1 /*
2  * x86_64/AVX/AES-NI assembler implementation of Camellia
3  *
4  * Copyright © 2012-2013 Jussi Kivilinna <jussi.kivilinna@iki.fi>
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  *
11  */
12 
13 /*
14  * Version licensed under 2-clause BSD License is available at:
15  *	http://koti.mbnet.fi/axh/crypto/camellia-BSD-1.2.0-aesni1.tar.xz
16  */
17 
18 #include <linux/linkage.h>
19 #include <asm/frame.h>
20 
21 #define CAMELLIA_TABLE_BYTE_LEN 272
22 
23 /* struct camellia_ctx: */
24 #define key_table 0
25 #define key_length CAMELLIA_TABLE_BYTE_LEN
26 
27 /* register macros */
28 #define CTX %rdi
29 
30 /**********************************************************************
31   16-way camellia
32  **********************************************************************/
33 #define filter_8bit(x, lo_t, hi_t, mask4bit, tmp0) \
34 	vpand x, mask4bit, tmp0; \
35 	vpandn x, mask4bit, x; \
36 	vpsrld $4, x, x; \
37 	\
38 	vpshufb tmp0, lo_t, tmp0; \
39 	vpshufb x, hi_t, x; \
40 	vpxor tmp0, x, x;
41 
42 /*
43  * IN:
44  *   x0..x7: byte-sliced AB state
45  *   mem_cd: register pointer storing CD state
46  *   key: index for key material
47  * OUT:
48  *   x0..x7: new byte-sliced CD state
49  */
50 #define roundsm16(x0, x1, x2, x3, x4, x5, x6, x7, t0, t1, t2, t3, t4, t5, t6, \
51 		  t7, mem_cd, key) \
52 	/* \
53 	 * S-function with AES subbytes \
54 	 */ \
55 	vmovdqa .Linv_shift_row(%rip), t4; \
56 	vbroadcastss .L0f0f0f0f(%rip), t7; \
57 	vmovdqa .Lpre_tf_lo_s1(%rip), t0; \
58 	vmovdqa .Lpre_tf_hi_s1(%rip), t1; \
59 	\
60 	/* AES inverse shift rows */ \
61 	vpshufb t4, x0, x0; \
62 	vpshufb t4, x7, x7; \
63 	vpshufb t4, x1, x1; \
64 	vpshufb t4, x4, x4; \
65 	vpshufb t4, x2, x2; \
66 	vpshufb t4, x5, x5; \
67 	vpshufb t4, x3, x3; \
68 	vpshufb t4, x6, x6; \
69 	\
70 	/* prefilter sboxes 1, 2 and 3 */ \
71 	vmovdqa .Lpre_tf_lo_s4(%rip), t2; \
72 	vmovdqa .Lpre_tf_hi_s4(%rip), t3; \
73 	filter_8bit(x0, t0, t1, t7, t6); \
74 	filter_8bit(x7, t0, t1, t7, t6); \
75 	filter_8bit(x1, t0, t1, t7, t6); \
76 	filter_8bit(x4, t0, t1, t7, t6); \
77 	filter_8bit(x2, t0, t1, t7, t6); \
78 	filter_8bit(x5, t0, t1, t7, t6); \
79 	\
80 	/* prefilter sbox 4 */ \
81 	vpxor t4, t4, t4; \
82 	filter_8bit(x3, t2, t3, t7, t6); \
83 	filter_8bit(x6, t2, t3, t7, t6); \
84 	\
85 	/* AES subbytes + AES shift rows */ \
86 	vmovdqa .Lpost_tf_lo_s1(%rip), t0; \
87 	vmovdqa .Lpost_tf_hi_s1(%rip), t1; \
88 	vaesenclast t4, x0, x0; \
89 	vaesenclast t4, x7, x7; \
90 	vaesenclast t4, x1, x1; \
91 	vaesenclast t4, x4, x4; \
92 	vaesenclast t4, x2, x2; \
93 	vaesenclast t4, x5, x5; \
94 	vaesenclast t4, x3, x3; \
95 	vaesenclast t4, x6, x6; \
96 	\
97 	/* postfilter sboxes 1 and 4 */ \
98 	vmovdqa .Lpost_tf_lo_s3(%rip), t2; \
99 	vmovdqa .Lpost_tf_hi_s3(%rip), t3; \
100 	filter_8bit(x0, t0, t1, t7, t6); \
101 	filter_8bit(x7, t0, t1, t7, t6); \
102 	filter_8bit(x3, t0, t1, t7, t6); \
103 	filter_8bit(x6, t0, t1, t7, t6); \
104 	\
105 	/* postfilter sbox 3 */ \
106 	vmovdqa .Lpost_tf_lo_s2(%rip), t4; \
107 	vmovdqa .Lpost_tf_hi_s2(%rip), t5; \
108 	filter_8bit(x2, t2, t3, t7, t6); \
109 	filter_8bit(x5, t2, t3, t7, t6); \
110 	\
111 	vpxor t6, t6, t6; \
112 	vmovq key, t0; \
113 	\
114 	/* postfilter sbox 2 */ \
115 	filter_8bit(x1, t4, t5, t7, t2); \
116 	filter_8bit(x4, t4, t5, t7, t2); \
117 	\
118 	vpsrldq $5, t0, t5; \
119 	vpsrldq $1, t0, t1; \
120 	vpsrldq $2, t0, t2; \
121 	vpsrldq $3, t0, t3; \
122 	vpsrldq $4, t0, t4; \
123 	vpshufb t6, t0, t0; \
124 	vpshufb t6, t1, t1; \
125 	vpshufb t6, t2, t2; \
126 	vpshufb t6, t3, t3; \
127 	vpshufb t6, t4, t4; \
128 	vpsrldq $2, t5, t7; \
129 	vpshufb t6, t7, t7; \
130 	\
131 	/* \
132 	 * P-function \
133 	 */ \
134 	vpxor x5, x0, x0; \
135 	vpxor x6, x1, x1; \
136 	vpxor x7, x2, x2; \
137 	vpxor x4, x3, x3; \
138 	\
