1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * NET		An implementation of the SOCKET network access protocol.
4  *
5  * Version:	@(#)socket.c	1.1.93	18/02/95
6  *
7  * Authors:	Orest Zborowski, <obz@Kodak.COM>
8  *		Ross Biro
9  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10  *
11  * Fixes:
12  *		Anonymous	:	NOTSOCK/BADF cleanup. Error fix in
13  *					shutdown()
14  *		Alan Cox	:	verify_area() fixes
15  *		Alan Cox	:	Removed DDI
16  *		Jonathan Kamens	:	SOCK_DGRAM reconnect bug
17  *		Alan Cox	:	Moved a load of checks to the very
18  *					top level.
19  *		Alan Cox	:	Move address structures to/from user
20  *					mode above the protocol layers.
21  *		Rob Janssen	:	Allow 0 length sends.
22  *		Alan Cox	:	Asynchronous I/O support (cribbed from the
23  *					tty drivers).
24  *		Niibe Yutaka	:	Asynchronous I/O for writes (4.4BSD style)
25  *		Jeff Uphoff	:	Made max number of sockets command-line
26  *					configurable.
27  *		Matti Aarnio	:	Made the number of sockets dynamic,
28  *					to be allocated when needed, and mr.
29  *					Uphoff's max is used as max to be
30  *					allowed to allocate.
31  *		Linus		:	Argh. removed all the socket allocation
32  *					altogether: it's in the inode now.
33  *		Alan Cox	:	Made sock_alloc()/sock_release() public
34  *					for NetROM and future kernel nfsd type
35  *					stuff.
36  *		Alan Cox	:	sendmsg/recvmsg basics.
37  *		Tom Dyas	:	Export net symbols.
38  *		Marcin Dalecki	:	Fixed problems with CONFIG_NET="n".
39  *		Alan Cox	:	Added thread locking to sys_* calls
40  *					for sockets. May have errors at the
41  *					moment.
42  *		Kevin Buhr	:	Fixed the dumb errors in the above.
43  *		Andi Kleen	:	Some small cleanups, optimizations,
44  *					and fixed a copy_from_user() bug.
45  *		Tigran Aivazian	:	sys_send(args) calls sys_sendto(args, NULL, 0)
46  *		Tigran Aivazian	:	Made listen(2) backlog sanity checks
47  *					protocol-independent
48  *
49  *	This module is effectively the top level interface to the BSD socket
50  *	paradigm.
51  *
52  *	Based upon Swansea University Computer Society NET3.039
53  */
54 
55 #include <linux/mm.h>
56 #include <linux/socket.h>
57 #include <linux/file.h>
58 #include <linux/net.h>
59 #include <linux/interrupt.h>
60 #include <linux/thread_info.h>
61 #include <linux/rcupdate.h>
62 #include <linux/netdevice.h>
63 #include <linux/proc_fs.h>
64 #include <linux/seq_file.h>
65 #include <linux/mutex.h>
66 #include <linux/if_bridge.h>
67 #include <linux/if_frad.h>
68 #include <linux/if_vlan.h>
69 #include <linux/ptp_classify.h>
70 #include <linux/init.h>
71 #include <linux/poll.h>
72 #include <linux/cache.h>
73 #include <linux/module.h>
74 #include <linux/highmem.h>
75 #include <linux/mount.h>
76 #include <linux/pseudo_fs.h>
77 #include <linux/security.h>
78 #include <linux/syscalls.h>
79 #include <linux/compat.h>
80 #include <linux/kmod.h>
81 #include <linux/audit.h>
82 #include <linux/wireless.h>
83 #include <linux/nsproxy.h>
84 #include <linux/magic.h>
85 #include <linux/slab.h>
86 #include <linux/xattr.h>
87 #include <linux/nospec.h>
88 #include <linux/indirect_call_wrapper.h>
89 
90 #include <linux/uaccess.h>
91 #include <asm/unistd.h>
92 
93 #include <net/compat.h>
94 #include <net/wext.h>
95 #include <net/cls_cgroup.h>
96 
97 #include <net/sock.h>
98 #include <linux/netfilter.h>
99 
100 #include <linux/if_tun.h>
101 #include <linux/ipv6_route.h>
102 #include <linux/route.h>
103 #include <linux/termios.h>
104 #include <linux/sockios.h>
105 #include <net/busy_poll.h>
106 #include <linux/errqueue.h>
107 
108 #ifdef CONFIG_NET_RX_BUSY_POLL
109 unsigned int sysctl_net_busy_read __read_mostly;
110 unsigned int sysctl_net_busy_poll __read_mostly;
111 #endif
112 
113 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to);
114 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from);
115 static int sock_mmap(struct file *file, struct vm_area_struct *vma);
116 
117 static int sock_close(struct inode *inode, struct file *file);
118 static __poll_t sock_poll(struct file *file,
119 			      struct poll_table_struct *wait);
120 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
121 #ifdef CONFIG_COMPAT
122 static long compat_sock_ioctl(struct file *file,
123 			      unsigned int cmd, unsigned long arg);
124 #endif
125 static int sock_fasync(int fd, struct file *filp, int on);
126 static ssize_t sock_sendpage(struct file *file, struct page *page,
127 			     int offset, size_t size, loff_t *ppos, int more);
128 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
129 				struct pipe_inode_info *pipe, size_t len,
130 				unsigned int flags);
131 
132 #ifdef CONFIG_PROC_FS
sock_show_fdinfo(struct seq_file *m, struct file *f)133 static void sock_show_fdinfo(struct seq_file *m, struct file *f)
134 {
135 	struct socket *sock = f->private_data;
136 
137 	if (sock->ops->show_fdinfo)
138 		sock->ops->show_fdinfo(m, sock);
139 }
140 #else
141 #define sock_show_fdinfo NULL
142 #endif
143 
144 /*
145  *	Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
146  *	in the operation structures but are done directly via the socketcall() multiplexor.
147  */
148 
149 static const struct file_operations socket_file_ops = {
150 	.owner =	THIS_MODULE,
151 	.llseek =	no_llseek,
152 	.read_iter =	sock_read_iter,
153 	.write_iter =	sock_write_iter,
154 	.poll =		sock_poll,
155 	.unlocked_ioctl = sock_ioctl,
156 #ifdef CONFIG_COMPAT
157 	.compat_ioctl = compat_sock_ioctl,
158 #endif
159 	.mmap =		sock_mmap,
160 	.release =	sock_close,
161 	.fasync =	sock_fasync,
162 	.sendpage =	sock_sendpage,
163 	.splice_write = generic_splice_sendpage,
164 	.splice_read =	sock_splice_read,
165 	.show_fdinfo =	sock_show_fdinfo,
166 };
167 
168 /*
169  *	The protocol list. Each protocol is registered in here.
170  */
171 
172 static DEFINE_SPINLOCK(net_family_lock);
173 static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly;
174 
175 /*
176  * Support routines.
177  * Move socket addresses back and forth across the kernel/user
178  * divide and look after the messy bits.
179  */
180 
181 /**
182  *	move_addr_to_kernel	-	copy a socket address into kernel space
183  *	@uaddr: Address in user space
184  *	@kaddr: Address in kernel space
185  *	@ulen: Length in user space
186  *
187  *	The address is copied into kernel space. If the provided address is
188  *	too long an error code of -EINVAL is returned. If the copy gives
189  *	invalid addresses -EFAULT is returned. On a success 0 is returned.
190  */
191 
move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr)192 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr)
193 {
194 	if (ulen < 0 || ulen > sizeof(struct sockaddr_storage))
195 		return -EINVAL;
196 	if (ulen == 0)
197 		return 0;
198 	if (copy_from_user(kaddr, uaddr, ulen))
199 		return -EFAULT;
200 	return audit_sockaddr(ulen, kaddr);
201 }
202 
203 /**
204  *	move_addr_to_user	-	copy an address to user space
205  *	@kaddr: kernel space address
206  *	@klen: length of address in kernel
207  *	@uaddr: user space address
208  *	@ulen: pointer to user length field
209  *
210  *	The value pointed to by ulen on entry is the buffer length available.
211  *	This is overwritten with the buffer space used. -EINVAL is returned
212  *	if an overlong buffer is specified or a negative buffer size. -EFAULT
213  *	is returned if either the buffer or the length field are not
214  *	accessible.
215  *	After copying the data up to the limit the user specifies, the true
216  *	length of the data is written over the length limit the user
217  *	specified. Zero is returned for a success.
218  */
219 
move_addr_to_user(struct sockaddr_storage *kaddr, int klen, void __user *uaddr, int __user *ulen)220 static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen,
221 			     void __user *uaddr, int __user *ulen)
222 {
223 	int err;
224 	int len;
225 
226 	BUG_ON(klen > sizeof(struct sockaddr_storage));
227 	err = get_user(len, ulen);
228 	if (err)
229 		return err;
230 	if (len > klen)
231 		len = klen;
232 	if (len < 0)
233 		return -EINVAL;
234 	if (len) {
235 		if (audit_sockaddr(klen, kaddr))
236 			return -ENOMEM;
237 		if (copy_to_user(uaddr, kaddr, len))
238 			return -EFAULT;
239 	}
240 	/*
241 	 *      "fromlen shall refer to the value before truncation.."
242 	 *                      1003.1g
243 	 */
244 	return __put_user(klen, ulen);
245 }
246 
247 static struct kmem_cache *sock_inode_cachep __ro_after_init;
248 
sock_alloc_inode(struct super_block *sb)249 static struct inode *sock_alloc_inode(struct super_block *sb)
250 {
251 	struct socket_alloc *ei;
252 
253 	ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL);
254 	if (!ei)
255 		return NULL;
256 	init_waitqueue_head(&ei->socket.wq.wait);
257 	ei->socket.wq.fasync_list = NULL;
258 	ei->socket.wq.flags = 0;
259 
260 	ei->socket.state = SS_UNCONNECTED;
261 	ei->socket.flags = 0;
262 	ei->socket.ops = NULL;
263 	ei->socket.sk = NULL;
264 	ei->socket.file = NULL;
265 
266 	return &ei->vfs_inode;
267 }
268 
sock_free_inode(struct inode *inode)269 static void sock_free_inode(struct inode *inode)
270 {
271 	struct socket_alloc *ei;
272 
273 	ei = container_of(inode, struct socket_alloc, vfs_inode);
274 	kmem_cache_free(sock_inode_cachep, ei);
275 }
276 
init_once(void *foo)277 static void init_once(void *foo)
278 {
279 	struct socket_alloc *ei = (struct socket_alloc *)foo;
280 
281 	inode_init_once(&ei->vfs_inode);
282 }
283 
init_inodecache(void)284 static void init_inodecache(void)
285 {
286 	sock_inode_cachep = kmem_cache_create("sock_inode_cache",
287 					      sizeof(struct socket_alloc),
288 					      0,
289 					      (SLAB_HWCACHE_ALIGN |
290 					       SLAB_RECLAIM_ACCOUNT |
291 					       SLAB_MEM_SPREAD | SLAB_ACCOUNT),
292 					      init_once);
293 	BUG_ON(sock_inode_cachep == NULL);
294 }
295 
296 static const struct super_operations sockfs_ops = {
297 	.alloc_inode	= sock_alloc_inode,
298 	.free_inode	= sock_free_inode,
299 	.statfs		= simple_statfs,
300 };
301 
302 /*
303  * sockfs_dname() is called from d_path().
304  */
sockfs_dname(struct dentry *dentry, char *buffer, int buflen)305 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen)
306 {
307 	return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]",
308 				d_inode(dentry)->i_ino);
309 }
310 
311 static const struct dentry_operations sockfs_dentry_operations = {
312 	.d_dname  = sockfs_dname,
313 };
314 
sockfs_xattr_get(const struct xattr_handler *handler, struct dentry *dentry, struct inode *inode, const char *suffix, void *value, size_t size)315 static int sockfs_xattr_get(const struct xattr_handler *handler,
316 			    struct dentry *dentry, struct inode *inode,
317 			    const char *suffix, void *value, size_t size)
318 {
319 	if (value) {
320 		if (dentry->d_name.len + 1 > size)
321 			return -ERANGE;
322 		memcpy(value, dentry->d_name.name, dentry->d_name.len + 1);
323 	}
324 	return dentry->d_name.len + 1;
325 }
326 
327 #define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname"
328 #define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX)
329 #define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1)
330 
331 static const struct xattr_handler sockfs_xattr_handler = {
332 	.name = XATTR_NAME_SOCKPROTONAME,
333 	.get = sockfs_xattr_get,
334 };
335 
sockfs_security_xattr_set(const struct xattr_handler *handler, struct dentry *dentry, struct inode *inode, const char *suffix, const void *value, size_t size, int flags)336 static int sockfs_security_xattr_set(const struct xattr_handler *handler,
337 				     struct dentry *dentry, struct inode *inode,
338 				     const char *suffix, const void *value,
339 				     size_t size, int flags)
340 {
341 	/* Handled by LSM. */
342 	return -EAGAIN;
343 }
344 
345 static const struct xattr_handler sockfs_security_xattr_handler = {
346 	.prefix = XATTR_SECURITY_PREFIX,
347 	.set = sockfs_security_xattr_set,
348 };
349 
350 static const struct xattr_handler *sockfs_xattr_handlers[] = {
351 	&sockfs_xattr_handler,
352 	&sockfs_security_xattr_handler,
353 	NULL
354 };
355 
sockfs_init_fs_context(struct fs_context *fc)356 static int sockfs_init_fs_context(struct fs_context *fc)
357 {
358 	struct pseudo_fs_context *ctx = init_pseudo(fc, SOCKFS_MAGIC);
359 	if (!ctx)
360 		return -ENOMEM;
361 	ctx->ops = &sockfs_ops;
362 	ctx->dops = &sockfs_dentry_operations;
363 	ctx->xattr = sockfs_xattr_handlers;
364 	return 0;
365 }
366 
367 static struct vfsmount *sock_mnt __read_mostly;
368 
369 static struct file_system_type sock_fs_type = {
370 	.name =		"sockfs",
371 	.init_fs_context = sockfs_init_fs_context,
372 	.kill_sb =	kill_anon_super,
373 };
374 
375 /*
376  *	Obtains the first available file descriptor and sets it up for use.
