1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * NET An implementation of the SOCKET network access protocol.
4 *
5 * Version: @(#)socket.c 1.1.93 18/02/95
6 *
7 * Authors: Orest Zborowski, <obz@Kodak.COM>
8 * Ross Biro
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 *
11 * Fixes:
12 * Anonymous : NOTSOCK/BADF cleanup. Error fix in
13 * shutdown()
14 * Alan Cox : verify_area() fixes
15 * Alan Cox : Removed DDI
16 * Jonathan Kamens : SOCK_DGRAM reconnect bug
17 * Alan Cox : Moved a load of checks to the very
18 * top level.
19 * Alan Cox : Move address structures to/from user
20 * mode above the protocol layers.
21 * Rob Janssen : Allow 0 length sends.
22 * Alan Cox : Asynchronous I/O support (cribbed from the
23 * tty drivers).
24 * Niibe Yutaka : Asynchronous I/O for writes (4.4BSD style)
25 * Jeff Uphoff : Made max number of sockets command-line
26 * configurable.
27 * Matti Aarnio : Made the number of sockets dynamic,
28 * to be allocated when needed, and mr.
29 * Uphoff's max is used as max to be
30 * allowed to allocate.
31 * Linus : Argh. removed all the socket allocation
32 * altogether: it's in the inode now.
33 * Alan Cox : Made sock_alloc()/sock_release() public
34 * for NetROM and future kernel nfsd type
35 * stuff.
36 * Alan Cox : sendmsg/recvmsg basics.
37 * Tom Dyas : Export net symbols.
38 * Marcin Dalecki : Fixed problems with CONFIG_NET="n".
39 * Alan Cox : Added thread locking to sys_* calls
40 * for sockets. May have errors at the
41 * moment.
42 * Kevin Buhr : Fixed the dumb errors in the above.
43 * Andi Kleen : Some small cleanups, optimizations,
44 * and fixed a copy_from_user() bug.
45 * Tigran Aivazian : sys_send(args) calls sys_sendto(args, NULL, 0)
46 * Tigran Aivazian : Made listen(2) backlog sanity checks
47 * protocol-independent
48 *
49 * This module is effectively the top level interface to the BSD socket
50 * paradigm.
51 *
52 * Based upon Swansea University Computer Society NET3.039
53 */
54
55 #include <linux/mm.h>
56 #include <linux/socket.h>
57 #include <linux/file.h>
58 #include <linux/net.h>
59 #include <linux/interrupt.h>
60 #include <linux/thread_info.h>
61 #include <linux/rcupdate.h>
62 #include <linux/netdevice.h>
63 #include <linux/proc_fs.h>
64 #include <linux/seq_file.h>
65 #include <linux/mutex.h>
66 #include <linux/if_bridge.h>
67 #include <linux/if_frad.h>
68 #include <linux/if_vlan.h>
69 #include <linux/ptp_classify.h>
70 #include <linux/init.h>
71 #include <linux/poll.h>
72 #include <linux/cache.h>
73 #include <linux/module.h>
74 #include <linux/highmem.h>
75 #include <linux/mount.h>
76 #include <linux/pseudo_fs.h>
77 #include <linux/security.h>
78 #include <linux/syscalls.h>
79 #include <linux/compat.h>
80 #include <linux/kmod.h>
81 #include <linux/audit.h>
82 #include <linux/wireless.h>
83 #include <linux/nsproxy.h>
84 #include <linux/magic.h>
85 #include <linux/slab.h>
86 #include <linux/xattr.h>
87 #include <linux/nospec.h>
88 #include <linux/indirect_call_wrapper.h>
89
90 #include <linux/uaccess.h>
91 #include <asm/unistd.h>
92
93 #include <net/compat.h>
94 #include <net/wext.h>
95 #include <net/cls_cgroup.h>
96
97 #include <net/sock.h>
98 #include <linux/netfilter.h>
99
100 #include <linux/if_tun.h>
101 #include <linux/ipv6_route.h>
102 #include <linux/route.h>
103 #include <linux/termios.h>
104 #include <linux/sockios.h>
105 #include <net/busy_poll.h>
106 #include <linux/errqueue.h>
107
108 #ifdef CONFIG_NET_RX_BUSY_POLL
109 unsigned int sysctl_net_busy_read __read_mostly;
110 unsigned int sysctl_net_busy_poll __read_mostly;
111 #endif
112
113 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to);
114 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from);
115 static int sock_mmap(struct file *file, struct vm_area_struct *vma);
116
117 static int sock_close(struct inode *inode, struct file *file);
118 static __poll_t sock_poll(struct file *file,
119 struct poll_table_struct *wait);
120 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
121 #ifdef CONFIG_COMPAT
122 static long compat_sock_ioctl(struct file *file,
123 unsigned int cmd, unsigned long arg);
124 #endif
125 static int sock_fasync(int fd, struct file *filp, int on);
126 static ssize_t sock_sendpage(struct file *file, struct page *page,
127 int offset, size_t size, loff_t *ppos, int more);
128 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
129 struct pipe_inode_info *pipe, size_t len,
130 unsigned int flags);
131
132 #ifdef CONFIG_PROC_FS
sock_show_fdinfo(struct seq_file *m, struct file *f)133 static void sock_show_fdinfo(struct seq_file *m, struct file *f)
134 {
135 struct socket *sock = f->private_data;
136
137 if (sock->ops->show_fdinfo)
138 sock->ops->show_fdinfo(m, sock);
139 }
140 #else
141 #define sock_show_fdinfo NULL
142 #endif
143
144 /*
145 * Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
146 * in the operation structures but are done directly via the socketcall() multiplexor.
147 */
148
149 static const struct file_operations socket_file_ops = {
150 .owner = THIS_MODULE,
151 .llseek = no_llseek,
152 .read_iter = sock_read_iter,
153 .write_iter = sock_write_iter,
154 .poll = sock_poll,
155 .unlocked_ioctl = sock_ioctl,
156 #ifdef CONFIG_COMPAT
157 .compat_ioctl = compat_sock_ioctl,
158 #endif
159 .mmap = sock_mmap,
160 .release = sock_close,
161 .fasync = sock_fasync,
162 .sendpage = sock_sendpage,
163 .splice_write = generic_splice_sendpage,
164 .splice_read = sock_splice_read,
165 .show_fdinfo = sock_show_fdinfo,
166 };
167
168 /*
169 * The protocol list. Each protocol is registered in here.
170 */
171
172 static DEFINE_SPINLOCK(net_family_lock);
173 static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly;
174
175 /*
176 * Support routines.
177 * Move socket addresses back and forth across the kernel/user
178 * divide and look after the messy bits.
179 */
180
181 /**
182 * move_addr_to_kernel - copy a socket address into kernel space
183 * @uaddr: Address in user space
184 * @kaddr: Address in kernel space
185 * @ulen: Length in user space
186 *
187 * The address is copied into kernel space. If the provided address is
188 * too long an error code of -EINVAL is returned. If the copy gives
189 * invalid addresses -EFAULT is returned. On a success 0 is returned.
190 */
191
move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr)192 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr)
193 {
194 if (ulen < 0 || ulen > sizeof(struct sockaddr_storage))
195 return -EINVAL;
196 if (ulen == 0)
197 return 0;
198 if (copy_from_user(kaddr, uaddr, ulen))
199 return -EFAULT;
200 return audit_sockaddr(ulen, kaddr);
201 }
202
203 /**
204 * move_addr_to_user - copy an address to user space
205 * @kaddr: kernel space address
206 * @klen: length of address in kernel
207 * @uaddr: user space address
208 * @ulen: pointer to user length field
209 *
210 * The value pointed to by ulen on entry is the buffer length available.
211 * This is overwritten with the buffer space used. -EINVAL is returned
212 * if an overlong buffer is specified or a negative buffer size. -EFAULT
213 * is returned if either the buffer or the length field are not
214 * accessible.
215 * After copying the data up to the limit the user specifies, the true
216 * length of the data is written over the length limit the user
217 * specified. Zero is returned for a success.
218 */
219
move_addr_to_user(struct sockaddr_storage *kaddr, int klen, void __user *uaddr, int __user *ulen)220 static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen,
221 void __user *uaddr, int __user *ulen)
222 {
223 int err;
224 int len;
225
226 BUG_ON(klen > sizeof(struct sockaddr_storage));
227 err = get_user(len, ulen);
228 if (err)
229 return err;
230 if (len > klen)
231 len = klen;
232 if (len < 0)
233 return -EINVAL;
234 if (len) {
235 if (audit_sockaddr(klen, kaddr))
236 return -ENOMEM;
237 if (copy_to_user(uaddr, kaddr, len))
238 return -EFAULT;
239 }
240 /*
241 * "fromlen shall refer to the value before truncation.."
242 * 1003.1g
243 */
244 return __put_user(klen, ulen);
245 }
246
247 static struct kmem_cache *sock_inode_cachep __ro_after_init;
248
sock_alloc_inode(struct super_block *sb)249 static struct inode *sock_alloc_inode(struct super_block *sb)
250 {
251 struct socket_alloc *ei;
252
253 ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL);
254 if (!ei)
255 return NULL;
256 init_waitqueue_head(&ei->socket.wq.wait);
257 ei->socket.wq.fasync_list = NULL;
258 ei->socket.wq.flags = 0;
259
260 ei->socket.state = SS_UNCONNECTED;
261 ei->socket.flags = 0;
262 ei->socket.ops = NULL;
263 ei->socket.sk = NULL;
264 ei->socket.file = NULL;
265
266 return &ei->vfs_inode;
267 }
268
sock_free_inode(struct inode *inode)269 static void sock_free_inode(struct inode *inode)
270 {
271 struct socket_alloc *ei;
272
273 ei = container_of(inode, struct socket_alloc, vfs_inode);
274 kmem_cache_free(sock_inode_cachep, ei);
275 }
276
init_once(void *foo)277 static void init_once(void *foo)
278 {
279 struct socket_alloc *ei = (struct socket_alloc *)foo;
280
281 inode_init_once(&ei->vfs_inode);
282 }
283
init_inodecache(void)284 static void init_inodecache(void)
285 {
286 sock_inode_cachep = kmem_cache_create("sock_inode_cache",
287 sizeof(struct socket_alloc),
288 0,
289 (SLAB_HWCACHE_ALIGN |
290 SLAB_RECLAIM_ACCOUNT |
291 SLAB_MEM_SPREAD | SLAB_ACCOUNT),
292 init_once);
293 BUG_ON(sock_inode_cachep == NULL);
294 }
295
296 static const struct super_operations sockfs_ops = {
297 .alloc_inode = sock_alloc_inode,
298 .free_inode = sock_free_inode,
299 .statfs = simple_statfs,
300 };
301
302 /*
303 * sockfs_dname() is called from d_path().
304 */
sockfs_dname(struct dentry *dentry, char *buffer, int buflen)305 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen)
306 {
307 return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]",
308 d_inode(dentry)->i_ino);
309 }
310
311 static const struct dentry_operations sockfs_dentry_operations = {
312 .d_dname = sockfs_dname,
313 };
314
sockfs_xattr_get(const struct xattr_handler *handler, struct dentry *dentry, struct inode *inode, const char *suffix, void *value, size_t size)315 static int sockfs_xattr_get(const struct xattr_handler *handler,
316 struct dentry *dentry, struct inode *inode,
317 const char *suffix, void *value, size_t size)
318 {
319 if (value) {
320 if (dentry->d_name.len + 1 > size)
321 return -ERANGE;
322 memcpy(value, dentry->d_name.name, dentry->d_name.len + 1);
323 }
324 return dentry->d_name.len + 1;
325 }
326
327 #define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname"
328 #define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX)
329 #define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1)
330
331 static const struct xattr_handler sockfs_xattr_handler = {
332 .name = XATTR_NAME_SOCKPROTONAME,
333 .get = sockfs_xattr_get,
334 };
335
sockfs_security_xattr_set(const struct xattr_handler *handler, struct dentry *dentry, struct inode *inode, const char *suffix, const void *value, size_t size, int flags)336 static int sockfs_security_xattr_set(const struct xattr_handler *handler,
337 struct dentry *dentry, struct inode *inode,
338 const char *suffix, const void *value,
339 size_t size, int flags)
340 {
341 /* Handled by LSM. */
342 return -EAGAIN;
343 }
344
345 static const struct xattr_handler sockfs_security_xattr_handler = {
346 .prefix = XATTR_SECURITY_PREFIX,
347 .set = sockfs_security_xattr_set,
348 };
349
350 static const struct xattr_handler *sockfs_xattr_handlers[] = {
351 &sockfs_xattr_handler,
352 &sockfs_security_xattr_handler,
353 NULL
354 };
355
sockfs_init_fs_context(struct fs_context *fc)356 static int sockfs_init_fs_context(struct fs_context *fc)
357 {
358 struct pseudo_fs_context *ctx = init_pseudo(fc, SOCKFS_MAGIC);
359 if (!ctx)
360 return -ENOMEM;
361 ctx->ops = &sockfs_ops;
362 ctx->dops = &sockfs_dentry_operations;
363 ctx->xattr = sockfs_xattr_handlers;
364 return 0;
365 }
366
367 static struct vfsmount *sock_mnt __read_mostly;
368
369 static struct file_system_type sock_fs_type = {
370 .name = "sockfs",
371 .init_fs_context = sockfs_init_fs_context,
372 .kill_sb = kill_anon_super,
373 };
374
375 /*
376 * Obtains the first available file descriptor and sets it up for use.
377 *
378 * These functions create file structures and maps them to fd space
379 * of the current process. On success it returns file descriptor
380 * and file struct implicitly stored in sock->file.
381 * Note that another thread may close file descriptor before we return
382 * from this function. We use the fact that now we do not refer
383 * to socket after mapping. If one day we will need it, this
384 * function will increment ref. count on file by 1.
385 *
386 * In any case returned fd MAY BE not valid!
387 * This race condition is unavoidable
388 * with shared fd spaces, we cannot solve it inside kernel,
389 * but we take care of internal coherence yet.
390 */
391
392 /**
393 * sock_alloc_file - Bind a &socket to a &file
394 * @sock: socket
395 * @flags: file status flags
396 * @dname: protocol name
397 *
398 * Returns the &file bound with @sock, implicitly storing it
399 * in sock->file. If dname is %NULL, sets to "".
400 * On failure the return is a ERR pointer (see linux/err.h).
401 * This function uses GFP_KERNEL internally.
402 */
403
sock_alloc_file(struct socket *sock, int flags, const char *dname)404 struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname)
405 {
406 struct file *file;
407
408 if (!dname)
409 dname = sock->sk ? sock->sk->sk_prot_creator->name : "";
410
411 file = alloc_file_pseudo(SOCK_INODE(sock), sock_mnt, dname,
412 O_RDWR | (flags & O_NONBLOCK),
413 &socket_file_ops);
414 if (IS_ERR(file)) {
415 sock_release(sock);
416 return file;
417 }
418
419 sock->file = file;
420 file->private_data = sock;
421 stream_open(SOCK_INODE(sock), file);
422 return file;
423 }
424 EXPORT_SYMBOL(sock_alloc_file);
425
sock_map_fd(struct socket *sock, int flags)426 static int sock_map_fd(struct socket *sock, int flags)
427 {
428 struct file *newfile;
429 int fd = get_unused_fd_flags(flags);
430 if (unlikely(fd < 0)) {
431 sock_release(sock);
432 return fd;
433 }
434
435 newfile = sock_alloc_file(sock, flags, NULL);
436 if (!IS_ERR(newfile)) {
437 fd_install(fd, newfile);
438 return fd;
439 }
440
441 put_unused_fd(fd);
442 return PTR_ERR(newfile);
443 }
444
445 /**
446 * sock_from_file - Return the &socket bounded to @file.
447 * @file: file
448 * @err: pointer to an error code return
449 *
450 * On failure returns %NULL and assigns -ENOTSOCK to @err.
451 */
452
sock_from_file(struct file *file, int *err)453 struct socket *sock_from_file(struct file *file, int *err)
454 {
455 if (file->f_op == &socket_file_ops)
456 return file->private_data; /* set in sock_map_fd */
457
458 *err = -ENOTSOCK;
459 return NULL;
460 }
461 EXPORT_SYMBOL(sock_from_file);
462
463 /**
464 * sockfd_lookup - Go from a file number to its socket slot
465 * @fd: file handle
466 * @err: pointer to an error code return
467 *
468 * The file handle passed in is locked and the socket it is bound
469 * to is returned. If an error occurs the err pointer is overwritten
470 * with a negative errno code and NULL is returned. The function checks
471 * for both invalid handles and passing a handle which is not a socket.
