1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  * arch/alpha/lib/ev6-stxncpy.S
4  * 21264 version contributed by Rick Gorton <rick.gorton@api-networks.com>
5  *
6  * Copy no more than COUNT bytes of the null-terminated string from
7  * SRC to DST.
8  *
9  * This is an internal routine used by strncpy, stpncpy, and strncat.
10  * As such, it uses special linkage conventions to make implementation
11  * of these public functions more efficient.
12  *
13  * On input:
14  *	t9 = return address
15  *	a0 = DST
16  *	a1 = SRC
17  *	a2 = COUNT
18  *
19  * Furthermore, COUNT may not be zero.
20  *
21  * On output:
22  *	t0  = last word written
23  *	t10 = bitmask (with one bit set) indicating the byte position of
24  *	      the end of the range specified by COUNT
25  *	t12 = bitmask (with one bit set) indicating the last byte written
26  *	a0  = unaligned address of the last *word* written
27  *	a2  = the number of full words left in COUNT
28  *
29  * Furthermore, v0, a3-a5, t11, and $at are untouched.
30  *
31  * Much of the information about 21264 scheduling/coding comes from:
32  *	Compiler Writer's Guide for the Alpha 21264
33  *	abbreviated as 'CWG' in other comments here
34  *	ftp.digital.com/pub/Digital/info/semiconductor/literature/dsc-library.html
35  * Scheduling notation:
36  *	E	- either cluster
37  *	U	- upper subcluster; U0 - subcluster U0; U1 - subcluster U1
38  *	L	- lower subcluster; L0 - subcluster L0; L1 - subcluster L1
39  * Try not to change the actual algorithm if possible for consistency.
40  */
41 
42 #include <asm/regdef.h>
43 
44 	.set noat
45 	.set noreorder
46 
47 	.text
48 
49 /* There is a problem with either gdb (as of 4.16) or gas (as of 2.7) that
50    doesn't like putting the entry point for a procedure somewhere in the
51    middle of the procedure descriptor.  Work around this by putting the
52    aligned copy in its own procedure descriptor */
53 
54 
55 	.ent stxncpy_aligned
56 	.align 4
57 stxncpy_aligned:
58 	.frame sp, 0, t9, 0
59 	.prologue 0
60 
61 	/* On entry to this basic block:
62 	   t0 == the first destination word for masking back in
63 	   t1 == the first source word.  */
64 
65 	/* Create the 1st output word and detect 0's in the 1st input word.  */
66 	lda	t2, -1		# E : build a mask against false zero
67 	mskqh	t2, a1, t2	# U :   detection in the src word (stall)
68 	mskqh	t1, a1, t3	# U :
69 	ornot	t1, t2, t2	# E : (stall)
70 
71 	mskql	t0, a1, t0	# U : assemble the first output word
72 	cmpbge	zero, t2, t8	# E : bits set iff null found
73 	or	t0, t3, t0	# E : (stall)
74 	beq	a2, $a_eoc	# U :
75 
76 	bne	t8, $a_eos	# U :
77 	nop
78 	nop
79 	nop
80 
81 	/* On entry to this basic block:
82 	   t0 == a source word not containing a null.  */
83 
84 	/*
85 	 * nops here to:
86 	 *	separate store quads from load quads
87 	 *	limit of 1 bcond/quad to permit training
88 	 */
89 $a_loop:
90 	stq_u	t0, 0(a0)	# L :
91 	addq	a0, 8, a0	# E :
92 	subq	a2, 1, a2	# E :
93 	nop
94 
95 	ldq_u	t0, 0(a1)	# L :
96 	addq	a1, 8, a1	# E :
97 	cmpbge	zero, t0, t8	# E :
98 	beq	a2, $a_eoc      # U :
99 
100 	beq	t8, $a_loop	# U :
101 	nop
102 	nop
103 	nop
104 
105 	/* Take care of the final (partial) word store.  At this point
106 	   the end-of-count bit is set in t8 iff it applies.
