1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  * Copyright 2021 Google LLC
4  */
5 /*
6  * This is an efficient implementation of POLYVAL using intel PCLMULQDQ-NI
7  * instructions. It works on 8 blocks at a time, by precomputing the first 8
8  * keys powers h^8, ..., h^1 in the POLYVAL finite field. This precomputation
9  * allows us to split finite field multiplication into two steps.
10  *
11  * In the first step, we consider h^i, m_i as normal polynomials of degree less
12  * than 128. We then compute p(x) = h^8m_0 + ... + h^1m_7 where multiplication
13  * is simply polynomial multiplication.
14  *
15  * In the second step, we compute the reduction of p(x) modulo the finite field
16  * modulus g(x) = x^128 + x^127 + x^126 + x^121 + 1.
17  *
18  * This two step process is equivalent to computing h^8m_0 + ... + h^1m_7 where
19  * multiplication is finite field multiplication. The advantage is that the
20  * two-step process  only requires 1 finite field reduction for every 8
21  * polynomial multiplications. Further parallelism is gained by interleaving the
22  * multiplications and polynomial reductions.
23  */
24 
25 #include <linux/linkage.h>
26 #include <asm/frame.h>
27 
28 #define STRIDE_BLOCKS 8
29 
30 #define GSTAR %xmm7
31 #define PL %xmm8
32 #define PH %xmm9
33 #define TMP_XMM %xmm11
34 #define LO %xmm12
35 #define HI %xmm13
36 #define MI %xmm14
37 #define SUM %xmm15
38 
39 #define KEY_POWERS %rdi
40 #define MSG %rsi
41 #define BLOCKS_LEFT %rdx
42 #define ACCUMULATOR %rcx
43 #define TMP %rax
44 
45 .section    .rodata.cst16.gstar, "aM", @progbits, 16
46 .align 16
47 
48 .Lgstar:
49 	.quad 0xc200000000000000, 0xc200000000000000
50 
51 .text
52 
53 /*
54  * Performs schoolbook1_iteration on two lists of 128-bit polynomials of length
55  * count pointed to by MSG and KEY_POWERS.
56  */
57 .macro schoolbook1 count
58 	.set i, 0
59 	.rept (\count)
60 		schoolbook1_iteration i 0
61 		.set i, (i +1)
62 	.endr
63 .endm
64 
65 /*
66  * Computes the product of two 128-bit polynomials at the memory locations
67  * specified by (MSG + 16*i) and (KEY_POWERS + 16*i) and XORs the components of
68  * the 256-bit product into LO, MI, HI.
69  *
70  * Given:
71  *   X = [X_1 : X_0]
72  *   Y = [Y_1 : Y_0]
73  *
74  * We compute:
75  *   LO += X_0 * Y_0
76  *   MI += X_0 * Y_1 + X_1 * Y_0
77  *   HI += X_1 * Y_1
78  *
79  * Later, the 256-bit result can be extracted as:
80  *   [HI_1 : HI_0 + MI_1 : LO_1 + MI_0 : LO_0]
81  * This step is done when computing the polynomial reduction for efficiency
82  * reasons.
83  *
84  * If xor_sum == 1, then also XOR the value of SUM into m_0.  This avoids an
85  * extra multiplication of SUM and h^8.
86  */
87 .macro schoolbook1_iteration i xor_sum
88 	movups (16*\i)(MSG), %xmm0
89 	.if (\i == 0 && \xor_sum == 1)
90 		pxor SUM, %xmm0
91 	.endif
92 	vpclmulqdq $0x01, (16*\i)(KEY_POWERS), %xmm0, %xmm2
93 	vpclmulqdq $0x00, (16*\i)(KEY_POWERS), %xmm0, %xmm1
94 	vpclmulqdq $0x10, (16*\i)(KEY_POWERS), %xmm0, %xmm3
95 	vpclmulqdq $0x11, (16*\i)(KEY_POWERS), %xmm0, %xmm4
96 	vpxor %xmm2, MI, MI
97 	vpxor %xmm1, LO, LO
98 	vpxor %xmm4, HI, HI
99 	vpxor %xmm3, MI, MI
100 .endm
101 
102 /*
103  * Performs the same computation as schoolbook1_iteration, except we expect the
104  * arguments to already be loaded into xmm0 and xmm1 and we set the result
105  * registers LO, MI, and HI directly rather than XOR'ing into them.
106  */
107 .macro schoolbook1_noload
108 	vpclmulqdq $0x01, %xmm0, %xmm1, MI
109 	vpclmulqdq $0x10, %xmm0, %xmm1, %xmm2
110 	vpclmulqdq $0x00, %xmm0, %xmm1, LO
111 	vpclmulqdq $0x11, %xmm0, %xmm1, HI
112 	vpxor %xmm2, MI, MI
113 .endm
114 
115 /*
116  * Computes the 256-bit polynomial represented by LO, HI, MI. Stores
117  * the result in PL, PH.
