1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  * arch/alpha/lib/stxcpy.S
4  * Contributed by Richard Henderson (rth@tamu.edu)
5  *
6  * Copy a null-terminated string from SRC to DST.
7  *
8  * This is an internal routine used by strcpy, stpcpy, and strcat.
9  * As such, it uses special linkage conventions to make implementation
10  * of these public functions more efficient.
11  *
12  * On input:
13  *	t9 = return address
14  *	a0 = DST
15  *	a1 = SRC
16  *
17  * On output:
18  *	t12 = bitmask (with one bit set) indicating the last byte written
19  *	a0  = unaligned address of the last *word* written
20  *
21  * Furthermore, v0, a3-a5, t11, and t12 are untouched.
22  */
23 
24 #include <asm/regdef.h>
25 
26 	.set noat
27 	.set noreorder
28 
29 	.text
30 
31 /* There is a problem with either gdb (as of 4.16) or gas (as of 2.7) that
32    doesn't like putting the entry point for a procedure somewhere in the
33    middle of the procedure descriptor.  Work around this by putting the
34    aligned copy in its own procedure descriptor */
35 
36 	.ent stxcpy_aligned
37 	.align 3
38 stxcpy_aligned:
39 	.frame sp, 0, t9
40 	.prologue 0
41 
42 	/* On entry to this basic block:
43 	   t0 == the first destination word for masking back in
44 	   t1 == the first source word.  */
45 
46 	/* Create the 1st output word and detect 0's in the 1st input word.  */
47 	lda	t2, -1		# e1    : build a mask against false zero
48 	mskqh	t2, a1, t2	# e0    :   detection in the src word
49 	mskqh	t1, a1, t3	# e0    :
50 	ornot	t1, t2, t2	# .. e1 :
51 	mskql	t0, a1, t0	# e0    : assemble the first output word
52 	cmpbge	zero, t2, t8	# .. e1 : bits set iff null found
53 	or	t0, t3, t1	# e0    :
54 	bne	t8, $a_eos	# .. e1 :
55 
56 	/* On entry to this basic block:
57 	   t0 == the first destination word for masking back in
58 	   t1 == a source word not containing a null.  */
59 
60 $a_loop:
61 	stq_u	t1, 0(a0)	# e0    :
62 	addq	a0, 8, a0	# .. e1 :
63 	ldq_u	t1, 0(a1)	# e0    :
64 	addq	a1, 8, a1	# .. e1 :
65 	cmpbge	zero, t1, t8	# e0 (stall)
66 	beq	t8, $a_loop	# .. e1 (zdb)
67 
68 	/* Take care of the final (partial) word store.
69 	   On entry to this basic block we have:
70 	   t1 == the source word containing the null
71 	   t8 == the cmpbge mask that found it.  */
72 $a_eos:
73 	negq	t8, t6		# e0    : find low bit set
74 	and	t8, t6, t12	# e1 (stall)
75 
76 	/* For the sake of the cache, don't read a destination word
77 	   if we're not going to need it.  */
78 	and	t12, 0x80, t6	# e0    :
79 	bne	t6, 1f		# .. e1 (zdb)
80 
81 	/* We're doing a partial word store and so need to combine
82 	   our source and original destination words.  */
83 	ldq_u	t0, 0(a0)	# e0    :
84 	subq	t12, 1, t6	# .. e1 :
85 	zapnot	t1, t6, t1	# e0    : clear src bytes >= null
86 	or	t12, t6, t8	# .. e1 :
87 	zap	t0, t8, t0	# e0    : clear dst bytes <= null
88 	or	t0, t1, t1	# e1    :
89 
90 1:	stq_u	t1, 0(a0)	# e0    :
91 	ret	(t9)		# .. e1 :
92 
93 	.end stxcpy_aligned
94 
95 	.align 3
96 	.ent __stxcpy
97 	.globl __stxcpy
98 __stxcpy:
99 	.frame sp, 0, t9
100 	.prologue 0
101 
102 	/* Are source and destination co-aligned?  */
103 	xor	a0, a1, t0	# e0    :
104 	unop			#       :
105 	and	t0, 7, t0	# e0    :
106 	bne	t0, $unaligned	# .. e1 :
107 
108 	/* We are co-aligned; take care of a partial first word.  */
109 	ldq_u	t1, 0(a1)	# e0    : load first src word
110 	and	a0, 7, t0	# .. e1 : take care not to load a word ...
