1 ########################################################################
2 # Implement fast CRC-T10DIF computation with SSE and PCLMULQDQ instructions
3 #
4 # Copyright (c) 2013, Intel Corporation
5 #
6 # Authors:
7 #     Erdinc Ozturk <erdinc.ozturk@intel.com>
8 #     Vinodh Gopal <vinodh.gopal@intel.com>
9 #     James Guilford <james.guilford@intel.com>
10 #     Tim Chen <tim.c.chen@linux.intel.com>
11 #
12 # This software is available to you under a choice of one of two
13 # licenses.  You may choose to be licensed under the terms of the GNU
14 # General Public License (GPL) Version 2, available from the file
15 # COPYING in the main directory of this source tree, or the
16 # OpenIB.org BSD license below:
17 #
18 # Redistribution and use in source and binary forms, with or without
19 # modification, are permitted provided that the following conditions are
20 # met:
21 #
22 # * Redistributions of source code must retain the above copyright
23 #   notice, this list of conditions and the following disclaimer.
24 #
25 # * Redistributions in binary form must reproduce the above copyright
26 #   notice, this list of conditions and the following disclaimer in the
27 #   documentation and/or other materials provided with the
28 #   distribution.
29 #
30 # * Neither the name of the Intel Corporation nor the names of its
31 #   contributors may be used to endorse or promote products derived from
32 #   this software without specific prior written permission.
33 #
34 #
35 # THIS SOFTWARE IS PROVIDED BY INTEL CORPORATION ""AS IS"" AND ANY
36 # EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
37 # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
38 # PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL CORPORATION OR
39 # CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
40 # EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
41 # PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
42 # PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
43 # LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
44 # NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
45 # SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
46 #
47 #       Reference paper titled "Fast CRC Computation for Generic
48 #	Polynomials Using PCLMULQDQ Instruction"
49 #       URL: http://www.intel.com/content/dam/www/public/us/en/documents
50 #  /white-papers/fast-crc-computation-generic-polynomials-pclmulqdq-paper.pdf
51 #
52 
53 #include <linux/linkage.h>
54 
55 .text
56 
57 #define		init_crc	%edi
58 #define		buf		%rsi
59 #define		len		%rdx
60 
61 #define		FOLD_CONSTS	%xmm10
62 #define		BSWAP_MASK	%xmm11
63 
64 # Fold reg1, reg2 into the next 32 data bytes, storing the result back into
65 # reg1, reg2.
66 .macro	fold_32_bytes	offset, reg1, reg2
67 	movdqu	\offset(buf), %xmm9
68 	movdqu	\offset+16(buf), %xmm12
69 	pshufb	BSWAP_MASK, %xmm9
70 	pshufb	BSWAP_MASK, %xmm12
71 	movdqa	\reg1, %xmm8
72 	movdqa	\reg2, %xmm13
73 	pclmulqdq	$0x00, FOLD_CONSTS, \reg1
74 	pclmulqdq	$0x11, FOLD_CONSTS, %xmm8
75 	pclmulqdq	$0x00, FOLD_CONSTS, \reg2
76 	pclmulqdq	$0x11, FOLD_CONSTS, %xmm13
77 	pxor	%xmm9 , \reg1
78 	xorps	%xmm8 , \reg1
79 	pxor	%xmm12, \reg2
80 	xorps	%xmm13, \reg2
81 .endm
82 
83 # Fold src_reg into dst_reg.
84 .macro	fold_16_bytes	src_reg, dst_reg
85 	movdqa	\src_reg, %xmm8
86 	pclmulqdq	$0x11, FOLD_CONSTS, \src_reg
87 	pclmulqdq	$0x00, FOLD_CONSTS, %xmm8
88 	pxor	%xmm8, \dst_reg
89 	xorps	\src_reg, \dst_reg
90 .endm
91 
92 #
93 # u16 crc_t10dif_pcl(u16 init_crc, const *u8 buf, size_t len);
94 #
95 # Assumes len >= 16.
96 #
97 SYM_FUNC_START(crc_t10dif_pcl)
98 
99 	movdqa	.Lbswap_mask(%rip), BSWAP_MASK
100 
101 	# For sizes less than 256 bytes, we can't fold 128 bytes at a time.