377  *
378  *	These functions create file structures and maps them to fd space
379  *	of the current process. On success it returns file descriptor
380  *	and file struct implicitly stored in sock->file.
381  *	Note that another thread may close file descriptor before we return
382  *	from this function. We use the fact that now we do not refer
383  *	to socket after mapping. If one day we will need it, this
384  *	function will increment ref. count on file by 1.
385  *
386  *	In any case returned fd MAY BE not valid!
387  *	This race condition is unavoidable
388  *	with shared fd spaces, we cannot solve it inside kernel,
389  *	but we take care of internal coherence yet.
390  */
391 
392 /**
393  *	sock_alloc_file - Bind a &socket to a &file
394  *	@sock: socket
395  *	@flags: file status flags
396  *	@dname: protocol name
397  *
398  *	Returns the &file bound with @sock, implicitly storing it
399  *	in sock->file. If dname is %NULL, sets to "".
400  *	On failure the return is a ERR pointer (see linux/err.h).
401  *	This function uses GFP_KERNEL internally.
402  */
403 
sock_alloc_file(struct socket *sock, int flags, const char *dname)404 struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname)
405 {
406 	struct file *file;
407 
408 	if (!dname)
409 		dname = sock->sk ? sock->sk->sk_prot_creator->name : "";
410 
411 	file = alloc_file_pseudo(SOCK_INODE(sock), sock_mnt, dname,
412 				O_RDWR | (flags & O_NONBLOCK),
413 				&socket_file_ops);
414 	if (IS_ERR(file)) {
415 		sock_release(sock);
416 		return file;
417 	}
418 
419 	sock->file = file;
420 	file->private_data = sock;
421 	stream_open(SOCK_INODE(sock), file);
422 	return file;
423 }
424 EXPORT_SYMBOL(sock_alloc_file);
425 
sock_map_fd(struct socket *sock, int flags)426 static int sock_map_fd(struct socket *sock, int flags)
427 {
428 	struct file *newfile;
429 	int fd = get_unused_fd_flags(flags);
430 	if (unlikely(fd < 0)) {
431 		sock_release(sock);
432 		return fd;
433 	}
434 
435 	newfile = sock_alloc_file(sock, flags, NULL);
436 	if (!IS_ERR(newfile)) {
437 		fd_install(fd, newfile);
438 		return fd;
439 	}
440 
441 	put_unused_fd(fd);
442 	return PTR_ERR(newfile);
443 }
444 
445 /**
446  *	sock_from_file - Return the &socket bounded to @file.
447  *	@file: file
448  *	@err: pointer to an error code return
449  *
450  *	On failure returns %NULL and assigns -ENOTSOCK to @err.
451  */
452 
sock_from_file(struct file *file, int *err)453 struct socket *sock_from_file(struct file *file, int *err)
454 {
455 	if (file->f_op == &socket_file_ops)
456 		return file->private_data;	/* set in sock_map_fd */
457 
458 	*err = -ENOTSOCK;
459 	return NULL;
460 }
461 EXPORT_SYMBOL(sock_from_file);
462 
463 /**
464  *	sockfd_lookup - Go from a file number to its socket slot
465  *	@fd: file handle
466  *	@err: pointer to an error code return
467  *
468  *	The file handle passed in is locked and the socket it is bound
469  *	to is returned. If an error occurs the err pointer is overwritten
470  *	with a negative errno code and NULL is returned. The function checks
471  *	for both invalid handles and passing a handle which is not a socket.
472  *
473  *	On a success the socket object pointer is returned.
474  */
475 
sockfd_lookup(int fd, int *err)476 struct socket *sockfd_lookup(int fd, int *err)
477 {
478 	struct file *file;
479 	struct socket *sock;
480 
481 	file = fget(fd);
482 	if (!file) {
483 		*err = -EBADF;
484 		return NULL;
485 	}
486 
487 	sock = sock_from_file(file, err);
488 	if (!sock)
489 		fput(file);
490 	return sock;
491 }
492 EXPORT_SYMBOL(sockfd_lookup);
493 
sockfd_lookup_light(int fd, int *err, int *fput_needed)494 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed)
495 {
496 	struct fd f = fdget(fd);
497 	struct socket *sock;
498 
499 	*err = -EBADF;
500 	if (f.file) {
501 		sock = sock_from_file(f.file, err);
502 		if (likely(sock)) {
503 			*fput_needed = f.flags & FDPUT_FPUT;
504 			return sock;
505 		}
506 		fdput(f);
507 	}
508 	return NULL;
509 }
510 
sockfs_listxattr(struct dentry *dentry, char *buffer, size_t size)511 static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer,
512 				size_t size)
513 {
514 	ssize_t len;
515 	ssize_t used = 0;
516 
517 	len = security_inode_listsecurity(d_inode(dentry), buffer, size);
518 	if (len < 0)
519 		return len;
520 	used += len;
521 	if (buffer) {
522 		if (size < used)
523 			return -ERANGE;
524 		buffer += len;
525 	}
526 
527 	len = (XATTR_NAME_SOCKPROTONAME_LEN + 1);
528 	used += len;
529 	if (buffer) {
530 		if (size < used)
531 			return -ERANGE;
532 		memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len);
533 		buffer += len;
534 	}
535 
536 	return used;
537 }
538 
sockfs_setattr(struct dentry *dentry, struct iattr *iattr)539 static int sockfs_setattr(struct dentry *dentry, struct iattr *iattr)
540 {
541 	int err = simple_setattr(dentry, iattr);
542 
543 	if (!err && (iattr->ia_valid & ATTR_UID)) {
544 		struct socket *sock = SOCKET_I(d_inode(dentry));
545 
546 		if (sock->sk)
547 			sock->sk->sk_uid = iattr->ia_uid;
548 		else
549 			err = -ENOENT;
550 	}
551 
552 	return err;
553 }
554 
555 static const struct inode_operations sockfs_inode_ops = {
556 	.listxattr = sockfs_listxattr,
557 	.setattr = sockfs_setattr,
558 };
559 
560 /**
561  *	sock_alloc - allocate a socket
562  *
563  *	Allocate a new inode and socket object. The two are bound together
564  *	and initialised. The socket is then returned. If we are out of inodes
565  *	NULL is returned. This functions uses GFP_KERNEL internally.
566  */
567 
sock_alloc(void)568 struct socket *sock_alloc(void)
569 {
570 	struct inode *inode;
571 	struct socket *sock;
572 
573 	inode = new_inode_pseudo(sock_mnt->mnt_sb);
574 	if (!inode)
575 		return NULL;
576 
577 	sock = SOCKET_I(inode);
578 
579 	inode->i_ino = get_next_ino();
580 	inode->i_mode = S_IFSOCK | S_IRWXUGO;
581 	inode->i_uid = current_fsuid();
582 	inode->i_gid = current_fsgid();
583 	inode->i_op = &sockfs_inode_ops;
584 
585 	return sock;
586 }
587 EXPORT_SYMBOL(sock_alloc);
588 
__sock_release(struct socket *sock, struct inode *inode)589 static void __sock_release(struct socket *sock, struct inode *inode)
590 {
591 	if (sock->ops) {
592 		struct module *owner = sock->ops->owner;
593 
594 		if (inode)
595 			inode_lock(inode);
596 		sock->ops->release(sock);
597 		sock->sk = NULL;
598 		if (inode)
599 			inode_unlock(inode);
600 		sock->ops = NULL;
601 		module_put(owner);
602 	}
603 
604 	if (sock->wq.fasync_list)
605 		pr_err("%s: fasync list not empty!\n", __func__);
606 
607 	if (!sock->file) {
608 		iput(SOCK_INODE(sock));
609 		return;
610 	}
611 	sock->file = NULL;
612 }
613 
614 /**
615  *	sock_release - close a socket
616  *	@sock: socket to close
617  *
618  *	The socket is released from the protocol stack if it has a release
619  *	callback, and the inode is then released if the socket is bound to
620  *	an inode not a file.
621  */
sock_release(struct socket *sock)622 void sock_release(struct socket *sock)
623 {
624 	__sock_release(sock, NULL);
625 }
626 EXPORT_SYMBOL(sock_release);
627 
__sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags)628 void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags)
629 {
630 	u8 flags = *tx_flags;
631 
632 	if (tsflags & SOF_TIMESTAMPING_TX_HARDWARE)
633 		flags |= SKBTX_HW_TSTAMP;
634 
635 	if (tsflags & SOF_TIMESTAMPING_TX_SOFTWARE)
636 		flags |= SKBTX_SW_TSTAMP;
637 
638 	if (tsflags & SOF_TIMESTAMPING_TX_SCHED)
639 		flags |= SKBTX_SCHED_TSTAMP;
640 
641 	*tx_flags = flags;
642 }
643 EXPORT_SYMBOL(__sock_tx_timestamp);
644 
645 INDIRECT_CALLABLE_DECLARE(int inet_sendmsg(struct socket *, struct msghdr *,
646 					   size_t));
647 INDIRECT_CALLABLE_DECLARE(int inet6_sendmsg(struct socket *, struct msghdr *,
648 					    size_t));
sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg)649 static inline int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg)
650 {
651 	int ret = INDIRECT_CALL_INET(sock->ops->sendmsg, inet6_sendmsg,
652 				     inet_sendmsg, sock, msg,
653 				     msg_data_left(msg));
654 	BUG_ON(ret == -EIOCBQUEUED);
655 	return ret;
656 }
657 
__sock_sendmsg(struct socket *sock, struct msghdr *msg)658 static int __sock_sendmsg(struct socket *sock, struct msghdr *msg)
659 {
660 	int err = security_socket_sendmsg(sock, msg,
661 					  msg_data_left(msg));
662 
663 	return err ?: sock_sendmsg_nosec(sock, msg);
664 }
665 
666 /**
667  *	sock_sendmsg - send a message through @sock
668  *	@sock: socket
669  *	@msg: message to send
670  *
671  *	Sends @msg through @sock, passing through LSM.
672  *	Returns the number of bytes sent, or an error code.
673  */
sock_sendmsg(struct socket *sock, struct msghdr *msg)674 int sock_sendmsg(struct socket *sock, struct msghdr *msg)
675 {
676 	struct sockaddr_storage *save_addr = (struct sockaddr_storage *)msg->msg_name;
677 	struct sockaddr_storage address;
678 	int save_len = msg->msg_namelen;
679 	int ret;
680 
681 	if (msg->msg_name) {
682 		memcpy(&address, msg->msg_name, msg->msg_namelen);
683 		msg->msg_name = &address;
684 	}
685 
686 	ret = __sock_sendmsg(sock, msg);
687 	msg->msg_name = save_addr;
688 	msg->msg_namelen = save_len;
689 
690 	return ret;
691 }
692 EXPORT_SYMBOL(sock_sendmsg);
693 
694 /**
695  *	kernel_sendmsg - send a message through @sock (kernel-space)
696  *	@sock: socket
697  *	@msg: message header
698  *	@vec: kernel vec
699  *	@num: vec array length
700  *	@size: total message data size
701  *
702  *	Builds the message data with @vec and sends it through @sock.
703  *	Returns the number of bytes sent, or an error code.
704  */
705 
kernel_sendmsg(struct socket *sock, struct msghdr *msg, struct kvec *vec, size_t num, size_t size)706 int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
707 		   struct kvec *vec, size_t num, size_t size)
708 {
709 	iov_iter_kvec(&msg->msg_iter, WRITE, vec, num, size);
710 	return sock_sendmsg(sock, msg);
711 }
712 EXPORT_SYMBOL(kernel_sendmsg);
713 
714 /**
715  *	kernel_sendmsg_locked - send a message through @sock (kernel-space)
716  *	@sk: sock
717  *	@msg: message header
718  *	@vec: output s/g array
719  *	@num: output s/g array length
720  *	@size: total message data size
721  *
722  *	Builds the message data with @vec and sends it through @sock.
723  *	Returns the number of bytes sent, or an error code.
724  *	Caller must hold @sk.
725  */
726 
kernel_sendmsg_locked(struct sock *sk, struct msghdr *msg, struct kvec *vec, size_t num, size_t size)727 int kernel_sendmsg_locked(struct sock *sk, struct msghdr *msg,
728 			  struct kvec *vec, size_t num, size_t size)
729 {
730 	struct socket *sock = sk->sk_socket;
731 
732 	if (!sock->ops->sendmsg_locked)
733 		return sock_no_sendmsg_locked(sk, msg, size);
734 
735 	iov_iter_kvec(&msg->msg_iter, WRITE, vec, num, size);
736 
737 	return sock->ops->sendmsg_locked(sk, msg, msg_data_left(msg));
738 }
739 EXPORT_SYMBOL(kernel_sendmsg_locked);
740 
skb_is_err_queue(const struct sk_buff *skb)741 static bool skb_is_err_queue(const struct sk_buff *skb)
742 {
743 	/* pkt_type of skbs enqueued on the error queue are set to
744 	 * PACKET_OUTGOING in skb_set_err_queue(). This is only safe to do
745 	 * in recvmsg, since skbs received on a local socket will never
746 	 * have a pkt_type of PACKET_OUTGOING.
747 	 */
748 	return skb->pkt_type == PACKET_OUTGOING;
749 }
750 
751 /* On transmit, software and hardware timestamps are returned independently.
752  * As the two skb clones share the hardware timestamp, which may be updated
753  * before the software timestamp is received, a hardware TX timestamp may be
754  * returned only if there is no software TX timestamp. Ignore false software
755  * timestamps, which may be made in the __sock_recv_timestamp() call when the
756  * option SO_TIMESTAMP_OLD(NS) is enabled on the socket, even when the skb has a
757  * hardware timestamp.
