1 ########################################################################
2 # Implement fast SHA-512 with AVX instructions. (x86_64)
3 #
4 # Copyright (C) 2013 Intel Corporation.
5 #
6 # Authors:
7 #     James Guilford <james.guilford@intel.com>
8 #     Kirk Yap <kirk.s.yap@intel.com>
9 #     David Cote <david.m.cote@intel.com>
10 #     Tim Chen <tim.c.chen@linux.intel.com>
11 #
12 # This software is available to you under a choice of one of two
13 # licenses.  You may choose to be licensed under the terms of the GNU
14 # General Public License (GPL) Version 2, available from the file
15 # COPYING in the main directory of this source tree, or the
16 # OpenIB.org BSD license below:
17 #
18 #     Redistribution and use in source and binary forms, with or
19 #     without modification, are permitted provided that the following
20 #     conditions are met:
21 #
22 #      - Redistributions of source code must retain the above
23 #        copyright notice, this list of conditions and the following
24 #        disclaimer.
25 #
26 #      - Redistributions in binary form must reproduce the above
27 #        copyright notice, this list of conditions and the following
28 #        disclaimer in the documentation and/or other materials
29 #        provided with the distribution.
30 #
31 # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
32 # EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
33 # MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
34 # NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
35 # BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
36 # ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
37 # CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
38 # SOFTWARE.
39 #
40 ########################################################################
41 #
42 # This code is described in an Intel White-Paper:
43 # "Fast SHA-512 Implementations on Intel Architecture Processors"
44 #
45 # To find it, surf to http://www.intel.com/p/en_US/embedded
46 # and search for that title.
47 #
48 ########################################################################
49 
50 #include <linux/linkage.h>
51 #include <linux/cfi_types.h>
52 
53 .text
54 
55 # Virtual Registers
56 # ARG1
57 digest	= %rdi
58 # ARG2
59 msg	= %rsi
60 # ARG3
61 msglen	= %rdx
62 T1	= %rcx
63 T2	= %r8
64 a_64	= %r9
65 b_64	= %r10
66 c_64	= %r11
67 d_64	= %r12
68 e_64	= %r13
69 f_64	= %r14
70 g_64	= %r15
71 h_64	= %rbx
72 tmp0	= %rax
73 
74 # Local variables (stack frame)
75 
76 # Message Schedule
77 W_SIZE = 80*8
78 # W[t] + K[t] | W[t+1] + K[t+1]
79 WK_SIZE = 2*8
80 
81 frame_W = 0
82 frame_WK = frame_W + W_SIZE
83 frame_size = frame_WK + WK_SIZE
84 
85 # Useful QWORD "arrays" for simpler memory references
86 # MSG, DIGEST, K_t, W_t are arrays
87 # WK_2(t) points to 1 of 2 qwords at frame.WK depdending on t being odd/even
88 
89 # Input message (arg1)
90 #define MSG(i)    8*i(msg)
91 
92 # Output Digest (arg2)
93 #define DIGEST(i) 8*i(digest)
94 
95 # SHA Constants (static mem)
96 #define K_t(i)    8*i+K512(%rip)