472 *
473 * On a success the socket object pointer is returned.
474 */
475
sockfd_lookup(int fd, int *err)476 struct socket *sockfd_lookup(int fd, int *err)
477 {
478 struct file *file;
479 struct socket *sock;
480
481 file = fget(fd);
482 if (!file) {
483 *err = -EBADF;
484 return NULL;
485 }
486
487 sock = sock_from_file(file, err);
488 if (!sock)
489 fput(file);
490 return sock;
491 }
492 EXPORT_SYMBOL(sockfd_lookup);
493
sockfd_lookup_light(int fd, int *err, int *fput_needed)494 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed)
495 {
496 struct fd f = fdget(fd);
497 struct socket *sock;
498
499 *err = -EBADF;
500 if (f.file) {
501 sock = sock_from_file(f.file, err);
502 if (likely(sock)) {
503 *fput_needed = f.flags & FDPUT_FPUT;
504 return sock;
505 }
506 fdput(f);
507 }
508 return NULL;
509 }
510
sockfs_listxattr(struct dentry *dentry, char *buffer, size_t size)511 static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer,
512 size_t size)
513 {
514 ssize_t len;
515 ssize_t used = 0;
516
517 len = security_inode_listsecurity(d_inode(dentry), buffer, size);
518 if (len < 0)
519 return len;
520 used += len;
521 if (buffer) {
522 if (size < used)
523 return -ERANGE;
524 buffer += len;
525 }
526
527 len = (XATTR_NAME_SOCKPROTONAME_LEN + 1);
528 used += len;
529 if (buffer) {
530 if (size < used)
531 return -ERANGE;
532 memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len);
533 buffer += len;
534 }
535
536 return used;
537 }
538
sockfs_setattr(struct dentry *dentry, struct iattr *iattr)539 static int sockfs_setattr(struct dentry *dentry, struct iattr *iattr)
540 {
541 int err = simple_setattr(dentry, iattr);
542
543 if (!err && (iattr->ia_valid & ATTR_UID)) {
544 struct socket *sock = SOCKET_I(d_inode(dentry));
545
546 if (sock->sk)
547 sock->sk->sk_uid = iattr->ia_uid;
548 else
549 err = -ENOENT;
550 }
551
552 return err;
553 }
554
555 static const struct inode_operations sockfs_inode_ops = {
556 .listxattr = sockfs_listxattr,
557 .setattr = sockfs_setattr,
558 };
559
560 /**
561 * sock_alloc - allocate a socket
562 *
563 * Allocate a new inode and socket object. The two are bound together
564 * and initialised. The socket is then returned. If we are out of inodes
565 * NULL is returned. This functions uses GFP_KERNEL internally.
566 */
567
sock_alloc(void)568 struct socket *sock_alloc(void)
569 {
570 struct inode *inode;
571 struct socket *sock;
572
573 inode = new_inode_pseudo(sock_mnt->mnt_sb);
574 if (!inode)
575 return NULL;
576
577 sock = SOCKET_I(inode);
578
579 inode->i_ino = get_next_ino();
580 inode->i_mode = S_IFSOCK | S_IRWXUGO;
581 inode->i_uid = current_fsuid();
582 inode->i_gid = current_fsgid();
583 inode->i_op = &sockfs_inode_ops;
584
585 return sock;
586 }
587 EXPORT_SYMBOL(sock_alloc);
588
__sock_release(struct socket *sock, struct inode *inode)589 static void __sock_release(struct socket *sock, struct inode *inode)
590 {
591 if (sock->ops) {
592 struct module *owner = sock->ops->owner;
593
594 if (inode)
595 inode_lock(inode);
596 sock->ops->release(sock);
597 sock->sk = NULL;
598 if (inode)
599 inode_unlock(inode);
600 sock->ops = NULL;
601 module_put(owner);
602 }
603
604 if (sock->wq.fasync_list)
605 pr_err("%s: fasync list not empty!\n", __func__);
606
607 if (!sock->file) {
608 iput(SOCK_INODE(sock));
609 return;
610 }
611 sock->file = NULL;
612 }
613
614 /**
615 * sock_release - close a socket
616 * @sock: socket to close
617 *
618 * The socket is released from the protocol stack if it has a release
619 * callback, and the inode is then released if the socket is bound to
620 * an inode not a file.
621 */
sock_release(struct socket *sock)622 void sock_release(struct socket *sock)
623 {
624 __sock_release(sock, NULL);
625 }
626 EXPORT_SYMBOL(sock_release);
627
__sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags)628 void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags)
629 {
630 u8 flags = *tx_flags;
631
632 if (tsflags & SOF_TIMESTAMPING_TX_HARDWARE)
633 flags |= SKBTX_HW_TSTAMP;
634
635 if (tsflags & SOF_TIMESTAMPING_TX_SOFTWARE)
636 flags |= SKBTX_SW_TSTAMP;
637
638 if (tsflags & SOF_TIMESTAMPING_TX_SCHED)
639 flags |= SKBTX_SCHED_TSTAMP;
640
641 *tx_flags = flags;
642 }
643 EXPORT_SYMBOL(__sock_tx_timestamp);
644
645 INDIRECT_CALLABLE_DECLARE(int inet_sendmsg(struct socket *, struct msghdr *,
646 size_t));
647 INDIRECT_CALLABLE_DECLARE(int inet6_sendmsg(struct socket *, struct msghdr *,
648 size_t));
sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg)649 static inline int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg)
650 {
651 int ret = INDIRECT_CALL_INET(sock->ops->sendmsg, inet6_sendmsg,
652 inet_sendmsg, sock, msg,
653 msg_data_left(msg));
654 BUG_ON(ret == -EIOCBQUEUED);
655 return ret;
656 }
657
__sock_sendmsg(struct socket *sock, struct msghdr *msg)658 static int __sock_sendmsg(struct socket *sock, struct msghdr *msg)
659 {
660 int err = security_socket_sendmsg(sock, msg,
661 msg_data_left(msg));
662
663 return err ?: sock_sendmsg_nosec(sock, msg);
664 }
665
666 /**
667 * sock_sendmsg - send a message through @sock
668 * @sock: socket
669 * @msg: message to send
670 *
671 * Sends @msg through @sock, passing through LSM.
672 * Returns the number of bytes sent, or an error code.
673 */
sock_sendmsg(struct socket *sock, struct msghdr *msg)674 int sock_sendmsg(struct socket *sock, struct msghdr *msg)
675 {
676 struct sockaddr_storage *save_addr = (struct sockaddr_storage *)msg->msg_name;
677 struct sockaddr_storage address;
678 int save_len = msg->msg_namelen;
679 int ret;
680
681 if (msg->msg_name) {
682 memcpy(&address, msg->msg_name, msg->msg_namelen);
683 msg->msg_name = &address;
684 }
685
686 ret = __sock_sendmsg(sock, msg);
687 msg->msg_name = save_addr;
688 msg->msg_namelen = save_len;
689
690 return ret;
691 }
692 EXPORT_SYMBOL(sock_sendmsg);
693
694 /**
695 * kernel_sendmsg - send a message through @sock (kernel-space)
696 * @sock: socket
697 * @msg: message header
698 * @vec: kernel vec
699 * @num: vec array length
700 * @size: total message data size
701 *
702 * Builds the message data with @vec and sends it through @sock.
703 * Returns the number of bytes sent, or an error code.
704 */
705
kernel_sendmsg(struct socket *sock, struct msghdr *msg, struct kvec *vec, size_t num, size_t size)706 int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
707 struct kvec *vec, size_t num, size_t size)
708 {
709 iov_iter_kvec(&msg->msg_iter, WRITE, vec, num, size);
710 return sock_sendmsg(sock, msg);
711 }
712 EXPORT_SYMBOL(kernel_sendmsg);
713
714 /**
715 * kernel_sendmsg_locked - send a message through @sock (kernel-space)
716 * @sk: sock
717 * @msg: message header
718 * @vec: output s/g array
719 * @num: output s/g array length
720 * @size: total message data size
721 *
722 * Builds the message data with @vec and sends it through @sock.
723 * Returns the number of bytes sent, or an error code.
724 * Caller must hold @sk.
725 */
726
kernel_sendmsg_locked(struct sock *sk, struct msghdr *msg, struct kvec *vec, size_t num, size_t size)727 int kernel_sendmsg_locked(struct sock *sk, struct msghdr *msg,
728 struct kvec *vec, size_t num, size_t size)
729 {
730 struct socket *sock = sk->sk_socket;
731
732 if (!sock->ops->sendmsg_locked)
733 return sock_no_sendmsg_locked(sk, msg, size);
734
735 iov_iter_kvec(&msg->msg_iter, WRITE, vec, num, size);
736
737 return sock->ops->sendmsg_locked(sk, msg, msg_data_left(msg));
738 }
739 EXPORT_SYMBOL(kernel_sendmsg_locked);
740
skb_is_err_queue(const struct sk_buff *skb)741 static bool skb_is_err_queue(const struct sk_buff *skb)
742 {
743 /* pkt_type of skbs enqueued on the error queue are set to
744 * PACKET_OUTGOING in skb_set_err_queue(). This is only safe to do
745 * in recvmsg, since skbs received on a local socket will never
746 * have a pkt_type of PACKET_OUTGOING.
747 */
748 return skb->pkt_type == PACKET_OUTGOING;
749 }
750
751 /* On transmit, software and hardware timestamps are returned independently.
752 * As the two skb clones share the hardware timestamp, which may be updated
753 * before the software timestamp is received, a hardware TX timestamp may be
754 * returned only if there is no software TX timestamp. Ignore false software
755 * timestamps, which may be made in the __sock_recv_timestamp() call when the
756 * option SO_TIMESTAMP_OLD(NS) is enabled on the socket, even when the skb has a
757 * hardware timestamp.
758 */
skb_is_swtx_tstamp(const struct sk_buff *skb, int false_tstamp)759 static bool skb_is_swtx_tstamp(const struct sk_buff *skb, int false_tstamp)
760 {
761 return skb->tstamp && !false_tstamp && skb_is_err_queue(skb);
762 }
763
put_ts_pktinfo(struct msghdr *msg, struct sk_buff *skb)764 static void put_ts_pktinfo(struct msghdr *msg, struct sk_buff *skb)
765 {
766 struct scm_ts_pktinfo ts_pktinfo;
767 struct net_device *orig_dev;
768
769 if (!skb_mac_header_was_set(skb))
770 return;
771
772 memset(&ts_pktinfo, 0, sizeof(ts_pktinfo));
773
774 rcu_read_lock();
775 orig_dev = dev_get_by_napi_id(skb_napi_id(skb));
776 if (orig_dev)
777 ts_pktinfo.if_index = orig_dev->ifindex;
778 rcu_read_unlock();
779
780 ts_pktinfo.pkt_length = skb->len - skb_mac_offset(skb);
781 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_PKTINFO,
782 sizeof(ts_pktinfo), &ts_pktinfo);
783 }
784
785 /*
786 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
787 */
__sock_recv_timestamp(struct msghdr *msg, struct sock *sk, struct sk_buff *skb)788 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
789 struct sk_buff *skb)
790 {
791 int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP);
792 int new_tstamp = sock_flag(sk, SOCK_TSTAMP_NEW);
793 struct scm_timestamping_internal tss;
794
795 int empty = 1, false_tstamp = 0;
796 struct skb_shared_hwtstamps *shhwtstamps =
797 skb_hwtstamps(skb);
798
799 /* Race occurred between timestamp enabling and packet
800 receiving. Fill in the current time for now. */
801 if (need_software_tstamp && skb->tstamp == 0) {
802 __net_timestamp(skb);
803 false_tstamp = 1;
804 }
805
806 if (need_software_tstamp) {
807 if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) {
808 if (new_tstamp) {
809 struct __kernel_sock_timeval tv;
810
811 skb_get_new_timestamp(skb, &tv);
812 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_NEW,
813 sizeof(tv), &tv);
814 } else {
815 struct __kernel_old_timeval tv;
816
817 skb_get_timestamp(skb, &tv);
818 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_OLD,
819 sizeof(tv), &tv);
820 }
821 } else {
822 if (new_tstamp) {
823 struct __kernel_timespec ts;
824
825 skb_get_new_timestampns(skb, &ts);
826 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_NEW,
827 sizeof(ts), &ts);
828 } else {
829 struct __kernel_old_timespec ts;
830
831 skb_get_timestampns(skb, &ts);
832 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_OLD,
833 sizeof(ts), &ts);
834 }
835 }
836 }
837
838 memset(&tss, 0, sizeof(tss));
839 if ((sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) &&
840 ktime_to_timespec64_cond(skb->tstamp, tss.ts + 0))
841 empty = 0;
842 if (shhwtstamps &&
843 (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) &&
844 !skb_is_swtx_tstamp(skb, false_tstamp) &&
845 ktime_to_timespec64_cond(shhwtstamps->hwtstamp, tss.ts + 2)) {
846 empty = 0;
847 if ((sk->sk_tsflags & SOF_TIMESTAMPING_OPT_PKTINFO) &&
848 !skb_is_err_queue(skb))
849 put_ts_pktinfo(msg, skb);
850 }
851 if (!empty) {
852 if (sock_flag(sk, SOCK_TSTAMP_NEW))
853 put_cmsg_scm_timestamping64(msg, &tss);
854 else
855 put_cmsg_scm_timestamping(msg, &tss);
856
857 if (skb_is_err_queue(skb) && skb->len &&
858 SKB_EXT_ERR(skb)->opt_stats)
859 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_OPT_STATS,
860 skb->len, skb->data);
861 }
862 }
863 EXPORT_SYMBOL_GPL(__sock_recv_timestamp);
864
__sock_recv_wifi_status(struct msghdr *msg, struct sock *sk, struct sk_buff *skb)865 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
866 struct sk_buff *skb)
867 {
868 int ack;
869
870 if (!sock_flag(sk, SOCK_WIFI_STATUS))
871 return;
872 if (!skb->wifi_acked_valid)
873 return;
874
875 ack = skb->wifi_acked;
876
877 put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack);
878 }
879 EXPORT_SYMBOL_GPL(__sock_recv_wifi_status);
880
sock_recv_drops(struct msghdr *msg, struct sock *sk, struct sk_buff *skb)881 static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk,
882 struct sk_buff *skb)
883 {
884 if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && SOCK_SKB_CB(skb)->dropcount)
885 put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL,
886 sizeof(__u32), &SOCK_SKB_CB(skb)->dropcount);
887 }
888
__sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk, struct sk_buff *skb)889 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
890 struct sk_buff *skb)
891 {
892 sock_recv_timestamp(msg, sk, skb);
893 sock_recv_drops(msg, sk, skb);
894 }
895 EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops);
896
897 INDIRECT_CALLABLE_DECLARE(int inet_recvmsg(struct socket *, struct msghdr *,
898 size_t, int));
899 INDIRECT_CALLABLE_DECLARE(int inet6_recvmsg(struct socket *, struct msghdr *,
900 size_t, int));
sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg, int flags)901 static inline int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg,
902 int flags)
903 {
904 return INDIRECT_CALL_INET(sock->ops->recvmsg, inet6_recvmsg,
905 inet_recvmsg, sock, msg, msg_data_left(msg),
906 flags);
907 }
908
909 /**
910 * sock_recvmsg - receive a message from @sock
911 * @sock: socket
912 * @msg: message to receive
913 * @flags: message flags
914 *
915 * Receives @msg from @sock, passing through LSM. Returns the total number
916 * of bytes received, or an error.
917 */
sock_recvmsg(struct socket *sock, struct msghdr *msg, int flags)918 int sock_recvmsg(struct socket *sock, struct msghdr *msg, int flags)
919 {
920 int err = security_socket_recvmsg(sock, msg, msg_data_left(msg), flags);
921
922 return err ?: sock_recvmsg_nosec(sock, msg, flags);
923 }
924 EXPORT_SYMBOL(sock_recvmsg);
925
926 /**
927 * kernel_recvmsg - Receive a message from a socket (kernel space)
928 * @sock: The socket to receive the message from
929 * @msg: Received message
930 * @vec: Input s/g array for message data
931 * @num: Size of input s/g array
932 * @size: Number of bytes to read
933 * @flags: Message flags (MSG_DONTWAIT, etc...)
