1 /*
2 * Copyright (c) 2016-2017, Mellanox Technologies. All rights reserved.
3 * Copyright (c) 2016-2017, Dave Watson <davejwatson@fb.com>. All rights reserved.
4 *
5 * This software is available to you under a choice of one of two
6 * licenses. You may choose to be licensed under the terms of the GNU
7 * General Public License (GPL) Version 2, available from the file
8 * COPYING in the main directory of this source tree, or the
9 * OpenIB.org BSD license below:
10 *
11 * Redistribution and use in source and binary forms, with or
12 * without modification, are permitted provided that the following
13 * conditions are met:
14 *
15 * - Redistributions of source code must retain the above
16 * copyright notice, this list of conditions and the following
17 * disclaimer.
18 *
19 * - Redistributions in binary form must reproduce the above
20 * copyright notice, this list of conditions and the following
21 * disclaimer in the documentation and/or other materials
22 * provided with the distribution.
23 *
24 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
25 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
26 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
27 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
28 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
29 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
30 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
31 * SOFTWARE.
32 */
33
34 #include <linux/module.h>
35
36 #include <net/tcp.h>
37 #include <net/inet_common.h>
38 #include <linux/highmem.h>
39 #include <linux/netdevice.h>
40 #include <linux/sched/signal.h>
41 #include <linux/inetdevice.h>
42 #include <linux/inet_diag.h>
43
44 #include <net/snmp.h>
45 #include <net/tls.h>
46 #include <net/tls_toe.h>
47
48 MODULE_AUTHOR("Mellanox Technologies");
49 MODULE_DESCRIPTION("Transport Layer Security Support");
50 MODULE_LICENSE("Dual BSD/GPL");
51 MODULE_ALIAS_TCP_ULP("tls");
52
53 enum {
54 TLSV4,
55 TLSV6,
56 TLS_NUM_PROTS,
57 };
58
59 static const struct proto *saved_tcpv6_prot;
60 static DEFINE_MUTEX(tcpv6_prot_mutex);
61 static const struct proto *saved_tcpv4_prot;
62 static DEFINE_MUTEX(tcpv4_prot_mutex);
63 static struct proto tls_prots[TLS_NUM_PROTS][TLS_NUM_CONFIG][TLS_NUM_CONFIG];
64 static struct proto_ops tls_proto_ops[TLS_NUM_PROTS][TLS_NUM_CONFIG][TLS_NUM_CONFIG];
65 static void build_protos(struct proto prot[TLS_NUM_CONFIG][TLS_NUM_CONFIG],
66 const struct proto *base);
67
update_sk_prot(struct sock *sk, struct tls_context *ctx)68 void update_sk_prot(struct sock *sk, struct tls_context *ctx)
69 {
70 int ip_ver = sk->sk_family == AF_INET6 ? TLSV6 : TLSV4;
71
72 WRITE_ONCE(sk->sk_prot,
73 &tls_prots[ip_ver][ctx->tx_conf][ctx->rx_conf]);
74 WRITE_ONCE(sk->sk_socket->ops,
75 &tls_proto_ops[ip_ver][ctx->tx_conf][ctx->rx_conf]);
76 }
77
wait_on_pending_writer(struct sock *sk, long *timeo)78 int wait_on_pending_writer(struct sock *sk, long *timeo)
79 {
80 int rc = 0;
81 DEFINE_WAIT_FUNC(wait, woken_wake_function);
82
83 add_wait_queue(sk_sleep(sk), &wait);
84 while (1) {
85 if (!*timeo) {
86 rc = -EAGAIN;
87 break;
88 }
89
90 if (signal_pending(current)) {
91 rc = sock_intr_errno(*timeo);
92 break;
93 }
94
95 if (sk_wait_event(sk, timeo,
96 !READ_ONCE(sk->sk_write_pending), &wait))
97 break;
98 }
99 remove_wait_queue(sk_sleep(sk), &wait);
100 return rc;
101 }
102
tls_push_sg(struct sock *sk, struct tls_context *ctx, struct scatterlist *sg, u16 first_offset, int flags)103 int tls_push_sg(struct sock *sk,
104 struct tls_context *ctx,
105 struct scatterlist *sg,
106 u16 first_offset,
107 int flags)
108 {
109 int sendpage_flags = flags | MSG_SENDPAGE_NOTLAST;
110 int ret = 0;