97 
98 # Message Schedule (stack frame)
99 #define W_t(i)    8*i+frame_W(%rsp)
100 
101 # W[t]+K[t] (stack frame)
102 #define WK_2(i)   8*((i%2))+frame_WK(%rsp)
103 
104 .macro RotateState
105 	# Rotate symbols a..h right
106 	TMP   = h_64
107 	h_64  = g_64
108 	g_64  = f_64
109 	f_64  = e_64
110 	e_64  = d_64
111 	d_64  = c_64
112 	c_64  = b_64
113 	b_64  = a_64
114 	a_64  = TMP
115 .endm
116 
117 .macro RORQ p1 p2
118 	# shld is faster than ror on Sandybridge
119 	shld	$(64-\p2), \p1, \p1
120 .endm
121 
122 .macro SHA512_Round rnd
123 	# Compute Round %%t
124 	mov     f_64, T1          # T1 = f
125 	mov     e_64, tmp0        # tmp = e
126 	xor     g_64, T1          # T1 = f ^ g
127 	RORQ    tmp0, 23   # 41    # tmp = e ror 23
128 	and     e_64, T1          # T1 = (f ^ g) & e
129 	xor     e_64, tmp0        # tmp = (e ror 23) ^ e
130 	xor     g_64, T1          # T1 = ((f ^ g) & e) ^ g = CH(e,f,g)
131 	idx = \rnd
132 	add     WK_2(idx), T1     # W[t] + K[t] from message scheduler
133 	RORQ    tmp0, 4   # 18    # tmp = ((e ror 23) ^ e) ror 4
134 	xor     e_64, tmp0        # tmp = (((e ror 23) ^ e) ror 4) ^ e
135 	mov     a_64, T2          # T2 = a
136 	add     h_64, T1          # T1 = CH(e,f,g) + W[t] + K[t] + h
137 	RORQ    tmp0, 14  # 14    # tmp = ((((e ror23)^e)ror4)^e)ror14 = S1(e)
138 	add     tmp0, T1          # T1 = CH(e,f,g) + W[t] + K[t] + S1(e)
139 	mov     a_64, tmp0        # tmp = a
140 	xor     c_64, T2          # T2 = a ^ c
141 	and     c_64, tmp0        # tmp = a & c
142 	and     b_64, T2          # T2 = (a ^ c) & b
143 	xor     tmp0, T2          # T2 = ((a ^ c) & b) ^ (a & c) = Maj(a,b,c)
144 	mov     a_64, tmp0        # tmp = a
145 	RORQ    tmp0, 5  # 39     # tmp = a ror 5
146 	xor     a_64, tmp0        # tmp = (a ror 5) ^ a
147 	add     T1, d_64          # e(next_state) = d + T1
148 	RORQ    tmp0, 6  # 34     # tmp = ((a ror 5) ^ a) ror 6
149 	xor     a_64, tmp0        # tmp = (((a ror 5) ^ a) ror 6) ^ a
150 	lea     (T1, T2), h_64    # a(next_state) = T1 + Maj(a,b,c)
151 	RORQ    tmp0, 28  # 28    # tmp = ((((a ror5)^a)ror6)^a)ror28 = S0(a)
152 	add     tmp0, h_64        # a(next_state) = T1 + Maj(a,b,c) S0(a)
153 	RotateState
154 .endm
155 
156 .macro SHA512_2Sched_2Round_avx rnd
157 	# Compute rounds t-2 and t-1
158 	# Compute message schedule QWORDS t and t+1
159 
160 	#   Two rounds are computed based on the values for K[t-2]+W[t-2] and
161 	# K[t-1]+W[t-1] which were previously stored at WK_2 by the message
162 	# scheduler.
163 	#   The two new schedule QWORDS are stored at [W_t(t)] and [W_t(t+1)].
164 	# They are then added to their respective SHA512 constants at
165 	# [K_t(t)] and [K_t(t+1)] and stored at dqword [WK_2(t)]
166 	#   For brievity, the comments following vectored instructions only refer to
167 	# the first of a pair of QWORDS.
168 	# Eg. XMM4=W[t-2] really means XMM4={W[t-2]|W[t-1]}
169 	#   The computation of the message schedule and the rounds are tightly
170 	# stitched to take advantage of instruction-level parallelism.