111 	addq	a1, 8, a1		# e0    :
112 	beq	t0, stxcpy_aligned	# .. e1 : ... if we wont need it
113 	ldq_u	t0, 0(a0)	# e0    :
114 	br	stxcpy_aligned	# .. e1 :
115 
116 
117 /* The source and destination are not co-aligned.  Align the destination
118    and cope.  We have to be very careful about not reading too much and
119    causing a SEGV.  */
120 
121 	.align 3
122 $u_head:
123 	/* We know just enough now to be able to assemble the first
124 	   full source word.  We can still find a zero at the end of it
125 	   that prevents us from outputting the whole thing.
126 
127 	   On entry to this basic block:
128 	   t0 == the first dest word, for masking back in, if needed else 0
129 	   t1 == the low bits of the first source word
130 	   t6 == bytemask that is -1 in dest word bytes */
131 
132 	ldq_u	t2, 8(a1)	# e0    :
133 	addq	a1, 8, a1	# .. e1 :
134 
135 	extql	t1, a1, t1	# e0    :
136 	extqh	t2, a1, t4	# e0    :
137 	mskql	t0, a0, t0	# e0    :
138 	or	t1, t4, t1	# .. e1 :
139 	mskqh	t1, a0, t1	# e0    :
140 	or	t0, t1, t1	# e1    :
141 
142 	or	t1, t6, t6	# e0    :
143 	cmpbge	zero, t6, t8	# .. e1 :
144 	lda	t6, -1		# e0    : for masking just below
145 	bne	t8, $u_final	# .. e1 :
146 
147 	mskql	t6, a1, t6		# e0    : mask out the bits we have
148 	or	t6, t2, t2		# e1    :   already extracted before
149 	cmpbge	zero, t2, t8		# e0    :   testing eos
150 	bne	t8, $u_late_head_exit	# .. e1 (zdb)
151 
152 	/* Finally, we've got all the stupid leading edge cases taken care
153 	   of and we can set up to enter the main loop.  */
154 
155 	stq_u	t1, 0(a0)	# e0    : store first output word
156 	addq	a0, 8, a0	# .. e1 :
157 	extql	t2, a1, t0	# e0    : position ho-bits of lo word
158 	ldq_u	t2, 8(a1)	# .. e1 : read next high-order source word
159 	addq	a1, 8, a1	# e0    :
160 	cmpbge	zero, t2, t8	# .. e1 :
161 	nop			# e0    :
162 	bne	t8, $u_eos	# .. e1 :
163 
164 	/* Unaligned copy main loop.  In order to avoid reading too much,
165 	   the loop is structured to detect zeros in aligned source words.
166 	   This has, unfortunately, effectively pulled half of a loop
167 	   iteration out into the head and half into the tail, but it does
168 	   prevent nastiness from accumulating in the very thing we want
169 	   to run as fast as possible.
170 
171 	   On entry to this basic block:
172 	   t0 == the shifted high-order bits from the previous source word
173 	   t2 == the unshifted current source word
174 
175 	   We further know that t2 does not contain a null terminator.  */
176 
177 	.align 3
178 $u_loop:
179 	extqh	t2, a1, t1	# e0    : extract high bits for current word
180 	addq	a1, 8, a1	# .. e1 :
181 	extql	t2, a1, t3	# e0    : extract low bits for next time
182 	addq	a0, 8, a0	# .. e1 :
183 	or	t0, t1, t1	# e0    : current dst word now complete
184 	ldq_u	t2, 0(a1)	# .. e1 : load high word for next time
185 	stq_u	t1, -8(a0)	# e0    : save the current word
186 	mov	t3, t0		# .. e1 :
187 	cmpbge	zero, t2, t8	# e0    : test new word for eos
188 	beq	t8, $u_loop	# .. e1 :
189 
190 	/* We've found a zero somewhere in the source word we just read.
191 	   If it resides in the lower half, we have one (probably partial)
192 	   word to write out, and if it resides in the upper half, we
193 	   have one full and one partial word left to write out.
194 
195 	   On entry to this basic block:
196 	   t0 == the shifted high-order bits from the previous source word
197 	   t2 == the unshifted current source word.  */
198 $u_eos:
199 	extqh	t2, a1, t1	# e0    :
200 	or	t0, t1, t1	# e1    : first (partial) source word complete
201 
202 	cmpbge	zero, t1, t8	# e0    : is the null in this first bit?