111 struct page *p;
112 size_t size;
113 int offset = first_offset;
114
115 size = sg->length - offset;
116 offset += sg->offset;
117
118 ctx->in_tcp_sendpages = true;
119 while (1) {
120 if (sg_is_last(sg))
121 sendpage_flags = flags;
122
123 /* is sending application-limited? */
124 tcp_rate_check_app_limited(sk);
125 p = sg_page(sg);
126 retry:
127 ret = do_tcp_sendpages(sk, p, offset, size, sendpage_flags);
128
129 if (ret != size) {
130 if (ret > 0) {
131 offset += ret;
132 size -= ret;
133 goto retry;
134 }
135
136 offset -= sg->offset;
137 ctx->partially_sent_offset = offset;
138 ctx->partially_sent_record = (void *)sg;
139 ctx->in_tcp_sendpages = false;
140 return ret;
141 }
142
143 put_page(p);
144 sk_mem_uncharge(sk, sg->length);
145 sg = sg_next(sg);
146 if (!sg)
147 break;
148
149 offset = sg->offset;
150 size = sg->length;
151 }
152
153 ctx->in_tcp_sendpages = false;
154
155 return 0;
156 }
157
tls_handle_open_record(struct sock *sk, int flags)158 static int tls_handle_open_record(struct sock *sk, int flags)
159 {
160 struct tls_context *ctx = tls_get_ctx(sk);
161
162 if (tls_is_pending_open_record(ctx))
163 return ctx->push_pending_record(sk, flags);
164
165 return 0;
166 }
167
tls_proccess_cmsg(struct sock *sk, struct msghdr *msg, unsigned char *record_type)168 int tls_proccess_cmsg(struct sock *sk, struct msghdr *msg,
169 unsigned char *record_type)
170 {
171 struct cmsghdr *cmsg;
172 int rc = -EINVAL;
173
174 for_each_cmsghdr(cmsg, msg) {
175 if (!CMSG_OK(msg, cmsg))
176 return -EINVAL;
177 if (cmsg->cmsg_level != SOL_TLS)
178 continue;
179
180 switch (cmsg->cmsg_type) {
181 case TLS_SET_RECORD_TYPE:
182 if (cmsg->cmsg_len < CMSG_LEN(sizeof(*record_type)))
183 return -EINVAL;
184
185 if (msg->msg_flags & MSG_MORE)
186 return -EINVAL;
187
188 rc = tls_handle_open_record(sk, msg->msg_flags);
189 if (rc)
190 return rc;
191
192 *record_type = *(unsigned char *)CMSG_DATA(cmsg);
193 rc = 0;
194 break;
195 default:
196 return -EINVAL;
197 }
198 }
199
200 return rc;
201 }
202
tls_push_partial_record(struct sock *sk, struct tls_context *ctx, int flags)203 int tls_push_partial_record(struct sock *sk, struct tls_context *ctx,
204 int flags)
205 {
206 struct scatterlist *sg;
207 u16 offset;
208
209 sg = ctx->partially_sent_record;
210 offset = ctx->partially_sent_offset;
211
212 ctx->partially_sent_record = NULL;
213 return tls_push_sg(sk, ctx, sg, offset, flags);
214 }
215
tls_free_partial_record(struct sock *sk, struct tls_context *ctx)216 void tls_free_partial_record(struct sock *sk, struct tls_context *ctx)
217 {
218 struct scatterlist *sg;
219
220 for (sg = ctx->partially_sent_record; sg; sg = sg_next(sg)) {
221 put_page(sg_page(sg));
222 sk_mem_uncharge(sk, sg->length);
223 }
224 ctx->partially_sent_record = NULL;
225 }
226
tls_write_space(struct sock *sk)227 static void tls_write_space(struct sock *sk)
228 {
229 struct tls_context *ctx = tls_get_ctx(sk);
230
231 /* If in_tcp_sendpages call lower protocol write space handler
232 * to ensure we wake up any waiting operations there. For example
233 * if do_tcp_sendpages where to call sk_wait_event.
234 */
235 if (ctx->in_tcp_sendpages) {
236 ctx->sk_write_space(sk);
237 return;
238 }
239
240 #ifdef CONFIG_TLS_DEVICE
241 if (ctx->tx_conf == TLS_HW)
242 tls_device_write_space(sk, ctx);
243 else
244 #endif
245 tls_sw_write_space(sk, ctx);
246
247 ctx->sk_write_space(sk);
248 }
249
250 /**
251 * tls_ctx_free() - free TLS ULP context
252 * @sk: socket to with @ctx is attached
253 * @ctx: TLS context structure
254 *
255 * Free TLS context. If @sk is %NULL caller guarantees that the socket
256 * to which @ctx was attached has no outstanding references.
