1 /*
2 * Copyright (c) 2016-2017, Mellanox Technologies. All rights reserved.
3 * Copyright (c) 2016-2017, Dave Watson <davejwatson@fb.com>. All rights reserved.
4 * Copyright (c) 2016-2017, Lance Chao <lancerchao@fb.com>. All rights reserved.
5 * Copyright (c) 2016, Fridolin Pokorny <fridolin.pokorny@gmail.com>. All rights reserved.
6 * Copyright (c) 2016, Nikos Mavrogiannopoulos <nmav@gnutls.org>. All rights reserved.
7 * Copyright (c) 2018, Covalent IO, Inc. http://covalent.io
8 *
9 * This software is available to you under a choice of one of two
10 * licenses. You may choose to be licensed under the terms of the GNU
11 * General Public License (GPL) Version 2, available from the file
12 * COPYING in the main directory of this source tree, or the
13 * OpenIB.org BSD license below:
14 *
15 * Redistribution and use in source and binary forms, with or
16 * without modification, are permitted provided that the following
17 * conditions are met:
18 *
19 * - Redistributions of source code must retain the above
20 * copyright notice, this list of conditions and the following
21 * disclaimer.
22 *
23 * - Redistributions in binary form must reproduce the above
24 * copyright notice, this list of conditions and the following
25 * disclaimer in the documentation and/or other materials
26 * provided with the distribution.
27 *
28 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
29 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
30 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
31 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
32 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
33 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
34 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
35 * SOFTWARE.
36 */
37
38 #include <linux/bug.h>
39 #include <linux/sched/signal.h>
40 #include <linux/module.h>
41 #include <linux/splice.h>
42 #include <crypto/aead.h>
43
44 #include <net/strparser.h>
45 #include <net/tls.h>
46
tls_err_abort(struct sock *sk, int err)47 noinline void tls_err_abort(struct sock *sk, int err)
48 {
49 WARN_ON_ONCE(err >= 0);
50 /* sk->sk_err should contain a positive error code. */
51 sk->sk_err = -err;
52 sk->sk_error_report(sk);
53 }
54
__skb_nsg(struct sk_buff *skb, int offset, int len, unsigned int recursion_level)55 static int __skb_nsg(struct sk_buff *skb, int offset, int len,
56 unsigned int recursion_level)
57 {
58 int start = skb_headlen(skb);
59 int i, chunk = start - offset;
60 struct sk_buff *frag_iter;
61 int elt = 0;
62
63 if (unlikely(recursion_level >= 24))
64 return -EMSGSIZE;
65
66 if (chunk > 0) {
67 if (chunk > len)
68 chunk = len;
69 elt++;
70 len -= chunk;
71 if (len == 0)
72 return elt;
73 offset += chunk;
74 }
75
76 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
77 int end;
78
79 WARN_ON(start > offset + len);
80
81 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
82 chunk = end - offset;
83 if (chunk > 0) {
84 if (chunk > len)
85 chunk = len;
86 elt++;
87 len -= chunk;
88 if (len == 0)
89 return elt;
90 offset += chunk;
91 }
92 start = end;
93 }
94
95 if (unlikely(skb_has_frag_list(skb))) {
96 skb_walk_frags(skb, frag_iter) {
97 int end, ret;
98
99 WARN_ON(start > offset + len);
100
101 end = start + frag_iter->len;
102 chunk = end - offset;
103 if (chunk > 0) {
104 if (chunk > len)
105 chunk = len;
106 ret = __skb_nsg(frag_iter, offset - start, chunk,
107 recursion_level + 1);
108 if (unlikely(ret < 0))
109 return ret;
110 elt += ret;
111 len -= chunk;
112 if (len == 0)
113 return elt;
114 offset += chunk;
115 }
116 start = end;
117 }
118 }
119 BUG_ON(len);
120 return elt;
121 }
122
123 /* Return the number of scatterlist elements required to completely map the
124 * skb, or -EMSGSIZE if the recursion depth is exceeded.
125 */
skb_nsg(struct sk_buff *skb, int offset, int len)126 static int skb_nsg(struct sk_buff *skb, int offset, int len)
127 {
128 return __skb_nsg(skb, offset, len, 0);
129 }
130
padding_length(struct tls_sw_context_rx *ctx, struct tls_prot_info *prot, struct sk_buff *skb)131 static int padding_length(struct tls_sw_context_rx *ctx,
132 struct tls_prot_info *prot, struct sk_buff *skb)
133 {
134 struct strp_msg *rxm = strp_msg(skb);
135 int sub = 0;
136
137 /* Determine zero-padding length */
138 if (prot->version == TLS_1_3_VERSION) {
139 char content_type = 0;
140 int err;
141 int back = 17;
142
143 while (content_type == 0) {
144 if (back > rxm->full_len - prot->prepend_size)
145 return -EBADMSG;
146 err = skb_copy_bits(skb,
147 rxm->offset + rxm->full_len - back,
148 &content_type, 1);
149 if (err)
150 return err;
151 if (content_type)
152 break;
153 sub++;
154 back++;
155 }
156 ctx->control = content_type;
157 }
158 return sub;
159 }
160
tls_decrypt_done(struct crypto_async_request *req, int err)161 static void tls_decrypt_done(struct crypto_async_request *req, int err)
162 {
163 struct aead_request *aead_req = (struct aead_request *)req;
164 struct scatterlist *sgout = aead_req->dst;
165 struct scatterlist *sgin = aead_req->src;
166 struct tls_sw_context_rx *ctx;
167 struct tls_context *tls_ctx;
168 struct tls_prot_info *prot;
169 struct scatterlist *sg;
170 struct sk_buff *skb;
171 unsigned int pages;
172 int pending;
173
174 skb = (struct sk_buff *)req->data;
175 tls_ctx = tls_get_ctx(skb->sk);
176 ctx = tls_sw_ctx_rx(tls_ctx);
177 prot = &tls_ctx->prot_info;
178
179 /* Propagate if there was an err */
180 if (err) {
181 if (err == -EBADMSG)
182 TLS_INC_STATS(sock_net(skb->sk),
183 LINUX_MIB_TLSDECRYPTERROR);
184 ctx->async_wait.err = err;
185 tls_err_abort(skb->sk, err);
186 } else {
187 struct strp_msg *rxm = strp_msg(skb);
188 int pad;
189
190 pad = padding_length(ctx, prot, skb);
191 if (pad < 0) {
192 ctx->async_wait.err = pad;
193 tls_err_abort(skb->sk, pad);
194 } else {
195 rxm->full_len -= pad;
196 rxm->offset += prot->prepend_size;
197 rxm->full_len -= prot->overhead_size;
198 }
199 }
200
201 /* After using skb->sk to propagate sk through crypto async callback
202 * we need to NULL it again.
203 */
204 skb->sk = NULL;
205
206
207 /* Free the destination pages if skb was not decrypted inplace */
208 if (sgout != sgin) {
209 /* Skip the first S/G entry as it points to AAD */
210 for_each_sg(sg_next(sgout), sg, UINT_MAX, pages) {
211 if (!sg)
212 break;
213 put_page(sg_page(sg));
214 }
215 }
216
217 kfree(aead_req);
218
219 spin_lock_bh(&ctx->decrypt_compl_lock);
220 pending = atomic_dec_return(&ctx->decrypt_pending);
221
222 if (!pending && ctx->async_notify)
223 complete(&ctx->async_wait.completion);
224 spin_unlock_bh(&ctx->decrypt_compl_lock);
225 }
226
tls_do_decryption(struct sock *sk, struct sk_buff *skb, struct scatterlist *sgin, struct scatterlist *sgout, char *iv_recv, size_t data_len, struct aead_request *aead_req, bool async)227 static int tls_do_decryption(struct sock *sk,
228 struct sk_buff *skb,
229 struct scatterlist *sgin,
230 struct scatterlist *sgout,
231 char *iv_recv,
232 size_t data_len,
233 struct aead_request *aead_req,
234 bool async)
235 {
236 struct tls_context *tls_ctx = tls_get_ctx(sk);
237 struct tls_prot_info *prot = &tls_ctx->prot_info;
238 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
239 int ret;
240
241 aead_request_set_tfm(aead_req, ctx->aead_recv);
242 aead_request_set_ad(aead_req, prot->aad_size);
243 aead_request_set_crypt(aead_req, sgin, sgout,
244 data_len + prot->tag_size,
245 (u8 *)iv_recv);
246
247 if (async) {
248 /* Using skb->sk to push sk through to crypto async callback
249 * handler. This allows propagating errors up to the socket
250 * if needed. It _must_ be cleared in the async handler
251 * before consume_skb is called. We _know_ skb->sk is NULL
252 * because it is a clone from strparser.
253 */
254 skb->sk = sk;
255 aead_request_set_callback(aead_req,
256 CRYPTO_TFM_REQ_MAY_BACKLOG,
257 tls_decrypt_done, skb);
258 atomic_inc(&ctx->decrypt_pending);
259 } else {
260 aead_request_set_callback(aead_req,
261 CRYPTO_TFM_REQ_MAY_BACKLOG,
262 crypto_req_done, &ctx->async_wait);
263 }
264
265 ret = crypto_aead_decrypt(aead_req);
266 if (ret == -EINPROGRESS) {
267 if (async)
268 return ret;
269
270 ret = crypto_wait_req(ret, &ctx->async_wait);
271 }
272
273 if (async)
274 atomic_dec(&ctx->decrypt_pending);
275
276 return ret;
277 }
278
tls_trim_both_msgs(struct sock *sk, int target_size)279 static void tls_trim_both_msgs(struct sock *sk, int target_size)
280 {
281 struct tls_context *tls_ctx = tls_get_ctx(sk);
282 struct tls_prot_info *prot = &tls_ctx->prot_info;
283 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
284 struct tls_rec *rec = ctx->open_rec;
285
286 sk_msg_trim(sk, &rec->msg_plaintext, target_size);
287 if (target_size > 0)
288 target_size += prot->overhead_size;
289 sk_msg_trim(sk, &rec->msg_encrypted, target_size);
290 }
291
tls_alloc_encrypted_msg(struct sock *sk, int len)292 static int tls_alloc_encrypted_msg(struct sock *sk, int len)
293 {
294 struct tls_context *tls_ctx = tls_get_ctx(sk);
295 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
296 struct tls_rec *rec = ctx->open_rec;
297 struct sk_msg *msg_en = &rec->msg_encrypted;
298
299 return sk_msg_alloc(sk, msg_en, len, 0);
300 }
301
tls_clone_plaintext_msg(struct sock *sk, int required)302 static int tls_clone_plaintext_msg(struct sock *sk, int required)
303 {
304 struct tls_context *tls_ctx = tls_get_ctx(sk);
305 struct tls_prot_info *prot = &tls_ctx->prot_info;
306 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
307 struct tls_rec *rec = ctx->open_rec;
308 struct sk_msg *msg_pl = &rec->msg_plaintext;
309 struct sk_msg *msg_en = &rec->msg_encrypted;
310 int skip, len;
311
312 /* We add page references worth len bytes from encrypted sg
313 * at the end of plaintext sg. It is guaranteed that msg_en
314 * has enough required room (ensured by caller).
315 */
316 len = required - msg_pl->sg.size;
317
318 /* Skip initial bytes in msg_en's data to be able to use
319 * same offset of both plain and encrypted data.
