_0] = offsetof(struct pt_regs, ax),
140 [BPF_REG_1] = offsetof(struct pt_regs, di),
141 [BPF_REG_2] = offsetof(struct pt_regs, si),
142 [BPF_REG_3] = offsetof(struct pt_regs, dx),
143 [BPF_REG_4] = offsetof(struct pt_regs, cx),
144 [BPF_REG_5] = offsetof(struct pt_regs, r8),
145 [BPF_REG_6] = offsetof(struct pt_regs, bx),
146 [BPF_REG_7] = offsetof(struct pt_regs, r13),
147 [BPF_REG_8] = offsetof(struct pt_regs, r14),
148 [BPF_REG_9] = offsetof(struct pt_regs, r15),
149 };
150
151 /*
152 * is_ereg() == true if BPF register 'reg' maps to x86-64 r8..r15
153 * which need extra byte of encoding.
154 * rax,rcx,...,rbp have simpler encoding
155 */
is_ereg(u32 reg)156 static bool is_ereg(u32 reg)
157 {
158 return (1 << reg) & (BIT(BPF_REG_5) |
159 BIT(AUX_REG) |
160 BIT(BPF_REG_7) |
161 BIT(BPF_REG_8) |
162 BIT(BPF_REG_9) |
163 BIT(X86_REG_R9) |
164 BIT(BPF_REG_AX));
165 }
166
167 /*
168 * is_ereg_8l() == true if BPF register 'reg' is mapped to access x86-64
169 * lower 8-bit registers dil,sil,bpl,spl,r8b..r15b, which need extra byte
170 * of encoding. al,cl,dl,bl have simpler encoding.
171 */
is_ereg_8l(u32 reg)172 static bool is_ereg_8l(u32 reg)
173 {
174 return is_ereg(reg) ||
175 (1 << reg) & (BIT(BPF_REG_1) |
176 BIT(BPF_REG_2) |
177 BIT(BPF_REG_FP));
178 }
179
is_axreg(u32 reg)180 static bool is_axreg(u32 reg)
181 {
182 return reg == BPF_REG_0;
183 }
184
185 /* Add modifiers if 'reg' maps to x86-64 registers R8..R15 */
add_1mod(u8 byte, u32 reg)186 static u8 add_1mod(u8 byte, u32 reg)
187 {
188 if (is_ereg(reg))
189 byte |= 1;
190 return byte;
191 }
192
add_2mod(u8 byte, u32 r1, u32 r2)193 static u8 add_2mod(u8 byte, u32 r1, u32 r2)
194 {
195 if (is_ereg(r1))
196 byte |= 1;
197 if (is_ereg(r2))
198 byte |= 4;
199 return byte;
200 }
201
202 /* Encode 'dst_reg' register into x86-64 opcode 'byte' */
add_1reg(u8 byte, u32 dst_reg)203 static u8 add_1reg(u8 byte, u32 dst_reg)
204 {
205 return byte + reg2hex[dst_reg];
206 }
207
208 /* Encode 'dst_reg' and 'src_reg' registers into x86-64 opcode 'byte' */
add_2reg(u8 byte, u32 dst_reg, u32 src_reg)209 static u8 add_2reg(u8 byte, u32 dst_reg, u32 src_reg)
210 {
211 return byte + reg2hex[dst_reg] + (reg2hex[src_reg] << 3);
212 }
213
214 /* Some 1-byte opcodes for binary ALU operations */
215 static u8 simple_alu_opcodes[] = {
216 [BPF_ADD] = 0x01,
217 [BPF_SUB] = 0x29,
218 [BPF_AND] = 0x21,
219 [BPF_OR] = 0x09,
220 [BPF_XOR] = 0x31,
221 [BPF_LSH] = 0xE0,
222 [BPF_RSH] = 0xE8,
223 [BPF_ARSH] = 0xF8,
224 };
225
jit_fill_hole(void *area, unsigned int size)226 static void jit_fill_hole(void *area, unsigned int size)
227 {
228 /* Fill whole space with INT3 instructions */
229 memset(area, 0xcc, size);
230 }
231
bpf_arch_text_invalidate(void *dst, size_t len)232 int bpf_arch_text_invalidate(void *dst, size_t len)
233 {
234 return IS_ERR_OR_NULL(text_poke_set(dst, 0xcc, len));
235 }
236
237 struct jit_context {
238 int cleanup_addr; /* Epilogue code offset */
239
240 /*
241 * Program specific offsets of labels in the code; these rely on the
242 * JIT doing at least 2 passes, recording the position on the first
243 * pass, only to generate the correct offset on the second pass.
244 */
245 int tail_call_direct_label;
246 int tail_call_indirect_label;
247 };
248
249 /* Maximum number of bytes emitted while JITing one eBPF insn */
250 #define BPF_MAX_INSN_SIZE 128
251 #define BPF_INSN_SAFETY 64
252
253 /* Number of bytes emit_patch() needs to generate instructions */
254 #define X86_PATCH_SIZE 5
255 /* Number of bytes that will be skipped on tailcall */
256 #define X86_TAIL_CALL_OFFSET (11 + ENDBR_INSN_SIZE)
257
push_callee_regs(u8 **pprog, bool *callee_regs_used)258 static void push_callee_regs(u8 **pprog, bool *callee_regs_used)
259 {
260 u8 *prog = *pprog;
261
262 if (callee_regs_used[0])
263 EMIT1(0x53); /* push rbx */
264 if (callee_regs_used[1])
265 EMIT2(0x41, 0x55); /* push r13 */
266 if (callee_regs_used[2])
267 EMIT2(0x41, 0x56); /* push r14 */
268 if (callee_regs_used[3])
269 EMIT2(0x41, 0x57); /* push r15 */
270 *pprog = prog;
271 }
272
pop_callee_regs(u8 **pprog, bool *callee_regs_used)273 static void pop_callee_regs(u8 **pprog, bool *callee_regs_used)
274 {
275 u8 *prog = *pprog;
276
277 if (callee_regs_used[3])
278 EMIT2(0x41, 0x5F); /* pop r15 */
279 if (callee_regs_used[2])
280 EMIT2(0x41, 0x5E); /* pop r14 */
281 if (callee_regs_used[1])
282 EMIT2(0x41, 0x5D); /* pop r13 */
283 if (callee_regs_used[0])
284 EMIT1(0x5B); /* pop rbx */
285 *pprog = prog;
286 }
287
288 /*
289 * Emit x86-64 prologue code for BPF program.
290 * bpf_tail_call helper will skip the first X86_TAIL_CALL_OFFSET bytes
291 * while jumping to another program
292 */
emit_prologue(u8 **pprog, u32 stack_depth, bool ebpf_from_cbpf, bool tail_call_reachable, bool is_subprog)293 static void emit_prologue(u8 **pprog, u32 stack_depth, bool ebpf_from_cbpf,
294 bool tail_call_reachable, bool is_subprog)
295 {
296 u8 *prog = *pprog;
297
298 /* BPF trampoline can be made to work without these nops,
299 * but let's waste 5 bytes for now and optimize later
300 */
301 EMIT_ENDBR();
302 memcpy(prog, x86_nops[5], X86_PATCH_SIZE);
303 prog += X86_PATCH_SIZE;
304 if (!ebpf_from_cbpf) {
305 if (tail_call_reachable && !is_subprog)
306 EMIT2(0x31, 0xC0); /* xor eax, eax */
307 else
308 EMIT2(0x66, 0x90); /* nop2 */
309 }
310 EMIT1(0x55); /* push rbp */
311 EMIT3(0x48, 0x89, 0xE5); /* mov rbp, rsp */
312
313 /* X86_TAIL_CALL_OFFSET is here */
314 EMIT_ENDBR();
315
316 /* sub rsp, rounded_stack_depth */
317 if (stack_depth)
318 EMIT3_off32(0x48, 0x81, 0xEC, round_up(stack_depth, 8));
319 if (tail_call_reachable)
320 EMIT1(0x50); /* push rax */
321 *pprog = prog;
322 }
323
emit_patch(u8 **pprog, void *func, void *ip, u8 opcode)324 static int emit_patch(u8 **pprog, void *func, void *ip, u8 opcode)
325 {
326 u8 *prog = *pprog;
327 s64 offset;
328
329 offset = func - (ip + X86_PATCH_SIZE);
330 if (!is_simm32(offset)) {
331 pr_err("Target call %p is out of range\n", func);
332 return -ERANGE;
333 }
334 EMIT1_off32(opcode, offset);
335 *pprog = prog;
336 return 0;
337 }
338
emit_call(u8 **pprog, void *func, void *ip)339 static int emit_call(u8 **pprog, void *func, void *ip)
340 {
341 return emit_patch(pprog, func, ip, 0xE8);
342 }
343
emit_rsb_call(u8 **pprog, void *func, void *ip)344 static int emit_rsb_call(u8 **pprog, void *func, void *ip)
345 {
346 OPTIMIZER_HIDE_VAR(func);
347 x86_call_depth_emit_accounting(pprog, func);
348 return emit_patch(pprog, func, ip, 0xE8);
349 }
350
emit_jump(u8 **pprog, void *func, void *ip)351 static int emit_jump(u8 **pprog, void *func, void *ip)
352 {
353 return emit_patch(pprog, func, ip, 0xE9);
354 }
355
__bpf_arch_text_poke(void *ip, enum bpf_text_poke_type t, void *old_addr, void *new_addr)356 static int __bpf_arch_text_poke(void *ip, enum bpf_text_poke_type t,
357 void *old_addr, void *new_addr)
358 {
359 const u8 *nop_insn = x86_nops[5];
360 u8 old_insn[X86_PATCH_SIZE];
361 u8 new_insn[X86_PATCH_SIZE];
362 u8 *prog;
363 int ret;
364
365 memcpy(old_insn, nop_insn, X86_PATCH_SIZE);
366 if (old_addr) {
367 prog = old_insn;
368 ret = t == BPF_MOD_CALL ?
369 emit_call(&prog, old_addr, ip) :
370 emit_jump(&prog, old_addr, ip);
371 if (ret)
372 return ret;
373 }
374
375 memcpy(new_insn, nop_insn, X86_PATCH_SIZE);
376 if (new_addr) {
377 prog = new_insn;
378 ret = t == BPF_MOD_CALL ?
379 emit_call(&prog, new_addr, ip) :
380 emit_jump(&prog, new_addr, ip);
381 if (ret)
382 return ret;
383 }
384
385 ret = -EBUSY;
386 mutex_lock(&text_mutex);
387 if (memcmp(ip, old_insn, X86_PATCH_SIZE))
388 goto out;
389 ret = 1;
390 if (memcmp(ip, new_insn, X86_PATCH_SIZE)) {
391 text_poke_bp(ip, new_insn, X86_PATCH_SIZE, NULL);
392 ret = 0;
393 }
394 out:
395 mutex_unlock(&text_mutex);
396 return ret;
397 }
398
bpf_arch_text_poke(void *ip, enum bpf_text_poke_type t, void *old_addr, void *new_addr)399 int bpf_arch_text_poke(void *ip, enum bpf_text_poke_type t,
400 void *old_addr, void *new_addr)
401 {
402 if (!is_kernel_text((long)ip) &&
403 !is_bpf_text_address((long)ip))
404 /* BPF poking in modules is not supported */
405 return -EINVAL;
406
407 /*
408 * See emit_prologue(), for IBT builds the trampoline hook is preceded
409 * with an ENDBR instruction.
410 */
411 if (is_endbr(*(u32 *)ip))
412 ip += ENDBR_INSN_SIZE;
413
414 return __bpf_arch_text_poke(ip, t, old_addr, new_addr);
415 }
416
417 #define EMIT_LFENCE() EMIT3(0x0F, 0xAE, 0xE8)
418
emit_indirect_jump(u8 **pprog, int reg, u8 *ip)419 static void emit_indirect_jump(u8 **pprog, int reg, u8 *ip)
420 {
421 u8 *prog = *pprog;
422
423 if (cpu_feature_enabled(X86_FEATURE_RETPOLINE_LFENCE)) {
424 EMIT_LFENCE();
425 EMIT2(0xFF, 0xE0 + reg);
426 } else if (cpu_feature_enabled(X86_FEATURE_RETPOLINE)) {
427 OPTIMIZER_HIDE_VAR(reg);
428 if (cpu_feature_enabled(X86_FEATURE_CALL_DEPTH))
429 emit_jump(&prog, &__x86_indirect_jump_thunk_array[reg], ip);
430 else
431 emit_jump(&prog, &__x86_indirect_thunk_array[reg], ip);
432 } else {
433 EMIT2(0xFF, 0xE0 + reg); /* jmp *%\reg */
434 if (IS_ENABLED(CONFIG_RETPOLINE) || IS_ENABLED(CONFIG_SLS))
435 EMIT1(0xCC); /* int3 */
436 }
437
438 *pprog = prog;
439 }
440
emit_return(u8 **pprog, u8 *ip)441 static void emit_return(u8 **pprog, u8 *ip)
442 {
443 u8 *prog = *pprog;
444
445 if (cpu_feature_enabled(X86_FEATURE_RETHUNK)) {
446 emit_jump(&prog, x86_return_thunk, ip);
447 } else {
448 EMIT1(0xC3); /* ret */
449 if (IS_ENABLED(CONFIG_SLS))
450 EMIT1(0xCC); /* int3 */
451 }
452
453 *pprog = prog;
454 }
455
456 /*
457 * Generate the following code:
458 *
459 * ... bpf_tail_call(void *ctx, struct bpf_array *array, u64 index) ...
