1 |
2 |	ssinh.sa 3.1 12/10/90
3 |
4 |       The entry point sSinh computes the hyperbolic sine of
5 |       an input argument; sSinhd does the same except for denormalized
6 |       input.
7 |
8 |       Input: Double-extended number X in location pointed to
9 |		by address register a0.
10 |
11 |       Output: The value sinh(X) returned in floating-point register Fp0.
12 |
13 |       Accuracy and Monotonicity: The returned result is within 3 ulps in
14 |               64 significant bit, i.e. within 0.5001 ulp to 53 bits if the
15 |               result is subsequently rounded to double precision. The
16 |               result is provably monotonic in double precision.
17 |
18 |       Speed: The program sSINH takes approximately 280 cycles.
19 |
20 |       Algorithm:
21 |
22 |       SINH
23 |       1. If |X| > 16380 log2, go to 3.
24 |
25 |       2. (|X| <= 16380 log2) Sinh(X) is obtained by the formulae
26 |               y = |X|, sgn = sign(X), and z = expm1(Y),
27 |               sinh(X) = sgn*(1/2)*( z + z/(1+z) ).
28 |          Exit.
29 |
30 |       3. If |X| > 16480 log2, go to 5.
31 |
32 |       4. (16380 log2 < |X| <= 16480 log2)
33 |               sinh(X) = sign(X) * exp(|X|)/2.
34 |          However, invoking exp(|X|) may cause premature overflow.
35 |          Thus, we calculate sinh(X) as follows:
36 |             Y       := |X|
37 |             sgn     := sign(X)
38 |             sgnFact := sgn * 2**(16380)
39 |             Y'      := Y - 16381 log2
40 |             sinh(X) := sgnFact * exp(Y').
41 |          Exit.
42 |
43 |       5. (|X| > 16480 log2) sinh(X) must overflow. Return
44 |          sign(X)*Huge*Huge to generate overflow and an infinity with
45 |          the appropriate sign. Huge is the largest finite number in
46 |          extended format. Exit.
47 |
48 
49 |		Copyright (C) Motorola, Inc. 1990
50 |			All Rights Reserved
51 |
52 |       For details on the license for this file, please see the
53 |       file, README, in this same directory.
54 
55 |SSINH	idnt	2,1 | Motorola 040 Floating Point Software Package
56 
57 	|section	8
58 
59 T1:	.long 0x40C62D38,0xD3D64634 | ... 16381 LOG2 LEAD
60 T2:	.long 0x3D6F90AE,0xB1E75CC7 | ... 16381 LOG2 TRAIL
61 
62 	|xref	t_frcinx
63 	|xref	t_ovfl
64 	|xref	t_extdnrm
65 	|xref	setox
66 	|xref	setoxm1
67 
68 	.global	ssinhd
69 ssinhd:
70 |--SINH(X) = X FOR DENORMALIZED X
71 
72 	bra	t_extdnrm
73 
74 	.global	ssinh
75 ssinh:
76 	fmovex	(%a0),%fp0	| ...LOAD INPUT
77 
78 	movel	(%a0),%d0
79 	movew	4(%a0),%d0
80 	movel	%d0,%a1		| save a copy of original (compacted) operand
81 	andl	#0x7FFFFFFF,%d0
82 	cmpl	#0x400CB167,%d0
83 	bgts	SINHBIG
84 
85 |--THIS IS THE USUAL CASE, |X| < 16380 LOG2
86 |--Y = |X|, Z = EXPM1(Y), SINH(X) = SIGN(X)*(1/2)*( Z + Z/(1+Z) )
87 
88 	fabsx	%fp0		| ...Y = |X|
89 
90 	moveml	%a1/%d1,-(%sp)
91 	fmovemx %fp0-%fp0,(%a0)
92 	clrl	%d1
93 	bsr	setoxm1		| ...FP0 IS Z = EXPM1(Y)
94 	fmovel	#0,%fpcr
95 	moveml	(%sp)+,%a1/%d1
96 
97 	fmovex	%fp0,%fp1
98 	fadds	#0x3F800000,%fp1	| ...1+Z
99 	fmovex	%fp0,-(%sp)
100 	fdivx	%fp1,%fp0		| ...Z/(1+Z)
101 	movel	%a1,%d0
102 	andl	#0x80000000,%d0
103 	orl	#0x3F000000,%d0
104 	faddx	(%sp)+,%fp0
105 	movel	%d0,-(%sp)
106 
107 	fmovel	%d1,%fpcr
108 	fmuls	(%sp)+,%fp0	|last fp inst - possible exceptions set
109 
110 	bra	t_frcinx
111 
112 SINHBIG:
113 	cmpl	#0x400CB2B3,%d0
114 	bgt	t_ovfl
115 	fabsx	%fp0
116 	fsubd	T1(%pc),%fp0	| ...(|X|-16381LOG2_LEAD)
117 	movel	#0,-(%sp)
118 	movel	#0x80000000,-(%sp)
119 	movel	%a1,%d0
120 	andl	#0x80000000,%d0
121 	orl	#0x7FFB0000,%d0
122 	movel	%d0,-(%sp)	| ...EXTENDED FMT
123 	fsubd	T2(%pc),%fp0	| ...|X| - 16381 LOG2, ACCURATE
124 
125 	movel	%d1,-(%sp)
126 	clrl	%d1
127 	fmovemx %fp0-%fp0,(%a0)
128 	bsr	setox
129 	fmovel	(%sp)+,%fpcr
130 
131 	fmulx	(%sp)+,%fp0	|possible exception
132 	bra	t_frcinx
133 
134 	|end
135