139 	vpxor x2, x4, x4; \
140 	vpxor x3, x5, x5; \
141 	vpxor x0, x6, x6; \
142 	vpxor x1, x7, x7; \
143 	\
144 	vpxor x7, x0, x0; \
145 	vpxor x4, x1, x1; \
146 	vpxor x5, x2, x2; \
147 	vpxor x6, x3, x3; \
148 	\
149 	vpxor x3, x4, x4; \
150 	vpxor x0, x5, x5; \
151 	vpxor x1, x6, x6; \
152 	vpxor x2, x7, x7; /* note: high and low parts swapped */ \
153 	\
154 	/* \
155 	 * Add key material and result to CD (x becomes new CD) \
156 	 */ \
157 	\
158 	vpxor t3, x4, x4; \
159 	vpxor 0 * 16(mem_cd), x4, x4; \
160 	\
161 	vpxor t2, x5, x5; \
162 	vpxor 1 * 16(mem_cd), x5, x5; \
163 	\
164 	vpsrldq $1, t5, t3; \
165 	vpshufb t6, t5, t5; \
166 	vpshufb t6, t3, t6; \
167 	\
168 	vpxor t1, x6, x6; \
169 	vpxor 2 * 16(mem_cd), x6, x6; \
170 	\
171 	vpxor t0, x7, x7; \
172 	vpxor 3 * 16(mem_cd), x7, x7; \
173 	\
174 	vpxor t7, x0, x0; \
175 	vpxor 4 * 16(mem_cd), x0, x0; \
176 	\
177 	vpxor t6, x1, x1; \
178 	vpxor 5 * 16(mem_cd), x1, x1; \
179 	\
180 	vpxor t5, x2, x2; \
181 	vpxor 6 * 16(mem_cd), x2, x2; \
182 	\
183 	vpxor t4, x3, x3; \
184 	vpxor 7 * 16(mem_cd), x3, x3;
185 
186 /*
187  * Size optimization... with inlined roundsm16, binary would be over 5 times
188  * larger and would only be 0.5% faster (on sandy-bridge).
189  */
190 .align 8
191 SYM_FUNC_START_LOCAL(roundsm16_x0_x1_x2_x3_x4_x5_x6_x7_y0_y1_y2_y3_y4_y5_y6_y7_cd)
192 	roundsm16(%xmm0, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7,
193 		  %xmm8, %xmm9, %xmm10, %xmm11, %xmm12, %xmm13, %xmm14, %xmm15,
194 		  %rcx, (%r9));
195 	RET;
196 SYM_FUNC_END(roundsm16_x0_x1_x2_x3_x4_x5_x6_x7_y0_y1_y2_y3_y4_y5_y6_y7_cd)
197 
198 .align 8
199 SYM_FUNC_START_LOCAL(roundsm16_x4_x5_x6_x7_x0_x1_x2_x3_y4_y5_y6_y7_y0_y1_y2_y3_ab)
200 	roundsm16(%xmm4, %xmm5, %xmm6, %xmm7, %xmm0, %xmm1, %xmm2, %xmm3,
201 		  %xmm12, %xmm13, %xmm14, %xmm15, %xmm8, %xmm9, %xmm10, %xmm11,
202 		  %rax, (%r9));
203 	RET;
204 SYM_FUNC_END(roundsm16_x4_x5_x6_x7_x0_x1_x2_x3_y4_y5_y6_y7_y0_y1_y2_y3_ab)
205 
206 /*
207  * IN/OUT:
208  *  x0..x7: byte-sliced AB state preloaded
209  *  mem_ab: byte-sliced AB state in memory
210  *  mem_cb: byte-sliced CD state in memory
211  */
212 #define two_roundsm16(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \
213 		      y6, y7, mem_ab, mem_cd, i, dir, store_ab) \
214 	leaq (key_table + (i) * 8)(CTX), %r9; \
215 	call roundsm16_x0_x1_x2_x3_x4_x5_x6_x7_y0_y1_y2_y3_y4_y5_y6_y7_cd; \
216 	\
217 	vmovdqu x4, 0 * 16(mem_cd); \
218 	vmovdqu x5, 1 * 16(mem_cd); \
219 	vmovdqu x6, 2 * 16(mem_cd); \
220 	vmovdqu x7, 3 * 16(mem_cd); \
221 	vmovdqu x0, 4 * 16(mem_cd); \
222 	vmovdqu x1, 5 * 16(mem_cd); \
223 	vmovdqu x2, 6 * 16(mem_cd); \
224 	vmovdqu x3, 7 * 16(mem_cd); \
225 	\
226 	leaq (key_table + ((i) + (dir)) * 8)(CTX), %r9; \
227 	call roundsm16_x4_x5_x6_x7_x0_x1_x2_x3_y4_y5_y6_y7_y0_y1_y2_y3_ab; \
228 	\
229 	store_ab(x0, x1, x2, x3, x4, x5, x6, x7, mem_ab);
230 
231 #define dummy_store(x0, x1, x2, x3, x4, x5, x6, x7, mem_ab) /* do nothing */
232 
233 #define store_ab_state(x0, x1, x2, x3, x4, x5, x6, x7, mem_ab) \
234 	/* Store new AB state */ \
235 	vmovdqu x0, 0 * 16(mem_ab); \
236 	vmovdqu x1, 1 * 16(mem_ab); \
237 	vmovdqu x2, 2 * 16(mem_ab); \
238 	vmovdqu x3, 3 * 16(mem_ab); \
239 	vmovdqu x4, 4 * 16(mem_ab); \
240 	vmovdqu x5, 5 * 16(mem_ab); \
241 	vmovdqu x6, 6 * 16(mem_ab); \
242 	vmovdqu x7, 7 * 16(mem_ab);
243 
244 #define enc_rounds16(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \
245 		      y6, y7, mem_ab, mem_cd, i) \
246 	two_roundsm16(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \
247 		      y6, y7, mem_ab, mem_cd, (i) + 2, 1, store_ab_state); \
248 	two_roundsm16(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \
249 		      y6, y7, mem_ab, mem_cd, (i) + 4, 1, store_ab_state); \
250 	two_roundsm16(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \
251 		      y6, y7, mem_ab, mem_cd, (i) + 6, 1, dummy_store);
252 
253 #define dec_rounds16(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \
254 		      y6, y7, mem_ab, mem_cd, i) \
255 	two_roundsm16(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \
256 		      y6, y7, mem_ab, mem_cd, (i) + 7, -1, store_ab_state); \
257 	two_roundsm16(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \
258 		      y6, y7, mem_ab, mem_cd, (i) + 5, -1, store_ab_state); \
259 	two_roundsm16(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \
260 		      y6, y7, mem_ab, mem_cd, (i) + 3, -1, dummy_store);
261 
262 /*
263  * IN:
264  *  v0..3: byte-sliced 32-bit integers
265  * OUT:
266  *  v0..3: (IN <<< 1)
267  */
268 #define rol32_1_16(v0, v1, v2, v3, t0, t1, t2, zero) \
269 	vpcmpgtb v0, zero, t0; \
270 	vpaddb v0, v0, v0; \
271 	vpabsb t0, t0; \
272 	\
273 	vpcmpgtb v1, zero, t1; \
274 	vpaddb v1, v1, v1; \
275 	vpabsb t1, t1; \
276 	\
277 	vpcmpgtb v2, zero, t2; \
278 	vpaddb v2, v2, v2; \
279 	vpabsb t2, t2; \
280 	\
281 	vpor t0, v1, v1; \
282 	\
283 	vpcmpgtb v3, zero, t0; \
284 	vpaddb v3, v3, v3; \
285 	vpabsb t0, t0; \
286 	\
287 	vpor t1, v2, v2; \
288 	vpor t2, v3, v3; \
289 	vpor t0, v0, v0;
290 
291 /*
292  * IN:
293  *   r: byte-sliced AB state in memory
294  *   l: byte-sliced CD state in memory
295  * OUT:
296  *   x0..x7: new byte-sliced CD state
297  */
298 #define fls16(l, l0, l1, l2, l3, l4, l5, l6, l7, r, t0, t1, t2, t3, tt0, \
299 	      tt1, tt2, tt3, kll, klr, krl, krr) \
300 	/* \
301 	 * t0 = kll; \
302 	 * t0 &= ll; \
303 	 * lr ^= rol32(t0, 1); \
304 	 */ \
305 	vpxor tt0, tt0, tt0; \
306 	vmovd kll, t0; \
307 	vpshufb tt0, t0, t3; \
308 	vpsrldq $1, t0, t0; \
309 	vpshufb tt0, t0, t2; \
310 	vpsrldq $1, t0, t0; \
311 	vpshufb tt0, t0, t1; \
312 	vpsrldq $1, t0, t0; \
313 	vpshufb tt0, t0, t0; \
314 	\
315 	vpand l0, t0, t0; \
316 	vpand l1, t1, t1; \
317 	vpand l2, t2, t2; \
318 	vpand l3, t3, t3; \
319 	\
320 	rol32_1_16(t3, t2, t1, t0, tt1, tt2, tt3, tt0); \
321 	\
322 	vpxor l4, t0, l4; \
323 	vmovdqu l4, 4 * 16(l); \
324 	vpxor l5, t1, l5; \
325 	vmovdqu l5, 5 * 16(l); \
326 	vpxor l6, t2, l6; \
327 	vmovdqu l6, 6 * 16(l); \
328 	vpxor l7, t3, l7; \
329 	vmovdqu l7, 7 * 16(l); \
330 	\
331 	/* \
332 	 * t2 = krr; \
333 	 * t2 |= rr; \
334 	 * rl ^= t2; \
335 	 */ \
336 	\
337 	vmovd krr, t0; \
338 	vpshufb tt0, t0, t3; \
339 	vpsrldq $1, t0, t0; \
340 	vpshufb tt0, t0, t2; \
341 	vpsrldq $1, t0, t0; \
342 	vpshufb tt0, t0, t1; \
343 	vpsrldq $1, t0, t0; \
344 	vpshufb tt0, t0, t0; \
345 	\
346 	vpor 4 * 16(r), t0, t0; \
347 	vpor 5 * 16(r), t1, t1; \
348 	vpor 6 * 16(r), t2, t2; \
349 	vpor 7 * 16(r), t3, t3; \
350 	\
351 	vpxor 0 * 16(r), t0, t0; \
352 	vpxor 1 * 16(r), t1, t1; \
353 	vpxor 2 * 16(r), t2, t2; \
354 	vpxor 3 * 16(r), t3, t3; \
355 	vmovdqu t0, 0 * 16(r); \
356 	vmovdqu t1, 1 * 16(r); \
357 	vmovdqu t2, 2 * 16(r); \
358 	vmovdqu t3, 3 * 16(r); \
359 	\
360 	/* \
361 	 * t2 = krl; \
362 	 * t2 &= rl; \
363 	 * rr ^= rol32(t2, 1); \
364 	 */ \
365 	vmovd krl, t0; \
366 	vpshufb tt0, t0, t3; \
367 	vpsrldq $1, t0, t0; \
368 	vpshufb tt0, t0, t2; \
369 	vpsrldq $1, t0, t0; \
370 	vpshufb tt0, t0, t1; \
371 	vpsrldq $1, t0, t0; \
372 	vpshufb tt0, t0, t0; \
373 	\
374 	vpand 0 * 16(r), t0, t0; \
375 	vpand 1 * 16(r), t1, t1; \
376 	vpand 2 * 16(r), t2, t2; \
377 	vpand 3 * 16(r), t3, t3; \
378 	\
379 	rol32_1_16(t3, t2, t1, t0, tt1, tt2, tt3, tt0); \
380 	\
381 	vpxor 4 * 16(r), t0, t0; \
382 	vpxor 5 * 16(r), t1, t1; \
383 	vpxor 6 * 16(r), t2, t2; \
384 	vpxor 7 * 16(r), t3, t3; \
385 	vmovdqu t0, 4 * 16(r); \
386 	vmovdqu t1, 5 * 16(r); \
387 	vmovdqu t2, 6 * 16(r); \
388 	vmovdqu t3, 7 * 16(r); \
389 	\
390 	/* \
391 	 * t0 = klr; \
392 	 * t0 |= lr; \
393 	 * ll ^= t0; \
