1 /* libgcc1 routines for 68000 w/o floating-point hardware.
2    Copyright (C) 1994, 1996, 1997, 1998 Free Software Foundation, Inc.
3 
4 This file is part of GNU CC.
5 
6 GNU CC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by the
8 Free Software Foundation; either version 2, or (at your option) any
9 later version.
10 
11 In addition to the permissions in the GNU General Public License, the
12 Free Software Foundation gives you unlimited permission to link the
13 compiled version of this file with other programs, and to distribute
14 those programs without any restriction coming from the use of this
15 file.  (The General Public License restrictions do apply in other
16 respects; for example, they cover modification of the file, and
17 distribution when not linked into another program.)
18 
19 This file is distributed in the hope that it will be useful, but
20 WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
22 General Public License for more details. */
23 
24 /* As a special exception, if you link this library with files
25    compiled with GCC to produce an executable, this does not cause
26    the resulting executable to be covered by the GNU General Public License.
27    This exception does not however invalidate any other reasons why
28    the executable file might be covered by the GNU General Public License.  */
29 
30 /* Use this one for any 680x0; assumes no floating point hardware.
31    The trailing " '" appearing on some lines is for ANSI preprocessors.  Yuk.
32    Some of this code comes from MINIX, via the folks at ericsson.
33    D. V. Henkel-Wallace (gumby@cygnus.com) Fete Bastille, 1992
34 */
35 #include <linux/export.h>
36 /* These are predefined by new versions of GNU cpp.  */
37 
38 #ifndef __USER_LABEL_PREFIX__
39 #define __USER_LABEL_PREFIX__ _
40 #endif
41 
42 #ifndef __REGISTER_PREFIX__
43 #define __REGISTER_PREFIX__
44 #endif
45 
46 #ifndef __IMMEDIATE_PREFIX__
47 #define __IMMEDIATE_PREFIX__ #
48 #endif
49 
50 /* ANSI concatenation macros.  */
51 
52 #define CONCAT1(a, b) CONCAT2(a, b)
53 #define CONCAT2(a, b) a ## b
54 
55 /* Use the right prefix for global labels.  */
56 
57 #define SYM(x) CONCAT1 (__USER_LABEL_PREFIX__, x)
58 
59 /* Use the right prefix for registers.  */
60 
61 #define REG(x) CONCAT1 (__REGISTER_PREFIX__, x)
62 
63 /* Use the right prefix for immediate values.  */
64 
65 #define IMM(x) CONCAT1 (__IMMEDIATE_PREFIX__, x)
66 
67 #define d0 REG (d0)
68 #define d1 REG (d1)
69 #define d2 REG (d2)
70 #define d3 REG (d3)
71 #define d4 REG (d4)
72 #define d5 REG (d5)
73 #define d6 REG (d6)
74 #define d7 REG (d7)
75 #define a0 REG (a0)
76 #define a1 REG (a1)
77 #define a2 REG (a2)
78 #define a3 REG (a3)
79 #define a4 REG (a4)
80 #define a5 REG (a5)
81 #define a6 REG (a6)
82 #define fp REG (fp)
83 #define sp REG (sp)
84 
85 	.text
86 	.proc
87 	.globl	SYM (__udivsi3)
88 SYM (__udivsi3):
89 #if !(defined(__mcf5200__) || defined(__mcoldfire__))
90 	movel	d2, sp@-
91 	movel	sp@(12), d1	/* d1 = divisor */
92 	movel	sp@(8), d0	/* d0 = dividend */
93 
94 	cmpl	IMM (0x10000), d1 /* divisor >= 2 ^ 16 ?   */
95 	jcc	L3		/* then try next algorithm */
96 	movel	d0, d2
97 	clrw	d2
98 	swap	d2
99 	divu	d1, d2          /* high quotient in lower word */
100 	movew	d2, d0		/* save high quotient */
101 	swap	d0
102 	movew	sp@(10), d2	/* get low dividend + high rest */
103 	divu	d1, d2		/* low quotient */
104 	movew	d2, d0
105 	jra	L6
106 
107 L3:	movel	d1, d2		/* use d2 as divisor backup */
108 L4:	lsrl	IMM (1), d1	/* shift divisor */
109 	lsrl	IMM (1), d0	/* shift dividend */
110 	cmpl	IMM (0x10000), d1 /* still divisor >= 2 ^ 16 ?  */
111 	jcc	L4
112 	divu	d1, d0		/* now we have 16 bit divisor */
113 	andl	IMM (0xffff), d0 /* mask out divisor, ignore remainder */
114 
115 /* Multiply the 16 bit tentative quotient with the 32 bit divisor.  Because of
116    the operand ranges, this might give a 33 bit product.  If this product is
117    greater than the dividend, the tentative quotient was too large. */
118 	movel	d2, d1
119 	mulu	d0, d1		/* low part, 32 bits */
120 	swap	d2
121 	mulu	d0, d2		/* high part, at most 17 bits */
122 	swap	d2		/* align high part with low part */
123 	tstw	d2		/* high part 17 bits? */
124 	jne	L5		/* if 17 bits, quotient was too large */
125 	addl	d2, d1		/* add parts */
126 	jcs	L5		/* if sum is 33 bits, quotient was too large */
127 	cmpl	sp@(8), d1	/* compare the sum with the dividend */
128 	jls	L6		/* if sum > dividend, quotient was too large */
129 L5:	subql	IMM (1), d0	/* adjust quotient */
130 
131 L6:	movel	sp@+, d2
132 	rts
133 
134 #else /* __mcf5200__ || __mcoldfire__ */
135 
136 /* Coldfire implementation of non-restoring division algorithm from
137    Hennessy & Patterson, Appendix A. */
138 	link	a6,IMM (-12)
139 	moveml	d2-d4,sp@
140 	movel	a6@(8),d0
141 	movel	a6@(12),d1
142 	clrl	d2		| clear p
143 	moveq	IMM (31),d4
144 L1:	addl	d0,d0		| shift reg pair (p,a) one bit left
145 	addxl	d2,d2
146 	movl	d2,d3		| subtract b from p, store in tmp.
147 	subl	d1,d3
148 	jcs	L2		| if no carry,
149 	bset	IMM (0),d0	| set the low order bit of a to 1,
150 	movl	d3,d2		| and store tmp in p.
151 L2:	subql	IMM (1),d4
152 	jcc	L1
153 	moveml	sp@,d2-d4	| restore data registers
154 	unlk	a6		| and return
155 	rts
156 #endif /* __mcf5200__ || __mcoldfire__ */
157 	EXPORT_SYMBOL(__udivsi3)
158