460 * if (index >= array->map.max_entries)
461 * goto out;
462 * if (tail_call_cnt++ >= MAX_TAIL_CALL_CNT)
463 * goto out;
464 * prog = array->ptrs[index];
465 * if (prog == NULL)
466 * goto out;
467 * goto *(prog->bpf_func + prologue_size);
468 * out:
469 */
emit_bpf_tail_call_indirect(u8 **pprog, bool *callee_regs_used, u32 stack_depth, u8 *ip, struct jit_context *ctx)470 static void emit_bpf_tail_call_indirect(u8 **pprog, bool *callee_regs_used,
471 u32 stack_depth, u8 *ip,
472 struct jit_context *ctx)
473 {
474 int tcc_off = -4 - round_up(stack_depth, 8);
475 u8 *prog = *pprog, *start = *pprog;
476 int offset;
477
478 /*
479 * rdi - pointer to ctx
480 * rsi - pointer to bpf_array
481 * rdx - index in bpf_array
482 */
483
484 /*
485 * if (index >= array->map.max_entries)
486 * goto out;
487 */
488 EMIT2(0x89, 0xD2); /* mov edx, edx */
489 EMIT3(0x39, 0x56, /* cmp dword ptr [rsi + 16], edx */
490 offsetof(struct bpf_array, map.max_entries));
491
492 offset = ctx->tail_call_indirect_label - (prog + 2 - start);
493 EMIT2(X86_JBE, offset); /* jbe out */
494
495 /*
496 * if (tail_call_cnt++ >= MAX_TAIL_CALL_CNT)
497 * goto out;
498 */
499 EMIT2_off32(0x8B, 0x85, tcc_off); /* mov eax, dword ptr [rbp - tcc_off] */
500 EMIT3(0x83, 0xF8, MAX_TAIL_CALL_CNT); /* cmp eax, MAX_TAIL_CALL_CNT */
501
502 offset = ctx->tail_call_indirect_label - (prog + 2 - start);
503 EMIT2(X86_JAE, offset); /* jae out */
504 EMIT3(0x83, 0xC0, 0x01); /* add eax, 1 */
505 EMIT2_off32(0x89, 0x85, tcc_off); /* mov dword ptr [rbp - tcc_off], eax */
506
507 /* prog = array->ptrs[index]; */
508 EMIT4_off32(0x48, 0x8B, 0x8C, 0xD6, /* mov rcx, [rsi + rdx * 8 + offsetof(...)] */
509 offsetof(struct bpf_array, ptrs));
510
511 /*
512 * if (prog == NULL)
513 * goto out;
514 */
515 EMIT3(0x48, 0x85, 0xC9); /* test rcx,rcx */
516
517 offset = ctx->tail_call_indirect_label - (prog + 2 - start);
518 EMIT2(X86_JE, offset); /* je out */
519
520 pop_callee_regs(&prog, callee_regs_used);
521
522 EMIT1(0x58); /* pop rax */
523 if (stack_depth)
524 EMIT3_off32(0x48, 0x81, 0xC4, /* add rsp, sd */
525 round_up(stack_depth, 8));
526
527 /* goto *(prog->bpf_func + X86_TAIL_CALL_OFFSET); */
528 EMIT4(0x48, 0x8B, 0x49, /* mov rcx, qword ptr [rcx + 32] */
529 offsetof(struct bpf_prog, bpf_func));
530 EMIT4(0x48, 0x83, 0xC1, /* add rcx, X86_TAIL_CALL_OFFSET */
531 X86_TAIL_CALL_OFFSET);
532 /*
533 * Now we're ready to jump into next BPF program
534 * rdi == ctx (1st arg)
535 * rcx == prog->bpf_func + X86_TAIL_CALL_OFFSET
536 */
537 emit_indirect_jump(&prog, 1 /* rcx */, ip + (prog - start));
538
539 /* out: */
540 ctx->tail_call_indirect_label = prog - start;
541 *pprog = prog;
542 }
543
emit_bpf_tail_call_direct(struct bpf_jit_poke_descriptor *poke, u8 **pprog, u8 *ip, bool *callee_regs_used, u32 stack_depth, struct jit_context *ctx)544 static void emit_bpf_tail_call_direct(struct bpf_jit_poke_descriptor *poke,
545 u8 **pprog, u8 *ip,
546 bool *callee_regs_used, u32 stack_depth,
547 struct jit_context *ctx)
548 {
549 int tcc_off = -4 - round_up(stack_depth, 8);
550 u8 *prog = *pprog, *start = *pprog;
551 int offset;
552
553 /*
554 * if (tail_call_cnt++ >= MAX_TAIL_CALL_CNT)
555 * goto out;
556 */
557 EMIT2_off32(0x8B, 0x85, tcc_off); /* mov eax, dword ptr [rbp - tcc_off] */
558 EMIT3(0x83, 0xF8, MAX_TAIL_CALL_CNT); /* cmp eax, MAX_TAIL_CALL_CNT */
559
560 offset = ctx->tail_call_direct_label - (prog + 2 - start);
561 EMIT2(X86_JAE, offset); /* jae out */
562 EMIT3(0x83, 0xC0, 0x01); /* add eax, 1 */
563 EMIT2_off32(0x89, 0x85, tcc_off); /* mov dword ptr [rbp - tcc_off], eax */
564
565 poke->tailcall_bypass = ip + (prog - start);
566 poke->adj_off = X86_TAIL_CALL_OFFSET;
567 poke->tailcall_target = ip + ctx->tail_call_direct_label - X86_PATCH_SIZE;
568 poke->bypass_addr = (u8 *)poke->tailcall_target + X86_PATCH_SIZE;
569
570 emit_jump(&prog, (u8 *)poke->tailcall_target + X86_PATCH_SIZE,
571 poke->tailcall_bypass);
572
573 pop_callee_regs(&prog, callee_regs_used);
574 EMIT1(0x58); /* pop rax */
575 if (stack_depth)
576 EMIT3_off32(0x48, 0x81, 0xC4, round_up(stack_depth, 8));
577
578 memcpy(prog, x86_nops[5], X86_PATCH_SIZE);
579 prog += X86_PATCH_SIZE;
580
581 /* out: */
582 ctx->tail_call_direct_label = prog - start;
583
584 *pprog = prog;
585 }
586
bpf_tail_call_direct_fixup(struct bpf_prog *prog)587 static void bpf_tail_call_direct_fixup(struct bpf_prog *prog)
588 {
589 struct bpf_jit_poke_descriptor *poke;
590 struct bpf_array *array;
591 struct bpf_prog *target;
592 int i, ret;
593
594 for (i = 0; i < prog->aux->size_poke_tab; i++) {
595 poke = &prog->aux->poke_tab[i];
596 if (poke->aux && poke->aux != prog->aux)
597 continue;
598
599 WARN_ON_ONCE(READ_ONCE(poke->tailcall_target_stable));
600
601 if (poke->reason != BPF_POKE_REASON_TAIL_CALL)
602 continue;
603
604 array = container_of(poke->tail_call.map, struct bpf_array, map);
605 mutex_lock(&array->aux->poke_mutex);
606 target = array->ptrs[poke->tail_call.key];
607 if (target) {
608 ret = __bpf_arch_text_poke(poke->tailcall_target,
609 BPF_MOD_JUMP, NULL,
610 (u8 *)target->bpf_func +
611 poke->adj_off);
612 BUG_ON(ret < 0);
613 ret = __bpf_arch_text_poke(poke->tailcall_bypass,
614 BPF_MOD_JUMP,
615 (u8 *)poke->tailcall_target +
616 X86_PATCH_SIZE, NULL);
617 BUG_ON(ret < 0);
618 }
619 WRITE_ONCE(poke->tailcall_target_stable, true);
620 mutex_unlock(&array->aux->poke_mutex);
621 }
622 }
623
emit_mov_imm32(u8 **pprog, bool sign_propagate, u32 dst_reg, const u32 imm32)624 static void emit_mov_imm32(u8 **pprog, bool sign_propagate,
625 u32 dst_reg, const u32 imm32)
626 {
627 u8 *prog = *pprog;
628 u8 b1, b2, b3;
629
630 /*
631 * Optimization: if imm32 is positive, use 'mov %eax, imm32'
632 * (which zero-extends imm32) to save 2 bytes.
633 */
634 if (sign_propagate && (s32)imm32 < 0) {
635 /* 'mov %rax, imm32' sign extends imm32 */
636 b1 = add_1mod(0x48, dst_reg);
637 b2 = 0xC7;
638 b3 = 0xC0;
639 EMIT3_off32(b1, b2, add_1reg(b3, dst_reg), imm32);
640 goto done;
641 }
642
643 /*
644 * Optimization: if imm32 is zero, use 'xor %eax, %eax'
645 * to save 3 bytes.
646 */
647 if (imm32 == 0) {
648 if (is_ereg(dst_reg))
649 EMIT1(add_2mod(0x40, dst_reg, dst_reg));
650 b2 = 0x31; /* xor */
651 b3 = 0xC0;
652 EMIT2(b2, add_2reg(b3, dst_reg, dst_reg));
653 goto done;
654 }
655
656 /* mov %eax, imm32 */
657 if (is_ereg(dst_reg))
658 EMIT1(add_1mod(0x40, dst_reg));
659 EMIT1_off32(add_1reg(0xB8, dst_reg), imm32);
660 done:
661 *pprog = prog;
662 }
663
emit_mov_imm64(u8 **pprog, u32 dst_reg, const u32 imm32_hi, const u32 imm32_lo)664 static void emit_mov_imm64(u8 **pprog, u32 dst_reg,
665 const u32 imm32_hi, const u32 imm32_lo)
666 {
667 u8 *prog = *pprog;
668
669 if (is_uimm32(((u64)imm32_hi << 32) | (u32)imm32_lo)) {
670 /*
671 * For emitting plain u32, where sign bit must not be
672 * propagated LLVM tends to load imm64 over mov32
673 * directly, so save couple of bytes by just doing
674 * 'mov %eax, imm32' instead.
675 */
676 emit_mov_imm32(&prog, false, dst_reg, imm32_lo);
677 } else {
678 /* movabsq rax, imm64 */
679 EMIT2(add_1mod(0x48, dst_reg), add_1reg(0xB8, dst_reg));
680 EMIT(imm32_lo, 4);
681 EMIT(imm32_hi, 4);
682 }
683
684 *pprog = prog;
685 }
686
emit_mov_reg(u8 **pprog, bool is64, u32 dst_reg, u32 src_reg)687 static void emit_mov_reg(u8 **pprog, bool is64, u32 dst_reg, u32 src_reg)
688 {
689 u8 *prog = *pprog;
690
691 if (is64) {
692 /* mov dst, src */
693 EMIT_mov(dst_reg, src_reg);
694 } else {
695 /* mov32 dst, src */
696 if (is_ereg(dst_reg) || is_ereg(src_reg))
697 EMIT1(add_2mod(0x40, dst_reg, src_reg));
698 EMIT2(0x89, add_2reg(0xC0, dst_reg, src_reg));
699 }
700
701 *pprog = prog;
702 }
703
emit_movsx_reg(u8 **pprog, int num_bits, bool is64, u32 dst_reg, u32 src_reg)704 static void emit_movsx_reg(u8 **pprog, int num_bits, bool is64, u32 dst_reg,
705 u32 src_reg)
706 {
707 u8 *prog = *pprog;
708
709 if (is64) {
710 /* movs[b,w,l]q dst, src */
711 if (num_bits == 8)
712 EMIT4(add_2mod(0x48, src_reg, dst_reg), 0x0f, 0xbe,
713 add_2reg(0xC0, src_reg, dst_reg));
714 else if (num_bits == 16)
715 EMIT4(add_2mod(0x48, src_reg, dst_reg), 0x0f, 0xbf,
716 add_2reg(0xC0, src_reg, dst_reg));
717 else if (num_bits == 32)
718 EMIT3(add_2mod(0x48, src_reg, dst_reg), 0x63,
719 add_2reg(0xC0, src_reg, dst_reg));
720 } else {
721 /* movs[b,w]l dst, src */
722 if (num_bits == 8) {
723 EMIT4(add_2mod(0x40, src_reg, dst_reg), 0x0f, 0xbe,
724 add_2reg(0xC0, src_reg, dst_reg));
725 } else if (num_bits == 16) {
726 if (is_ereg(dst_reg) || is_ereg(src_reg))
727 EMIT1(add_2mod(0x40, src_reg, dst_reg));
728 EMIT3(add_2mod(0x0f, src_reg, dst_reg), 0xbf,
729 add_2reg(0xC0, src_reg, dst_reg));
730 }
731 }
732
733 *pprog = prog;
734 }
735
736 /* Emit the suffix (ModR/M etc) for addressing *(ptr_reg + off) and val_reg */
emit_insn_suffix(u8 **pprog, u32 ptr_reg, u32 val_reg, int off)737 static void emit_insn_suffix(u8 **pprog, u32 ptr_reg, u32 val_reg, int off)
738 {
739 u8 *prog = *pprog;
740
741 if (is_imm8(off)) {
742 /* 1-byte signed displacement.
743 *
744 * If off == 0 we could skip this and save one extra byte, but
745 * special case of x86 R13 which always needs an offset is not
746 * worth the hassle
747 */
748 EMIT2(add_2reg(0x40, ptr_reg, val_reg), off);
749 } else {
750 /* 4-byte signed displacement */
751 EMIT1_off32(add_2reg(0x80, ptr_reg, val_reg), off);
752 }
753 *pprog = prog;
754 }
755
756 /*
757 * Emit a REX byte if it will be necessary to address these registers
758 */
maybe_emit_mod(u8 **pprog, u32 dst_reg, u32 src_reg, bool is64)759 static void maybe_emit_mod(u8 **pprog, u32 dst_reg, u32 src_reg, bool is64)
760 {
761 u8 *prog = *pprog;
762
763 if (is64)
764 EMIT1(add_2mod(0x48, dst_reg, src_reg));
765 else if (is_ereg(dst_reg) || is_ereg(src_reg))
766 EMIT1(add_2mod(0x40, dst_reg, src_reg));
767 *pprog = prog;
768 }
769
770 /*
771 * Similar version of maybe_emit_mod() for a single register
772 */
maybe_emit_1mod(u8 **pprog, u32 reg, bool is64)773 static void maybe_emit_1mod(u8 **pprog, u32 reg, bool is64)
774 {
775 u8 *prog = *pprog;
776
777 if (is64)
778 EMIT1(add_1mod(0x48, reg));
779 else if (is_ereg(reg))
780 EMIT1(add_1mod(0x40, reg));
781 *pprog = prog;
782 }
783
784 /* LDX: dst_reg = *(u8*)(src_reg + off) */
emit_ldx(u8 **pprog, u32 size, u32 dst_reg, u32 src_reg, int off)785 static void emit_ldx(u8 **pprog, u32 size, u32 dst_reg, u32 src_reg, int off)
786 {
787 u8 *prog = *pprog;
788
789 switch (size) {