320 */
321 skip = prot->prepend_size + msg_pl->sg.size;
322
323 return sk_msg_clone(sk, msg_pl, msg_en, skip, len);
324 }
325
tls_get_rec(struct sock *sk)326 static struct tls_rec *tls_get_rec(struct sock *sk)
327 {
328 struct tls_context *tls_ctx = tls_get_ctx(sk);
329 struct tls_prot_info *prot = &tls_ctx->prot_info;
330 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
331 struct sk_msg *msg_pl, *msg_en;
332 struct tls_rec *rec;
333 int mem_size;
334
335 mem_size = sizeof(struct tls_rec) + crypto_aead_reqsize(ctx->aead_send);
336
337 rec = kzalloc(mem_size, sk->sk_allocation);
338 if (!rec)
339 return NULL;
340
341 msg_pl = &rec->msg_plaintext;
342 msg_en = &rec->msg_encrypted;
343
344 sk_msg_init(msg_pl);
345 sk_msg_init(msg_en);
346
347 sg_init_table(rec->sg_aead_in, 2);
348 sg_set_buf(&rec->sg_aead_in[0], rec->aad_space, prot->aad_size);
349 sg_unmark_end(&rec->sg_aead_in[1]);
350
351 sg_init_table(rec->sg_aead_out, 2);
352 sg_set_buf(&rec->sg_aead_out[0], rec->aad_space, prot->aad_size);
353 sg_unmark_end(&rec->sg_aead_out[1]);
354
355 return rec;
356 }
357
tls_free_rec(struct sock *sk, struct tls_rec *rec)358 static void tls_free_rec(struct sock *sk, struct tls_rec *rec)
359 {
360 sk_msg_free(sk, &rec->msg_encrypted);
361 sk_msg_free(sk, &rec->msg_plaintext);
362 kfree(rec);
363 }
364
tls_free_open_rec(struct sock *sk)365 static void tls_free_open_rec(struct sock *sk)
366 {
367 struct tls_context *tls_ctx = tls_get_ctx(sk);
368 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
369 struct tls_rec *rec = ctx->open_rec;
370
371 if (rec) {
372 tls_free_rec(sk, rec);
373 ctx->open_rec = NULL;
374 }
375 }
376
tls_tx_records(struct sock *sk, int flags)377 int tls_tx_records(struct sock *sk, int flags)
378 {
379 struct tls_context *tls_ctx = tls_get_ctx(sk);
380 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
381 struct tls_rec *rec, *tmp;
382 struct sk_msg *msg_en;
383 int tx_flags, rc = 0;
384
385 if (tls_is_partially_sent_record(tls_ctx)) {
386 rec = list_first_entry(&ctx->tx_list,
387 struct tls_rec, list);
388
389 if (flags == -1)
390 tx_flags = rec->tx_flags;
391 else
392 tx_flags = flags;
393
394 rc = tls_push_partial_record(sk, tls_ctx, tx_flags);
395 if (rc)
396 goto tx_err;
397
398 /* Full record has been transmitted.
399 * Remove the head of tx_list
400 */
401 list_del(&rec->list);
402 sk_msg_free(sk, &rec->msg_plaintext);
403 kfree(rec);
404 }
405
406 /* Tx all ready records */
407 list_for_each_entry_safe(rec, tmp, &ctx->tx_list, list) {
408 if (READ_ONCE(rec->tx_ready)) {
409 if (flags == -1)
410 tx_flags = rec->tx_flags;
411 else
412 tx_flags = flags;
413
414 msg_en = &rec->msg_encrypted;
415 rc = tls_push_sg(sk, tls_ctx,
416 &msg_en->sg.data[msg_en->sg.curr],
417 0, tx_flags);
418 if (rc)
419 goto tx_err;
420
421 list_del(&rec->list);
422 sk_msg_free(sk, &rec->msg_plaintext);
423 kfree(rec);
424 } else {
425 break;
426 }
427 }
428
429 tx_err:
430 if (rc < 0 && rc != -EAGAIN)
431 tls_err_abort(sk, -EBADMSG);
432
433 return rc;
434 }
435
tls_encrypt_done(struct crypto_async_request *req, int err)436 static void tls_encrypt_done(struct crypto_async_request *req, int err)
437 {
438 struct aead_request *aead_req = (struct aead_request *)req;
439 struct sock *sk = req->data;
440 struct tls_context *tls_ctx = tls_get_ctx(sk);
441 struct tls_prot_info *prot = &tls_ctx->prot_info;
442 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
443 struct scatterlist *sge;
444 struct sk_msg *msg_en;
445 struct tls_rec *rec;
446 int pending;
447
448 rec = container_of(aead_req, struct tls_rec, aead_req);
449 msg_en = &rec->msg_encrypted;
450
451 sge = sk_msg_elem(msg_en, msg_en->sg.curr);
452 sge->offset -= prot->prepend_size;
453 sge->length += prot->prepend_size;
454
455 /* Check if error is previously set on socket */
456 if (err || sk->sk_err) {
457 rec = NULL;
458
459 /* If err is already set on socket, return the same code */
460 if (sk->sk_err) {
461 ctx->async_wait.err = -sk->sk_err;
462 } else {
463 ctx->async_wait.err = err;
464 tls_err_abort(sk, err);
465 }
466 }
467
468 if (rec) {
469 struct tls_rec *first_rec;
470
471 /* Mark the record as ready for transmission */
472 smp_store_mb(rec->tx_ready, true);
473
474 /* If received record is at head of tx_list, schedule tx */
475 first_rec = list_first_entry(&ctx->tx_list,
476 struct tls_rec, list);
477 if (rec == first_rec) {
478 /* Schedule the transmission */
479 if (!test_and_set_bit(BIT_TX_SCHEDULED,
480 &ctx->tx_bitmask))
481 schedule_delayed_work(&ctx->tx_work.work, 1);
482 }
483 }
484
485 spin_lock_bh(&ctx->encrypt_compl_lock);
486 pending = atomic_dec_return(&ctx->encrypt_pending);
487
488 if (!pending && ctx->async_notify)
489 complete(&ctx->async_wait.completion);
490 spin_unlock_bh(&ctx->encrypt_compl_lock);
491 }
492
tls_do_encryption(struct sock *sk, struct tls_context *tls_ctx, struct tls_sw_context_tx *ctx, struct aead_request *aead_req, size_t data_len, u32 start)493 static int tls_do_encryption(struct sock *sk,
494 struct tls_context *tls_ctx,
495 struct tls_sw_context_tx *ctx,
496 struct aead_request *aead_req,
497 size_t data_len, u32 start)
498 {
499 struct tls_prot_info *prot = &tls_ctx->prot_info;
500 struct tls_rec *rec = ctx->open_rec;
501 struct sk_msg *msg_en = &rec->msg_encrypted;
502 struct scatterlist *sge = sk_msg_elem(msg_en, start);
503 int rc, iv_offset = 0;
504
505 /* For CCM based ciphers, first byte of IV is a constant */
506 if (prot->cipher_type == TLS_CIPHER_AES_CCM_128) {
507 rec->iv_data[0] = TLS_AES_CCM_IV_B0_BYTE;
508 iv_offset = 1;
509 }
510
511 memcpy(&rec->iv_data[iv_offset], tls_ctx->tx.iv,
512 prot->iv_size + prot->salt_size);
513
514 xor_iv_with_seq(prot->version, rec->iv_data + iv_offset, tls_ctx->tx.rec_seq);
515
516 sge->offset += prot->prepend_size;
517 sge->length -= prot->prepend_size;
518
519 msg_en->sg.curr = start;
520
521 aead_request_set_tfm(aead_req, ctx->aead_send);
522 aead_request_set_ad(aead_req, prot->aad_size);
523 aead_request_set_crypt(aead_req, rec->sg_aead_in,
524 rec->sg_aead_out,
525 data_len, rec->iv_data);
526
527 aead_request_set_callback(aead_req, CRYPTO_TFM_REQ_MAY_BACKLOG,
528 tls_encrypt_done, sk);
529
530 /* Add the record in tx_list */
531 list_add_tail((struct list_head *)&rec->list, &ctx->tx_list);
532 atomic_inc(&ctx->encrypt_pending);
533
534 rc = crypto_aead_encrypt(aead_req);
535 if (!rc || rc != -EINPROGRESS) {
536 atomic_dec(&ctx->encrypt_pending);
537 sge->offset -= prot->prepend_size;
538 sge->length += prot->prepend_size;
539 }
540
541 if (!rc) {
542 WRITE_ONCE(rec->tx_ready, true);
543 } else if (rc != -EINPROGRESS) {
544 list_del(&rec->list);
545 return rc;
546 }
547
548 /* Unhook the record from context if encryption is not failure */
549 ctx->open_rec = NULL;
550 tls_advance_record_sn(sk, prot, &tls_ctx->tx);
551 return rc;
552 }
553
tls_split_open_record(struct sock *sk, struct tls_rec *from, struct tls_rec **to, struct sk_msg *msg_opl, struct sk_msg *msg_oen, u32 split_point, u32 tx_overhead_size, u32 *orig_end)554 static int tls_split_open_record(struct sock *sk, struct tls_rec *from,
555 struct tls_rec **to, struct sk_msg *msg_opl,
556 struct sk_msg *msg_oen, u32 split_point,
557 u32 tx_overhead_size, u32 *orig_end)
558 {
559 u32 i, j, bytes = 0, apply = msg_opl->apply_bytes;
560 struct scatterlist *sge, *osge, *nsge;
561 u32 orig_size = msg_opl->sg.size;
562 struct scatterlist tmp = { };
563 struct sk_msg *msg_npl;
564 struct tls_rec *new;
565 int ret;
566
567 new = tls_get_rec(sk);
568 if (!new)
569 return -ENOMEM;
570 ret = sk_msg_alloc(sk, &new->msg_encrypted, msg_opl->sg.size +
571 tx_overhead_size, 0);
572 if (ret < 0) {
573 tls_free_rec(sk, new);
574 return ret;
575 }
576
577 *orig_end = msg_opl->sg.end;
578 i = msg_opl->sg.start;
579 sge = sk_msg_elem(msg_opl, i);
580 while (apply && sge->length) {
581 if (sge->length > apply) {
582 u32 len = sge->length - apply;
583
584 get_page(sg_page(sge));
585 sg_set_page(&tmp, sg_page(sge), len,
586 sge->offset + apply);
587 sge->length = apply;
588 bytes += apply;
589 apply = 0;
590 } else {
591 apply -= sge->length;
592 bytes += sge->length;
593 }
594
595 sk_msg_iter_var_next(i);
596 if (i == msg_opl->sg.end)
597 break;
598 sge = sk_msg_elem(msg_opl, i);
599 }
600
601 msg_opl->sg.end = i;
602 msg_opl->sg.curr = i;
603 msg_opl->sg.copybreak = 0;
604 msg_opl->apply_bytes = 0;
605 msg_opl->sg.size = bytes;
606
607 msg_npl = &new->msg_plaintext;
608 msg_npl->apply_bytes = apply;
609 msg_npl->sg.size = orig_size - bytes;
610
611 j = msg_npl->sg.start;
612 nsge = sk_msg_elem(msg_npl, j);
613 if (tmp.length) {
614 memcpy(nsge, &tmp, sizeof(*nsge));
615 sk_msg_iter_var_next(j);
616 nsge = sk_msg_elem(msg_npl, j);
617 }
618
619 osge = sk_msg_elem(msg_opl, i);
620 while (osge->length) {
621 memcpy(nsge, osge, sizeof(*nsge));
622 sg_unmark_end(nsge);
623 sk_msg_iter_var_next(i);
624 sk_msg_iter_var_next(j);
625 if (i == *orig_end)
626 break;
627 osge = sk_msg_elem(msg_opl, i);
628 nsge = sk_msg_elem(msg_npl, j);
629 }
630
631 msg_npl->sg.end = j;
632 msg_npl->sg.curr = j;
633 msg_npl->sg.copybreak = 0;
634
635 *to = new;
636 return 0;
637 }
638
tls_merge_open_record(struct sock *sk, struct tls_rec *to, struct tls_rec *from, u32 orig_end)639 static void tls_merge_open_record(struct sock *sk, struct tls_rec *to,
640 struct tls_rec *from, u32 orig_end)
641 {
642 struct sk_msg *msg_npl = &from->msg_plaintext;
643 struct sk_msg *msg_opl = &to->msg_plaintext;
644 struct scatterlist *osge, *nsge;
645 u32 i, j;
646
647 i = msg_opl->sg.end;
648 sk_msg_iter_var_prev(i);
649 j = msg_npl->sg.start;
650
651 osge = sk_msg_elem(msg_opl, i);
652 nsge = sk_msg_elem(msg_npl, j);
653
654 if (sg_page(osge) == sg_page(nsge) &&
655 osge->offset + osge->length == nsge->offset) {
656 osge->length += nsge->length;
657 put_page(sg_page(nsge));
658 }
659
660 msg_opl->sg.end = orig_end;
661 msg_opl->sg.curr = orig_end;
662 msg_opl->sg.copybreak = 0;
663 msg_opl->apply_bytes = msg_opl->sg.size + msg_npl->sg.size;
664 msg_opl->sg.size += msg_npl->sg.size;
665
666 sk_msg_free(sk, &to->msg_encrypted);
667 sk_msg_xfer_full(&to->msg_encrypted, &from->msg_encrypted);
668
669 kfree(from);
670 }
671
tls_push_record(struct sock *sk, int flags, unsigned char record_type)672 static int tls_push_record(struct sock *sk, int flags,
673 unsigned char record_type)
674 {
675 struct tls_context *tls_ctx = tls_get_ctx(sk);
676 struct tls_prot_info *prot = &tls_ctx->prot_info;
677 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
678 struct tls_rec *rec = ctx->open_rec, *tmp = NULL;
679 u32 i, split_point, orig_end;
680 struct sk_msg *msg_pl, *msg_en;
681 struct aead_request *req;
682 bool split;
683 int rc;
684
685 if (!rec)
686 return 0;
687
688 msg_pl = &rec->msg_plaintext;
689 msg_en = &rec->msg_encrypted;
690
691 split_point = msg_pl->apply_bytes;
692 split = split_point && split_point < msg_pl->sg.size;
693 if (unlikely((!split &&
694 msg_pl->sg.size +
695 prot->overhead_size > msg_en->sg.size) ||
696 (split &&
697 split_point +
698 prot->overhead_size > msg_en->sg.size))) {
699 split = true;
700 split_point = msg_en->sg.size;
701 }
702 if (split) {
703 rc = tls_split_open_record(sk, rec, &tmp, msg_pl, msg_en,
704 split_point, prot->overhead_size,
705 &orig_end);
706 if (rc < 0)
707 return rc;
708 /* This can happen if above tls_split_open_record allocates
709 * a single large encryption buffer instead of two smaller
710 * ones. In this case adjust pointers and continue without
711 * split.