934 *
935 * On return the msg structure contains the scatter/gather array passed in the
936 * vec argument. The array is modified so that it consists of the unfilled
937 * portion of the original array.
938 *
939 * The returned value is the total number of bytes received, or an error.
940 */
941
kernel_recvmsg(struct socket *sock, struct msghdr *msg, struct kvec *vec, size_t num, size_t size, int flags)942 int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
943 struct kvec *vec, size_t num, size_t size, int flags)
944 {
945 msg->msg_control_is_user = false;
946 iov_iter_kvec(&msg->msg_iter, READ, vec, num, size);
947 return sock_recvmsg(sock, msg, flags);
948 }
949 EXPORT_SYMBOL(kernel_recvmsg);
950
sock_sendpage(struct file *file, struct page *page, int offset, size_t size, loff_t *ppos, int more)951 static ssize_t sock_sendpage(struct file *file, struct page *page,
952 int offset, size_t size, loff_t *ppos, int more)
953 {
954 struct socket *sock;
955 int flags;
956
957 sock = file->private_data;
958
959 flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
960 /* more is a combination of MSG_MORE and MSG_SENDPAGE_NOTLAST */
961 flags |= more;
962
963 return kernel_sendpage(sock, page, offset, size, flags);
964 }
965
sock_splice_read(struct file *file, loff_t *ppos, struct pipe_inode_info *pipe, size_t len, unsigned int flags)966 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
967 struct pipe_inode_info *pipe, size_t len,
968 unsigned int flags)
969 {
970 struct socket *sock = file->private_data;
971
972 if (unlikely(!sock->ops->splice_read))
973 return generic_file_splice_read(file, ppos, pipe, len, flags);
974
975 return sock->ops->splice_read(sock, ppos, pipe, len, flags);
976 }
977
sock_read_iter(struct kiocb *iocb, struct iov_iter *to)978 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to)
979 {
980 struct file *file = iocb->ki_filp;
981 struct socket *sock = file->private_data;
982 struct msghdr msg = {.msg_iter = *to,
983 .msg_iocb = iocb};
984 ssize_t res;
985
986 if (file->f_flags & O_NONBLOCK || (iocb->ki_flags & IOCB_NOWAIT))
987 msg.msg_flags = MSG_DONTWAIT;
988
989 if (iocb->ki_pos != 0)
990 return -ESPIPE;
991
992 if (!iov_iter_count(to)) /* Match SYS5 behaviour */
993 return 0;
994
995 res = sock_recvmsg(sock, &msg, msg.msg_flags);
996 *to = msg.msg_iter;
997 return res;
998 }
999
sock_write_iter(struct kiocb *iocb, struct iov_iter *from)1000 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from)
1001 {
1002 struct file *file = iocb->ki_filp;
1003 struct socket *sock = file->private_data;
1004 struct msghdr msg = {.msg_iter = *from,
1005 .msg_iocb = iocb};
1006 ssize_t res;
1007
1008 if (iocb->ki_pos != 0)
1009 return -ESPIPE;
1010
1011 if (file->f_flags & O_NONBLOCK || (iocb->ki_flags & IOCB_NOWAIT))
1012 msg.msg_flags = MSG_DONTWAIT;
1013
1014 if (sock->type == SOCK_SEQPACKET)
1015 msg.msg_flags |= MSG_EOR;
1016
1017 res = __sock_sendmsg(sock, &msg);
1018 *from = msg.msg_iter;
1019 return res;
1020 }
1021
1022 /*
1023 * Atomic setting of ioctl hooks to avoid race
1024 * with module unload.
1025 */
1026
1027 static DEFINE_MUTEX(br_ioctl_mutex);
1028 static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg);
1029
brioctl_set(int (*hook) (struct net *, unsigned int, void __user *))1030 void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *))
1031 {
1032 mutex_lock(&br_ioctl_mutex);
1033 br_ioctl_hook = hook;
1034 mutex_unlock(&br_ioctl_mutex);
1035 }
1036 EXPORT_SYMBOL(brioctl_set);
1037
1038 static DEFINE_MUTEX(vlan_ioctl_mutex);
1039 static int (*vlan_ioctl_hook) (struct net *, void __user *arg);
1040
vlan_ioctl_set(int (*hook) (struct net *, void __user *))1041 void vlan_ioctl_set(int (*hook) (struct net *, void __user *))
1042 {
1043 mutex_lock(&vlan_ioctl_mutex);
1044 vlan_ioctl_hook = hook;
1045 mutex_unlock(&vlan_ioctl_mutex);
1046 }
1047 EXPORT_SYMBOL(vlan_ioctl_set);
1048
1049 static DEFINE_MUTEX(dlci_ioctl_mutex);
1050 static int (*dlci_ioctl_hook) (unsigned int, void __user *);
1051
dlci_ioctl_set(int (*hook) (unsigned int, void __user *))1052 void dlci_ioctl_set(int (*hook) (unsigned int, void __user *))
1053 {
1054 mutex_lock(&dlci_ioctl_mutex);
1055 dlci_ioctl_hook = hook;
1056 mutex_unlock(&dlci_ioctl_mutex);
1057 }
1058 EXPORT_SYMBOL(dlci_ioctl_set);
1059
sock_do_ioctl(struct net *net, struct socket *sock, unsigned int cmd, unsigned long arg)1060 static long sock_do_ioctl(struct net *net, struct socket *sock,
1061 unsigned int cmd, unsigned long arg)
1062 {
1063 int err;
1064 void __user *argp = (void __user *)arg;
1065
1066 err = sock->ops->ioctl(sock, cmd, arg);
1067
1068 /*
1069 * If this ioctl is unknown try to hand it down
1070 * to the NIC driver.
1071 */
1072 if (err != -ENOIOCTLCMD)
1073 return err;
1074
1075 if (cmd == SIOCGIFCONF) {
1076 struct ifconf ifc;
1077 if (copy_from_user(&ifc, argp, sizeof(struct ifconf)))
1078 return -EFAULT;
1079 rtnl_lock();
1080 err = dev_ifconf(net, &ifc, sizeof(struct ifreq));
1081 rtnl_unlock();
1082 if (!err && copy_to_user(argp, &ifc, sizeof(struct ifconf)))
1083 err = -EFAULT;
1084 } else if (is_socket_ioctl_cmd(cmd)) {
1085 struct ifreq ifr;
1086 bool need_copyout;
1087 if (copy_from_user(&ifr, argp, sizeof(struct ifreq)))
1088 return -EFAULT;
1089 err = dev_ioctl(net, cmd, &ifr, &need_copyout);
1090 if (!err && need_copyout)
1091 if (copy_to_user(argp, &ifr, sizeof(struct ifreq)))
1092 return -EFAULT;
1093 } else {
1094 err = -ENOTTY;
1095 }
1096 return err;
1097 }
1098
1099 /*
1100 * With an ioctl, arg may well be a user mode pointer, but we don't know
1101 * what to do with it - that's up to the protocol still.
1102 */
1103
sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)1104 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
1105 {
1106 struct socket *sock;
1107 struct sock *sk;
1108 void __user *argp = (void __user *)arg;
1109 int pid, err;
1110 struct net *net;
1111
1112 sock = file->private_data;
1113 sk = sock->sk;
1114 net = sock_net(sk);
1115 if (unlikely(cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))) {
1116 struct ifreq ifr;
1117 bool need_copyout;
1118 if (copy_from_user(&ifr, argp, sizeof(struct ifreq)))
1119 return -EFAULT;
1120 err = dev_ioctl(net, cmd, &ifr, &need_copyout);
1121 if (!err && need_copyout)
1122 if (copy_to_user(argp, &ifr, sizeof(struct ifreq)))
1123 return -EFAULT;
1124 } else
1125 #ifdef CONFIG_WEXT_CORE
1126 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
1127 err = wext_handle_ioctl(net, cmd, argp);
1128 } else
1129 #endif
1130 switch (cmd) {
1131 case FIOSETOWN:
1132 case SIOCSPGRP:
1133 err = -EFAULT;
1134 if (get_user(pid, (int __user *)argp))
1135 break;
1136 err = f_setown(sock->file, pid, 1);
1137 break;
1138 case FIOGETOWN:
1139 case SIOCGPGRP:
1140 err = put_user(f_getown(sock->file),
1141 (int __user *)argp);
1142 break;
1143 case SIOCGIFBR:
1144 case SIOCSIFBR:
1145 case SIOCBRADDBR:
1146 case SIOCBRDELBR:
1147 err = -ENOPKG;
1148 if (!br_ioctl_hook)
1149 request_module("bridge");
1150
1151 mutex_lock(&br_ioctl_mutex);
1152 if (br_ioctl_hook)
1153 err = br_ioctl_hook(net, cmd, argp);
1154 mutex_unlock(&br_ioctl_mutex);
1155 break;
1156 case SIOCGIFVLAN:
1157 case SIOCSIFVLAN:
1158 err = -ENOPKG;
1159 if (!vlan_ioctl_hook)
1160 request_module("8021q");
1161
1162 mutex_lock(&vlan_ioctl_mutex);
1163 if (vlan_ioctl_hook)
1164 err = vlan_ioctl_hook(net, argp);
1165 mutex_unlock(&vlan_ioctl_mutex);
1166 break;
1167 case SIOCADDDLCI:
1168 case SIOCDELDLCI:
1169 err = -ENOPKG;
1170 if (!dlci_ioctl_hook)
1171 request_module("dlci");
1172
1173 mutex_lock(&dlci_ioctl_mutex);
1174 if (dlci_ioctl_hook)
1175 err = dlci_ioctl_hook(cmd, argp);
1176 mutex_unlock(&dlci_ioctl_mutex);
1177 break;
1178 case SIOCGSKNS:
1179 err = -EPERM;
1180 if (!ns_capable(net->user_ns, CAP_NET_ADMIN))
1181 break;
1182
1183 err = open_related_ns(&net->ns, get_net_ns);
1184 break;
1185 case SIOCGSTAMP_OLD:
1186 case SIOCGSTAMPNS_OLD:
1187 if (!sock->ops->gettstamp) {
1188 err = -ENOIOCTLCMD;
1189 break;
1190 }
1191 err = sock->ops->gettstamp(sock, argp,
1192 cmd == SIOCGSTAMP_OLD,
1193 !IS_ENABLED(CONFIG_64BIT));
1194 break;
1195 case SIOCGSTAMP_NEW:
1196 case SIOCGSTAMPNS_NEW:
1197 if (!sock->ops->gettstamp) {
1198 err = -ENOIOCTLCMD;
1199 break;
1200 }
1201 err = sock->ops->gettstamp(sock, argp,
1202 cmd == SIOCGSTAMP_NEW,
1203 false);
1204 break;
1205 default:
1206 err = sock_do_ioctl(net, sock, cmd, arg);
1207 break;
1208 }
1209 return err;
1210 }
1211
1212 /**
1213 * sock_create_lite - creates a socket
1214 * @family: protocol family (AF_INET, ...)
1215 * @type: communication type (SOCK_STREAM, ...)
1216 * @protocol: protocol (0, ...)
1217 * @res: new socket
1218 *
1219 * Creates a new socket and assigns it to @res, passing through LSM.
1220 * The new socket initialization is not complete, see kernel_accept().
1221 * Returns 0 or an error. On failure @res is set to %NULL.
1222 * This function internally uses GFP_KERNEL.
1223 */
1224
sock_create_lite(int family, int type, int protocol, struct socket **res)1225 int sock_create_lite(int family, int type, int protocol, struct socket **res)
1226 {
1227 int err;
1228 struct socket *sock = NULL;
1229
1230 err = security_socket_create(family, type, protocol, 1);
1231 if (err)
1232 goto out;
1233
1234 sock = sock_alloc();
1235 if (!sock) {
1236 err = -ENOMEM;
1237 goto out;
1238 }
1239
1240 sock->type = type;
1241 err = security_socket_post_create(sock, family, type, protocol, 1);
1242 if (err)
1243 goto out_release;
1244
1245 out:
1246 *res = sock;
1247 return err;
1248 out_release:
1249 sock_release(sock);
1250 sock = NULL;
1251 goto out;
1252 }
1253 EXPORT_SYMBOL(sock_create_lite);
1254
1255 /* No kernel lock held - perfect */
sock_poll(struct file *file, poll_table *wait)1256 static __poll_t sock_poll(struct file *file, poll_table *wait)
1257 {
1258 struct socket *sock = file->private_data;
1259 __poll_t events = poll_requested_events(wait), flag = 0;
1260
1261 if (!sock->ops->poll)
1262 return 0;
1263
1264 if (sk_can_busy_loop(sock->sk)) {
1265 /* poll once if requested by the syscall */
1266 if (events & POLL_BUSY_LOOP)
1267 sk_busy_loop(sock->sk, 1);
1268
1269 /* if this socket can poll_ll, tell the system call */
1270 flag = POLL_BUSY_LOOP;
1271 }
1272
1273 return sock->ops->poll(file, sock, wait) | flag;
1274 }
1275
sock_mmap(struct file *file, struct vm_area_struct *vma)1276 static int sock_mmap(struct file *file, struct vm_area_struct *vma)
1277 {
1278 struct socket *sock = file->private_data;
1279
1280 return sock->ops->mmap(file, sock, vma);
1281 }
1282
sock_close(struct inode *inode, struct file *filp)1283 static int sock_close(struct inode *inode, struct file *filp)
1284 {
1285 __sock_release(SOCKET_I(inode), inode);
1286 return 0;
1287 }
1288
1289 /*
1290 * Update the socket async list
1291 *
1292 * Fasync_list locking strategy.
1293 *
1294 * 1. fasync_list is modified only under process context socket lock
1295 * i.e. under semaphore.
1296 * 2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1297 * or under socket lock
1298 */
1299
sock_fasync(int fd, struct file *filp, int on)1300 static int sock_fasync(int fd, struct file *filp, int on)
1301 {
1302 struct socket *sock = filp->private_data;
1303 struct sock *sk = sock->sk;
1304 struct socket_wq *wq = &sock->wq;
1305
1306 if (sk == NULL)
1307 return -EINVAL;
1308
1309 lock_sock(sk);
1310 fasync_helper(fd, filp, on, &wq->fasync_list);
1311
1312 if (!wq->fasync_list)
1313 sock_reset_flag(sk, SOCK_FASYNC);
1314 else
1315 sock_set_flag(sk, SOCK_FASYNC);
1316
1317 release_sock(sk);
1318 return 0;
1319 }
1320
1321 /* This function may be called only under rcu_lock */
1322
sock_wake_async(struct socket_wq *wq, int how, int band)1323 int sock_wake_async(struct socket_wq *wq, int how, int band)
1324 {
1325 if (!wq || !wq->fasync_list)
1326 return -1;
1327
1328 switch (how) {
1329 case SOCK_WAKE_WAITD:
1330 if (test_bit(SOCKWQ_ASYNC_WAITDATA, &wq->flags))
1331 break;
1332 goto call_kill;
1333 case SOCK_WAKE_SPACE:
1334 if (!test_and_clear_bit(SOCKWQ_ASYNC_NOSPACE, &wq->flags))
1335 break;
1336 fallthrough;
1337 case SOCK_WAKE_IO:
1338 call_kill:
1339 kill_fasync(&wq->fasync_list, SIGIO, band);
1340 break;
1341 case SOCK_WAKE_URG:
1342 kill_fasync(&wq->fasync_list, SIGURG, band);
1343 }
1344
1345 return 0;
1346 }
1347 EXPORT_SYMBOL(sock_wake_async);
1348
1349 /**
1350 * __sock_create - creates a socket
1351 * @net: net namespace
1352 * @family: protocol family (AF_INET, ...)
1353 * @type: communication type (SOCK_STREAM, ...)
1354 * @protocol: protocol (0, ...)
1355 * @res: new socket
1356 * @kern: boolean for kernel space sockets
1357 *
1358 * Creates a new socket and assigns it to @res, passing through LSM.
1359 * Returns 0 or an error. On failure @res is set to %NULL. @kern must
1360 * be set to true if the socket resides in kernel space.
1361 * This function internally uses GFP_KERNEL.
1362 */
1363
__sock_create(struct net *net, int family, int type, int protocol, struct socket **res, int kern)1364 int __sock_create(struct net *net, int family, int type, int protocol,
1365 struct socket **res, int kern)
1366 {
1367 int err;
1368 struct socket *sock;
1369 const struct net_proto_family *pf;
1370
1371 /*
1372 * Check protocol is in range
1373 */
1374 if (family < 0 || family >= NPROTO)
1375 return -EAFNOSUPPORT;
1376 if (type < 0 || type >= SOCK_MAX)
1377 return -EINVAL;
1378
1379 /* Compatibility.