758  */
skb_is_swtx_tstamp(const struct sk_buff *skb, int false_tstamp)759 static bool skb_is_swtx_tstamp(const struct sk_buff *skb, int false_tstamp)
760 {
761 	return skb->tstamp && !false_tstamp && skb_is_err_queue(skb);
762 }
763 
put_ts_pktinfo(struct msghdr *msg, struct sk_buff *skb)764 static void put_ts_pktinfo(struct msghdr *msg, struct sk_buff *skb)
765 {
766 	struct scm_ts_pktinfo ts_pktinfo;
767 	struct net_device *orig_dev;
768 
769 	if (!skb_mac_header_was_set(skb))
770 		return;
771 
772 	memset(&ts_pktinfo, 0, sizeof(ts_pktinfo));
773 
774 	rcu_read_lock();
775 	orig_dev = dev_get_by_napi_id(skb_napi_id(skb));
776 	if (orig_dev)
777 		ts_pktinfo.if_index = orig_dev->ifindex;
778 	rcu_read_unlock();
779 
780 	ts_pktinfo.pkt_length = skb->len - skb_mac_offset(skb);
781 	put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_PKTINFO,
782 		 sizeof(ts_pktinfo), &ts_pktinfo);
783 }
784 
785 /*
786  * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
787  */
__sock_recv_timestamp(struct msghdr *msg, struct sock *sk, struct sk_buff *skb)788 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
789 	struct sk_buff *skb)
790 {
791 	int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP);
792 	int new_tstamp = sock_flag(sk, SOCK_TSTAMP_NEW);
793 	struct scm_timestamping_internal tss;
794 
795 	int empty = 1, false_tstamp = 0;
796 	struct skb_shared_hwtstamps *shhwtstamps =
797 		skb_hwtstamps(skb);
798 
799 	/* Race occurred between timestamp enabling and packet
800 	   receiving.  Fill in the current time for now. */
801 	if (need_software_tstamp && skb->tstamp == 0) {
802 		__net_timestamp(skb);
803 		false_tstamp = 1;
804 	}
805 
806 	if (need_software_tstamp) {
807 		if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) {
808 			if (new_tstamp) {
809 				struct __kernel_sock_timeval tv;
810 
811 				skb_get_new_timestamp(skb, &tv);
812 				put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_NEW,
813 					 sizeof(tv), &tv);
814 			} else {
815 				struct __kernel_old_timeval tv;
816 
817 				skb_get_timestamp(skb, &tv);
818 				put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_OLD,
819 					 sizeof(tv), &tv);
820 			}
821 		} else {
822 			if (new_tstamp) {
823 				struct __kernel_timespec ts;
824 
825 				skb_get_new_timestampns(skb, &ts);
826 				put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_NEW,
827 					 sizeof(ts), &ts);
828 			} else {
829 				struct __kernel_old_timespec ts;
830 
831 				skb_get_timestampns(skb, &ts);
832 				put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_OLD,
833 					 sizeof(ts), &ts);
834 			}
835 		}
836 	}
837 
838 	memset(&tss, 0, sizeof(tss));
839 	if ((sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) &&
840 	    ktime_to_timespec64_cond(skb->tstamp, tss.ts + 0))
841 		empty = 0;
842 	if (shhwtstamps &&
843 	    (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) &&
844 	    !skb_is_swtx_tstamp(skb, false_tstamp) &&
845 	    ktime_to_timespec64_cond(shhwtstamps->hwtstamp, tss.ts + 2)) {
846 		empty = 0;
847 		if ((sk->sk_tsflags & SOF_TIMESTAMPING_OPT_PKTINFO) &&
848 		    !skb_is_err_queue(skb))
849 			put_ts_pktinfo(msg, skb);
850 	}
851 	if (!empty) {
852 		if (sock_flag(sk, SOCK_TSTAMP_NEW))
853 			put_cmsg_scm_timestamping64(msg, &tss);
854 		else
855 			put_cmsg_scm_timestamping(msg, &tss);
856 
857 		if (skb_is_err_queue(skb) && skb->len &&
858 		    SKB_EXT_ERR(skb)->opt_stats)
859 			put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_OPT_STATS,
860 				 skb->len, skb->data);
861 	}
862 }
863 EXPORT_SYMBOL_GPL(__sock_recv_timestamp);
864 
__sock_recv_wifi_status(struct msghdr *msg, struct sock *sk, struct sk_buff *skb)865 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
866 	struct sk_buff *skb)
867 {
868 	int ack;
869 
870 	if (!sock_flag(sk, SOCK_WIFI_STATUS))
871 		return;
872 	if (!skb->wifi_acked_valid)
873 		return;
874 
875 	ack = skb->wifi_acked;
876 
877 	put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack);
878 }
879 EXPORT_SYMBOL_GPL(__sock_recv_wifi_status);
880 
sock_recv_drops(struct msghdr *msg, struct sock *sk, struct sk_buff *skb)881 static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk,
882 				   struct sk_buff *skb)
883 {
884 	if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && SOCK_SKB_CB(skb)->dropcount)
885 		put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL,
886 			sizeof(__u32), &SOCK_SKB_CB(skb)->dropcount);
887 }
888 
__sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk, struct sk_buff *skb)889 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
890 	struct sk_buff *skb)
891 {
892 	sock_recv_timestamp(msg, sk, skb);
893 	sock_recv_drops(msg, sk, skb);
894 }
895 EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops);
896 
897 INDIRECT_CALLABLE_DECLARE(int inet_recvmsg(struct socket *, struct msghdr *,
898 					   size_t, int));
899 INDIRECT_CALLABLE_DECLARE(int inet6_recvmsg(struct socket *, struct msghdr *,
900 					    size_t, int));
sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg, int flags)901 static inline int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg,
902 				     int flags)
903 {
904 	return INDIRECT_CALL_INET(sock->ops->recvmsg, inet6_recvmsg,
905 				  inet_recvmsg, sock, msg, msg_data_left(msg),
906 				  flags);
907 }
908 
909 /**
910  *	sock_recvmsg - receive a message from @sock
911  *	@sock: socket
912  *	@msg: message to receive
913  *	@flags: message flags
914  *
915  *	Receives @msg from @sock, passing through LSM. Returns the total number
916  *	of bytes received, or an error.
917  */
sock_recvmsg(struct socket *sock, struct msghdr *msg, int flags)918 int sock_recvmsg(struct socket *sock, struct msghdr *msg, int flags)
919 {
920 	int err = security_socket_recvmsg(sock, msg, msg_data_left(msg), flags);
921 
922 	return err ?: sock_recvmsg_nosec(sock, msg, flags);
923 }
924 EXPORT_SYMBOL(sock_recvmsg);
925 
926 /**
927  *	kernel_recvmsg - Receive a message from a socket (kernel space)
928  *	@sock: The socket to receive the message from
929  *	@msg: Received message
930  *	@vec: Input s/g array for message data
931  *	@num: Size of input s/g array
932  *	@size: Number of bytes to read
933  *	@flags: Message flags (MSG_DONTWAIT, etc...)
934  *
935  *	On return the msg structure contains the scatter/gather array passed in the
936  *	vec argument. The array is modified so that it consists of the unfilled
937  *	portion of the original array.
938  *
939  *	The returned value is the total number of bytes received, or an error.
940  */
941 
kernel_recvmsg(struct socket *sock, struct msghdr *msg, struct kvec *vec, size_t num, size_t size, int flags)942 int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
943 		   struct kvec *vec, size_t num, size_t size, int flags)
944 {
945 	msg->msg_control_is_user = false;
946 	iov_iter_kvec(&msg->msg_iter, READ, vec, num, size);
947 	return sock_recvmsg(sock, msg, flags);
948 }
949 EXPORT_SYMBOL(kernel_recvmsg);
950 
sock_sendpage(struct file *file, struct page *page, int offset, size_t size, loff_t *ppos, int more)951 static ssize_t sock_sendpage(struct file *file, struct page *page,
952 			     int offset, size_t size, loff_t *ppos, int more)
953 {
954 	struct socket *sock;
955 	int flags;
956 
957 	sock = file->private_data;
958 
959 	flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
960 	/* more is a combination of MSG_MORE and MSG_SENDPAGE_NOTLAST */
961 	flags |= more;
962 
963 	return kernel_sendpage(sock, page, offset, size, flags);
964 }
965 
sock_splice_read(struct file *file, loff_t *ppos, struct pipe_inode_info *pipe, size_t len, unsigned int flags)966 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
967 				struct pipe_inode_info *pipe, size_t len,
968 				unsigned int flags)
969 {
970 	struct socket *sock = file->private_data;
971 
972 	if (unlikely(!sock->ops->splice_read))
973 		return generic_file_splice_read(file, ppos, pipe, len, flags);
974 
975 	return sock->ops->splice_read(sock, ppos, pipe, len, flags);
976 }
977 
sock_read_iter(struct kiocb *iocb, struct iov_iter *to)978 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to)
979 {
980 	struct file *file = iocb->ki_filp;
981 	struct socket *sock = file->private_data;
982 	struct msghdr msg = {.msg_iter = *to,
983 			     .msg_iocb = iocb};
984 	ssize_t res;
985 
986 	if (file->f_flags & O_NONBLOCK || (iocb->ki_flags & IOCB_NOWAIT))
987 		msg.msg_flags = MSG_DONTWAIT;
988 
989 	if (iocb->ki_pos != 0)
990 		return -ESPIPE;
991 
992 	if (!iov_iter_count(to))	/* Match SYS5 behaviour */
993 		return 0;
994 
995 	res = sock_recvmsg(sock, &msg, msg.msg_flags);
996 	*to = msg.msg_iter;
997 	return res;
998 }
999 
sock_write_iter(struct kiocb *iocb, struct iov_iter *from)1000 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from)
1001 {
1002 	struct file *file = iocb->ki_filp;
1003 	struct socket *sock = file->private_data;
1004 	struct msghdr msg = {.msg_iter = *from,
1005 			     .msg_iocb = iocb};
1006 	ssize_t res;
1007 
1008 	if (iocb->ki_pos != 0)
1009 		return -ESPIPE;
1010 
1011 	if (file->f_flags & O_NONBLOCK || (iocb->ki_flags & IOCB_NOWAIT))
1012 		msg.msg_flags = MSG_DONTWAIT;
1013 
1014 	if (sock->type == SOCK_SEQPACKET)
1015 		msg.msg_flags |= MSG_EOR;
1016 
1017 	res = __sock_sendmsg(sock, &msg);
1018 	*from = msg.msg_iter;
1019 	return res;
1020 }
1021 
1022 /*
1023  * Atomic setting of ioctl hooks to avoid race
1024  * with module unload.
1025  */
1026 
1027 static DEFINE_MUTEX(br_ioctl_mutex);
1028 static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg);
1029 
brioctl_set(int (*hook) (struct net *, unsigned int, void __user *))1030 void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *))
1031 {
1032 	mutex_lock(&br_ioctl_mutex);
1033 	br_ioctl_hook = hook;
1034 	mutex_unlock(&br_ioctl_mutex);
1035 }
1036 EXPORT_SYMBOL(brioctl_set);
1037 
1038 static DEFINE_MUTEX(vlan_ioctl_mutex);
1039 static int (*vlan_ioctl_hook) (struct net *, void __user *arg);
1040 
vlan_ioctl_set(int (*hook) (struct net *, void __user *))1041 void vlan_ioctl_set(int (*hook) (struct net *, void __user *))
1042 {
1043 	mutex_lock(&vlan_ioctl_mutex);
1044 	vlan_ioctl_hook = hook;
1045 	mutex_unlock(&vlan_ioctl_mutex);
1046 }
1047 EXPORT_SYMBOL(vlan_ioctl_set);
1048 
1049 static DEFINE_MUTEX(dlci_ioctl_mutex);
1050 static int (*dlci_ioctl_hook) (unsigned int, void __user *);
1051 
dlci_ioctl_set(int (*hook) (unsigned int, void __user *))1052 void dlci_ioctl_set(int (*hook) (unsigned int, void __user *))
1053 {
1054 	mutex_lock(&dlci_ioctl_mutex);
1055 	dlci_ioctl_hook = hook;
1056 	mutex_unlock(&dlci_ioctl_mutex);
1057 }
1058 EXPORT_SYMBOL(dlci_ioctl_set);
1059 
sock_do_ioctl(struct net *net, struct socket *sock, unsigned int cmd, unsigned long arg)1060 static long sock_do_ioctl(struct net *net, struct socket *sock,
1061 			  unsigned int cmd, unsigned long arg)
1062 {
1063 	int err;
1064 	void __user *argp = (void __user *)arg;
1065 
1066 	err = sock->ops->ioctl(sock, cmd, arg);
1067 
1068 	/*
1069 	 * If this ioctl is unknown try to hand it down
1070 	 * to the NIC driver.
1071 	 */
1072 	if (err != -ENOIOCTLCMD)
1073 		return err;
1074 
1075 	if (cmd == SIOCGIFCONF) {
1076 		struct ifconf ifc;
1077 		if (copy_from_user(&ifc, argp, sizeof(struct ifconf)))
1078 			return -EFAULT;
1079 		rtnl_lock();
1080 		err = dev_ifconf(net, &ifc, sizeof(struct ifreq));
1081 		rtnl_unlock();
1082 		if (!err && copy_to_user(argp, &ifc, sizeof(struct ifconf)))
1083 			err = -EFAULT;
1084 	} else if (is_socket_ioctl_cmd(cmd)) {
1085 		struct ifreq ifr;
1086 		bool need_copyout;
1087 		if (copy_from_user(&ifr, argp, sizeof(struct ifreq)))
1088 			return -EFAULT;
1089 		err = dev_ioctl(net, cmd, &ifr, &need_copyout);
1090 		if (!err && need_copyout)
1091 			if (copy_to_user(argp, &ifr, sizeof(struct ifreq)))
1092 				return -EFAULT;
1093 	} else {
1094 		err = -ENOTTY;
1095 	}
1096 	return err;
1097 }
1098 
1099 /*
1100  *	With an ioctl, arg may well be a user mode pointer, but we don't know
1101  *	what to do with it - that's up to the protocol still.