712 */
713 if (!msg_pl->sg.size) {
714 tls_merge_open_record(sk, rec, tmp, orig_end);
715 msg_pl = &rec->msg_plaintext;
716 msg_en = &rec->msg_encrypted;
717 split = false;
718 }
719 sk_msg_trim(sk, msg_en, msg_pl->sg.size +
720 prot->overhead_size);
721 }
722
723 rec->tx_flags = flags;
724 req = &rec->aead_req;
725
726 i = msg_pl->sg.end;
727 sk_msg_iter_var_prev(i);
728
729 rec->content_type = record_type;
730 if (prot->version == TLS_1_3_VERSION) {
731 /* Add content type to end of message. No padding added */
732 sg_set_buf(&rec->sg_content_type, &rec->content_type, 1);
733 sg_mark_end(&rec->sg_content_type);
734 sg_chain(msg_pl->sg.data, msg_pl->sg.end + 1,
735 &rec->sg_content_type);
736 } else {
737 sg_mark_end(sk_msg_elem(msg_pl, i));
738 }
739
740 if (msg_pl->sg.end < msg_pl->sg.start) {
741 sg_chain(&msg_pl->sg.data[msg_pl->sg.start],
742 MAX_SKB_FRAGS - msg_pl->sg.start + 1,
743 msg_pl->sg.data);
744 }
745
746 i = msg_pl->sg.start;
747 sg_chain(rec->sg_aead_in, 2, &msg_pl->sg.data[i]);
748
749 i = msg_en->sg.end;
750 sk_msg_iter_var_prev(i);
751 sg_mark_end(sk_msg_elem(msg_en, i));
752
753 i = msg_en->sg.start;
754 sg_chain(rec->sg_aead_out, 2, &msg_en->sg.data[i]);
755
756 tls_make_aad(rec->aad_space, msg_pl->sg.size + prot->tail_size,
757 tls_ctx->tx.rec_seq, prot->rec_seq_size,
758 record_type, prot->version);
759
760 tls_fill_prepend(tls_ctx,
761 page_address(sg_page(&msg_en->sg.data[i])) +
762 msg_en->sg.data[i].offset,
763 msg_pl->sg.size + prot->tail_size,
764 record_type, prot->version);
765
766 tls_ctx->pending_open_record_frags = false;
767
768 rc = tls_do_encryption(sk, tls_ctx, ctx, req,
769 msg_pl->sg.size + prot->tail_size, i);
770 if (rc < 0) {
771 if (rc != -EINPROGRESS) {
772 tls_err_abort(sk, -EBADMSG);
773 if (split) {
774 tls_ctx->pending_open_record_frags = true;
775 tls_merge_open_record(sk, rec, tmp, orig_end);
776 }
777 }
778 ctx->async_capable = 1;
779 return rc;
780 } else if (split) {
781 msg_pl = &tmp->msg_plaintext;
782 msg_en = &tmp->msg_encrypted;
783 sk_msg_trim(sk, msg_en, msg_pl->sg.size + prot->overhead_size);
784 tls_ctx->pending_open_record_frags = true;
785 ctx->open_rec = tmp;
786 }
787
788 return tls_tx_records(sk, flags);
789 }
790
bpf_exec_tx_verdict(struct sk_msg *msg, struct sock *sk, bool full_record, u8 record_type, ssize_t *copied, int flags)791 static int bpf_exec_tx_verdict(struct sk_msg *msg, struct sock *sk,
792 bool full_record, u8 record_type,
793 ssize_t *copied, int flags)
794 {
795 struct tls_context *tls_ctx = tls_get_ctx(sk);
796 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
797 struct sk_msg msg_redir = { };
798 struct sk_psock *psock;
799 struct sock *sk_redir;
800 struct tls_rec *rec;
801 bool enospc, policy;
802 int err = 0, send;
803 u32 delta = 0;
804
805 policy = !(flags & MSG_SENDPAGE_NOPOLICY);
806 psock = sk_psock_get(sk);
807 if (!psock || !policy) {
808 err = tls_push_record(sk, flags, record_type);
809 if (err && err != -EINPROGRESS && sk->sk_err == EBADMSG) {
810 *copied -= sk_msg_free(sk, msg);
811 tls_free_open_rec(sk);
812 err = -sk->sk_err;
813 }
814 if (psock)
815 sk_psock_put(sk, psock);
816 return err;
817 }
818 more_data:
819 enospc = sk_msg_full(msg);
820 if (psock->eval == __SK_NONE) {
821 delta = msg->sg.size;
822 psock->eval = sk_psock_msg_verdict(sk, psock, msg);
823 delta -= msg->sg.size;
824 }
825 if (msg->cork_bytes && msg->cork_bytes > msg->sg.size &&
826 !enospc && !full_record) {
827 err = -ENOSPC;
828 goto out_err;
829 }
830 msg->cork_bytes = 0;
831 send = msg->sg.size;
832 if (msg->apply_bytes && msg->apply_bytes < send)
833 send = msg->apply_bytes;
834
835 switch (psock->eval) {
836 case __SK_PASS:
837 err = tls_push_record(sk, flags, record_type);
838 if (err && err != -EINPROGRESS && sk->sk_err == EBADMSG) {
839 *copied -= sk_msg_free(sk, msg);
840 tls_free_open_rec(sk);
841 err = -sk->sk_err;
842 goto out_err;
843 }
844 break;
845 case __SK_REDIRECT:
846 sk_redir = psock->sk_redir;
847 memcpy(&msg_redir, msg, sizeof(*msg));
848 if (msg->apply_bytes < send)
849 msg->apply_bytes = 0;
850 else
851 msg->apply_bytes -= send;
852 sk_msg_return_zero(sk, msg, send);
853 msg->sg.size -= send;
854 release_sock(sk);
855 err = tcp_bpf_sendmsg_redir(sk_redir, &msg_redir, send, flags);
856 lock_sock(sk);
857 if (err < 0) {
858 *copied -= sk_msg_free_nocharge(sk, &msg_redir);
859 msg->sg.size = 0;
860 }
861 if (msg->sg.size == 0)
862 tls_free_open_rec(sk);
863 break;
864 case __SK_DROP:
865 default:
866 sk_msg_free_partial(sk, msg, send);
867 if (msg->apply_bytes < send)
868 msg->apply_bytes = 0;
869 else
870 msg->apply_bytes -= send;
871 if (msg->sg.size == 0)
872 tls_free_open_rec(sk);
873 *copied -= (send + delta);
874 err = -EACCES;
875 }
876
877 if (likely(!err)) {
878 bool reset_eval = !ctx->open_rec;
879
880 rec = ctx->open_rec;
881 if (rec) {
882 msg = &rec->msg_plaintext;
883 if (!msg->apply_bytes)
884 reset_eval = true;
885 }
886 if (reset_eval) {
887 psock->eval = __SK_NONE;
888 if (psock->sk_redir) {
889 sock_put(psock->sk_redir);
890 psock->sk_redir = NULL;
891 }
892 }
893 if (rec)
894 goto more_data;
895 }
896 out_err:
897 sk_psock_put(sk, psock);
898 return err;
899 }
900
tls_sw_push_pending_record(struct sock *sk, int flags)901 static int tls_sw_push_pending_record(struct sock *sk, int flags)
902 {
903 struct tls_context *tls_ctx = tls_get_ctx(sk);
904 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
905 struct tls_rec *rec = ctx->open_rec;
906 struct sk_msg *msg_pl;
907 size_t copied;
908
909 if (!rec)
910 return 0;
911
912 msg_pl = &rec->msg_plaintext;
913 copied = msg_pl->sg.size;
914 if (!copied)
915 return 0;
916
917 return bpf_exec_tx_verdict(msg_pl, sk, true, TLS_RECORD_TYPE_DATA,
918 &copied, flags);
919 }
920
tls_sw_sendmsg(struct sock *sk, struct msghdr *msg, size_t size)921 int tls_sw_sendmsg(struct sock *sk, struct msghdr *msg, size_t size)
922 {
923 long timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
924 struct tls_context *tls_ctx = tls_get_ctx(sk);
925 struct tls_prot_info *prot = &tls_ctx->prot_info;
926 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
927 bool async_capable = ctx->async_capable;
928 unsigned char record_type = TLS_RECORD_TYPE_DATA;
929 bool is_kvec = iov_iter_is_kvec(&msg->msg_iter);
930 bool eor = !(msg->msg_flags & MSG_MORE);
931 size_t try_to_copy;
932 ssize_t copied = 0;
933 struct sk_msg *msg_pl, *msg_en;
934 struct tls_rec *rec;
935 int required_size;
936 int num_async = 0;
937 bool full_record;
938 int record_room;
939 int num_zc = 0;
940 int orig_size;
941 int ret = 0;
942 int pending;
943
944 if (msg->msg_flags & ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL |
945 MSG_CMSG_COMPAT))
946 return -EOPNOTSUPP;
947
948 ret = mutex_lock_interruptible(&tls_ctx->tx_lock);
949 if (ret)
950 return ret;
951 lock_sock(sk);
952
953 if (unlikely(msg->msg_controllen)) {
954 ret = tls_proccess_cmsg(sk, msg, &record_type);
955 if (ret) {
956 if (ret == -EINPROGRESS)
957 num_async++;
958 else if (ret != -EAGAIN)
959 goto send_end;
960 }
961 }
962
963 while (msg_data_left(msg)) {
964 if (sk->sk_err) {
965 ret = -sk->sk_err;
966 goto send_end;
967 }
968
969 if (ctx->open_rec)
970 rec = ctx->open_rec;
971 else
972 rec = ctx->open_rec = tls_get_rec(sk);
973 if (!rec) {
974 ret = -ENOMEM;
975 goto send_end;
976 }
977
978 msg_pl = &rec->msg_plaintext;
979 msg_en = &rec->msg_encrypted;
980
981 orig_size = msg_pl->sg.size;
982 full_record = false;
983 try_to_copy = msg_data_left(msg);
984 record_room = TLS_MAX_PAYLOAD_SIZE - msg_pl->sg.size;
985 if (try_to_copy >= record_room) {
986 try_to_copy = record_room;
987 full_record = true;
988 }
989
990 required_size = msg_pl->sg.size + try_to_copy +
991 prot->overhead_size;
992
993 if (!sk_stream_memory_free(sk))
994 goto wait_for_sndbuf;
995
996 alloc_encrypted:
997 ret = tls_alloc_encrypted_msg(sk, required_size);
998 if (ret) {
999 if (ret != -ENOSPC)
1000 goto wait_for_memory;
1001
1002 /* Adjust try_to_copy according to the amount that was
1003 * actually allocated. The difference is due
1004 * to max sg elements limit
1005 */
1006 try_to_copy -= required_size - msg_en->sg.size;
1007 full_record = true;
1008 }
1009
1010 if (!is_kvec && (full_record || eor) && !async_capable) {
1011 u32 first = msg_pl->sg.end;
1012
1013 ret = sk_msg_zerocopy_from_iter(sk, &msg->msg_iter,
1014 msg_pl, try_to_copy);
1015 if (ret)
1016 goto fallback_to_reg_send;
1017
1018 num_zc++;
1019 copied += try_to_copy;
1020
1021 sk_msg_sg_copy_set(msg_pl, first);
1022 ret = bpf_exec_tx_verdict(msg_pl, sk, full_record,
1023 record_type, &copied,
1024 msg->msg_flags);
1025 if (ret) {
1026 if (ret == -EINPROGRESS)
1027 num_async++;
1028 else if (ret == -ENOMEM)
1029 goto wait_for_memory;
1030 else if (ctx->open_rec && ret == -ENOSPC)
1031 goto rollback_iter;
1032 else if (ret != -EAGAIN)
1033 goto send_end;
1034 }
1035 continue;
1036 rollback_iter:
1037 copied -= try_to_copy;
1038 sk_msg_sg_copy_clear(msg_pl, first);
1039 iov_iter_revert(&msg->msg_iter,
1040 msg_pl->sg.size - orig_size);
1041 fallback_to_reg_send:
1042 sk_msg_trim(sk, msg_pl, orig_size);
1043 }
1044
1045 required_size = msg_pl->sg.size + try_to_copy;
1046
1047 ret = tls_clone_plaintext_msg(sk, required_size);
1048 if (ret) {
1049 if (ret != -ENOSPC)
1050 goto send_end;
1051
1052 /* Adjust try_to_copy according to the amount that was
1053 * actually allocated. The difference is due
1054 * to max sg elements limit
1055 */
1056 try_to_copy -= required_size - msg_pl->sg.size;
1057 full_record = true;
1058 sk_msg_trim(sk, msg_en,
1059 msg_pl->sg.size + prot->overhead_size);
1060 }
1061
1062 if (try_to_copy) {
1063 ret = sk_msg_memcopy_from_iter(sk, &msg->msg_iter,
1064 msg_pl, try_to_copy);
1065 if (ret < 0)
1066 goto trim_sgl;
1067 }
1068
1069 /* Open records defined only if successfully copied, otherwise
1070 * we would trim the sg but not reset the open record frags.
