1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  * arch/alpha/lib/ev6-memchr.S
4  *
5  * 21264 version contributed by Rick Gorton <rick.gorton@alpha-processor.com>
6  *
7  * Finds characters in a memory area.  Optimized for the Alpha:
8  *
9  *    - memory accessed as aligned quadwords only
10  *    - uses cmpbge to compare 8 bytes in parallel
11  *    - does binary search to find 0 byte in last
12  *      quadword (HAKMEM needed 12 instructions to
13  *      do this instead of the 9 instructions that
14  *      binary search needs).
15  *
16  * For correctness consider that:
17  *
18  *    - only minimum number of quadwords may be accessed
19  *    - the third argument is an unsigned long
20  *
21  * Much of the information about 21264 scheduling/coding comes from:
22  *	Compiler Writer's Guide for the Alpha 21264
23  *	abbreviated as 'CWG' in other comments here
24  *	ftp.digital.com/pub/Digital/info/semiconductor/literature/dsc-library.html
25  * Scheduling notation:
26  *	E	- either cluster
27  *	U	- upper subcluster; U0 - subcluster U0; U1 - subcluster U1
28  *	L	- lower subcluster; L0 - subcluster L0; L1 - subcluster L1
29  * Try not to change the actual algorithm if possible for consistency.
30  */
31 #include <linux/export.h>
32         .set noreorder
33         .set noat
34 
35 	.align	4
36 	.globl memchr
37 	.ent memchr
38 memchr:
39 	.frame $30,0,$26,0
40 	.prologue 0
41 
42 	# Hack -- if someone passes in (size_t)-1, hoping to just
43 	# search til the end of the address space, we will overflow
44 	# below when we find the address of the last byte.  Given
45 	# that we will never have a 56-bit address space, cropping
46 	# the length is the easiest way to avoid trouble.
47 	zap	$18, 0x80, $5	# U : Bound length
48 	beq	$18, $not_found	# U :
49         ldq_u   $1, 0($16)	# L : load first quadword Latency=3
50 	and	$17, 0xff, $17	# E : L L U U : 00000000000000ch
51 
52 	insbl	$17, 1, $2	# U : 000000000000ch00
53 	cmpult	$18, 9, $4	# E : small (< 1 quad) string?
54 	or	$2, $17, $17	# E : 000000000000chch
55         lda     $3, -1($31)	# E : U L L U
56 
57 	sll	$17, 16, $2	# U : 00000000chch0000
58 	addq	$16, $5, $5	# E : Max search address
59 	or	$2, $17, $17	# E : 00000000chchchch
60 	sll	$17, 32, $2	# U : U L L U : chchchch00000000
61 
62 	or	$2, $17, $17	# E : chchchchchchchch
63 	extql	$1, $16, $7	# U : $7 is upper bits
64 	beq	$4, $first_quad	# U :
65 	ldq_u	$6, -1($5)	# L : L U U L : eight or less bytes to search Latency=3
66 
67 	extqh	$6, $16, $6	# U : 2 cycle stall for $6
68 	mov	$16, $0		# E :
69 	nop			# E :
70 	or	$7, $6, $1	# E : L U L U $1 = quadword starting at $16
71 
72 	# Deal with the case where at most 8 bytes remain to be searched
73 	# in $1.  E.g.:
74 	#	$18 = 6
75 	#	$1 = ????c6c5c4c3c2c1
76 $last_quad:
77 	negq	$18, $6		# E :
78         xor	$17, $1, $1	# E :
79 	srl	$3, $6, $6	# U : $6 = mask of $18 bits set
80         cmpbge  $31, $1, $2	# E : L U L U
81 
82 	nop
83 	nop
84 	and	$2, $6, $2	# E :
85         beq     $2, $not_found	# U : U L U L
86 
87 $found_it:
88 #ifdef CONFIG_ALPHA_EV67
89 	/*
90 	 * Since we are guaranteed to have set one of the bits, we don't
91 	 * have to worry about coming back with a 0x40 out of cttz...