257 */
tls_ctx_free(struct sock *sk, struct tls_context *ctx)258 void tls_ctx_free(struct sock *sk, struct tls_context *ctx)
259 {
260 if (!ctx)
261 return;
262
263 memzero_explicit(&ctx->crypto_send, sizeof(ctx->crypto_send));
264 memzero_explicit(&ctx->crypto_recv, sizeof(ctx->crypto_recv));
265 mutex_destroy(&ctx->tx_lock);
266
267 if (sk)
268 kfree_rcu(ctx, rcu);
269 else
270 kfree(ctx);
271 }
272
tls_sk_proto_cleanup(struct sock *sk, struct tls_context *ctx, long timeo)273 static void tls_sk_proto_cleanup(struct sock *sk,
274 struct tls_context *ctx, long timeo)
275 {
276 if (unlikely(sk->sk_write_pending) &&
277 !wait_on_pending_writer(sk, &timeo))
278 tls_handle_open_record(sk, 0);
279
280 /* We need these for tls_sw_fallback handling of other packets */
281 if (ctx->tx_conf == TLS_SW) {
282 kfree(ctx->tx.rec_seq);
283 kfree(ctx->tx.iv);
284 tls_sw_release_resources_tx(sk);
285 TLS_DEC_STATS(sock_net(sk), LINUX_MIB_TLSCURRTXSW);
286 } else if (ctx->tx_conf == TLS_HW) {
287 tls_device_free_resources_tx(sk);
288 TLS_DEC_STATS(sock_net(sk), LINUX_MIB_TLSCURRTXDEVICE);
289 }
290
291 if (ctx->rx_conf == TLS_SW) {
292 tls_sw_release_resources_rx(sk);
293 TLS_DEC_STATS(sock_net(sk), LINUX_MIB_TLSCURRRXSW);
294 } else if (ctx->rx_conf == TLS_HW) {
295 tls_device_offload_cleanup_rx(sk);
296 TLS_DEC_STATS(sock_net(sk), LINUX_MIB_TLSCURRRXDEVICE);
297 }
298 }
299
tls_sk_proto_close(struct sock *sk, long timeout)300 static void tls_sk_proto_close(struct sock *sk, long timeout)
301 {
302 struct inet_connection_sock *icsk = inet_csk(sk);
303 struct tls_context *ctx = tls_get_ctx(sk);
304 long timeo = sock_sndtimeo(sk, 0);
305 bool free_ctx;
306
307 if (ctx->tx_conf == TLS_SW)
308 tls_sw_cancel_work_tx(ctx);
309
310 lock_sock(sk);
311 free_ctx = ctx->tx_conf != TLS_HW && ctx->rx_conf != TLS_HW;
312
313 if (ctx->tx_conf != TLS_BASE || ctx->rx_conf != TLS_BASE)
314 tls_sk_proto_cleanup(sk, ctx, timeo);
315
316 write_lock_bh(&sk->sk_callback_lock);
317 if (free_ctx)
318 rcu_assign_pointer(icsk->icsk_ulp_data, NULL);
319 WRITE_ONCE(sk->sk_prot, ctx->sk_proto);
320 if (sk->sk_write_space == tls_write_space)
321 sk->sk_write_space = ctx->sk_write_space;
322 write_unlock_bh(&sk->sk_callback_lock);
323 release_sock(sk);
324 if (ctx->tx_conf == TLS_SW)
325 tls_sw_free_ctx_tx(ctx);
326 if (ctx->rx_conf == TLS_SW || ctx->rx_conf == TLS_HW)
327 tls_sw_strparser_done(ctx);
328 if (ctx->rx_conf == TLS_SW)
329 tls_sw_free_ctx_rx(ctx);
330 ctx->sk_proto->close(sk, timeout);
331
332 if (free_ctx)
333 tls_ctx_free(sk, ctx);
334 }
335
do_tls_getsockopt_conf(struct sock *sk, char __user *optval, int __user *optlen, int tx)336 static int do_tls_getsockopt_conf(struct sock *sk, char __user *optval,
337 int __user *optlen, int tx)
338 {
339 int rc = 0;
340 struct tls_context *ctx = tls_get_ctx(sk);
341 struct tls_crypto_info *crypto_info;
342 struct cipher_context *cctx;
343 int len;
344
345 if (get_user(len, optlen))
346 return -EFAULT;
347
348 if (!optval || (len < sizeof(*crypto_info))) {
349 rc = -EINVAL;
350 goto out;
351 }
352
353 if (!ctx) {
354 rc = -EBUSY;
355 goto out;
356 }
357
358 /* get user crypto info */
359 if (tx) {
360 crypto_info = &ctx->crypto_send.info;
361 cctx = &ctx->tx;
362 } else {
363 crypto_info = &ctx->crypto_recv.info;
364 cctx = &ctx->rx;
365 }
366
367 if (!TLS_CRYPTO_INFO_READY(crypto_info)) {
368 rc = -EBUSY;
369 goto out;
370 }
371
372 if (len == sizeof(*crypto_info)) {
373 if (copy_to_user(optval, crypto_info, sizeof(*crypto_info)))
374 rc = -EFAULT;
375 goto out;
376 }
377
378 switch (crypto_info->cipher_type) {
379 case TLS_CIPHER_AES_GCM_128: {
380 struct tls12_crypto_info_aes_gcm_128 *
381 crypto_info_aes_gcm_128 =
382 container_of(crypto_info,