1071 */
1072 tls_ctx->pending_open_record_frags = true;
1073 copied += try_to_copy;
1074 if (full_record || eor) {
1075 ret = bpf_exec_tx_verdict(msg_pl, sk, full_record,
1076 record_type, &copied,
1077 msg->msg_flags);
1078 if (ret) {
1079 if (ret == -EINPROGRESS)
1080 num_async++;
1081 else if (ret == -ENOMEM)
1082 goto wait_for_memory;
1083 else if (ret != -EAGAIN) {
1084 if (ret == -ENOSPC)
1085 ret = 0;
1086 goto send_end;
1087 }
1088 }
1089 }
1090
1091 continue;
1092
1093 wait_for_sndbuf:
1094 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1095 wait_for_memory:
1096 ret = sk_stream_wait_memory(sk, &timeo);
1097 if (ret) {
1098 trim_sgl:
1099 if (ctx->open_rec)
1100 tls_trim_both_msgs(sk, orig_size);
1101 goto send_end;
1102 }
1103
1104 if (ctx->open_rec && msg_en->sg.size < required_size)
1105 goto alloc_encrypted;
1106 }
1107
1108 if (!num_async) {
1109 goto send_end;
1110 } else if (num_zc) {
1111 /* Wait for pending encryptions to get completed */
1112 spin_lock_bh(&ctx->encrypt_compl_lock);
1113 ctx->async_notify = true;
1114
1115 pending = atomic_read(&ctx->encrypt_pending);
1116 spin_unlock_bh(&ctx->encrypt_compl_lock);
1117 if (pending)
1118 crypto_wait_req(-EINPROGRESS, &ctx->async_wait);
1119 else
1120 reinit_completion(&ctx->async_wait.completion);
1121
1122 /* There can be no concurrent accesses, since we have no
1123 * pending encrypt operations
1124 */
1125 WRITE_ONCE(ctx->async_notify, false);
1126
1127 if (ctx->async_wait.err) {
1128 ret = ctx->async_wait.err;
1129 copied = 0;
1130 }
1131 }
1132
1133 /* Transmit if any encryptions have completed */
1134 if (test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) {
1135 cancel_delayed_work(&ctx->tx_work.work);
1136 tls_tx_records(sk, msg->msg_flags);
1137 }
1138
1139 send_end:
1140 ret = sk_stream_error(sk, msg->msg_flags, ret);
1141
1142 release_sock(sk);
1143 mutex_unlock(&tls_ctx->tx_lock);
1144 return copied > 0 ? copied : ret;
1145 }
1146
tls_sw_do_sendpage(struct sock *sk, struct page *page, int offset, size_t size, int flags)1147 static int tls_sw_do_sendpage(struct sock *sk, struct page *page,
1148 int offset, size_t size, int flags)
1149 {
1150 long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
1151 struct tls_context *tls_ctx = tls_get_ctx(sk);
1152 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
1153 struct tls_prot_info *prot = &tls_ctx->prot_info;
1154 unsigned char record_type = TLS_RECORD_TYPE_DATA;
1155 struct sk_msg *msg_pl;
1156 struct tls_rec *rec;
1157 int num_async = 0;
1158 ssize_t copied = 0;
1159 bool full_record;
1160 int record_room;
1161 int ret = 0;
1162 bool eor;
1163
1164 eor = !(flags & MSG_SENDPAGE_NOTLAST);
1165 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
1166
1167 /* Call the sk_stream functions to manage the sndbuf mem. */
1168 while (size > 0) {
1169 size_t copy, required_size;
1170
1171 if (sk->sk_err) {
1172 ret = -sk->sk_err;
1173 goto sendpage_end;
1174 }
1175
1176 if (ctx->open_rec)
1177 rec = ctx->open_rec;
1178 else
1179 rec = ctx->open_rec = tls_get_rec(sk);
1180 if (!rec) {
1181 ret = -ENOMEM;
1182 goto sendpage_end;
1183 }
1184
1185 msg_pl = &rec->msg_plaintext;
1186
1187 full_record = false;
1188 record_room = TLS_MAX_PAYLOAD_SIZE - msg_pl->sg.size;
1189 copy = size;
1190 if (copy >= record_room) {
1191 copy = record_room;
1192 full_record = true;
1193 }
1194
1195 required_size = msg_pl->sg.size + copy + prot->overhead_size;
1196
1197 if (!sk_stream_memory_free(sk))
1198 goto wait_for_sndbuf;
1199 alloc_payload:
1200 ret = tls_alloc_encrypted_msg(sk, required_size);
1201 if (ret) {
1202 if (ret != -ENOSPC)
1203 goto wait_for_memory;
1204
1205 /* Adjust copy according to the amount that was
1206 * actually allocated. The difference is due
1207 * to max sg elements limit
1208 */
1209 copy -= required_size - msg_pl->sg.size;
1210 full_record = true;
1211 }
1212
1213 sk_msg_page_add(msg_pl, page, copy, offset);
1214 msg_pl->sg.copybreak = 0;
1215 msg_pl->sg.curr = msg_pl->sg.end;
1216 sk_mem_charge(sk, copy);
1217
1218 offset += copy;
1219 size -= copy;
1220 copied += copy;
1221
1222 tls_ctx->pending_open_record_frags = true;
1223 if (full_record || eor || sk_msg_full(msg_pl)) {
1224 ret = bpf_exec_tx_verdict(msg_pl, sk, full_record,
1225 record_type, &copied, flags);
1226 if (ret) {
1227 if (ret == -EINPROGRESS)
1228 num_async++;
1229 else if (ret == -ENOMEM)
1230 goto wait_for_memory;
1231 else if (ret != -EAGAIN) {
1232 if (ret == -ENOSPC)
1233 ret = 0;
1234 goto sendpage_end;
1235 }
1236 }
1237 }
1238 continue;
1239 wait_for_sndbuf:
1240 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1241 wait_for_memory:
1242 ret = sk_stream_wait_memory(sk, &timeo);
1243 if (ret) {
1244 if (ctx->open_rec)
1245 tls_trim_both_msgs(sk, msg_pl->sg.size);
1246 goto sendpage_end;
1247 }
1248
1249 if (ctx->open_rec)
1250 goto alloc_payload;
1251 }
1252
1253 if (num_async) {
1254 /* Transmit if any encryptions have completed */
1255 if (test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) {
1256 cancel_delayed_work(&ctx->tx_work.work);
1257 tls_tx_records(sk, flags);
1258 }
1259 }
1260 sendpage_end:
1261 ret = sk_stream_error(sk, flags, ret);
1262 return copied > 0 ? copied : ret;
1263 }
1264
tls_sw_sendpage_locked(struct sock *sk, struct page *page, int offset, size_t size, int flags)1265 int tls_sw_sendpage_locked(struct sock *sk, struct page *page,
1266 int offset, size_t size, int flags)
1267 {
1268 if (flags & ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL |
1269 MSG_SENDPAGE_NOTLAST | MSG_SENDPAGE_NOPOLICY |
1270 MSG_NO_SHARED_FRAGS))
1271 return -EOPNOTSUPP;
1272
1273 return tls_sw_do_sendpage(sk, page, offset, size, flags);
1274 }
1275
tls_sw_sendpage(struct sock *sk, struct page *page, int offset, size_t size, int flags)1276 int tls_sw_sendpage(struct sock *sk, struct page *page,
1277 int offset, size_t size, int flags)
1278 {
1279 struct tls_context *tls_ctx = tls_get_ctx(sk);
1280 int ret;
1281
1282 if (flags & ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL |
1283 MSG_SENDPAGE_NOTLAST | MSG_SENDPAGE_NOPOLICY))
1284 return -EOPNOTSUPP;
1285
1286 ret = mutex_lock_interruptible(&tls_ctx->tx_lock);
1287 if (ret)
1288 return ret;
1289 lock_sock(sk);
1290 ret = tls_sw_do_sendpage(sk, page, offset, size, flags);
1291 release_sock(sk);
1292 mutex_unlock(&tls_ctx->tx_lock);
1293 return ret;
1294 }
1295
tls_wait_data(struct sock *sk, struct sk_psock *psock, bool nonblock, long timeo, int *err)1296 static struct sk_buff *tls_wait_data(struct sock *sk, struct sk_psock *psock,
1297 bool nonblock, long timeo, int *err)
1298 {
1299 struct tls_context *tls_ctx = tls_get_ctx(sk);
1300 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1301 struct sk_buff *skb;
1302 DEFINE_WAIT_FUNC(wait, woken_wake_function);
1303
1304 while (!(skb = ctx->recv_pkt) && sk_psock_queue_empty(psock)) {
1305 if (sk->sk_err) {
1306 *err = sock_error(sk);
1307 return NULL;
1308 }
1309
1310 if (!skb_queue_empty(&sk->sk_receive_queue)) {
1311 __strp_unpause(&ctx->strp);
1312 if (ctx->recv_pkt)
1313 return ctx->recv_pkt;
1314 }
1315
1316 if (sk->sk_shutdown & RCV_SHUTDOWN)
1317 return NULL;
1318
1319 if (sock_flag(sk, SOCK_DONE))
1320 return NULL;
1321
1322 if (nonblock || !timeo) {
1323 *err = -EAGAIN;
1324 return NULL;
1325 }
1326
1327 add_wait_queue(sk_sleep(sk), &wait);
1328 sk_set_bit(SOCKWQ_ASYNC_WAITDATA, sk);
1329 sk_wait_event(sk, &timeo,
1330 ctx->recv_pkt != skb ||
1331 !sk_psock_queue_empty(psock),
1332 &wait);
1333 sk_clear_bit(SOCKWQ_ASYNC_WAITDATA, sk);
1334 remove_wait_queue(sk_sleep(sk), &wait);
1335
1336 /* Handle signals */
1337 if (signal_pending(current)) {
1338 *err = sock_intr_errno(timeo);
1339 return NULL;
1340 }
1341 }
1342
1343 return skb;
1344 }
1345
tls_setup_from_iter(struct sock *sk, struct iov_iter *from, int length, int *pages_used, unsigned int *size_used, struct scatterlist *to, int to_max_pages)1346 static int tls_setup_from_iter(struct sock *sk, struct iov_iter *from,
1347 int length, int *pages_used,
1348 unsigned int *size_used,
1349 struct scatterlist *to,
1350 int to_max_pages)
1351 {
1352 int rc = 0, i = 0, num_elem = *pages_used, maxpages;
1353 struct page *pages[MAX_SKB_FRAGS];
1354 unsigned int size = *size_used;
1355 ssize_t copied, use;
1356 size_t offset;
1357
1358 while (length > 0) {
1359 i = 0;
1360 maxpages = to_max_pages - num_elem;
1361 if (maxpages == 0) {
1362 rc = -EFAULT;
1363 goto out;
1364 }
1365 copied = iov_iter_get_pages(from, pages,
1366 length,
1367 maxpages, &offset);
1368 if (copied <= 0) {
1369 rc = -EFAULT;
1370 goto out;
1371 }
1372
1373 iov_iter_advance(from, copied);
1374
1375 length -= copied;
1376 size += copied;
1377 while (copied) {
1378 use = min_t(int, copied, PAGE_SIZE - offset);
1379
1380 sg_set_page(&to[num_elem],
1381 pages[i], use, offset);
1382 sg_unmark_end(&to[num_elem]);
1383 /* We do not uncharge memory from this API */
1384
1385 offset = 0;
1386 copied -= use;
1387
1388 i++;
1389 num_elem++;
1390 }
1391 }
1392 /* Mark the end in the last sg entry if newly added */
1393 if (num_elem > *pages_used)
1394 sg_mark_end(&to[num_elem - 1]);
1395 out:
1396 if (rc)
1397 iov_iter_revert(from, size - *size_used);
1398 *size_used = size;
1399 *pages_used = num_elem;
1400
1401 return rc;
1402 }
1403
1404 /* This function decrypts the input skb into either out_iov or in out_sg
1405 * or in skb buffers itself. The input parameter 'zc' indicates if
1406 * zero-copy mode needs to be tried or not. With zero-copy mode, either
1407 * out_iov or out_sg must be non-NULL. In case both out_iov and out_sg are
1408 * NULL, then the decryption happens inside skb buffers itself, i.e.