1380
1381 This uglymoron is moved from INET layer to here to avoid
1382 deadlock in module load.
1383 */
1384 if (family == PF_INET && type == SOCK_PACKET) {
1385 pr_info_once("%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1386 current->comm);
1387 family = PF_PACKET;
1388 }
1389
1390 err = security_socket_create(family, type, protocol, kern);
1391 if (err)
1392 return err;
1393
1394 /*
1395 * Allocate the socket and allow the family to set things up. if
1396 * the protocol is 0, the family is instructed to select an appropriate
1397 * default.
1398 */
1399 sock = sock_alloc();
1400 if (!sock) {
1401 net_warn_ratelimited("socket: no more sockets\n");
1402 return -ENFILE; /* Not exactly a match, but its the
1403 closest posix thing */
1404 }
1405
1406 sock->type = type;
1407
1408 #ifdef CONFIG_MODULES
1409 /* Attempt to load a protocol module if the find failed.
1410 *
1411 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1412 * requested real, full-featured networking support upon configuration.
1413 * Otherwise module support will break!
1414 */
1415 if (rcu_access_pointer(net_families[family]) == NULL)
1416 request_module("net-pf-%d", family);
1417 #endif
1418
1419 rcu_read_lock();
1420 pf = rcu_dereference(net_families[family]);
1421 err = -EAFNOSUPPORT;
1422 if (!pf)
1423 goto out_release;
1424
1425 /*
1426 * We will call the ->create function, that possibly is in a loadable
1427 * module, so we have to bump that loadable module refcnt first.
1428 */
1429 if (!try_module_get(pf->owner))
1430 goto out_release;
1431
1432 /* Now protected by module ref count */
1433 rcu_read_unlock();
1434
1435 err = pf->create(net, sock, protocol, kern);
1436 if (err < 0)
1437 goto out_module_put;
1438
1439 /*
1440 * Now to bump the refcnt of the [loadable] module that owns this
1441 * socket at sock_release time we decrement its refcnt.
1442 */
1443 if (!try_module_get(sock->ops->owner))
1444 goto out_module_busy;
1445
1446 /*
1447 * Now that we're done with the ->create function, the [loadable]
1448 * module can have its refcnt decremented
1449 */
1450 module_put(pf->owner);
1451 err = security_socket_post_create(sock, family, type, protocol, kern);
1452 if (err)
1453 goto out_sock_release;
1454 *res = sock;
1455
1456 return 0;
1457
1458 out_module_busy:
1459 err = -EAFNOSUPPORT;
1460 out_module_put:
1461 sock->ops = NULL;
1462 module_put(pf->owner);
1463 out_sock_release:
1464 sock_release(sock);
1465 return err;
1466
1467 out_release:
1468 rcu_read_unlock();
1469 goto out_sock_release;
1470 }
1471 EXPORT_SYMBOL(__sock_create);
1472
1473 /**
1474 * sock_create - creates a socket
1475 * @family: protocol family (AF_INET, ...)
1476 * @type: communication type (SOCK_STREAM, ...)
1477 * @protocol: protocol (0, ...)
1478 * @res: new socket
1479 *
1480 * A wrapper around __sock_create().
1481 * Returns 0 or an error. This function internally uses GFP_KERNEL.
1482 */
1483
sock_create(int family, int type, int protocol, struct socket **res)1484 int sock_create(int family, int type, int protocol, struct socket **res)
1485 {
1486 return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0);
1487 }
1488 EXPORT_SYMBOL(sock_create);
1489
1490 /**
1491 * sock_create_kern - creates a socket (kernel space)
1492 * @net: net namespace
1493 * @family: protocol family (AF_INET, ...)
1494 * @type: communication type (SOCK_STREAM, ...)
1495 * @protocol: protocol (0, ...)
1496 * @res: new socket
1497 *
1498 * A wrapper around __sock_create().
1499 * Returns 0 or an error. This function internally uses GFP_KERNEL.
1500 */
1501
sock_create_kern(struct net *net, int family, int type, int protocol, struct socket **res)1502 int sock_create_kern(struct net *net, int family, int type, int protocol, struct socket **res)
1503 {
1504 return __sock_create(net, family, type, protocol, res, 1);
1505 }
1506 EXPORT_SYMBOL(sock_create_kern);
1507
__sys_socket(int family, int type, int protocol)1508 int __sys_socket(int family, int type, int protocol)
1509 {
1510 int retval;
1511 struct socket *sock;
1512 int flags;
1513
1514 /* Check the SOCK_* constants for consistency. */
1515 BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC);
1516 BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK);
1517 BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK);
1518 BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK);
1519
1520 flags = type & ~SOCK_TYPE_MASK;
1521 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1522 return -EINVAL;
1523 type &= SOCK_TYPE_MASK;
1524
1525 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1526 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1527
1528 retval = sock_create(family, type, protocol, &sock);
1529 if (retval < 0)
1530 return retval;
1531
1532 return sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK));
1533 }
1534
SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol)1535 SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol)
1536 {
1537 return __sys_socket(family, type, protocol);
1538 }
1539
1540 /*
1541 * Create a pair of connected sockets.
1542 */
1543
__sys_socketpair(int family, int type, int protocol, int __user *usockvec)1544 int __sys_socketpair(int family, int type, int protocol, int __user *usockvec)
1545 {
1546 struct socket *sock1, *sock2;
1547 int fd1, fd2, err;
1548 struct file *newfile1, *newfile2;
1549 int flags;
1550
1551 flags = type & ~SOCK_TYPE_MASK;
1552 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1553 return -EINVAL;
1554 type &= SOCK_TYPE_MASK;
1555
1556 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1557 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1558
1559 /*
1560 * reserve descriptors and make sure we won't fail
1561 * to return them to userland.
1562 */
1563 fd1 = get_unused_fd_flags(flags);
1564 if (unlikely(fd1 < 0))
1565 return fd1;
1566
1567 fd2 = get_unused_fd_flags(flags);
1568 if (unlikely(fd2 < 0)) {
1569 put_unused_fd(fd1);
1570 return fd2;
1571 }
1572
1573 err = put_user(fd1, &usockvec[0]);
1574 if (err)
1575 goto out;
1576
1577 err = put_user(fd2, &usockvec[1]);
1578 if (err)
1579 goto out;
1580
1581 /*
1582 * Obtain the first socket and check if the underlying protocol
1583 * supports the socketpair call.
1584 */
1585
1586 err = sock_create(family, type, protocol, &sock1);
1587 if (unlikely(err < 0))
1588 goto out;
1589
1590 err = sock_create(family, type, protocol, &sock2);
1591 if (unlikely(err < 0)) {
1592 sock_release(sock1);
1593 goto out;
1594 }
1595
1596 err = security_socket_socketpair(sock1, sock2);
1597 if (unlikely(err)) {
1598 sock_release(sock2);
1599 sock_release(sock1);
1600 goto out;
1601 }
1602
1603 err = sock1->ops->socketpair(sock1, sock2);
1604 if (unlikely(err < 0)) {
1605 sock_release(sock2);
1606 sock_release(sock1);
1607 goto out;
1608 }
1609
1610 newfile1 = sock_alloc_file(sock1, flags, NULL);
1611 if (IS_ERR(newfile1)) {
1612 err = PTR_ERR(newfile1);
1613 sock_release(sock2);
1614 goto out;
1615 }
1616
1617 newfile2 = sock_alloc_file(sock2, flags, NULL);
1618 if (IS_ERR(newfile2)) {
1619 err = PTR_ERR(newfile2);
1620 fput(newfile1);
1621 goto out;
1622 }
1623
1624 audit_fd_pair(fd1, fd2);
1625
1626 fd_install(fd1, newfile1);
1627 fd_install(fd2, newfile2);
1628 return 0;
1629
1630 out:
1631 put_unused_fd(fd2);
1632 put_unused_fd(fd1);
1633 return err;
1634 }
1635
SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol, int __user *, usockvec)1636 SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol,
1637 int __user *, usockvec)
1638 {
1639 return __sys_socketpair(family, type, protocol, usockvec);
1640 }
1641
1642 /*
1643 * Bind a name to a socket. Nothing much to do here since it's
1644 * the protocol's responsibility to handle the local address.
1645 *
1646 * We move the socket address to kernel space before we call
1647 * the protocol layer (having also checked the address is ok).
1648 */
1649
__sys_bind(int fd, struct sockaddr __user *umyaddr, int addrlen)1650 int __sys_bind(int fd, struct sockaddr __user *umyaddr, int addrlen)
1651 {
1652 struct socket *sock;
1653 struct sockaddr_storage address;
1654 int err, fput_needed;
1655
1656 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1657 if (sock) {
1658 err = move_addr_to_kernel(umyaddr, addrlen, &address);
1659 if (!err) {
1660 err = security_socket_bind(sock,
1661 (struct sockaddr *)&address,
1662 addrlen);
1663 if (!err)
1664 err = sock->ops->bind(sock,
1665 (struct sockaddr *)
1666 &address, addrlen);
1667 }
1668 fput_light(sock->file, fput_needed);
1669 }
1670 return err;
1671 }
1672
SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen)1673 SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen)
1674 {
1675 return __sys_bind(fd, umyaddr, addrlen);
1676 }
1677
1678 /*
1679 * Perform a listen. Basically, we allow the protocol to do anything
1680 * necessary for a listen, and if that works, we mark the socket as
1681 * ready for listening.
1682 */
1683
__sys_listen(int fd, int backlog)1684 int __sys_listen(int fd, int backlog)
1685 {
1686 struct socket *sock;
1687 int err, fput_needed;
1688 int somaxconn;
1689
1690 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1691 if (sock) {
1692 somaxconn = READ_ONCE(sock_net(sock->sk)->core.sysctl_somaxconn);
1693 if ((unsigned int)backlog > somaxconn)
1694 backlog = somaxconn;
1695
1696 err = security_socket_listen(sock, backlog);
1697 if (!err)
1698 err = sock->ops->listen(sock, backlog);
1699
1700 fput_light(sock->file, fput_needed);
1701 }
1702 return err;
1703 }
1704
SYSCALL_DEFINE2(listen, int, fd, int, backlog)1705 SYSCALL_DEFINE2(listen, int, fd, int, backlog)
1706 {
1707 return __sys_listen(fd, backlog);
1708 }
1709
do_accept(struct file *file, unsigned file_flags, struct sockaddr __user *upeer_sockaddr, int __user *upeer_addrlen, int flags)1710 struct file *do_accept(struct file *file, unsigned file_flags,
1711 struct sockaddr __user *upeer_sockaddr,
1712 int __user *upeer_addrlen, int flags)
1713 {
1714 struct socket *sock, *newsock;
1715 struct file *newfile;
1716 int err, len;
1717 struct sockaddr_storage address;
1718
1719 sock = sock_from_file(file, &err);
1720 if (!sock)
1721 return ERR_PTR(err);
1722
1723 newsock = sock_alloc();
1724 if (!newsock)
1725 return ERR_PTR(-ENFILE);
1726
1727 newsock->type = sock->type;
1728 newsock->ops = sock->ops;
1729
1730 /*
1731 * We don't need try_module_get here, as the listening socket (sock)
1732 * has the protocol module (sock->ops->owner) held.
1733 */
1734 __module_get(newsock->ops->owner);
1735
1736 newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name);
1737 if (IS_ERR(newfile))
1738 return newfile;
1739
1740 err = security_socket_accept(sock, newsock);
1741 if (err)
1742 goto out_fd;
1743
1744 err = sock->ops->accept(sock, newsock, sock->file->f_flags | file_flags,
1745 false);
1746 if (err < 0)
1747 goto out_fd;
1748
1749 if (upeer_sockaddr) {
1750 len = newsock->ops->getname(newsock,
1751 (struct sockaddr *)&address, 2);
1752 if (len < 0) {
1753 err = -ECONNABORTED;
1754 goto out_fd;
1755 }
1756 err = move_addr_to_user(&address,
1757 len, upeer_sockaddr, upeer_addrlen);
1758 if (err < 0)
1759 goto out_fd;
1760 }
1761
1762 /* File flags are not inherited via accept() unlike another OSes. */
1763 return newfile;
1764 out_fd:
1765 fput(newfile);
1766 return ERR_PTR(err);
1767 }
1768
__sys_accept4_file(struct file *file, unsigned file_flags, struct sockaddr __user *upeer_sockaddr, int __user *upeer_addrlen, int flags, unsigned long nofile)1769 int __sys_accept4_file(struct file *file, unsigned file_flags,
1770 struct sockaddr __user *upeer_sockaddr,
1771 int __user *upeer_addrlen, int flags,
1772 unsigned long nofile)
1773 {
1774 struct file *newfile;
1775 int newfd;
1776
1777 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1778 return -EINVAL;
1779
1780 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1781 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1782
1783 newfd = __get_unused_fd_flags(flags, nofile);
1784 if (unlikely(newfd < 0))
1785 return newfd;
1786
1787 newfile = do_accept(file, file_flags, upeer_sockaddr, upeer_addrlen,
1788 flags);
1789 if (IS_ERR(newfile)) {
1790 put_unused_fd(newfd);
1791 return PTR_ERR(newfile);
1792 }
1793 fd_install(newfd, newfile);
1794 return newfd;
1795 }
1796
1797 /*
1798 * For accept, we attempt to create a new socket, set up the link
1799 * with the client, wake up the client, then return the new
1800 * connected fd. We collect the address of the connector in kernel
1801 * space and move it to user at the very end. This is unclean because
1802 * we open the socket then return an error.
1803 *
1804 * 1003.1g adds the ability to recvmsg() to query connection pending
1805 * status to recvmsg. We need to add that support in a way thats
1806 * clean when we restructure accept also.
1807 */
1808
__sys_accept4(int fd, struct sockaddr __user *upeer_sockaddr, int __user *upeer_addrlen, int flags)1809 int __sys_accept4(int fd, struct sockaddr __user *upeer_sockaddr,
1810 int __user *upeer_addrlen, int flags)
1811 {
1812 int ret = -EBADF;
1813 struct fd f;
1814
1815 f = fdget(fd);
1816 if (f.file) {
1817 ret = __sys_accept4_file(f.file, 0, upeer_sockaddr,
1818 upeer_addrlen, flags,
1819 rlimit(RLIMIT_NOFILE));
1820 fdput(f);
1821 }
1822
1823 return ret;
1824 }
1825
SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr, int __user *, upeer_addrlen, int, flags)1826 SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr,
1827 int __user *, upeer_addrlen, int, flags)
1828 {
1829 return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, flags);
1830 }
1831
SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr, int __user *, upeer_addrlen)1832 SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr,
1833 int __user *, upeer_addrlen)
1834 {
1835 return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0);
1836 }
1837
1838 /*
1839 * Attempt to connect to a socket with the server address. The address
1840 * is in user space so we verify it is OK and move it to kernel space.
1841 *
1842 * For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1843 * break bindings
1844 *
1845 * NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1846 * other SEQPACKET protocols that take time to connect() as it doesn't
1847 * include the -EINPROGRESS status for such sockets.
1848 */
1849
__sys_connect_file(struct file *file, struct sockaddr_storage *address, int addrlen, int file_flags)1850 int __sys_connect_file(struct file *file, struct sockaddr_storage *address,
1851 int addrlen, int file_flags)
1852 {
1853 struct socket *sock;
1854 int err;
1855
1856 sock = sock_from_file(file, &err);
1857 if (!sock)
1858 goto out;
1859
1860 err =
1861 security_socket_connect(sock, (struct sockaddr *)address, addrlen);
1862 if (err)
1863 goto out;
1864
1865 err = sock->ops->connect(sock, (struct sockaddr *)address, addrlen,
1866 sock->file->f_flags | file_flags);
1867 out:
1868 return err;
1869 }
1870
__sys_connect(int fd, struct sockaddr __user *uservaddr, int addrlen)1871 int __sys_connect(int fd, struct sockaddr __user *uservaddr, int addrlen)
1872 {
1873 int ret = -EBADF;
1874 struct fd f;
1875
1876 f = fdget(fd);
1877 if (f.file) {
1878 struct sockaddr_storage address;
1879
1880 ret = move_addr_to_kernel(uservaddr, addrlen, &address);
1881 if (!ret)
1882 ret = __sys_connect_file(f.file, &address, addrlen, 0);
1883 fdput(f);
1884 }
1885
1886 return ret;
1887 }
1888
SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr, int, addrlen)1889 SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr,
1890 int, addrlen)
1891 {
1892 return __sys_connect(fd, uservaddr, addrlen);
1893 }
1894
1895 /*
1896 * Get the local address ('name') of a socket object. Move the obtained
1897 * name to user space.