383 struct tls12_crypto_info_aes_gcm_128,
384 info);
385
386 if (len != sizeof(*crypto_info_aes_gcm_128)) {
387 rc = -EINVAL;
388 goto out;
389 }
390 memcpy(crypto_info_aes_gcm_128->iv,
391 cctx->iv + TLS_CIPHER_AES_GCM_128_SALT_SIZE,
392 TLS_CIPHER_AES_GCM_128_IV_SIZE);
393 memcpy(crypto_info_aes_gcm_128->rec_seq, cctx->rec_seq,
394 TLS_CIPHER_AES_GCM_128_REC_SEQ_SIZE);
395 if (copy_to_user(optval,
396 crypto_info_aes_gcm_128,
397 sizeof(*crypto_info_aes_gcm_128)))
398 rc = -EFAULT;
399 break;
400 }
401 case TLS_CIPHER_AES_GCM_256: {
402 struct tls12_crypto_info_aes_gcm_256 *
403 crypto_info_aes_gcm_256 =
404 container_of(crypto_info,
405 struct tls12_crypto_info_aes_gcm_256,
406 info);
407
408 if (len != sizeof(*crypto_info_aes_gcm_256)) {
409 rc = -EINVAL;
410 goto out;
411 }
412 memcpy(crypto_info_aes_gcm_256->iv,
413 cctx->iv + TLS_CIPHER_AES_GCM_256_SALT_SIZE,
414 TLS_CIPHER_AES_GCM_256_IV_SIZE);
415 memcpy(crypto_info_aes_gcm_256->rec_seq, cctx->rec_seq,
416 TLS_CIPHER_AES_GCM_256_REC_SEQ_SIZE);
417 if (copy_to_user(optval,
418 crypto_info_aes_gcm_256,
419 sizeof(*crypto_info_aes_gcm_256)))
420 rc = -EFAULT;
421 break;
422 }
423 default:
424 rc = -EINVAL;
425 }
426
427 out:
428 return rc;
429 }
430
do_tls_getsockopt(struct sock *sk, int optname, char __user *optval, int __user *optlen)431 static int do_tls_getsockopt(struct sock *sk, int optname,
432 char __user *optval, int __user *optlen)
433 {
434 int rc = 0;
435
436 lock_sock(sk);
437
438 switch (optname) {
439 case TLS_TX:
440 case TLS_RX:
441 rc = do_tls_getsockopt_conf(sk, optval, optlen,
442 optname == TLS_TX);
443 break;
444 default:
445 rc = -ENOPROTOOPT;
446 break;
447 }
448
449 release_sock(sk);
450
451 return rc;
452 }
453
tls_getsockopt(struct sock *sk, int level, int optname, char __user *optval, int __user *optlen)454 static int tls_getsockopt(struct sock *sk, int level, int optname,
455 char __user *optval, int __user *optlen)
456 {
457 struct tls_context *ctx = tls_get_ctx(sk);
458
459 if (level != SOL_TLS)
460 return ctx->sk_proto->getsockopt(sk, level,
461 optname, optval, optlen);
462
463 return do_tls_getsockopt(sk, optname, optval, optlen);
464 }
465
do_tls_setsockopt_conf(struct sock *sk, sockptr_t optval, unsigned int optlen, int tx)466 static int do_tls_setsockopt_conf(struct sock *sk, sockptr_t optval,
467 unsigned int optlen, int tx)
468 {
469 struct tls_crypto_info *crypto_info;
470 struct tls_crypto_info *alt_crypto_info;
471 struct tls_context *ctx = tls_get_ctx(sk);
472 size_t optsize;
473 int rc = 0;
474 int conf;
475
476 if (sockptr_is_null(optval) || (optlen < sizeof(*crypto_info))) {
477 rc = -EINVAL;
478 goto out;
479 }
480
481 if (tx) {
482 crypto_info = &ctx->crypto_send.info;
483 alt_crypto_info = &ctx->crypto_recv.info;
484 } else {
485 crypto_info = &ctx->crypto_recv.info;
486 alt_crypto_info = &ctx->crypto_send.info;
487 }
488
489 /* Currently we don't support set crypto info more than one time */
490 if (TLS_CRYPTO_INFO_READY(crypto_info)) {
491 rc = -EBUSY;
492 goto out;
493 }
494
495 rc = copy_from_sockptr(crypto_info, optval, sizeof(*crypto_info));
496 if (rc) {
497 rc = -EFAULT;
498 goto err_crypto_info;
499 }
500
501 /* check version */
502 if (crypto_info->version != TLS_1_2_VERSION &&
503 crypto_info->version != TLS_1_3_VERSION) {
504 rc = -EINVAL;
505 goto err_crypto_info;
506 }
507
508 /* Ensure that TLS version and ciphers are same in both directions */
509 if (TLS_CRYPTO_INFO_READY(alt_crypto_info)) {
510 if (alt_crypto_info->version != crypto_info->version ||
511 alt_crypto_info->cipher_type != crypto_info->cipher_type) {
512 rc = -EINVAL;
513 goto err_crypto_info;
514 }
515 }
516
517 switch (crypto_info->cipher_type) {