790 case BPF_B:
791 /* Emit 'movzx rax, byte ptr [rax + off]' */
792 EMIT3(add_2mod(0x48, src_reg, dst_reg), 0x0F, 0xB6);
793 break;
794 case BPF_H:
795 /* Emit 'movzx rax, word ptr [rax + off]' */
796 EMIT3(add_2mod(0x48, src_reg, dst_reg), 0x0F, 0xB7);
797 break;
798 case BPF_W:
799 /* Emit 'mov eax, dword ptr [rax+0x14]' */
800 if (is_ereg(dst_reg) || is_ereg(src_reg))
801 EMIT2(add_2mod(0x40, src_reg, dst_reg), 0x8B);
802 else
803 EMIT1(0x8B);
804 break;
805 case BPF_DW:
806 /* Emit 'mov rax, qword ptr [rax+0x14]' */
807 EMIT2(add_2mod(0x48, src_reg, dst_reg), 0x8B);
808 break;
809 }
810 emit_insn_suffix(&prog, src_reg, dst_reg, off);
811 *pprog = prog;
812 }
813
814 /* LDSX: dst_reg = *(s8*)(src_reg + off) */
emit_ldsx(u8 **pprog, u32 size, u32 dst_reg, u32 src_reg, int off)815 static void emit_ldsx(u8 **pprog, u32 size, u32 dst_reg, u32 src_reg, int off)
816 {
817 u8 *prog = *pprog;
818
819 switch (size) {
820 case BPF_B:
821 /* Emit 'movsx rax, byte ptr [rax + off]' */
822 EMIT3(add_2mod(0x48, src_reg, dst_reg), 0x0F, 0xBE);
823 break;
824 case BPF_H:
825 /* Emit 'movsx rax, word ptr [rax + off]' */
826 EMIT3(add_2mod(0x48, src_reg, dst_reg), 0x0F, 0xBF);
827 break;
828 case BPF_W:
829 /* Emit 'movsx rax, dword ptr [rax+0x14]' */
830 EMIT2(add_2mod(0x48, src_reg, dst_reg), 0x63);
831 break;
832 }
833 emit_insn_suffix(&prog, src_reg, dst_reg, off);
834 *pprog = prog;
835 }
836
837 /* STX: *(u8*)(dst_reg + off) = src_reg */
emit_stx(u8 **pprog, u32 size, u32 dst_reg, u32 src_reg, int off)838 static void emit_stx(u8 **pprog, u32 size, u32 dst_reg, u32 src_reg, int off)
839 {
840 u8 *prog = *pprog;
841
842 switch (size) {
843 case BPF_B:
844 /* Emit 'mov byte ptr [rax + off], al' */
845 if (is_ereg(dst_reg) || is_ereg_8l(src_reg))
846 /* Add extra byte for eregs or SIL,DIL,BPL in src_reg */
847 EMIT2(add_2mod(0x40, dst_reg, src_reg), 0x88);
848 else
849 EMIT1(0x88);
850 break;
851 case BPF_H:
852 if (is_ereg(dst_reg) || is_ereg(src_reg))
853 EMIT3(0x66, add_2mod(0x40, dst_reg, src_reg), 0x89);
854 else
855 EMIT2(0x66, 0x89);
856 break;
857 case BPF_W:
858 if (is_ereg(dst_reg) || is_ereg(src_reg))
859 EMIT2(add_2mod(0x40, dst_reg, src_reg), 0x89);
860 else
861 EMIT1(0x89);
862 break;
863 case BPF_DW:
864 EMIT2(add_2mod(0x48, dst_reg, src_reg), 0x89);
865 break;
866 }
867 emit_insn_suffix(&prog, dst_reg, src_reg, off);
868 *pprog = prog;
869 }
870
emit_atomic(u8 **pprog, u8 atomic_op, u32 dst_reg, u32 src_reg, s16 off, u8 bpf_size)871 static int emit_atomic(u8 **pprog, u8 atomic_op,
872 u32 dst_reg, u32 src_reg, s16 off, u8 bpf_size)
873 {
874 u8 *prog = *pprog;
875
876 EMIT1(0xF0); /* lock prefix */
877
878 maybe_emit_mod(&prog, dst_reg, src_reg, bpf_size == BPF_DW);
879
880 /* emit opcode */
881 switch (atomic_op) {
882 case BPF_ADD:
883 case BPF_AND:
884 case BPF_OR:
885 case BPF_XOR:
886 /* lock *(u32/u64*)(dst_reg + off) <op>= src_reg */
887 EMIT1(simple_alu_opcodes[atomic_op]);
888 break;
889 case BPF_ADD | BPF_FETCH:
890 /* src_reg = atomic_fetch_add(dst_reg + off, src_reg); */
891 EMIT2(0x0F, 0xC1);
892 break;
893 case BPF_XCHG:
894 /* src_reg = atomic_xchg(dst_reg + off, src_reg); */
895 EMIT1(0x87);
896 break;
897 case BPF_CMPXCHG:
898 /* r0 = atomic_cmpxchg(dst_reg + off, r0, src_reg); */
899 EMIT2(0x0F, 0xB1);
900 break;
901 default:
902 pr_err("bpf_jit: unknown atomic opcode %02x\n", atomic_op);
903 return -EFAULT;
904 }
905
906 emit_insn_suffix(&prog, dst_reg, src_reg, off);
907
908 *pprog = prog;
909 return 0;
910 }
911
ex_handler_bpf(const struct exception_table_entry *x, struct pt_regs *regs)912 bool ex_handler_bpf(const struct exception_table_entry *x, struct pt_regs *regs)
913 {
914 u32 reg = x->fixup >> 8;
915
916 /* jump over faulting load and clear dest register */
917 *(unsigned long *)((void *)regs + reg) = 0;
918 regs->ip += x->fixup & 0xff;
919 return true;
920 }
921
detect_reg_usage(struct bpf_insn *insn, int insn_cnt, bool *regs_used, bool *tail_call_seen)922 static void detect_reg_usage(struct bpf_insn *insn, int insn_cnt,
923 bool *regs_used, bool *tail_call_seen)
924 {
925 int i;
926
927 for (i = 1; i <= insn_cnt; i++, insn++) {
928 if (insn->code == (BPF_JMP | BPF_TAIL_CALL))
929 *tail_call_seen = true;
930 if (insn->dst_reg == BPF_REG_6 || insn->src_reg == BPF_REG_6)
931 regs_used[0] = true;
932 if (insn->dst_reg == BPF_REG_7 || insn->src_reg == BPF_REG_7)
933 regs_used[1] = true;
934 if (insn->dst_reg == BPF_REG_8 || insn->src_reg == BPF_REG_8)
935 regs_used[2] = true;
936 if (insn->dst_reg == BPF_REG_9 || insn->src_reg == BPF_REG_9)
937 regs_used[3] = true;
938 }
939 }
940
emit_nops(u8 **pprog, int len)941 static void emit_nops(u8 **pprog, int len)
942 {
943 u8 *prog = *pprog;
944 int i, noplen;
945
946 while (len > 0) {
947 noplen = len;
948
949 if (noplen > ASM_NOP_MAX)
950 noplen = ASM_NOP_MAX;
951
952 for (i = 0; i < noplen; i++)
953 EMIT1(x86_nops[noplen][i]);
954 len -= noplen;
955 }
956
957 *pprog = prog;
958 }
959
960 /* emit the 3-byte VEX prefix
961 *
962 * r: same as rex.r, extra bit for ModRM reg field
963 * x: same as rex.x, extra bit for SIB index field
964 * b: same as rex.b, extra bit for ModRM r/m, or SIB base
965 * m: opcode map select, encoding escape bytes e.g. 0x0f38
966 * w: same as rex.w (32 bit or 64 bit) or opcode specific
967 * src_reg2: additional source reg (encoded as BPF reg)
968 * l: vector length (128 bit or 256 bit) or reserved
969 * pp: opcode prefix (none, 0x66, 0xf2 or 0xf3)
970 */
emit_3vex(u8 **pprog, bool r, bool x, bool b, u8 m, bool w, u8 src_reg2, bool l, u8 pp)971 static void emit_3vex(u8 **pprog, bool r, bool x, bool b, u8 m,
972 bool w, u8 src_reg2, bool l, u8 pp)
973 {
974 u8 *prog = *pprog;
975 const u8 b0 = 0xc4; /* first byte of 3-byte VEX prefix */
976 u8 b1, b2;
977 u8 vvvv = reg2hex[src_reg2];
978
979 /* reg2hex gives only the lower 3 bit of vvvv */
980 if (is_ereg(src_reg2))
981 vvvv |= 1 << 3;
982
983 /*
984 * 2nd byte of 3-byte VEX prefix
985 * ~ means bit inverted encoding
986 *
987 * 7 0
988 * +---+---+---+---+---+---+---+---+
989 * |~R |~X |~B | m |
990 * +---+---+---+---+---+---+---+---+
991 */
992 b1 = (!r << 7) | (!x << 6) | (!b << 5) | (m & 0x1f);
993 /*
994 * 3rd byte of 3-byte VEX prefix
995 *
996 * 7 0
997 * +---+---+---+---+---+---+---+---+
998 * | W | ~vvvv | L | pp |
999 * +---+---+---+---+---+---+---+---+
1000 */
1001 b2 = (w << 7) | ((~vvvv & 0xf) << 3) | (l << 2) | (pp & 3);
1002
1003 EMIT3(b0, b1, b2);
1004 *pprog = prog;
1005 }
1006
1007 /* emit BMI2 shift instruction */
emit_shiftx(u8 **pprog, u32 dst_reg, u8 src_reg, bool is64, u8 op)1008 static void emit_shiftx(u8 **pprog, u32 dst_reg, u8 src_reg, bool is64, u8 op)
1009 {
1010 u8 *prog = *pprog;
1011 bool r = is_ereg(dst_reg);
1012 u8 m = 2; /* escape code 0f38 */
1013
1014 emit_3vex(&prog, r, false, r, m, is64, src_reg, false, op);
1015 EMIT2(0xf7, add_2reg(0xC0, dst_reg, dst_reg));
1016 *pprog = prog;
1017 }
1018
1019 #define INSN_SZ_DIFF (((addrs[i] - addrs[i - 1]) - (prog - temp)))
1020
1021 /* mov rax, qword ptr [rbp - rounded_stack_depth - 8] */
1022 #define RESTORE_TAIL_CALL_CNT(stack) \
1023 EMIT3_off32(0x48, 0x8B, 0x85, -round_up(stack, 8) - 8)
1024
do_jit(struct bpf_prog *bpf_prog, int *addrs, u8 *image, u8 *rw_image, int oldproglen, struct jit_context *ctx, bool jmp_padding)1025 static int do_jit(struct bpf_prog *bpf_prog, int *addrs, u8 *image, u8 *rw_image,
1026 int oldproglen, struct jit_context *ctx, bool jmp_padding)
1027 {
1028 bool tail_call_reachable = bpf_prog->aux->tail_call_reachable;
1029 struct bpf_insn *insn = bpf_prog->insnsi;
1030 bool callee_regs_used[4] = {};
1031 int insn_cnt = bpf_prog->len;
1032 bool tail_call_seen = false;
1033 bool seen_exit = false;
1034 u8 temp[BPF_MAX_INSN_SIZE + BPF_INSN_SAFETY];
1035 int i, excnt = 0;
1036 int ilen, proglen = 0;
1037 u8 *prog = temp;
1038 int err;
1039
1040 detect_reg_usage(insn, insn_cnt, callee_regs_used,
1041 &tail_call_seen);
1042
1043 /* tail call's presence in current prog implies it is reachable */
1044 tail_call_reachable |= tail_call_seen;
1045
1046 emit_prologue(&prog, bpf_prog->aux->stack_depth,
1047 bpf_prog_was_classic(bpf_prog), tail_call_reachable,
1048 bpf_prog->aux->func_idx != 0);
1049 push_callee_regs(&prog, callee_regs_used);
1050
1051 ilen = prog - temp;
1052 if (rw_image)
1053 memcpy(rw_image + proglen, temp, ilen);
1054 proglen += ilen;
1055 addrs[0] = proglen;
1056 prog = temp;
1057
1058 for (i = 1; i <= insn_cnt; i++, insn++) {
1059 const s32 imm32 = insn->imm;
1060 u32 dst_reg = insn->dst_reg;
1061 u32 src_reg = insn->src_reg;
1062 u8 b2 = 0, b3 = 0;
1063 u8 *start_of_ldx;
1064 s64 jmp_offset;
1065 s16 insn_off;
1066 u8 jmp_cond;
1067 u8 *func;
1068 int nops;
1069
1070 switch (insn->code) {
1071 /* ALU */
1072 case BPF_ALU | BPF_ADD | BPF_X:
1073 case BPF_ALU | BPF_SUB | BPF_X:
1074 case BPF_ALU | BPF_AND | BPF_X:
1075 case BPF_ALU | BPF_OR | BPF_X:
1076 case BPF_ALU | BPF_XOR | BPF_X:
1077 case BPF_ALU64 | BPF_ADD | BPF_X:
1078 case BPF_ALU64 | BPF_SUB | BPF_X:
1079 case BPF_ALU64 | BPF_AND | BPF_X:
1080 case BPF_ALU64 | BPF_OR | BPF_X:
1081 case BPF_ALU64 | BPF_XOR | BPF_X:
1082 maybe_emit_mod(&prog, dst_reg, src_reg,
1083 BPF_CLASS(insn->code) == BPF_ALU64);
1084 b2 = simple_alu_opcodes[BPF_OP(insn->code)];
1085 EMIT2(b2, add_2reg(0xC0, dst_reg, src_reg));
1086 break;
1087
1088 case BPF_ALU64 | BPF_MOV | BPF_X:
1089 case BPF_ALU | BPF_MOV | BPF_X:
1090 if (insn->off == 0)
1091 emit_mov_reg(&prog,
1092 BPF_CLASS(insn->code) == BPF_ALU64,
1093 dst_reg, src_reg);
1094 else
1095 emit_movsx_reg(&prog, insn->off,
1096 BPF_CLASS(insn->code) == BPF_ALU64,
1097 dst_reg, src_reg);
1098 break;
1099
1100 /* neg dst */
1101 case BPF_ALU | BPF_NEG:
1102 case BPF_ALU64 | BPF_NEG:
1103 maybe_emit_1mod(&prog, dst_reg,
1104 BPF_CLASS(insn->code) == BPF_ALU64);
1105 EMIT2(0xF7, add_1reg(0xD8, dst_reg));
1106 break;
1107
1108 case BPF_ALU | BPF_ADD | BPF_K:
1109 case BPF_ALU | BPF_SUB | BPF_K:
1110 case BPF_ALU | BPF_AND | BPF_K:
1111 case BPF_ALU | BPF_OR | BPF_K:
1112 case BPF_ALU | BPF_XOR | BPF_K:
1113 case BPF_ALU64 | BPF_ADD | BPF_K:
1114 case BPF_ALU64 | BPF_SUB | BPF_K:
1115 case BPF_ALU64 | BPF_AND | BPF_K:
1116 case BPF_ALU64 | BPF_OR | BPF_K:
1117 case BPF_ALU64 | BPF_XOR | BPF_K:
1118 maybe_emit_1mod(&prog, dst_reg,
1119 BPF_CLASS(insn->code) == BPF_ALU64);
1120
1121 /*
1122 * b3 holds 'normal' opcode, b2 short form only valid
1123 * in case dst is eax/rax.
