1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  * Implementation of POLYVAL using ARMv8 Crypto Extensions.
4  *
5  * Copyright 2021 Google LLC
6  */
7 /*
8  * This is an efficient implementation of POLYVAL using ARMv8 Crypto Extensions
9  * It works on 8 blocks at a time, by precomputing the first 8 keys powers h^8,
10  * ..., h^1 in the POLYVAL finite field. This precomputation allows us to split
11  * finite field multiplication into two steps.
12  *
13  * In the first step, we consider h^i, m_i as normal polynomials of degree less
14  * than 128. We then compute p(x) = h^8m_0 + ... + h^1m_7 where multiplication
15  * is simply polynomial multiplication.
16  *
17  * In the second step, we compute the reduction of p(x) modulo the finite field
18  * modulus g(x) = x^128 + x^127 + x^126 + x^121 + 1.
19  *
20  * This two step process is equivalent to computing h^8m_0 + ... + h^1m_7 where
21  * multiplication is finite field multiplication. The advantage is that the
22  * two-step process  only requires 1 finite field reduction for every 8
23  * polynomial multiplications. Further parallelism is gained by interleaving the
24  * multiplications and polynomial reductions.
25  */
26 
27 #include <linux/linkage.h>
28 #define STRIDE_BLOCKS 8
29 
30 KEY_POWERS	.req	x0
31 MSG		.req	x1
32 BLOCKS_LEFT	.req	x2
33 ACCUMULATOR	.req	x3
34 KEY_START	.req	x10
35 EXTRA_BYTES	.req	x11
36 TMP	.req	x13
37 
38 M0	.req	v0
39 M1	.req	v1
40 M2	.req	v2
41 M3	.req	v3
42 M4	.req	v4
43 M5	.req	v5
44 M6	.req	v6
45 M7	.req	v7
46 KEY8	.req	v8
47 KEY7	.req	v9
48 KEY6	.req	v10
49 KEY5	.req	v11
50 KEY4	.req	v12
51 KEY3	.req	v13
52 KEY2	.req	v14
53 KEY1	.req	v15
54 PL	.req	v16
55 PH	.req	v17
56 TMP_V	.req	v18
57 LO	.req	v20
58 MI	.req	v21
59 HI	.req	v22
60 SUM	.req	v23
61 GSTAR	.req	v24
62 
63 	.text
64 
65 	.arch	armv8-a+crypto
66 	.align	4
67 
68 .Lgstar:
69 	.quad	0xc200000000000000, 0xc200000000000000
70 
71 /*
72  * Computes the product of two 128-bit polynomials in X and Y and XORs the
73  * components of the 256-bit product into LO, MI, HI.
74  *
75  * Given:
76  *  X = [X_1 : X_0]
77  *  Y = [Y_1 : Y_0]
78  *
79  * We compute:
80  *  LO += X_0 * Y_0
81  *  MI += (X_0 + X_1) * (Y_0 + Y_1)
82  *  HI += X_1 * Y_1
83  *
84  * Later, the 256-bit result can be extracted as:
85  *   [HI_1 : HI_0 + HI_1 + MI_1 + LO_1 : LO_1 + HI_0 + MI_0 + LO_0 : LO_0]
86  * This step is done when computing the polynomial reduction for efficiency
87  * reasons.
88  *
89  * Karatsuba multiplication is used instead of Schoolbook multiplication because
90  * it was found to be slightly faster on ARM64 CPUs.
91  *
92  */
93 .macro karatsuba1 X Y
94 	X .req \X
95 	Y .req \Y
96 	ext	v25.16b, X.16b, X.16b, #8
97 	ext	v26.16b, Y.16b, Y.16b, #8
98 	eor	v25.16b, v25.16b, X.16b
99 	eor	v26.16b, v26.16b, Y.16b
100 	pmull2	v28.1q, X.2d, Y.2d
101 	pmull	v29.1q, X.1d, Y.1d
102 	pmull	v27.1q, v25.1d, v26.1d
103 	eor	HI.16b, HI.16b, v28.16b
104 	eor	LO.16b, LO.16b, v29.16b
105 	eor	MI.16b, MI.16b, v27.16b
106 	.unreq X
107 	.unreq Y
108 .endm
109 
110 /*
111  * Same as karatsuba1, except overwrites HI, LO, MI rather than XORing into
112  * them.