394 	 */ \
395 	\
396 	vmovd klr, t0; \
397 	vpshufb tt0, t0, t3; \
398 	vpsrldq $1, t0, t0; \
399 	vpshufb tt0, t0, t2; \
400 	vpsrldq $1, t0, t0; \
401 	vpshufb tt0, t0, t1; \
402 	vpsrldq $1, t0, t0; \
403 	vpshufb tt0, t0, t0; \
404 	\
405 	vpor l4, t0, t0; \
406 	vpor l5, t1, t1; \
407 	vpor l6, t2, t2; \
408 	vpor l7, t3, t3; \
409 	\
410 	vpxor l0, t0, l0; \
411 	vmovdqu l0, 0 * 16(l); \
412 	vpxor l1, t1, l1; \
413 	vmovdqu l1, 1 * 16(l); \
414 	vpxor l2, t2, l2; \
415 	vmovdqu l2, 2 * 16(l); \
416 	vpxor l3, t3, l3; \
417 	vmovdqu l3, 3 * 16(l);
418 
419 #define transpose_4x4(x0, x1, x2, x3, t1, t2) \
420 	vpunpckhdq x1, x0, t2; \
421 	vpunpckldq x1, x0, x0; \
422 	\
423 	vpunpckldq x3, x2, t1; \
424 	vpunpckhdq x3, x2, x2; \
425 	\
426 	vpunpckhqdq t1, x0, x1; \
427 	vpunpcklqdq t1, x0, x0; \
428 	\
429 	vpunpckhqdq x2, t2, x3; \
430 	vpunpcklqdq x2, t2, x2;
431 
432 #define byteslice_16x16b(a0, b0, c0, d0, a1, b1, c1, d1, a2, b2, c2, d2, a3, \
433 			 b3, c3, d3, st0, st1) \
434 	vmovdqu d2, st0; \
435 	vmovdqu d3, st1; \
436 	transpose_4x4(a0, a1, a2, a3, d2, d3); \
437 	transpose_4x4(b0, b1, b2, b3, d2, d3); \
438 	vmovdqu st0, d2; \
439 	vmovdqu st1, d3; \
440 	\
441 	vmovdqu a0, st0; \
442 	vmovdqu a1, st1; \
443 	transpose_4x4(c0, c1, c2, c3, a0, a1); \
444 	transpose_4x4(d0, d1, d2, d3, a0, a1); \
445 	\
446 	vmovdqu .Lshufb_16x16b(%rip), a0; \
447 	vmovdqu st1, a1; \
448 	vpshufb a0, a2, a2; \
449 	vpshufb a0, a3, a3; \
450 	vpshufb a0, b0, b0; \
451 	vpshufb a0, b1, b1; \
452 	vpshufb a0, b2, b2; \
453 	vpshufb a0, b3, b3; \
454 	vpshufb a0, a1, a1; \
455 	vpshufb a0, c0, c0; \
456 	vpshufb a0, c1, c1; \
457 	vpshufb a0, c2, c2; \
458 	vpshufb a0, c3, c3; \
459 	vpshufb a0, d0, d0; \
460 	vpshufb a0, d1, d1; \
461 	vpshufb a0, d2, d2; \
462 	vpshufb a0, d3, d3; \
463 	vmovdqu d3, st1; \
464 	vmovdqu st0, d3; \
465 	vpshufb a0, d3, a0; \
466 	vmovdqu d2, st0; \
467 	\
468 	transpose_4x4(a0, b0, c0, d0, d2, d3); \
469 	transpose_4x4(a1, b1, c1, d1, d2, d3); \
470 	vmovdqu st0, d2; \
471 	vmovdqu st1, d3; \
472 	\
473 	vmovdqu b0, st0; \
474 	vmovdqu b1, st1; \
475 	transpose_4x4(a2, b2, c2, d2, b0, b1); \
476 	transpose_4x4(a3, b3, c3, d3, b0, b1); \
477 	vmovdqu st0, b0; \
478 	vmovdqu st1, b1; \
479 	/* does not adjust output bytes inside vectors */
480 
481 /* load blocks to registers and apply pre-whitening */
482 #define inpack16_pre(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \
483 		     y6, y7, rio, key) \
484 	vmovq key, x0; \
485 	vpshufb .Lpack_bswap(%rip), x0, x0; \
486 	\
487 	vpxor 0 * 16(rio), x0, y7; \
488 	vpxor 1 * 16(rio), x0, y6; \
489 	vpxor 2 * 16(rio), x0, y5; \
490 	vpxor 3 * 16(rio), x0, y4; \
491 	vpxor 4 * 16(rio), x0, y3; \
492 	vpxor 5 * 16(rio), x0, y2; \
493 	vpxor 6 * 16(rio), x0, y1; \
494 	vpxor 7 * 16(rio), x0, y0; \
495 	vpxor 8 * 16(rio), x0, x7; \
496 	vpxor 9 * 16(rio), x0, x6; \
497 	vpxor 10 * 16(rio), x0, x5; \
498 	vpxor 11 * 16(rio), x0, x4; \
499 	vpxor 12 * 16(rio), x0, x3; \
500 	vpxor 13 * 16(rio), x0, x2; \
501 	vpxor 14 * 16(rio), x0, x1; \
502 	vpxor 15 * 16(rio), x0, x0;
503 
504 /* byteslice pre-whitened blocks and store to temporary memory */
505 #define inpack16_post(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \
506 		      y6, y7, mem_ab, mem_cd) \
507 	byteslice_16x16b(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, \
508 			 y5, y6, y7, (mem_ab), (mem_cd)); \
509 	\
510 	vmovdqu x0, 0 * 16(mem_ab); \
511 	vmovdqu x1, 1 * 16(mem_ab); \
512 	vmovdqu x2, 2 * 16(mem_ab); \
513 	vmovdqu x3, 3 * 16(mem_ab); \
514 	vmovdqu x4, 4 * 16(mem_ab); \
515 	vmovdqu x5, 5 * 16(mem_ab); \
516 	vmovdqu x6, 6 * 16(mem_ab); \
517 	vmovdqu x7, 7 * 16(mem_ab); \
518 	vmovdqu y0, 0 * 16(mem_cd); \
519 	vmovdqu y1, 1 * 16(mem_cd); \
520 	vmovdqu y2, 2 * 16(mem_cd); \