1124 */
1125 switch (BPF_OP(insn->code)) {
1126 case BPF_ADD:
1127 b3 = 0xC0;
1128 b2 = 0x05;
1129 break;
1130 case BPF_SUB:
1131 b3 = 0xE8;
1132 b2 = 0x2D;
1133 break;
1134 case BPF_AND:
1135 b3 = 0xE0;
1136 b2 = 0x25;
1137 break;
1138 case BPF_OR:
1139 b3 = 0xC8;
1140 b2 = 0x0D;
1141 break;
1142 case BPF_XOR:
1143 b3 = 0xF0;
1144 b2 = 0x35;
1145 break;
1146 }
1147
1148 if (is_imm8(imm32))
1149 EMIT3(0x83, add_1reg(b3, dst_reg), imm32);
1150 else if (is_axreg(dst_reg))
1151 EMIT1_off32(b2, imm32);
1152 else
1153 EMIT2_off32(0x81, add_1reg(b3, dst_reg), imm32);
1154 break;
1155
1156 case BPF_ALU64 | BPF_MOV | BPF_K:
1157 case BPF_ALU | BPF_MOV | BPF_K:
1158 emit_mov_imm32(&prog, BPF_CLASS(insn->code) == BPF_ALU64,
1159 dst_reg, imm32);
1160 break;
1161
1162 case BPF_LD | BPF_IMM | BPF_DW:
1163 emit_mov_imm64(&prog, dst_reg, insn[1].imm, insn[0].imm);
1164 insn++;
1165 i++;
1166 break;
1167
1168 /* dst %= src, dst /= src, dst %= imm32, dst /= imm32 */
1169 case BPF_ALU | BPF_MOD | BPF_X:
1170 case BPF_ALU | BPF_DIV | BPF_X:
1171 case BPF_ALU | BPF_MOD | BPF_K:
1172 case BPF_ALU | BPF_DIV | BPF_K:
1173 case BPF_ALU64 | BPF_MOD | BPF_X:
1174 case BPF_ALU64 | BPF_DIV | BPF_X:
1175 case BPF_ALU64 | BPF_MOD | BPF_K:
1176 case BPF_ALU64 | BPF_DIV | BPF_K: {
1177 bool is64 = BPF_CLASS(insn->code) == BPF_ALU64;
1178
1179 if (dst_reg != BPF_REG_0)
1180 EMIT1(0x50); /* push rax */
1181 if (dst_reg != BPF_REG_3)
1182 EMIT1(0x52); /* push rdx */
1183
1184 if (BPF_SRC(insn->code) == BPF_X) {
1185 if (src_reg == BPF_REG_0 ||
1186 src_reg == BPF_REG_3) {
1187 /* mov r11, src_reg */
1188 EMIT_mov(AUX_REG, src_reg);
1189 src_reg = AUX_REG;
1190 }
1191 } else {
1192 /* mov r11, imm32 */
1193 EMIT3_off32(0x49, 0xC7, 0xC3, imm32);
1194 src_reg = AUX_REG;
1195 }
1196
1197 if (dst_reg != BPF_REG_0)
1198 /* mov rax, dst_reg */
1199 emit_mov_reg(&prog, is64, BPF_REG_0, dst_reg);
1200
1201 if (insn->off == 0) {
1202 /*
1203 * xor edx, edx
1204 * equivalent to 'xor rdx, rdx', but one byte less
1205 */
1206 EMIT2(0x31, 0xd2);
1207
1208 /* div src_reg */
1209 maybe_emit_1mod(&prog, src_reg, is64);
1210 EMIT2(0xF7, add_1reg(0xF0, src_reg));
1211 } else {
1212 if (BPF_CLASS(insn->code) == BPF_ALU)
1213 EMIT1(0x99); /* cdq */
1214 else
1215 EMIT2(0x48, 0x99); /* cqo */
1216
1217 /* idiv src_reg */
1218 maybe_emit_1mod(&prog, src_reg, is64);
1219 EMIT2(0xF7, add_1reg(0xF8, src_reg));
1220 }
1221
1222 if (BPF_OP(insn->code) == BPF_MOD &&
1223 dst_reg != BPF_REG_3)
1224 /* mov dst_reg, rdx */
1225 emit_mov_reg(&prog, is64, dst_reg, BPF_REG_3);
1226 else if (BPF_OP(insn->code) == BPF_DIV &&
1227 dst_reg != BPF_REG_0)
1228 /* mov dst_reg, rax */
1229 emit_mov_reg(&prog, is64, dst_reg, BPF_REG_0);
1230
1231 if (dst_reg != BPF_REG_3)
1232 EMIT1(0x5A); /* pop rdx */
1233 if (dst_reg != BPF_REG_0)
1234 EMIT1(0x58); /* pop rax */
1235 break;
1236 }
1237
1238 case BPF_ALU | BPF_MUL | BPF_K:
1239 case BPF_ALU64 | BPF_MUL | BPF_K:
1240 maybe_emit_mod(&prog, dst_reg, dst_reg,
1241 BPF_CLASS(insn->code) == BPF_ALU64);
1242
1243 if (is_imm8(imm32))
1244 /* imul dst_reg, dst_reg, imm8 */
1245 EMIT3(0x6B, add_2reg(0xC0, dst_reg, dst_reg),
1246 imm32);
1247 else
1248 /* imul dst_reg, dst_reg, imm32 */
1249 EMIT2_off32(0x69,
1250 add_2reg(0xC0, dst_reg, dst_reg),
1251 imm32);
1252 break;
1253
1254 case BPF_ALU | BPF_MUL | BPF_X:
1255 case BPF_ALU64 | BPF_MUL | BPF_X:
1256 maybe_emit_mod(&prog, src_reg, dst_reg,
1257 BPF_CLASS(insn->code) == BPF_ALU64);
1258
1259 /* imul dst_reg, src_reg */
1260 EMIT3(0x0F, 0xAF, add_2reg(0xC0, src_reg, dst_reg));
1261 break;
1262
1263 /* Shifts */
1264 case BPF_ALU | BPF_LSH | BPF_K:
1265 case BPF_ALU | BPF_RSH | BPF_K:
1266 case BPF_ALU | BPF_ARSH | BPF_K:
1267 case BPF_ALU64 | BPF_LSH | BPF_K:
1268 case BPF_ALU64 | BPF_RSH | BPF_K:
1269 case BPF_ALU64 | BPF_ARSH | BPF_K:
1270 maybe_emit_1mod(&prog, dst_reg,
1271 BPF_CLASS(insn->code) == BPF_ALU64);
1272
1273 b3 = simple_alu_opcodes[BPF_OP(insn->code)];
1274 if (imm32 == 1)
1275 EMIT2(0xD1, add_1reg(b3, dst_reg));
1276 else
1277 EMIT3(0xC1, add_1reg(b3, dst_reg), imm32);
1278 break;
1279
1280 case BPF_ALU | BPF_LSH | BPF_X:
1281 case BPF_ALU | BPF_RSH | BPF_X:
1282 case BPF_ALU | BPF_ARSH | BPF_X:
1283 case BPF_ALU64 | BPF_LSH | BPF_X:
1284 case BPF_ALU64 | BPF_RSH | BPF_X:
1285 case BPF_ALU64 | BPF_ARSH | BPF_X:
1286 /* BMI2 shifts aren't better when shift count is already in rcx */
1287 if (boot_cpu_has(X86_FEATURE_BMI2) && src_reg != BPF_REG_4) {
1288 /* shrx/sarx/shlx dst_reg, dst_reg, src_reg */
1289 bool w = (BPF_CLASS(insn->code) == BPF_ALU64);
1290 u8 op;
1291
1292 switch (BPF_OP(insn->code)) {
1293 case BPF_LSH:
1294 op = 1; /* prefix 0x66 */
1295 break;
1296 case BPF_RSH:
1297 op = 3; /* prefix 0xf2 */
1298 break;
1299 case BPF_ARSH:
1300 op = 2; /* prefix 0xf3 */
1301 break;
1302 }
1303
1304 emit_shiftx(&prog, dst_reg, src_reg, w, op);
1305
1306 break;
1307 }
1308
1309 if (src_reg != BPF_REG_4) { /* common case */
1310 /* Check for bad case when dst_reg == rcx */
1311 if (dst_reg == BPF_REG_4) {
1312 /* mov r11, dst_reg */
1313 EMIT_mov(AUX_REG, dst_reg);
1314 dst_reg = AUX_REG;
1315 } else {
1316 EMIT1(0x51); /* push rcx */
1317 }
1318 /* mov rcx, src_reg */
1319 EMIT_mov(BPF_REG_4, src_reg);
1320 }
1321
1322 /* shl %rax, %cl | shr %rax, %cl | sar %rax, %cl */
1323 maybe_emit_1mod(&prog, dst_reg,
1324 BPF_CLASS(insn->code) == BPF_ALU64);
1325
1326 b3 = simple_alu_opcodes[BPF_OP(insn->code)];
1327 EMIT2(0xD3, add_1reg(b3, dst_reg));
1328
1329 if (src_reg != BPF_REG_4) {
1330 if (insn->dst_reg == BPF_REG_4)
1331 /* mov dst_reg, r11 */
1332 EMIT_mov(insn->dst_reg, AUX_REG);
1333 else
1334 EMIT1(0x59); /* pop rcx */
1335 }
1336
1337 break;
1338
1339 case BPF_ALU | BPF_END | BPF_FROM_BE:
1340 case BPF_ALU64 | BPF_END | BPF_FROM_LE:
1341 switch (imm32) {
1342 case 16:
1343 /* Emit 'ror %ax, 8' to swap lower 2 bytes */
1344 EMIT1(0x66);
1345 if (is_ereg(dst_reg))
1346 EMIT1(0x41);
1347 EMIT3(0xC1, add_1reg(0xC8, dst_reg), 8);
1348
1349 /* Emit 'movzwl eax, ax' */
1350 if (is_ereg(dst_reg))
1351 EMIT3(0x45, 0x0F, 0xB7);
1352 else
1353 EMIT2(0x0F, 0xB7);
1354 EMIT1(add_2reg(0xC0, dst_reg, dst_reg));
1355 break;
1356 case 32:
1357 /* Emit 'bswap eax' to swap lower 4 bytes */
1358 if (is_ereg(dst_reg))
1359 EMIT2(0x41, 0x0F);
1360 else
1361 EMIT1(0x0F);
1362 EMIT1(add_1reg(0xC8, dst_reg));
1363 break;
1364 case 64:
1365 /* Emit 'bswap rax' to swap 8 bytes */
1366 EMIT3(add_1mod(0x48, dst_reg), 0x0F,
1367 add_1reg(0xC8, dst_reg));
1368 break;
1369 }
1370 break;
1371
1372 case BPF_ALU | BPF_END | BPF_FROM_LE:
1373 switch (imm32) {
1374 case 16:
1375 /*
1376 * Emit 'movzwl eax, ax' to zero extend 16-bit
1377 * into 64 bit
1378 */
1379 if (is_ereg(dst_reg))
1380 EMIT3(0x45, 0x0F, 0xB7);
1381 else
1382 EMIT2(0x0F, 0xB7);
1383 EMIT1(add_2reg(0xC0, dst_reg, dst_reg));
1384 break;
1385 case 32:
1386 /* Emit 'mov eax, eax' to clear upper 32-bits */
1387 if (is_ereg(dst_reg))
1388 EMIT1(0x45);
1389 EMIT2(0x89, add_2reg(0xC0, dst_reg, dst_reg));
1390 break;
1391 case 64:
1392 /* nop */
1393 break;
1394 }
1395 break;
1396
1397 /* speculation barrier */
1398 case BPF_ST | BPF_NOSPEC:
1399 EMIT_LFENCE();
1400 break;
1401
1402 /* ST: *(u8*)(dst_reg + off) = imm */
1403 case BPF_ST | BPF_MEM | BPF_B:
1404 if (is_ereg(dst_reg))
1405 EMIT2(0x41, 0xC6);
1406 else
1407 EMIT1(0xC6);
1408 goto st;
1409 case BPF_ST | BPF_MEM | BPF_H:
1410 if (is_ereg(dst_reg))
1411 EMIT3(0x66, 0x41, 0xC7);
1412 else
1413 EMIT2(0x66, 0xC7);
1414 goto st;
1415 case BPF_ST | BPF_MEM | BPF_W:
1416 if (is_ereg(dst_reg))
1417 EMIT2(0x41, 0xC7);
1418 else
1419 EMIT1(0xC7);
1420 goto st;
1421 case BPF_ST | BPF_MEM | BPF_DW:
1422 EMIT2(add_1mod(0x48, dst_reg), 0xC7);
1423
1424 st: if (is_imm8(insn->off))
1425 EMIT2(add_1reg(0x40, dst_reg), insn->off);
1426 else
1427 EMIT1_off32(add_1reg(0x80, dst_reg), insn->off);
1428
1429 EMIT(imm32, bpf_size_to_x86_bytes(BPF_SIZE(insn->code)));
1430 break;
1431
1432 /* STX: *(u8*)(dst_reg + off) = src_reg */
1433 case BPF_STX | BPF_MEM | BPF_B:
1434 case BPF_STX | BPF_MEM | BPF_H:
1435 case BPF_STX | BPF_MEM | BPF_W:
1436 case BPF_STX | BPF_MEM | BPF_DW:
1437 emit_stx(&prog, BPF_SIZE(insn->code), dst_reg, src_reg, insn->off);
1438 break;
1439
1440 /* LDX: dst_reg = *(u8*)(src_reg + off) */
1441 case BPF_LDX | BPF_MEM | BPF_B:
1442 case BPF_LDX | BPF_PROBE_MEM | BPF_B:
1443 case BPF_LDX | BPF_MEM | BPF_H:
1444 case BPF_LDX | BPF_PROBE_MEM | BPF_H:
1445 case BPF_LDX | BPF_MEM | BPF_W:
1446 case BPF_LDX | BPF_PROBE_MEM | BPF_W:
1447 case BPF_LDX | BPF_MEM | BPF_DW:
1448 case BPF_LDX | BPF_PROBE_MEM | BPF_DW:
1449 /* LDXS: dst_reg = *(s8*)(src_reg + off) */
1450 case BPF_LDX | BPF_MEMSX | BPF_B:
1451 case BPF_LDX | BPF_MEMSX | BPF_H:
1452 case BPF_LDX | BPF_MEMSX | BPF_W:
1453 case BPF_LDX | BPF_PROBE_MEMSX | BPF_B:
1454 case BPF_LDX | BPF_PROBE_MEMSX | BPF_H:
1455 case BPF_LDX | BPF_PROBE_MEMSX | BPF_W:
1456 insn_off = insn->off;
1457
1458 if (BPF_MODE(insn->code) == BPF_PROBE_MEM ||
1459 BPF_MODE(insn->code) == BPF_PROBE_MEMSX) {
1460 /* Conservatively check that src_reg + insn->off is a kernel address:
1461 * src_reg + insn->off >= TASK_SIZE_MAX + PAGE_SIZE
1462 * src_reg is used as scratch for src_reg += insn->off and restored
1463 * after emit_ldx if necessary
1464 */
1465
1466 u64 limit = TASK_SIZE_MAX + PAGE_SIZE;
1467 u8 *end_of_jmp;
1468
1469 /* At end of these emitted checks, insn->off will have been added
1470 * to src_reg, so no need to do relative load with insn->off offset
1471 */
1472 insn_off = 0;
1473
1474 /* movabsq r11, limit */
1475 EMIT2(add_1mod(0x48, AUX_REG), add_1reg(0xB8, AUX_REG));
1476 EMIT((u32)limit, 4);
1477 EMIT(limit >> 32, 4);
1478
1479 if (insn->off) {
1480 /* add src_reg, insn->off */
1481 maybe_emit_1mod(&prog, src_reg, true);
1482 EMIT2_off32(0x81, add_1reg(0xC0, src_reg), insn->off);
1483 }
1484
1485 /* cmp src_reg, r11 */
1486 maybe_emit_mod(&prog, src_reg, AUX_REG, true);
1487 EMIT2(0x39, add_2reg(0xC0, src_reg, AUX_REG));
1488
1489 /* if unsigned '>=', goto load */
1490 EMIT2(X86_JAE, 0);
1491 end_of_jmp = prog;
1492
1493 /* xor dst_reg, dst_reg */
1494 emit_mov_imm32(&prog, false, dst_reg, 0);
1495 /* jmp byte_after_ldx */
1496 EMIT2(0xEB, 0);
1497
1498 /* populate jmp_offset for JAE above to jump to start_of_ldx */
1499 start_of_ldx = prog;
1500 end_of_jmp[-1] = start_of_ldx - end_of_jmp;
1501 }
1502 if (BPF_MODE(insn->code) == BPF_PROBE_MEMSX ||
1503 BPF_MODE(insn->code) == BPF_MEMSX)
1504 emit_ldsx(&prog, BPF_SIZE(insn->code), dst_reg, src_reg, insn_off);
1505 else
1506 emit_ldx(&prog, BPF_SIZE(insn->code), dst_reg, src_reg, insn_off);
1507 if (BPF_MODE(insn->code) == BPF_PROBE_MEM ||
1508 BPF_MODE(insn->code) == BPF_PROBE_MEMSX) {
1509 struct exception_table_entry *ex;
1510 u8 *_insn = image + proglen + (start_of_ldx - temp);
1511 s64 delta;
1512
1513 /* populate jmp_offset for JMP above */
1514 start_of_ldx[-1] = prog - start_of_ldx;
1515
1516 if (insn->off && src_reg != dst_reg) {
1517 /* sub src_reg, insn->off
1518 * Restore src_reg after "add src_reg, insn->off" in prev
1519 * if statement. But if src_reg == dst_reg, emit_ldx
1520 * above already clobbered src_reg, so no need to restore.
1521 * If add src_reg, insn->off was unnecessary, no need to
1522 * restore either.
1523 */
1524 maybe_emit_1mod(&prog, src_reg, true);
1525 EMIT2_off32(0x81, add_1reg(0xE8, src_reg), insn->off);
1526 }
1527
1528 if (!bpf_prog->aux->extable)
1529 break;
1530
1531 if (excnt >= bpf_prog->aux->num_exentries) {
1532 pr_err("ex gen bug\n");
1533 return -EFAULT;
1534 }
1535 ex = &bpf_prog->aux->extable[excnt++];
1536
1537 delta = _insn - (u8 *)&ex->insn;
1538 if (!is_simm32(delta)) {
1539 pr_err("extable->insn doesn't fit into 32-bit\n");
1540 return -EFAULT;
1541 }
1542 /* switch ex to rw buffer for writes */
1543 ex = (void *)rw_image + ((void *)ex - (void *)image);
1544
1545 ex->insn = delta;
1546
1547 ex->data = EX_TYPE_BPF;
1548
1549 if (dst_reg > BPF_REG_9) {
1550 pr_err("verifier error\n");
1551 return -EFAULT;
1552 }
1553 /*
1554 * Compute size of x86 insn and its target dest x86 register.