1102  */
1103 
sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)1104 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
1105 {
1106 	struct socket *sock;
1107 	struct sock *sk;
1108 	void __user *argp = (void __user *)arg;
1109 	int pid, err;
1110 	struct net *net;
1111 
1112 	sock = file->private_data;
1113 	sk = sock->sk;
1114 	net = sock_net(sk);
1115 	if (unlikely(cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))) {
1116 		struct ifreq ifr;
1117 		bool need_copyout;
1118 		if (copy_from_user(&ifr, argp, sizeof(struct ifreq)))
1119 			return -EFAULT;
1120 		err = dev_ioctl(net, cmd, &ifr, &need_copyout);
1121 		if (!err && need_copyout)
1122 			if (copy_to_user(argp, &ifr, sizeof(struct ifreq)))
1123 				return -EFAULT;
1124 	} else
1125 #ifdef CONFIG_WEXT_CORE
1126 	if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
1127 		err = wext_handle_ioctl(net, cmd, argp);
1128 	} else
1129 #endif
1130 		switch (cmd) {
1131 		case FIOSETOWN:
1132 		case SIOCSPGRP:
1133 			err = -EFAULT;
1134 			if (get_user(pid, (int __user *)argp))
1135 				break;
1136 			err = f_setown(sock->file, pid, 1);
1137 			break;
1138 		case FIOGETOWN:
1139 		case SIOCGPGRP:
1140 			err = put_user(f_getown(sock->file),
1141 				       (int __user *)argp);
1142 			break;
1143 		case SIOCGIFBR:
1144 		case SIOCSIFBR:
1145 		case SIOCBRADDBR:
1146 		case SIOCBRDELBR:
1147 			err = -ENOPKG;
1148 			if (!br_ioctl_hook)
1149 				request_module("bridge");
1150 
1151 			mutex_lock(&br_ioctl_mutex);
1152 			if (br_ioctl_hook)
1153 				err = br_ioctl_hook(net, cmd, argp);
1154 			mutex_unlock(&br_ioctl_mutex);
1155 			break;
1156 		case SIOCGIFVLAN:
1157 		case SIOCSIFVLAN:
1158 			err = -ENOPKG;
1159 			if (!vlan_ioctl_hook)
1160 				request_module("8021q");
1161 
1162 			mutex_lock(&vlan_ioctl_mutex);
1163 			if (vlan_ioctl_hook)
1164 				err = vlan_ioctl_hook(net, argp);
1165 			mutex_unlock(&vlan_ioctl_mutex);
1166 			break;
1167 		case SIOCADDDLCI:
1168 		case SIOCDELDLCI:
1169 			err = -ENOPKG;
1170 			if (!dlci_ioctl_hook)
1171 				request_module("dlci");
1172 
1173 			mutex_lock(&dlci_ioctl_mutex);
1174 			if (dlci_ioctl_hook)
1175 				err = dlci_ioctl_hook(cmd, argp);
1176 			mutex_unlock(&dlci_ioctl_mutex);
1177 			break;
1178 		case SIOCGSKNS:
1179 			err = -EPERM;
1180 			if (!ns_capable(net->user_ns, CAP_NET_ADMIN))
1181 				break;
1182 
1183 			err = open_related_ns(&net->ns, get_net_ns);
1184 			break;
1185 		case SIOCGSTAMP_OLD:
1186 		case SIOCGSTAMPNS_OLD:
1187 			if (!sock->ops->gettstamp) {
1188 				err = -ENOIOCTLCMD;
1189 				break;
1190 			}
1191 			err = sock->ops->gettstamp(sock, argp,
1192 						   cmd == SIOCGSTAMP_OLD,
1193 						   !IS_ENABLED(CONFIG_64BIT));
1194 			break;
1195 		case SIOCGSTAMP_NEW:
1196 		case SIOCGSTAMPNS_NEW:
1197 			if (!sock->ops->gettstamp) {
1198 				err = -ENOIOCTLCMD;
1199 				break;
1200 			}
1201 			err = sock->ops->gettstamp(sock, argp,
1202 						   cmd == SIOCGSTAMP_NEW,
1203 						   false);
1204 			break;
1205 		default:
1206 			err = sock_do_ioctl(net, sock, cmd, arg);
1207 			break;
1208 		}
1209 	return err;
1210 }
1211 
1212 /**
1213  *	sock_create_lite - creates a socket
1214  *	@family: protocol family (AF_INET, ...)
1215  *	@type: communication type (SOCK_STREAM, ...)
1216  *	@protocol: protocol (0, ...)
1217  *	@res: new socket
1218  *
1219  *	Creates a new socket and assigns it to @res, passing through LSM.
1220  *	The new socket initialization is not complete, see kernel_accept().
1221  *	Returns 0 or an error. On failure @res is set to %NULL.
1222  *	This function internally uses GFP_KERNEL.
1223  */
1224 
sock_create_lite(int family, int type, int protocol, struct socket **res)1225 int sock_create_lite(int family, int type, int protocol, struct socket **res)
1226 {
1227 	int err;
1228 	struct socket *sock = NULL;
1229 
1230 	err = security_socket_create(family, type, protocol, 1);
1231 	if (err)
1232 		goto out;
1233 
1234 	sock = sock_alloc();
1235 	if (!sock) {
1236 		err = -ENOMEM;
1237 		goto out;
1238 	}
1239 
1240 	sock->type = type;
1241 	err = security_socket_post_create(sock, family, type, protocol, 1);
1242 	if (err)
1243 		goto out_release;
1244 
1245 out:
1246 	*res = sock;
1247 	return err;
1248 out_release:
1249 	sock_release(sock);
1250 	sock = NULL;
1251 	goto out;
1252 }
1253 EXPORT_SYMBOL(sock_create_lite);
1254 
1255 /* No kernel lock held - perfect */
sock_poll(struct file *file, poll_table *wait)1256 static __poll_t sock_poll(struct file *file, poll_table *wait)
1257 {
1258 	struct socket *sock = file->private_data;
1259 	__poll_t events = poll_requested_events(wait), flag = 0;
1260 
1261 	if (!sock->ops->poll)
1262 		return 0;
1263 
1264 	if (sk_can_busy_loop(sock->sk)) {
1265 		/* poll once if requested by the syscall */
1266 		if (events & POLL_BUSY_LOOP)
1267 			sk_busy_loop(sock->sk, 1);
1268 
1269 		/* if this socket can poll_ll, tell the system call */
1270 		flag = POLL_BUSY_LOOP;
1271 	}
1272 
1273 	return sock->ops->poll(file, sock, wait) | flag;
1274 }
1275 
sock_mmap(struct file *file, struct vm_area_struct *vma)1276 static int sock_mmap(struct file *file, struct vm_area_struct *vma)
1277 {
1278 	struct socket *sock = file->private_data;
1279 
1280 	return sock->ops->mmap(file, sock, vma);
1281 }
1282 
sock_close(struct inode *inode, struct file *filp)1283 static int sock_close(struct inode *inode, struct file *filp)
1284 {
1285 	__sock_release(SOCKET_I(inode), inode);
1286 	return 0;
1287 }
1288 
1289 /*
1290  *	Update the socket async list
1291  *
1292  *	Fasync_list locking strategy.
1293  *
1294  *	1. fasync_list is modified only under process context socket lock
1295  *	   i.e. under semaphore.
1296  *	2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1297  *	   or under socket lock
1298  */
1299 
sock_fasync(int fd, struct file *filp, int on)1300 static int sock_fasync(int fd, struct file *filp, int on)
1301 {
1302 	struct socket *sock = filp->private_data;
1303 	struct sock *sk = sock->sk;
1304 	struct socket_wq *wq = &sock->wq;
1305 
1306 	if (sk == NULL)
1307 		return -EINVAL;
1308 
1309 	lock_sock(sk);
1310 	fasync_helper(fd, filp, on, &wq->fasync_list);
1311 
1312 	if (!wq->fasync_list)
1313 		sock_reset_flag(sk, SOCK_FASYNC);
1314 	else
1315 		sock_set_flag(sk, SOCK_FASYNC);
1316 
1317 	release_sock(sk);
1318 	return 0;
1319 }
1320 
1321 /* This function may be called only under rcu_lock */
1322 
sock_wake_async(struct socket_wq *wq, int how, int band)1323 int sock_wake_async(struct socket_wq *wq, int how, int band)
1324 {
1325 	if (!wq || !wq->fasync_list)
1326 		return -1;
1327 
1328 	switch (how) {
1329 	case SOCK_WAKE_WAITD:
1330 		if (test_bit(SOCKWQ_ASYNC_WAITDATA, &wq->flags))
1331 			break;
1332 		goto call_kill;
1333 	case SOCK_WAKE_SPACE:
1334 		if (!test_and_clear_bit(SOCKWQ_ASYNC_NOSPACE, &wq->flags))
1335 			break;
1336 		fallthrough;
1337 	case SOCK_WAKE_IO:
1338 call_kill:
1339 		kill_fasync(&wq->fasync_list, SIGIO, band);
1340 		break;
1341 	case SOCK_WAKE_URG:
1342 		kill_fasync(&wq->fasync_list, SIGURG, band);
1343 	}
1344 
1345 	return 0;
1346 }
1347 EXPORT_SYMBOL(sock_wake_async);
1348 
1349 /**
1350  *	__sock_create - creates a socket
1351  *	@net: net namespace
1352  *	@family: protocol family (AF_INET, ...)
1353  *	@type: communication type (SOCK_STREAM, ...)
1354  *	@protocol: protocol (0, ...)
1355  *	@res: new socket
1356  *	@kern: boolean for kernel space sockets
1357  *
1358  *	Creates a new socket and assigns it to @res, passing through LSM.
1359  *	Returns 0 or an error. On failure @res is set to %NULL. @kern must
1360  *	be set to true if the socket resides in kernel space.
1361  *	This function internally uses GFP_KERNEL.
1362  */
1363 
__sock_create(struct net *net, int family, int type, int protocol, struct socket **res, int kern)1364 int __sock_create(struct net *net, int family, int type, int protocol,
1365 			 struct socket **res, int kern)
1366 {
1367 	int err;
1368 	struct socket *sock;
1369 	const struct net_proto_family *pf;
1370 
1371 	/*
1372 	 *      Check protocol is in range
1373 	 */
1374 	if (family < 0 || family >= NPROTO)
1375 		return -EAFNOSUPPORT;
1376 	if (type < 0 || type >= SOCK_MAX)
1377 		return -EINVAL;
1378 
1379 	/* Compatibility.
1380 
1381 	   This uglymoron is moved from INET layer to here to avoid
1382 	   deadlock in module load.
1383 	 */
1384 	if (family == PF_INET && type == SOCK_PACKET) {
1385 		pr_info_once("%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1386 			     current->comm);
1387 		family = PF_PACKET;
1388 	}
1389 
1390 	err = security_socket_create(family, type, protocol, kern);
1391 	if (err)
1392 		return err;
1393 
1394 	/*
1395 	 *	Allocate the socket and allow the family to set things up. if
1396 	 *	the protocol is 0, the family is instructed to select an appropriate
1397 	 *	default.
1398 	 */
1399 	sock = sock_alloc();
1400 	if (!sock) {
1401 		net_warn_ratelimited("socket: no more sockets\n");
1402 		return -ENFILE;	/* Not exactly a match, but its the
1403 				   closest posix thing */
1404 	}
1405 
1406 	sock->type = type;
1407 
1408 #ifdef CONFIG_MODULES
1409 	/* Attempt to load a protocol module if the find failed.
1410 	 *
1411 	 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1412 	 * requested real, full-featured networking support upon configuration.
1413 	 * Otherwise module support will break!
1414 	 */
1415 	if (rcu_access_pointer(net_families[family]) == NULL)
1416 		request_module("net-pf-%d", family);
1417 #endif
1418 
1419 	rcu_read_lock();
1420 	pf = rcu_dereference(net_families[family]);
1421 	err = -EAFNOSUPPORT;
1422 	if (!pf)
1423 		goto out_release;
1424 
1425 	/*
1426 	 * We will call the ->create function, that possibly is in a loadable
1427 	 * module, so we have to bump that loadable module refcnt first.
1428 	 */
1429 	if (!try_module_get(pf->owner))
1430 		goto out_release;
1431 
1432 	/* Now protected by module ref count */
1433 	rcu_read_unlock();
1434 
1435 	err = pf->create(net, sock, protocol, kern);
1436 	if (err < 0)
1437 		goto out_module_put;
1438 
1439 	/*
1440 	 * Now to bump the refcnt of the [loadable] module that owns this
1441 	 * socket at sock_release time we decrement its refcnt.
1442 	 */
1443 	if (!try_module_get(sock->ops->owner))
1444 		goto out_module_busy;
1445 
1446 	/*
1447 	 * Now that we're done with the ->create function, the [loadable]
1448 	 * module can have its refcnt decremented
1449 	 */
1450 	module_put(pf->owner);
1451 	err = security_socket_post_create(sock, family, type, protocol, kern);
1452 	if (err)
1453 		goto out_sock_release;
1454 	*res = sock;
1455 
1456 	return 0;
1457 
1458 out_module_busy:
1459 	err = -EAFNOSUPPORT;
1460 out_module_put:
1461 	sock->ops = NULL;
1462 	module_put(pf->owner);
1463 out_sock_release:
1464 	sock_release(sock);
1465 	return err;
1466 
1467 out_release:
1468 	rcu_read_unlock();
1469 	goto out_sock_release;
1470 }
1471 EXPORT_SYMBOL(__sock_create);
1472 
1473 /**
1474  *	sock_create - creates a socket
1475  *	@family: protocol family (AF_INET, ...)
1476  *	@type: communication type (SOCK_STREAM, ...)
1477  *	@protocol: protocol (0, ...)
1478  *	@res: new socket
1479  *
1480  *	A wrapper around __sock_create().
1481  *	Returns 0 or an error. This function internally uses GFP_KERNEL.
1482  */
1483 
sock_create(int family, int type, int protocol, struct socket **res)1484 int sock_create(int family, int type, int protocol, struct socket **res)
1485 {
1486 	return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0);
1487 }
1488 EXPORT_SYMBOL(sock_create);
1489 
1490 /**
1491  *	sock_create_kern - creates a socket (kernel space)
1492  *	@net: net namespace
1493  *	@family: protocol family (AF_INET, ...)
1494  *	@type: communication type (SOCK_STREAM, ...)
1495  *	@protocol: protocol (0, ...)
1496  *	@res: new socket
1497  *
1498  *	A wrapper around __sock_create().
1499  *	Returns 0 or an error. This function internally uses GFP_KERNEL.