1409 * zero-copy gets disabled and 'zc' is updated.
1410 */
1411
decrypt_internal(struct sock *sk, struct sk_buff *skb, struct iov_iter *out_iov, struct scatterlist *out_sg, int *chunk, bool *zc, bool async)1412 static int decrypt_internal(struct sock *sk, struct sk_buff *skb,
1413 struct iov_iter *out_iov,
1414 struct scatterlist *out_sg,
1415 int *chunk, bool *zc, bool async)
1416 {
1417 struct tls_context *tls_ctx = tls_get_ctx(sk);
1418 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1419 struct tls_prot_info *prot = &tls_ctx->prot_info;
1420 struct strp_msg *rxm = strp_msg(skb);
1421 int n_sgin, n_sgout, nsg, mem_size, aead_size, err, pages = 0;
1422 struct aead_request *aead_req;
1423 struct sk_buff *unused;
1424 u8 *aad, *iv, *mem = NULL;
1425 struct scatterlist *sgin = NULL;
1426 struct scatterlist *sgout = NULL;
1427 const int data_len = rxm->full_len - prot->overhead_size +
1428 prot->tail_size;
1429 int iv_offset = 0;
1430
1431 if (*zc && (out_iov || out_sg)) {
1432 if (out_iov)
1433 n_sgout = iov_iter_npages(out_iov, INT_MAX) + 1;
1434 else
1435 n_sgout = sg_nents(out_sg);
1436 n_sgin = skb_nsg(skb, rxm->offset + prot->prepend_size,
1437 rxm->full_len - prot->prepend_size);
1438 } else {
1439 n_sgout = 0;
1440 *zc = false;
1441 n_sgin = skb_cow_data(skb, 0, &unused);
1442 }
1443
1444 if (n_sgin < 1)
1445 return -EBADMSG;
1446
1447 /* Increment to accommodate AAD */
1448 n_sgin = n_sgin + 1;
1449
1450 nsg = n_sgin + n_sgout;
1451
1452 aead_size = sizeof(*aead_req) + crypto_aead_reqsize(ctx->aead_recv);
1453 mem_size = aead_size + (nsg * sizeof(struct scatterlist));
1454 mem_size = mem_size + prot->aad_size;
1455 mem_size = mem_size + crypto_aead_ivsize(ctx->aead_recv);
1456
1457 /* Allocate a single block of memory which contains
1458 * aead_req || sgin[] || sgout[] || aad || iv.
1459 * This order achieves correct alignment for aead_req, sgin, sgout.
1460 */
1461 mem = kmalloc(mem_size, sk->sk_allocation);
1462 if (!mem)
1463 return -ENOMEM;
1464
1465 /* Segment the allocated memory */
1466 aead_req = (struct aead_request *)mem;
1467 sgin = (struct scatterlist *)(mem + aead_size);
1468 sgout = sgin + n_sgin;
1469 aad = (u8 *)(sgout + n_sgout);
1470 iv = aad + prot->aad_size;
1471
1472 /* For CCM based ciphers, first byte of nonce+iv is always '2' */
1473 if (prot->cipher_type == TLS_CIPHER_AES_CCM_128) {
1474 iv[0] = 2;
1475 iv_offset = 1;
1476 }
1477
1478 /* Prepare IV */
1479 err = skb_copy_bits(skb, rxm->offset + TLS_HEADER_SIZE,
1480 iv + iv_offset + prot->salt_size,
1481 prot->iv_size);
1482 if (err < 0) {
1483 kfree(mem);
1484 return err;
1485 }
1486 if (prot->version == TLS_1_3_VERSION)
1487 memcpy(iv + iv_offset, tls_ctx->rx.iv,
1488 prot->iv_size + prot->salt_size);
1489 else
1490 memcpy(iv + iv_offset, tls_ctx->rx.iv, prot->salt_size);
1491
1492 xor_iv_with_seq(prot->version, iv + iv_offset, tls_ctx->rx.rec_seq);
1493
1494 /* Prepare AAD */
1495 tls_make_aad(aad, rxm->full_len - prot->overhead_size +
1496 prot->tail_size,
1497 tls_ctx->rx.rec_seq, prot->rec_seq_size,
1498 ctx->control, prot->version);
1499
1500 /* Prepare sgin */
1501 sg_init_table(sgin, n_sgin);
1502 sg_set_buf(&sgin[0], aad, prot->aad_size);
1503 err = skb_to_sgvec(skb, &sgin[1],
1504 rxm->offset + prot->prepend_size,
1505 rxm->full_len - prot->prepend_size);
1506 if (err < 0) {
1507 kfree(mem);
1508 return err;
1509 }
1510
1511 if (n_sgout) {
1512 if (out_iov) {
1513 sg_init_table(sgout, n_sgout);
1514 sg_set_buf(&sgout[0], aad, prot->aad_size);
1515
1516 *chunk = 0;
1517 err = tls_setup_from_iter(sk, out_iov, data_len,
1518 &pages, chunk, &sgout[1],
1519 (n_sgout - 1));
1520 if (err < 0)
1521 goto fallback_to_reg_recv;
1522 } else if (out_sg) {
1523 memcpy(sgout, out_sg, n_sgout * sizeof(*sgout));
1524 } else {
1525 goto fallback_to_reg_recv;
1526 }
1527 } else {
1528 fallback_to_reg_recv:
1529 sgout = sgin;
1530 pages = 0;
1531 *chunk = data_len;
1532 *zc = false;
1533 }
1534
1535 /* Prepare and submit AEAD request */
1536 err = tls_do_decryption(sk, skb, sgin, sgout, iv,
1537 data_len, aead_req, async);
1538 if (err == -EINPROGRESS)
1539 return err;
1540
1541 /* Release the pages in case iov was mapped to pages */
1542 for (; pages > 0; pages--)
1543 put_page(sg_page(&sgout[pages]));
1544
1545 kfree(mem);
1546 return err;
1547 }
1548
decrypt_skb_update(struct sock *sk, struct sk_buff *skb, struct iov_iter *dest, int *chunk, bool *zc, bool async)1549 static int decrypt_skb_update(struct sock *sk, struct sk_buff *skb,
1550 struct iov_iter *dest, int *chunk, bool *zc,
1551 bool async)
1552 {
1553 struct tls_context *tls_ctx = tls_get_ctx(sk);
1554 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1555 struct tls_prot_info *prot = &tls_ctx->prot_info;
1556 struct strp_msg *rxm = strp_msg(skb);
1557 int pad, err = 0;
1558
1559 if (!ctx->decrypted) {
1560 if (tls_ctx->rx_conf == TLS_HW) {
1561 err = tls_device_decrypted(sk, tls_ctx, skb, rxm);
1562 if (err < 0)
1563 return err;
1564 }
1565
1566 /* Still not decrypted after tls_device */
1567 if (!ctx->decrypted) {
1568 err = decrypt_internal(sk, skb, dest, NULL, chunk, zc,
1569 async);
1570 if (err < 0) {
1571 if (err == -EINPROGRESS)
1572 tls_advance_record_sn(sk, prot,
1573 &tls_ctx->rx);
1574 else if (err == -EBADMSG)
1575 TLS_INC_STATS(sock_net(sk),
1576 LINUX_MIB_TLSDECRYPTERROR);
1577 return err;
1578 }
1579 } else {
1580 *zc = false;
1581 }
1582
1583 pad = padding_length(ctx, prot, skb);
1584 if (pad < 0)
1585 return pad;
1586
1587 rxm->full_len -= pad;
1588 rxm->offset += prot->prepend_size;
1589 rxm->full_len -= prot->overhead_size;
1590 tls_advance_record_sn(sk, prot, &tls_ctx->rx);
1591 ctx->decrypted = 1;
1592 ctx->saved_data_ready(sk);
1593 } else {
1594 *zc = false;
1595 }
1596
1597 return err;
1598 }
1599
decrypt_skb(struct sock *sk, struct sk_buff *skb, struct scatterlist *sgout)1600 int decrypt_skb(struct sock *sk, struct sk_buff *skb,
1601 struct scatterlist *sgout)
1602 {
1603 bool zc = true;
1604 int chunk;
1605
1606 return decrypt_internal(sk, skb, NULL, sgout, &chunk, &zc, false);
1607 }
1608
tls_sw_advance_skb(struct sock *sk, struct sk_buff *skb, unsigned int len)1609 static bool tls_sw_advance_skb(struct sock *sk, struct sk_buff *skb,
1610 unsigned int len)
1611 {
1612 struct tls_context *tls_ctx = tls_get_ctx(sk);
1613 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1614
1615 if (skb) {
1616 struct strp_msg *rxm = strp_msg(skb);
1617
1618 if (len < rxm->full_len) {
1619 rxm->offset += len;
1620 rxm->full_len -= len;
1621 return false;
1622 }
1623 consume_skb(skb);
1624 }
1625
1626 /* Finished with message */
1627 ctx->recv_pkt = NULL;
1628 __strp_unpause(&ctx->strp);
1629
1630 return true;
1631 }
1632
1633 /* This function traverses the rx_list in tls receive context to copies the
1634 * decrypted records into the buffer provided by caller zero copy is not
1635 * true. Further, the records are removed from the rx_list if it is not a peek
1636 * case and the record has been consumed completely.