118  *   [PH : PL] = [HI_1 : HI_0 + MI_1 : LO_1 + MI_0 : LO_0]
119  */
120 .macro schoolbook2
121 	vpslldq $8, MI, PL
122 	vpsrldq $8, MI, PH
123 	pxor LO, PL
124 	pxor HI, PH
125 .endm
126 
127 /*
128  * Computes the 128-bit reduction of PH : PL. Stores the result in dest.
129  *
130  * This macro computes p(x) mod g(x) where p(x) is in montgomery form and g(x) =
131  * x^128 + x^127 + x^126 + x^121 + 1.
132  *
133  * We have a 256-bit polynomial PH : PL = P_3 : P_2 : P_1 : P_0 that is the
134  * product of two 128-bit polynomials in Montgomery form.  We need to reduce it
135  * mod g(x).  Also, since polynomials in Montgomery form have an "extra" factor
136  * of x^128, this product has two extra factors of x^128.  To get it back into
137  * Montgomery form, we need to remove one of these factors by dividing by x^128.
138  *
139  * To accomplish both of these goals, we add multiples of g(x) that cancel out
140  * the low 128 bits P_1 : P_0, leaving just the high 128 bits. Since the low
141  * bits are zero, the polynomial division by x^128 can be done by right shifting.
142  *
143  * Since the only nonzero term in the low 64 bits of g(x) is the constant term,
144  * the multiple of g(x) needed to cancel out P_0 is P_0 * g(x).  The CPU can
145  * only do 64x64 bit multiplications, so split P_0 * g(x) into x^128 * P_0 +
146  * x^64 * g*(x) * P_0 + P_0, where g*(x) is bits 64-127 of g(x).  Adding this to
147  * the original polynomial gives P_3 : P_2 + P_0 + T_1 : P_1 + T_0 : 0, where T
148  * = T_1 : T_0 = g*(x) * P_0.  Thus, bits 0-63 got "folded" into bits 64-191.
149  *
150  * Repeating this same process on the next 64 bits "folds" bits 64-127 into bits
151  * 128-255, giving the answer in bits 128-255. This time, we need to cancel P_1
152  * + T_0 in bits 64-127. The multiple of g(x) required is (P_1 + T_0) * g(x) *
153  * x^64. Adding this to our previous computation gives P_3 + P_1 + T_0 + V_1 :
154  * P_2 + P_0 + T_1 + V_0 : 0 : 0, where V = V_1 : V_0 = g*(x) * (P_1 + T_0).
155  *
156  * So our final computation is:
157  *   T = T_1 : T_0 = g*(x) * P_0
158  *   V = V_1 : V_0 = g*(x) * (P_1 + T_0)
159  *   p(x) / x^{128} mod g(x) = P_3 + P_1 + T_0 + V_1 : P_2 + P_0 + T_1 + V_0
160  *
161  * The implementation below saves a XOR instruction by computing P_1 + T_0 : P_0
162  * + T_1 and XORing into dest, rather than separately XORing P_1 : P_0 and T_0 :
163  * T_1 into dest.  This allows us to reuse P_1 + T_0 when computing V.
164  */
165 .macro montgomery_reduction dest
166 	vpclmulqdq $0x00, PL, GSTAR, TMP_XMM	# TMP_XMM = T_1 : T_0 = P_0 * g*(x)
167 	pshufd $0b01001110, TMP_XMM, TMP_XMM	# TMP_XMM = T_0 : T_1
168 	pxor PL, TMP_XMM			# TMP_XMM = P_1 + T_0 : P_0 + T_1
169 	pxor TMP_XMM, PH			# PH = P_3 + P_1 + T_0 : P_2 + P_0 + T_1
170 	pclmulqdq $0x11, GSTAR, TMP_XMM		# TMP_XMM = V_1 : V_0 = V = [(P_1 + T_0) * g*(x)]
171 	vpxor TMP_XMM, PH, \dest
172 .endm
173 
174 /*
175  * Compute schoolbook multiplication for 8 blocks
176  * m_0h^8 + ... + m_7h^1
177  *
178  * If reduce is set, also computes the montgomery reduction of the
179  * previous full_stride call and XORs with the first message block.
180  * (m_0 + REDUCE(PL, PH))h^8 + ... + m_7h^1.
181  * I.e., the first multiplication uses m_0 + REDUCE(PL, PH) instead of m_0.