107 
108 	   On entry to this basic block we have:
109 	   t0 == the source word containing the null
110 	   t8 == the cmpbge mask that found it.  */
111 
112 $a_eos:
113 	negq	t8, t12		# E : find low bit set
114 	and	t8, t12, t12	# E : (stall)
115 	/* For the sake of the cache, don't read a destination word
116 	   if we're not going to need it.  */
117 	and	t12, 0x80, t6	# E : (stall)
118 	bne	t6, 1f		# U : (stall)
119 
120 	/* We're doing a partial word store and so need to combine
121 	   our source and original destination words.  */
122 	ldq_u	t1, 0(a0)	# L :
123 	subq	t12, 1, t6	# E :
124 	or	t12, t6, t8	# E : (stall)
125 	zapnot	t0, t8, t0	# U : clear src bytes > null (stall)
126 
127 	zap	t1, t8, t1	# .. e1 : clear dst bytes <= null
128 	or	t0, t1, t0	# e1    : (stall)
129 	nop
130 	nop
131 
132 1:	stq_u	t0, 0(a0)	# L :
133 	ret	(t9)		# L0 : Latency=3
134 	nop
135 	nop
136 
137 	/* Add the end-of-count bit to the eos detection bitmask.  */
138 $a_eoc:
139 	or	t10, t8, t8	# E :
140 	br	$a_eos		# L0 : Latency=3
141 	nop
142 	nop
143 
144 	.end stxncpy_aligned
145 
146 	.align 4
147 	.ent __stxncpy
148 	.globl __stxncpy
149 __stxncpy:
150 	.frame sp, 0, t9, 0
151 	.prologue 0
152 
153 	/* Are source and destination co-aligned?  */
154 	xor	a0, a1, t1	# E :
155 	and	a0, 7, t0	# E : find dest misalignment
156 	and	t1, 7, t1	# E : (stall)
157 	addq	a2, t0, a2	# E : bias count by dest misalignment (stall)
158 
159 	subq	a2, 1, a2	# E :
160 	and	a2, 7, t2	# E : (stall)
161 	srl	a2, 3, a2	# U : a2 = loop counter = (count - 1)/8 (stall)
162 	addq	zero, 1, t10	# E :
163 
164 	sll	t10, t2, t10	# U : t10 = bitmask of last count byte
165 	bne	t1, $unaligned	# U :
166 	/* We are co-aligned; take care of a partial first word.  */
167 	ldq_u	t1, 0(a1)	# L : load first src word
168 	addq	a1, 8, a1	# E :
169 
170 	beq	t0, stxncpy_aligned     # U : avoid loading dest word if not needed
171 	ldq_u	t0, 0(a0)	# L :
172 	nop
173 	nop
174 
175 	br	stxncpy_aligned	# .. e1 :
176 	nop
177 	nop
178 	nop
179 
180 
181 
182 /* The source and destination are not co-aligned.  Align the destination
183    and cope.  We have to be very careful about not reading too much and
184    causing a SEGV.  */
185 
186 	.align 4
187 $u_head:
188 	/* We know just enough now to be able to assemble the first
189 	   full source word.  We can still find a zero at the end of it
190 	   that prevents us from outputting the whole thing.
191 
192 	   On entry to this basic block:
193 	   t0 == the first dest word, unmasked
194 	   t1 == the shifted low bits of the first source word
195 	   t6 == bytemask that is -1 in dest word bytes */
196 
197 	ldq_u	t2, 8(a1)	# L : Latency=3 load second src word
198 	addq	a1, 8, a1	# E :
199 	mskql	t0, a0, t0	# U : mask trailing garbage in dst
200 	extqh	t2, a1, t4	# U : (3 cycle stall on t2)
201 
202 	or	t1, t4, t1	# E : first aligned src word complete (stall)
203 	mskqh	t1, a0, t1	# U : mask leading garbage in src (stall)
204 	or	t0, t1, t0	# E : first output word complete (stall)
205 	or	t0, t6, t6	# E : mask original data for zero test (stall)
206 
207 	cmpbge	zero, t6, t8	# E :
208 	beq	a2, $u_eocfin	# U :
209 	lda	t6, -1		# E :
210 	nop
211 
212 	bne	t8, $u_final	# U :
213 	mskql	t6, a1, t6	# U : mask out bits already seen
214 	stq_u	t0, 0(a0)	# L : store first output word
215 	or      t6, t2, t2	# E : (stall)
216 
217 	cmpbge	zero, t2, t8	# E : find nulls in second partial
218 	addq	a0, 8, a0	# E :
219 	subq	a2, 1, a2	# E :
220 	bne	t8, $u_late_head_exit	# U :
221 
222 	/* Finally, we've got all the stupid leading edge cases taken care
223 	   of and we can set up to enter the main loop.  */
224 	extql	t2, a1, t1	# U : position hi-bits of lo word
225 	beq	a2, $u_eoc	# U :
226 	ldq_u	t2, 8(a1)	# L : read next high-order source word
227 	addq	a1, 8, a1	# E :
228 
229 	extqh	t2, a1, t0	# U : position lo-bits of hi word (stall)
230 	cmpbge	zero, t2, t8	# E :
231 	nop
232 	bne	t8, $u_eos	# U :
233 
234 	/* Unaligned copy main loop.  In order to avoid reading too much,
235 	   the loop is structured to detect zeros in aligned source words.