171 
172 	idx = \rnd - 2
173 	vmovdqa	W_t(idx), %xmm4		# XMM4 = W[t-2]
174 	idx = \rnd - 15
175 	vmovdqu	W_t(idx), %xmm5		# XMM5 = W[t-15]
176 	mov	f_64, T1
177 	vpsrlq	$61, %xmm4, %xmm0	# XMM0 = W[t-2]>>61
178 	mov	e_64, tmp0
179 	vpsrlq	$1, %xmm5, %xmm6	# XMM6 = W[t-15]>>1
180 	xor	g_64, T1
181 	RORQ	tmp0, 23 # 41
182 	vpsrlq	$19, %xmm4, %xmm1	# XMM1 = W[t-2]>>19
183 	and	e_64, T1
184 	xor	e_64, tmp0
185 	vpxor	%xmm1, %xmm0, %xmm0	# XMM0 = W[t-2]>>61 ^ W[t-2]>>19
186 	xor	g_64, T1
187 	idx = \rnd
188 	add	WK_2(idx), T1#
189 	vpsrlq	$8, %xmm5, %xmm7	# XMM7 = W[t-15]>>8
190 	RORQ	tmp0, 4 # 18
191 	vpsrlq	$6, %xmm4, %xmm2	# XMM2 = W[t-2]>>6
192 	xor	e_64, tmp0
193 	mov	a_64, T2
194 	add	h_64, T1
195 	vpxor	%xmm7, %xmm6, %xmm6	# XMM6 = W[t-15]>>1 ^ W[t-15]>>8
196 	RORQ	tmp0, 14 # 14
197 	add	tmp0, T1
198 	vpsrlq	$7, %xmm5, %xmm8	# XMM8 = W[t-15]>>7
199 	mov	a_64, tmp0
200 	xor	c_64, T2
201 	vpsllq	$(64-61), %xmm4, %xmm3  # XMM3 = W[t-2]<<3
202 	and	c_64, tmp0
203 	and	b_64, T2
204 	vpxor	%xmm3, %xmm2, %xmm2	# XMM2 = W[t-2]>>6 ^ W[t-2]<<3
205 	xor	tmp0, T2
206 	mov	a_64, tmp0
207 	vpsllq	$(64-1), %xmm5, %xmm9	# XMM9 = W[t-15]<<63
208 	RORQ	tmp0, 5 # 39
209 	vpxor	%xmm9, %xmm8, %xmm8	# XMM8 = W[t-15]>>7 ^ W[t-15]<<63
210 	xor	a_64, tmp0
211 	add	T1, d_64
212 	RORQ	tmp0, 6 # 34
213 	xor	a_64, tmp0
214 	vpxor	%xmm8, %xmm6, %xmm6	# XMM6 = W[t-15]>>1 ^ W[t-15]>>8 ^
215 					#  W[t-15]>>7 ^ W[t-15]<<63
216 	lea	(T1, T2), h_64
217 	RORQ	tmp0, 28 # 28
218 	vpsllq	$(64-19), %xmm4, %xmm4  # XMM4 = W[t-2]<<25
219 	add	tmp0, h_64
220 	RotateState
221 	vpxor	%xmm4, %xmm0, %xmm0     # XMM0 = W[t-2]>>61 ^ W[t-2]>>19 ^
222 					#        W[t-2]<<25
223 	mov	f_64, T1
224 	vpxor	%xmm2, %xmm0, %xmm0     # XMM0 = s1(W[t-2])
225 	mov	e_64, tmp0
226 	xor	g_64, T1
227 	idx = \rnd - 16
228 	vpaddq	W_t(idx), %xmm0, %xmm0  # XMM0 = s1(W[t-2]) + W[t-16]
229 	idx = \rnd - 7
230 	vmovdqu	W_t(idx), %xmm1		# XMM1 = W[t-7]
231 	RORQ	tmp0, 23 # 41
232 	and	e_64, T1
233 	xor	e_64, tmp0
234 	xor	g_64, T1
235 	vpsllq	$(64-8), %xmm5, %xmm5   # XMM5 = W[t-15]<<56
236 	idx = \rnd + 1
237 	add	WK_2(idx), T1
238 	vpxor	%xmm5, %xmm6, %xmm6     # XMM6 = s0(W[t-15])
239 	RORQ	tmp0, 4 # 18
240 	vpaddq	%xmm6, %xmm0, %xmm0     # XMM0 = s1(W[t-2]) + W[t-16] + s0(W[t-15])
241 	xor	e_64, tmp0
242 	vpaddq	%xmm1, %xmm0, %xmm0     # XMM0 = W[t] = s1(W[t-2]) + W[t-7] +
243 					#               s0(W[t-15]) + W[t-16]
244 	mov	a_64, T2
245 	add	h_64, T1
246 	RORQ	tmp0, 14 # 14
247 	add	tmp0, T1
248 	idx = \rnd
249 	vmovdqa	%xmm0, W_t(idx)		# Store W[t]
250 	vpaddq	K_t(idx), %xmm0, %xmm0  # Compute W[t]+K[t]
251 	vmovdqa	%xmm0, WK_2(idx)	# Store W[t]+K[t] for next rounds
252 	mov	a_64, tmp0
253 	xor	c_64, T2
254 	and	c_64, tmp0
255 	and	b_64, T2
256 	xor	tmp0, T2
257 	mov	a_64, tmp0
258 	RORQ	tmp0, 5 # 39
259 	xor	a_64, tmp0
260 	add	T1, d_64
261 	RORQ	tmp0, 6 # 34
262 	xor	a_64, tmp0
263 	lea	(T1, T2), h_64
264 	RORQ	tmp0, 28 # 28
265 	add	tmp0, h_64
266 	RotateState
267 .endm
268 
269 ########################################################################
270 # void sha512_transform_avx(sha512_state *state, const u8 *data, int blocks)
271 # Purpose: Updates the SHA512 digest stored at "state" with the message
272 # stored in "data".