1555 * ex_handler_bpf() will use lower 8 bits to adjust
1556 * pt_regs->ip to jump over this x86 instruction
1557 * and upper bits to figure out which pt_regs to zero out.
1558 * End result: x86 insn "mov rbx, qword ptr [rax+0x14]"
1559 * of 4 bytes will be ignored and rbx will be zero inited.
1560 */
1561 ex->fixup = (prog - start_of_ldx) | (reg2pt_regs[dst_reg] << 8);
1562 }
1563 break;
1564
1565 case BPF_STX | BPF_ATOMIC | BPF_W:
1566 case BPF_STX | BPF_ATOMIC | BPF_DW:
1567 if (insn->imm == (BPF_AND | BPF_FETCH) ||
1568 insn->imm == (BPF_OR | BPF_FETCH) ||
1569 insn->imm == (BPF_XOR | BPF_FETCH)) {
1570 bool is64 = BPF_SIZE(insn->code) == BPF_DW;
1571 u32 real_src_reg = src_reg;
1572 u32 real_dst_reg = dst_reg;
1573 u8 *branch_target;
1574
1575 /*
1576 * Can't be implemented with a single x86 insn.
1577 * Need to do a CMPXCHG loop.
1578 */
1579
1580 /* Will need RAX as a CMPXCHG operand so save R0 */
1581 emit_mov_reg(&prog, true, BPF_REG_AX, BPF_REG_0);
1582 if (src_reg == BPF_REG_0)
1583 real_src_reg = BPF_REG_AX;
1584 if (dst_reg == BPF_REG_0)
1585 real_dst_reg = BPF_REG_AX;
1586
1587 branch_target = prog;
1588 /* Load old value */
1589 emit_ldx(&prog, BPF_SIZE(insn->code),
1590 BPF_REG_0, real_dst_reg, insn->off);
1591 /*
1592 * Perform the (commutative) operation locally,
1593 * put the result in the AUX_REG.
1594 */
1595 emit_mov_reg(&prog, is64, AUX_REG, BPF_REG_0);
1596 maybe_emit_mod(&prog, AUX_REG, real_src_reg, is64);
1597 EMIT2(simple_alu_opcodes[BPF_OP(insn->imm)],
1598 add_2reg(0xC0, AUX_REG, real_src_reg));
1599 /* Attempt to swap in new value */
1600 err = emit_atomic(&prog, BPF_CMPXCHG,
1601 real_dst_reg, AUX_REG,
1602 insn->off,
1603 BPF_SIZE(insn->code));
1604 if (WARN_ON(err))
1605 return err;
1606 /*
1607 * ZF tells us whether we won the race. If it's
1608 * cleared we need to try again.
1609 */
1610 EMIT2(X86_JNE, -(prog - branch_target) - 2);
1611 /* Return the pre-modification value */
1612 emit_mov_reg(&prog, is64, real_src_reg, BPF_REG_0);
1613 /* Restore R0 after clobbering RAX */
1614 emit_mov_reg(&prog, true, BPF_REG_0, BPF_REG_AX);
1615 break;
1616 }
1617
1618 err = emit_atomic(&prog, insn->imm, dst_reg, src_reg,
1619 insn->off, BPF_SIZE(insn->code));
1620 if (err)
1621 return err;
1622 break;
1623
1624 /* call */
1625 case BPF_JMP | BPF_CALL: {
1626 int offs;
1627
1628 func = (u8 *) __bpf_call_base + imm32;
1629 if (tail_call_reachable) {
1630 RESTORE_TAIL_CALL_CNT(bpf_prog->aux->stack_depth);
1631 if (!imm32)
1632 return -EINVAL;
1633 offs = 7 + x86_call_depth_emit_accounting(&prog, func);
1634 } else {
1635 if (!imm32)
1636 return -EINVAL;
1637 offs = x86_call_depth_emit_accounting(&prog, func);
1638 }
1639 if (emit_call(&prog, func, image + addrs[i - 1] + offs))
1640 return -EINVAL;
1641 break;
1642 }
1643
1644 case BPF_JMP | BPF_TAIL_CALL:
1645 if (imm32)
1646 emit_bpf_tail_call_direct(&bpf_prog->aux->poke_tab[imm32 - 1],
1647 &prog, image + addrs[i - 1],
1648 callee_regs_used,
1649 bpf_prog->aux->stack_depth,
1650 ctx);
1651 else
1652 emit_bpf_tail_call_indirect(&prog,
1653 callee_regs_used,
1654 bpf_prog->aux->stack_depth,
1655 image + addrs[i - 1],
1656 ctx);
1657 break;
1658
1659 /* cond jump */
1660 case BPF_JMP | BPF_JEQ | BPF_X:
1661 case BPF_JMP | BPF_JNE | BPF_X:
1662 case BPF_JMP | BPF_JGT | BPF_X:
1663 case BPF_JMP | BPF_JLT | BPF_X:
1664 case BPF_JMP | BPF_JGE | BPF_X:
1665 case BPF_JMP | BPF_JLE | BPF_X:
1666 case BPF_JMP | BPF_JSGT | BPF_X:
1667 case BPF_JMP | BPF_JSLT | BPF_X:
1668 case BPF_JMP | BPF_JSGE | BPF_X:
1669 case BPF_JMP | BPF_JSLE | BPF_X:
1670 case BPF_JMP32 | BPF_JEQ | BPF_X:
1671 case BPF_JMP32 | BPF_JNE | BPF_X:
1672 case BPF_JMP32 | BPF_JGT | BPF_X:
1673 case BPF_JMP32 | BPF_JLT | BPF_X:
1674 case BPF_JMP32 | BPF_JGE | BPF_X:
1675 case BPF_JMP32 | BPF_JLE | BPF_X:
1676 case BPF_JMP32 | BPF_JSGT | BPF_X:
1677 case BPF_JMP32 | BPF_JSLT | BPF_X:
1678 case BPF_JMP32 | BPF_JSGE | BPF_X:
1679 case BPF_JMP32 | BPF_JSLE | BPF_X:
1680 /* cmp dst_reg, src_reg */
1681 maybe_emit_mod(&prog, dst_reg, src_reg,
1682 BPF_CLASS(insn->code) == BPF_JMP);
1683 EMIT2(0x39, add_2reg(0xC0, dst_reg, src_reg));
1684 goto emit_cond_jmp;
1685
1686 case BPF_JMP | BPF_JSET | BPF_X:
1687 case BPF_JMP32 | BPF_JSET | BPF_X:
1688 /* test dst_reg, src_reg */
1689 maybe_emit_mod(&prog, dst_reg, src_reg,
1690 BPF_CLASS(insn->code) == BPF_JMP);
1691 EMIT2(0x85, add_2reg(0xC0, dst_reg, src_reg));
1692 goto emit_cond_jmp;
1693
1694 case BPF_JMP | BPF_JSET | BPF_K:
1695 case BPF_JMP32 | BPF_JSET | BPF_K:
1696 /* test dst_reg, imm32 */
1697 maybe_emit_1mod(&prog, dst_reg,
1698 BPF_CLASS(insn->code) == BPF_JMP);
1699 EMIT2_off32(0xF7, add_1reg(0xC0, dst_reg), imm32);
1700 goto emit_cond_jmp;
1701
1702 case BPF_JMP | BPF_JEQ | BPF_K:
1703 case BPF_JMP | BPF_JNE | BPF_K:
1704 case BPF_JMP | BPF_JGT | BPF_K:
1705 case BPF_JMP | BPF_JLT | BPF_K:
1706 case BPF_JMP | BPF_JGE | BPF_K:
1707 case BPF_JMP | BPF_JLE | BPF_K:
1708 case BPF_JMP | BPF_JSGT | BPF_K:
1709 case BPF_JMP | BPF_JSLT | BPF_K:
1710 case BPF_JMP | BPF_JSGE | BPF_K:
1711 case BPF_JMP | BPF_JSLE | BPF_K:
1712 case BPF_JMP32 | BPF_JEQ | BPF_K:
1713 case BPF_JMP32 | BPF_JNE | BPF_K:
1714 case BPF_JMP32 | BPF_JGT | BPF_K:
1715 case BPF_JMP32 | BPF_JLT | BPF_K:
1716 case BPF_JMP32 | BPF_JGE | BPF_K:
1717 case BPF_JMP32 | BPF_JLE | BPF_K:
1718 case BPF_JMP32 | BPF_JSGT | BPF_K:
1719 case BPF_JMP32 | BPF_JSLT | BPF_K:
1720 case BPF_JMP32 | BPF_JSGE | BPF_K:
1721 case BPF_JMP32 | BPF_JSLE | BPF_K:
1722 /* test dst_reg, dst_reg to save one extra byte */
1723 if (imm32 == 0) {
1724 maybe_emit_mod(&prog, dst_reg, dst_reg,
1725 BPF_CLASS(insn->code) == BPF_JMP);
1726 EMIT2(0x85, add_2reg(0xC0, dst_reg, dst_reg));
1727 goto emit_cond_jmp;
1728 }
1729
1730 /* cmp dst_reg, imm8/32 */
1731 maybe_emit_1mod(&prog, dst_reg,
1732 BPF_CLASS(insn->code) == BPF_JMP);
1733
1734 if (is_imm8(imm32))
1735 EMIT3(0x83, add_1reg(0xF8, dst_reg), imm32);
1736 else
1737 EMIT2_off32(0x81, add_1reg(0xF8, dst_reg), imm32);
1738
1739 emit_cond_jmp: /* Convert BPF opcode to x86 */
1740 switch (BPF_OP(insn->code)) {
1741 case BPF_JEQ:
1742 jmp_cond = X86_JE;
1743 break;
1744 case BPF_JSET:
1745 case BPF_JNE:
1746 jmp_cond = X86_JNE;
1747 break;
1748 case BPF_JGT:
1749 /* GT is unsigned '>', JA in x86 */
1750 jmp_cond = X86_JA;
1751 break;
1752 case BPF_JLT:
1753 /* LT is unsigned '<', JB in x86 */
1754 jmp_cond = X86_JB;
1755 break;
1756 case BPF_JGE:
1757 /* GE is unsigned '>=', JAE in x86 */
1758 jmp_cond = X86_JAE;
1759 break;
1760 case BPF_JLE:
1761 /* LE is unsigned '<=', JBE in x86 */
1762 jmp_cond = X86_JBE;
1763 break;
1764 case BPF_JSGT:
1765 /* Signed '>', GT in x86 */
1766 jmp_cond = X86_JG;
1767 break;
1768 case BPF_JSLT:
1769 /* Signed '<', LT in x86 */
1770 jmp_cond = X86_JL;
1771 break;
1772 case BPF_JSGE:
1773 /* Signed '>=', GE in x86 */
1774 jmp_cond = X86_JGE;
1775 break;
1776 case BPF_JSLE:
1777 /* Signed '<=', LE in x86 */
1778 jmp_cond = X86_JLE;
1779 break;
1780 default: /* to silence GCC warning */
1781 return -EFAULT;
1782 }
1783 jmp_offset = addrs[i + insn->off] - addrs[i];
1784 if (is_imm8(jmp_offset)) {
1785 if (jmp_padding) {
1786 /* To keep the jmp_offset valid, the extra bytes are
1787 * padded before the jump insn, so we subtract the
1788 * 2 bytes of jmp_cond insn from INSN_SZ_DIFF.
1789 *
1790 * If the previous pass already emits an imm8
1791 * jmp_cond, then this BPF insn won't shrink, so
1792 * "nops" is 0.
1793 *
1794 * On the other hand, if the previous pass emits an
1795 * imm32 jmp_cond, the extra 4 bytes(*) is padded to
1796 * keep the image from shrinking further.
1797 *
1798 * (*) imm32 jmp_cond is 6 bytes, and imm8 jmp_cond
1799 * is 2 bytes, so the size difference is 4 bytes.
1800 */
1801 nops = INSN_SZ_DIFF - 2;
1802 if (nops != 0 && nops != 4) {
1803 pr_err("unexpected jmp_cond padding: %d bytes\n",
1804 nops);
1805 return -EFAULT;
1806 }
1807 emit_nops(&prog, nops);
1808 }
1809 EMIT2(jmp_cond, jmp_offset);
1810 } else if (is_simm32(jmp_offset)) {
1811 EMIT2_off32(0x0F, jmp_cond + 0x10, jmp_offset);
1812 } else {
1813 pr_err("cond_jmp gen bug %llx\n", jmp_offset);
1814 return -EFAULT;
1815 }
1816
1817 break;
1818
1819 case BPF_JMP | BPF_JA:
1820 case BPF_JMP32 | BPF_JA:
1821 if (BPF_CLASS(insn->code) == BPF_JMP) {
1822 if (insn->off == -1)
1823 /* -1 jmp instructions will always jump
1824 * backwards two bytes. Explicitly handling
1825 * this case avoids wasting too many passes
1826 * when there are long sequences of replaced
1827 * dead code.
1828 */
1829 jmp_offset = -2;
1830 else
1831 jmp_offset = addrs[i + insn->off] - addrs[i];
1832 } else {
1833 if (insn->imm == -1)
1834 jmp_offset = -2;
1835 else
1836 jmp_offset = addrs[i + insn->imm] - addrs[i];
1837 }
1838
1839 if (!jmp_offset) {
1840 /*
1841 * If jmp_padding is enabled, the extra nops will
1842 * be inserted. Otherwise, optimize out nop jumps.
1843 */
1844 if (jmp_padding) {
1845 /* There are 3 possible conditions.
1846 * (1) This BPF_JA is already optimized out in
1847 * the previous run, so there is no need
1848 * to pad any extra byte (0 byte).
1849 * (2) The previous pass emits an imm8 jmp,
1850 * so we pad 2 bytes to match the previous
1851 * insn size.
1852 * (3) Similarly, the previous pass emits an
1853 * imm32 jmp, and 5 bytes is padded.
1854 */
1855 nops = INSN_SZ_DIFF;
1856 if (nops != 0 && nops != 2 && nops != 5) {
1857 pr_err("unexpected nop jump padding: %d bytes\n",
1858 nops);
1859 return -EFAULT;
1860 }
1861 emit_nops(&prog, nops);
1862 }
1863 break;
1864 }
1865 emit_jmp:
1866 if (is_imm8(jmp_offset)) {
1867 if (jmp_padding) {
1868 /* To avoid breaking jmp_offset, the extra bytes
1869 * are padded before the actual jmp insn, so
1870 * 2 bytes is subtracted from INSN_SZ_DIFF.
1871 *
1872 * If the previous pass already emits an imm8
1873 * jmp, there is nothing to pad (0 byte).
1874 *
1875 * If it emits an imm32 jmp (5 bytes) previously
1876 * and now an imm8 jmp (2 bytes), then we pad
1877 * (5 - 2 = 3) bytes to stop the image from
1878 * shrinking further.