1637 */
process_rx_list(struct tls_sw_context_rx *ctx, struct msghdr *msg, u8 *control, bool *cmsg, size_t skip, size_t len, bool zc, bool is_peek)1638 static int process_rx_list(struct tls_sw_context_rx *ctx,
1639 struct msghdr *msg,
1640 u8 *control,
1641 bool *cmsg,
1642 size_t skip,
1643 size_t len,
1644 bool zc,
1645 bool is_peek)
1646 {
1647 struct sk_buff *skb = skb_peek(&ctx->rx_list);
1648 u8 ctrl = *control;
1649 u8 msgc = *cmsg;
1650 struct tls_msg *tlm;
1651 ssize_t copied = 0;
1652
1653 /* Set the record type in 'control' if caller didn't pass it */
1654 if (!ctrl && skb) {
1655 tlm = tls_msg(skb);
1656 ctrl = tlm->control;
1657 }
1658
1659 while (skip && skb) {
1660 struct strp_msg *rxm = strp_msg(skb);
1661 tlm = tls_msg(skb);
1662
1663 /* Cannot process a record of different type */
1664 if (ctrl != tlm->control)
1665 return 0;
1666
1667 if (skip < rxm->full_len)
1668 break;
1669
1670 skip = skip - rxm->full_len;
1671 skb = skb_peek_next(skb, &ctx->rx_list);
1672 }
1673
1674 while (len && skb) {
1675 struct sk_buff *next_skb;
1676 struct strp_msg *rxm = strp_msg(skb);
1677 int chunk = min_t(unsigned int, rxm->full_len - skip, len);
1678
1679 tlm = tls_msg(skb);
1680
1681 /* Cannot process a record of different type */
1682 if (ctrl != tlm->control)
1683 return 0;
1684
1685 /* Set record type if not already done. For a non-data record,
1686 * do not proceed if record type could not be copied.
1687 */
1688 if (!msgc) {
1689 int cerr = put_cmsg(msg, SOL_TLS, TLS_GET_RECORD_TYPE,
1690 sizeof(ctrl), &ctrl);
1691 msgc = true;
1692 if (ctrl != TLS_RECORD_TYPE_DATA) {
1693 if (cerr || msg->msg_flags & MSG_CTRUNC)
1694 return -EIO;
1695
1696 *cmsg = msgc;
1697 }
1698 }
1699
1700 if (!zc || (rxm->full_len - skip) > len) {
1701 int err = skb_copy_datagram_msg(skb, rxm->offset + skip,
1702 msg, chunk);
1703 if (err < 0)
1704 return err;
1705 }
1706
1707 len = len - chunk;
1708 copied = copied + chunk;
1709
1710 /* Consume the data from record if it is non-peek case*/
1711 if (!is_peek) {
1712 rxm->offset = rxm->offset + chunk;
1713 rxm->full_len = rxm->full_len - chunk;
1714
1715 /* Return if there is unconsumed data in the record */
1716 if (rxm->full_len - skip)
1717 break;
1718 }
1719
1720 /* The remaining skip-bytes must lie in 1st record in rx_list.
1721 * So from the 2nd record, 'skip' should be 0.
1722 */
1723 skip = 0;
1724
1725 if (msg)
1726 msg->msg_flags |= MSG_EOR;
1727
1728 next_skb = skb_peek_next(skb, &ctx->rx_list);
1729
1730 if (!is_peek) {
1731 skb_unlink(skb, &ctx->rx_list);
1732 consume_skb(skb);
1733 }
1734
1735 skb = next_skb;
1736 }
1737
1738 *control = ctrl;
1739 return copied;
1740 }
1741
tls_sw_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int nonblock, int flags, int *addr_len)1742 int tls_sw_recvmsg(struct sock *sk,
1743 struct msghdr *msg,
1744 size_t len,
1745 int nonblock,
1746 int flags,
1747 int *addr_len)
1748 {
1749 struct tls_context *tls_ctx = tls_get_ctx(sk);
1750 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1751 struct tls_prot_info *prot = &tls_ctx->prot_info;
1752 struct sk_psock *psock;
1753 unsigned char control = 0;
1754 ssize_t decrypted = 0;
1755 struct strp_msg *rxm;
1756 struct tls_msg *tlm;
1757 struct sk_buff *skb;
1758 ssize_t copied = 0;
1759 bool cmsg = false;
1760 int target, err = 0;
1761 long timeo;
1762 bool is_kvec = iov_iter_is_kvec(&msg->msg_iter);
1763 bool is_peek = flags & MSG_PEEK;
1764 bool bpf_strp_enabled;
1765 int num_async = 0;
1766 int pending;
1767
1768 flags |= nonblock;
1769
1770 if (unlikely(flags & MSG_ERRQUEUE))
1771 return sock_recv_errqueue(sk, msg, len, SOL_IP, IP_RECVERR);
1772
1773 psock = sk_psock_get(sk);
1774 lock_sock(sk);
1775 bpf_strp_enabled = sk_psock_strp_enabled(psock);
1776
1777 /* Process pending decrypted records. It must be non-zero-copy */
1778 err = process_rx_list(ctx, msg, &control, &cmsg, 0, len, false,
1779 is_peek);
1780 if (err < 0) {
1781 tls_err_abort(sk, err);
1782 goto end;
1783 } else {
1784 copied = err;
1785 }
1786
1787 if (len <= copied)
1788 goto recv_end;
1789
1790 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
1791 len = len - copied;
1792 timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
1793
1794 while (len && (decrypted + copied < target || ctx->recv_pkt)) {
1795 bool retain_skb = false;
1796 bool zc = false;
1797 int to_decrypt;
1798 int chunk = 0;
1799 bool async_capable;
1800 bool async = false;
1801
1802 skb = tls_wait_data(sk, psock, flags & MSG_DONTWAIT, timeo, &err);
1803 if (!skb) {
1804 if (psock) {
1805 int ret = __tcp_bpf_recvmsg(sk, psock,
1806 msg, len, flags);
1807
1808 if (ret > 0) {
1809 decrypted += ret;
1810 len -= ret;
1811 continue;
1812 }
1813 }
1814 goto recv_end;
1815 } else {
1816 tlm = tls_msg(skb);
1817 if (prot->version == TLS_1_3_VERSION)
1818 tlm->control = 0;
1819 else
1820 tlm->control = ctx->control;
1821 }
1822
1823 rxm = strp_msg(skb);
1824
1825 to_decrypt = rxm->full_len - prot->overhead_size;
1826
1827 if (to_decrypt <= len && !is_kvec && !is_peek &&
1828 ctx->control == TLS_RECORD_TYPE_DATA &&
1829 prot->version != TLS_1_3_VERSION &&
1830 !bpf_strp_enabled)
1831 zc = true;
1832
1833 /* Do not use async mode if record is non-data */
1834 if (ctx->control == TLS_RECORD_TYPE_DATA && !bpf_strp_enabled)
1835 async_capable = ctx->async_capable;
1836 else
1837 async_capable = false;
1838
1839 err = decrypt_skb_update(sk, skb, &msg->msg_iter,
1840 &chunk, &zc, async_capable);
1841 if (err < 0 && err != -EINPROGRESS) {
1842 tls_err_abort(sk, -EBADMSG);
1843 goto recv_end;
1844 }
1845
1846 if (err == -EINPROGRESS) {
1847 async = true;
1848 num_async++;
1849 } else if (prot->version == TLS_1_3_VERSION) {
1850 tlm->control = ctx->control;
1851 }
1852
1853 /* If the type of records being processed is not known yet,
1854 * set it to record type just dequeued. If it is already known,
1855 * but does not match the record type just dequeued, go to end.
1856 * We always get record type here since for tls1.2, record type
1857 * is known just after record is dequeued from stream parser.
1858 * For tls1.3, we disable async.
1859 */
1860
1861 if (!control)
1862 control = tlm->control;
1863 else if (control != tlm->control)
1864 goto recv_end;
1865
1866 if (!cmsg) {
1867 int cerr;
1868
1869 cerr = put_cmsg(msg, SOL_TLS, TLS_GET_RECORD_TYPE,
1870 sizeof(control), &control);
1871 cmsg = true;
1872 if (control != TLS_RECORD_TYPE_DATA) {
1873 if (cerr || msg->msg_flags & MSG_CTRUNC) {
1874 err = -EIO;
1875 goto recv_end;
1876 }
1877 }
1878 }
1879
1880 if (async)
1881 goto pick_next_record;
1882
1883 if (!zc) {
1884 if (bpf_strp_enabled) {
1885 err = sk_psock_tls_strp_read(psock, skb);
1886 if (err != __SK_PASS) {
1887 rxm->offset = rxm->offset + rxm->full_len;
1888 rxm->full_len = 0;
1889 if (err == __SK_DROP)
1890 consume_skb(skb);
1891 ctx->recv_pkt = NULL;
1892 __strp_unpause(&ctx->strp);
1893 continue;
1894 }
1895 }
1896
1897 if (rxm->full_len > len) {
1898 retain_skb = true;
1899 chunk = len;
1900 } else {
1901 chunk = rxm->full_len;
1902 }
1903
1904 err = skb_copy_datagram_msg(skb, rxm->offset,
1905 msg, chunk);
1906 if (err < 0)
1907 goto recv_end;
1908
1909 if (!is_peek) {
1910 rxm->offset = rxm->offset + chunk;
1911 rxm->full_len = rxm->full_len - chunk;
1912 }
1913 }
1914
1915 pick_next_record:
1916 if (chunk > len)
1917 chunk = len;
1918
1919 decrypted += chunk;
1920 len -= chunk;
1921
1922 /* For async or peek case, queue the current skb */
1923 if (async || is_peek || retain_skb) {
1924 skb_queue_tail(&ctx->rx_list, skb);
1925 skb = NULL;
1926 }
1927
1928 if (tls_sw_advance_skb(sk, skb, chunk)) {
1929 /* Return full control message to
1930 * userspace before trying to parse
1931 * another message type
1932 */
1933 msg->msg_flags |= MSG_EOR;
1934 if (control != TLS_RECORD_TYPE_DATA)
1935 goto recv_end;
1936 } else {
1937 break;
1938 }
1939 }
1940
1941 recv_end:
1942 if (num_async) {
1943 /* Wait for all previously submitted records to be decrypted */
1944 spin_lock_bh(&ctx->decrypt_compl_lock);
1945 ctx->async_notify = true;
1946 pending = atomic_read(&ctx->decrypt_pending);
1947 spin_unlock_bh(&ctx->decrypt_compl_lock);
1948 if (pending) {
1949 err = crypto_wait_req(-EINPROGRESS, &ctx->async_wait);
1950 if (err) {
1951 /* one of async decrypt failed */
1952 tls_err_abort(sk, err);
1953 copied = 0;
1954 decrypted = 0;
1955 goto end;
1956 }
1957 } else {
1958 reinit_completion(&ctx->async_wait.completion);
1959 }
1960
1961 /* There can be no concurrent accesses, since we have no
1962 * pending decrypt operations
1963 */
1964 WRITE_ONCE(ctx->async_notify, false);
1965
1966 /* Drain records from the rx_list & copy if required */
1967 if (is_peek || is_kvec)
1968 err = process_rx_list(ctx, msg, &control, &cmsg, copied,
1969 decrypted, false, is_peek);
1970 else
1971 err = process_rx_list(ctx, msg, &control, &cmsg, 0,
1972 decrypted, true, is_peek);
1973 if (err < 0) {
1974 tls_err_abort(sk, err);
1975 copied = 0;
1976 goto end;
1977 }
1978 }
1979
1980 copied += decrypted;
1981
1982 end:
1983 release_sock(sk);
1984 if (psock)
1985 sk_psock_put(sk, psock);
1986 return copied ? : err;
1987 }
1988