518 case TLS_CIPHER_AES_GCM_128:
519 optsize = sizeof(struct tls12_crypto_info_aes_gcm_128);
520 break;
521 case TLS_CIPHER_AES_GCM_256: {
522 optsize = sizeof(struct tls12_crypto_info_aes_gcm_256);
523 break;
524 }
525 case TLS_CIPHER_AES_CCM_128:
526 optsize = sizeof(struct tls12_crypto_info_aes_ccm_128);
527 break;
528 default:
529 rc = -EINVAL;
530 goto err_crypto_info;
531 }
532
533 if (optlen != optsize) {
534 rc = -EINVAL;
535 goto err_crypto_info;
536 }
537
538 rc = copy_from_sockptr_offset(crypto_info + 1, optval,
539 sizeof(*crypto_info),
540 optlen - sizeof(*crypto_info));
541 if (rc) {
542 rc = -EFAULT;
543 goto err_crypto_info;
544 }
545
546 if (tx) {
547 rc = tls_set_device_offload(sk, ctx);
548 conf = TLS_HW;
549 if (!rc) {
550 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSTXDEVICE);
551 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSCURRTXDEVICE);
552 } else {
553 rc = tls_set_sw_offload(sk, ctx, 1);
554 if (rc)
555 goto err_crypto_info;
556 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSTXSW);
557 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSCURRTXSW);
558 conf = TLS_SW;
559 }
560 } else {
561 rc = tls_set_device_offload_rx(sk, ctx);
562 conf = TLS_HW;
563 if (!rc) {
564 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSRXDEVICE);
565 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSCURRRXDEVICE);
566 } else {
567 rc = tls_set_sw_offload(sk, ctx, 0);
568 if (rc)
569 goto err_crypto_info;
570 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSRXSW);
571 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSCURRRXSW);
572 conf = TLS_SW;
573 }
574 tls_sw_strparser_arm(sk, ctx);
575 }
576
577 if (tx)
578 ctx->tx_conf = conf;
579 else
580 ctx->rx_conf = conf;
581 update_sk_prot(sk, ctx);
582 if (tx) {
583 ctx->sk_write_space = sk->sk_write_space;
584 sk->sk_write_space = tls_write_space;
585 }
586 goto out;
587
588 err_crypto_info:
589 memzero_explicit(crypto_info, sizeof(union tls_crypto_context));
590 out:
591 return rc;
592 }
593
do_tls_setsockopt(struct sock *sk, int optname, sockptr_t optval, unsigned int optlen)594 static int do_tls_setsockopt(struct sock *sk, int optname, sockptr_t optval,
595 unsigned int optlen)
596 {
597 int rc = 0;
598
599 switch (optname) {
600 case TLS_TX:
601 case TLS_RX:
602 lock_sock(sk);
603 rc = do_tls_setsockopt_conf(sk, optval, optlen,
604 optname == TLS_TX);
605 release_sock(sk);
606 break;
607 default:
608 rc = -ENOPROTOOPT;
609 break;
610 }
611 return rc;
612 }
613
tls_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval, unsigned int optlen)614 static int tls_setsockopt(struct sock *sk, int level, int optname,
615 sockptr_t optval, unsigned int optlen)
616 {
617 struct tls_context *ctx = tls_get_ctx(sk);
618
619 if (level != SOL_TLS)
620 return ctx->sk_proto->setsockopt(sk, level, optname, optval,
621 optlen);
622
623 return do_tls_setsockopt(sk, optname, optval, optlen);
624 }
625
tls_ctx_create(struct sock *sk)626 struct tls_context *tls_ctx_create(struct sock *sk)
627 {
628 struct inet_connection_sock *icsk = inet_csk(sk);
629 struct tls_context *ctx;
630
631 ctx = kzalloc(sizeof(*ctx), GFP_ATOMIC);
632 if (!ctx)
633 return NULL;
634
635 mutex_init(&ctx->tx_lock);
636 ctx->sk_proto = READ_ONCE(sk->sk_prot);
637 ctx->sk = sk;
638 /* Release semantic of rcu_assign_pointer() ensures that
639 * ctx->sk_proto is visible before changing sk->sk_prot in
640 * update_sk_prot(), and prevents reading uninitialized value in
641 * tls_{getsockopt, setsockopt}. Note that we do not need a
642 * read barrier in tls_{getsockopt,setsockopt} as there is an
643 * address dependency between sk->sk_proto->{getsockopt,setsockopt}
644 * and ctx->sk_proto.