1898 */
1899
__sys_getsockname(int fd, struct sockaddr __user *usockaddr, int __user *usockaddr_len)1900 int __sys_getsockname(int fd, struct sockaddr __user *usockaddr,
1901 int __user *usockaddr_len)
1902 {
1903 struct socket *sock;
1904 struct sockaddr_storage address;
1905 int err, fput_needed;
1906
1907 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1908 if (!sock)
1909 goto out;
1910
1911 err = security_socket_getsockname(sock);
1912 if (err)
1913 goto out_put;
1914
1915 err = sock->ops->getname(sock, (struct sockaddr *)&address, 0);
1916 if (err < 0)
1917 goto out_put;
1918 /* "err" is actually length in this case */
1919 err = move_addr_to_user(&address, err, usockaddr, usockaddr_len);
1920
1921 out_put:
1922 fput_light(sock->file, fput_needed);
1923 out:
1924 return err;
1925 }
1926
SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr, int __user *, usockaddr_len)1927 SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr,
1928 int __user *, usockaddr_len)
1929 {
1930 return __sys_getsockname(fd, usockaddr, usockaddr_len);
1931 }
1932
1933 /*
1934 * Get the remote address ('name') of a socket object. Move the obtained
1935 * name to user space.
1936 */
1937
__sys_getpeername(int fd, struct sockaddr __user *usockaddr, int __user *usockaddr_len)1938 int __sys_getpeername(int fd, struct sockaddr __user *usockaddr,
1939 int __user *usockaddr_len)
1940 {
1941 struct socket *sock;
1942 struct sockaddr_storage address;
1943 int err, fput_needed;
1944
1945 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1946 if (sock != NULL) {
1947 err = security_socket_getpeername(sock);
1948 if (err) {
1949 fput_light(sock->file, fput_needed);
1950 return err;
1951 }
1952
1953 err = sock->ops->getname(sock, (struct sockaddr *)&address, 1);
1954 if (err >= 0)
1955 /* "err" is actually length in this case */
1956 err = move_addr_to_user(&address, err, usockaddr,
1957 usockaddr_len);
1958 fput_light(sock->file, fput_needed);
1959 }
1960 return err;
1961 }
1962
SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr, int __user *, usockaddr_len)1963 SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr,
1964 int __user *, usockaddr_len)
1965 {
1966 return __sys_getpeername(fd, usockaddr, usockaddr_len);
1967 }
1968
1969 /*
1970 * Send a datagram to a given address. We move the address into kernel
1971 * space and check the user space data area is readable before invoking
1972 * the protocol.
1973 */
__sys_sendto(int fd, void __user *buff, size_t len, unsigned int flags, struct sockaddr __user *addr, int addr_len)1974 int __sys_sendto(int fd, void __user *buff, size_t len, unsigned int flags,
1975 struct sockaddr __user *addr, int addr_len)
1976 {
1977 struct socket *sock;
1978 struct sockaddr_storage address;
1979 int err;
1980 struct msghdr msg;
1981 struct iovec iov;
1982 int fput_needed;
1983
1984 err = import_single_range(WRITE, buff, len, &iov, &msg.msg_iter);
1985 if (unlikely(err))
1986 return err;
1987 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1988 if (!sock)
1989 goto out;
1990
1991 msg.msg_name = NULL;
1992 msg.msg_control = NULL;
1993 msg.msg_controllen = 0;
1994 msg.msg_namelen = 0;
1995 if (addr) {
1996 err = move_addr_to_kernel(addr, addr_len, &address);
1997 if (err < 0)
1998 goto out_put;
1999 msg.msg_name = (struct sockaddr *)&address;
2000 msg.msg_namelen = addr_len;
2001 }
2002 if (sock->file->f_flags & O_NONBLOCK)
2003 flags |= MSG_DONTWAIT;
2004 msg.msg_flags = flags;
2005 err = __sock_sendmsg(sock, &msg);
2006
2007 out_put:
2008 fput_light(sock->file, fput_needed);
2009 out:
2010 return err;
2011 }
2012
SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len, unsigned int, flags, struct sockaddr __user *, addr, int, addr_len)2013 SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len,
2014 unsigned int, flags, struct sockaddr __user *, addr,
2015 int, addr_len)
2016 {
2017 return __sys_sendto(fd, buff, len, flags, addr, addr_len);
2018 }
2019
2020 /*
2021 * Send a datagram down a socket.
2022 */
2023
SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len, unsigned int, flags)2024 SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len,
2025 unsigned int, flags)
2026 {
2027 return __sys_sendto(fd, buff, len, flags, NULL, 0);
2028 }
2029
2030 /*
2031 * Receive a frame from the socket and optionally record the address of the
2032 * sender. We verify the buffers are writable and if needed move the
2033 * sender address from kernel to user space.
2034 */
__sys_recvfrom(int fd, void __user *ubuf, size_t size, unsigned int flags, struct sockaddr __user *addr, int __user *addr_len)2035 int __sys_recvfrom(int fd, void __user *ubuf, size_t size, unsigned int flags,
2036 struct sockaddr __user *addr, int __user *addr_len)
2037 {
2038 struct socket *sock;
2039 struct iovec iov;
2040 struct msghdr msg;
2041 struct sockaddr_storage address;
2042 int err, err2;
2043 int fput_needed;
2044
2045 err = import_single_range(READ, ubuf, size, &iov, &msg.msg_iter);
2046 if (unlikely(err))
2047 return err;
2048 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2049 if (!sock)
2050 goto out;
2051
2052 msg.msg_control = NULL;
2053 msg.msg_controllen = 0;
2054 /* Save some cycles and don't copy the address if not needed */
2055 msg.msg_name = addr ? (struct sockaddr *)&address : NULL;
2056 /* We assume all kernel code knows the size of sockaddr_storage */
2057 msg.msg_namelen = 0;
2058 msg.msg_iocb = NULL;
2059 msg.msg_flags = 0;
2060 if (sock->file->f_flags & O_NONBLOCK)
2061 flags |= MSG_DONTWAIT;
2062 err = sock_recvmsg(sock, &msg, flags);
2063
2064 if (err >= 0 && addr != NULL) {
2065 err2 = move_addr_to_user(&address,
2066 msg.msg_namelen, addr, addr_len);
2067 if (err2 < 0)
2068 err = err2;
2069 }
2070
2071 fput_light(sock->file, fput_needed);
2072 out:
2073 return err;
2074 }
2075
SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size, unsigned int, flags, struct sockaddr __user *, addr, int __user *, addr_len)2076 SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size,
2077 unsigned int, flags, struct sockaddr __user *, addr,
2078 int __user *, addr_len)
2079 {
2080 return __sys_recvfrom(fd, ubuf, size, flags, addr, addr_len);
2081 }
2082
2083 /*
2084 * Receive a datagram from a socket.
2085 */
2086
SYSCALL_DEFINE4(recv, int, fd, void __user *, ubuf, size_t, size, unsigned int, flags)2087 SYSCALL_DEFINE4(recv, int, fd, void __user *, ubuf, size_t, size,
2088 unsigned int, flags)
2089 {
2090 return __sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
2091 }
2092
sock_use_custom_sol_socket(const struct socket *sock)2093 static bool sock_use_custom_sol_socket(const struct socket *sock)
2094 {
2095 const struct sock *sk = sock->sk;
2096
2097 /* Use sock->ops->setsockopt() for MPTCP */
2098 return IS_ENABLED(CONFIG_MPTCP) &&
2099 sk->sk_protocol == IPPROTO_MPTCP &&
2100 sk->sk_type == SOCK_STREAM &&
2101 (sk->sk_family == AF_INET || sk->sk_family == AF_INET6);
2102 }
2103
2104 /*
2105 * Set a socket option. Because we don't know the option lengths we have
2106 * to pass the user mode parameter for the protocols to sort out.
2107 */
__sys_setsockopt(int fd, int level, int optname, char __user *user_optval, int optlen)2108 int __sys_setsockopt(int fd, int level, int optname, char __user *user_optval,
2109 int optlen)
2110 {
2111 sockptr_t optval = USER_SOCKPTR(user_optval);
2112 char *kernel_optval = NULL;
2113 int err, fput_needed;
2114 struct socket *sock;
2115
2116 if (optlen < 0)
2117 return -EINVAL;
2118
2119 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2120 if (!sock)
2121 return err;
2122
2123 err = security_socket_setsockopt(sock, level, optname);
2124 if (err)
2125 goto out_put;
2126
2127 if (!in_compat_syscall())
2128 err = BPF_CGROUP_RUN_PROG_SETSOCKOPT(sock->sk, &level, &optname,
2129 user_optval, &optlen,
2130 &kernel_optval);
2131 if (err < 0)
2132 goto out_put;
2133 if (err > 0) {
2134 err = 0;
2135 goto out_put;
2136 }
2137
2138 if (kernel_optval)
2139 optval = KERNEL_SOCKPTR(kernel_optval);
2140 if (level == SOL_SOCKET && !sock_use_custom_sol_socket(sock))
2141 err = sock_setsockopt(sock, level, optname, optval, optlen);
2142 else if (unlikely(!sock->ops->setsockopt))
2143 err = -EOPNOTSUPP;
2144 else
2145 err = sock->ops->setsockopt(sock, level, optname, optval,
2146 optlen);
2147 kfree(kernel_optval);
2148 out_put:
2149 fput_light(sock->file, fput_needed);
2150 return err;
2151 }
2152
SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname, char __user *, optval, int, optlen)2153 SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname,
2154 char __user *, optval, int, optlen)
2155 {
2156 return __sys_setsockopt(fd, level, optname, optval, optlen);
2157 }
2158
2159 INDIRECT_CALLABLE_DECLARE(bool tcp_bpf_bypass_getsockopt(int level,
2160 int optname));
2161
2162 /*
2163 * Get a socket option. Because we don't know the option lengths we have
2164 * to pass a user mode parameter for the protocols to sort out.
2165 */
__sys_getsockopt(int fd, int level, int optname, char __user *optval, int __user *optlen)2166 int __sys_getsockopt(int fd, int level, int optname, char __user *optval,
2167 int __user *optlen)
2168 {
2169 int err, fput_needed;
2170 struct socket *sock;
2171 int max_optlen;
2172
2173 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2174 if (!sock)
2175 return err;
2176
2177 err = security_socket_getsockopt(sock, level, optname);
2178 if (err)
2179 goto out_put;
2180
2181 if (!in_compat_syscall())
2182 max_optlen = BPF_CGROUP_GETSOCKOPT_MAX_OPTLEN(optlen);
2183
2184 if (level == SOL_SOCKET)
2185 err = sock_getsockopt(sock, level, optname, optval, optlen);
2186 else if (unlikely(!sock->ops->getsockopt))
2187 err = -EOPNOTSUPP;
2188 else
2189 err = sock->ops->getsockopt(sock, level, optname, optval,
2190 optlen);
2191
2192 if (!in_compat_syscall())
2193 err = BPF_CGROUP_RUN_PROG_GETSOCKOPT(sock->sk, level, optname,
2194 optval, optlen, max_optlen,
2195 err);
2196 out_put:
2197 fput_light(sock->file, fput_needed);
2198 return err;
2199 }
2200
SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname, char __user *, optval, int __user *, optlen)2201 SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname,
2202 char __user *, optval, int __user *, optlen)
2203 {
2204 return __sys_getsockopt(fd, level, optname, optval, optlen);
2205 }
2206
2207 /*
2208 * Shutdown a socket.
2209 */
2210
__sys_shutdown_sock(struct socket *sock, int how)2211 int __sys_shutdown_sock(struct socket *sock, int how)
2212 {
2213 int err;
2214
2215 err = security_socket_shutdown(sock, how);
2216 if (!err)
2217 err = sock->ops->shutdown(sock, how);
2218
2219 return err;
2220 }
2221
__sys_shutdown(int fd, int how)2222 int __sys_shutdown(int fd, int how)
2223 {
2224 int err, fput_needed;
2225 struct socket *sock;
2226
2227 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2228 if (sock != NULL) {
2229 err = __sys_shutdown_sock(sock, how);
2230 fput_light(sock->file, fput_needed);
2231 }
2232 return err;
2233 }
2234
SYSCALL_DEFINE2(shutdown, int, fd, int, how)2235 SYSCALL_DEFINE2(shutdown, int, fd, int, how)
2236 {
2237 return __sys_shutdown(fd, how);
2238 }
2239
2240 /* A couple of helpful macros for getting the address of the 32/64 bit
2241 * fields which are the same type (int / unsigned) on our platforms.
2242 */
2243 #define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
2244 #define COMPAT_NAMELEN(msg) COMPAT_MSG(msg, msg_namelen)
2245 #define COMPAT_FLAGS(msg) COMPAT_MSG(msg, msg_flags)
2246
2247 struct used_address {
2248 struct sockaddr_storage name;
2249 unsigned int name_len;
2250 };
2251
__copy_msghdr_from_user(struct msghdr *kmsg, struct user_msghdr __user *umsg, struct sockaddr __user **save_addr, struct iovec __user **uiov, size_t *nsegs)2252 int __copy_msghdr_from_user(struct msghdr *kmsg,
2253 struct user_msghdr __user *umsg,
2254 struct sockaddr __user **save_addr,
2255 struct iovec __user **uiov, size_t *nsegs)
2256 {
2257 struct user_msghdr msg;
2258 ssize_t err;
2259
2260 if (copy_from_user(&msg, umsg, sizeof(*umsg)))
2261 return -EFAULT;
2262
2263 kmsg->msg_control_is_user = true;
2264 kmsg->msg_control_user = msg.msg_control;
2265 kmsg->msg_controllen = msg.msg_controllen;
2266 kmsg->msg_flags = msg.msg_flags;
2267
2268 kmsg->msg_namelen = msg.msg_namelen;
2269 if (!msg.msg_name)
2270 kmsg->msg_namelen = 0;
2271
2272 if (kmsg->msg_namelen < 0)
2273 return -EINVAL;
2274
2275 if (kmsg->msg_namelen > sizeof(struct sockaddr_storage))
2276 kmsg->msg_namelen = sizeof(struct sockaddr_storage);
2277
2278 if (save_addr)
2279 *save_addr = msg.msg_name;
2280
2281 if (msg.msg_name && kmsg->msg_namelen) {
2282 if (!save_addr) {
2283 err = move_addr_to_kernel(msg.msg_name,
2284 kmsg->msg_namelen,
2285 kmsg->msg_name);
2286 if (err < 0)
2287 return err;
2288 }
2289 } else {
2290 kmsg->msg_name = NULL;
2291 kmsg->msg_namelen = 0;
2292 }
2293
2294 if (msg.msg_iovlen > UIO_MAXIOV)
2295 return -EMSGSIZE;
2296
2297 kmsg->msg_iocb = NULL;
2298 *uiov = msg.msg_iov;
2299 *nsegs = msg.msg_iovlen;
2300 return 0;
2301 }
2302
copy_msghdr_from_user(struct msghdr *kmsg, struct user_msghdr __user *umsg, struct sockaddr __user **save_addr, struct iovec **iov)2303 static int copy_msghdr_from_user(struct msghdr *kmsg,
2304 struct user_msghdr __user *umsg,
2305 struct sockaddr __user **save_addr,
2306 struct iovec **iov)
2307 {
2308 struct user_msghdr msg;
2309 ssize_t err;
2310
2311 err = __copy_msghdr_from_user(kmsg, umsg, save_addr, &msg.msg_iov,
2312 &msg.msg_iovlen);
2313 if (err)
2314 return err;
2315
2316 err = import_iovec(save_addr ? READ : WRITE,
2317 msg.msg_iov, msg.msg_iovlen,
2318 UIO_FASTIOV, iov, &kmsg->msg_iter);
2319 return err < 0 ? err : 0;
2320 }
2321
____sys_sendmsg(struct socket *sock, struct msghdr *msg_sys, unsigned int flags, struct used_address *used_address, unsigned int allowed_msghdr_flags)2322 static int ____sys_sendmsg(struct socket *sock, struct msghdr *msg_sys,
2323 unsigned int flags, struct used_address *used_address,
2324 unsigned int allowed_msghdr_flags)
2325 {
2326 unsigned char ctl[sizeof(struct cmsghdr) + 20]
2327 __aligned(sizeof(__kernel_size_t));
2328 /* 20 is size of ipv6_pktinfo */
2329 unsigned char *ctl_buf = ctl;
2330 int ctl_len;
2331 ssize_t err;
2332
2333 err = -ENOBUFS;
2334
2335 if (msg_sys->msg_controllen > INT_MAX)
2336 goto out;
2337 flags |= (msg_sys->msg_flags & allowed_msghdr_flags);
2338 ctl_len = msg_sys->msg_controllen;
2339 if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
2340 err =
2341 cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl,
2342 sizeof(ctl));
2343 if (err)
2344 goto out;
2345 ctl_buf = msg_sys->msg_control;
2346 ctl_len = msg_sys->msg_controllen;
2347 } else if (ctl_len) {
2348 BUILD_BUG_ON(sizeof(struct cmsghdr) !=
2349 CMSG_ALIGN(sizeof(struct cmsghdr)));
2350 if (ctl_len > sizeof(ctl)) {
2351 ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
2352 if (ctl_buf == NULL)
2353 goto out;
2354 }
2355 err = -EFAULT;
2356 if (copy_from_user(ctl_buf, msg_sys->msg_control_user, ctl_len))
2357 goto out_freectl;
2358 msg_sys->msg_control = ctl_buf;
2359 msg_sys->msg_control_is_user = false;
2360 }
2361 msg_sys->msg_flags = flags;
2362
2363 if (sock->file->f_flags & O_NONBLOCK)
2364 msg_sys->msg_flags |= MSG_DONTWAIT;
2365 /*
2366 * If this is sendmmsg() and current destination address is same as
2367 * previously succeeded address, omit asking LSM's decision.