tls_sw_splice_read(struct socket *sock, loff_t *ppos, struct pipe_inode_info *pipe, size_t len, unsigned int flags)1989 ssize_t tls_sw_splice_read(struct socket *sock, loff_t *ppos,
1990 struct pipe_inode_info *pipe,
1991 size_t len, unsigned int flags)
1992 {
1993 struct tls_context *tls_ctx = tls_get_ctx(sock->sk);
1994 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1995 struct strp_msg *rxm = NULL;
1996 struct sock *sk = sock->sk;
1997 struct sk_buff *skb;
1998 ssize_t copied = 0;
1999 int err = 0;
2000 long timeo;
2001 int chunk;
2002 bool zc = false;
2003
2004 lock_sock(sk);
2005
2006 timeo = sock_rcvtimeo(sk, flags & SPLICE_F_NONBLOCK);
2007
2008 skb = tls_wait_data(sk, NULL, flags & SPLICE_F_NONBLOCK, timeo, &err);
2009 if (!skb)
2010 goto splice_read_end;
2011
2012 err = decrypt_skb_update(sk, skb, NULL, &chunk, &zc, false);
2013 if (err < 0) {
2014 tls_err_abort(sk, -EBADMSG);
2015 goto splice_read_end;
2016 }
2017
2018 /* splice does not support reading control messages */
2019 if (ctx->control != TLS_RECORD_TYPE_DATA) {
2020 err = -EINVAL;
2021 goto splice_read_end;
2022 }
2023
2024 rxm = strp_msg(skb);
2025
2026 chunk = min_t(unsigned int, rxm->full_len, len);
2027 copied = skb_splice_bits(skb, sk, rxm->offset, pipe, chunk, flags);
2028 if (copied < 0)
2029 goto splice_read_end;
2030
2031 if (likely(!(flags & MSG_PEEK)))
2032 tls_sw_advance_skb(sk, skb, copied);
2033
2034 splice_read_end:
2035 release_sock(sk);
2036 return copied ? : err;
2037 }
2038
tls_sw_stream_read(const struct sock *sk)2039 bool tls_sw_stream_read(const struct sock *sk)
2040 {
2041 struct tls_context *tls_ctx = tls_get_ctx(sk);
2042 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2043 bool ingress_empty = true;
2044 struct sk_psock *psock;
2045
2046 rcu_read_lock();
2047 psock = sk_psock(sk);
2048 if (psock)
2049 ingress_empty = list_empty(&psock->ingress_msg);
2050 rcu_read_unlock();
2051
2052 return !ingress_empty || ctx->recv_pkt ||
2053 !skb_queue_empty(&ctx->rx_list);
2054 }
2055
tls_read_size(struct strparser *strp, struct sk_buff *skb)2056 static int tls_read_size(struct strparser *strp, struct sk_buff *skb)
2057 {
2058 struct tls_context *tls_ctx = tls_get_ctx(strp->sk);
2059 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2060 struct tls_prot_info *prot = &tls_ctx->prot_info;
2061 char header[TLS_HEADER_SIZE + MAX_IV_SIZE];
2062 struct strp_msg *rxm = strp_msg(skb);
2063 size_t cipher_overhead;
2064 size_t data_len = 0;
2065 int ret;
2066
2067 /* Verify that we have a full TLS header, or wait for more data */
2068 if (rxm->offset + prot->prepend_size > skb->len)
2069 return 0;
2070
2071 /* Sanity-check size of on-stack buffer. */
2072 if (WARN_ON(prot->prepend_size > sizeof(header))) {
2073 ret = -EINVAL;
2074 goto read_failure;
2075 }
2076
2077 /* Linearize header to local buffer */
2078 ret = skb_copy_bits(skb, rxm->offset, header, prot->prepend_size);
2079
2080 if (ret < 0)
2081 goto read_failure;
2082
2083 ctx->control = header[0];
2084
2085 data_len = ((header[4] & 0xFF) | (header[3] << 8));
2086
2087 cipher_overhead = prot->tag_size;
2088 if (prot->version != TLS_1_3_VERSION)
2089 cipher_overhead += prot->iv_size;
2090
2091 if (data_len > TLS_MAX_PAYLOAD_SIZE + cipher_overhead +
2092 prot->tail_size) {
2093 ret = -EMSGSIZE;
2094 goto read_failure;
2095 }
2096 if (data_len < cipher_overhead) {
2097 ret = -EBADMSG;
2098 goto read_failure;
2099 }
2100
2101 /* Note that both TLS1.3 and TLS1.2 use TLS_1_2 version here */
2102 if (header[1] != TLS_1_2_VERSION_MINOR ||
2103 header[2] != TLS_1_2_VERSION_MAJOR) {
2104 ret = -EINVAL;
2105 goto read_failure;
2106 }
2107
2108 tls_device_rx_resync_new_rec(strp->sk, data_len + TLS_HEADER_SIZE,
2109 TCP_SKB_CB(skb)->seq + rxm->offset);
2110 return data_len + TLS_HEADER_SIZE;
2111
2112 read_failure:
2113 tls_err_abort(strp->sk, ret);
2114
2115 return ret;
2116 }
2117
tls_queue(struct strparser *strp, struct sk_buff *skb)2118 static void tls_queue(struct strparser *strp, struct sk_buff *skb)
2119 {
2120 struct tls_context *tls_ctx = tls_get_ctx(strp->sk);
2121 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2122
2123 ctx->decrypted = 0;
2124
2125 ctx->recv_pkt = skb;
2126 strp_pause(strp);
2127
2128 ctx->saved_data_ready(strp->sk);
2129 }
2130
tls_data_ready(struct sock *sk)2131 static void tls_data_ready(struct sock *sk)
2132 {
2133 struct tls_context *tls_ctx = tls_get_ctx(sk);
2134 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2135 struct sk_psock *psock;
2136
2137 strp_data_ready(&ctx->strp);
2138
2139 psock = sk_psock_get(sk);
2140 if (psock) {
2141 if (!list_empty(&psock->ingress_msg))
2142 ctx->saved_data_ready(sk);
2143 sk_psock_put(sk, psock);
2144 }
2145 }
2146
tls_sw_cancel_work_tx(struct tls_context *tls_ctx)2147 void tls_sw_cancel_work_tx(struct tls_context *tls_ctx)
2148 {
2149 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
2150
2151 set_bit(BIT_TX_CLOSING, &ctx->tx_bitmask);
2152 set_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask);
2153 cancel_delayed_work_sync(&ctx->tx_work.work);
2154 }
2155
tls_sw_release_resources_tx(struct sock *sk)2156 void tls_sw_release_resources_tx(struct sock *sk)
2157 {
2158 struct tls_context *tls_ctx = tls_get_ctx(sk);
2159 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
2160 struct tls_rec *rec, *tmp;
2161 int pending;
2162
2163 /* Wait for any pending async encryptions to complete */
2164 spin_lock_bh(&ctx->encrypt_compl_lock);
2165 ctx->async_notify = true;
2166 pending = atomic_read(&ctx->encrypt_pending);
2167 spin_unlock_bh(&ctx->encrypt_compl_lock);
2168
2169 if (pending)
2170 crypto_wait_req(-EINPROGRESS, &ctx->async_wait);
2171
2172 tls_tx_records(sk, -1);
2173
2174 /* Free up un-sent records in tx_list. First, free
2175 * the partially sent record if any at head of tx_list.
2176 */
2177 if (tls_ctx->partially_sent_record) {
2178 tls_free_partial_record(sk, tls_ctx);
2179 rec = list_first_entry(&ctx->tx_list,
2180 struct tls_rec, list);
2181 list_del(&rec->list);
2182 sk_msg_free(sk, &rec->msg_plaintext);
2183 kfree(rec);
2184 }
2185
2186 list_for_each_entry_safe(rec, tmp, &ctx->tx_list, list) {
2187 list_del(&rec->list);
2188 sk_msg_free(sk, &rec->msg_encrypted);
2189 sk_msg_free(sk, &rec->msg_plaintext);
2190 kfree(rec);
2191 }
2192
2193 crypto_free_aead(ctx->aead_send);
2194 tls_free_open_rec(sk);
2195 }
2196
tls_sw_free_ctx_tx(struct tls_context *tls_ctx)2197 void tls_sw_free_ctx_tx(struct tls_context *tls_ctx)
2198 {
2199 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
2200
2201 kfree(ctx);
2202 }
2203
tls_sw_release_resources_rx(struct sock *sk)2204 void tls_sw_release_resources_rx(struct sock *sk)
2205 {
2206 struct tls_context *tls_ctx = tls_get_ctx(sk);
2207 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2208
2209 kfree(tls_ctx->rx.rec_seq);
2210 kfree(tls_ctx->rx.iv);
2211
2212 if (ctx->aead_recv) {
2213 kfree_skb(ctx->recv_pkt);
2214 ctx->recv_pkt = NULL;
2215 skb_queue_purge(&ctx->rx_list);
2216 crypto_free_aead(ctx->aead_recv);
2217 strp_stop(&ctx->strp);
2218 /* If tls_sw_strparser_arm() was not called (cleanup paths)
2219 * we still want to strp_stop(), but sk->sk_data_ready was
2220 * never swapped.
2221 */
2222 if (ctx->saved_data_ready) {
2223 write_lock_bh(&sk->sk_callback_lock);
2224 sk->sk_data_ready = ctx->saved_data_ready;
2225 write_unlock_bh(&sk->sk_callback_lock);
2226 }
2227 }
2228 }
2229
tls_sw_strparser_done(struct tls_context *tls_ctx)2230 void tls_sw_strparser_done(struct tls_context *tls_ctx)
2231 {
2232 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2233
2234 strp_done(&ctx->strp);
2235 }
2236
tls_sw_free_ctx_rx(struct tls_context *tls_ctx)2237 void tls_sw_free_ctx_rx(struct tls_context *tls_ctx)
2238 {
2239 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2240
2241 kfree(ctx);
2242 }
2243
tls_sw_free_resources_rx(struct sock *sk)2244 void tls_sw_free_resources_rx(struct sock *sk)
2245 {
2246 struct tls_context *tls_ctx = tls_get_ctx(sk);
2247
2248 tls_sw_release_resources_rx(sk);
2249 tls_sw_free_ctx_rx(tls_ctx);
2250 }
2251
2252 /* The work handler to transmitt the encrypted records in tx_list */
tx_work_handler(struct work_struct *work)2253 static void tx_work_handler(struct work_struct *work)
2254 {
2255 struct delayed_work *delayed_work = to_delayed_work(work);
2256 struct tx_work *tx_work = container_of(delayed_work,
2257 struct tx_work, work);
2258 struct sock *sk = tx_work->sk;
2259 struct tls_context *tls_ctx = tls_get_ctx(sk);
2260 struct tls_sw_context_tx *ctx;
2261
2262 if (unlikely(!tls_ctx))
2263 return;
2264
2265 ctx = tls_sw_ctx_tx(tls_ctx);
2266 if (test_bit(BIT_TX_CLOSING, &ctx->tx_bitmask))
2267 return;
2268
2269 if (!test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask))
2270 return;
2271
2272 if (mutex_trylock(&tls_ctx->tx_lock)) {
2273 lock_sock(sk);
2274 tls_tx_records(sk, -1);
2275 release_sock(sk);
2276 mutex_unlock(&tls_ctx->tx_lock);
2277 } else if (!test_and_set_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) {
2278 /* Someone is holding the tx_lock, they will likely run Tx
2279 * and cancel the work on their way out of the lock section.
2280 * Schedule a long delay just in case.