273 # The size of the message pointed to by "data" must be an integer multiple
274 # of SHA512 message blocks.
275 # "blocks" is the message length in SHA512 blocks
276 ########################################################################
277 SYM_TYPED_FUNC_START(sha512_transform_avx)
278 	test msglen, msglen
279 	je .Lnowork
280 
281 	# Save GPRs
282 	push	%rbx
283 	push	%r12
284 	push	%r13
285 	push	%r14
286 	push	%r15
287 
288 	# Allocate Stack Space
289 	push	%rbp
290 	mov	%rsp, %rbp
291 	sub     $frame_size, %rsp
292 	and	$~(0x20 - 1), %rsp
293 
294 .Lupdateblock:
295 
296 	# Load state variables
297 	mov     DIGEST(0), a_64
298 	mov     DIGEST(1), b_64
299 	mov     DIGEST(2), c_64
300 	mov     DIGEST(3), d_64
301 	mov     DIGEST(4), e_64
302 	mov     DIGEST(5), f_64
303 	mov     DIGEST(6), g_64
304 	mov     DIGEST(7), h_64
305 
306 	t = 0
307 	.rept 80/2 + 1
308 	# (80 rounds) / (2 rounds/iteration) + (1 iteration)
309 	# +1 iteration because the scheduler leads hashing by 1 iteration
310 		.if t < 2
311 			# BSWAP 2 QWORDS
312 			vmovdqa  XMM_QWORD_BSWAP(%rip), %xmm1
313 			vmovdqu  MSG(t), %xmm0
314 			vpshufb  %xmm1, %xmm0, %xmm0    # BSWAP
315 			vmovdqa  %xmm0, W_t(t) # Store Scheduled Pair
316 			vpaddq   K_t(t), %xmm0, %xmm0 # Compute W[t]+K[t]
317 			vmovdqa  %xmm0, WK_2(t) # Store into WK for rounds
318 		.elseif t < 16
319 			# BSWAP 2 QWORDS# Compute 2 Rounds
320 			vmovdqu  MSG(t), %xmm0
321 			vpshufb  %xmm1, %xmm0, %xmm0    # BSWAP
322 			SHA512_Round t-2    # Round t-2
323 			vmovdqa  %xmm0, W_t(t) # Store Scheduled Pair
324 			vpaddq   K_t(t), %xmm0, %xmm0 # Compute W[t]+K[t]
325 			SHA512_Round t-1    # Round t-1
326 			vmovdqa  %xmm0, WK_2(t)# Store W[t]+K[t] into WK
327 		.elseif t < 79
328 			# Schedule 2 QWORDS# Compute 2 Rounds
329 			SHA512_2Sched_2Round_avx t
330 		.else
331 			# Compute 2 Rounds
332 			SHA512_Round t-2
333 			SHA512_Round t-1
334 		.endif
335 		t = t+2
336 	.endr
337 
338 	# Update digest
339 	add     a_64, DIGEST(0)
340 	add     b_64, DIGEST(1)
341 	add     c_64, DIGEST(2)
342 	add     d_64, DIGEST(3)
343 	add     e_64, DIGEST(4)
344 	add     f_64, DIGEST(5)
345 	add     g_64, DIGEST(6)
346 	add     h_64, DIGEST(7)
347 
348 	# Advance to next message block
349 	add     $16*8, msg
350 	dec     msglen
351 	jnz     .Lupdateblock
352 
353 	# Restore Stack Pointer
354 	mov	%rbp, %rsp
355 	pop	%rbp
356 
357 	# Restore GPRs
358 	pop	%r15
359 	pop	%r14
360 	pop	%r13
361 	pop	%r12
362 	pop	%rbx
363 
364 .Lnowork:
365 	RET
366 SYM_FUNC_END(sha512_transform_avx)
367 
368 ########################################################################
369 ### Binary Data
370 
371 .section	.rodata.cst16.XMM_QWORD_BSWAP, "aM", @progbits, 16
372 .align 16
373 # Mask for byte-swapping a couple of qwords in an XMM register using (v)pshufb.