102 	cmp	$256, len
103 	jl	.Lless_than_256_bytes
104 
105 	# Load the first 128 data bytes.  Byte swapping is necessary to make the
106 	# bit order match the polynomial coefficient order.
107 	movdqu	16*0(buf), %xmm0
108 	movdqu	16*1(buf), %xmm1
109 	movdqu	16*2(buf), %xmm2
110 	movdqu	16*3(buf), %xmm3
111 	movdqu	16*4(buf), %xmm4
112 	movdqu	16*5(buf), %xmm5
113 	movdqu	16*6(buf), %xmm6
114 	movdqu	16*7(buf), %xmm7
115 	add	$128, buf
116 	pshufb	BSWAP_MASK, %xmm0
117 	pshufb	BSWAP_MASK, %xmm1
118 	pshufb	BSWAP_MASK, %xmm2
119 	pshufb	BSWAP_MASK, %xmm3
120 	pshufb	BSWAP_MASK, %xmm4
121 	pshufb	BSWAP_MASK, %xmm5
122 	pshufb	BSWAP_MASK, %xmm6
123 	pshufb	BSWAP_MASK, %xmm7
124 
125 	# XOR the first 16 data *bits* with the initial CRC value.
126 	pxor	%xmm8, %xmm8
127 	pinsrw	$7, init_crc, %xmm8
128 	pxor	%xmm8, %xmm0
129 
130 	movdqa	.Lfold_across_128_bytes_consts(%rip), FOLD_CONSTS
131 
132 	# Subtract 128 for the 128 data bytes just consumed.  Subtract another
133 	# 128 to simplify the termination condition of the following loop.
134 	sub	$256, len
135 
136 	# While >= 128 data bytes remain (not counting xmm0-7), fold the 128
137 	# bytes xmm0-7 into them, storing the result back into xmm0-7.
138 .Lfold_128_bytes_loop:
139 	fold_32_bytes	0, %xmm0, %xmm1
140 	fold_32_bytes	32, %xmm2, %xmm3
141 	fold_32_bytes	64, %xmm4, %xmm5
142 	fold_32_bytes	96, %xmm6, %xmm7
143 	add	$128, buf
144 	sub	$128, len
145 	jge	.Lfold_128_bytes_loop
146 
147 	# Now fold the 112 bytes in xmm0-xmm6 into the 16 bytes in xmm7.
148 
149 	# Fold across 64 bytes.
150 	movdqa	.Lfold_across_64_bytes_consts(%rip), FOLD_CONSTS
151 	fold_16_bytes	%xmm0, %xmm4
152 	fold_16_bytes	%xmm1, %xmm5
153 	fold_16_bytes	%xmm2, %xmm6
154 	fold_16_bytes	%xmm3, %xmm7
155 	# Fold across 32 bytes.
156 	movdqa	.Lfold_across_32_bytes_consts(%rip), FOLD_CONSTS
157 	fold_16_bytes	%xmm4, %xmm6
158 	fold_16_bytes	%xmm5, %xmm7
159 	# Fold across 16 bytes.
160 	movdqa	.Lfold_across_16_bytes_consts(%rip), FOLD_CONSTS
161 	fold_16_bytes	%xmm6, %xmm7
162 
163 	# Add 128 to get the correct number of data bytes remaining in 0...127
164 	# (not counting xmm7), following the previous extra subtraction by 128.
165 	# Then subtract 16 to simplify the termination condition of the
166 	# following loop.
167 	add	$128-16, len
168 
169 	# While >= 16 data bytes remain (not counting xmm7), fold the 16 bytes
170 	# xmm7 into them, storing the result back into xmm7.
171 	jl	.Lfold_16_bytes_loop_done
172 .Lfold_16_bytes_loop:
173 	movdqa	%xmm7, %xmm8
174 	pclmulqdq	$0x11, FOLD_CONSTS, %xmm7
175 	pclmulqdq	$0x00, FOLD_CONSTS, %xmm8
176 	pxor	%xmm8, %xmm7
177 	movdqu	(buf), %xmm0
178 	pshufb	BSWAP_MASK, %xmm0
179 	pxor	%xmm0 , %xmm7
180 	add	$16, buf
181 	sub	$16, len
182 	jge	.Lfold_16_bytes_loop
183 
184 .Lfold_16_bytes_loop_done:
185 	# Add 16 to get the correct number of data bytes remaining in 0...15
186 	# (not counting xmm7), following the previous extra subtraction by 16.