1500  */
1501 
sock_create_kern(struct net *net, int family, int type, int protocol, struct socket **res)1502 int sock_create_kern(struct net *net, int family, int type, int protocol, struct socket **res)
1503 {
1504 	return __sock_create(net, family, type, protocol, res, 1);
1505 }
1506 EXPORT_SYMBOL(sock_create_kern);
1507 
__sys_socket(int family, int type, int protocol)1508 int __sys_socket(int family, int type, int protocol)
1509 {
1510 	int retval;
1511 	struct socket *sock;
1512 	int flags;
1513 
1514 	/* Check the SOCK_* constants for consistency.  */
1515 	BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC);
1516 	BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK);
1517 	BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK);
1518 	BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK);
1519 
1520 	flags = type & ~SOCK_TYPE_MASK;
1521 	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1522 		return -EINVAL;
1523 	type &= SOCK_TYPE_MASK;
1524 
1525 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1526 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1527 
1528 	retval = sock_create(family, type, protocol, &sock);
1529 	if (retval < 0)
1530 		return retval;
1531 
1532 	return sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK));
1533 }
1534 
SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol)1535 SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol)
1536 {
1537 	return __sys_socket(family, type, protocol);
1538 }
1539 
1540 /*
1541  *	Create a pair of connected sockets.
1542  */
1543 
__sys_socketpair(int family, int type, int protocol, int __user *usockvec)1544 int __sys_socketpair(int family, int type, int protocol, int __user *usockvec)
1545 {
1546 	struct socket *sock1, *sock2;
1547 	int fd1, fd2, err;
1548 	struct file *newfile1, *newfile2;
1549 	int flags;
1550 
1551 	flags = type & ~SOCK_TYPE_MASK;
1552 	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1553 		return -EINVAL;
1554 	type &= SOCK_TYPE_MASK;
1555 
1556 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1557 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1558 
1559 	/*
1560 	 * reserve descriptors and make sure we won't fail
1561 	 * to return them to userland.
1562 	 */
1563 	fd1 = get_unused_fd_flags(flags);
1564 	if (unlikely(fd1 < 0))
1565 		return fd1;
1566 
1567 	fd2 = get_unused_fd_flags(flags);
1568 	if (unlikely(fd2 < 0)) {
1569 		put_unused_fd(fd1);
1570 		return fd2;
1571 	}
1572 
1573 	err = put_user(fd1, &usockvec[0]);
1574 	if (err)
1575 		goto out;
1576 
1577 	err = put_user(fd2, &usockvec[1]);
1578 	if (err)
1579 		goto out;
1580 
1581 	/*
1582 	 * Obtain the first socket and check if the underlying protocol
1583 	 * supports the socketpair call.
1584 	 */
1585 
1586 	err = sock_create(family, type, protocol, &sock1);
1587 	if (unlikely(err < 0))
1588 		goto out;
1589 
1590 	err = sock_create(family, type, protocol, &sock2);
1591 	if (unlikely(err < 0)) {
1592 		sock_release(sock1);
1593 		goto out;
1594 	}
1595 
1596 	err = security_socket_socketpair(sock1, sock2);
1597 	if (unlikely(err)) {
1598 		sock_release(sock2);
1599 		sock_release(sock1);
1600 		goto out;
1601 	}
1602 
1603 	err = sock1->ops->socketpair(sock1, sock2);
1604 	if (unlikely(err < 0)) {
1605 		sock_release(sock2);
1606 		sock_release(sock1);
1607 		goto out;
1608 	}
1609 
1610 	newfile1 = sock_alloc_file(sock1, flags, NULL);
1611 	if (IS_ERR(newfile1)) {
1612 		err = PTR_ERR(newfile1);
1613 		sock_release(sock2);
1614 		goto out;
1615 	}
1616 
1617 	newfile2 = sock_alloc_file(sock2, flags, NULL);
1618 	if (IS_ERR(newfile2)) {
1619 		err = PTR_ERR(newfile2);
1620 		fput(newfile1);
1621 		goto out;
1622 	}
1623 
1624 	audit_fd_pair(fd1, fd2);
1625 
1626 	fd_install(fd1, newfile1);
1627 	fd_install(fd2, newfile2);
1628 	return 0;
1629 
1630 out:
1631 	put_unused_fd(fd2);
1632 	put_unused_fd(fd1);
1633 	return err;
1634 }
1635 
SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol, int __user *, usockvec)1636 SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol,
1637 		int __user *, usockvec)
1638 {
1639 	return __sys_socketpair(family, type, protocol, usockvec);
1640 }
1641 
1642 /*
1643  *	Bind a name to a socket. Nothing much to do here since it's
1644  *	the protocol's responsibility to handle the local address.
1645  *
1646  *	We move the socket address to kernel space before we call
1647  *	the protocol layer (having also checked the address is ok).
1648  */
1649 
__sys_bind(int fd, struct sockaddr __user *umyaddr, int addrlen)1650 int __sys_bind(int fd, struct sockaddr __user *umyaddr, int addrlen)
1651 {
1652 	struct socket *sock;
1653 	struct sockaddr_storage address;
1654 	int err, fput_needed;
1655 
1656 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1657 	if (sock) {
1658 		err = move_addr_to_kernel(umyaddr, addrlen, &address);
1659 		if (!err) {
1660 			err = security_socket_bind(sock,
1661 						   (struct sockaddr *)&address,
1662 						   addrlen);
1663 			if (!err)
1664 				err = sock->ops->bind(sock,
1665 						      (struct sockaddr *)
1666 						      &address, addrlen);
1667 		}
1668 		fput_light(sock->file, fput_needed);
1669 	}
1670 	return err;
1671 }
1672 
SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen)1673 SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen)
1674 {
1675 	return __sys_bind(fd, umyaddr, addrlen);
1676 }
1677 
1678 /*
1679  *	Perform a listen. Basically, we allow the protocol to do anything
1680  *	necessary for a listen, and if that works, we mark the socket as
1681  *	ready for listening.
1682  */
1683 
__sys_listen(int fd, int backlog)1684 int __sys_listen(int fd, int backlog)
1685 {
1686 	struct socket *sock;
1687 	int err, fput_needed;
1688 	int somaxconn;
1689 
1690 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1691 	if (sock) {
1692 		somaxconn = READ_ONCE(sock_net(sock->sk)->core.sysctl_somaxconn);
1693 		if ((unsigned int)backlog > somaxconn)
1694 			backlog = somaxconn;
1695 
1696 		err = security_socket_listen(sock, backlog);
1697 		if (!err)
1698 			err = sock->ops->listen(sock, backlog);
1699 
1700 		fput_light(sock->file, fput_needed);
1701 	}
1702 	return err;
1703 }
1704 
SYSCALL_DEFINE2(listen, int, fd, int, backlog)1705 SYSCALL_DEFINE2(listen, int, fd, int, backlog)
1706 {
1707 	return __sys_listen(fd, backlog);
1708 }
1709 
do_accept(struct file *file, unsigned file_flags, struct sockaddr __user *upeer_sockaddr, int __user *upeer_addrlen, int flags)1710 struct file *do_accept(struct file *file, unsigned file_flags,
1711 		       struct sockaddr __user *upeer_sockaddr,
1712 		       int __user *upeer_addrlen, int flags)
1713 {
1714 	struct socket *sock, *newsock;
1715 	struct file *newfile;
1716 	int err, len;
1717 	struct sockaddr_storage address;
1718 
1719 	sock = sock_from_file(file, &err);
1720 	if (!sock)
1721 		return ERR_PTR(err);
1722 
1723 	newsock = sock_alloc();
1724 	if (!newsock)
1725 		return ERR_PTR(-ENFILE);
1726 
1727 	newsock->type = sock->type;
1728 	newsock->ops = sock->ops;
1729 
1730 	/*
1731 	 * We don't need try_module_get here, as the listening socket (sock)
1732 	 * has the protocol module (sock->ops->owner) held.
1733 	 */
1734 	__module_get(newsock->ops->owner);
1735 
1736 	newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name);
1737 	if (IS_ERR(newfile))
1738 		return newfile;
1739 
1740 	err = security_socket_accept(sock, newsock);
1741 	if (err)
1742 		goto out_fd;
1743 
1744 	err = sock->ops->accept(sock, newsock, sock->file->f_flags | file_flags,
1745 					false);
1746 	if (err < 0)
1747 		goto out_fd;
1748 
1749 	if (upeer_sockaddr) {
1750 		len = newsock->ops->getname(newsock,
1751 					(struct sockaddr *)&address, 2);
1752 		if (len < 0) {
1753 			err = -ECONNABORTED;
1754 			goto out_fd;
1755 		}
1756 		err = move_addr_to_user(&address,
1757 					len, upeer_sockaddr, upeer_addrlen);
1758 		if (err < 0)
1759 			goto out_fd;
1760 	}
1761 
1762 	/* File flags are not inherited via accept() unlike another OSes. */
1763 	return newfile;
1764 out_fd:
1765 	fput(newfile);
1766 	return ERR_PTR(err);
1767 }
1768 
__sys_accept4_file(struct file *file, unsigned file_flags, struct sockaddr __user *upeer_sockaddr, int __user *upeer_addrlen, int flags, unsigned long nofile)1769 int __sys_accept4_file(struct file *file, unsigned file_flags,
1770 		       struct sockaddr __user *upeer_sockaddr,
1771 		       int __user *upeer_addrlen, int flags,
1772 		       unsigned long nofile)
1773 {
1774 	struct file *newfile;
1775 	int newfd;
1776 
1777 	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1778 		return -EINVAL;
1779 
1780 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1781 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1782 
1783 	newfd = __get_unused_fd_flags(flags, nofile);
1784 	if (unlikely(newfd < 0))
1785 		return newfd;
1786 
1787 	newfile = do_accept(file, file_flags, upeer_sockaddr, upeer_addrlen,
1788 			    flags);
1789 	if (IS_ERR(newfile)) {
1790 		put_unused_fd(newfd);
1791 		return PTR_ERR(newfile);
1792 	}
1793 	fd_install(newfd, newfile);
1794 	return newfd;
1795 }
1796 
1797 /*
1798  *	For accept, we attempt to create a new socket, set up the link
1799  *	with the client, wake up the client, then return the new
1800  *	connected fd. We collect the address of the connector in kernel
1801  *	space and move it to user at the very end. This is unclean because
1802  *	we open the socket then return an error.
1803  *
1804  *	1003.1g adds the ability to recvmsg() to query connection pending
1805  *	status to recvmsg. We need to add that support in a way thats
1806  *	clean when we restructure accept also.
1807  */
1808 
__sys_accept4(int fd, struct sockaddr __user *upeer_sockaddr, int __user *upeer_addrlen, int flags)1809 int __sys_accept4(int fd, struct sockaddr __user *upeer_sockaddr,
1810 		  int __user *upeer_addrlen, int flags)
1811 {
1812 	int ret = -EBADF;
1813 	struct fd f;
1814 
1815 	f = fdget(fd);
1816 	if (f.file) {
1817 		ret = __sys_accept4_file(f.file, 0, upeer_sockaddr,
1818 						upeer_addrlen, flags,
1819 						rlimit(RLIMIT_NOFILE));
1820 		fdput(f);
1821 	}
1822 
1823 	return ret;
1824 }
1825 
SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr, int __user *, upeer_addrlen, int, flags)1826 SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr,
1827 		int __user *, upeer_addrlen, int, flags)
1828 {
1829 	return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, flags);
1830 }
1831 
SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr, int __user *, upeer_addrlen)1832 SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr,
1833 		int __user *, upeer_addrlen)
1834 {
1835 	return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0);
1836 }
1837 
1838 /*
1839  *	Attempt to connect to a socket with the server address.  The address
1840  *	is in user space so we verify it is OK and move it to kernel space.
1841  *
1842  *	For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1843  *	break bindings
1844  *
1845  *	NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1846  *	other SEQPACKET protocols that take time to connect() as it doesn't
1847  *	include the -EINPROGRESS status for such sockets.
1848  */
1849 
__sys_connect_file(struct file *file, struct sockaddr_storage *address, int addrlen, int file_flags)1850 int __sys_connect_file(struct file *file, struct sockaddr_storage *address,
1851 		       int addrlen, int file_flags)
1852 {
1853 	struct socket *sock;
1854 	int err;
1855 
1856 	sock = sock_from_file(file, &err);
1857 	if (!sock)
1858 		goto out;
1859 
1860 	err =
1861 	    security_socket_connect(sock, (struct sockaddr *)address, addrlen);
1862 	if (err)
1863 		goto out;
1864 
1865 	err = sock->ops->connect(sock, (struct sockaddr *)address, addrlen,
1866 				 sock->file->f_flags | file_flags);
1867 out:
1868 	return err;
1869 }
1870 
__sys_connect(int fd, struct sockaddr __user *uservaddr, int addrlen)1871 int __sys_connect(int fd, struct sockaddr __user *uservaddr, int addrlen)
1872 {
1873 	int ret = -EBADF;
1874 	struct fd f;
1875 
1876 	f = fdget(fd);
1877 	if (f.file) {
1878 		struct sockaddr_storage address;
1879 
1880 		ret = move_addr_to_kernel(uservaddr, addrlen, &address);
1881 		if (!ret)
1882 			ret = __sys_connect_file(f.file, &address, addrlen, 0);
1883 		fdput(f);
1884 	}
1885 
1886 	return ret;
1887 }
1888 
SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr, int, addrlen)1889 SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr,
1890 		int, addrlen)
1891 {
1892 	return __sys_connect(fd, uservaddr, addrlen);
1893 }
1894 
1895 /*
1896  *	Get the local address ('name') of a socket object. Move the obtained
1897  *	name to user space.