236 	   This has, unfortunately, effectively pulled half of a loop
237 	   iteration out into the head and half into the tail, but it does
238 	   prevent nastiness from accumulating in the very thing we want
239 	   to run as fast as possible.
240 
241 	   On entry to this basic block:
242 	   t0 == the shifted low-order bits from the current source word
243 	   t1 == the shifted high-order bits from the previous source word
244 	   t2 == the unshifted current source word
245 
246 	   We further know that t2 does not contain a null terminator.  */
247 
248 	.align 4
249 $u_loop:
250 	or	t0, t1, t0	# E : current dst word now complete
251 	subq	a2, 1, a2	# E : decrement word count
252 	extql	t2, a1, t1	# U : extract low bits for next time
253 	addq	a0, 8, a0	# E :
254 
255 	stq_u	t0, -8(a0)	# U : save the current word
256 	beq	a2, $u_eoc	# U :
257 	ldq_u	t2, 8(a1)	# U : Latency=3 load high word for next time
258 	addq	a1, 8, a1	# E :
259 
260 	extqh	t2, a1, t0	# U : extract low bits (2 cycle stall)
261 	cmpbge	zero, t2, t8	# E : test new word for eos
262 	nop
263 	beq	t8, $u_loop	# U :
264 
265 	/* We've found a zero somewhere in the source word we just read.
266 	   If it resides in the lower half, we have one (probably partial)
267 	   word to write out, and if it resides in the upper half, we
268 	   have one full and one partial word left to write out.
269 
270 	   On entry to this basic block:
271 	   t0 == the shifted low-order bits from the current source word
272 	   t1 == the shifted high-order bits from the previous source word
273 	   t2 == the unshifted current source word.  */
274 $u_eos:
275 	or	t0, t1, t0	# E : first (partial) source word complete
276 	nop
277 	cmpbge	zero, t0, t8	# E : is the null in this first bit? (stall)
278 	bne	t8, $u_final	# U : (stall)
279 
280 	stq_u	t0, 0(a0)	# L : the null was in the high-order bits
281 	addq	a0, 8, a0	# E :
282 	subq	a2, 1, a2	# E :
283 	nop
284 
285 $u_late_head_exit:
286 	extql	t2, a1, t0	# U :
287 	cmpbge	zero, t0, t8	# E :
288 	or	t8, t10, t6	# E : (stall)
289 	cmoveq	a2, t6, t8	# E : Latency=2, extra map slot (stall)
290 
291 	/* Take care of a final (probably partial) result word.
292 	   On entry to this basic block:
293 	   t0 == assembled source word
294 	   t8 == cmpbge mask that found the null.  */
295 $u_final:
296 	negq	t8, t6		# E : isolate low bit set
297 	and	t6, t8, t12	# E : (stall)
298 	and	t12, 0x80, t6	# E : avoid dest word load if we can (stall)
299 	bne	t6, 1f		# U : (stall)
300 
301 	ldq_u	t1, 0(a0)	# L :
302 	subq	t12, 1, t6	# E :
303 	or	t6, t12, t8	# E : (stall)
304 	zapnot	t0, t8, t0	# U : kill source bytes > null
305 
306 	zap	t1, t8, t1	# U : kill dest bytes <= null
307 	or	t0, t1, t0	# E : (stall)
308 	nop
309 	nop
310 
311 1:	stq_u	t0, 0(a0)	# L :
312 	ret	(t9)		# L0 : Latency=3
313 
314 	  /* Got to end-of-count before end of string.
