1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  * Here is where the ball gets rolling as far as the kernel is concerned.
4  * When control is transferred to _start, the bootload has already
5  * loaded us to the correct address.  All that's left to do here is
6  * to set up the kernel's global pointer and jump to the kernel
7  * entry point.
8  *
9  * Copyright (C) 1998-2001, 2003, 2005 Hewlett-Packard Co
10  *	David Mosberger-Tang <davidm@hpl.hp.com>
11  *	Stephane Eranian <eranian@hpl.hp.com>
12  * Copyright (C) 1999 VA Linux Systems
13  * Copyright (C) 1999 Walt Drummond <drummond@valinux.com>
14  * Copyright (C) 1999 Intel Corp.
15  * Copyright (C) 1999 Asit Mallick <Asit.K.Mallick@intel.com>
16  * Copyright (C) 1999 Don Dugger <Don.Dugger@intel.com>
17  * Copyright (C) 2002 Fenghua Yu <fenghua.yu@intel.com>
18  *   -Optimize __ia64_save_fpu() and __ia64_load_fpu() for Itanium 2.
19  * Copyright (C) 2004 Ashok Raj <ashok.raj@intel.com>
20  *   Support for CPU Hotplug
21  */
22 
23 #include <linux/export.h>
24 #include <linux/pgtable.h>
25 #include <asm/asmmacro.h>
26 #include <asm/fpu.h>
27 #include <asm/kregs.h>
28 #include <asm/mmu_context.h>
29 #include <asm/asm-offsets.h>
30 #include <asm/pal.h>
31 #include <asm/processor.h>
32 #include <asm/ptrace.h>
33 #include <asm/mca_asm.h>
34 #include <linux/init.h>
35 #include <linux/linkage.h>
36 
37 #ifdef CONFIG_HOTPLUG_CPU
38 #define SAL_PSR_BITS_TO_SET				\
39 	(IA64_PSR_AC | IA64_PSR_BN | IA64_PSR_MFH | IA64_PSR_MFL)
40 
41 #define SAVE_FROM_REG(src, ptr, dest)	\
42 	mov dest=src;;						\
43 	st8 [ptr]=dest,0x08
44 
45 #define RESTORE_REG(reg, ptr, _tmp)		\
46 	ld8 _tmp=[ptr],0x08;;				\
47 	mov reg=_tmp
48 
49 #define SAVE_BREAK_REGS(ptr, _idx, _breg, _dest)\
50 	mov ar.lc=IA64_NUM_DBG_REGS-1;; 			\
51 	mov _idx=0;; 								\
52 1: 												\
53 	SAVE_FROM_REG(_breg[_idx], ptr, _dest);;	\
54 	add _idx=1,_idx;;							\
55 	br.cloop.sptk.many 1b
56 
57 #define RESTORE_BREAK_REGS(ptr, _idx, _breg, _tmp, _lbl)\
58 	mov ar.lc=IA64_NUM_DBG_REGS-1;;			\
59 	mov _idx=0;;							\
60 _lbl:  RESTORE_REG(_breg[_idx], ptr, _tmp);;	\
61 	add _idx=1, _idx;;						\
62 	br.cloop.sptk.many _lbl
63 
64 #define SAVE_ONE_RR(num, _reg, _tmp) \
65 	movl _tmp=(num<<61);;	\
66 	mov _reg=rr[_tmp]
67 
68 #define SAVE_REGION_REGS(_tmp, _r0, _r1, _r2, _r3, _r4, _r5, _r6, _r7) \
69 	SAVE_ONE_RR(0,_r0, _tmp);; \
70 	SAVE_ONE_RR(1,_r1, _tmp);; \
71 	SAVE_ONE_RR(2,_r2, _tmp);; \
72 	SAVE_ONE_RR(3,_r3, _tmp);; \
73 	SAVE_ONE_RR(4,_r4, _tmp);; \
74 	SAVE_ONE_RR(5,_r5, _tmp);; \
75 	SAVE_ONE_RR(6,_r6, _tmp);; \
76 	SAVE_ONE_RR(7,_r7, _tmp);;
77 
78 #define STORE_REGION_REGS(ptr, _r0, _r1, _r2, _r3, _r4, _r5, _r6, _r7) \
79 	st8 [ptr]=_r0, 8;; \
80 	st8 [ptr]=_r1, 8;; \
81 	st8 [ptr]=_r2, 8;; \
82 	st8 [ptr]=_r3, 8;; \
83 	st8 [ptr]=_r4, 8;; \
84 	st8 [ptr]=_r5, 8;; \
85 	st8 [ptr]=_r6, 8;; \
86 	st8 [ptr]=_r7, 8;;
87 
88 #define RESTORE_REGION_REGS(ptr, _idx1, _idx2, _tmp) \
89 	mov		ar.lc=0x08-1;;						\
90 	movl	_idx1=0x00;;						\
91 RestRR:											\
92 	dep.z	_idx2=_idx1,61,3;;					\
93 	ld8		_tmp=[ptr],8;;						\
94 	mov		rr[_idx2]=_tmp;;					\
95 	srlz.d;;									\
96 	add		_idx1=1,_idx1;;						\
97 	br.cloop.sptk.few	RestRR
98 
99 #define SET_AREA_FOR_BOOTING_CPU(reg1, reg2) \
100 	movl reg1=sal_state_for_booting_cpu;;	\
101 	ld8 reg2=[reg1];;
102 
103 /*
104  * Adjust region registers saved before starting to save
105  * break regs and rest of the states that need to be preserved.