2281 */
2282 schedule_delayed_work(&ctx->tx_work.work, msecs_to_jiffies(10));
2283 }
2284 }
2285
tls_sw_write_space(struct sock *sk, struct tls_context *ctx)2286 void tls_sw_write_space(struct sock *sk, struct tls_context *ctx)
2287 {
2288 struct tls_sw_context_tx *tx_ctx = tls_sw_ctx_tx(ctx);
2289
2290 /* Schedule the transmission if tx list is ready */
2291 if (is_tx_ready(tx_ctx) &&
2292 !test_and_set_bit(BIT_TX_SCHEDULED, &tx_ctx->tx_bitmask))
2293 schedule_delayed_work(&tx_ctx->tx_work.work, 0);
2294 }
2295
tls_sw_strparser_arm(struct sock *sk, struct tls_context *tls_ctx)2296 void tls_sw_strparser_arm(struct sock *sk, struct tls_context *tls_ctx)
2297 {
2298 struct tls_sw_context_rx *rx_ctx = tls_sw_ctx_rx(tls_ctx);
2299
2300 write_lock_bh(&sk->sk_callback_lock);
2301 rx_ctx->saved_data_ready = sk->sk_data_ready;
2302 sk->sk_data_ready = tls_data_ready;
2303 write_unlock_bh(&sk->sk_callback_lock);
2304
2305 strp_check_rcv(&rx_ctx->strp);
2306 }
2307
tls_set_sw_offload(struct sock *sk, struct tls_context *ctx, int tx)2308 int tls_set_sw_offload(struct sock *sk, struct tls_context *ctx, int tx)
2309 {
2310 struct tls_context *tls_ctx = tls_get_ctx(sk);
2311 struct tls_prot_info *prot = &tls_ctx->prot_info;
2312 struct tls_crypto_info *crypto_info;
2313 struct tls12_crypto_info_aes_gcm_128 *gcm_128_info;
2314 struct tls12_crypto_info_aes_gcm_256 *gcm_256_info;
2315 struct tls12_crypto_info_aes_ccm_128 *ccm_128_info;
2316 struct tls_sw_context_tx *sw_ctx_tx = NULL;
2317 struct tls_sw_context_rx *sw_ctx_rx = NULL;
2318 struct cipher_context *cctx;
2319 struct crypto_aead **aead;
2320 struct strp_callbacks cb;
2321 u16 nonce_size, tag_size, iv_size, rec_seq_size, salt_size;
2322 struct crypto_tfm *tfm;
2323 char *iv, *rec_seq, *key, *salt, *cipher_name;
2324 size_t keysize;
2325 int rc = 0;
2326
2327 if (!ctx) {
2328 rc = -EINVAL;
2329 goto out;
2330 }
2331
2332 if (tx) {
2333 if (!ctx->priv_ctx_tx) {
2334 sw_ctx_tx = kzalloc(sizeof(*sw_ctx_tx), GFP_KERNEL);
2335 if (!sw_ctx_tx) {
2336 rc = -ENOMEM;
2337 goto out;
2338 }
2339 ctx->priv_ctx_tx = sw_ctx_tx;
2340 } else {
2341 sw_ctx_tx =
2342 (struct tls_sw_context_tx *)ctx->priv_ctx_tx;
2343 }
2344 } else {
2345 if (!ctx->priv_ctx_rx) {
2346 sw_ctx_rx = kzalloc(sizeof(*sw_ctx_rx), GFP_KERNEL);
2347 if (!sw_ctx_rx) {
2348 rc = -ENOMEM;
2349 goto out;
2350 }
2351 ctx->priv_ctx_rx = sw_ctx_rx;
2352 } else {
2353 sw_ctx_rx =
2354 (struct tls_sw_context_rx *)ctx->priv_ctx_rx;
2355 }
2356 }
2357
2358 if (tx) {
2359 crypto_init_wait(&sw_ctx_tx->async_wait);
2360 spin_lock_init(&sw_ctx_tx->encrypt_compl_lock);
2361 crypto_info = &ctx->crypto_send.info;
2362 cctx = &ctx->tx;
2363 aead = &sw_ctx_tx->aead_send;
2364 INIT_LIST_HEAD(&sw_ctx_tx->tx_list);
2365 INIT_DELAYED_WORK(&sw_ctx_tx->tx_work.work, tx_work_handler);
2366 sw_ctx_tx->tx_work.sk = sk;
2367 } else {
2368 crypto_init_wait(&sw_ctx_rx->async_wait);
2369 spin_lock_init(&sw_ctx_rx->decrypt_compl_lock);
2370 crypto_info = &ctx->crypto_recv.info;
2371 cctx = &ctx->rx;
2372 skb_queue_head_init(&sw_ctx_rx->rx_list);
2373 aead = &sw_ctx_rx->aead_recv;
2374 }
2375
2376 switch (crypto_info->cipher_type) {
2377 case TLS_CIPHER_AES_GCM_128: {
2378 nonce_size = TLS_CIPHER_AES_GCM_128_IV_SIZE;
2379 tag_size = TLS_CIPHER_AES_GCM_128_TAG_SIZE;
2380 iv_size = TLS_CIPHER_AES_GCM_128_IV_SIZE;
2381 iv = ((struct tls12_crypto_info_aes_gcm_128 *)crypto_info)->iv;
2382 rec_seq_size = TLS_CIPHER_AES_GCM_128_REC_SEQ_SIZE;
2383 rec_seq =
2384 ((struct tls12_crypto_info_aes_gcm_128 *)crypto_info)->rec_seq;
2385 gcm_128_info =
2386 (struct tls12_crypto_info_aes_gcm_128 *)crypto_info;
2387 keysize = TLS_CIPHER_AES_GCM_128_KEY_SIZE;
2388 key = gcm_128_info->key;
2389 salt = gcm_128_info->salt;
2390 salt_size = TLS_CIPHER_AES_GCM_128_SALT_SIZE;
2391 cipher_name = "gcm(aes)";
2392 break;
2393 }
2394 case TLS_CIPHER_AES_GCM_256: {
2395 nonce_size = TLS_CIPHER_AES_GCM_256_IV_SIZE;
2396 tag_size = TLS_CIPHER_AES_GCM_256_TAG_SIZE;
2397 iv_size = TLS_CIPHER_AES_GCM_256_IV_SIZE;
2398 iv = ((struct tls12_crypto_info_aes_gcm_256 *)crypto_info)->iv;
2399 rec_seq_size = TLS_CIPHER_AES_GCM_256_REC_SEQ_SIZE;
2400 rec_seq =
2401 ((struct tls12_crypto_info_aes_gcm_256 *)crypto_info)->rec_seq;
2402 gcm_256_info =
2403 (struct tls12_crypto_info_aes_gcm_256 *)crypto_info;
2404 keysize = TLS_CIPHER_AES_GCM_256_KEY_SIZE;
2405 key = gcm_256_info->key;
2406 salt = gcm_256_info->salt;
2407 salt_size = TLS_CIPHER_AES_GCM_256_SALT_SIZE;
2408 cipher_name = "gcm(aes)";
2409 break;
2410 }
2411 case TLS_CIPHER_AES_CCM_128: {
2412 nonce_size = TLS_CIPHER_AES_CCM_128_IV_SIZE;
2413 tag_size = TLS_CIPHER_AES_CCM_128_TAG_SIZE;
2414 iv_size = TLS_CIPHER_AES_CCM_128_IV_SIZE;
2415 iv = ((struct tls12_crypto_info_aes_ccm_128 *)crypto_info)->iv;
2416 rec_seq_size = TLS_CIPHER_AES_CCM_128_REC_SEQ_SIZE;
2417 rec_seq =
2418 ((struct tls12_crypto_info_aes_ccm_128 *)crypto_info)->rec_seq;
2419 ccm_128_info =
2420 (struct tls12_crypto_info_aes_ccm_128 *)crypto_info;
2421 keysize = TLS_CIPHER_AES_CCM_128_KEY_SIZE;
2422 key = ccm_128_info->key;
2423 salt = ccm_128_info->salt;
2424 salt_size = TLS_CIPHER_AES_CCM_128_SALT_SIZE;
2425 cipher_name = "ccm(aes)";
2426 break;
2427 }
2428 default:
2429 rc = -EINVAL;
2430 goto free_priv;
2431 }
2432
2433 /* Sanity-check the sizes for stack allocations. */
2434 if (iv_size > MAX_IV_SIZE || nonce_size > MAX_IV_SIZE ||
2435 rec_seq_size > TLS_MAX_REC_SEQ_SIZE) {
2436 rc = -EINVAL;
2437 goto free_priv;
2438 }
2439
2440 if (crypto_info->version == TLS_1_3_VERSION) {
2441 nonce_size = 0;
2442 prot->aad_size = TLS_HEADER_SIZE;
2443 prot->tail_size = 1;
2444 } else {
2445 prot->aad_size = TLS_AAD_SPACE_SIZE;
2446 prot->tail_size = 0;
2447 }
2448
2449 prot->version = crypto_info->version;
2450 prot->cipher_type = crypto_info->cipher_type;
2451 prot->prepend_size = TLS_HEADER_SIZE + nonce_size;
2452 prot->tag_size = tag_size;
2453 prot->overhead_size = prot->prepend_size +
2454 prot->tag_size + prot->tail_size;
2455 prot->iv_size = iv_size;
2456 prot->salt_size = salt_size;
2457 cctx->iv = kmalloc(iv_size + salt_size, GFP_KERNEL);
2458 if (!cctx->iv) {
2459 rc = -ENOMEM;
2460 goto free_priv;
2461 }
2462 /* Note: 128 & 256 bit salt are the same size */
2463 prot->rec_seq_size = rec_seq_size;
2464 memcpy(cctx->iv, salt, salt_size);
2465 memcpy(cctx->iv + salt_size, iv, iv_size);
2466 cctx->rec_seq = kmemdup(rec_seq, rec_seq_size, GFP_KERNEL);
2467 if (!cctx->rec_seq) {
2468 rc = -ENOMEM;
2469 goto free_iv;
2470 }
2471
2472 if (!*aead) {
2473 *aead = crypto_alloc_aead(cipher_name, 0, 0);
2474 if (IS_ERR(*aead)) {
2475 rc = PTR_ERR(*aead);
2476 *aead = NULL;
2477 goto free_rec_seq;
2478 }
2479 }
2480
2481 ctx->push_pending_record = tls_sw_push_pending_record;
2482
2483 rc = crypto_aead_setkey(*aead, key, keysize);
2484
2485 if (rc)
2486 goto free_aead;
2487
2488 rc = crypto_aead_setauthsize(*aead, prot->tag_size);
2489 if (rc)
2490 goto free_aead;
2491
2492 if (sw_ctx_rx) {
2493 tfm = crypto_aead_tfm(sw_ctx_rx->aead_recv);
2494
2495 if (crypto_info->version == TLS_1_3_VERSION)
2496 sw_ctx_rx->async_capable = 0;
2497 else
2498 sw_ctx_rx->async_capable =
2499 !!(tfm->__crt_alg->cra_flags &
2500 CRYPTO_ALG_ASYNC);
2501
2502 /* Set up strparser */
2503 memset(&cb, 0, sizeof(cb));
2504 cb.rcv_msg = tls_queue;
2505 cb.parse_msg = tls_read_size;
2506
2507 strp_init(&sw_ctx_rx->strp, sk, &cb);
2508 }
2509
2510 goto out;
2511
2512 free_aead:
2513 crypto_free_aead(*aead);
2514 *aead = NULL;
2515 free_rec_seq:
2516 kfree(cctx->rec_seq);
2517 cctx->rec_seq = NULL;
2518 free_iv:
2519 kfree(cctx->iv);
2520 cctx->iv = NULL;
2521 free_priv:
2522 if (tx) {
2523 kfree(ctx->priv_ctx_tx);
2524 ctx->priv_ctx_tx = NULL;
2525 } else {
2526 kfree(ctx->priv_ctx_rx);
2527 ctx->priv_ctx_rx = NULL;
2528 }
2529 out:
2530 return rc;
2531 }
2532