1898  */
1899 
__sys_getsockname(int fd, struct sockaddr __user *usockaddr, int __user *usockaddr_len)1900 int __sys_getsockname(int fd, struct sockaddr __user *usockaddr,
1901 		      int __user *usockaddr_len)
1902 {
1903 	struct socket *sock;
1904 	struct sockaddr_storage address;
1905 	int err, fput_needed;
1906 
1907 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1908 	if (!sock)
1909 		goto out;
1910 
1911 	err = security_socket_getsockname(sock);
1912 	if (err)
1913 		goto out_put;
1914 
1915 	err = sock->ops->getname(sock, (struct sockaddr *)&address, 0);
1916 	if (err < 0)
1917 		goto out_put;
1918         /* "err" is actually length in this case */
1919 	err = move_addr_to_user(&address, err, usockaddr, usockaddr_len);
1920 
1921 out_put:
1922 	fput_light(sock->file, fput_needed);
1923 out:
1924 	return err;
1925 }
1926 
SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr, int __user *, usockaddr_len)1927 SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr,
1928 		int __user *, usockaddr_len)
1929 {
1930 	return __sys_getsockname(fd, usockaddr, usockaddr_len);
1931 }
1932 
1933 /*
1934  *	Get the remote address ('name') of a socket object. Move the obtained
1935  *	name to user space.
1936  */
1937 
__sys_getpeername(int fd, struct sockaddr __user *usockaddr, int __user *usockaddr_len)1938 int __sys_getpeername(int fd, struct sockaddr __user *usockaddr,
1939 		      int __user *usockaddr_len)
1940 {
1941 	struct socket *sock;
1942 	struct sockaddr_storage address;
1943 	int err, fput_needed;
1944 
1945 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1946 	if (sock != NULL) {
1947 		err = security_socket_getpeername(sock);
1948 		if (err) {
1949 			fput_light(sock->file, fput_needed);
1950 			return err;
1951 		}
1952 
1953 		err = sock->ops->getname(sock, (struct sockaddr *)&address, 1);
1954 		if (err >= 0)
1955 			/* "err" is actually length in this case */
1956 			err = move_addr_to_user(&address, err, usockaddr,
1957 						usockaddr_len);
1958 		fput_light(sock->file, fput_needed);
1959 	}
1960 	return err;
1961 }
1962 
SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr, int __user *, usockaddr_len)1963 SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr,
1964 		int __user *, usockaddr_len)
1965 {
1966 	return __sys_getpeername(fd, usockaddr, usockaddr_len);
1967 }
1968 
1969 /*
1970  *	Send a datagram to a given address. We move the address into kernel
1971  *	space and check the user space data area is readable before invoking
1972  *	the protocol.
1973  */
__sys_sendto(int fd, void __user *buff, size_t len, unsigned int flags, struct sockaddr __user *addr, int addr_len)1974 int __sys_sendto(int fd, void __user *buff, size_t len, unsigned int flags,
1975 		 struct sockaddr __user *addr,  int addr_len)
1976 {
1977 	struct socket *sock;
1978 	struct sockaddr_storage address;
1979 	int err;
1980 	struct msghdr msg;
1981 	struct iovec iov;
1982 	int fput_needed;
1983 
1984 	err = import_single_range(WRITE, buff, len, &iov, &msg.msg_iter);
1985 	if (unlikely(err))
1986 		return err;
1987 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1988 	if (!sock)
1989 		goto out;
1990 
1991 	msg.msg_name = NULL;
1992 	msg.msg_control = NULL;
1993 	msg.msg_controllen = 0;
1994 	msg.msg_namelen = 0;
1995 	if (addr) {
1996 		err = move_addr_to_kernel(addr, addr_len, &address);
1997 		if (err < 0)
1998 			goto out_put;
1999 		msg.msg_name = (struct sockaddr *)&address;
2000 		msg.msg_namelen = addr_len;
2001 	}
2002 	if (sock->file->f_flags & O_NONBLOCK)
2003 		flags |= MSG_DONTWAIT;
2004 	msg.msg_flags = flags;
2005 	err = __sock_sendmsg(sock, &msg);
2006 
2007 out_put:
2008 	fput_light(sock->file, fput_needed);
2009 out:
2010 	return err;
2011 }
2012 
SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len, unsigned int, flags, struct sockaddr __user *, addr, int, addr_len)2013 SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len,
2014 		unsigned int, flags, struct sockaddr __user *, addr,
2015 		int, addr_len)
2016 {
2017 	return __sys_sendto(fd, buff, len, flags, addr, addr_len);
2018 }
2019 
2020 /*
2021  *	Send a datagram down a socket.
2022  */
2023 
SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len, unsigned int, flags)2024 SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len,
2025 		unsigned int, flags)
2026 {
2027 	return __sys_sendto(fd, buff, len, flags, NULL, 0);
2028 }
2029 
2030 /*
2031  *	Receive a frame from the socket and optionally record the address of the
2032  *	sender. We verify the buffers are writable and if needed move the
2033  *	sender address from kernel to user space.
2034  */
__sys_recvfrom(int fd, void __user *ubuf, size_t size, unsigned int flags, struct sockaddr __user *addr, int __user *addr_len)2035 int __sys_recvfrom(int fd, void __user *ubuf, size_t size, unsigned int flags,
2036 		   struct sockaddr __user *addr, int __user *addr_len)
2037 {
2038 	struct socket *sock;
2039 	struct iovec iov;
2040 	struct msghdr msg;
2041 	struct sockaddr_storage address;
2042 	int err, err2;
2043 	int fput_needed;
2044 
2045 	err = import_single_range(READ, ubuf, size, &iov, &msg.msg_iter);
2046 	if (unlikely(err))
2047 		return err;
2048 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2049 	if (!sock)
2050 		goto out;
2051 
2052 	msg.msg_control = NULL;
2053 	msg.msg_controllen = 0;
2054 	/* Save some cycles and don't copy the address if not needed */
2055 	msg.msg_name = addr ? (struct sockaddr *)&address : NULL;
2056 	/* We assume all kernel code knows the size of sockaddr_storage */
2057 	msg.msg_namelen = 0;
2058 	msg.msg_iocb = NULL;
2059 	msg.msg_flags = 0;
2060 	if (sock->file->f_flags & O_NONBLOCK)
2061 		flags |= MSG_DONTWAIT;
2062 	err = sock_recvmsg(sock, &msg, flags);
2063 
2064 	if (err >= 0 && addr != NULL) {
2065 		err2 = move_addr_to_user(&address,
2066 					 msg.msg_namelen, addr, addr_len);
2067 		if (err2 < 0)
2068 			err = err2;
2069 	}
2070 
2071 	fput_light(sock->file, fput_needed);
2072 out:
2073 	return err;
2074 }
2075 
SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size, unsigned int, flags, struct sockaddr __user *, addr, int __user *, addr_len)2076 SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size,
2077 		unsigned int, flags, struct sockaddr __user *, addr,
2078 		int __user *, addr_len)
2079 {
2080 	return __sys_recvfrom(fd, ubuf, size, flags, addr, addr_len);
2081 }
2082 
2083 /*
2084  *	Receive a datagram from a socket.
2085  */
2086 
SYSCALL_DEFINE4(recv, int, fd, void __user *, ubuf, size_t, size, unsigned int, flags)2087 SYSCALL_DEFINE4(recv, int, fd, void __user *, ubuf, size_t, size,
2088 		unsigned int, flags)
2089 {
2090 	return __sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
2091 }
2092 
sock_use_custom_sol_socket(const struct socket *sock)2093 static bool sock_use_custom_sol_socket(const struct socket *sock)
2094 {
2095 	const struct sock *sk = sock->sk;
2096 
2097 	/* Use sock->ops->setsockopt() for MPTCP */
2098 	return IS_ENABLED(CONFIG_MPTCP) &&
2099 	       sk->sk_protocol == IPPROTO_MPTCP &&
2100 	       sk->sk_type == SOCK_STREAM &&
2101 	       (sk->sk_family == AF_INET || sk->sk_family == AF_INET6);
2102 }
2103 
2104 /*
2105  *	Set a socket option. Because we don't know the option lengths we have
2106  *	to pass the user mode parameter for the protocols to sort out.
2107  */
__sys_setsockopt(int fd, int level, int optname, char __user *user_optval, int optlen)2108 int __sys_setsockopt(int fd, int level, int optname, char __user *user_optval,
2109 		int optlen)
2110 {
2111 	sockptr_t optval = USER_SOCKPTR(user_optval);
2112 	char *kernel_optval = NULL;
2113 	int err, fput_needed;
2114 	struct socket *sock;
2115 
2116 	if (optlen < 0)
2117 		return -EINVAL;
2118 
2119 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2120 	if (!sock)
2121 		return err;
2122 
2123 	err = security_socket_setsockopt(sock, level, optname);
2124 	if (err)
2125 		goto out_put;
2126 
2127 	if (!in_compat_syscall())
2128 		err = BPF_CGROUP_RUN_PROG_SETSOCKOPT(sock->sk, &level, &optname,
2129 						     user_optval, &optlen,
2130 						     &kernel_optval);
2131 	if (err < 0)
2132 		goto out_put;
2133 	if (err > 0) {
2134 		err = 0;
2135 		goto out_put;
2136 	}
2137 
2138 	if (kernel_optval)
2139 		optval = KERNEL_SOCKPTR(kernel_optval);
2140 	if (level == SOL_SOCKET && !sock_use_custom_sol_socket(sock))
2141 		err = sock_setsockopt(sock, level, optname, optval, optlen);
2142 	else if (unlikely(!sock->ops->setsockopt))
2143 		err = -EOPNOTSUPP;
2144 	else
2145 		err = sock->ops->setsockopt(sock, level, optname, optval,
2146 					    optlen);
2147 	kfree(kernel_optval);
2148 out_put:
2149 	fput_light(sock->file, fput_needed);
2150 	return err;
2151 }
2152 
SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname, char __user *, optval, int, optlen)2153 SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname,
2154 		char __user *, optval, int, optlen)
2155 {
2156 	return __sys_setsockopt(fd, level, optname, optval, optlen);
2157 }
2158 
2159 INDIRECT_CALLABLE_DECLARE(bool tcp_bpf_bypass_getsockopt(int level,
2160 							 int optname));
2161 
2162 /*
2163  *	Get a socket option. Because we don't know the option lengths we have
2164  *	to pass a user mode parameter for the protocols to sort out.
2165  */
__sys_getsockopt(int fd, int level, int optname, char __user *optval, int __user *optlen)2166 int __sys_getsockopt(int fd, int level, int optname, char __user *optval,
2167 		int __user *optlen)
2168 {
2169 	int err, fput_needed;
2170 	struct socket *sock;
2171 	int max_optlen;
2172 
2173 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2174 	if (!sock)
2175 		return err;
2176 
2177 	err = security_socket_getsockopt(sock, level, optname);
2178 	if (err)
2179 		goto out_put;
2180 
2181 	if (!in_compat_syscall())
2182 		max_optlen = BPF_CGROUP_GETSOCKOPT_MAX_OPTLEN(optlen);
2183 
2184 	if (level == SOL_SOCKET)
2185 		err = sock_getsockopt(sock, level, optname, optval, optlen);
2186 	else if (unlikely(!sock->ops->getsockopt))
2187 		err = -EOPNOTSUPP;
2188 	else
2189 		err = sock->ops->getsockopt(sock, level, optname, optval,
2190 					    optlen);
2191 
2192 	if (!in_compat_syscall())
2193 		err = BPF_CGROUP_RUN_PROG_GETSOCKOPT(sock->sk, level, optname,
2194 						     optval, optlen, max_optlen,
2195 						     err);
2196 out_put:
2197 	fput_light(sock->file, fput_needed);
2198 	return err;
2199 }
2200 
SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname, char __user *, optval, int __user *, optlen)2201 SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname,
2202 		char __user *, optval, int __user *, optlen)
2203 {
2204 	return __sys_getsockopt(fd, level, optname, optval, optlen);
2205 }
2206 
2207 /*
2208  *	Shutdown a socket.
2209  */
2210 
__sys_shutdown_sock(struct socket *sock, int how)2211 int __sys_shutdown_sock(struct socket *sock, int how)
2212 {
2213 	int err;
2214 
2215 	err = security_socket_shutdown(sock, how);
2216 	if (!err)
2217 		err = sock->ops->shutdown(sock, how);
2218 
2219 	return err;
2220 }
2221 
__sys_shutdown(int fd, int how)2222 int __sys_shutdown(int fd, int how)
2223 {
2224 	int err, fput_needed;
2225 	struct socket *sock;
2226 
2227 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2228 	if (sock != NULL) {
2229 		err = __sys_shutdown_sock(sock, how);
2230 		fput_light(sock->file, fput_needed);
2231 	}
2232 	return err;
2233 }
2234 
SYSCALL_DEFINE2(shutdown, int, fd, int, how)2235 SYSCALL_DEFINE2(shutdown, int, fd, int, how)
2236 {
2237 	return __sys_shutdown(fd, how);
2238 }
2239 
2240 /* A couple of helpful macros for getting the address of the 32/64 bit
2241  * fields which are the same type (int / unsigned) on our platforms.