521 	vmovdqu y3, 3 * 16(mem_cd); \
522 	vmovdqu y4, 4 * 16(mem_cd); \
523 	vmovdqu y5, 5 * 16(mem_cd); \
524 	vmovdqu y6, 6 * 16(mem_cd); \
525 	vmovdqu y7, 7 * 16(mem_cd);
526 
527 /* de-byteslice, apply post-whitening and store blocks */
528 #define outunpack16(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, \
529 		    y5, y6, y7, key, stack_tmp0, stack_tmp1) \
530 	byteslice_16x16b(y0, y4, x0, x4, y1, y5, x1, x5, y2, y6, x2, x6, y3, \
531 			 y7, x3, x7, stack_tmp0, stack_tmp1); \
532 	\
533 	vmovdqu x0, stack_tmp0; \
534 	\
535 	vmovq key, x0; \
536 	vpshufb .Lpack_bswap(%rip), x0, x0; \
537 	\
538 	vpxor x0, y7, y7; \
539 	vpxor x0, y6, y6; \
540 	vpxor x0, y5, y5; \
541 	vpxor x0, y4, y4; \
542 	vpxor x0, y3, y3; \
543 	vpxor x0, y2, y2; \
544 	vpxor x0, y1, y1; \
545 	vpxor x0, y0, y0; \
546 	vpxor x0, x7, x7; \
547 	vpxor x0, x6, x6; \
548 	vpxor x0, x5, x5; \
549 	vpxor x0, x4, x4; \
550 	vpxor x0, x3, x3; \
551 	vpxor x0, x2, x2; \
552 	vpxor x0, x1, x1; \
553 	vpxor stack_tmp0, x0, x0;
554 
555 #define write_output(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \
556 		     y6, y7, rio) \
557 	vmovdqu x0, 0 * 16(rio); \
558 	vmovdqu x1, 1 * 16(rio); \
559 	vmovdqu x2, 2 * 16(rio); \
560 	vmovdqu x3, 3 * 16(rio); \
561 	vmovdqu x4, 4 * 16(rio); \
562 	vmovdqu x5, 5 * 16(rio); \
563 	vmovdqu x6, 6 * 16(rio); \
564 	vmovdqu x7, 7 * 16(rio); \
565 	vmovdqu y0, 8 * 16(rio); \
566 	vmovdqu y1, 9 * 16(rio); \
567 	vmovdqu y2, 10 * 16(rio); \
568 	vmovdqu y3, 11 * 16(rio); \
569 	vmovdqu y4, 12 * 16(rio); \
570 	vmovdqu y5, 13 * 16(rio); \
571 	vmovdqu y6, 14 * 16(rio); \
572 	vmovdqu y7, 15 * 16(rio);
573 
574 
575 /* NB: section is mergeable, all elements must be aligned 16-byte blocks */
576 .section	.rodata.cst16, "aM", @progbits, 16
577 .align 16
578 
579 #define SHUFB_BYTES(idx) \
580 	0 + (idx), 4 + (idx), 8 + (idx), 12 + (idx)
581 
582 .Lshufb_16x16b:
583 	.byte SHUFB_BYTES(0), SHUFB_BYTES(1), SHUFB_BYTES(2), SHUFB_BYTES(3);
584 
585 .Lpack_bswap:
586 	.long 0x00010203
587 	.long 0x04050607
588 	.long 0x80808080
589 	.long 0x80808080
590 
591 /*
592  * pre-SubByte transform
593  *
594  * pre-lookup for sbox1, sbox2, sbox3:
595  *   swap_bitendianness(
596  *       isom_map_camellia_to_aes(
597  *           camellia_f(
598  *               swap_bitendianess(in)
599  *           )
600  *       )
601  *   )
602  *
603  * (note: '⊕ 0xc5' inside camellia_f())
604  */
605 .Lpre_tf_lo_s1:
606 	.byte 0x45, 0xe8, 0x40, 0xed, 0x2e, 0x83, 0x2b, 0x86
607 	.byte 0x4b, 0xe6, 0x4e, 0xe3, 0x20, 0x8d, 0x25, 0x88
608 .Lpre_tf_hi_s1:
609 	.byte 0x00, 0x51, 0xf1, 0xa0, 0x8a, 0xdb, 0x7b, 0x2a
610 	.byte 0x09, 0x58, 0xf8, 0xa9, 0x83, 0xd2, 0x72, 0x23
611 
612 /*
613  * pre-SubByte transform
614  *
615  * pre-lookup for sbox4:
616  *   swap_bitendianness(
617  *       isom_map_camellia_to_aes(
618  *           camellia_f(
619  *               swap_bitendianess(in <<< 1)
620  *           )
621  *       )
622  *   )
623  *
624  * (note: '⊕ 0xc5' inside camellia_f())
625  */
626 .Lpre_tf_lo_s4:
627 	.byte 0x45, 0x40, 0x2e, 0x2b, 0x4b, 0x4e, 0x20, 0x25
628 	.byte 0x14, 0x11, 0x7f, 0x7a, 0x1a, 0x1f, 0x71, 0x74
629 .Lpre_tf_hi_s4:
630 	.byte 0x00, 0xf1, 0x8a, 0x7b, 0x09, 0xf8, 0x83, 0x72
631 	.byte 0xad, 0x5c, 0x27, 0xd6, 0xa4, 0x55, 0x2e, 0xdf
632 
633 /*
634  * post-SubByte transform
635  *
636  * post-lookup for sbox1, sbox4:
637  *  swap_bitendianness(
638  *      camellia_h(
639  *          isom_map_aes_to_camellia(
640  *              swap_bitendianness(
641  *                  aes_inverse_affine_transform(in)
642  *              )
643  *          )
644  *      )
645  *  )
646  *
647  * (note: '⊕ 0x6e' inside camellia_h())
648  */
649 .Lpost_tf_lo_s1:
650 	.byte 0x3c, 0xcc, 0xcf, 0x3f, 0x32, 0xc2, 0xc1, 0x31