187 	add	$16, len
188 	je	.Lreduce_final_16_bytes
189 
190 .Lhandle_partial_segment:
191 	# Reduce the last '16 + len' bytes where 1 <= len <= 15 and the first 16
192 	# bytes are in xmm7 and the rest are the remaining data in 'buf'.  To do
193 	# this without needing a fold constant for each possible 'len', redivide
194 	# the bytes into a first chunk of 'len' bytes and a second chunk of 16
195 	# bytes, then fold the first chunk into the second.
196 
197 	movdqa	%xmm7, %xmm2
198 
199 	# xmm1 = last 16 original data bytes
200 	movdqu	-16(buf, len), %xmm1
201 	pshufb	BSWAP_MASK, %xmm1
202 
203 	# xmm2 = high order part of second chunk: xmm7 left-shifted by 'len' bytes.
204 	lea	.Lbyteshift_table+16(%rip), %rax
205 	sub	len, %rax
206 	movdqu	(%rax), %xmm0
207 	pshufb	%xmm0, %xmm2
208 
209 	# xmm7 = first chunk: xmm7 right-shifted by '16-len' bytes.
210 	pxor	.Lmask1(%rip), %xmm0
211 	pshufb	%xmm0, %xmm7
212 
213 	# xmm1 = second chunk: 'len' bytes from xmm1 (low-order bytes),
214 	# then '16-len' bytes from xmm2 (high-order bytes).
215 	pblendvb	%xmm2, %xmm1	#xmm0 is implicit
216 
217 	# Fold the first chunk into the second chunk, storing the result in xmm7.
218 	movdqa	%xmm7, %xmm8
219 	pclmulqdq	$0x11, FOLD_CONSTS, %xmm7
220 	pclmulqdq	$0x00, FOLD_CONSTS, %xmm8
221 	pxor	%xmm8, %xmm7
222 	pxor	%xmm1, %xmm7
223 
224 .Lreduce_final_16_bytes:
225 	# Reduce the 128-bit value M(x), stored in xmm7, to the final 16-bit CRC
226 
227 	# Load 'x^48 * (x^48 mod G(x))' and 'x^48 * (x^80 mod G(x))'.
228 	movdqa	.Lfinal_fold_consts(%rip), FOLD_CONSTS
229 
230 	# Fold the high 64 bits into the low 64 bits, while also multiplying by
231 	# x^64.  This produces a 128-bit value congruent to x^64 * M(x) and
232 	# whose low 48 bits are 0.
233 	movdqa	%xmm7, %xmm0
234 	pclmulqdq	$0x11, FOLD_CONSTS, %xmm7 # high bits * x^48 * (x^80 mod G(x))
235 	pslldq	$8, %xmm0
236 	pxor	%xmm0, %xmm7			  # + low bits * x^64
237 
238 	# Fold the high 32 bits into the low 96 bits.  This produces a 96-bit
239 	# value congruent to x^64 * M(x) and whose low 48 bits are 0.
240 	movdqa	%xmm7, %xmm0
241 	pand	.Lmask2(%rip), %xmm0		  # zero high 32 bits
242 	psrldq	$12, %xmm7			  # extract high 32 bits
243 	pclmulqdq	$0x00, FOLD_CONSTS, %xmm7 # high 32 bits * x^48 * (x^48 mod G(x))
244 	pxor	%xmm0, %xmm7			  # + low bits
245 
246 	# Load G(x) and floor(x^48 / G(x)).
247 	movdqa	.Lbarrett_reduction_consts(%rip), FOLD_CONSTS
248 
249 	# Use Barrett reduction to compute the final CRC value.
250 	movdqa	%xmm7, %xmm0
251 	pclmulqdq	$0x11, FOLD_CONSTS, %xmm7 # high 32 bits * floor(x^48 / G(x))
252 	psrlq	$32, %xmm7			  # /= x^32
253 	pclmulqdq	$0x00, FOLD_CONSTS, %xmm7 # *= G(x)
254 	psrlq	$48, %xmm0
255 	pxor	%xmm7, %xmm0		     # + low 16 nonzero bits
256 	# Final CRC value (x^16 * M(x)) mod G(x) is in low 16 bits of xmm0.