106  */
107 #define SAL_TO_OS_BOOT_HANDOFF_STATE_SAVE(_reg1,_reg2,_pred)  \
108 	SAVE_FROM_REG(b0,_reg1,_reg2);;						\
109 	SAVE_FROM_REG(b1,_reg1,_reg2);;						\
110 	SAVE_FROM_REG(b2,_reg1,_reg2);;						\
111 	SAVE_FROM_REG(b3,_reg1,_reg2);;						\
112 	SAVE_FROM_REG(b4,_reg1,_reg2);;						\
113 	SAVE_FROM_REG(b5,_reg1,_reg2);;						\
114 	st8 [_reg1]=r1,0x08;;								\
115 	st8 [_reg1]=r12,0x08;;								\
116 	st8 [_reg1]=r13,0x08;;								\
117 	SAVE_FROM_REG(ar.fpsr,_reg1,_reg2);;				\
118 	SAVE_FROM_REG(ar.pfs,_reg1,_reg2);;					\
119 	SAVE_FROM_REG(ar.rnat,_reg1,_reg2);;				\
120 	SAVE_FROM_REG(ar.unat,_reg1,_reg2);;				\
121 	SAVE_FROM_REG(ar.bspstore,_reg1,_reg2);;			\
122 	SAVE_FROM_REG(cr.dcr,_reg1,_reg2);;					\
123 	SAVE_FROM_REG(cr.iva,_reg1,_reg2);;					\
124 	SAVE_FROM_REG(cr.pta,_reg1,_reg2);;					\
125 	SAVE_FROM_REG(cr.itv,_reg1,_reg2);;					\
126 	SAVE_FROM_REG(cr.pmv,_reg1,_reg2);;					\
127 	SAVE_FROM_REG(cr.cmcv,_reg1,_reg2);;				\
128 	SAVE_FROM_REG(cr.lrr0,_reg1,_reg2);;				\
129 	SAVE_FROM_REG(cr.lrr1,_reg1,_reg2);;				\
130 	st8 [_reg1]=r4,0x08;;								\
131 	st8 [_reg1]=r5,0x08;;								\
132 	st8 [_reg1]=r6,0x08;;								\
133 	st8 [_reg1]=r7,0x08;;								\
134 	st8 [_reg1]=_pred,0x08;;							\
135 	SAVE_FROM_REG(ar.lc, _reg1, _reg2);;				\
136 	stf.spill.nta [_reg1]=f2,16;;						\
137 	stf.spill.nta [_reg1]=f3,16;;						\
138 	stf.spill.nta [_reg1]=f4,16;;						\
139 	stf.spill.nta [_reg1]=f5,16;;						\
140 	stf.spill.nta [_reg1]=f16,16;;						\
141 	stf.spill.nta [_reg1]=f17,16;;						\
142 	stf.spill.nta [_reg1]=f18,16;;						\
143 	stf.spill.nta [_reg1]=f19,16;;						\
144 	stf.spill.nta [_reg1]=f20,16;;						\
145 	stf.spill.nta [_reg1]=f21,16;;						\
146 	stf.spill.nta [_reg1]=f22,16;;						\
147 	stf.spill.nta [_reg1]=f23,16;;						\
148 	stf.spill.nta [_reg1]=f24,16;;						\
149 	stf.spill.nta [_reg1]=f25,16;;						\
150 	stf.spill.nta [_reg1]=f26,16;;						\
151 	stf.spill.nta [_reg1]=f27,16;;						\
152 	stf.spill.nta [_reg1]=f28,16;;						\
153 	stf.spill.nta [_reg1]=f29,16;;						\
154 	stf.spill.nta [_reg1]=f30,16;;						\
155 	stf.spill.nta [_reg1]=f31,16;;
156 
157 #else
158 #define SET_AREA_FOR_BOOTING_CPU(a1, a2)
159 #define SAL_TO_OS_BOOT_HANDOFF_STATE_SAVE(a1,a2, a3)
160 #define SAVE_REGION_REGS(_tmp, _r0, _r1, _r2, _r3, _r4, _r5, _r6, _r7)
161 #define STORE_REGION_REGS(ptr, _r0, _r1, _r2, _r3, _r4, _r5, _r6, _r7)
162 #endif
163 
164 #define SET_ONE_RR(num, pgsize, _tmp1, _tmp2, vhpt) \
165 	movl _tmp1=(num << 61);;	\
166 	mov _tmp2=((ia64_rid(IA64_REGION_ID_KERNEL, (num<<61)) << 8) | (pgsize << 2) | vhpt);; \
167 	mov rr[_tmp1]=_tmp2
168 
169 	__PAGE_ALIGNED_DATA
170 
171 	.global empty_zero_page
172 EXPORT_SYMBOL_GPL(empty_zero_page)
173 empty_zero_page:
174 	.skip PAGE_SIZE
175 
176 	.global swapper_pg_dir
177 swapper_pg_dir:
178 	.skip PAGE_SIZE
179 
180 	.rodata
181 halt_msg:
182 	stringz "Halting kernel\n"
183 
184 	__REF
185 
186 	.global start_ap
187 
188 	/*
189 	 * Start the kernel.  When the bootloader passes control to _start(), r28
190 	 * points to the address of the boot parameter area.  Execution reaches
191 	 * here in physical mode.
192 	 */
193 GLOBAL_ENTRY(_start)
194 start_ap:
195 	.prologue
196 	.save rp, r0		// terminate unwind chain with a NULL rp
197 	.body
198 
199 	rsm psr.i | psr.ic
200 	;;
201 	srlz.i
202 	;;
203  {
204 	flushrs				// must be first insn in group
205 	srlz.i
206  }
207 	;;
208 	/*
209 	 * Save the region registers, predicate before they get clobbered
210 	 */
211 	SAVE_REGION_REGS(r2, r8,r9,r10,r11,r12,r13,r14,r15);
212 	mov r25=pr;;
213 
214 	/*
215 	 * Initialize kernel region registers:
216 	 *	rr[0]: VHPT enabled, page size = PAGE_SHIFT
217 	 *	rr[1]: VHPT enabled, page size = PAGE_SHIFT
218 	 *	rr[2]: VHPT enabled, page size = PAGE_SHIFT
219 	 *	rr[3]: VHPT enabled, page size = PAGE_SHIFT
220 	 *	rr[4]: VHPT enabled, page size = PAGE_SHIFT
221 	 *	rr[5]: VHPT enabled, page size = PAGE_SHIFT
222 	 *	rr[6]: VHPT disabled, page size = IA64_GRANULE_SHIFT
223 	 *	rr[7]: VHPT disabled, page size = IA64_GRANULE_SHIFT
224 	 * We initialize all of them to prevent inadvertently assuming
225 	 * something about the state of address translation early in boot.