645 */
646 rcu_assign_pointer(icsk->icsk_ulp_data, ctx);
647 return ctx;
648 }
649
build_proto_ops(struct proto_ops ops[TLS_NUM_CONFIG][TLS_NUM_CONFIG], const struct proto_ops *base)650 static void build_proto_ops(struct proto_ops ops[TLS_NUM_CONFIG][TLS_NUM_CONFIG],
651 const struct proto_ops *base)
652 {
653 ops[TLS_BASE][TLS_BASE] = *base;
654
655 ops[TLS_SW ][TLS_BASE] = ops[TLS_BASE][TLS_BASE];
656 ops[TLS_SW ][TLS_BASE].sendpage_locked = tls_sw_sendpage_locked;
657
658 ops[TLS_BASE][TLS_SW ] = ops[TLS_BASE][TLS_BASE];
659 ops[TLS_BASE][TLS_SW ].splice_read = tls_sw_splice_read;
660
661 ops[TLS_SW ][TLS_SW ] = ops[TLS_SW ][TLS_BASE];
662 ops[TLS_SW ][TLS_SW ].splice_read = tls_sw_splice_read;
663
664 #ifdef CONFIG_TLS_DEVICE
665 ops[TLS_HW ][TLS_BASE] = ops[TLS_BASE][TLS_BASE];
666 ops[TLS_HW ][TLS_BASE].sendpage_locked = NULL;
667
668 ops[TLS_HW ][TLS_SW ] = ops[TLS_BASE][TLS_SW ];
669 ops[TLS_HW ][TLS_SW ].sendpage_locked = NULL;
670
671 ops[TLS_BASE][TLS_HW ] = ops[TLS_BASE][TLS_SW ];
672
673 ops[TLS_SW ][TLS_HW ] = ops[TLS_SW ][TLS_SW ];
674
675 ops[TLS_HW ][TLS_HW ] = ops[TLS_HW ][TLS_SW ];
676 ops[TLS_HW ][TLS_HW ].sendpage_locked = NULL;
677 #endif
678 #ifdef CONFIG_TLS_TOE
679 ops[TLS_HW_RECORD][TLS_HW_RECORD] = *base;
680 #endif
681 }
682
tls_build_proto(struct sock *sk)683 static void tls_build_proto(struct sock *sk)
684 {
685 int ip_ver = sk->sk_family == AF_INET6 ? TLSV6 : TLSV4;
686 struct proto *prot = READ_ONCE(sk->sk_prot);
687
688 /* Build IPv6 TLS whenever the address of tcpv6 _prot changes */
689 if (ip_ver == TLSV6 &&
690 unlikely(prot != smp_load_acquire(&saved_tcpv6_prot))) {
691 mutex_lock(&tcpv6_prot_mutex);
692 if (likely(prot != saved_tcpv6_prot)) {
693 build_protos(tls_prots[TLSV6], prot);
694 build_proto_ops(tls_proto_ops[TLSV6],
695 sk->sk_socket->ops);
696 smp_store_release(&saved_tcpv6_prot, prot);
697 }
698 mutex_unlock(&tcpv6_prot_mutex);
699 }
700
701 if (ip_ver == TLSV4 &&
702 unlikely(prot != smp_load_acquire(&saved_tcpv4_prot))) {
703 mutex_lock(&tcpv4_prot_mutex);
704 if (likely(prot != saved_tcpv4_prot)) {
705 build_protos(tls_prots[TLSV4], prot);
706 build_proto_ops(tls_proto_ops[TLSV4],
707 sk->sk_socket->ops);
708 smp_store_release(&saved_tcpv4_prot, prot);
709 }
710 mutex_unlock(&tcpv4_prot_mutex);
711 }