257 
258 	pextrw	$0, %xmm0, %eax
259 	RET
260 
261 .align 16
262 .Lless_than_256_bytes:
263 	# Checksumming a buffer of length 16...255 bytes
264 
265 	# Load the first 16 data bytes.
266 	movdqu	(buf), %xmm7
267 	pshufb	BSWAP_MASK, %xmm7
268 	add	$16, buf
269 
270 	# XOR the first 16 data *bits* with the initial CRC value.
271 	pxor	%xmm0, %xmm0
272 	pinsrw	$7, init_crc, %xmm0
273 	pxor	%xmm0, %xmm7
274 
275 	movdqa	.Lfold_across_16_bytes_consts(%rip), FOLD_CONSTS
276 	cmp	$16, len
277 	je	.Lreduce_final_16_bytes		# len == 16
278 	sub	$32, len
279 	jge	.Lfold_16_bytes_loop		# 32 <= len <= 255
280 	add	$16, len
281 	jmp	.Lhandle_partial_segment	# 17 <= len <= 31
282 SYM_FUNC_END(crc_t10dif_pcl)
283 
284 .section	.rodata, "a", @progbits
285 .align 16
286 
287 # Fold constants precomputed from the polynomial 0x18bb7
288 # G(x) = x^16 + x^15 + x^11 + x^9 + x^8 + x^7 + x^5 + x^4 + x^2 + x^1 + x^0
289 .Lfold_across_128_bytes_consts:
290 	.quad		0x0000000000006123	# x^(8*128)	mod G(x)
291 	.quad		0x0000000000002295	# x^(8*128+64)	mod G(x)
292 .Lfold_across_64_bytes_consts:
293 	.quad		0x0000000000001069	# x^(4*128)	mod G(x)
294 	.quad		0x000000000000dd31	# x^(4*128+64)	mod G(x)
295 .Lfold_across_32_bytes_consts:
296 	.quad		0x000000000000857d	# x^(2*128)	mod G(x)
297 	.quad		0x0000000000007acc	# x^(2*128+64)	mod G(x)
298 .Lfold_across_16_bytes_consts:
299 	.quad		0x000000000000a010	# x^(1*128)	mod G(x)
300 	.quad		0x0000000000001faa	# x^(1*128+64)	mod G(x)
301 .Lfinal_fold_consts:
302 	.quad		0x1368000000000000	# x^48 * (x^48 mod G(x))
303 	.quad		0x2d56000000000000	# x^48 * (x^80 mod G(x))
304 .Lbarrett_reduction_consts:
305 	.quad		0x0000000000018bb7	# G(x)
306 	.quad		0x00000001f65a57f8	# floor(x^48 / G(x))
307 
308 .section	.rodata.cst16.mask1, "aM", @progbits, 16
309 .align 16
310 .Lmask1:
311 	.octa	0x80808080808080808080808080808080
312 
313 .section	.rodata.cst16.mask2, "aM", @progbits, 16
314 .align 16
315 .Lmask2:
316 	.octa	0x00000000FFFFFFFFFFFFFFFFFFFFFFFF
317 
318 .section	.rodata.cst16.bswap_mask, "aM", @progbits, 16
319 .align 16
320 .Lbswap_mask:
321 	.octa	0x000102030405060708090A0B0C0D0E0F
322 
323 .section	.rodata.cst32.byteshift_table, "aM", @progbits, 32
324 .align 16
325 # For 1 <= len <= 15, the 16-byte vector beginning at &byteshift_table[16 - len]
326 # is the index vector to shift left by 'len' bytes, and is also {0x80, ...,
327 # 0x80} XOR the index vector to shift right by '16 - len' bytes.
328 .Lbyteshift_table:
329 	.byte		 0x0, 0x81, 0x82, 0x83, 0x84, 0x85, 0x86, 0x87
330 	.byte		0x88, 0x89, 0x8a, 0x8b, 0x8c, 0x8d, 0x8e, 0x8f
331 	.byte		 0x0,  0x1,  0x2,  0x3,  0x4,  0x5,  0x6,  0x7
332 	.byte		 0x8,  0x9,  0xa,  0xb,  0xc,  0xd,  0xe , 0x0
333