2368 * used_address->name_len is initialized to UINT_MAX so that the first
2369 * destination address never matches.
2370 */
2371 if (used_address && msg_sys->msg_name &&
2372 used_address->name_len == msg_sys->msg_namelen &&
2373 !memcmp(&used_address->name, msg_sys->msg_name,
2374 used_address->name_len)) {
2375 err = sock_sendmsg_nosec(sock, msg_sys);
2376 goto out_freectl;
2377 }
2378 err = __sock_sendmsg(sock, msg_sys);
2379 /*
2380 * If this is sendmmsg() and sending to current destination address was
2381 * successful, remember it.
2382 */
2383 if (used_address && err >= 0) {
2384 used_address->name_len = msg_sys->msg_namelen;
2385 if (msg_sys->msg_name)
2386 memcpy(&used_address->name, msg_sys->msg_name,
2387 used_address->name_len);
2388 }
2389
2390 out_freectl:
2391 if (ctl_buf != ctl)
2392 sock_kfree_s(sock->sk, ctl_buf, ctl_len);
2393 out:
2394 return err;
2395 }
2396
sendmsg_copy_msghdr(struct msghdr *msg, struct user_msghdr __user *umsg, unsigned flags, struct iovec **iov)2397 int sendmsg_copy_msghdr(struct msghdr *msg,
2398 struct user_msghdr __user *umsg, unsigned flags,
2399 struct iovec **iov)
2400 {
2401 int err;
2402
2403 if (flags & MSG_CMSG_COMPAT) {
2404 struct compat_msghdr __user *msg_compat;
2405
2406 msg_compat = (struct compat_msghdr __user *) umsg;
2407 err = get_compat_msghdr(msg, msg_compat, NULL, iov);
2408 } else {
2409 err = copy_msghdr_from_user(msg, umsg, NULL, iov);
2410 }
2411 if (err < 0)
2412 return err;
2413
2414 return 0;
2415 }
2416
___sys_sendmsg(struct socket *sock, struct user_msghdr __user *msg, struct msghdr *msg_sys, unsigned int flags, struct used_address *used_address, unsigned int allowed_msghdr_flags)2417 static int ___sys_sendmsg(struct socket *sock, struct user_msghdr __user *msg,
2418 struct msghdr *msg_sys, unsigned int flags,
2419 struct used_address *used_address,
2420 unsigned int allowed_msghdr_flags)
2421 {
2422 struct sockaddr_storage address;
2423 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
2424 ssize_t err;
2425
2426 msg_sys->msg_name = &address;
2427
2428 err = sendmsg_copy_msghdr(msg_sys, msg, flags, &iov);
2429 if (err < 0)
2430 return err;
2431
2432 err = ____sys_sendmsg(sock, msg_sys, flags, used_address,
2433 allowed_msghdr_flags);
2434 kfree(iov);
2435 return err;
2436 }
2437
2438 /*
2439 * BSD sendmsg interface
2440 */
__sys_sendmsg_sock(struct socket *sock, struct msghdr *msg, unsigned int flags)2441 long __sys_sendmsg_sock(struct socket *sock, struct msghdr *msg,
2442 unsigned int flags)
2443 {
2444 return ____sys_sendmsg(sock, msg, flags, NULL, 0);
2445 }
2446
__sys_sendmsg(int fd, struct user_msghdr __user *msg, unsigned int flags, bool forbid_cmsg_compat)2447 long __sys_sendmsg(int fd, struct user_msghdr __user *msg, unsigned int flags,
2448 bool forbid_cmsg_compat)
2449 {
2450 int fput_needed, err;
2451 struct msghdr msg_sys;
2452 struct socket *sock;
2453
2454 if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2455 return -EINVAL;
2456
2457 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2458 if (!sock)
2459 goto out;
2460
2461 err = ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL, 0);
2462
2463 fput_light(sock->file, fput_needed);
2464 out:
2465 return err;
2466 }
2467
SYSCALL_DEFINE3(sendmsg, int, fd, struct user_msghdr __user *, msg, unsigned int, flags)2468 SYSCALL_DEFINE3(sendmsg, int, fd, struct user_msghdr __user *, msg, unsigned int, flags)
2469 {
2470 return __sys_sendmsg(fd, msg, flags, true);
2471 }
2472
2473 /*
2474 * Linux sendmmsg interface
2475 */
2476
__sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen, unsigned int flags, bool forbid_cmsg_compat)2477 int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2478 unsigned int flags, bool forbid_cmsg_compat)
2479 {
2480 int fput_needed, err, datagrams;
2481 struct socket *sock;
2482 struct mmsghdr __user *entry;
2483 struct compat_mmsghdr __user *compat_entry;
2484 struct msghdr msg_sys;
2485 struct used_address used_address;
2486 unsigned int oflags = flags;
2487
2488 if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2489 return -EINVAL;
2490
2491 if (vlen > UIO_MAXIOV)
2492 vlen = UIO_MAXIOV;
2493
2494 datagrams = 0;
2495
2496 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2497 if (!sock)
2498 return err;
2499
2500 used_address.name_len = UINT_MAX;
2501 entry = mmsg;
2502 compat_entry = (struct compat_mmsghdr __user *)mmsg;
2503 err = 0;
2504 flags |= MSG_BATCH;
2505
2506 while (datagrams < vlen) {
2507 if (datagrams == vlen - 1)
2508 flags = oflags;
2509
2510 if (MSG_CMSG_COMPAT & flags) {
2511 err = ___sys_sendmsg(sock, (struct user_msghdr __user *)compat_entry,
2512 &msg_sys, flags, &used_address, MSG_EOR);
2513 if (err < 0)
2514 break;
2515 err = __put_user(err, &compat_entry->msg_len);
2516 ++compat_entry;
2517 } else {
2518 err = ___sys_sendmsg(sock,
2519 (struct user_msghdr __user *)entry,
2520 &msg_sys, flags, &used_address, MSG_EOR);
2521 if (err < 0)
2522 break;
2523 err = put_user(err, &entry->msg_len);
2524 ++entry;
2525 }
2526
2527 if (err)
2528 break;
2529 ++datagrams;
2530 if (msg_data_left(&msg_sys))
2531 break;
2532 cond_resched();
2533 }
2534
2535 fput_light(sock->file, fput_needed);
2536
2537 /* We only return an error if no datagrams were able to be sent */
2538 if (datagrams != 0)
2539 return datagrams;
2540
2541 return err;
2542 }
2543
SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg, unsigned int, vlen, unsigned int, flags)2544 SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg,
2545 unsigned int, vlen, unsigned int, flags)
2546 {
2547 return __sys_sendmmsg(fd, mmsg, vlen, flags, true);
2548 }
2549
recvmsg_copy_msghdr(struct msghdr *msg, struct user_msghdr __user *umsg, unsigned flags, struct sockaddr __user **uaddr, struct iovec **iov)2550 int recvmsg_copy_msghdr(struct msghdr *msg,
2551 struct user_msghdr __user *umsg, unsigned flags,
2552 struct sockaddr __user **uaddr,
2553 struct iovec **iov)
2554 {
2555 ssize_t err;
2556
2557 if (MSG_CMSG_COMPAT & flags) {
2558 struct compat_msghdr __user *msg_compat;
2559
2560 msg_compat = (struct compat_msghdr __user *) umsg;
2561 err = get_compat_msghdr(msg, msg_compat, uaddr, iov);
2562 } else {
2563 err = copy_msghdr_from_user(msg, umsg, uaddr, iov);
2564 }
2565 if (err < 0)
2566 return err;
2567
2568 return 0;
2569 }
2570
____sys_recvmsg(struct socket *sock, struct msghdr *msg_sys, struct user_msghdr __user *msg, struct sockaddr __user *uaddr, unsigned int flags, int nosec)2571 static int ____sys_recvmsg(struct socket *sock, struct msghdr *msg_sys,
2572 struct user_msghdr __user *msg,
2573 struct sockaddr __user *uaddr,
2574 unsigned int flags, int nosec)
2575 {
2576 struct compat_msghdr __user *msg_compat =
2577 (struct compat_msghdr __user *) msg;
2578 int __user *uaddr_len = COMPAT_NAMELEN(msg);
2579 struct sockaddr_storage addr;
2580 unsigned long cmsg_ptr;
2581 int len;
2582 ssize_t err;
2583
2584 msg_sys->msg_name = &addr;
2585 cmsg_ptr = (unsigned long)msg_sys->msg_control;
2586 msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT);
2587
2588 /* We assume all kernel code knows the size of sockaddr_storage */
2589 msg_sys->msg_namelen = 0;
2590
2591 if (sock->file->f_flags & O_NONBLOCK)
2592 flags |= MSG_DONTWAIT;
2593
2594 if (unlikely(nosec))
2595 err = sock_recvmsg_nosec(sock, msg_sys, flags);
2596 else
2597 err = sock_recvmsg(sock, msg_sys, flags);
2598
2599 if (err < 0)
2600 goto out;
2601 len = err;
2602
2603 if (uaddr != NULL) {
2604 err = move_addr_to_user(&addr,
2605 msg_sys->msg_namelen, uaddr,
2606 uaddr_len);
2607 if (err < 0)
2608 goto out;
2609 }
2610 err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT),
2611 COMPAT_FLAGS(msg));
2612 if (err)
2613 goto out;
2614 if (MSG_CMSG_COMPAT & flags)
2615 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2616 &msg_compat->msg_controllen);
2617 else
2618 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2619 &msg->msg_controllen);
2620 if (err)
2621 goto out;
2622 err = len;
2623 out:
2624 return err;
2625 }
2626
___sys_recvmsg(struct socket *sock, struct user_msghdr __user *msg, struct msghdr *msg_sys, unsigned int flags, int nosec)2627 static int ___sys_recvmsg(struct socket *sock, struct user_msghdr __user *msg,
2628 struct msghdr *msg_sys, unsigned int flags, int nosec)
2629 {
2630 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
2631 /* user mode address pointers */
2632 struct sockaddr __user *uaddr;
2633 ssize_t err;
2634
2635 err = recvmsg_copy_msghdr(msg_sys, msg, flags, &uaddr, &iov);
2636 if (err < 0)
2637 return err;
2638
2639 err = ____sys_recvmsg(sock, msg_sys, msg, uaddr, flags, nosec);
2640 kfree(iov);
2641 return err;
2642 }
2643
2644 /*
2645 * BSD recvmsg interface
2646 */
2647
__sys_recvmsg_sock(struct socket *sock, struct msghdr *msg, struct user_msghdr __user *umsg, struct sockaddr __user *uaddr, unsigned int flags)2648 long __sys_recvmsg_sock(struct socket *sock, struct msghdr *msg,
2649 struct user_msghdr __user *umsg,
2650 struct sockaddr __user *uaddr, unsigned int flags)
2651 {
2652 return ____sys_recvmsg(sock, msg, umsg, uaddr, flags, 0);
2653 }
2654
__sys_recvmsg(int fd, struct user_msghdr __user *msg, unsigned int flags, bool forbid_cmsg_compat)2655 long __sys_recvmsg(int fd, struct user_msghdr __user *msg, unsigned int flags,
2656 bool forbid_cmsg_compat)
2657 {
2658 int fput_needed, err;
2659 struct msghdr msg_sys;
2660 struct socket *sock;
2661
2662 if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2663 return -EINVAL;
2664
2665 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2666 if (!sock)
2667 goto out;
2668
2669 err = ___sys_recvmsg(sock, msg, &msg_sys, flags, 0);
2670
2671 fput_light(sock->file, fput_needed);
2672 out:
2673 return err;
2674 }
2675
SYSCALL_DEFINE3(recvmsg, int, fd, struct user_msghdr __user *, msg, unsigned int, flags)2676 SYSCALL_DEFINE3(recvmsg, int, fd, struct user_msghdr __user *, msg,
2677 unsigned int, flags)
2678 {
2679 return __sys_recvmsg(fd, msg, flags, true);
2680 }
2681
2682 /*
2683 * Linux recvmmsg interface
2684 */
2685
do_recvmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen, unsigned int flags, struct timespec64 *timeout)2686 static int do_recvmmsg(int fd, struct mmsghdr __user *mmsg,
2687 unsigned int vlen, unsigned int flags,
2688 struct timespec64 *timeout)
2689 {
2690 int fput_needed, err, datagrams;
2691 struct socket *sock;
2692 struct mmsghdr __user *entry;
2693 struct compat_mmsghdr __user *compat_entry;
2694 struct msghdr msg_sys;
2695 struct timespec64 end_time;
2696 struct timespec64 timeout64;
2697
2698 if (timeout &&
2699 poll_select_set_timeout(&end_time, timeout->tv_sec,
2700 timeout->tv_nsec))
2701 return -EINVAL;
2702
2703 datagrams = 0;
2704
2705 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2706 if (!sock)
2707 return err;
2708
2709 if (likely(!(flags & MSG_ERRQUEUE))) {
2710 err = sock_error(sock->sk);
2711 if (err) {
2712 datagrams = err;
2713 goto out_put;
2714 }
2715 }
2716
2717 entry = mmsg;
2718 compat_entry = (struct compat_mmsghdr __user *)mmsg;
2719
2720 while (datagrams < vlen) {
2721 /*
2722 * No need to ask LSM for more than the first datagram.
2723 */
2724 if (MSG_CMSG_COMPAT & flags) {
2725 err = ___sys_recvmsg(sock, (struct user_msghdr __user *)compat_entry,
2726 &msg_sys, flags & ~MSG_WAITFORONE,
2727 datagrams);
2728 if (err < 0)
2729 break;
2730 err = __put_user(err, &compat_entry->msg_len);
2731 ++compat_entry;
2732 } else {
2733 err = ___sys_recvmsg(sock,
2734 (struct user_msghdr __user *)entry,
2735 &msg_sys, flags & ~MSG_WAITFORONE,
2736 datagrams);
2737 if (err < 0)
2738 break;
2739 err = put_user(err, &entry->msg_len);
2740 ++entry;
2741 }
2742
2743 if (err)
2744 break;
2745 ++datagrams;
2746
2747 /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
2748 if (flags & MSG_WAITFORONE)
2749 flags |= MSG_DONTWAIT;
2750
2751 if (timeout) {
2752 ktime_get_ts64(&timeout64);
2753 *timeout = timespec64_sub(end_time, timeout64);
2754 if (timeout->tv_sec < 0) {
2755 timeout->tv_sec = timeout->tv_nsec = 0;
2756 break;
2757 }
2758
2759 /* Timeout, return less than vlen datagrams */
2760 if (timeout->tv_nsec == 0 && timeout->tv_sec == 0)
2761 break;
2762 }
2763
2764 /* Out of band data, return right away */
2765 if (msg_sys.msg_flags & MSG_OOB)
2766 break;
2767 cond_resched();
2768 }
2769
2770 if (err == 0)
2771 goto out_put;
2772
2773 if (datagrams == 0) {
2774 datagrams = err;
2775 goto out_put;
2776 }
2777
2778 /*
2779 * We may return less entries than requested (vlen) if the
2780 * sock is non block and there aren't enough datagrams...