226 	 */
227 	SET_ONE_RR(0, PAGE_SHIFT, r2, r16, 1);;
228 	SET_ONE_RR(1, PAGE_SHIFT, r2, r16, 1);;
229 	SET_ONE_RR(2, PAGE_SHIFT, r2, r16, 1);;
230 	SET_ONE_RR(3, PAGE_SHIFT, r2, r16, 1);;
231 	SET_ONE_RR(4, PAGE_SHIFT, r2, r16, 1);;
232 	SET_ONE_RR(5, PAGE_SHIFT, r2, r16, 1);;
233 	SET_ONE_RR(6, IA64_GRANULE_SHIFT, r2, r16, 0);;
234 	SET_ONE_RR(7, IA64_GRANULE_SHIFT, r2, r16, 0);;
235 	/*
236 	 * Now pin mappings into the TLB for kernel text and data
237 	 */
238 	mov r18=KERNEL_TR_PAGE_SHIFT<<2
239 	movl r17=KERNEL_START
240 	;;
241 	mov cr.itir=r18
242 	mov cr.ifa=r17
243 	mov r16=IA64_TR_KERNEL
244 	mov r3=ip
245 	movl r18=PAGE_KERNEL
246 	;;
247 	dep r2=0,r3,0,KERNEL_TR_PAGE_SHIFT
248 	;;
249 	or r18=r2,r18
250 	;;
251 	srlz.i
252 	;;
253 	itr.i itr[r16]=r18
254 	;;
255 	itr.d dtr[r16]=r18
256 	;;
257 	srlz.i
258 
259 	/*
260 	 * Switch into virtual mode:
261 	 */
262 	movl r16=(IA64_PSR_IT|IA64_PSR_IC|IA64_PSR_DT|IA64_PSR_RT|IA64_PSR_DFH|IA64_PSR_BN \
263 		  |IA64_PSR_DI)
264 	;;
265 	mov cr.ipsr=r16
266 	movl r17=1f
267 	;;
268 	mov cr.iip=r17
269 	mov cr.ifs=r0
270 	;;
271 	rfi
272 	;;
273 1:	// now we are in virtual mode
274 
275 	SET_AREA_FOR_BOOTING_CPU(r2, r16);
276 
277 	STORE_REGION_REGS(r16, r8,r9,r10,r11,r12,r13,r14,r15);
278 	SAL_TO_OS_BOOT_HANDOFF_STATE_SAVE(r16,r17,r25)
279 	;;
280 
281 	// set IVT entry point---can't access I/O ports without it
282 	movl r3=ia64_ivt
283 	;;
284 	mov cr.iva=r3
285 	movl r2=FPSR_DEFAULT
286 	;;
287 	srlz.i
288 	movl gp=__gp
289 
290 	mov ar.fpsr=r2
291 	;;
292 
293 #define isAP	p2	// are we an Application Processor?
294 #define isBP	p3	// are we the Bootstrap Processor?
295 
296 #ifdef CONFIG_SMP
297 	/*
298 	 * Find the init_task for the currently booting CPU.  At poweron, and in
299 	 * UP mode, task_for_booting_cpu is NULL.
300 	 */
301 	movl r3=task_for_booting_cpu
302  	;;
303 	ld8 r3=[r3]
304 	movl r2=init_task
305 	;;
306 	cmp.eq isBP,isAP=r3,r0
307 	;;
308 (isAP)	mov r2=r3
309 #else
310 	movl r2=init_task
311 	cmp.eq isBP,isAP=r0,r0
312 #endif
313 	;;
314 	tpa r3=r2		// r3 == phys addr of task struct
315 	mov r16=-1
316 (isBP)	br.cond.dpnt .load_current // BP stack is on region 5 --- no need to map it
317 
318 	// load mapping for stack (virtaddr in r2, physaddr in r3)
319 	rsm psr.ic
320 	movl r17=PAGE_KERNEL
321 	;;
322 	srlz.d
323 	dep r18=0,r3,0,12
324 	;;
325 	or r18=r17,r18
326 	dep r2=-1,r3,61,3	// IMVA of task
327 	;;
328 	mov r17=rr[r2]
329 	shr.u r16=r3,IA64_GRANULE_SHIFT
330 	;;
331 	dep r17=0,r17,8,24
332 	;;
333 	mov cr.itir=r17
334 	mov cr.ifa=r2
335 
336 	mov r19=IA64_TR_CURRENT_STACK
337 	;;
338 	itr.d dtr[r19]=r18
339 	;;
340 	ssm psr.ic
341 	srlz.d
342   	;;
343 
344 .load_current:
345 	// load the "current" pointer (r13) and ar.k6 with the current task
346 	mov IA64_KR(CURRENT)=r2		// virtual address
347 	mov IA64_KR(CURRENT_STACK)=r16
348 	mov r13=r2
349 	/*
350 	 * Reserve space at the top of the stack for "struct pt_regs".  Kernel
351 	 * threads don't store interesting values in that structure, but the space
352 	 * still needs to be there because time-critical stuff such as the context
353 	 * switching can be implemented more efficiently (for example, __switch_to()
354 	 * always sets the psr.dfh bit of the task it is switching to).
355 	 */
356 
357 	addl r12=IA64_STK_OFFSET-IA64_PT_REGS_SIZE-16,r2
358 	addl r2=IA64_RBS_OFFSET,r2	// initialize the RSE
359 	mov ar.rsc=0		// place RSE in enforced lazy mode
360 	;;
361 	loadrs			// clear the dirty partition
362 	movl r19=__phys_per_cpu_start
363 	mov r18=PERCPU_PAGE_SIZE
364 	;;
365 #ifndef CONFIG_SMP
366 	add r19=r19,r18
367 	;;
368 #else
369 (isAP)	br.few 2f
370 	movl r20=__cpu0_per_cpu
371 	;;
372 	shr.u r18=r18,3
373 1:
374 	ld8 r21=[r19],8;;
375 	st8[r20]=r21,8
376 	adds r18=-1,r18;;
377 	cmp4.lt p7,p6=0,r18
378 (p7)	br.cond.dptk.few 1b
379 	mov r19=r20
380 	;;
381 2:
382 #endif
383 	tpa r19=r19
384 	;;