92 	 */
93 	cttz	$2, $3		# U0 :
94 	addq	$0, $3, $0	# E : All done
95 	nop			# E :
96 	ret			# L0 : L U L U
97 #else
98 	/*
99 	 * Slow and clunky.  It can probably be improved.
100 	 * An exercise left for others.
101 	 */
102         negq    $2, $3		# E :
103         and     $2, $3, $2	# E :
104         and     $2, 0x0f, $1	# E :
105         addq    $0, 4, $3	# E :
106 
107         cmoveq  $1, $3, $0	# E : Latency 2, extra map cycle
108 	nop			# E : keep with cmov
109         and     $2, 0x33, $1	# E :
110         addq    $0, 2, $3	# E : U L U L : 2 cycle stall on $0
111 
112         cmoveq  $1, $3, $0	# E : Latency 2, extra map cycle
113 	nop			# E : keep with cmov
114         and     $2, 0x55, $1	# E :
115         addq    $0, 1, $3	# E : U L U L : 2 cycle stall on $0
116 
117         cmoveq  $1, $3, $0	# E : Latency 2, extra map cycle
118 	nop
119 	nop
120 	ret			# L0 : L U L U
121 #endif
122 
123 	# Deal with the case where $18 > 8 bytes remain to be
124 	# searched.  $16 may not be aligned.
125 	.align 4
126 $first_quad:
127 	andnot	$16, 0x7, $0	# E :
128         insqh   $3, $16, $2	# U : $2 = 0000ffffffffffff ($16<0:2> ff)
129         xor	$1, $17, $1	# E :
130 	or	$1, $2, $1	# E : U L U L $1 = ====ffffffffffff
131 
132         cmpbge  $31, $1, $2	# E :
133         bne     $2, $found_it	# U :
134 	# At least one byte left to process.
135 	ldq	$1, 8($0)	# L :
136 	subq	$5, 1, $18	# E : U L U L
137 
138 	addq	$0, 8, $0	# E :
139 	# Make $18 point to last quad to be accessed (the
140 	# last quad may or may not be partial).
141 	andnot	$18, 0x7, $18	# E :
142 	cmpult	$0, $18, $2	# E :
143 	beq	$2, $final	# U : U L U L
144 
145 	# At least two quads remain to be accessed.
146 
147 	subq	$18, $0, $4	# E : $4 <- nr quads to be processed
148 	and	$4, 8, $4	# E : odd number of quads?
149 	bne	$4, $odd_quad_count # U :
150 	# At least three quads remain to be accessed
151 	mov	$1, $4		# E : L U L U : move prefetched value to correct reg
152 
153 	.align	4
154 $unrolled_loop:
155 	ldq	$1, 8($0)	# L : prefetch $1
156 	xor	$17, $4, $2	# E :
157 	cmpbge	$31, $2, $2	# E :
158 	bne	$2, $found_it	# U : U L U L
159 
160 	addq	$0, 8, $0	# E :
161 	nop			# E :
162 	nop			# E :
163 	nop			# E :
164 
165 $odd_quad_count:
166 	xor	$17, $1, $2	# E :
167 	ldq	$4, 8($0)	# L : prefetch $4
168 	cmpbge	$31, $2, $2	# E :
169 	addq	$0, 8, $6	# E :
170 
171 	bne	$2, $found_it	# U :
172 	cmpult	$6, $18, $6	# E :
173 	addq	$0, 8, $0	# E :
174 	nop			# E :
175 
176 	bne	$6, $unrolled_loop # U :
177 	mov	$4, $1		# E : move prefetched value into $1
178 	nop			# E :
179 	nop			# E :
180 
181 $final:	subq	$5, $0, $18	# E : $18 <- number of bytes left to do
182 	nop			# E :
183 	nop			# E :
184 	bne	$18, $last_quad	# U :
185 
186 $not_found:
187 	mov	$31, $0		# E :
188 	nop			# E :
189 	nop			# E :
190 	ret			# L0 :
191 
192         .end memchr
193 	EXPORT_SYMBOL(memchr)
194