374 XMM_QWORD_BSWAP:
375 	.octa 0x08090a0b0c0d0e0f0001020304050607
376 
377 # Mergeable 640-byte rodata section. This allows linker to merge the table
378 # with other, exactly the same 640-byte fragment of another rodata section
379 # (if such section exists).
380 .section	.rodata.cst640.K512, "aM", @progbits, 640
381 .align 64
382 # K[t] used in SHA512 hashing
383 K512:
384 	.quad 0x428a2f98d728ae22,0x7137449123ef65cd
385 	.quad 0xb5c0fbcfec4d3b2f,0xe9b5dba58189dbbc
386 	.quad 0x3956c25bf348b538,0x59f111f1b605d019
387 	.quad 0x923f82a4af194f9b,0xab1c5ed5da6d8118
388 	.quad 0xd807aa98a3030242,0x12835b0145706fbe
389 	.quad 0x243185be4ee4b28c,0x550c7dc3d5ffb4e2
390 	.quad 0x72be5d74f27b896f,0x80deb1fe3b1696b1
391 	.quad 0x9bdc06a725c71235,0xc19bf174cf692694
392 	.quad 0xe49b69c19ef14ad2,0xefbe4786384f25e3
393 	.quad 0x0fc19dc68b8cd5b5,0x240ca1cc77ac9c65
394 	.quad 0x2de92c6f592b0275,0x4a7484aa6ea6e483
395 	.quad 0x5cb0a9dcbd41fbd4,0x76f988da831153b5
396 	.quad 0x983e5152ee66dfab,0xa831c66d2db43210
397 	.quad 0xb00327c898fb213f,0xbf597fc7beef0ee4
398 	.quad 0xc6e00bf33da88fc2,0xd5a79147930aa725
399 	.quad 0x06ca6351e003826f,0x142929670a0e6e70
400 	.quad 0x27b70a8546d22ffc,0x2e1b21385c26c926
401 	.quad 0x4d2c6dfc5ac42aed,0x53380d139d95b3df
402 	.quad 0x650a73548baf63de,0x766a0abb3c77b2a8
403 	.quad 0x81c2c92e47edaee6,0x92722c851482353b
404 	.quad 0xa2bfe8a14cf10364,0xa81a664bbc423001
405 	.quad 0xc24b8b70d0f89791,0xc76c51a30654be30
406 	.quad 0xd192e819d6ef5218,0xd69906245565a910
407 	.quad 0xf40e35855771202a,0x106aa07032bbd1b8
408 	.quad 0x19a4c116b8d2d0c8,0x1e376c085141ab53
409 	.quad 0x2748774cdf8eeb99,0x34b0bcb5e19b48a8
410 	.quad 0x391c0cb3c5c95a63,0x4ed8aa4ae3418acb
411 	.quad 0x5b9cca4f7763e373,0x682e6ff3d6b2b8a3
412 	.quad 0x748f82ee5defb2fc,0x78a5636f43172f60
413 	.quad 0x84c87814a1f0ab72,0x8cc702081a6439ec
414 	.quad 0x90befffa23631e28,0xa4506cebde82bde9
415 	.quad 0xbef9a3f7b2c67915,0xc67178f2e372532b
416 	.quad 0xca273eceea26619c,0xd186b8c721c0c207
417 	.quad 0xeada7dd6cde0eb1e,0xf57d4f7fee6ed178
418 	.quad 0x06f067aa72176fba,0x0a637dc5a2c898a6
419 	.quad 0x113f9804bef90dae,0x1b710b35131c471b
420 	.quad 0x28db77f523047d84,0x32caab7b40c72493
421 	.quad 0x3c9ebe0a15c9bebc,0x431d67c49c100d4c
422 	.quad 0x4cc5d4becb3e42b6,0x597f299cfc657e2a
423 	.quad 0x5fcb6fab3ad6faec,0x6c44198c4a475817
424