385 	.pred.rel.mutex isBP,isAP
386 (isBP)	mov IA64_KR(PER_CPU_DATA)=r19	// per-CPU base for cpu0
387 (isAP)	mov IA64_KR(PER_CPU_DATA)=r0	// clear physical per-CPU base
388 	;;
389 	mov ar.bspstore=r2	// establish the new RSE stack
390 	;;
391 	mov ar.rsc=0x3		// place RSE in eager mode
392 
393 (isBP)	dep r28=-1,r28,61,3	// make address virtual
394 (isBP)	movl r2=ia64_boot_param
395 	;;
396 (isBP)	st8 [r2]=r28		// save the address of the boot param area passed by the bootloader
397 
398 #ifdef CONFIG_SMP
399 (isAP)	br.call.sptk.many rp=start_secondary
400 .ret0:
401 (isAP)	br.cond.sptk self
402 #endif
403 
404 	// This is executed by the bootstrap processor (bsp) only:
405 
406 	br.call.sptk.many rp=start_kernel
407 .ret2:	addl r3=@ltoff(halt_msg),gp
408 	;;
409 	alloc r2=ar.pfs,8,0,2,0
410 	;;
411 	ld8 out0=[r3]
412 	br.call.sptk.many b0=console_print
413 
414 self:	hint @pause
415 	br.sptk.many self		// endless loop
416 END(_start)
417 
418 	.text
419 
420 GLOBAL_ENTRY(ia64_save_debug_regs)
421 	alloc r16=ar.pfs,1,0,0,0
422 	mov r20=ar.lc			// preserve ar.lc
423 	mov ar.lc=IA64_NUM_DBG_REGS-1
424 	mov r18=0
425 	add r19=IA64_NUM_DBG_REGS*8,in0
426 	;;
427 1:	mov r16=dbr[r18]
428 #ifdef CONFIG_ITANIUM
429 	;;
430 	srlz.d
431 #endif
432 	mov r17=ibr[r18]
433 	add r18=1,r18
434 	;;
435 	st8.nta [in0]=r16,8
436 	st8.nta [r19]=r17,8
437 	br.cloop.sptk.many 1b
438 	;;
439 	mov ar.lc=r20			// restore ar.lc
440 	br.ret.sptk.many rp
441 END(ia64_save_debug_regs)
442 
443 GLOBAL_ENTRY(ia64_load_debug_regs)
444 	alloc r16=ar.pfs,1,0,0,0
445 	lfetch.nta [in0]
446 	mov r20=ar.lc			// preserve ar.lc
447 	add r19=IA64_NUM_DBG_REGS*8,in0
448 	mov ar.lc=IA64_NUM_DBG_REGS-1
449 	mov r18=-1
450 	;;
451 1:	ld8.nta r16=[in0],8
452 	ld8.nta r17=[r19],8
453 	add r18=1,r18
454 	;;
455 	mov dbr[r18]=r16
456 #ifdef CONFIG_ITANIUM
457 	;;
458 	srlz.d				// Errata 132 (NoFix status)
459 #endif
460 	mov ibr[r18]=r17
461 	br.cloop.sptk.many 1b
462 	;;
463 	mov ar.lc=r20			// restore ar.lc
464 	br.ret.sptk.many rp
465 END(ia64_load_debug_regs)
466 
467 GLOBAL_ENTRY(__ia64_save_fpu)
468 	alloc r2=ar.pfs,1,4,0,0
469 	adds loc0=96*16-16,in0
470 	adds loc1=96*16-16-128,in0
471 	;;
472 	stf.spill.nta [loc0]=f127,-256
473 	stf.spill.nta [loc1]=f119,-256
474 	;;
475 	stf.spill.nta [loc0]=f111,-256
476 	stf.spill.nta [loc1]=f103,-256
477 	;;
478 	stf.spill.nta [loc0]=f95,-256
479 	stf.spill.nta [loc1]=f87,-256
480 	;;
481 	stf.spill.nta [loc0]=f79,-256
482 	stf.spill.nta [loc1]=f71,-256
483 	;;
484 	stf.spill.nta [loc0]=f63,-256
485 	stf.spill.nta [loc1]=f55,-256
486 	adds loc2=96*16-32,in0
487 	;;
488 	stf.spill.nta [loc0]=f47,-256
489 	stf.spill.nta [loc1]=f39,-256
490 	adds loc3=96*16-32-128,in0
491 	;;
492 	stf.spill.nta [loc2]=f126,-256
493 	stf.spill.nta [loc3]=f118,-256
494 	;;
495 	stf.spill.nta [loc2]=f110,-256
496 	stf.spill.nta [loc3]=f102,-256
497 	;;
498 	stf.spill.nta [loc2]=f94,-256
499 	stf.spill.nta [loc3]=f86,-256
500 	;;
501 	stf.spill.nta [loc2]=f78,-256
502 	stf.spill.nta [loc3]=f70,-256
503 	;;
504 	stf.spill.nta [loc2]=f62,-256
505 	stf.spill.nta [loc3]=f54,-256
506 	adds loc0=96*16-48,in0
507 	;;
508 	stf.spill.nta [loc2]=f46,-256
509 	stf.spill.nta [loc3]=f38,-256
510 	adds loc1=96*16-48-128,in0
511 	;;
512 	stf.spill.nta [loc0]=f125,-256
513 	stf.spill.nta [loc1]=f117,-256
514 	;;
515 	stf.spill.nta [loc0]=f109,-256
516 	stf.spill.nta [loc1]=f101,-256
517 	;;
518 	stf.spill.nta [loc0]=f93,-256
519 	stf.spill.nta [loc1]=f85,-256
520 	;;
521 	stf.spill.nta [loc0]=f77,-256
522 	stf.spill.nta [loc1]=f69,-256
523 	;;
524 	stf.spill.nta [loc0]=f61,-256
525 	stf.spill.nta [loc1]=f53,-256
526 	adds loc2=96*16-64,in0
527 	;;
528 	stf.spill.nta [loc0]=f45,-256
529 	stf.spill.nta [loc1]=f37,-256
530 	adds loc3=96*16-64-128,in0
531 	;;
532 	stf.spill.nta [loc2]=f124,-256
533 	stf.spill.nta [loc3]=f116,-256
534 	;;
535 	stf.spill.nta [loc2]=f108,-256
536 	stf.spill.nta [loc3]=f100,-256
