1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  * arch/alpha/lib/ev6-csum_ipv6_magic.S
4  * 21264 version contributed by Rick Gorton <rick.gorton@alpha-processor.com>
5  *
6  * unsigned short csum_ipv6_magic(struct in6_addr *saddr,
7  *                                struct in6_addr *daddr,
8  *                                __u32 len,
9  *                                unsigned short proto,
10  *                                unsigned int csum);
11  *
12  * Much of the information about 21264 scheduling/coding comes from:
13  *	Compiler Writer's Guide for the Alpha 21264
14  *	abbreviated as 'CWG' in other comments here
15  *	ftp.digital.com/pub/Digital/info/semiconductor/literature/dsc-library.html
16  * Scheduling notation:
17  *	E	- either cluster
18  *	U	- upper subcluster; U0 - subcluster U0; U1 - subcluster U1
19  *	L	- lower subcluster; L0 - subcluster L0; L1 - subcluster L1
20  * Try not to change the actual algorithm if possible for consistency.
21  * Determining actual stalls (other than slotting) doesn't appear to be easy to do.
22  *
23  * unsigned short csum_ipv6_magic(struct in6_addr *saddr,
24  *                                struct in6_addr *daddr,
25  *                                __u32 len,
26  *                                unsigned short proto,
27  *                                unsigned int csum);
28  *
29  * Swap <proto> (takes form 0xaabb)
30  * Then shift it left by 48, so result is:
31  *	0xbbaa0000 00000000
32  * Then turn it back into a sign extended 32-bit item
33  *	0xbbaa0000
34  *
35  * Swap <len> (an unsigned int) using Mike Burrows' 7-instruction sequence
36  * (we can't hide the 3-cycle latency of the unpkbw in the 6-instruction sequence)
37  * Assume input takes form 0xAABBCCDD
38  *
39  * Finally, original 'folding' approach is to split the long into 4 unsigned shorts
40  * add 4 ushorts, resulting in ushort/carry
41  * add carry bits + ushort --> ushort
42  * add carry bits + ushort --> ushort (in case the carry results in an overflow)
43  * Truncate to a ushort.  (took 13 instructions)
44  * From doing some testing, using the approach in checksum.c:from64to16()
45  * results in the same outcome:
46  * split into 2 uints, add those, generating a ulong
47  * add the 3 low ushorts together, generating a uint
48  * a final add of the 2 lower ushorts
49  * truncating the result.
50  *
51  * Misalignment handling added by Ivan Kokshaysky <ink@jurassic.park.msu.ru>
52  * The cost is 16 instructions (~8 cycles), including two extra loads which
53  * may cause additional delay in rare cases (load-load replay traps).
54  */
55 
56 #include <linux/export.h>
57 	.globl csum_ipv6_magic
58 	.align 4
59 	.ent csum_ipv6_magic
60 	.frame $30,0,$26,0
61 csum_ipv6_magic:
62 	.prologue 0
63 
64 	ldq_u	$0,0($16)	# L : Latency: 3
65 	inslh	$18,7,$4	# U : 0000000000AABBCC
66 	ldq_u	$1,8($16)	# L : Latency: 3
67 	sll	$19,8,$7	# U : U L U L : 0x00000000 00aabb00
68 
69 	and	$16,7,$6	# E : src misalignment
70 	ldq_u	$5,15($16)	# L : Latency: 3
71 	zapnot	$20,15,$20	# U : zero extend incoming csum
72 	ldq_u	$2,0($17)	# L : U L U L : Latency: 3
73 
74 	extql	$0,$6,$0	# U :
75 	extqh	$1,$6,$22	# U :
76 	ldq_u	$3,8($17)	# L : Latency: 3
77 	sll	$19,24,$19	# U : U U L U : 0x000000aa bb000000
78 
79 	cmoveq	$6,$31,$22	# E : src aligned?