1879 */
1880 nops = INSN_SZ_DIFF - 2;
1881 if (nops != 0 && nops != 3) {
1882 pr_err("unexpected jump padding: %d bytes\n",
1883 nops);
1884 return -EFAULT;
1885 }
1886 emit_nops(&prog, INSN_SZ_DIFF - 2);
1887 }
1888 EMIT2(0xEB, jmp_offset);
1889 } else if (is_simm32(jmp_offset)) {
1890 EMIT1_off32(0xE9, jmp_offset);
1891 } else {
1892 pr_err("jmp gen bug %llx\n", jmp_offset);
1893 return -EFAULT;
1894 }
1895 break;
1896
1897 case BPF_JMP | BPF_EXIT:
1898 if (seen_exit) {
1899 jmp_offset = ctx->cleanup_addr - addrs[i];
1900 goto emit_jmp;
1901 }
1902 seen_exit = true;
1903 /* Update cleanup_addr */
1904 ctx->cleanup_addr = proglen;
1905 pop_callee_regs(&prog, callee_regs_used);
1906 EMIT1(0xC9); /* leave */
1907 emit_return(&prog, image + addrs[i - 1] + (prog - temp));
1908 break;
1909
1910 default:
1911 /*
1912 * By design x86-64 JIT should support all BPF instructions.
1913 * This error will be seen if new instruction was added
1914 * to the interpreter, but not to the JIT, or if there is
1915 * junk in bpf_prog.
1916 */
1917 pr_err("bpf_jit: unknown opcode %02x\n", insn->code);
1918 return -EINVAL;
1919 }
1920
1921 ilen = prog - temp;
1922 if (ilen > BPF_MAX_INSN_SIZE) {
1923 pr_err("bpf_jit: fatal insn size error\n");
1924 return -EFAULT;
1925 }
1926
1927 if (image) {
1928 /*
1929 * When populating the image, assert that:
1930 *
1931 * i) We do not write beyond the allocated space, and
1932 * ii) addrs[i] did not change from the prior run, in order
1933 * to validate assumptions made for computing branch
1934 * displacements.
1935 */
1936 if (unlikely(proglen + ilen > oldproglen ||
1937 proglen + ilen != addrs[i])) {
1938 pr_err("bpf_jit: fatal error\n");
1939 return -EFAULT;
1940 }
1941 memcpy(rw_image + proglen, temp, ilen);
1942 }
1943 proglen += ilen;
1944 addrs[i] = proglen;
1945 prog = temp;
1946 }
1947
1948 if (image && excnt != bpf_prog->aux->num_exentries) {
1949 pr_err("extable is not populated\n");
1950 return -EFAULT;
1951 }
1952 return proglen;
1953 }
1954
clean_stack_garbage(const struct btf_func_model *m, u8 **pprog, int nr_stack_slots, int stack_size)1955 static void clean_stack_garbage(const struct btf_func_model *m,
1956 u8 **pprog, int nr_stack_slots,
1957 int stack_size)
1958 {
1959 int arg_size, off;
1960 u8 *prog;
1961
1962 /* Generally speaking, the compiler will pass the arguments
1963 * on-stack with "push" instruction, which will take 8-byte
1964 * on the stack. In this case, there won't be garbage values
1965 * while we copy the arguments from origin stack frame to current
1966 * in BPF_DW.
1967 *
1968 * However, sometimes the compiler will only allocate 4-byte on
1969 * the stack for the arguments. For now, this case will only
1970 * happen if there is only one argument on-stack and its size
1971 * not more than 4 byte. In this case, there will be garbage
1972 * values on the upper 4-byte where we store the argument on
1973 * current stack frame.
1974 *
1975 * arguments on origin stack:
1976 *
1977 * stack_arg_1(4-byte) xxx(4-byte)
1978 *
1979 * what we copy:
1980 *
1981 * stack_arg_1(8-byte): stack_arg_1(origin) xxx
1982 *
1983 * and the xxx is the garbage values which we should clean here.
1984 */
1985 if (nr_stack_slots != 1)
1986 return;
1987
1988 /* the size of the last argument */
1989 arg_size = m->arg_size[m->nr_args - 1];
1990 if (arg_size <= 4) {
1991 off = -(stack_size - 4);
1992 prog = *pprog;
1993 /* mov DWORD PTR [rbp + off], 0 */
1994 if (!is_imm8(off))
1995 EMIT2_off32(0xC7, 0x85, off);
1996 else
1997 EMIT3(0xC7, 0x45, off);
1998 EMIT(0, 4);
1999 *pprog = prog;
2000 }
2001 }
2002
2003 /* get the count of the regs that are used to pass arguments */
get_nr_used_regs(const struct btf_func_model *m)2004 static int get_nr_used_regs(const struct btf_func_model *m)
2005 {
2006 int i, arg_regs, nr_used_regs = 0;
2007
2008 for (i = 0; i < min_t(int, m->nr_args, MAX_BPF_FUNC_ARGS); i++) {
2009 arg_regs = (m->arg_size[i] + 7) / 8;
2010 if (nr_used_regs + arg_regs <= 6)
2011 nr_used_regs += arg_regs;
2012
2013 if (nr_used_regs >= 6)
2014 break;
2015 }
2016
2017 return nr_used_regs;
2018 }
2019
save_args(const struct btf_func_model *m, u8 **prog, int stack_size, bool for_call_origin)2020 static void save_args(const struct btf_func_model *m, u8 **prog,
2021 int stack_size, bool for_call_origin)
2022 {
2023 int arg_regs, first_off = 0, nr_regs = 0, nr_stack_slots = 0;
2024 int i, j;
2025
2026 /* Store function arguments to stack.
2027 * For a function that accepts two pointers the sequence will be:
2028 * mov QWORD PTR [rbp-0x10],rdi
2029 * mov QWORD PTR [rbp-0x8],rsi
2030 */
2031 for (i = 0; i < min_t(int, m->nr_args, MAX_BPF_FUNC_ARGS); i++) {
2032 arg_regs = (m->arg_size[i] + 7) / 8;
2033
2034 /* According to the research of Yonghong, struct members
2035 * should be all in register or all on the stack.
2036 * Meanwhile, the compiler will pass the argument on regs
2037 * if the remaining regs can hold the argument.
2038 *
2039 * Disorder of the args can happen. For example:
2040 *
2041 * struct foo_struct {
2042 * long a;
2043 * int b;
2044 * };
2045 * int foo(char, char, char, char, char, struct foo_struct,
2046 * char);
2047 *
2048 * the arg1-5,arg7 will be passed by regs, and arg6 will
2049 * by stack.
2050 */
2051 if (nr_regs + arg_regs > 6) {
2052 /* copy function arguments from origin stack frame
2053 * into current stack frame.
2054 *
2055 * The starting address of the arguments on-stack
2056 * is:
2057 * rbp + 8(push rbp) +
2058 * 8(return addr of origin call) +
2059 * 8(return addr of the caller)
2060 * which means: rbp + 24
2061 */
2062 for (j = 0; j < arg_regs; j++) {
2063 emit_ldx(prog, BPF_DW, BPF_REG_0, BPF_REG_FP,
2064 nr_stack_slots * 8 + 0x18);
2065 emit_stx(prog, BPF_DW, BPF_REG_FP, BPF_REG_0,
2066 -stack_size);
2067
2068 if (!nr_stack_slots)
2069 first_off = stack_size;
2070 stack_size -= 8;
2071 nr_stack_slots++;
2072 }
2073 } else {
2074 /* Only copy the arguments on-stack to current
2075 * 'stack_size' and ignore the regs, used to
2076 * prepare the arguments on-stack for orign call.
2077 */
2078 if (for_call_origin) {
2079 nr_regs += arg_regs;
2080 continue;
2081 }
2082
2083 /* copy the arguments from regs into stack */
2084 for (j = 0; j < arg_regs; j++) {
2085 emit_stx(prog, BPF_DW, BPF_REG_FP,
2086 nr_regs == 5 ? X86_REG_R9 : BPF_REG_1 + nr_regs,
2087 -stack_size);
2088 stack_size -= 8;
2089 nr_regs++;
2090 }
2091 }
2092 }
2093
2094 clean_stack_garbage(m, prog, nr_stack_slots, first_off);
2095 }
2096
restore_regs(const struct btf_func_model *m, u8 **prog, int stack_size)2097 static void restore_regs(const struct btf_func_model *m, u8 **prog,
2098 int stack_size)
2099 {
2100 int i, j, arg_regs, nr_regs = 0;
2101
2102 /* Restore function arguments from stack.
2103 * For a function that accepts two pointers the sequence will be:
2104 * EMIT4(0x48, 0x8B, 0x7D, 0xF0); mov rdi,QWORD PTR [rbp-0x10]
2105 * EMIT4(0x48, 0x8B, 0x75, 0xF8); mov rsi,QWORD PTR [rbp-0x8]
2106 *
2107 * The logic here is similar to what we do in save_args()
2108 */
2109 for (i = 0; i < min_t(int, m->nr_args, MAX_BPF_FUNC_ARGS); i++) {
2110 arg_regs = (m->arg_size[i] + 7) / 8;
2111 if (nr_regs + arg_regs <= 6) {
2112 for (j = 0; j < arg_regs; j++) {
2113 emit_ldx(prog, BPF_DW,
2114 nr_regs == 5 ? X86_REG_R9 : BPF_REG_1 + nr_regs,
2115 BPF_REG_FP,
2116 -stack_size);
2117 stack_size -= 8;
2118 nr_regs++;
2119 }
2120 } else {
2121 stack_size -= 8 * arg_regs;
2122 }
2123
2124 if (nr_regs >= 6)
2125 break;
2126 }
2127 }
2128
invoke_bpf_prog(const struct btf_func_model *m, u8 **pprog, struct bpf_tramp_link *l, int stack_size, int run_ctx_off, bool save_ret)2129 static int invoke_bpf_prog(const struct btf_func_model *m, u8 **pprog,
2130 struct bpf_tramp_link *l, int stack_size,
2131 int run_ctx_off, bool save_ret)
2132 {
2133 u8 *prog = *pprog;
2134 u8 *jmp_insn;
2135 int ctx_cookie_off = offsetof(struct bpf_tramp_run_ctx, bpf_cookie);
2136 struct bpf_prog *p = l->link.prog;
2137 u64 cookie = l->cookie;
2138
2139 /* mov rdi, cookie */
2140 emit_mov_imm64(&prog, BPF_REG_1, (long) cookie >> 32, (u32) (long) cookie);
2141
2142 /* Prepare struct bpf_tramp_run_ctx.
2143 *
2144 * bpf_tramp_run_ctx is already preserved by
2145 * arch_prepare_bpf_trampoline().
2146 *
2147 * mov QWORD PTR [rbp - run_ctx_off + ctx_cookie_off], rdi
2148 */
2149 emit_stx(&prog, BPF_DW, BPF_REG_FP, BPF_REG_1, -run_ctx_off + ctx_cookie_off);
2150
2151 /* arg1: mov rdi, progs[i] */
2152 emit_mov_imm64(&prog, BPF_REG_1, (long) p >> 32, (u32) (long) p);
2153 /* arg2: lea rsi, [rbp - ctx_cookie_off] */
2154 if (!is_imm8(-run_ctx_off))
2155 EMIT3_off32(0x48, 0x8D, 0xB5, -run_ctx_off);
2156 else
2157 EMIT4(0x48, 0x8D, 0x75, -run_ctx_off);
2158
2159 if (emit_rsb_call(&prog, bpf_trampoline_enter(p), prog))
2160 return -EINVAL;
2161 /* remember prog start time returned by __bpf_prog_enter */
2162 emit_mov_reg(&prog, true, BPF_REG_6, BPF_REG_0);
2163
2164 /* if (__bpf_prog_enter*(prog) == 0)
2165 * goto skip_exec_of_prog;
2166 */
2167 EMIT3(0x48, 0x85, 0xC0); /* test rax,rax */
2168 /* emit 2 nops that will be replaced with JE insn */
2169 jmp_insn = prog;
2170 emit_nops(&prog, 2);
2171
2172 /* arg1: lea rdi, [rbp - stack_size] */
2173 if (!is_imm8(-stack_size))
2174 EMIT3_off32(0x48, 0x8D, 0xBD, -stack_size);
2175 else
2176 EMIT4(0x48, 0x8D, 0x7D, -stack_size);
2177 /* arg2: progs[i]->insnsi for interpreter */
2178 if (!p->jited)
2179 emit_mov_imm64(&prog, BPF_REG_2,
2180 (long) p->insnsi >> 32,
2181 (u32) (long) p->insnsi);
2182 /* call JITed bpf program or interpreter */
2183 if (emit_rsb_call(&prog, p->bpf_func, prog))
2184 return -EINVAL;
2185
2186 /*
2187 * BPF_TRAMP_MODIFY_RETURN trampolines can modify the return
2188 * of the previous call which is then passed on the stack to
2189 * the next BPF program.
2190 *
2191 * BPF_TRAMP_FENTRY trampoline may need to return the return
2192 * value of BPF_PROG_TYPE_STRUCT_OPS prog.
2193 */
2194 if (save_ret)
2195 emit_stx(&prog, BPF_DW, BPF_REG_FP, BPF_REG_0, -8);
2196
2197 /* replace 2 nops with JE insn, since jmp target is known */
2198 jmp_insn[0] = X86_JE;
2199 jmp_insn[1] = prog - jmp_insn - 2;
2200
2201 /* arg1: mov rdi, progs[i] */
2202 emit_mov_imm64(&prog, BPF_REG_1, (long) p >> 32, (u32) (long) p);
2203 /* arg2: mov rsi, rbx <- start time in nsec */
2204 emit_mov_reg(&prog, true, BPF_REG_2, BPF_REG_6);
2205 /* arg3: lea rdx, [rbp - run_ctx_off] */
2206 if (!is_imm8(-run_ctx_off))
2207 EMIT3_off32(0x48, 0x8D, 0x95, -run_ctx_off);
2208 else
2209 EMIT4(0x48, 0x8D, 0x55, -run_ctx_off);
2210 if (emit_rsb_call(&prog, bpf_trampoline_exit(p), prog))
2211 return -EINVAL;
2212
2213 *pprog = prog;
2214 return 0;
2215 }
2216
emit_align(u8 **pprog, u32 align)2217 static void emit_align(u8 **pprog, u32 align)
2218 {
2219 u8 *target, *prog = *pprog;
2220
2221 target = PTR_ALIGN(prog, align);
2222 if (target != prog)
2223 emit_nops(&prog, target - prog);
2224
2225 *pprog = prog;
2226 }
2227
emit_cond_near_jump(u8 **pprog, void *func, void *ip, u8 jmp_cond)2228 static int emit_cond_near_jump(u8 **pprog, void *func, void *ip, u8 jmp_cond)
2229 {
2230 u8 *prog = *pprog;
2231 s64 offset;
2232
2233 offset = func - (ip + 2 + 4);
2234 if (!is_simm32(offset)) {
2235 pr_err("Target %p is out of range\n", func);
2236 return -EINVAL;
2237 }
2238 EMIT2_off32(0x0F, jmp_cond + 0x10, offset);
2239 *pprog = prog;
2240 return 0;
2241 }
2242
invoke_bpf(const struct btf_func_model *m, u8 **pprog, struct bpf_tramp_links *tl, int stack_size, int run_ctx_off, bool save_ret)2243 static int invoke_bpf(const struct btf_func_model *m, u8 **pprog,
2244 struct bpf_tramp_links *tl, int stack_size,
2245 int run_ctx_off, bool save_ret)
2246 {
2247 int i;
2248 u8 *prog = *pprog;
2249
2250 for (i = 0; i < tl->nr_links; i++) {
2251 if (invoke_bpf_prog(m, &prog, tl->links[i], stack_size,
2252 run_ctx_off, save_ret))
2253 return -EINVAL;
2254 }
2255 *pprog = prog;
2256 return 0;
2257 }
2258
invoke_bpf_mod_ret(const struct btf_func_model *m, u8 **pprog, struct bpf_tramp_links *tl, int stack_size, int run_ctx_off, u8 **branches)2259 static int invoke_bpf_mod_ret(const struct btf_func_model *m, u8 **pprog,
2260 struct bpf_tramp_links *tl, int stack_size,
2261 int run_ctx_off, u8 **branches)
2262 {
2263 u8 *prog = *pprog;
2264 int i;
2265
2266 /* The first fmod_ret program will receive a garbage return value.