113  */
114 .macro karatsuba1_store X Y
115 	X .req \X
116 	Y .req \Y
117 	ext	v25.16b, X.16b, X.16b, #8
118 	ext	v26.16b, Y.16b, Y.16b, #8
119 	eor	v25.16b, v25.16b, X.16b
120 	eor	v26.16b, v26.16b, Y.16b
121 	pmull2	HI.1q, X.2d, Y.2d
122 	pmull	LO.1q, X.1d, Y.1d
123 	pmull	MI.1q, v25.1d, v26.1d
124 	.unreq X
125 	.unreq Y
126 .endm
127 
128 /*
129  * Computes the 256-bit polynomial represented by LO, HI, MI. Stores
130  * the result in PL, PH.
131  * [PH : PL] =
132  *   [HI_1 : HI_1 + HI_0 + MI_1 + LO_1 : HI_0 + MI_0 + LO_1 + LO_0 : LO_0]
133  */
134 .macro karatsuba2
135 	// v4 = [HI_1 + MI_1 : HI_0 + MI_0]
136 	eor	v4.16b, HI.16b, MI.16b
137 	// v4 = [HI_1 + MI_1 + LO_1 : HI_0 + MI_0 + LO_0]
138 	eor	v4.16b, v4.16b, LO.16b
139 	// v5 = [HI_0 : LO_1]
140 	ext	v5.16b, LO.16b, HI.16b, #8
141 	// v4 = [HI_1 + HI_0 + MI_1 + LO_1 : HI_0 + MI_0 + LO_1 + LO_0]
142 	eor	v4.16b, v4.16b, v5.16b
143 	// HI = [HI_0 : HI_1]
144 	ext	HI.16b, HI.16b, HI.16b, #8
145 	// LO = [LO_0 : LO_1]
146 	ext	LO.16b, LO.16b, LO.16b, #8
147 	// PH = [HI_1 : HI_1 + HI_0 + MI_1 + LO_1]
148 	ext	PH.16b, v4.16b, HI.16b, #8
149 	// PL = [HI_0 + MI_0 + LO_1 + LO_0 : LO_0]
150 	ext	PL.16b, LO.16b, v4.16b, #8
151 .endm
152 
153 /*
154  * Computes the 128-bit reduction of PH : PL. Stores the result in dest.
155  *
156  * This macro computes p(x) mod g(x) where p(x) is in montgomery form and g(x) =
157  * x^128 + x^127 + x^126 + x^121 + 1.
158  *
159  * We have a 256-bit polynomial PH : PL = P_3 : P_2 : P_1 : P_0 that is the
160  * product of two 128-bit polynomials in Montgomery form.  We need to reduce it
161  * mod g(x).  Also, since polynomials in Montgomery form have an "extra" factor
162  * of x^128, this product has two extra factors of x^128.  To get it back into
163  * Montgomery form, we need to remove one of these factors by dividing by x^128.
164  *
165  * To accomplish both of these goals, we add multiples of g(x) that cancel out
166  * the low 128 bits P_1 : P_0, leaving just the high 128 bits. Since the low
167  * bits are zero, the polynomial division by x^128 can be done by right
168  * shifting.
169  *
170  * Since the only nonzero term in the low 64 bits of g(x) is the constant term,
171  * the multiple of g(x) needed to cancel out P_0 is P_0 * g(x).  The CPU can
172  * only do 64x64 bit multiplications, so split P_0 * g(x) into x^128 * P_0 +
173  * x^64 * g*(x) * P_0 + P_0, where g*(x) is bits 64-127 of g(x).  Adding this to
174  * the original polynomial gives P_3 : P_2 + P_0 + T_1 : P_1 + T_0 : 0, where T
175  * = T_1 : T_0 = g*(x) * P_0.  Thus, bits 0-63 got "folded" into bits 64-191.
176  *
177  * Repeating this same process on the next 64 bits "folds" bits 64-127 into bits
178  * 128-255, giving the answer in bits 128-255. This time, we need to cancel P_1
179  * + T_0 in bits 64-127. The multiple of g(x) required is (P_1 + T_0) * g(x) *
180  * x^64. Adding this to our previous computation gives P_3 + P_1 + T_0 + V_1 :
181  * P_2 + P_0 + T_1 + V_0 : 0 : 0, where V = V_1 : V_0 = g*(x) * (P_1 + T_0).