80 	ldq_u	$23,15($17)	# L : Latency: 3
81 	inswl	$18,3,$18	# U : 000000CCDD000000
82 	addl	$19,$7,$19	# E : U L U L : <sign bits>bbaabb00
83 
84 	or	$0,$22,$0	# E : 1st src word complete
85 	extql	$1,$6,$1	# U :
86 	or	$18,$4,$18	# E : 000000CCDDAABBCC
87 	extqh	$5,$6,$5	# U : L U L U
88 
89 	and	$17,7,$6	# E : dst misalignment
90 	extql	$2,$6,$2	# U :
91 	or	$1,$5,$1	# E : 2nd src word complete
92 	extqh	$3,$6,$22	# U : L U L U :
93 
94 	cmoveq	$6,$31,$22	# E : dst aligned?
95 	extql	$3,$6,$3	# U :
96 	addq	$20,$0,$20	# E : begin summing the words
97 	extqh	$23,$6,$23	# U : L U L U :
98 
99 	srl	$18,16,$4	# U : 0000000000CCDDAA
100 	or	$2,$22,$2	# E : 1st dst word complete
101 	zap	$19,0x3,$19	# U : <sign bits>bbaa0000
102 	or	$3,$23,$3	# E : U L U L : 2nd dst word complete
103 
104 	cmpult	$20,$0,$0	# E :
105 	addq	$20,$1,$20	# E :
106 	zapnot	$18,0xa,$18	# U : 00000000DD00BB00
107 	zap	$4,0xa,$4	# U : U U L L : 0000000000CC00AA
108 
109 	or	$18,$4,$18	# E : 00000000DDCCBBAA
110 	nop			# E :
111 	cmpult	$20,$1,$1	# E :
112 	addq	$20,$2,$20	# E : U L U L
113 
114 	cmpult	$20,$2,$2	# E :
115 	addq	$20,$3,$20	# E :
116 	cmpult	$20,$3,$3	# E : (1 cycle stall on $20)
117 	addq	$20,$18,$20	# E : U L U L (1 cycle stall on $20)
118 
119 	cmpult	$20,$18,$18	# E :
120 	addq	$20,$19,$20	# E : (1 cycle stall on $20)
121 	addq	$0,$1,$0	# E : merge the carries back into the csum
122 	addq	$2,$3,$2	# E :
123 
124 	cmpult	$20,$19,$19	# E :
125 	addq	$18,$19,$18	# E : (1 cycle stall on $19)
126 	addq	$0,$2,$0	# E :
127 	addq	$20,$18,$20	# E : U L U L :
128 		/* (1 cycle stall on $18, 2 cycles on $20) */
129 
130 	addq	$0,$20,$0	# E :
131 	zapnot	$0,15,$1	# U : Start folding output (1 cycle stall on $0)
132 	nop			# E :
133 	srl	$0,32,$0	# U : U L U L : (1 cycle stall on $0)
134 
135 	addq	$1,$0,$1	# E : Finished generating ulong
136 	extwl	$1,2,$2		# U : ushort[1] (1 cycle stall on $1)
137 	zapnot	$1,3,$0		# U : ushort[0] (1 cycle stall on $1)
138 	extwl	$1,4,$1		# U : ushort[2] (1 cycle stall on $1)
139 
140 	addq	$0,$2,$0	# E
141 	addq	$0,$1,$3	# E : Finished generating uint
142 		/* (1 cycle stall on $0) */
143 	extwl	$3,2,$1		# U : ushort[1] (1 cycle stall on $3)
144 	nop			# E : L U L U
145 
146 	addq	$1,$3,$0	# E : Final carry
147 	not	$0,$4		# E : complement (1 cycle stall on $0)
148 	zapnot	$4,3,$0		# U : clear upper garbage bits
149 		/* (1 cycle stall on $4) */
150 	ret			# L0 : L U L U
151 
152 	.end csum_ipv6_magic
153 	EXPORT_SYMBOL(csum_ipv6_magic)
154