537 	;;
538 	stf.spill.nta [loc2]=f92,-256
539 	stf.spill.nta [loc3]=f84,-256
540 	;;
541 	stf.spill.nta [loc2]=f76,-256
542 	stf.spill.nta [loc3]=f68,-256
543 	;;
544 	stf.spill.nta [loc2]=f60,-256
545 	stf.spill.nta [loc3]=f52,-256
546 	adds loc0=96*16-80,in0
547 	;;
548 	stf.spill.nta [loc2]=f44,-256
549 	stf.spill.nta [loc3]=f36,-256
550 	adds loc1=96*16-80-128,in0
551 	;;
552 	stf.spill.nta [loc0]=f123,-256
553 	stf.spill.nta [loc1]=f115,-256
554 	;;
555 	stf.spill.nta [loc0]=f107,-256
556 	stf.spill.nta [loc1]=f99,-256
557 	;;
558 	stf.spill.nta [loc0]=f91,-256
559 	stf.spill.nta [loc1]=f83,-256
560 	;;
561 	stf.spill.nta [loc0]=f75,-256
562 	stf.spill.nta [loc1]=f67,-256
563 	;;
564 	stf.spill.nta [loc0]=f59,-256
565 	stf.spill.nta [loc1]=f51,-256
566 	adds loc2=96*16-96,in0
567 	;;
568 	stf.spill.nta [loc0]=f43,-256
569 	stf.spill.nta [loc1]=f35,-256
570 	adds loc3=96*16-96-128,in0
571 	;;
572 	stf.spill.nta [loc2]=f122,-256
573 	stf.spill.nta [loc3]=f114,-256
574 	;;
575 	stf.spill.nta [loc2]=f106,-256
576 	stf.spill.nta [loc3]=f98,-256
577 	;;
578 	stf.spill.nta [loc2]=f90,-256
579 	stf.spill.nta [loc3]=f82,-256
580 	;;
581 	stf.spill.nta [loc2]=f74,-256
582 	stf.spill.nta [loc3]=f66,-256
583 	;;
584 	stf.spill.nta [loc2]=f58,-256
585 	stf.spill.nta [loc3]=f50,-256
586 	adds loc0=96*16-112,in0
587 	;;
588 	stf.spill.nta [loc2]=f42,-256
589 	stf.spill.nta [loc3]=f34,-256
590 	adds loc1=96*16-112-128,in0
591 	;;
592 	stf.spill.nta [loc0]=f121,-256
593 	stf.spill.nta [loc1]=f113,-256
594 	;;
595 	stf.spill.nta [loc0]=f105,-256
596 	stf.spill.nta [loc1]=f97,-256
597 	;;
598 	stf.spill.nta [loc0]=f89,-256
599 	stf.spill.nta [loc1]=f81,-256
600 	;;
601 	stf.spill.nta [loc0]=f73,-256
602 	stf.spill.nta [loc1]=f65,-256
603 	;;
604 	stf.spill.nta [loc0]=f57,-256
605 	stf.spill.nta [loc1]=f49,-256
606 	adds loc2=96*16-128,in0
607 	;;
608 	stf.spill.nta [loc0]=f41,-256
609 	stf.spill.nta [loc1]=f33,-256
610 	adds loc3=96*16-128-128,in0
611 	;;
612 	stf.spill.nta [loc2]=f120,-256
613 	stf.spill.nta [loc3]=f112,-256
614 	;;
615 	stf.spill.nta [loc2]=f104,-256
616 	stf.spill.nta [loc3]=f96,-256
617 	;;
618 	stf.spill.nta [loc2]=f88,-256
619 	stf.spill.nta [loc3]=f80,-256
620 	;;
621 	stf.spill.nta [loc2]=f72,-256
622 	stf.spill.nta [loc3]=f64,-256
623 	;;
624 	stf.spill.nta [loc2]=f56,-256
625 	stf.spill.nta [loc3]=f48,-256
626 	;;
627 	stf.spill.nta [loc2]=f40
628 	stf.spill.nta [loc3]=f32
629 	br.ret.sptk.many rp
630 END(__ia64_save_fpu)
631 
632 GLOBAL_ENTRY(__ia64_load_fpu)
633 	alloc r2=ar.pfs,1,2,0,0
634 	adds r3=128,in0
635 	adds r14=256,in0
636 	adds r15=384,in0
637 	mov loc0=512
638 	mov loc1=-1024+16
639 	;;
640 	ldf.fill.nta f32=[in0],loc0
641 	ldf.fill.nta f40=[ r3],loc0
642 	ldf.fill.nta f48=[r14],loc0
643 	ldf.fill.nta f56=[r15],loc0
644 	;;
645 	ldf.fill.nta f64=[in0],loc0
646 	ldf.fill.nta f72=[ r3],loc0
647 	ldf.fill.nta f80=[r14],loc0
648 	ldf.fill.nta f88=[r15],loc0
649 	;;
650 	ldf.fill.nta f96=[in0],loc1
651 	ldf.fill.nta f104=[ r3],loc1
652 	ldf.fill.nta f112=[r14],loc1
653 	ldf.fill.nta f120=[r15],loc1
654 	;;
655 	ldf.fill.nta f33=[in0],loc0
656 	ldf.fill.nta f41=[ r3],loc0
657 	ldf.fill.nta f49=[r14],loc0
658 	ldf.fill.nta f57=[r15],loc0
659 	;;
660 	ldf.fill.nta f65=[in0],loc0
661 	ldf.fill.nta f73=[ r3],loc0
662 	ldf.fill.nta f81=[r14],loc0
663 	ldf.fill.nta f89=[r15],loc0
664 	;;
665 	ldf.fill.nta f97=[in0],loc1
666 	ldf.fill.nta f105=[ r3],loc1
667 	ldf.fill.nta f113=[r14],loc1
668 	ldf.fill.nta f121=[r15],loc1
669 	;;
670 	ldf.fill.nta f34=[in0],loc0
671 	ldf.fill.nta f42=[ r3],loc0
672 	ldf.fill.nta f50=[r14],loc0
673 	ldf.fill.nta f58=[r15],loc0
674 	;;
675 	ldf.fill.nta f66=[in0],loc0
676 	ldf.fill.nta f74=[ r3],loc0
677 	ldf.fill.nta f82=[r14],loc0
678 	ldf.fill.nta f90=[r15],loc0
679 	;;
680 	ldf.fill.nta f98=[in0],loc1
681 	ldf.fill.nta f106=[ r3],loc1
682 	ldf.fill.nta f114=[r14],loc1
683 	ldf.fill.nta f122=[r15],loc1