2267 * Set this to 0 to avoid confusing the program.
2268 */
2269 emit_mov_imm32(&prog, false, BPF_REG_0, 0);
2270 emit_stx(&prog, BPF_DW, BPF_REG_FP, BPF_REG_0, -8);
2271 for (i = 0; i < tl->nr_links; i++) {
2272 if (invoke_bpf_prog(m, &prog, tl->links[i], stack_size, run_ctx_off, true))
2273 return -EINVAL;
2274
2275 /* mod_ret prog stored return value into [rbp - 8]. Emit:
2276 * if (*(u64 *)(rbp - 8) != 0)
2277 * goto do_fexit;
2278 */
2279 /* cmp QWORD PTR [rbp - 0x8], 0x0 */
2280 EMIT4(0x48, 0x83, 0x7d, 0xf8); EMIT1(0x00);
2281
2282 /* Save the location of the branch and Generate 6 nops
2283 * (4 bytes for an offset and 2 bytes for the jump) These nops
2284 * are replaced with a conditional jump once do_fexit (i.e. the
2285 * start of the fexit invocation) is finalized.
2286 */
2287 branches[i] = prog;
2288 emit_nops(&prog, 4 + 2);
2289 }
2290
2291 *pprog = prog;
2292 return 0;
2293 }
2294
2295 /* Example:
2296 * __be16 eth_type_trans(struct sk_buff *skb, struct net_device *dev);
2297 * its 'struct btf_func_model' will be nr_args=2
2298 * The assembly code when eth_type_trans is executing after trampoline:
2299 *
2300 * push rbp
2301 * mov rbp, rsp
2302 * sub rsp, 16 // space for skb and dev
2303 * push rbx // temp regs to pass start time
2304 * mov qword ptr [rbp - 16], rdi // save skb pointer to stack
2305 * mov qword ptr [rbp - 8], rsi // save dev pointer to stack
2306 * call __bpf_prog_enter // rcu_read_lock and preempt_disable
2307 * mov rbx, rax // remember start time in bpf stats are enabled
2308 * lea rdi, [rbp - 16] // R1==ctx of bpf prog
2309 * call addr_of_jited_FENTRY_prog
2310 * movabsq rdi, 64bit_addr_of_struct_bpf_prog // unused if bpf stats are off
2311 * mov rsi, rbx // prog start time
2312 * call __bpf_prog_exit // rcu_read_unlock, preempt_enable and stats math
2313 * mov rdi, qword ptr [rbp - 16] // restore skb pointer from stack
2314 * mov rsi, qword ptr [rbp - 8] // restore dev pointer from stack
2315 * pop rbx
2316 * leave
2317 * ret
2318 *
2319 * eth_type_trans has 5 byte nop at the beginning. These 5 bytes will be
2320 * replaced with 'call generated_bpf_trampoline'. When it returns
2321 * eth_type_trans will continue executing with original skb and dev pointers.
2322 *
2323 * The assembly code when eth_type_trans is called from trampoline:
2324 *
2325 * push rbp
2326 * mov rbp, rsp
2327 * sub rsp, 24 // space for skb, dev, return value
2328 * push rbx // temp regs to pass start time
2329 * mov qword ptr [rbp - 24], rdi // save skb pointer to stack
2330 * mov qword ptr [rbp - 16], rsi // save dev pointer to stack
2331 * call __bpf_prog_enter // rcu_read_lock and preempt_disable
2332 * mov rbx, rax // remember start time if bpf stats are enabled
2333 * lea rdi, [rbp - 24] // R1==ctx of bpf prog
2334 * call addr_of_jited_FENTRY_prog // bpf prog can access skb and dev
2335 * movabsq rdi, 64bit_addr_of_struct_bpf_prog // unused if bpf stats are off
2336 * mov rsi, rbx // prog start time
2337 * call __bpf_prog_exit // rcu_read_unlock, preempt_enable and stats math
2338 * mov rdi, qword ptr [rbp - 24] // restore skb pointer from stack
2339 * mov rsi, qword ptr [rbp - 16] // restore dev pointer from stack
2340 * call eth_type_trans+5 // execute body of eth_type_trans
2341 * mov qword ptr [rbp - 8], rax // save return value
2342 * call __bpf_prog_enter // rcu_read_lock and preempt_disable
2343 * mov rbx, rax // remember start time in bpf stats are enabled
2344 * lea rdi, [rbp - 24] // R1==ctx of bpf prog
2345 * call addr_of_jited_FEXIT_prog // bpf prog can access skb, dev, return value
2346 * movabsq rdi, 64bit_addr_of_struct_bpf_prog // unused if bpf stats are off
2347 * mov rsi, rbx // prog start time
2348 * call __bpf_prog_exit // rcu_read_unlock, preempt_enable and stats math
2349 * mov rax, qword ptr [rbp - 8] // restore eth_type_trans's return value
2350 * pop rbx
2351 * leave
2352 * add rsp, 8 // skip eth_type_trans's frame
2353 * ret // return to its caller
2354 */
arch_prepare_bpf_trampoline(struct bpf_tramp_image *im, void *image, void *image_end, const struct btf_func_model *m, u32 flags, struct bpf_tramp_links *tlinks, void *func_addr)2355 int arch_prepare_bpf_trampoline(struct bpf_tramp_image *im, void *image, void *image_end,
2356 const struct btf_func_model *m, u32 flags,
2357 struct bpf_tramp_links *tlinks,
2358 void *func_addr)
2359 {
2360 int i, ret, nr_regs = m->nr_args, stack_size = 0;
2361 int regs_off, nregs_off, ip_off, run_ctx_off, arg_stack_off, rbx_off;
2362 struct bpf_tramp_links *fentry = &tlinks[BPF_TRAMP_FENTRY];
2363 struct bpf_tramp_links *fexit = &tlinks[BPF_TRAMP_FEXIT];
2364 struct bpf_tramp_links *fmod_ret = &tlinks[BPF_TRAMP_MODIFY_RETURN];
2365 void *orig_call = func_addr;
2366 u8 **branches = NULL;
2367 u8 *prog;
2368 bool save_ret;
2369
2370 /* extra registers for struct arguments */
2371 for (i = 0; i < m->nr_args; i++)
2372 if (m->arg_flags[i] & BTF_FMODEL_STRUCT_ARG)
2373 nr_regs += (m->arg_size[i] + 7) / 8 - 1;
2374
2375 /* x86-64 supports up to MAX_BPF_FUNC_ARGS arguments. 1-6
2376 * are passed through regs, the remains are through stack.
2377 */
2378 if (nr_regs > MAX_BPF_FUNC_ARGS)
2379 return -ENOTSUPP;
2380
2381 /* Generated trampoline stack layout:
2382 *
2383 * RBP + 8 [ return address ]
2384 * RBP + 0 [ RBP ]
2385 *
2386 * RBP - 8 [ return value ] BPF_TRAMP_F_CALL_ORIG or
2387 * BPF_TRAMP_F_RET_FENTRY_RET flags
2388 *
2389 * [ reg_argN ] always
2390 * [ ... ]
2391 * RBP - regs_off [ reg_arg1 ] program's ctx pointer
2392 *
2393 * RBP - nregs_off [ regs count ] always
2394 *
2395 * RBP - ip_off [ traced function ] BPF_TRAMP_F_IP_ARG flag
2396 *
2397 * RBP - rbx_off [ rbx value ] always
2398 *
2399 * RBP - run_ctx_off [ bpf_tramp_run_ctx ]
2400 *
2401 * [ stack_argN ] BPF_TRAMP_F_CALL_ORIG
2402 * [ ... ]
2403 * [ stack_arg2 ]
2404 * RBP - arg_stack_off [ stack_arg1 ]
2405 * RSP [ tail_call_cnt ] BPF_TRAMP_F_TAIL_CALL_CTX
2406 */
2407
2408 /* room for return value of orig_call or fentry prog */
2409 save_ret = flags & (BPF_TRAMP_F_CALL_ORIG | BPF_TRAMP_F_RET_FENTRY_RET);
2410 if (save_ret)
2411 stack_size += 8;
2412
2413 stack_size += nr_regs * 8;
2414 regs_off = stack_size;
2415
2416 /* regs count */
2417 stack_size += 8;
2418 nregs_off = stack_size;
2419
2420 if (flags & BPF_TRAMP_F_IP_ARG)
2421 stack_size += 8; /* room for IP address argument */
2422
2423 ip_off = stack_size;
2424
2425 stack_size += 8;
2426 rbx_off = stack_size;
2427
2428 stack_size += (sizeof(struct bpf_tramp_run_ctx) + 7) & ~0x7;
2429 run_ctx_off = stack_size;
2430
2431 if (nr_regs > 6 && (flags & BPF_TRAMP_F_CALL_ORIG)) {
2432 /* the space that used to pass arguments on-stack */
2433 stack_size += (nr_regs - get_nr_used_regs(m)) * 8;
2434 /* make sure the stack pointer is 16-byte aligned if we
2435 * need pass arguments on stack, which means
2436 * [stack_size + 8(rbp) + 8(rip) + 8(origin rip)]
2437 * should be 16-byte aligned. Following code depend on
2438 * that stack_size is already 8-byte aligned.
2439 */
2440 stack_size += (stack_size % 16) ? 0 : 8;
2441 }
2442
2443 arg_stack_off = stack_size;
2444
2445 if (flags & BPF_TRAMP_F_SKIP_FRAME) {
2446 /* skip patched call instruction and point orig_call to actual
2447 * body of the kernel function.
2448 */
2449 if (is_endbr(*(u32 *)orig_call))
2450 orig_call += ENDBR_INSN_SIZE;
2451 orig_call += X86_PATCH_SIZE;
2452 }
2453
2454 prog = image;
2455
2456 EMIT_ENDBR();
2457 /*
2458 * This is the direct-call trampoline, as such it needs accounting
2459 * for the __fentry__ call.
2460 */
2461 x86_call_depth_emit_accounting(&prog, NULL);
2462 EMIT1(0x55); /* push rbp */
2463 EMIT3(0x48, 0x89, 0xE5); /* mov rbp, rsp */
2464 if (!is_imm8(stack_size))
2465 /* sub rsp, stack_size */
2466 EMIT3_off32(0x48, 0x81, 0xEC, stack_size);
2467 else
2468 /* sub rsp, stack_size */
2469 EMIT4(0x48, 0x83, 0xEC, stack_size);
2470 if (flags & BPF_TRAMP_F_TAIL_CALL_CTX)
2471 EMIT1(0x50); /* push rax */
2472 /* mov QWORD PTR [rbp - rbx_off], rbx */
2473 emit_stx(&prog, BPF_DW, BPF_REG_FP, BPF_REG_6, -rbx_off);
2474
2475 /* Store number of argument registers of the traced function:
2476 * mov rax, nr_regs
2477 * mov QWORD PTR [rbp - nregs_off], rax
2478 */
2479 emit_mov_imm64(&prog, BPF_REG_0, 0, (u32) nr_regs);
2480 emit_stx(&prog, BPF_DW, BPF_REG_FP, BPF_REG_0, -nregs_off);
2481
2482 if (flags & BPF_TRAMP_F_IP_ARG) {
2483 /* Store IP address of the traced function:
2484 * movabsq rax, func_addr
2485 * mov QWORD PTR [rbp - ip_off], rax
2486 */
2487 emit_mov_imm64(&prog, BPF_REG_0, (long) func_addr >> 32, (u32) (long) func_addr);
2488 emit_stx(&prog, BPF_DW, BPF_REG_FP, BPF_REG_0, -ip_off);
2489 }
2490
2491 save_args(m, &prog, regs_off, false);
2492
2493 if (flags & BPF_TRAMP_F_CALL_ORIG) {
2494 /* arg1: mov rdi, im */
2495 emit_mov_imm64(&prog, BPF_REG_1, (long) im >> 32, (u32) (long) im);
2496 if (emit_rsb_call(&prog, __bpf_tramp_enter, prog)) {
2497 ret = -EINVAL;
2498 goto cleanup;
2499 }
2500 }
2501
2502 if (fentry->nr_links)
2503 if (invoke_bpf(m, &prog, fentry, regs_off, run_ctx_off,
2504 flags & BPF_TRAMP_F_RET_FENTRY_RET))
2505 return -EINVAL;
2506
2507 if (fmod_ret->nr_links) {
2508 branches = kcalloc(fmod_ret->nr_links, sizeof(u8 *),
2509 GFP_KERNEL);
2510 if (!branches)
2511 return -ENOMEM;
2512
2513 if (invoke_bpf_mod_ret(m, &prog, fmod_ret, regs_off,
2514 run_ctx_off, branches)) {
2515 ret = -EINVAL;
2516 goto cleanup;
2517 }
2518 }
2519
2520 if (flags & BPF_TRAMP_F_CALL_ORIG) {
2521 restore_regs(m, &prog, regs_off);
2522 save_args(m, &prog, arg_stack_off, true);
2523
2524 if (flags & BPF_TRAMP_F_TAIL_CALL_CTX)
2525 /* Before calling the original function, restore the
2526 * tail_call_cnt from stack to rax.
2527 */
2528 RESTORE_TAIL_CALL_CNT(stack_size);
2529
2530 if (flags & BPF_TRAMP_F_ORIG_STACK) {
2531 emit_ldx(&prog, BPF_DW, BPF_REG_6, BPF_REG_FP, 8);
2532 EMIT2(0xff, 0xd3); /* call *rbx */
2533 } else {
2534 /* call original function */
2535 if (emit_rsb_call(&prog, orig_call, prog)) {
2536 ret = -EINVAL;
2537 goto cleanup;
2538 }
2539 }
2540 /* remember return value in a stack for bpf prog to access */
2541 emit_stx(&prog, BPF_DW, BPF_REG_FP, BPF_REG_0, -8);
2542 im->ip_after_call = prog;
2543 memcpy(prog, x86_nops[5], X86_PATCH_SIZE);
2544 prog += X86_PATCH_SIZE;
2545 }
2546
2547 if (fmod_ret->nr_links) {
2548 /* From Intel 64 and IA-32 Architectures Optimization
2549 * Reference Manual, 3.4.1.4 Code Alignment, Assembly/Compiler
2550 * Coding Rule 11: All branch targets should be 16-byte
2551 * aligned.
2552 */
2553 emit_align(&prog, 16);
2554 /* Update the branches saved in invoke_bpf_mod_ret with the
2555 * aligned address of do_fexit.
2556 */
2557 for (i = 0; i < fmod_ret->nr_links; i++)
2558 emit_cond_near_jump(&branches[i], prog, branches[i],
2559 X86_JNE);
2560 }
2561
2562 if (fexit->nr_links)
2563 if (invoke_bpf(m, &prog, fexit, regs_off, run_ctx_off, false)) {
2564 ret = -EINVAL;
2565 goto cleanup;
2566 }
2567
2568 if (flags & BPF_TRAMP_F_RESTORE_REGS)
2569 restore_regs(m, &prog, regs_off);
2570
2571 /* This needs to be done regardless. If there were fmod_ret programs,
2572 * the return value is only updated on the stack and still needs to be
2573 * restored to R0.
2574 */
2575 if (flags & BPF_TRAMP_F_CALL_ORIG) {
2576 im->ip_epilogue = prog;
2577 /* arg1: mov rdi, im */
2578 emit_mov_imm64(&prog, BPF_REG_1, (long) im >> 32, (u32) (long) im);
2579 if (emit_rsb_call(&prog, __bpf_tramp_exit, prog)) {
2580 ret = -EINVAL;
2581 goto cleanup;
2582 }
2583 } else if (flags & BPF_TRAMP_F_TAIL_CALL_CTX)
2584 /* Before running the original function, restore the
2585 * tail_call_cnt from stack to rax.