182  */
183 .macro full_stride reduce
184 	pxor LO, LO
185 	pxor HI, HI
186 	pxor MI, MI
187 
188 	schoolbook1_iteration 7 0
189 	.if \reduce
190 		vpclmulqdq $0x00, PL, GSTAR, TMP_XMM
191 	.endif
192 
193 	schoolbook1_iteration 6 0
194 	.if \reduce
195 		pshufd $0b01001110, TMP_XMM, TMP_XMM
196 	.endif
197 
198 	schoolbook1_iteration 5 0
199 	.if \reduce
200 		pxor PL, TMP_XMM
201 	.endif
202 
203 	schoolbook1_iteration 4 0
204 	.if \reduce
205 		pxor TMP_XMM, PH
206 	.endif
207 
208 	schoolbook1_iteration 3 0
209 	.if \reduce
210 		pclmulqdq $0x11, GSTAR, TMP_XMM
211 	.endif
212 
213 	schoolbook1_iteration 2 0
214 	.if \reduce
215 		vpxor TMP_XMM, PH, SUM
216 	.endif
217 
218 	schoolbook1_iteration 1 0
219 
220 	schoolbook1_iteration 0 1
221 
222 	addq $(8*16), MSG
223 	schoolbook2
224 .endm
225 
226 /*
227  * Process BLOCKS_LEFT blocks, where 0 < BLOCKS_LEFT < STRIDE_BLOCKS
228  */
229 .macro partial_stride
230 	mov BLOCKS_LEFT, TMP
231 	shlq $4, TMP
232 	addq $(16*STRIDE_BLOCKS), KEY_POWERS
233 	subq TMP, KEY_POWERS
234 
235 	movups (MSG), %xmm0
236 	pxor SUM, %xmm0
237 	movaps (KEY_POWERS), %xmm1
238 	schoolbook1_noload
239 	dec BLOCKS_LEFT
240 	addq $16, MSG
241 	addq $16, KEY_POWERS
242 
243 	test $4, BLOCKS_LEFT
244 	jz .Lpartial4BlocksDone
245 	schoolbook1 4
246 	addq $(4*16), MSG
247 	addq $(4*16), KEY_POWERS
248 .Lpartial4BlocksDone:
249 	test $2, BLOCKS_LEFT
250 	jz .Lpartial2BlocksDone
251 	schoolbook1 2
252 	addq $(2*16), MSG
253 	addq $(2*16), KEY_POWERS
254 .Lpartial2BlocksDone:
255 	test $1, BLOCKS_LEFT
256 	jz .LpartialDone
257 	schoolbook1 1
258 .LpartialDone:
259 	schoolbook2
260 	montgomery_reduction SUM
261 .endm
262 
263 /*
264  * Perform montgomery multiplication in GF(2^128) and store result in op1.
265  *
266  * Computes op1*op2*x^{-128} mod x^128 + x^127 + x^126 + x^121 + 1
267  * If op1, op2 are in montgomery form, this computes the montgomery
268  * form of op1*op2.
269  *
270  * void clmul_polyval_mul(u8 *op1, const u8 *op2);
271  */
272 SYM_FUNC_START(clmul_polyval_mul)
273 	FRAME_BEGIN
274 	vmovdqa .Lgstar(%rip), GSTAR
275 	movups (%rdi), %xmm0
276 	movups (%rsi), %xmm1
277 	schoolbook1_noload
278 	schoolbook2
279 	montgomery_reduction SUM
280 	movups SUM, (%rdi)
281 	FRAME_END
282 	RET
283 SYM_FUNC_END(clmul_polyval_mul)
284 
285 /*
286  * Perform polynomial evaluation as specified by POLYVAL.  This computes:
287  *	h^n * accumulator + h^n * m_0 + ... + h^1 * m_{n-1}
288  * where n=nblocks, h is the hash key, and m_i are the message blocks.
289  *
290  * rdi - pointer to precomputed key powers h^8 ... h^1
291  * rsi - pointer to message blocks
292  * rdx - number of blocks to hash
293  * rcx - pointer to the accumulator
294  *
295  * void clmul_polyval_update(const struct polyval_tfm_ctx *keys,
296  *	const u8 *in, size_t nblocks, u8 *accumulator);
297  */
298 SYM_FUNC_START(clmul_polyval_update)
299 	FRAME_BEGIN
300 	vmovdqa .Lgstar(%rip), GSTAR
301 	movups (ACCUMULATOR), SUM
302 	subq $STRIDE_BLOCKS, BLOCKS_LEFT
303 	js .LstrideLoopExit
304 	full_stride 0
305 	subq $STRIDE_BLOCKS, BLOCKS_LEFT
306 	js .LstrideLoopExitReduce
307 .LstrideLoop:
308 	full_stride 1
309 	subq $STRIDE_BLOCKS, BLOCKS_LEFT
310 	jns .LstrideLoop
311 .LstrideLoopExitReduce:
312 	montgomery_reduction SUM
313 .LstrideLoopExit:
314 	add $STRIDE_BLOCKS, BLOCKS_LEFT
315 	jz .LskipPartial
316 	partial_stride
317 .LskipPartial:
318 	movups SUM, (ACCUMULATOR)
319 	FRAME_END
320 	RET
321 SYM_FUNC_END(clmul_polyval_update)
322