182  *
183  * So our final computation is:
184  *   T = T_1 : T_0 = g*(x) * P_0
185  *   V = V_1 : V_0 = g*(x) * (P_1 + T_0)
186  *   p(x) / x^{128} mod g(x) = P_3 + P_1 + T_0 + V_1 : P_2 + P_0 + T_1 + V_0
187  *
188  * The implementation below saves a XOR instruction by computing P_1 + T_0 : P_0
189  * + T_1 and XORing into dest, rather than separately XORing P_1 : P_0 and T_0 :
190  * T_1 into dest.  This allows us to reuse P_1 + T_0 when computing V.
191  */
192 .macro montgomery_reduction dest
193 	DEST .req \dest
194 	// TMP_V = T_1 : T_0 = P_0 * g*(x)
195 	pmull	TMP_V.1q, PL.1d, GSTAR.1d
196 	// TMP_V = T_0 : T_1
197 	ext	TMP_V.16b, TMP_V.16b, TMP_V.16b, #8
198 	// TMP_V = P_1 + T_0 : P_0 + T_1
199 	eor	TMP_V.16b, PL.16b, TMP_V.16b
200 	// PH = P_3 + P_1 + T_0 : P_2 + P_0 + T_1
201 	eor	PH.16b, PH.16b, TMP_V.16b
202 	// TMP_V = V_1 : V_0 = (P_1 + T_0) * g*(x)
203 	pmull2	TMP_V.1q, TMP_V.2d, GSTAR.2d
204 	eor	DEST.16b, PH.16b, TMP_V.16b
205 	.unreq DEST
206 .endm
207 
208 /*
209  * Compute Polyval on 8 blocks.
210  *
211  * If reduce is set, also computes the montgomery reduction of the
212  * previous full_stride call and XORs with the first message block.
213  * (m_0 + REDUCE(PL, PH))h^8 + ... + m_7h^1.
214  * I.e., the first multiplication uses m_0 + REDUCE(PL, PH) instead of m_0.
215  *
216  * Sets PL, PH.
217  */
218 .macro full_stride reduce
219 	eor		LO.16b, LO.16b, LO.16b
220 	eor		MI.16b, MI.16b, MI.16b
221 	eor		HI.16b, HI.16b, HI.16b
222 
223 	ld1		{M0.16b, M1.16b, M2.16b, M3.16b}, [MSG], #64
224 	ld1		{M4.16b, M5.16b, M6.16b, M7.16b}, [MSG], #64
225 
226 	karatsuba1 M7 KEY1
227 	.if \reduce
228 	pmull	TMP_V.1q, PL.1d, GSTAR.1d
229 	.endif
230 
231 	karatsuba1 M6 KEY2
232 	.if \reduce
233 	ext	TMP_V.16b, TMP_V.16b, TMP_V.16b, #8
234 	.endif
235 
236 	karatsuba1 M5 KEY3
237 	.if \reduce
238 	eor	TMP_V.16b, PL.16b, TMP_V.16b
239 	.endif
240 
241 	karatsuba1 M4 KEY4
242 	.if \reduce
243 	eor	PH.16b, PH.16b, TMP_V.16b
244 	.endif
245 
246 	karatsuba1 M3 KEY5
247 	.if \reduce
248 	pmull2	TMP_V.1q, TMP_V.2d, GSTAR.2d
249 	.endif
250 
251 	karatsuba1 M2 KEY6
252 	.if \reduce
253 	eor	SUM.16b, PH.16b, TMP_V.16b
254 	.endif
255 
256 	karatsuba1 M1 KEY7
257 	eor	M0.16b, M0.16b, SUM.16b
258 
259 	karatsuba1 M0 KEY8
260 	karatsuba2
261 .endm
262 
263 /*
264  * Handle any extra blocks after full_stride loop.