651 	.byte 0xdc, 0x2c, 0x2f, 0xdf, 0xd2, 0x22, 0x21, 0xd1
652 .Lpost_tf_hi_s1:
653 	.byte 0x00, 0xf9, 0x86, 0x7f, 0xd7, 0x2e, 0x51, 0xa8
654 	.byte 0xa4, 0x5d, 0x22, 0xdb, 0x73, 0x8a, 0xf5, 0x0c
655 
656 /*
657  * post-SubByte transform
658  *
659  * post-lookup for sbox2:
660  *  swap_bitendianness(
661  *      camellia_h(
662  *          isom_map_aes_to_camellia(
663  *              swap_bitendianness(
664  *                  aes_inverse_affine_transform(in)
665  *              )
666  *          )
667  *      )
668  *  ) <<< 1
669  *
670  * (note: '⊕ 0x6e' inside camellia_h())
671  */
672 .Lpost_tf_lo_s2:
673 	.byte 0x78, 0x99, 0x9f, 0x7e, 0x64, 0x85, 0x83, 0x62
674 	.byte 0xb9, 0x58, 0x5e, 0xbf, 0xa5, 0x44, 0x42, 0xa3
675 .Lpost_tf_hi_s2:
676 	.byte 0x00, 0xf3, 0x0d, 0xfe, 0xaf, 0x5c, 0xa2, 0x51
677 	.byte 0x49, 0xba, 0x44, 0xb7, 0xe6, 0x15, 0xeb, 0x18
678 
679 /*
680  * post-SubByte transform
681  *
682  * post-lookup for sbox3:
683  *  swap_bitendianness(
684  *      camellia_h(
685  *          isom_map_aes_to_camellia(
686  *              swap_bitendianness(
687  *                  aes_inverse_affine_transform(in)
688  *              )
689  *          )
690  *      )
691  *  ) >>> 1
692  *
693  * (note: '⊕ 0x6e' inside camellia_h())
694  */
695 .Lpost_tf_lo_s3:
696 	.byte 0x1e, 0x66, 0xe7, 0x9f, 0x19, 0x61, 0xe0, 0x98
697 	.byte 0x6e, 0x16, 0x97, 0xef, 0x69, 0x11, 0x90, 0xe8
698 .Lpost_tf_hi_s3:
699 	.byte 0x00, 0xfc, 0x43, 0xbf, 0xeb, 0x17, 0xa8, 0x54
700 	.byte 0x52, 0xae, 0x11, 0xed, 0xb9, 0x45, 0xfa, 0x06
701 
702 /* For isolating SubBytes from AESENCLAST, inverse shift row */
703 .Linv_shift_row:
704 	.byte 0x00, 0x0d, 0x0a, 0x07, 0x04, 0x01, 0x0e, 0x0b
705 	.byte 0x08, 0x05, 0x02, 0x0f, 0x0c, 0x09, 0x06, 0x03
706 
707 /* 4-bit mask */
708 .section	.rodata.cst4.L0f0f0f0f, "aM", @progbits, 4
709 .align 4
710 .L0f0f0f0f:
711 	.long 0x0f0f0f0f
712 
713 .text
714 
715 SYM_FUNC_START_LOCAL(__camellia_enc_blk16)
716 	/* input:
717 	 *	%rdi: ctx, CTX
718 	 *	%rax: temporary storage, 256 bytes
719 	 *	%xmm0..%xmm15: 16 plaintext blocks
720 	 * output:
721 	 *	%xmm0..%xmm15: 16 encrypted blocks, order swapped:
722 	 *       7, 8, 6, 5, 4, 3, 2, 1, 0, 15, 14, 13, 12, 11, 10, 9, 8
723 	 */
724 	FRAME_BEGIN
725 
726 	leaq 8 * 16(%rax), %rcx;
727 
728 	inpack16_post(%xmm0, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7,
729 		      %xmm8, %xmm9, %xmm10, %xmm11, %xmm12, %xmm13, %xmm14,
730 		      %xmm15, %rax, %rcx);
731 
732 	enc_rounds16(%xmm0, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7,
733 		     %xmm8, %xmm9, %xmm10, %xmm11, %xmm12, %xmm13, %xmm14,
734 		     %xmm15, %rax, %rcx, 0);
735 
736 	fls16(%rax, %xmm0, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7,
737 	      %rcx, %xmm8, %xmm9, %xmm10, %xmm11, %xmm12, %xmm13, %xmm14,
738 	      %xmm15,
739 	      ((key_table + (8) * 8) + 0)(CTX),
740 	      ((key_table + (8) * 8) + 4)(CTX),
741 	      ((key_table + (8) * 8) + 8)(CTX),
742 	      ((key_table + (8) * 8) + 12)(CTX));
743 
744 	enc_rounds16(%xmm0, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7,
745 		     %xmm8, %xmm9, %xmm10, %xmm11, %xmm12, %xmm13, %xmm14,
746 		     %xmm15, %rax, %rcx, 8);
747 
748 	fls16(%rax, %xmm0, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7,
749 	      %rcx, %xmm8, %xmm9, %xmm10, %xmm11, %xmm12, %xmm13, %xmm14,
750 	      %xmm15,
751 	      ((key_table + (16) * 8) + 0)(CTX),
752 	      ((key_table + (16) * 8) + 4)(CTX),
753 	      ((key_table + (16) * 8) + 8)(CTX),
754 	      ((key_table + (16) * 8) + 12)(CTX));
755 
756 	enc_rounds16(%xmm0, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7,
757 		     %xmm8, %xmm9, %xmm10, %xmm11, %xmm12, %xmm13, %xmm14,
758 		     %xmm15, %rax, %rcx, 16);
759 
760 	movl $24, %r8d;
761 	cmpl $16, key_length(CTX);
762 	jne .Lenc_max32;