684 	;;
685 	ldf.fill.nta f35=[in0],loc0
686 	ldf.fill.nta f43=[ r3],loc0
687 	ldf.fill.nta f51=[r14],loc0
688 	ldf.fill.nta f59=[r15],loc0
689 	;;
690 	ldf.fill.nta f67=[in0],loc0
691 	ldf.fill.nta f75=[ r3],loc0
692 	ldf.fill.nta f83=[r14],loc0
693 	ldf.fill.nta f91=[r15],loc0
694 	;;
695 	ldf.fill.nta f99=[in0],loc1
696 	ldf.fill.nta f107=[ r3],loc1
697 	ldf.fill.nta f115=[r14],loc1
698 	ldf.fill.nta f123=[r15],loc1
699 	;;
700 	ldf.fill.nta f36=[in0],loc0
701 	ldf.fill.nta f44=[ r3],loc0
702 	ldf.fill.nta f52=[r14],loc0
703 	ldf.fill.nta f60=[r15],loc0
704 	;;
705 	ldf.fill.nta f68=[in0],loc0
706 	ldf.fill.nta f76=[ r3],loc0
707 	ldf.fill.nta f84=[r14],loc0
708 	ldf.fill.nta f92=[r15],loc0
709 	;;
710 	ldf.fill.nta f100=[in0],loc1
711 	ldf.fill.nta f108=[ r3],loc1
712 	ldf.fill.nta f116=[r14],loc1
713 	ldf.fill.nta f124=[r15],loc1
714 	;;
715 	ldf.fill.nta f37=[in0],loc0
716 	ldf.fill.nta f45=[ r3],loc0
717 	ldf.fill.nta f53=[r14],loc0
718 	ldf.fill.nta f61=[r15],loc0
719 	;;
720 	ldf.fill.nta f69=[in0],loc0
721 	ldf.fill.nta f77=[ r3],loc0
722 	ldf.fill.nta f85=[r14],loc0
723 	ldf.fill.nta f93=[r15],loc0
724 	;;
725 	ldf.fill.nta f101=[in0],loc1
726 	ldf.fill.nta f109=[ r3],loc1
727 	ldf.fill.nta f117=[r14],loc1
728 	ldf.fill.nta f125=[r15],loc1
729 	;;
730 	ldf.fill.nta f38 =[in0],loc0
731 	ldf.fill.nta f46 =[ r3],loc0
732 	ldf.fill.nta f54 =[r14],loc0
733 	ldf.fill.nta f62 =[r15],loc0
734 	;;
735 	ldf.fill.nta f70 =[in0],loc0
736 	ldf.fill.nta f78 =[ r3],loc0
737 	ldf.fill.nta f86 =[r14],loc0
738 	ldf.fill.nta f94 =[r15],loc0
739 	;;
740 	ldf.fill.nta f102=[in0],loc1
741 	ldf.fill.nta f110=[ r3],loc1
742 	ldf.fill.nta f118=[r14],loc1
743 	ldf.fill.nta f126=[r15],loc1
744 	;;
745 	ldf.fill.nta f39 =[in0],loc0
746 	ldf.fill.nta f47 =[ r3],loc0
747 	ldf.fill.nta f55 =[r14],loc0
748 	ldf.fill.nta f63 =[r15],loc0
749 	;;
750 	ldf.fill.nta f71 =[in0],loc0
751 	ldf.fill.nta f79 =[ r3],loc0
752 	ldf.fill.nta f87 =[r14],loc0
753 	ldf.fill.nta f95 =[r15],loc0
754 	;;
755 	ldf.fill.nta f103=[in0]
756 	ldf.fill.nta f111=[ r3]
757 	ldf.fill.nta f119=[r14]
758 	ldf.fill.nta f127=[r15]
759 	br.ret.sptk.many rp
760 END(__ia64_load_fpu)
761 
762 GLOBAL_ENTRY(__ia64_init_fpu)
763 	stf.spill [sp]=f0		// M3
764 	mov	 f32=f0			// F
765 	nop.b	 0
766 
767 	ldfps	 f33,f34=[sp]		// M0
768 	ldfps	 f35,f36=[sp]		// M1
769 	mov      f37=f0			// F
770 	;;
771 
772 	setf.s	 f38=r0			// M2
773 	setf.s	 f39=r0			// M3
774 	mov      f40=f0			// F
775 
776 	ldfps	 f41,f42=[sp]		// M0
777 	ldfps	 f43,f44=[sp]		// M1
778 	mov      f45=f0			// F
779 
780 	setf.s	 f46=r0			// M2
781 	setf.s	 f47=r0			// M3
782 	mov      f48=f0			// F
783 
784 	ldfps	 f49,f50=[sp]		// M0
785 	ldfps	 f51,f52=[sp]		// M1
786 	mov      f53=f0			// F
787 
788 	setf.s	 f54=r0			// M2
789 	setf.s	 f55=r0			// M3
790 	mov      f56=f0			// F
791 
792 	ldfps	 f57,f58=[sp]		// M0
793 	ldfps	 f59,f60=[sp]		// M1
794 	mov      f61=f0			// F
795 
796 	setf.s	 f62=r0			// M2
797 	setf.s	 f63=r0			// M3
798 	mov      f64=f0			// F
799 
800 	ldfps	 f65,f66=[sp]		// M0
801 	ldfps	 f67,f68=[sp]		// M1
802 	mov      f69=f0			// F
803 
804 	setf.s	 f70=r0			// M2
805 	setf.s	 f71=r0			// M3
806 	mov      f72=f0			// F
807 
808 	ldfps	 f73,f74=[sp]		// M0
809 	ldfps	 f75,f76=[sp]		// M1
810 	mov      f77=f0			// F
811 
812 	setf.s	 f78=r0			// M2
813 	setf.s	 f79=r0			// M3
814 	mov      f80=f0			// F
815 
816 	ldfps	 f81,f82=[sp]		// M0
817 	ldfps	 f83,f84=[sp]		// M1
818 	mov      f85=f0			// F
819 
820 	setf.s	 f86=r0			// M2
821 	setf.s	 f87=r0			// M3
822 	mov      f88=f0			// F
823 
824 	/*
825 	 * When the instructions are cached, it would be faster to initialize
826 	 * the remaining registers with simply mov instructions (F-unit).
827 	 * This gets the time down to ~29 cycles.  However, this would use up
828 	 * 33 bundles, whereas continuing with the above pattern yields
829 	 * 10 bundles and ~30 cycles.