265  */
266 .macro partial_stride
267 	add	KEY_POWERS, KEY_START, #(STRIDE_BLOCKS << 4)
268 	sub	KEY_POWERS, KEY_POWERS, BLOCKS_LEFT, lsl #4
269 	ld1	{KEY1.16b}, [KEY_POWERS], #16
270 
271 	ld1	{TMP_V.16b}, [MSG], #16
272 	eor	SUM.16b, SUM.16b, TMP_V.16b
273 	karatsuba1_store KEY1 SUM
274 	sub	BLOCKS_LEFT, BLOCKS_LEFT, #1
275 
276 	tst	BLOCKS_LEFT, #4
277 	beq	.Lpartial4BlocksDone
278 	ld1	{M0.16b, M1.16b,  M2.16b, M3.16b}, [MSG], #64
279 	ld1	{KEY8.16b, KEY7.16b, KEY6.16b,	KEY5.16b}, [KEY_POWERS], #64
280 	karatsuba1 M0 KEY8
281 	karatsuba1 M1 KEY7
282 	karatsuba1 M2 KEY6
283 	karatsuba1 M3 KEY5
284 .Lpartial4BlocksDone:
285 	tst	BLOCKS_LEFT, #2
286 	beq	.Lpartial2BlocksDone
287 	ld1	{M0.16b, M1.16b}, [MSG], #32
288 	ld1	{KEY8.16b, KEY7.16b}, [KEY_POWERS], #32
289 	karatsuba1 M0 KEY8
290 	karatsuba1 M1 KEY7
291 .Lpartial2BlocksDone:
292 	tst	BLOCKS_LEFT, #1
293 	beq	.LpartialDone
294 	ld1	{M0.16b}, [MSG], #16
295 	ld1	{KEY8.16b}, [KEY_POWERS], #16
296 	karatsuba1 M0 KEY8
297 .LpartialDone:
298 	karatsuba2
299 	montgomery_reduction SUM
300 .endm
301 
302 /*
303  * Perform montgomery multiplication in GF(2^128) and store result in op1.
304  *
305  * Computes op1*op2*x^{-128} mod x^128 + x^127 + x^126 + x^121 + 1
306  * If op1, op2 are in montgomery form, this computes the montgomery
307  * form of op1*op2.
308  *
309  * void pmull_polyval_mul(u8 *op1, const u8 *op2);
310  */
311 SYM_FUNC_START(pmull_polyval_mul)
312 	adr	TMP, .Lgstar
313 	ld1	{GSTAR.2d}, [TMP]
314 	ld1	{v0.16b}, [x0]
315 	ld1	{v1.16b}, [x1]
316 	karatsuba1_store v0 v1
317 	karatsuba2
318 	montgomery_reduction SUM
319 	st1	{SUM.16b}, [x0]
320 	ret
321 SYM_FUNC_END(pmull_polyval_mul)
322 
323 /*
324  * Perform polynomial evaluation as specified by POLYVAL.  This computes:
325  *	h^n * accumulator + h^n * m_0 + ... + h^1 * m_{n-1}
326  * where n=nblocks, h is the hash key, and m_i are the message blocks.
327  *
328  * x0 - pointer to precomputed key powers h^8 ... h^1
329  * x1 - pointer to message blocks
330  * x2 - number of blocks to hash
331  * x3 - pointer to accumulator
332  *
333  * void pmull_polyval_update(const struct polyval_ctx *ctx, const u8 *in,
334  *			     size_t nblocks, u8 *accumulator);
335  */
336 SYM_FUNC_START(pmull_polyval_update)
337 	adr	TMP, .Lgstar
338 	mov	KEY_START, KEY_POWERS
339 	ld1	{GSTAR.2d}, [TMP]
340 	ld1	{SUM.16b}, [ACCUMULATOR]
341 	subs	BLOCKS_LEFT, BLOCKS_LEFT, #STRIDE_BLOCKS
342 	blt .LstrideLoopExit
343 	ld1	{KEY8.16b, KEY7.16b, KEY6.16b, KEY5.16b}, [KEY_POWERS], #64
344 	ld1	{KEY4.16b, KEY3.16b, KEY2.16b, KEY1.16b}, [KEY_POWERS], #64
345 	full_stride 0
346 	subs	BLOCKS_LEFT, BLOCKS_LEFT, #STRIDE_BLOCKS
347 	blt .LstrideLoopExitReduce
348 .LstrideLoop:
349 	full_stride 1
350 	subs	BLOCKS_LEFT, BLOCKS_LEFT, #STRIDE_BLOCKS
351 	bge	.LstrideLoop
352 .LstrideLoopExitReduce:
353 	montgomery_reduction SUM
354 .LstrideLoopExit:
355 	adds	BLOCKS_LEFT, BLOCKS_LEFT, #STRIDE_BLOCKS
356 	beq	.LskipPartial
357 	partial_stride
358 .LskipPartial:
359 	st1	{SUM.16b}, [ACCUMULATOR]
360 	ret
361 SYM_FUNC_END(pmull_polyval_update)
362