2781 */
2782 if (err != -EAGAIN) {
2783 /*
2784 * ... or if recvmsg returns an error after we
2785 * received some datagrams, where we record the
2786 * error to return on the next call or if the
2787 * app asks about it using getsockopt(SO_ERROR).
2788 */
2789 WRITE_ONCE(sock->sk->sk_err, -err);
2790 }
2791 out_put:
2792 fput_light(sock->file, fput_needed);
2793
2794 return datagrams;
2795 }
2796
__sys_recvmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen, unsigned int flags, struct __kernel_timespec __user *timeout, struct old_timespec32 __user *timeout32)2797 int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg,
2798 unsigned int vlen, unsigned int flags,
2799 struct __kernel_timespec __user *timeout,
2800 struct old_timespec32 __user *timeout32)
2801 {
2802 int datagrams;
2803 struct timespec64 timeout_sys;
2804
2805 if (timeout && get_timespec64(&timeout_sys, timeout))
2806 return -EFAULT;
2807
2808 if (timeout32 && get_old_timespec32(&timeout_sys, timeout32))
2809 return -EFAULT;
2810
2811 if (!timeout && !timeout32)
2812 return do_recvmmsg(fd, mmsg, vlen, flags, NULL);
2813
2814 datagrams = do_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys);
2815
2816 if (datagrams <= 0)
2817 return datagrams;
2818
2819 if (timeout && put_timespec64(&timeout_sys, timeout))
2820 datagrams = -EFAULT;
2821
2822 if (timeout32 && put_old_timespec32(&timeout_sys, timeout32))
2823 datagrams = -EFAULT;
2824
2825 return datagrams;
2826 }
2827
SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg, unsigned int, vlen, unsigned int, flags, struct __kernel_timespec __user *, timeout)2828 SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg,
2829 unsigned int, vlen, unsigned int, flags,
2830 struct __kernel_timespec __user *, timeout)
2831 {
2832 if (flags & MSG_CMSG_COMPAT)
2833 return -EINVAL;
2834
2835 return __sys_recvmmsg(fd, mmsg, vlen, flags, timeout, NULL);
2836 }
2837
2838 #ifdef CONFIG_COMPAT_32BIT_TIME
SYSCALL_DEFINE5(recvmmsg_time32, int, fd, struct mmsghdr __user *, mmsg, unsigned int, vlen, unsigned int, flags, struct old_timespec32 __user *, timeout)2839 SYSCALL_DEFINE5(recvmmsg_time32, int, fd, struct mmsghdr __user *, mmsg,
2840 unsigned int, vlen, unsigned int, flags,
2841 struct old_timespec32 __user *, timeout)
2842 {
2843 if (flags & MSG_CMSG_COMPAT)
2844 return -EINVAL;
2845
2846 return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL, timeout);
2847 }
2848 #endif
2849
2850 #ifdef __ARCH_WANT_SYS_SOCKETCALL
2851 /* Argument list sizes for sys_socketcall */
2852 #define AL(x) ((x) * sizeof(unsigned long))
2853 static const unsigned char nargs[21] = {
2854 AL(0), AL(3), AL(3), AL(3), AL(2), AL(3),
2855 AL(3), AL(3), AL(4), AL(4), AL(4), AL(6),
2856 AL(6), AL(2), AL(5), AL(5), AL(3), AL(3),
2857 AL(4), AL(5), AL(4)
2858 };
2859
2860 #undef AL
2861
2862 /*
2863 * System call vectors.
2864 *
2865 * Argument checking cleaned up. Saved 20% in size.
2866 * This function doesn't need to set the kernel lock because
2867 * it is set by the callees.
2868 */
2869
SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args)2870 SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args)
2871 {
2872 unsigned long a[AUDITSC_ARGS];
2873 unsigned long a0, a1;
2874 int err;
2875 unsigned int len;
2876
2877 if (call < 1 || call > SYS_SENDMMSG)
2878 return -EINVAL;
2879 call = array_index_nospec(call, SYS_SENDMMSG + 1);
2880
2881 len = nargs[call];
2882 if (len > sizeof(a))
2883 return -EINVAL;
2884
2885 /* copy_from_user should be SMP safe. */
2886 if (copy_from_user(a, args, len))
2887 return -EFAULT;
2888
2889 err = audit_socketcall(nargs[call] / sizeof(unsigned long), a);
2890 if (err)
2891 return err;
2892
2893 a0 = a[0];
2894 a1 = a[1];
2895
2896 switch (call) {
2897 case SYS_SOCKET:
2898 err = __sys_socket(a0, a1, a[2]);
2899 break;
2900 case SYS_BIND:
2901 err = __sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
2902 break;
2903 case SYS_CONNECT:
2904 err = __sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
2905 break;
2906 case SYS_LISTEN:
2907 err = __sys_listen(a0, a1);
2908 break;
2909 case SYS_ACCEPT:
2910 err = __sys_accept4(a0, (struct sockaddr __user *)a1,
2911 (int __user *)a[2], 0);
2912 break;
2913 case SYS_GETSOCKNAME:
2914 err =
2915 __sys_getsockname(a0, (struct sockaddr __user *)a1,
2916 (int __user *)a[2]);
2917 break;
2918 case SYS_GETPEERNAME:
2919 err =
2920 __sys_getpeername(a0, (struct sockaddr __user *)a1,
2921 (int __user *)a[2]);
2922 break;
2923 case SYS_SOCKETPAIR:
2924 err = __sys_socketpair(a0, a1, a[2], (int __user *)a[3]);
2925 break;
2926 case SYS_SEND:
2927 err = __sys_sendto(a0, (void __user *)a1, a[2], a[3],
2928 NULL, 0);
2929 break;
2930 case SYS_SENDTO:
2931 err = __sys_sendto(a0, (void __user *)a1, a[2], a[3],
2932 (struct sockaddr __user *)a[4], a[5]);
2933 break;
2934 case SYS_RECV:
2935 err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2936 NULL, NULL);
2937 break;
2938 case SYS_RECVFROM:
2939 err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2940 (struct sockaddr __user *)a[4],
2941 (int __user *)a[5]);
2942 break;
2943 case SYS_SHUTDOWN:
2944 err = __sys_shutdown(a0, a1);
2945 break;
2946 case SYS_SETSOCKOPT:
2947 err = __sys_setsockopt(a0, a1, a[2], (char __user *)a[3],
2948 a[4]);
2949 break;
2950 case SYS_GETSOCKOPT:
2951 err =
2952 __sys_getsockopt(a0, a1, a[2], (char __user *)a[3],
2953 (int __user *)a[4]);
2954 break;
2955 case SYS_SENDMSG:
2956 err = __sys_sendmsg(a0, (struct user_msghdr __user *)a1,
2957 a[2], true);
2958 break;
2959 case SYS_SENDMMSG:
2960 err = __sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2],
2961 a[3], true);
2962 break;
2963 case SYS_RECVMSG:
2964 err = __sys_recvmsg(a0, (struct user_msghdr __user *)a1,
2965 a[2], true);
2966 break;
2967 case SYS_RECVMMSG:
2968 if (IS_ENABLED(CONFIG_64BIT))
2969 err = __sys_recvmmsg(a0, (struct mmsghdr __user *)a1,
2970 a[2], a[3],
2971 (struct __kernel_timespec __user *)a[4],
2972 NULL);
2973 else
2974 err = __sys_recvmmsg(a0, (struct mmsghdr __user *)a1,
2975 a[2], a[3], NULL,
2976 (struct old_timespec32 __user *)a[4]);
2977 break;
2978 case SYS_ACCEPT4:
2979 err = __sys_accept4(a0, (struct sockaddr __user *)a1,
2980 (int __user *)a[2], a[3]);
2981 break;
2982 default:
2983 err = -EINVAL;
2984 break;
2985 }
2986 return err;
2987 }
2988
2989 #endif /* __ARCH_WANT_SYS_SOCKETCALL */
2990
2991 /**
2992 * sock_register - add a socket protocol handler
2993 * @ops: description of protocol
2994 *
2995 * This function is called by a protocol handler that wants to
2996 * advertise its address family, and have it linked into the
2997 * socket interface. The value ops->family corresponds to the
2998 * socket system call protocol family.
2999 */
sock_register(const struct net_proto_family *ops)3000 int sock_register(const struct net_proto_family *ops)
3001 {
3002 int err;
3003
3004 if (ops->family >= NPROTO) {
3005 pr_crit("protocol %d >= NPROTO(%d)\n", ops->family, NPROTO);
3006 return -ENOBUFS;
3007 }
3008
3009 spin_lock(&net_family_lock);
3010 if (rcu_dereference_protected(net_families[ops->family],
3011 lockdep_is_held(&net_family_lock)))
3012 err = -EEXIST;
3013 else {
3014 rcu_assign_pointer(net_families[ops->family], ops);
3015 err = 0;
3016 }
3017 spin_unlock(&net_family_lock);
3018
3019 pr_info("NET: Registered protocol family %d\n", ops->family);
3020 return err;
3021 }
3022 EXPORT_SYMBOL(sock_register);
3023
3024 /**
3025 * sock_unregister - remove a protocol handler
3026 * @family: protocol family to remove
3027 *
3028 * This function is called by a protocol handler that wants to
3029 * remove its address family, and have it unlinked from the
3030 * new socket creation.
3031 *
3032 * If protocol handler is a module, then it can use module reference
3033 * counts to protect against new references. If protocol handler is not
3034 * a module then it needs to provide its own protection in
3035 * the ops->create routine.
3036 */
sock_unregister(int family)3037 void sock_unregister(int family)
3038 {
3039 BUG_ON(family < 0 || family >= NPROTO);
3040
3041 spin_lock(&net_family_lock);
3042 RCU_INIT_POINTER(net_families[family], NULL);
3043 spin_unlock(&net_family_lock);
3044
3045 synchronize_rcu();
3046
3047 pr_info("NET: Unregistered protocol family %d\n", family);
3048 }
3049 EXPORT_SYMBOL(sock_unregister);
3050
sock_is_registered(int family)3051 bool sock_is_registered(int family)
3052 {
3053 return family < NPROTO && rcu_access_pointer(net_families[family]);
3054 }
3055
sock_init(void)3056 static int __init sock_init(void)
3057 {
3058 int err;
3059 /*
3060 * Initialize the network sysctl infrastructure.
3061 */
3062 err = net_sysctl_init();
3063 if (err)
3064 goto out;
3065
3066 /*
3067 * Initialize skbuff SLAB cache
3068 */
3069 skb_init();
3070
3071 /*
3072 * Initialize the protocols module.
3073 */
3074
3075 init_inodecache();
3076
3077 err = register_filesystem(&sock_fs_type);
3078 if (err)
3079 goto out;
3080 sock_mnt = kern_mount(&sock_fs_type);
3081 if (IS_ERR(sock_mnt)) {
3082 err = PTR_ERR(sock_mnt);
3083 goto out_mount;
3084 }
3085
3086 /* The real protocol initialization is performed in later initcalls.
3087 */
3088
3089 #ifdef CONFIG_NETFILTER
3090 err = netfilter_init();
3091 if (err)
3092 goto out;
3093 #endif
3094
3095 ptp_classifier_init();
3096
3097 out:
3098 return err;
3099
3100 out_mount:
3101 unregister_filesystem(&sock_fs_type);
3102 goto out;
3103 }
3104
3105 core_initcall(sock_init); /* early initcall */
3106
3107 #ifdef CONFIG_PROC_FS
socket_seq_show(struct seq_file *seq)3108 void socket_seq_show(struct seq_file *seq)
3109 {
3110 seq_printf(seq, "sockets: used %d\n",
3111 sock_inuse_get(seq->private));
3112 }
3113 #endif /* CONFIG_PROC_FS */
3114
3115 #ifdef CONFIG_COMPAT
compat_dev_ifconf(struct net *net, struct compat_ifconf __user *uifc32)3116 static int compat_dev_ifconf(struct net *net, struct compat_ifconf __user *uifc32)
3117 {
3118 struct compat_ifconf ifc32;
3119 struct ifconf ifc;
3120 int err;
3121
3122 if (copy_from_user(&ifc32, uifc32, sizeof(struct compat_ifconf)))
3123 return -EFAULT;
3124
3125 ifc.ifc_len = ifc32.ifc_len;
3126 ifc.ifc_req = compat_ptr(ifc32.ifcbuf);
3127
3128 rtnl_lock();
3129 err = dev_ifconf(net, &ifc, sizeof(struct compat_ifreq));
3130 rtnl_unlock();
3131 if (err)
3132 return err;
3133
3134 ifc32.ifc_len = ifc.ifc_len;
3135 if (copy_to_user(uifc32, &ifc32, sizeof(struct compat_ifconf)))
3136 return -EFAULT;
3137
3138 return 0;
3139 }
3140
compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32)3141 static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32)
3142 {
3143 compat_uptr_t uptr32;
3144 struct ifreq ifr;
3145 void __user *saved;
3146 int err;
3147
3148 if (copy_from_user(&ifr, uifr32, sizeof(struct compat_ifreq)))
3149 return -EFAULT;
3150
3151 if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu))
3152 return -EFAULT;
3153
3154 saved = ifr.ifr_settings.ifs_ifsu.raw_hdlc;
3155 ifr.ifr_settings.ifs_ifsu.raw_hdlc = compat_ptr(uptr32);
3156
3157 err = dev_ioctl(net, SIOCWANDEV, &ifr, NULL);
3158 if (!err) {
3159 ifr.ifr_settings.ifs_ifsu.raw_hdlc = saved;
3160 if (copy_to_user(uifr32, &ifr, sizeof(struct compat_ifreq)))
3161 err = -EFAULT;
3162 }
3163 return err;
3164 }
3165
3166 /* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */
compat_ifr_data_ioctl(struct net *net, unsigned int cmd, struct compat_ifreq __user *u_ifreq32)3167 static int compat_ifr_data_ioctl(struct net *net, unsigned int cmd,
3168 struct compat_ifreq __user *u_ifreq32)
3169 {
3170 struct ifreq ifreq;
3171 u32 data32;
3172
3173 if (!is_socket_ioctl_cmd(cmd))
3174 return -ENOTTY;
3175 if (copy_from_user(ifreq.ifr_name, u_ifreq32->ifr_name, IFNAMSIZ))
3176 return -EFAULT;
3177 if (get_user(data32, &u_ifreq32->ifr_data))
3178 return -EFAULT;
3179 ifreq.ifr_data = compat_ptr(data32);
3180
3181 return dev_ioctl(net, cmd, &ifreq, NULL);
3182 }
3183
compat_ifreq_ioctl(struct net *net, struct socket *sock, unsigned int cmd, struct compat_ifreq __user *uifr32)3184 static int compat_ifreq_ioctl(struct net *net, struct socket *sock,
3185 unsigned int cmd,
3186 struct compat_ifreq __user *uifr32)
3187 {
3188 struct ifreq __user *uifr;
3189 int err;
3190
3191 /* Handle the fact that while struct ifreq has the same *layout* on
3192 * 32/64 for everything but ifreq::ifru_ifmap and ifreq::ifru_data,
3193 * which are handled elsewhere, it still has different *size* due to
3194 * ifreq::ifru_ifmap (which is 16 bytes on 32 bit, 24 bytes on 64-bit,
3195 * resulting in struct ifreq being 32 and 40 bytes respectively).
3196 * As a result, if the struct happens to be at the end of a page and
3197 * the next page isn't readable/writable, we get a fault. To prevent
3198 * that, copy back and forth to the full size.