830 	 */
831 
832 	ldfps	 f89,f90=[sp]		// M0
833 	ldfps	 f91,f92=[sp]		// M1
834 	mov      f93=f0			// F
835 
836 	setf.s	 f94=r0			// M2
837 	setf.s	 f95=r0			// M3
838 	mov      f96=f0			// F
839 
840 	ldfps	 f97,f98=[sp]		// M0
841 	ldfps	 f99,f100=[sp]		// M1
842 	mov      f101=f0		// F
843 
844 	setf.s	 f102=r0		// M2
845 	setf.s	 f103=r0		// M3
846 	mov      f104=f0		// F
847 
848 	ldfps	 f105,f106=[sp]		// M0
849 	ldfps	 f107,f108=[sp]		// M1
850 	mov      f109=f0		// F
851 
852 	setf.s	 f110=r0		// M2
853 	setf.s	 f111=r0		// M3
854 	mov      f112=f0		// F
855 
856 	ldfps	 f113,f114=[sp]		// M0
857 	ldfps	 f115,f116=[sp]		// M1
858 	mov      f117=f0		// F
859 
860 	setf.s	 f118=r0		// M2
861 	setf.s	 f119=r0		// M3
862 	mov      f120=f0		// F
863 
864 	ldfps	 f121,f122=[sp]		// M0
865 	ldfps	 f123,f124=[sp]		// M1
866 	mov      f125=f0		// F
867 
868 	setf.s	 f126=r0		// M2
869 	setf.s	 f127=r0		// M3
870 	br.ret.sptk.many rp		// F
871 END(__ia64_init_fpu)
872 
873 /*
874  * Switch execution mode from virtual to physical
875  *
876  * Inputs:
877  *	r16 = new psr to establish
878  * Output:
879  *	r19 = old virtual address of ar.bsp
880  *	r20 = old virtual address of sp
881  *
882  * Note: RSE must already be in enforced lazy mode
883  */
884 GLOBAL_ENTRY(ia64_switch_mode_phys)
885  {
886 	rsm psr.i | psr.ic		// disable interrupts and interrupt collection
887 	mov r15=ip
888  }
889 	;;
890  {
891 	flushrs				// must be first insn in group
892 	srlz.i
893  }
894 	;;
895 	mov cr.ipsr=r16			// set new PSR
896 	add r3=1f-ia64_switch_mode_phys,r15
897 
898 	mov r19=ar.bsp
899 	mov r20=sp
900 	mov r14=rp			// get return address into a general register
901 	;;
902 
903 	// going to physical mode, use tpa to translate virt->phys
904 	tpa r17=r19
905 	tpa r3=r3
906 	tpa sp=sp
907 	tpa r14=r14
908 	;;
909 
910 	mov r18=ar.rnat			// save ar.rnat
911 	mov ar.bspstore=r17		// this steps on ar.rnat
912 	mov cr.iip=r3
913 	mov cr.ifs=r0
914 	;;
915 	mov ar.rnat=r18			// restore ar.rnat
916 	rfi				// must be last insn in group
917 	;;
918 1:	mov rp=r14
919 	br.ret.sptk.many rp
920 END(ia64_switch_mode_phys)
921 
922 /*
923  * Switch execution mode from physical to virtual
924  *
925  * Inputs:
926  *	r16 = new psr to establish
927  *	r19 = new bspstore to establish
928  *	r20 = new sp to establish
929  *
930  * Note: RSE must already be in enforced lazy mode
931  */
932 GLOBAL_ENTRY(ia64_switch_mode_virt)
933  {
934 	rsm psr.i | psr.ic		// disable interrupts and interrupt collection
935 	mov r15=ip
936  }
937 	;;
938  {
939 	flushrs				// must be first insn in group
940 	srlz.i
941  }
942 	;;
943 	mov cr.ipsr=r16			// set new PSR
944 	add r3=1f-ia64_switch_mode_virt,r15
945 
946 	mov r14=rp			// get return address into a general register
947 	;;
948 
949 	// going to virtual
950 	//   - for code addresses, set upper bits of addr to KERNEL_START
951 	//   - for stack addresses, copy from input argument
952 	movl r18=KERNEL_START
953 	dep r3=0,r3,KERNEL_TR_PAGE_SHIFT,64-KERNEL_TR_PAGE_SHIFT
954 	dep r14=0,r14,KERNEL_TR_PAGE_SHIFT,64-KERNEL_TR_PAGE_SHIFT
955 	mov sp=r20
956 	;;
957 	or r3=r3,r18
958 	or r14=r14,r18
959 	;;
960 
961 	mov r18=ar.rnat			// save ar.rnat
962 	mov ar.bspstore=r19		// this steps on ar.rnat
963 	mov cr.iip=r3
964 	mov cr.ifs=r0
965 	;;
966 	mov ar.rnat=r18			// restore ar.rnat
967 	rfi				// must be last insn in group
968 	;;
969 1:	mov rp=r14
970 	br.ret.sptk.many rp
971 END(ia64_switch_mode_virt)
972 
973 GLOBAL_ENTRY(ia64_delay_loop)
974 	.prologue
975 {	nop 0			// work around GAS unwind info generation bug...
976 	.save ar.lc,r2
977 	mov r2=ar.lc
978 	.body
979 	;;
980 	mov ar.lc=r32
981 }
982 	;;
983 	// force loop to be 32-byte aligned (GAS bug means we cannot use .align
984 	// inside function body without corrupting unwind info).
985 {	nop 0 }
986 1:	br.cloop.sptk.few 1b
987 	;;
988 	mov ar.lc=r2
989 	br.ret.sptk.many rp
990 END(ia64_delay_loop)
991 
992 /*
993  * Return a CPU-local timestamp in nano-seconds.  This timestamp is
994  * NOT synchronized across CPUs its return value must never be
995  * compared against the values returned on another CPU.  The usage in
996  * kernel/sched/core.c ensures that.
997  *
998  * The return-value of sched_clock() is NOT supposed to wrap-around.
999  * If it did, it would cause some scheduling hiccups (at the worst).
1000  * Fortunately, with a 64-bit cycle-counter ticking at 100GHz, even
1001  * that would happen only once every 5+ years.
1002  *
1003  * The code below basically calculates:
1004  *
1005  *   (ia64_get_itc() * local_cpu_data->nsec_per_cyc) >> IA64_NSEC_PER_CYC_SHIFT
1006  *
1007  * except that the multiplication and the shift are done with 128-bit
1008  * intermediate precision so that we can produce a full 64-bit result.
1009  */
1010 GLOBAL_ENTRY(ia64_native_sched_clock)
1011 	addl r8=THIS_CPU(ia64_cpu_info) + IA64_CPUINFO_NSEC_PER_CYC_OFFSET,r0
1012 	mov.m r9=ar.itc		// fetch cycle-counter				(35 cyc)
1013 	;;
1014 	ldf8 f8=[r8]
1015 	;;
1016 	setf.sig f9=r9		// certain to stall, so issue it _after_ ldf8...
1017 	;;
1018 	xmpy.lu f10=f9,f8	// calculate low 64 bits of 128-bit product	(4 cyc)
1019 	xmpy.hu f11=f9,f8	// calculate high 64 bits of 128-bit product
1020 	;;
1021 	getf.sig r8=f10		//						(5 cyc)
1022 	getf.sig r9=f11
1023 	;;
1024 	shrp r8=r9,r8,IA64_NSEC_PER_CYC_SHIFT
1025 	br.ret.sptk.many rp
1026 END(ia64_native_sched_clock)
1027 
1028 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
1029 GLOBAL_ENTRY(cycle_to_nsec)
1030 	alloc r16=ar.pfs,1,0,0,0
1031 	addl r8=THIS_CPU(ia64_cpu_info) + IA64_CPUINFO_NSEC_PER_CYC_OFFSET,r0
1032 	;;
1033 	ldf8 f8=[r8]
1034 	;;
1035 	setf.sig f9=r32
1036 	;;
1037 	xmpy.lu f10=f9,f8	// calculate low 64 bits of 128-bit product	(4 cyc)
1038 	xmpy.hu f11=f9,f8	// calculate high 64 bits of 128-bit product
1039 	;;
1040 	getf.sig r8=f10		//						(5 cyc)
1041 	getf.sig r9=f11
1042 	;;
1043 	shrp r8=r9,r8,IA64_NSEC_PER_CYC_SHIFT
1044 	br.ret.sptk.many rp
1045 END(cycle_to_nsec)
1046 #endif /* CONFIG_VIRT_CPU_ACCOUNTING_NATIVE */
1047 
1048 #ifdef CONFIG_IA64_BRL_EMU
1049 
1050 /*
1051  *  Assembly routines used by brl_emu.c to set preserved register state.