315 	     On entry to this basic block:
316 	     t1 == the shifted high-order bits from the previous source word  */
317 $u_eoc:
318 	and	a1, 7, t6	# E : avoid final load if possible
319 	sll	t10, t6, t6	# U : (stall)
320 	and	t6, 0xff, t6	# E : (stall)
321 	bne	t6, 1f		# U : (stall)
322 
323 	ldq_u	t2, 8(a1)	# L : load final src word
324 	nop
325 	extqh	t2, a1, t0	# U : extract low bits for last word (stall)
326 	or	t1, t0, t1	# E : (stall)
327 
328 1:	cmpbge	zero, t1, t8	# E :
329 	mov	t1, t0		# E :
330 
331 $u_eocfin:			# end-of-count, final word
332 	or	t10, t8, t8	# E :
333 	br	$u_final	# L0 : Latency=3
334 
335 	/* Unaligned copy entry point.  */
336 	.align 4
337 $unaligned:
338 
339 	ldq_u	t1, 0(a1)	# L : load first source word
340 	and	a0, 7, t4	# E : find dest misalignment
341 	and	a1, 7, t5	# E : find src misalignment
342 	/* Conditionally load the first destination word and a bytemask
343 	   with 0xff indicating that the destination byte is sacrosanct.  */
344 	mov	zero, t0	# E :
345 
346 	mov	zero, t6	# E :
347 	beq	t4, 1f		# U :
348 	ldq_u	t0, 0(a0)	# L :
349 	lda	t6, -1		# E :
350 
351 	mskql	t6, a0, t6	# U :
352 	nop
353 	nop
354 	subq	a1, t4, a1	# E : sub dest misalignment from src addr
355 
356 	/* If source misalignment is larger than dest misalignment, we need
357 	   extra startup checks to avoid SEGV.  */
358 
359 1:	cmplt	t4, t5, t12	# E :
360 	extql	t1, a1, t1	# U : shift src into place
361 	lda	t2, -1		# E : for creating masks later
362 	beq	t12, $u_head	# U : (stall)
363 
364 	extql	t2, a1, t2	# U :
365 	cmpbge	zero, t1, t8	# E : is there a zero?
366 	andnot	t2, t6, t2	# E : dest mask for a single word copy
367 	or	t8, t10, t5	# E : test for end-of-count too
368 
369 	cmpbge	zero, t2, t3	# E :
370 	cmoveq	a2, t5, t8	# E : Latency=2, extra map slot
371 	nop			# E : keep with cmoveq
372 	andnot	t8, t3, t8	# E : (stall)
373 
374 	beq	t8, $u_head	# U :
375 	/* At this point we've found a zero in the first partial word of
376 	   the source.  We need to isolate the valid source data and mask
377 	   it into the original destination data.  (Incidentally, we know
378 	   that we'll need at least one byte of that original dest word.) */
379 	ldq_u	t0, 0(a0)	# L :
380 	negq	t8, t6		# E : build bitmask of bytes <= zero
381 	mskqh	t1, t4, t1	# U :
382 
383 	and	t6, t8, t12	# E :
384 	subq	t12, 1, t6	# E : (stall)
385 	or	t6, t12, t8	# E : (stall)
386 	zapnot	t2, t8, t2	# U : prepare source word; mirror changes (stall)
387 
388 	zapnot	t1, t8, t1	# U : to source validity mask
389 	andnot	t0, t2, t0	# E : zero place for source to reside
390 	or	t0, t1, t0	# E : and put it there (stall both t0, t1)
391 	stq_u	t0, 0(a0)	# L : (stall)
392 
393 	ret	(t9)		# L0 : Latency=3
394 	nop
395 	nop
396 	nop
397 
398 	.end __stxncpy
399