712 }
713
build_protos(struct proto prot[TLS_NUM_CONFIG][TLS_NUM_CONFIG], const struct proto *base)714 static void build_protos(struct proto prot[TLS_NUM_CONFIG][TLS_NUM_CONFIG],
715 const struct proto *base)
716 {
717 prot[TLS_BASE][TLS_BASE] = *base;
718 prot[TLS_BASE][TLS_BASE].setsockopt = tls_setsockopt;
719 prot[TLS_BASE][TLS_BASE].getsockopt = tls_getsockopt;
720 prot[TLS_BASE][TLS_BASE].close = tls_sk_proto_close;
721
722 prot[TLS_SW][TLS_BASE] = prot[TLS_BASE][TLS_BASE];
723 prot[TLS_SW][TLS_BASE].sendmsg = tls_sw_sendmsg;
724 prot[TLS_SW][TLS_BASE].sendpage = tls_sw_sendpage;
725
726 prot[TLS_BASE][TLS_SW] = prot[TLS_BASE][TLS_BASE];
727 prot[TLS_BASE][TLS_SW].recvmsg = tls_sw_recvmsg;
728 prot[TLS_BASE][TLS_SW].stream_memory_read = tls_sw_stream_read;
729 prot[TLS_BASE][TLS_SW].close = tls_sk_proto_close;
730
731 prot[TLS_SW][TLS_SW] = prot[TLS_SW][TLS_BASE];
732 prot[TLS_SW][TLS_SW].recvmsg = tls_sw_recvmsg;
733 prot[TLS_SW][TLS_SW].stream_memory_read = tls_sw_stream_read;
734 prot[TLS_SW][TLS_SW].close = tls_sk_proto_close;
735
736 #ifdef CONFIG_TLS_DEVICE
737 prot[TLS_HW][TLS_BASE] = prot[TLS_BASE][TLS_BASE];
738 prot[TLS_HW][TLS_BASE].sendmsg = tls_device_sendmsg;
739 prot[TLS_HW][TLS_BASE].sendpage = tls_device_sendpage;
740
741 prot[TLS_HW][TLS_SW] = prot[TLS_BASE][TLS_SW];
742 prot[TLS_HW][TLS_SW].sendmsg = tls_device_sendmsg;
743 prot[TLS_HW][TLS_SW].sendpage = tls_device_sendpage;
744
745 prot[TLS_BASE][TLS_HW] = prot[TLS_BASE][TLS_SW];
746
747 prot[TLS_SW][TLS_HW] = prot[TLS_SW][TLS_SW];
748
749 prot[TLS_HW][TLS_HW] = prot[TLS_HW][TLS_SW];
750 #endif
751 #ifdef CONFIG_TLS_TOE
752 prot[TLS_HW_RECORD][TLS_HW_RECORD] = *base;
753 prot[TLS_HW_RECORD][TLS_HW_RECORD].hash = tls_toe_hash;
754 prot[TLS_HW_RECORD][TLS_HW_RECORD].unhash = tls_toe_unhash;
755 #endif
756 }
757
tls_init(struct sock *sk)758 static int tls_init(struct sock *sk)
759 {
760 struct tls_context *ctx;
761 int rc = 0;
762
763 tls_build_proto(sk);
764
765 #ifdef CONFIG_TLS_TOE
766 if (tls_toe_bypass(sk))
767 return 0;
768 #endif
769
770 /* The TLS ulp is currently supported only for TCP sockets
771 * in ESTABLISHED state.
772 * Supporting sockets in LISTEN state will require us
773 * to modify the accept implementation to clone rather then
774 * share the ulp context.