2586 */
2587 RESTORE_TAIL_CALL_CNT(stack_size);
2588
2589 /* restore return value of orig_call or fentry prog back into RAX */
2590 if (save_ret)
2591 emit_ldx(&prog, BPF_DW, BPF_REG_0, BPF_REG_FP, -8);
2592
2593 emit_ldx(&prog, BPF_DW, BPF_REG_6, BPF_REG_FP, -rbx_off);
2594 EMIT1(0xC9); /* leave */
2595 if (flags & BPF_TRAMP_F_SKIP_FRAME)
2596 /* skip our return address and return to parent */
2597 EMIT4(0x48, 0x83, 0xC4, 8); /* add rsp, 8 */
2598 emit_return(&prog, prog);
2599 /* Make sure the trampoline generation logic doesn't overflow */
2600 if (WARN_ON_ONCE(prog > (u8 *)image_end - BPF_INSN_SAFETY)) {
2601 ret = -EFAULT;
2602 goto cleanup;
2603 }
2604 ret = prog - (u8 *)image;
2605
2606 cleanup:
2607 kfree(branches);
2608 return ret;
2609 }
2610
emit_bpf_dispatcher(u8 **pprog, int a, int b, s64 *progs, u8 *image, u8 *buf)2611 static int emit_bpf_dispatcher(u8 **pprog, int a, int b, s64 *progs, u8 *image, u8 *buf)
2612 {
2613 u8 *jg_reloc, *prog = *pprog;
2614 int pivot, err, jg_bytes = 1;
2615 s64 jg_offset;
2616
2617 if (a == b) {
2618 /* Leaf node of recursion, i.e. not a range of indices
2619 * anymore.
2620 */
2621 EMIT1(add_1mod(0x48, BPF_REG_3)); /* cmp rdx,func */
2622 if (!is_simm32(progs[a]))
2623 return -1;
2624 EMIT2_off32(0x81, add_1reg(0xF8, BPF_REG_3),
2625 progs[a]);
2626 err = emit_cond_near_jump(&prog, /* je func */
2627 (void *)progs[a], image + (prog - buf),
2628 X86_JE);
2629 if (err)
2630 return err;
2631
2632 emit_indirect_jump(&prog, 2 /* rdx */, image + (prog - buf));
2633
2634 *pprog = prog;
2635 return 0;
2636 }
2637
2638 /* Not a leaf node, so we pivot, and recursively descend into
2639 * the lower and upper ranges.
2640 */
2641 pivot = (b - a) / 2;
2642 EMIT1(add_1mod(0x48, BPF_REG_3)); /* cmp rdx,func */
2643 if (!is_simm32(progs[a + pivot]))
2644 return -1;
2645 EMIT2_off32(0x81, add_1reg(0xF8, BPF_REG_3), progs[a + pivot]);
2646
2647 if (pivot > 2) { /* jg upper_part */
2648 /* Require near jump. */
2649 jg_bytes = 4;
2650 EMIT2_off32(0x0F, X86_JG + 0x10, 0);
2651 } else {
2652 EMIT2(X86_JG, 0);
2653 }
2654 jg_reloc = prog;
2655
2656 err = emit_bpf_dispatcher(&prog, a, a + pivot, /* emit lower_part */
2657 progs, image, buf);
2658 if (err)
2659 return err;
2660
2661 /* From Intel 64 and IA-32 Architectures Optimization
2662 * Reference Manual, 3.4.1.4 Code Alignment, Assembly/Compiler
2663 * Coding Rule 11: All branch targets should be 16-byte
2664 * aligned.
2665 */
2666 emit_align(&prog, 16);
2667 jg_offset = prog - jg_reloc;
2668 emit_code(jg_reloc - jg_bytes, jg_offset, jg_bytes);
2669
2670 err = emit_bpf_dispatcher(&prog, a + pivot + 1, /* emit upper_part */
2671 b, progs, image, buf);
2672 if (err)
2673 return err;
2674
2675 *pprog = prog;
2676 return 0;
2677 }
2678
cmp_ips(const void *a, const void *b)2679 static int cmp_ips(const void *a, const void *b)
2680 {
2681 const s64 *ipa = a;
2682 const s64 *ipb = b;
2683
2684 if (*ipa > *ipb)
2685 return 1;
2686 if (*ipa < *ipb)
2687 return -1;
2688 return 0;
2689 }
2690
arch_prepare_bpf_dispatcher(void *image, void *buf, s64 *funcs, int num_funcs)2691 int arch_prepare_bpf_dispatcher(void *image, void *buf, s64 *funcs, int num_funcs)
2692 {
2693 u8 *prog = buf;
2694
2695 sort(funcs, num_funcs, sizeof(funcs[0]), cmp_ips, NULL);
2696 return emit_bpf_dispatcher(&prog, 0, num_funcs - 1, funcs, image, buf);
2697 }
2698
2699 struct x64_jit_data {
2700 struct bpf_binary_header *rw_header;
2701 struct bpf_binary_header *header;
2702 int *addrs;
2703 u8 *image;
2704 int proglen;
2705 struct jit_context ctx;
2706 };
2707
2708 #define MAX_PASSES 20
2709 #define PADDING_PASSES (MAX_PASSES - 5)
2710
bpf_int_jit_compile(struct bpf_prog *prog)2711 struct bpf_prog *bpf_int_jit_compile(struct bpf_prog *prog)
2712 {
2713 struct bpf_binary_header *rw_header = NULL;
2714 struct bpf_binary_header *header = NULL;
2715 struct bpf_prog *tmp, *orig_prog = prog;
2716 struct x64_jit_data *jit_data;
2717 int proglen, oldproglen = 0;
2718 struct jit_context ctx = {};
2719 bool tmp_blinded = false;
2720 bool extra_pass = false;
2721 bool padding = false;
2722 u8 *rw_image = NULL;
2723 u8 *image = NULL;
2724 int *addrs;
2725 int pass;
2726 int i;
2727
2728 if (!prog->jit_requested)
2729 return orig_prog;
2730
2731 tmp = bpf_jit_blind_constants(prog);
2732 /*
2733 * If blinding was requested and we failed during blinding,
2734 * we must fall back to the interpreter.
2735 */
2736 if (IS_ERR(tmp))
2737 return orig_prog;
2738 if (tmp != prog) {
2739 tmp_blinded = true;
2740 prog = tmp;
2741 }
2742
2743 jit_data = prog->aux->jit_data;
2744 if (!jit_data) {
2745 jit_data = kzalloc(sizeof(*jit_data), GFP_KERNEL);
2746 if (!jit_data) {
2747 prog = orig_prog;
2748 goto out;
2749 }
2750 prog->aux->jit_data = jit_data;
2751 }
2752 addrs = jit_data->addrs;
2753 if (addrs) {
2754 ctx = jit_data->ctx;
2755 oldproglen = jit_data->proglen;
2756 image = jit_data->image;
2757 header = jit_data->header;
2758 rw_header = jit_data->rw_header;
2759 rw_image = (void *)rw_header + ((void *)image - (void *)header);
2760 extra_pass = true;
2761 padding = true;
2762 goto skip_init_addrs;
2763 }
2764 addrs = kvmalloc_array(prog->len + 1, sizeof(*addrs), GFP_KERNEL);
2765 if (!addrs) {
2766 prog = orig_prog;
2767 goto out_addrs;
2768 }
2769
2770 /*
2771 * Before first pass, make a rough estimation of addrs[]
2772 * each BPF instruction is translated to less than 64 bytes
2773 */
2774 for (proglen = 0, i = 0; i <= prog->len; i++) {
2775 proglen += 64;
2776 addrs[i] = proglen;
2777 }
2778 ctx.cleanup_addr = proglen;
2779 skip_init_addrs:
2780
2781 /*
2782 * JITed image shrinks with every pass and the loop iterates
2783 * until the image stops shrinking. Very large BPF programs
2784 * may converge on the last pass. In such case do one more
2785 * pass to emit the final image.
2786 */
2787 for (pass = 0; pass < MAX_PASSES || image; pass++) {
2788 if (!padding && pass >= PADDING_PASSES)
2789 padding = true;
2790 proglen = do_jit(prog, addrs, image, rw_image, oldproglen, &ctx, padding);
2791 if (proglen <= 0) {
2792 out_image:
2793 image = NULL;
2794 if (header) {
2795 bpf_arch_text_copy(&header->size, &rw_header->size,
2796 sizeof(rw_header->size));
2797 bpf_jit_binary_pack_free(header, rw_header);
2798 }
2799 /* Fall back to interpreter mode */
2800 prog = orig_prog;
2801 if (extra_pass) {
2802 prog->bpf_func = NULL;
2803 prog->jited = 0;
2804 prog->jited_len = 0;
2805 }
2806 goto out_addrs;
2807 }
2808 if (image) {
2809 if (proglen != oldproglen) {
2810 pr_err("bpf_jit: proglen=%d != oldproglen=%d\n",
2811 proglen, oldproglen);
2812 goto out_image;
2813 }
2814 break;
2815 }
2816 if (proglen == oldproglen) {
2817 /*
2818 * The number of entries in extable is the number of BPF_LDX
2819 * insns that access kernel memory via "pointer to BTF type".
2820 * The verifier changed their opcode from LDX|MEM|size
2821 * to LDX|PROBE_MEM|size to make JITing easier.
2822 */
2823 u32 align = __alignof__(struct exception_table_entry);
2824 u32 extable_size = prog->aux->num_exentries *
2825 sizeof(struct exception_table_entry);
2826
2827 /* allocate module memory for x86 insns and extable */
2828 header = bpf_jit_binary_pack_alloc(roundup(proglen, align) + extable_size,
2829 &image, align, &rw_header, &rw_image,
2830 jit_fill_hole);
2831 if (!header) {
2832 prog = orig_prog;
2833 goto out_addrs;
2834 }
2835 prog->aux->extable = (void *) image + roundup(proglen, align);
2836 }
2837 oldproglen = proglen;
2838 cond_resched();
2839 }
2840
2841 if (bpf_jit_enable > 1)
2842 bpf_jit_dump(prog->len, proglen, pass + 1, rw_image);
2843
2844 if (image) {
2845 if (!prog->is_func || extra_pass) {
2846 /*
2847 * bpf_jit_binary_pack_finalize fails in two scenarios:
2848 * 1) header is not pointing to proper module memory;
2849 * 2) the arch doesn't support bpf_arch_text_copy().
2850 *
2851 * Both cases are serious bugs and justify WARN_ON.
2852 */
2853 if (WARN_ON(bpf_jit_binary_pack_finalize(prog, header, rw_header))) {
2854 /* header has been freed */
2855 header = NULL;
2856 goto out_image;
2857 }
2858
2859 bpf_tail_call_direct_fixup(prog);
2860 } else {
2861 jit_data->addrs = addrs;
2862 jit_data->ctx = ctx;
2863 jit_data->proglen = proglen;
2864 jit_data->image = image;
2865 jit_data->header = header;
2866 jit_data->rw_header = rw_header;
2867 }
2868 prog->bpf_func = (void *)image;
2869 prog->jited = 1;
2870 prog->jited_len = proglen;
2871 } else {
2872 prog = orig_prog;
2873 }
2874
2875 if (!image || !prog->is_func || extra_pass) {
2876 if (image)
2877 bpf_prog_fill_jited_linfo(prog, addrs + 1);
2878 out_addrs:
2879 kvfree(addrs);
2880 kfree(jit_data);
2881 prog->aux->jit_data = NULL;
2882 }
2883 out:
2884 if (tmp_blinded)
2885 bpf_jit_prog_release_other(prog, prog == orig_prog ?
2886 tmp : orig_prog);
2887 return prog;
2888 }
2889
bpf_jit_supports_kfunc_call(void)2890 bool bpf_jit_supports_kfunc_call(void)
2891 {
2892 return true;
2893 }
2894
bpf_arch_text_copy(void *dst, void *src, size_t len)2895 void *bpf_arch_text_copy(void *dst, void *src, size_t len)
2896 {
2897 if (text_poke_copy(dst, src, len) == NULL)
2898 return ERR_PTR(-EINVAL);
2899 return dst;
2900 }
2901
2902 /* Indicate the JIT backend supports mixing bpf2bpf and tailcalls. */
bpf_jit_supports_subprog_tailcalls(void)2903 bool bpf_jit_supports_subprog_tailcalls(void)
2904 {
2905 return true;
2906 }
2907
bpf_jit_free(struct bpf_prog *prog)2908 void bpf_jit_free(struct bpf_prog *prog)
2909 {
2910 if (prog->jited) {
2911 struct x64_jit_data *jit_data = prog->aux->jit_data;
2912 struct bpf_binary_header *hdr;
2913
2914 /*
2915 * If we fail the final pass of JIT (from jit_subprogs),
2916 * the program may not be finalized yet. Call finalize here
2917 * before freeing it.
2918 */
2919 if (jit_data) {
2920 bpf_jit_binary_pack_finalize(prog, jit_data->header,
2921 jit_data->rw_header);
2922 kvfree(jit_data->addrs);
2923 kfree(jit_data);
2924 }
2925 hdr = bpf_jit_binary_pack_hdr(prog);
2926 bpf_jit_binary_pack_free(hdr, NULL);
2927 WARN_ON_ONCE(!bpf_prog_kallsyms_verify_off(prog));
2928 }
2929
2930 bpf_prog_unlock_free(prog);
2931 }
2932
bpf_arch_poke_desc_update(struct bpf_jit_poke_descriptor *poke, struct bpf_prog *new, struct bpf_prog *old)2933 void bpf_arch_poke_desc_update(struct bpf_jit_poke_descriptor *poke,
2934 struct bpf_prog *new, struct bpf_prog *old)
2935 {
2936 u8 *old_addr, *new_addr, *old_bypass_addr;
2937 int ret;
2938
2939 old_bypass_addr = old ? NULL : poke->bypass_addr;
2940 old_addr = old ? (u8 *)old->bpf_func + poke->adj_off : NULL;
2941 new_addr = new ? (u8 *)new->bpf_func + poke->adj_off : NULL;
2942
2943 /*
2944 * On program loading or teardown, the program's kallsym entry
2945 * might not be in place, so we use __bpf_arch_text_poke to skip
2946 * the kallsyms check.
2947 */
2948 if (new) {
2949 ret = __bpf_arch_text_poke(poke->tailcall_target,
2950 BPF_MOD_JUMP,
2951 old_addr, new_addr);
2952 BUG_ON(ret < 0);
2953 if (!old) {
2954 ret = __bpf_arch_text_poke(poke->tailcall_bypass,
2955 BPF_MOD_JUMP,
2956 poke->bypass_addr,
2957 NULL);
2958 BUG_ON(ret < 0);
2959 }
2960 } else {
2961 ret = __bpf_arch_text_poke(poke->tailcall_bypass,
2962 BPF_MOD_JUMP,
2963 old_bypass_addr,
2964 poke->bypass_addr);
2965 BUG_ON(ret < 0);
2966 /* let other CPUs finish the execution of program
2967 * so that it will not possible to expose them
2968 * to invalid nop, stack unwind, nop state
2969 */
2970 if (!ret)
2971 synchronize_rcu();
2972 ret = __bpf_arch_text_poke(poke->tailcall_target,
2973 BPF_MOD_JUMP,
2974 old_addr, NULL);
2975 BUG_ON(ret < 0);
2976 }
2977 }
2978