3199 */
3200
3201 uifr = compat_alloc_user_space(sizeof(*uifr));
3202 if (copy_in_user(uifr, uifr32, sizeof(*uifr32)))
3203 return -EFAULT;
3204
3205 err = sock_do_ioctl(net, sock, cmd, (unsigned long)uifr);
3206
3207 if (!err) {
3208 switch (cmd) {
3209 case SIOCGIFFLAGS:
3210 case SIOCGIFMETRIC:
3211 case SIOCGIFMTU:
3212 case SIOCGIFMEM:
3213 case SIOCGIFHWADDR:
3214 case SIOCGIFINDEX:
3215 case SIOCGIFADDR:
3216 case SIOCGIFBRDADDR:
3217 case SIOCGIFDSTADDR:
3218 case SIOCGIFNETMASK:
3219 case SIOCGIFPFLAGS:
3220 case SIOCGIFTXQLEN:
3221 case SIOCGMIIPHY:
3222 case SIOCGMIIREG:
3223 case SIOCGIFNAME:
3224 if (copy_in_user(uifr32, uifr, sizeof(*uifr32)))
3225 err = -EFAULT;
3226 break;
3227 }
3228 }
3229 return err;
3230 }
3231
compat_sioc_ifmap(struct net *net, unsigned int cmd, struct compat_ifreq __user *uifr32)3232 static int compat_sioc_ifmap(struct net *net, unsigned int cmd,
3233 struct compat_ifreq __user *uifr32)
3234 {
3235 struct ifreq ifr;
3236 struct compat_ifmap __user *uifmap32;
3237 int err;
3238
3239 uifmap32 = &uifr32->ifr_ifru.ifru_map;
3240 err = copy_from_user(&ifr, uifr32, sizeof(ifr.ifr_name));
3241 err |= get_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
3242 err |= get_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
3243 err |= get_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
3244 err |= get_user(ifr.ifr_map.irq, &uifmap32->irq);
3245 err |= get_user(ifr.ifr_map.dma, &uifmap32->dma);
3246 err |= get_user(ifr.ifr_map.port, &uifmap32->port);
3247 if (err)
3248 return -EFAULT;
3249
3250 err = dev_ioctl(net, cmd, &ifr, NULL);
3251
3252 if (cmd == SIOCGIFMAP && !err) {
3253 err = copy_to_user(uifr32, &ifr, sizeof(ifr.ifr_name));
3254 err |= put_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
3255 err |= put_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
3256 err |= put_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
3257 err |= put_user(ifr.ifr_map.irq, &uifmap32->irq);
3258 err |= put_user(ifr.ifr_map.dma, &uifmap32->dma);
3259 err |= put_user(ifr.ifr_map.port, &uifmap32->port);
3260 if (err)
3261 err = -EFAULT;
3262 }
3263 return err;
3264 }
3265
3266 /* Since old style bridge ioctl's endup using SIOCDEVPRIVATE
3267 * for some operations; this forces use of the newer bridge-utils that
3268 * use compatible ioctls
3269 */
old_bridge_ioctl(compat_ulong_t __user *argp)3270 static int old_bridge_ioctl(compat_ulong_t __user *argp)
3271 {
3272 compat_ulong_t tmp;
3273
3274 if (get_user(tmp, argp))
3275 return -EFAULT;
3276 if (tmp == BRCTL_GET_VERSION)
3277 return BRCTL_VERSION + 1;
3278 return -EINVAL;
3279 }
3280
compat_sock_ioctl_trans(struct file *file, struct socket *sock, unsigned int cmd, unsigned long arg)3281 static int compat_sock_ioctl_trans(struct file *file, struct socket *sock,
3282 unsigned int cmd, unsigned long arg)
3283 {
3284 void __user *argp = compat_ptr(arg);
3285 struct sock *sk = sock->sk;
3286 struct net *net = sock_net(sk);
3287
3288 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))
3289 return compat_ifr_data_ioctl(net, cmd, argp);
3290
3291 switch (cmd) {
3292 case SIOCSIFBR:
3293 case SIOCGIFBR:
3294 return old_bridge_ioctl(argp);
3295 case SIOCGIFCONF:
3296 return compat_dev_ifconf(net, argp);
3297 case SIOCWANDEV:
3298 return compat_siocwandev(net, argp);
3299 case SIOCGIFMAP:
3300 case SIOCSIFMAP:
3301 return compat_sioc_ifmap(net, cmd, argp);
3302 case SIOCGSTAMP_OLD:
3303 case SIOCGSTAMPNS_OLD:
3304 if (!sock->ops->gettstamp)
3305 return -ENOIOCTLCMD;
3306 return sock->ops->gettstamp(sock, argp, cmd == SIOCGSTAMP_OLD,
3307 !COMPAT_USE_64BIT_TIME);
3308
3309 case SIOCETHTOOL:
3310 case SIOCBONDSLAVEINFOQUERY:
3311 case SIOCBONDINFOQUERY:
3312 case SIOCSHWTSTAMP:
3313 case SIOCGHWTSTAMP:
3314 return compat_ifr_data_ioctl(net, cmd, argp);
3315
3316 case FIOSETOWN:
3317 case SIOCSPGRP:
3318 case FIOGETOWN:
3319 case SIOCGPGRP:
3320 case SIOCBRADDBR:
3321 case SIOCBRDELBR:
3322 case SIOCGIFVLAN:
3323 case SIOCSIFVLAN:
3324 case SIOCADDDLCI:
3325 case SIOCDELDLCI:
3326 case SIOCGSKNS:
3327 case SIOCGSTAMP_NEW:
3328 case SIOCGSTAMPNS_NEW:
3329 return sock_ioctl(file, cmd, arg);
3330
3331 case SIOCGIFFLAGS:
3332 case SIOCSIFFLAGS:
3333 case SIOCGIFMETRIC:
3334 case SIOCSIFMETRIC:
3335 case SIOCGIFMTU:
3336 case SIOCSIFMTU:
3337 case SIOCGIFMEM:
3338 case SIOCSIFMEM:
3339 case SIOCGIFHWADDR:
3340 case SIOCSIFHWADDR:
3341 case SIOCADDMULTI:
3342 case SIOCDELMULTI:
3343 case SIOCGIFINDEX:
3344 case SIOCGIFADDR:
3345 case SIOCSIFADDR:
3346 case SIOCSIFHWBROADCAST:
3347 case SIOCDIFADDR:
3348 case SIOCGIFBRDADDR:
3349 case SIOCSIFBRDADDR:
3350 case SIOCGIFDSTADDR:
3351 case SIOCSIFDSTADDR:
3352 case SIOCGIFNETMASK:
3353 case SIOCSIFNETMASK:
3354 case SIOCSIFPFLAGS:
3355 case SIOCGIFPFLAGS:
3356 case SIOCGIFTXQLEN:
3357 case SIOCSIFTXQLEN:
3358 case SIOCBRADDIF:
3359 case SIOCBRDELIF:
3360 case SIOCGIFNAME:
3361 case SIOCSIFNAME:
3362 case SIOCGMIIPHY:
3363 case SIOCGMIIREG:
3364 case SIOCSMIIREG:
3365 case SIOCBONDENSLAVE:
3366 case SIOCBONDRELEASE:
3367 case SIOCBONDSETHWADDR:
3368 case SIOCBONDCHANGEACTIVE:
3369 return compat_ifreq_ioctl(net, sock, cmd, argp);
3370
3371 case SIOCSARP:
3372 case SIOCGARP:
3373 case SIOCDARP:
3374 case SIOCOUTQ:
3375 case SIOCOUTQNSD:
3376 case SIOCATMARK:
3377 return sock_do_ioctl(net, sock, cmd, arg);
3378 }
3379
3380 return -ENOIOCTLCMD;
3381 }
3382
compat_sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg)3383 static long compat_sock_ioctl(struct file *file, unsigned int cmd,
3384 unsigned long arg)
3385 {
3386 struct socket *sock = file->private_data;
3387 int ret = -ENOIOCTLCMD;
3388 struct sock *sk;
3389 struct net *net;
3390
3391 sk = sock->sk;
3392 net = sock_net(sk);
3393
3394 if (sock->ops->compat_ioctl)
3395 ret = sock->ops->compat_ioctl(sock, cmd, arg);
3396
3397 if (ret == -ENOIOCTLCMD &&
3398 (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST))
3399 ret = compat_wext_handle_ioctl(net, cmd, arg);
3400
3401 if (ret == -ENOIOCTLCMD)
3402 ret = compat_sock_ioctl_trans(file, sock, cmd, arg);
3403
3404 return ret;
3405 }
3406 #endif
3407
3408 /**
3409 * kernel_bind - bind an address to a socket (kernel space)
3410 * @sock: socket
3411 * @addr: address
3412 * @addrlen: length of address
3413 *
3414 * Returns 0 or an error.
3415 */
3416
kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen)3417 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen)
3418 {
3419 struct sockaddr_storage address;
3420
3421 memcpy(&address, addr, addrlen);
3422
3423 return sock->ops->bind(sock, (struct sockaddr *)&address, addrlen);
3424 }
3425 EXPORT_SYMBOL(kernel_bind);
3426
3427 /**
3428 * kernel_listen - move socket to listening state (kernel space)
3429 * @sock: socket
3430 * @backlog: pending connections queue size
3431 *
3432 * Returns 0 or an error.
3433 */
3434
kernel_listen(struct socket *sock, int backlog)3435 int kernel_listen(struct socket *sock, int backlog)
3436 {
3437 return sock->ops->listen(sock, backlog);
3438 }
3439 EXPORT_SYMBOL(kernel_listen);
3440
3441 /**
3442 * kernel_accept - accept a connection (kernel space)
3443 * @sock: listening socket
3444 * @newsock: new connected socket
3445 * @flags: flags
3446 *
3447 * @flags must be SOCK_CLOEXEC, SOCK_NONBLOCK or 0.
3448 * If it fails, @newsock is guaranteed to be %NULL.
3449 * Returns 0 or an error.
3450 */
3451
kernel_accept(struct socket *sock, struct socket **newsock, int flags)3452 int kernel_accept(struct socket *sock, struct socket **newsock, int flags)
3453 {
3454 struct sock *sk = sock->sk;
3455 int err;
3456
3457 err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol,
3458 newsock);
3459 if (err < 0)
3460 goto done;
3461
3462 err = sock->ops->accept(sock, *newsock, flags, true);
3463 if (err < 0) {
3464 sock_release(*newsock);
3465 *newsock = NULL;
3466 goto done;
3467 }
3468
3469 (*newsock)->ops = sock->ops;
3470 __module_get((*newsock)->ops->owner);
3471
3472 done:
3473 return err;
3474 }
3475 EXPORT_SYMBOL(kernel_accept);
3476
3477 /**
3478 * kernel_connect - connect a socket (kernel space)
3479 * @sock: socket
3480 * @addr: address
3481 * @addrlen: address length
3482 * @flags: flags (O_NONBLOCK, ...)
3483 *
3484 * For datagram sockets, @addr is the addres to which datagrams are sent
3485 * by default, and the only address from which datagrams are received.
3486 * For stream sockets, attempts to connect to @addr.
3487 * Returns 0 or an error code.
3488 */
3489
kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen, int flags)3490 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen,
3491 int flags)
3492 {
3493 struct sockaddr_storage address;
3494
3495 memcpy(&address, addr, addrlen);
3496
3497 return sock->ops->connect(sock, (struct sockaddr *)&address, addrlen, flags);
3498 }
3499 EXPORT_SYMBOL(kernel_connect);
3500
3501 /**
3502 * kernel_getsockname - get the address which the socket is bound (kernel space)
3503 * @sock: socket
3504 * @addr: address holder
3505 *
3506 * Fills the @addr pointer with the address which the socket is bound.
3507 * Returns 0 or an error code.
3508 */
3509
kernel_getsockname(struct socket *sock, struct sockaddr *addr)3510 int kernel_getsockname(struct socket *sock, struct sockaddr *addr)
3511 {
3512 return sock->ops->getname(sock, addr, 0);
3513 }
3514 EXPORT_SYMBOL(kernel_getsockname);
3515
3516 /**
3517 * kernel_getpeername - get the address which the socket is connected (kernel space)
3518 * @sock: socket
3519 * @addr: address holder
3520 *
3521 * Fills the @addr pointer with the address which the socket is connected.
3522 * Returns 0 or an error code.
3523 */
3524
kernel_getpeername(struct socket *sock, struct sockaddr *addr)3525 int kernel_getpeername(struct socket *sock, struct sockaddr *addr)
3526 {
3527 return sock->ops->getname(sock, addr, 1);
3528 }
3529 EXPORT_SYMBOL(kernel_getpeername);
3530
3531 /**
3532 * kernel_sendpage - send a &page through a socket (kernel space)
3533 * @sock: socket
3534 * @page: page
3535 * @offset: page offset
3536 * @size: total size in bytes
3537 * @flags: flags (MSG_DONTWAIT, ...)
3538 *
3539 * Returns the total amount sent in bytes or an error.
3540 */
3541
kernel_sendpage(struct socket *sock, struct page *page, int offset, size_t size, int flags)3542 int kernel_sendpage(struct socket *sock, struct page *page, int offset,
3543 size_t size, int flags)
3544 {
3545 if (sock->ops->sendpage) {
3546 /* Warn in case the improper page to zero-copy send */
3547 WARN_ONCE(!sendpage_ok(page), "improper page for zero-copy send");
3548 return sock->ops->sendpage(sock, page, offset, size, flags);
3549 }
3550 return sock_no_sendpage(sock, page, offset, size, flags);
3551 }
3552 EXPORT_SYMBOL(kernel_sendpage);
3553
3554 /**
3555 * kernel_sendpage_locked - send a &page through the locked sock (kernel space)
3556 * @sk: sock
3557 * @page: page
3558 * @offset: page offset
3559 * @size: total size in bytes
3560 * @flags: flags (MSG_DONTWAIT, ...)
3561 *
3562 * Returns the total amount sent in bytes or an error.
3563 * Caller must hold @sk.
3564 */
3565
kernel_sendpage_locked(struct sock *sk, struct page *page, int offset, size_t size, int flags)3566 int kernel_sendpage_locked(struct sock *sk, struct page *page, int offset,
3567 size_t size, int flags)
3568 {
3569 struct socket *sock = sk->sk_socket;
3570
3571 if (sock->ops->sendpage_locked)
3572 return sock->ops->sendpage_locked(sk, page, offset, size,
3573 flags);
3574
3575 return sock_no_sendpage_locked(sk, page, offset, size, flags);
3576 }
3577 EXPORT_SYMBOL(kernel_sendpage_locked);
3578
3579 /**
3580 * kernel_sock_shutdown - shut down part of a full-duplex connection (kernel space)
3581 * @sock: socket
3582 * @how: connection part
3583 *
3584 * Returns 0 or an error.
3585 */
3586
kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how)3587 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how)
3588 {
3589 return sock->ops->shutdown(sock, how);
3590 }
3591 EXPORT_SYMBOL(kernel_sock_shutdown);
3592
3593 /**
3594 * kernel_sock_ip_overhead - returns the IP overhead imposed by a socket
3595 * @sk: socket
3596 *
3597 * This routine returns the IP overhead imposed by a socket i.e.
3598 * the length of the underlying IP header, depending on whether
3599 * this is an IPv4 or IPv6 socket and the length from IP options turned
3600 * on at the socket. Assumes that the caller has a lock on the socket.
3601 */
3602
kernel_sock_ip_overhead(struct sock *sk)3603 u32 kernel_sock_ip_overhead(struct sock *sk)
3604 {
3605 struct inet_sock *inet;
3606 struct ip_options_rcu *opt;
3607 u32 overhead = 0;
3608 #if IS_ENABLED(CONFIG_IPV6)
3609 struct ipv6_pinfo *np;
3610 struct ipv6_txoptions *optv6 = NULL;
3611 #endif /* IS_ENABLED(CONFIG_IPV6) */
3612
3613 if (!sk)
3614 return overhead;
3615
3616 switch (sk->sk_family) {
3617 case AF_INET:
3618 inet = inet_sk(sk);
3619 overhead += sizeof(struct iphdr);
3620 opt = rcu_dereference_protected(inet->inet_opt,
3621 sock_owned_by_user(sk));
3622 if (opt)
3623 overhead += opt->opt.optlen;
3624 return overhead;
3625 #if IS_ENABLED(CONFIG_IPV6)
3626 case AF_INET6:
3627 np = inet6_sk(sk);
3628 overhead += sizeof(struct ipv6hdr);
3629 if (np)
3630 optv6 = rcu_dereference_protected(np->opt,
3631 sock_owned_by_user(sk));
3632 if (optv6)
3633 overhead += (optv6->opt_flen + optv6->opt_nflen);
3634 return overhead;
3635 #endif /* IS_ENABLED(CONFIG_IPV6) */
3636 default: /* Returns 0 overhead if the socket is not ipv4 or ipv6 */
3637 return overhead;
3638 }
3639 }
3640 EXPORT_SYMBOL(kernel_sock_ip_overhead);
3641