1052  */
1053 
1054 #define SET_REG(reg)				\
1055  GLOBAL_ENTRY(ia64_set_##reg);			\
1056 	alloc r16=ar.pfs,1,0,0,0;		\
1057 	mov reg=r32;				\
1058 	;;					\
1059 	br.ret.sptk.many rp;			\
1060  END(ia64_set_##reg)
1061 
1062 SET_REG(b1);
1063 SET_REG(b2);
1064 SET_REG(b3);
1065 SET_REG(b4);
1066 SET_REG(b5);
1067 
1068 #endif /* CONFIG_IA64_BRL_EMU */
1069 
1070 #ifdef CONFIG_SMP
1071 
1072 #ifdef CONFIG_HOTPLUG_CPU
1073 GLOBAL_ENTRY(ia64_jump_to_sal)
1074 	alloc r16=ar.pfs,1,0,0,0;;
1075 	rsm psr.i  | psr.ic
1076 {
1077 	flushrs
1078 	srlz.i
1079 }
1080 	tpa r25=in0
1081 	movl r18=tlb_purge_done;;
1082 	DATA_VA_TO_PA(r18);;
1083 	mov b1=r18 	// Return location
1084 	movl r18=ia64_do_tlb_purge;;
1085 	DATA_VA_TO_PA(r18);;
1086 	mov b2=r18 	// doing tlb_flush work
1087 	mov ar.rsc=0  // Put RSE  in enforced lazy, LE mode
1088 	movl r17=1f;;
1089 	DATA_VA_TO_PA(r17);;
1090 	mov cr.iip=r17
1091 	movl r16=SAL_PSR_BITS_TO_SET;;
1092 	mov cr.ipsr=r16
1093 	mov cr.ifs=r0;;
1094 	rfi;;			// note: this unmask MCA/INIT (psr.mc)
1095 1:
1096 	/*
1097 	 * Invalidate all TLB data/inst
1098 	 */
1099 	br.sptk.many b2;; // jump to tlb purge code
1100 
1101 tlb_purge_done:
1102 	RESTORE_REGION_REGS(r25, r17,r18,r19);;
1103 	RESTORE_REG(b0, r25, r17);;
1104 	RESTORE_REG(b1, r25, r17);;
1105 	RESTORE_REG(b2, r25, r17);;
1106 	RESTORE_REG(b3, r25, r17);;
1107 	RESTORE_REG(b4, r25, r17);;
1108 	RESTORE_REG(b5, r25, r17);;
1109 	ld8 r1=[r25],0x08;;
1110 	ld8 r12=[r25],0x08;;
1111 	ld8 r13=[r25],0x08;;
1112 	RESTORE_REG(ar.fpsr, r25, r17);;
1113 	RESTORE_REG(ar.pfs, r25, r17);;
1114 	RESTORE_REG(ar.rnat, r25, r17);;
1115 	RESTORE_REG(ar.unat, r25, r17);;
1116 	RESTORE_REG(ar.bspstore, r25, r17);;
1117 	RESTORE_REG(cr.dcr, r25, r17);;
1118 	RESTORE_REG(cr.iva, r25, r17);;
1119 	RESTORE_REG(cr.pta, r25, r17);;
1120 	srlz.d;;	// required not to violate RAW dependency
1121 	RESTORE_REG(cr.itv, r25, r17);;
1122 	RESTORE_REG(cr.pmv, r25, r17);;
1123 	RESTORE_REG(cr.cmcv, r25, r17);;
1124 	RESTORE_REG(cr.lrr0, r25, r17);;
1125 	RESTORE_REG(cr.lrr1, r25, r17);;
1126 	ld8 r4=[r25],0x08;;
1127 	ld8 r5=[r25],0x08;;
1128 	ld8 r6=[r25],0x08;;
1129 	ld8 r7=[r25],0x08;;
1130 	ld8 r17=[r25],0x08;;
1131 	mov pr=r17,-1;;
1132 	RESTORE_REG(ar.lc, r25, r17);;
1133 	/*
1134 	 * Now Restore floating point regs
1135 	 */
1136 	ldf.fill.nta f2=[r25],16;;
1137 	ldf.fill.nta f3=[r25],16;;
1138 	ldf.fill.nta f4=[r25],16;;
1139 	ldf.fill.nta f5=[r25],16;;
1140 	ldf.fill.nta f16=[r25],16;;
1141 	ldf.fill.nta f17=[r25],16;;
1142 	ldf.fill.nta f18=[r25],16;;
1143 	ldf.fill.nta f19=[r25],16;;
1144 	ldf.fill.nta f20=[r25],16;;
1145 	ldf.fill.nta f21=[r25],16;;
1146 	ldf.fill.nta f22=[r25],16;;
1147 	ldf.fill.nta f23=[r25],16;;
1148 	ldf.fill.nta f24=[r25],16;;
1149 	ldf.fill.nta f25=[r25],16;;
1150 	ldf.fill.nta f26=[r25],16;;
1151 	ldf.fill.nta f27=[r25],16;;
1152 	ldf.fill.nta f28=[r25],16;;
1153 	ldf.fill.nta f29=[r25],16;;
1154 	ldf.fill.nta f30=[r25],16;;
1155 	ldf.fill.nta f31=[r25],16;;
1156 
1157 	/*
1158 	 * Now that we have done all the register restores
1159 	 * we are now ready for the big DIVE to SAL Land
1160 	 */
1161 	ssm psr.ic;;
1162 	srlz.d;;
1163 	br.ret.sptk.many b0;;
1164 END(ia64_jump_to_sal)
1165 #endif /* CONFIG_HOTPLUG_CPU */
1166 
1167 #endif /* CONFIG_SMP */
1168