775 */
776 if (sk->sk_state != TCP_ESTABLISHED)
777 return -ENOTCONN;
778
779 /* allocate tls context */
780 write_lock_bh(&sk->sk_callback_lock);
781 ctx = tls_ctx_create(sk);
782 if (!ctx) {
783 rc = -ENOMEM;
784 goto out;
785 }
786
787 ctx->tx_conf = TLS_BASE;
788 ctx->rx_conf = TLS_BASE;
789 update_sk_prot(sk, ctx);
790 out:
791 write_unlock_bh(&sk->sk_callback_lock);
792 return rc;
793 }
794
tls_update(struct sock *sk, struct proto *p, void (*write_space)(struct sock *sk))795 static void tls_update(struct sock *sk, struct proto *p,
796 void (*write_space)(struct sock *sk))
797 {
798 struct tls_context *ctx;
799
800 ctx = tls_get_ctx(sk);
801 if (likely(ctx)) {
802 ctx->sk_write_space = write_space;
803 ctx->sk_proto = p;
804 } else {
805 /* Pairs with lockless read in sk_clone_lock(). */
806 WRITE_ONCE(sk->sk_prot, p);
807 sk->sk_write_space = write_space;
808 }
809 }
810
tls_get_info(const struct sock *sk, struct sk_buff *skb)811 static int tls_get_info(const struct sock *sk, struct sk_buff *skb)
812 {
813 u16 version, cipher_type;
814 struct tls_context *ctx;
815 struct nlattr *start;
816 int err;
817
818 start = nla_nest_start_noflag(skb, INET_ULP_INFO_TLS);
819 if (!start)
820 return -EMSGSIZE;
821
822 rcu_read_lock();
823 ctx = rcu_dereference(inet_csk(sk)->icsk_ulp_data);
824 if (!ctx) {
825 err = 0;
826 goto nla_failure;
827 }
828 version = ctx->prot_info.version;
829 if (version) {
830 err = nla_put_u16(skb, TLS_INFO_VERSION, version);
831 if (err)
832 goto nla_failure;
833 }
834 cipher_type = ctx->prot_info.cipher_type;
835 if (cipher_type) {
836 err = nla_put_u16(skb, TLS_INFO_CIPHER, cipher_type);
837 if (err)
838 goto nla_failure;
839 }
840 err = nla_put_u16(skb, TLS_INFO_TXCONF, tls_user_config(ctx, true));
841 if (err)
842 goto nla_failure;
843
844 err = nla_put_u16(skb, TLS_INFO_RXCONF, tls_user_config(ctx, false));
845 if (err)
846 goto nla_failure;
847
848 rcu_read_unlock();
849 nla_nest_end(skb, start);
850 return 0;
851
852 nla_failure:
853 rcu_read_unlock();
854 nla_nest_cancel(skb, start);
855 return err;
856 }
857
tls_get_info_size(const struct sock *sk)858 static size_t tls_get_info_size(const struct sock *sk)
859 {
860 size_t size = 0;
861
862 size += nla_total_size(0) + /* INET_ULP_INFO_TLS */
863 nla_total_size(sizeof(u16)) + /* TLS_INFO_VERSION */
864 nla_total_size(sizeof(u16)) + /* TLS_INFO_CIPHER */
865 nla_total_size(sizeof(u16)) + /* TLS_INFO_RXCONF */
866 nla_total_size(sizeof(u16)) + /* TLS_INFO_TXCONF */
867 0;
868
869 return size;
870 }
871
tls_init_net(struct net *net)872 static int __net_init tls_init_net(struct net *net)
873 {
874 int err;
875
876 net->mib.tls_statistics = alloc_percpu(struct linux_tls_mib);
877 if (!net->mib.tls_statistics)
878 return -ENOMEM;
879
880 err = tls_proc_init(net);
881 if (err)
882 goto err_free_stats;
883
884 return 0;
885 err_free_stats:
886 free_percpu(net->mib.tls_statistics);
887 return err;
888 }
889
tls_exit_net(struct net *net)890 static void __net_exit tls_exit_net(struct net *net)
891 {
892 tls_proc_fini(net);
893 free_percpu(net->mib.tls_statistics);
894 }
895
896 static struct pernet_operations tls_proc_ops = {
897 .init = tls_init_net,
898 .exit = tls_exit_net,
899 };
900
901 static struct tcp_ulp_ops tcp_tls_ulp_ops __read_mostly = {
902 .name = "tls",
903 .owner = THIS_MODULE,
904 .init = tls_init,
905 .update = tls_update,
906 .get_info = tls_get_info,
907 .get_info_size = tls_get_info_size,
908 };
909
tls_register(void)910 static int __init tls_register(void)
911 {
912 int err;
913
914 err = register_pernet_subsys(&tls_proc_ops);
915 if (err)
916 return err;
917
918 err = tls_device_init();
919 if (err) {
920 unregister_pernet_subsys(&tls_proc_ops);
921 return err;
922 }
923
924 tcp_register_ulp(&tcp_tls_ulp_ops);
925
926 return 0;
927 }
928
tls_unregister(void)929 static void __exit tls_unregister(void)
930 {
931 tcp_unregister_ulp(&tcp_tls_ulp_ops);
932 tls_device_cleanup();
933 unregister_pernet_subsys(&tls_proc_ops);
934 }
935
936 module_init(tls_register);
937 module_exit(tls_unregister);
938