763 
764 .Lenc_done:
765 	/* load CD for output */
766 	vmovdqu 0 * 16(%rcx), %xmm8;
767 	vmovdqu 1 * 16(%rcx), %xmm9;
768 	vmovdqu 2 * 16(%rcx), %xmm10;
769 	vmovdqu 3 * 16(%rcx), %xmm11;
770 	vmovdqu 4 * 16(%rcx), %xmm12;
771 	vmovdqu 5 * 16(%rcx), %xmm13;
772 	vmovdqu 6 * 16(%rcx), %xmm14;
773 	vmovdqu 7 * 16(%rcx), %xmm15;
774 
775 	outunpack16(%xmm0, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7,
776 		    %xmm8, %xmm9, %xmm10, %xmm11, %xmm12, %xmm13, %xmm14,
777 		    %xmm15, (key_table)(CTX, %r8, 8), (%rax), 1 * 16(%rax));
778 
779 	FRAME_END
780 	RET;
781 
782 .align 8
783 .Lenc_max32:
784 	movl $32, %r8d;
785 
786 	fls16(%rax, %xmm0, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7,
787 	      %rcx, %xmm8, %xmm9, %xmm10, %xmm11, %xmm12, %xmm13, %xmm14,
788 	      %xmm15,
789 	      ((key_table + (24) * 8) + 0)(CTX),
790 	      ((key_table + (24) * 8) + 4)(CTX),
791 	      ((key_table + (24) * 8) + 8)(CTX),
792 	      ((key_table + (24) * 8) + 12)(CTX));
793 
794 	enc_rounds16(%xmm0, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7,
795 		     %xmm8, %xmm9, %xmm10, %xmm11, %xmm12, %xmm13, %xmm14,
796 		     %xmm15, %rax, %rcx, 24);
797 
798 	jmp .Lenc_done;
799 SYM_FUNC_END(__camellia_enc_blk16)
800 
801 SYM_FUNC_START_LOCAL(__camellia_dec_blk16)
802 	/* input:
803 	 *	%rdi: ctx, CTX
804 	 *	%rax: temporary storage, 256 bytes
805 	 *	%r8d: 24 for 16 byte key, 32 for larger
806 	 *	%xmm0..%xmm15: 16 encrypted blocks
807 	 * output:
808 	 *	%xmm0..%xmm15: 16 plaintext blocks, order swapped:
809 	 *       7, 8, 6, 5, 4, 3, 2, 1, 0, 15, 14, 13, 12, 11, 10, 9, 8
810 	 */
811 	FRAME_BEGIN
812 
813 	leaq 8 * 16(%rax), %rcx;
814 
815 	inpack16_post(%xmm0, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7,
816 		      %xmm8, %xmm9, %xmm10, %xmm11, %xmm12, %xmm13, %xmm14,
817 		      %xmm15, %rax, %rcx);
818 
819 	cmpl $32, %r8d;
820 	je .Ldec_max32;
821 
822 .Ldec_max24:
823 	dec_rounds16(%xmm0, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7,
824 		     %xmm8, %xmm9, %xmm10, %xmm11, %xmm12, %xmm13, %xmm14,
825 		     %xmm15, %rax, %rcx, 16);
826 
827 	fls16(%rax, %xmm0, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7,
828 	      %rcx, %xmm8, %xmm9, %xmm10, %xmm11, %xmm12, %xmm13, %xmm14,
829 	      %xmm15,
830 	      ((key_table + (16) * 8) + 8)(CTX),
831 	      ((key_table + (16) * 8) + 12)(CTX),
832 	      ((key_table + (16) * 8) + 0)(CTX),
833 	      ((key_table + (16) * 8) + 4)(CTX));
834 
835 	dec_rounds16(%xmm0, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7,
836 		     %xmm8, %xmm9, %xmm10, %xmm11, %xmm12, %xmm13, %xmm14,
837 		     %xmm15, %rax, %rcx, 8);
838 
839 	fls16(%rax, %xmm0, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7,
840 	      %rcx, %xmm8, %xmm9, %xmm10, %xmm11, %xmm12, %xmm13, %xmm14,
841 	      %xmm15,
842 	      ((key_table + (8) * 8) + 8)(CTX),
843 	      ((key_table + (8) * 8) + 12)(CTX),
844 	      ((key_table + (8) * 8) + 0)(CTX),
845 	      ((key_table + (8) * 8) + 4)(CTX));
846 
847 	dec_rounds16(%xmm0, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7,
848 		     %xmm8, %xmm9, %xmm10, %xmm11, %xmm12, %xmm13, %xmm14,
849 		     %xmm15, %rax, %rcx, 0);
850 
851 	/* load CD for output */
852 	vmovdqu 0 * 16(%rcx), %xmm8;
853 	vmovdqu 1 * 16(%rcx), %xmm9;
854 	vmovdqu 2 * 16(%rcx), %xmm10;
855 	vmovdqu 3 * 16(%rcx), %xmm11;
856 	vmovdqu 4 * 16(%rcx), %xmm12;
857 	vmovdqu 5 * 16(%rcx), %xmm13;
858 	vmovdqu 6 * 16(%rcx), %xmm14;
859 	vmovdqu 7 * 16(%rcx), %xmm15;
860 
861 	outunpack16(%xmm0, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7,
862 		    %xmm8, %xmm9, %xmm10, %xmm11, %xmm12, %xmm13, %xmm14,
863 		    %xmm15, (key_table)(CTX), (%rax), 1 * 16(%rax));
864 
865 	FRAME_END
866 	RET;
867 
868 .align 8
869 .Ldec_max32:
870 	dec_rounds16(%xmm0, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7,
871 		     %xmm8, %xmm9, %xmm10, %xmm11, %xmm12, %xmm13, %xmm14,
872 		     %xmm15, %rax, %rcx, 24);
873 
874 	fls16(%rax, %xmm0, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7,
875 	      %rcx, %xmm8, %xmm9, %xmm10, %xmm11, %xmm12, %xmm13, %xmm14,
876 	      %xmm15,
877 	      ((key_table + (24) * 8) + 8)(CTX),
878 	      ((key_table + (24) * 8) + 12)(CTX),
879 	      ((key_table + (24) * 8) + 0)(CTX),
880 	      ((key_table + (24) * 8) + 4)(CTX));
881 
882 	jmp .Ldec_max24;
883 SYM_FUNC_END(__camellia_dec_blk16)
884 
885 SYM_FUNC_START(camellia_ecb_enc_16way)
886 	/* input:
887 	 *	%rdi: ctx, CTX
888 	 *	%rsi: dst (16 blocks)
889 	 *	%rdx: src (16 blocks)
890 	 */
891 	 FRAME_BEGIN
892 
893 	inpack16_pre(%xmm0, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7,
894 		     %xmm8, %xmm9, %xmm10, %xmm11, %xmm12, %xmm13, %xmm14,
895 		     %xmm15, %rdx, (key_table)(CTX));
896 
897 	/* now dst can be used as temporary buffer (even in src == dst case) */
898 	movq	%rsi, %rax;
899 
900 	call __camellia_enc_blk16;
901 
902 	write_output(%xmm7, %xmm6, %xmm5, %xmm4, %xmm3, %xmm2, %xmm1, %xmm0,
903 		     %xmm15, %xmm14, %xmm13, %xmm12, %xmm11, %xmm10, %xmm9,
904 		     %xmm8, %rsi);
905 
906 	FRAME_END
907 	RET;
908 SYM_FUNC_END(camellia_ecb_enc_16way)
909 
910 SYM_FUNC_START(camellia_ecb_dec_16way)
911 	/* input:
912 	 *	%rdi: ctx, CTX
913 	 *	%rsi: dst (16 blocks)
914 	 *	%rdx: src (16 blocks)
915 	 */
916 	 FRAME_BEGIN
917 
918 	cmpl $16, key_length(CTX);
919 	movl $32, %r8d;
920 	movl $24, %eax;
921 	cmovel %eax, %r8d; /* max */
922 
923 	inpack16_pre(%xmm0, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7,
924 		     %xmm8, %xmm9, %xmm10, %xmm11, %xmm12, %xmm13, %xmm14,
925 		     %xmm15, %rdx, (key_table)(CTX, %r8, 8));
926 
927 	/* now dst can be used as temporary buffer (even in src == dst case) */
928 	movq	%rsi, %rax;
929 
930 	call __camellia_dec_blk16;
931 
932 	write_output(%xmm7, %xmm6, %xmm5, %xmm4, %xmm3, %xmm2, %xmm1, %xmm0,
933 		     %xmm15, %xmm14, %xmm13, %xmm12, %xmm11, %xmm10, %xmm9,
934 		     %xmm8, %rsi);
935 
936 	FRAME_END
937 	RET;
938 SYM_FUNC_END(camellia_ecb_dec_16way)
939 
940 SYM_FUNC_START(camellia_cbc_dec_16way)
941 	/* input:
942 	 *	%rdi: ctx, CTX
943 	 *	%rsi: dst (16 blocks)
944 	 *	%rdx: src (16 blocks)
945 	 */
946 	FRAME_BEGIN
947 
948 	cmpl $16, key_length(CTX);
949 	movl $32, %r8d;
950 	movl $24, %eax;
951 	cmovel %eax, %r8d; /* max */
952 
953 	inpack16_pre(%xmm0, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7,
954 		     %xmm8, %xmm9, %xmm10, %xmm11, %xmm12, %xmm13, %xmm14,
955 		     %xmm15, %rdx, (key_table)(CTX, %r8, 8));
956 
957 	/*
958 	 * dst might still be in-use (in case dst == src), so use stack for
959 	 * temporary storage.
960 	 */
961 	subq $(16 * 16), %rsp;
962 	movq %rsp, %rax;
963 
964 	call __camellia_dec_blk16;
965 
966 	addq $(16 * 16), %rsp;
967 
968 	vpxor (0 * 16)(%rdx), %xmm6, %xmm6;
969 	vpxor (1 * 16)(%rdx), %xmm5, %xmm5;
970 	vpxor (2 * 16)(%rdx), %xmm4, %xmm4;
971 	vpxor (3 * 16)(%rdx), %xmm3, %xmm3;
972 	vpxor (4 * 16)(%rdx), %xmm2, %xmm2;
973 	vpxor (5 * 16)(%rdx), %xmm1, %xmm1;
974 	vpxor (6 * 16)(%rdx), %xmm0, %xmm0;
975 	vpxor (7 * 16)(%rdx), %xmm15, %xmm15;
976 	vpxor (8 * 16)(%rdx), %xmm14, %xmm14;
977 	vpxor (9 * 16)(%rdx), %xmm13, %xmm13;
978 	vpxor (10 * 16)(%rdx), %xmm12, %xmm12;
979 	vpxor (11 * 16)(%rdx), %xmm11, %xmm11;
980 	vpxor (12 * 16)(%rdx), %xmm10, %xmm10;
981 	vpxor (13 * 16)(%rdx), %xmm9, %xmm9;
982 	vpxor (14 * 16)(%rdx), %xmm8, %xmm8;
983 	write_output(%xmm7, %xmm6, %xmm5, %xmm4, %xmm3, %xmm2, %xmm1, %xmm0,
984 		     %xmm15, %xmm14, %xmm13, %xmm12, %xmm11, %xmm10, %xmm9,
985 		     %xmm8, %rsi);
986 
987 	FRAME_END
988 	RET;
989 SYM_FUNC_END(camellia_cbc_dec_16way)
990