203 	bne	t8, $u_final	# .. e1 (zdb)
204 
205 $u_late_head_exit:
206 	stq_u	t1, 0(a0)	# e0    : the null was in the high-order bits
207 	addq	a0, 8, a0	# .. e1 :
208 	extql	t2, a1, t1	# e0    :
209 	cmpbge	zero, t1, t8	# .. e1 :
210 
211 	/* Take care of a final (probably partial) result word.
212 	   On entry to this basic block:
213 	   t1 == assembled source word
214 	   t8 == cmpbge mask that found the null.  */
215 $u_final:
216 	negq	t8, t6		# e0    : isolate low bit set
217 	and	t6, t8, t12	# e1    :
218 
219 	and	t12, 0x80, t6	# e0    : avoid dest word load if we can
220 	bne	t6, 1f		# .. e1 (zdb)
221 
222 	ldq_u	t0, 0(a0)	# e0    :
223 	subq	t12, 1, t6	# .. e1 :
224 	or	t6, t12, t8	# e0    :
225 	zapnot	t1, t6, t1	# .. e1 : kill source bytes >= null
226 	zap	t0, t8, t0	# e0    : kill dest bytes <= null
227 	or	t0, t1, t1	# e1    :
228 
229 1:	stq_u	t1, 0(a0)	# e0    :
230 	ret	(t9)		# .. e1 :
231 
232 	/* Unaligned copy entry point.  */
233 	.align 3
234 $unaligned:
235 
236 	ldq_u	t1, 0(a1)	# e0    : load first source word
237 
238 	and	a0, 7, t4	# .. e1 : find dest misalignment
239 	and	a1, 7, t5	# e0    : find src misalignment
240 
241 	/* Conditionally load the first destination word and a bytemask
242 	   with 0xff indicating that the destination byte is sacrosanct.  */
243 
244 	mov	zero, t0	# .. e1 :
245 	mov	zero, t6	# e0    :
246 	beq	t4, 1f		# .. e1 :
247 	ldq_u	t0, 0(a0)	# e0    :
248 	lda	t6, -1		# .. e1 :
249 	mskql	t6, a0, t6	# e0    :
250 1:
251 	subq	a1, t4, a1	# .. e1 : sub dest misalignment from src addr
252 
253 	/* If source misalignment is larger than dest misalignment, we need
254 	   extra startup checks to avoid SEGV.  */
255 
256 	cmplt	t4, t5, t12	# e0    :
257 	beq	t12, $u_head	# .. e1 (zdb)
258 
259 	lda	t2, -1		# e1    : mask out leading garbage in source
260 	mskqh	t2, t5, t2	# e0    :
261 	nop			# e0    :
262 	ornot	t1, t2, t3	# .. e1 :
263 	cmpbge	zero, t3, t8	# e0    : is there a zero?
264 	beq	t8, $u_head	# .. e1 (zdb)
265 
266 	/* At this point we've found a zero in the first partial word of
267 	   the source.  We need to isolate the valid source data and mask
268 	   it into the original destination data.  (Incidentally, we know
269 	   that we'll need at least one byte of that original dest word.) */
270 
271 	ldq_u	t0, 0(a0)	# e0    :
272 
273 	negq	t8, t6		# .. e1 : build bitmask of bytes <= zero
274 	and	t6, t8, t12	# e0    :
275 	and	a1, 7, t5	# .. e1 :
276 	subq	t12, 1, t6	# e0    :
277 	or	t6, t12, t8	# e1    :
278 	srl	t12, t5, t12	# e0    : adjust final null return value
279 
280 	zapnot	t2, t8, t2	# .. e1 : prepare source word; mirror changes
281 	and	t1, t2, t1	# e1    : to source validity mask
282 	extql	t2, a1, t2	# .. e0 :
283 	extql	t1, a1, t1	# e0    :
284 
285 	andnot	t0, t2, t0	# .. e1 : zero place for source to reside
286 	or	t0, t1, t1	# e1    : and put it there
287 	stq_u	t1, 0(a0)	# .. e0 :
288 	ret	(t9)		# e1    :
289 
290 	.end __stxcpy
291