2242  */
2243 #define COMPAT_MSG(msg, member)	((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
2244 #define COMPAT_NAMELEN(msg)	COMPAT_MSG(msg, msg_namelen)
2245 #define COMPAT_FLAGS(msg)	COMPAT_MSG(msg, msg_flags)
2246 
2247 struct used_address {
2248 	struct sockaddr_storage name;
2249 	unsigned int name_len;
2250 };
2251 
__copy_msghdr_from_user(struct msghdr *kmsg, struct user_msghdr __user *umsg, struct sockaddr __user **save_addr, struct iovec __user **uiov, size_t *nsegs)2252 int __copy_msghdr_from_user(struct msghdr *kmsg,
2253 			    struct user_msghdr __user *umsg,
2254 			    struct sockaddr __user **save_addr,
2255 			    struct iovec __user **uiov, size_t *nsegs)
2256 {
2257 	struct user_msghdr msg;
2258 	ssize_t err;
2259 
2260 	if (copy_from_user(&msg, umsg, sizeof(*umsg)))
2261 		return -EFAULT;
2262 
2263 	kmsg->msg_control_is_user = true;
2264 	kmsg->msg_control_user = msg.msg_control;
2265 	kmsg->msg_controllen = msg.msg_controllen;
2266 	kmsg->msg_flags = msg.msg_flags;
2267 
2268 	kmsg->msg_namelen = msg.msg_namelen;
2269 	if (!msg.msg_name)
2270 		kmsg->msg_namelen = 0;
2271 
2272 	if (kmsg->msg_namelen < 0)
2273 		return -EINVAL;
2274 
2275 	if (kmsg->msg_namelen > sizeof(struct sockaddr_storage))
2276 		kmsg->msg_namelen = sizeof(struct sockaddr_storage);
2277 
2278 	if (save_addr)
2279 		*save_addr = msg.msg_name;
2280 
2281 	if (msg.msg_name && kmsg->msg_namelen) {
2282 		if (!save_addr) {
2283 			err = move_addr_to_kernel(msg.msg_name,
2284 						  kmsg->msg_namelen,
2285 						  kmsg->msg_name);
2286 			if (err < 0)
2287 				return err;
2288 		}
2289 	} else {
2290 		kmsg->msg_name = NULL;
2291 		kmsg->msg_namelen = 0;
2292 	}
2293 
2294 	if (msg.msg_iovlen > UIO_MAXIOV)
2295 		return -EMSGSIZE;
2296 
2297 	kmsg->msg_iocb = NULL;
2298 	*uiov = msg.msg_iov;
2299 	*nsegs = msg.msg_iovlen;
2300 	return 0;
2301 }
2302 
copy_msghdr_from_user(struct msghdr *kmsg, struct user_msghdr __user *umsg, struct sockaddr __user **save_addr, struct iovec **iov)2303 static int copy_msghdr_from_user(struct msghdr *kmsg,
2304 				 struct user_msghdr __user *umsg,
2305 				 struct sockaddr __user **save_addr,
2306 				 struct iovec **iov)
2307 {
2308 	struct user_msghdr msg;
2309 	ssize_t err;
2310 
2311 	err = __copy_msghdr_from_user(kmsg, umsg, save_addr, &msg.msg_iov,
2312 					&msg.msg_iovlen);
2313 	if (err)
2314 		return err;
2315 
2316 	err = import_iovec(save_addr ? READ : WRITE,
2317 			    msg.msg_iov, msg.msg_iovlen,
2318 			    UIO_FASTIOV, iov, &kmsg->msg_iter);
2319 	return err < 0 ? err : 0;
2320 }
2321 
____sys_sendmsg(struct socket *sock, struct msghdr *msg_sys, unsigned int flags, struct used_address *used_address, unsigned int allowed_msghdr_flags)2322 static int ____sys_sendmsg(struct socket *sock, struct msghdr *msg_sys,
2323 			   unsigned int flags, struct used_address *used_address,
2324 			   unsigned int allowed_msghdr_flags)
2325 {
2326 	unsigned char ctl[sizeof(struct cmsghdr) + 20]
2327 				__aligned(sizeof(__kernel_size_t));
2328 	/* 20 is size of ipv6_pktinfo */
2329 	unsigned char *ctl_buf = ctl;
2330 	int ctl_len;
2331 	ssize_t err;
2332 
2333 	err = -ENOBUFS;
2334 
2335 	if (msg_sys->msg_controllen > INT_MAX)
2336 		goto out;
2337 	flags |= (msg_sys->msg_flags & allowed_msghdr_flags);
2338 	ctl_len = msg_sys->msg_controllen;
2339 	if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
2340 		err =
2341 		    cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl,
2342 						     sizeof(ctl));
2343 		if (err)
2344 			goto out;
2345 		ctl_buf = msg_sys->msg_control;
2346 		ctl_len = msg_sys->msg_controllen;
2347 	} else if (ctl_len) {
2348 		BUILD_BUG_ON(sizeof(struct cmsghdr) !=
2349 			     CMSG_ALIGN(sizeof(struct cmsghdr)));
2350 		if (ctl_len > sizeof(ctl)) {
2351 			ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
2352 			if (ctl_buf == NULL)
2353 				goto out;
2354 		}
2355 		err = -EFAULT;
2356 		if (copy_from_user(ctl_buf, msg_sys->msg_control_user, ctl_len))
2357 			goto out_freectl;
2358 		msg_sys->msg_control = ctl_buf;
2359 		msg_sys->msg_control_is_user = false;
2360 	}
2361 	msg_sys->msg_flags = flags;
2362 
2363 	if (sock->file->f_flags & O_NONBLOCK)
2364 		msg_sys->msg_flags |= MSG_DONTWAIT;
2365 	/*
2366 	 * If this is sendmmsg() and current destination address is same as
2367 	 * previously succeeded address, omit asking LSM's decision.
2368 	 * used_address->name_len is initialized to UINT_MAX so that the first
2369 	 * destination address never matches.
2370 	 */
2371 	if (used_address && msg_sys->msg_name &&
2372 	    used_address->name_len == msg_sys->msg_namelen &&
2373 	    !memcmp(&used_address->name, msg_sys->msg_name,
2374 		    used_address->name_len)) {
2375 		err = sock_sendmsg_nosec(sock, msg_sys);
2376 		goto out_freectl;
2377 	}
2378 	err = __sock_sendmsg(sock, msg_sys);
2379 	/*
2380 	 * If this is sendmmsg() and sending to current destination address was
2381 	 * successful, remember it.
2382 	 */
2383 	if (used_address && err >= 0) {
2384 		used_address->name_len = msg_sys->msg_namelen;
2385 		if (msg_sys->msg_name)
2386 			memcpy(&used_address->name, msg_sys->msg_name,
2387 			       used_address->name_len);
2388 	}
2389 
2390 out_freectl:
2391 	if (ctl_buf != ctl)
2392 		sock_kfree_s(sock->sk, ctl_buf, ctl_len);
2393 out:
2394 	return err;
2395 }
2396 
sendmsg_copy_msghdr(struct msghdr *msg, struct user_msghdr __user *umsg, unsigned flags, struct iovec **iov)2397 int sendmsg_copy_msghdr(struct msghdr *msg,
2398 			struct user_msghdr __user *umsg, unsigned flags,
2399 			struct iovec **iov)
2400 {
2401 	int err;
2402 
2403 	if (flags & MSG_CMSG_COMPAT) {
2404 		struct compat_msghdr __user *msg_compat;
2405 
2406 		msg_compat = (struct compat_msghdr __user *) umsg;
2407 		err = get_compat_msghdr(msg, msg_compat, NULL, iov);
2408 	} else {
2409 		err = copy_msghdr_from_user(msg, umsg, NULL, iov);
2410 	}
2411 	if (err < 0)
2412 		return err;
2413 
2414 	return 0;
2415 }
2416 
___sys_sendmsg(struct socket *sock, struct user_msghdr __user *msg, struct msghdr *msg_sys, unsigned int flags, struct used_address *used_address, unsigned int allowed_msghdr_flags)2417 static int ___sys_sendmsg(struct socket *sock, struct user_msghdr __user *msg,
2418 			 struct msghdr *msg_sys, unsigned int flags,
2419 			 struct used_address *used_address,
2420 			 unsigned int allowed_msghdr_flags)
2421 {
2422 	struct sockaddr_storage address;
2423 	struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
2424 	ssize_t err;
2425 
2426 	msg_sys->msg_name = &address;
2427 
2428 	err = sendmsg_copy_msghdr(msg_sys, msg, flags, &iov);
2429 	if (err < 0)
2430 		return err;
2431 
2432 	err = ____sys_sendmsg(sock, msg_sys, flags, used_address,
2433 				allowed_msghdr_flags);
2434 	kfree(iov);
2435 	return err;
2436 }
2437 
2438 /*
2439  *	BSD sendmsg interface
2440  */
__sys_sendmsg_sock(struct socket *sock, struct msghdr *msg, unsigned int flags)2441 long __sys_sendmsg_sock(struct socket *sock, struct msghdr *msg,
2442 			unsigned int flags)
2443 {
2444 	return ____sys_sendmsg(sock, msg, flags, NULL, 0);
2445 }
2446 
__sys_sendmsg(int fd, struct user_msghdr __user *msg, unsigned int flags, bool forbid_cmsg_compat)2447 long __sys_sendmsg(int fd, struct user_msghdr __user *msg, unsigned int flags,
2448 		   bool forbid_cmsg_compat)
2449 {
2450 	int fput_needed, err;
2451 	struct msghdr msg_sys;
2452 	struct socket *sock;
2453 
2454 	if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2455 		return -EINVAL;
2456 
2457 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2458 	if (!sock)
2459 		goto out;
2460 
2461 	err = ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL, 0);
2462 
2463 	fput_light(sock->file, fput_needed);
2464 out:
2465 	return err;
2466 }
2467 
SYSCALL_DEFINE3(sendmsg, int, fd, struct user_msghdr __user *, msg, unsigned int, flags)2468 SYSCALL_DEFINE3(sendmsg, int, fd, struct user_msghdr __user *, msg, unsigned int, flags)
2469 {
2470 	return __sys_sendmsg(fd, msg, flags, true);
2471 }
2472 
2473 /*
2474  *	Linux sendmmsg interface
2475  */
2476 
__sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen, unsigned int flags, bool forbid_cmsg_compat)2477 int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2478 		   unsigned int flags, bool forbid_cmsg_compat)
2479 {
2480 	int fput_needed, err, datagrams;
2481 	struct socket *sock;
2482 	struct mmsghdr __user *entry;
2483 	struct compat_mmsghdr __user *compat_entry;
2484 	struct msghdr msg_sys;
2485 	struct used_address used_address;
2486 	unsigned int oflags = flags;
2487 
2488 	if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2489 		return -EINVAL;
2490 
2491 	if (vlen > UIO_MAXIOV)
2492 		vlen = UIO_MAXIOV;
2493 
2494 	datagrams = 0;
2495 
2496 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2497 	if (!sock)
2498 		return err;
2499 
2500 	used_address.name_len = UINT_MAX;
2501 	entry = mmsg;
2502 	compat_entry = (struct compat_mmsghdr __user *)mmsg;
2503 	err = 0;
2504 	flags |= MSG_BATCH;
2505 
2506 	while (datagrams < vlen) {
2507 		if (datagrams == vlen - 1)
2508 			flags = oflags;
2509 
2510 		if (MSG_CMSG_COMPAT & flags) {
2511 			err = ___sys_sendmsg(sock, (struct user_msghdr __user *)compat_entry,
2512 					     &msg_sys, flags, &used_address, MSG_EOR);
2513 			if (err < 0)
2514 				break;
2515 			err = __put_user(err, &compat_entry->msg_len);
2516 			++compat_entry;
2517 		} else {
2518 			err = ___sys_sendmsg(sock,
2519 					     (struct user_msghdr __user *)entry,
2520 					     &msg_sys, flags, &used_address, MSG_EOR);
2521 			if (err < 0)
2522 				break;
2523 			err = put_user(err, &entry->msg_len);
2524 			++entry;
2525 		}
2526 
2527 		if (err)
2528 			break;
2529 		++datagrams;
2530 		if (msg_data_left(&msg_sys))
2531 			break;
2532 		cond_resched();
2533 	}
2534 
2535 	fput_light(sock->file, fput_needed);
2536 
2537 	/* We only return an error if no datagrams were able to be sent */
2538 	if (datagrams != 0)
2539 		return datagrams;
2540 
2541 	return err;
2542 }
2543 
SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg, unsigned int, vlen, unsigned int, flags)2544 SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg,
2545 		unsigned int, vlen, unsigned int, flags)
2546 {
2547 	return __sys_sendmmsg(fd, mmsg, vlen, flags, true);
2548 }
2549 
recvmsg_copy_msghdr(struct msghdr *msg, struct user_msghdr __user *umsg, unsigned flags, struct sockaddr __user **uaddr, struct iovec **iov)2550 int recvmsg_copy_msghdr(struct msghdr *msg,
2551 			struct user_msghdr __user *umsg, unsigned flags,
2552 			struct sockaddr __user **uaddr,
2553 			struct iovec **iov)
2554 {
2555 	ssize_t err;
2556 
2557 	if (MSG_CMSG_COMPAT & flags) {
2558 		struct compat_msghdr __user *msg_compat;
2559 
2560 		msg_compat = (struct compat_msghdr __user *) umsg;
2561 		err = get_compat_msghdr(msg, msg_compat, uaddr, iov);
2562 	} else {
2563 		err = copy_msghdr_from_user(msg, umsg, uaddr, iov);
2564 	}
2565 	if (err < 0)
2566 		return err;
2567 
2568 	return 0;
2569 }
2570 
____sys_recvmsg(struct socket *sock, struct msghdr *msg_sys, struct user_msghdr __user *msg, struct sockaddr __user *uaddr, unsigned int flags, int nosec)2571 static int ____sys_recvmsg(struct socket *sock, struct msghdr *msg_sys,
2572 			   struct user_msghdr __user *msg,
2573 			   struct sockaddr __user *uaddr,
2574 			   unsigned int flags, int nosec)
2575 {
2576 	struct compat_msghdr __user *msg_compat =
2577 					(struct compat_msghdr __user *) msg;
2578 	int __user *uaddr_len = COMPAT_NAMELEN(msg);
2579 	struct sockaddr_storage addr;
2580 	unsigned long cmsg_ptr;
2581 	int len;
2582 	ssize_t err;
2583 
2584 	msg_sys->msg_name = &addr;
2585 	cmsg_ptr = (unsigned long)msg_sys->msg_control;
2586 	msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT);
2587 
2588 	/* We assume all kernel code knows the size of sockaddr_storage */
2589 	msg_sys->msg_namelen = 0;
2590 
2591 	if (sock->file->f_flags & O_NONBLOCK)
2592 		flags |= MSG_DONTWAIT;
2593 
2594 	if (unlikely(nosec))
2595 		err = sock_recvmsg_nosec(sock, msg_sys, flags);
2596 	else
2597 		err = sock_recvmsg(sock, msg_sys, flags);
2598 
2599 	if (err < 0)
2600 		goto out;
2601 	len = err;
2602 
2603 	if (uaddr != NULL) {
2604 		err = move_addr_to_user(&addr,
2605 					msg_sys->msg_namelen, uaddr,
2606 					uaddr_len);
2607 		if (err < 0)
2608 			goto out;
2609 	}
2610 	err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT),
2611 			 COMPAT_FLAGS(msg));
2612 	if (err)
2613 		goto out;
2614 	if (MSG_CMSG_COMPAT & flags)
2615 		err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2616 				 &msg_compat->msg_controllen);
2617 	else
2618 		err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2619 				 &msg->msg_controllen);
2620 	if (err)
2621 		goto out;
2622 	err = len;
2623 out:
2624 	return err;
2625 }
2626 
___sys_recvmsg(struct socket *sock, struct user_msghdr __user *msg, struct msghdr *msg_sys, unsigned int flags, int nosec)2627 static int ___sys_recvmsg(struct socket *sock, struct user_msghdr __user *msg,
2628 			 struct msghdr *msg_sys, unsigned int flags, int nosec)
2629 {
2630 	struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
2631 	/* user mode address pointers */
2632 	struct sockaddr __user *uaddr;
2633 	ssize_t err;
2634 
2635 	err = recvmsg_copy_msghdr(msg_sys, msg, flags, &uaddr, &iov);
2636 	if (err < 0)
2637 		return err;
2638 
2639 	err = ____sys_recvmsg(sock, msg_sys, msg, uaddr, flags, nosec);
2640 	kfree(iov);
2641 	return err;
2642 }
2643 
2644 /*
2645  *	BSD recvmsg interface
2646  */
2647 
__sys_recvmsg_sock(struct socket *sock, struct msghdr *msg, struct user_msghdr __user *umsg, struct sockaddr __user *uaddr, unsigned int flags)2648 long __sys_recvmsg_sock(struct socket *sock, struct msghdr *msg,
2649 			struct user_msghdr __user *umsg,
2650 			struct sockaddr __user *uaddr, unsigned int flags)
2651 {
2652 	return ____sys_recvmsg(sock, msg, umsg, uaddr, flags, 0);
2653 }
2654 
__sys_recvmsg(int fd, struct user_msghdr __user *msg, unsigned int flags, bool forbid_cmsg_compat)2655 long __sys_recvmsg(int fd, struct user_msghdr __user *msg, unsigned int flags,
2656 		   bool forbid_cmsg_compat)
2657 {
2658 	int fput_needed, err;
2659 	struct msghdr msg_sys;
2660 	struct socket *sock;
2661 
2662 	if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2663 		return -EINVAL;
2664 
2665 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2666 	if (!sock)
2667 		goto out;
2668 
2669 	err = ___sys_recvmsg(sock, msg, &msg_sys, flags, 0);
2670 
2671 	fput_light(sock->file, fput_needed);
2672 out:
2673 	return err;
2674 }
2675 
SYSCALL_DEFINE3(recvmsg, int, fd, struct user_msghdr __user *, msg, unsigned int, flags)2676 SYSCALL_DEFINE3(recvmsg, int, fd, struct user_msghdr __user *, msg,
2677 		unsigned int, flags)
2678 {
2679 	return __sys_recvmsg(fd, msg, flags, true);
2680 }
2681 
2682 /*
2683  *     Linux recvmmsg interface
2684  */
2685 
do_recvmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen, unsigned int flags, struct timespec64 *timeout)2686 static int do_recvmmsg(int fd, struct mmsghdr __user *mmsg,
2687 			  unsigned int vlen, unsigned int flags,
2688 			  struct timespec64 *timeout)
2689 {
2690 	int fput_needed, err, datagrams;
2691 	struct socket *sock;
2692 	struct mmsghdr __user *entry;
2693 	struct compat_mmsghdr __user *compat_entry;
2694 	struct msghdr msg_sys;
2695 	struct timespec64 end_time;
2696 	struct timespec64 timeout64;
2697 
2698 	if (timeout &&
2699 	    poll_select_set_timeout(&end_time, timeout->tv_sec,
2700 				    timeout->tv_nsec))
2701 		return -EINVAL;
2702 
2703 	datagrams = 0;
2704 
2705 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2706 	if (!sock)
2707 		return err;
2708 
2709 	if (likely(!(flags & MSG_ERRQUEUE))) {
2710 		err = sock_error(sock->sk);
2711 		if (err) {
2712 			datagrams = err;
2713 			goto out_put;
2714 		}
2715 	}
2716 
2717 	entry = mmsg;
2718 	compat_entry = (struct compat_mmsghdr __user *)mmsg;
2719 
2720 	while (datagrams < vlen) {
2721 		/*
2722 		 * No need to ask LSM for more than the first datagram.
2723 		 */
2724 		if (MSG_CMSG_COMPAT & flags) {
2725 			err = ___sys_recvmsg(sock, (struct user_msghdr __user *)compat_entry,
2726 					     &msg_sys, flags & ~MSG_WAITFORONE,
2727 					     datagrams);
2728 			if (err < 0)
2729 				break;
2730 			err = __put_user(err, &compat_entry->msg_len);
2731 			++compat_entry;
2732 		} else {
2733 			err = ___sys_recvmsg(sock,
2734 					     (struct user_msghdr __user *)entry,
2735 					     &msg_sys, flags & ~MSG_WAITFORONE,
2736 					     datagrams);
2737 			if (err < 0)
2738 				break;
2739 			err = put_user(err, &entry->msg_len);
2740 			++entry;
2741 		}
2742 
2743 		if (err)
2744 			break;
2745 		++datagrams;
2746 
2747 		/* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
2748 		if (flags & MSG_WAITFORONE)
2749 			flags |= MSG_DONTWAIT;
2750 
2751 		if (timeout) {
2752 			ktime_get_ts64(&timeout64);
2753 			*timeout = timespec64_sub(end_time, timeout64);
2754 			if (timeout->tv_sec < 0) {
2755 				timeout->tv_sec = timeout->tv_nsec = 0;
2756 				break;
2757 			}
2758 
2759 			/* Timeout, return less than vlen datagrams */
2760 			if (timeout->tv_nsec == 0 && timeout->tv_sec == 0)
2761 				break;
2762 		}
2763 
2764 		/* Out of band data, return right away */
2765 		if (msg_sys.msg_flags & MSG_OOB)
2766 			break;
2767 		cond_resched();
2768 	}
2769 
2770 	if (err == 0)
2771 		goto out_put;
2772 
2773 	if (datagrams == 0) {
2774 		datagrams = err;
2775 		goto out_put;
2776 	}
2777 
2778 	/*
2779 	 * We may return less entries than requested (vlen) if the
2780 	 * sock is non block and there aren't enough datagrams...
2781 	 */
2782 	if (err != -EAGAIN) {
2783 		/*
2784 		 * ... or  if recvmsg returns an error after we
2785 		 * received some datagrams, where we record the
2786 		 * error to return on the next call or if the
2787 		 * app asks about it using getsockopt(SO_ERROR).
2788 		 */
2789 		WRITE_ONCE(sock->sk->sk_err, -err);
2790 	}
2791 out_put:
2792 	fput_light(sock->file, fput_needed);
2793 
2794 	return datagrams;
2795 }
2796 
__sys_recvmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen, unsigned int flags, struct __kernel_timespec __user *timeout, struct old_timespec32 __user *timeout32)2797 int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg,
2798 		   unsigned int vlen, unsigned int flags,
2799 		   struct __kernel_timespec __user *timeout,
2800 		   struct old_timespec32 __user *timeout32)
2801 {
2802 	int datagrams;
2803 	struct timespec64 timeout_sys;
2804 
2805 	if (timeout && get_timespec64(&timeout_sys, timeout))
2806 		return -EFAULT;
2807 
2808 	if (timeout32 && get_old_timespec32(&timeout_sys, timeout32))
2809 		return -EFAULT;
2810 
2811 	if (!timeout && !timeout32)
2812 		return do_recvmmsg(fd, mmsg, vlen, flags, NULL);
2813 
2814 	datagrams = do_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys);
2815 
2816 	if (datagrams <= 0)
2817 		return datagrams;
2818 
2819 	if (timeout && put_timespec64(&timeout_sys, timeout))
2820 		datagrams = -EFAULT;
2821 
2822 	if (timeout32 && put_old_timespec32(&timeout_sys, timeout32))
2823 		datagrams = -EFAULT;
2824 
2825 	return datagrams;
2826 }
2827 
SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg, unsigned int, vlen, unsigned int, flags, struct __kernel_timespec __user *, timeout)2828 SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg,
2829 		unsigned int, vlen, unsigned int, flags,
2830 		struct __kernel_timespec __user *, timeout)
2831 {
2832 	if (flags & MSG_CMSG_COMPAT)
2833 		return -EINVAL;
2834 
2835 	return __sys_recvmmsg(fd, mmsg, vlen, flags, timeout, NULL);
2836 }
2837 
2838 #ifdef CONFIG_COMPAT_32BIT_TIME
SYSCALL_DEFINE5(recvmmsg_time32, int, fd, struct mmsghdr __user *, mmsg, unsigned int, vlen, unsigned int, flags, struct old_timespec32 __user *, timeout)2839 SYSCALL_DEFINE5(recvmmsg_time32, int, fd, struct mmsghdr __user *, mmsg,
2840 		unsigned int, vlen, unsigned int, flags,
2841 		struct old_timespec32 __user *, timeout)
2842 {
2843 	if (flags & MSG_CMSG_COMPAT)
2844 		return -EINVAL;
2845 
2846 	return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL, timeout);
2847 }
2848 #endif
2849 
2850 #ifdef __ARCH_WANT_SYS_SOCKETCALL
2851 /* Argument list sizes for sys_socketcall */
2852 #define AL(x) ((x) * sizeof(unsigned long))
2853 static const unsigned char nargs[21] = {
2854 	AL(0), AL(3), AL(3), AL(3), AL(2), AL(3),
2855 	AL(3), AL(3), AL(4), AL(4), AL(4), AL(6),
2856 	AL(6), AL(2), AL(5), AL(5), AL(3), AL(3),
2857 	AL(4), AL(5), AL(4)
2858 };
2859 
2860 #undef AL
2861 
2862 /*
2863  *	System call vectors.
2864  *
2865  *	Argument checking cleaned up. Saved 20% in size.
2866  *  This function doesn't need to set the kernel lock because
2867  *  it is set by the callees.
2868  */
2869 
SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args)2870 SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args)
2871 {
2872 	unsigned long a[AUDITSC_ARGS];
2873 	unsigned long a0, a1;
2874 	int err;
2875 	unsigned int len;
2876 
2877 	if (call < 1 || call > SYS_SENDMMSG)
2878 		return -EINVAL;
2879 	call = array_index_nospec(call, SYS_SENDMMSG + 1);
2880 
2881 	len = nargs[call];
2882 	if (len > sizeof(a))
2883 		return -EINVAL;
2884 
2885 	/* copy_from_user should be SMP safe. */
2886 	if (copy_from_user(a, args, len))
2887 		return -EFAULT;
2888 
2889 	err = audit_socketcall(nargs[call] / sizeof(unsigned long), a);
2890 	if (err)
2891 		return err;
2892 
2893 	a0 = a[0];
2894 	a1 = a[1];
2895 
2896 	switch (call) {
2897 	case SYS_SOCKET:
2898 		err = __sys_socket(a0, a1, a[2]);
2899 		break;
2900 	case SYS_BIND:
2901 		err = __sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
2902 		break;
2903 	case SYS_CONNECT:
2904 		err = __sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
2905 		break;
2906 	case SYS_LISTEN:
2907 		err = __sys_listen(a0, a1);
2908 		break;
2909 	case SYS_ACCEPT:
2910 		err = __sys_accept4(a0, (struct sockaddr __user *)a1,
2911 				    (int __user *)a[2], 0);
2912 		break;
2913 	case SYS_GETSOCKNAME:
2914 		err =
2915 		    __sys_getsockname(a0, (struct sockaddr __user *)a1,
2916 				      (int __user *)a[2]);
2917 		break;
2918 	case SYS_GETPEERNAME:
2919 		err =
2920 		    __sys_getpeername(a0, (struct sockaddr __user *)a1,
2921 				      (int __user *)a[2]);
2922 		break;
2923 	case SYS_SOCKETPAIR:
2924 		err = __sys_socketpair(a0, a1, a[2], (int __user *)a[3]);
2925 		break;
2926 	case SYS_SEND:
2927 		err = __sys_sendto(a0, (void __user *)a1, a[2], a[3],
2928 				   NULL, 0);
2929 		break;
2930 	case SYS_SENDTO:
2931 		err = __sys_sendto(a0, (void __user *)a1, a[2], a[3],
2932 				   (struct sockaddr __user *)a[4], a[5]);
2933 		break;
2934 	case SYS_RECV:
2935 		err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2936 				     NULL, NULL);
2937 		break;
2938 	case SYS_RECVFROM:
2939 		err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2940 				     (struct sockaddr __user *)a[4],
2941 				     (int __user *)a[5]);
2942 		break;
2943 	case SYS_SHUTDOWN:
2944 		err = __sys_shutdown(a0, a1);
2945 		break;
2946 	case SYS_SETSOCKOPT:
2947 		err = __sys_setsockopt(a0, a1, a[2], (char __user *)a[3],
2948 				       a[4]);
2949 		break;
2950 	case SYS_GETSOCKOPT:
2951 		err =
2952 		    __sys_getsockopt(a0, a1, a[2], (char __user *)a[3],
2953 				     (int __user *)a[4]);
2954 		break;
2955 	case SYS_SENDMSG:
2956 		err = __sys_sendmsg(a0, (struct user_msghdr __user *)a1,
2957 				    a[2], true);
2958 		break;
2959 	case SYS_SENDMMSG:
2960 		err = __sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2],
2961 				     a[3], true);
2962 		break;
2963 	case SYS_RECVMSG:
2964 		err = __sys_recvmsg(a0, (struct user_msghdr __user *)a1,
2965 				    a[2], true);
2966 		break;
2967 	case SYS_RECVMMSG:
2968 		if (IS_ENABLED(CONFIG_64BIT))
2969 			err = __sys_recvmmsg(a0, (struct mmsghdr __user *)a1,
2970 					     a[2], a[3],
2971 					     (struct __kernel_timespec __user *)a[4],
2972 					     NULL);
2973 		else
2974 			err = __sys_recvmmsg(a0, (struct mmsghdr __user *)a1,
2975 					     a[2], a[3], NULL,
2976 					     (struct old_timespec32 __user *)a[4]);
2977 		break;
2978 	case SYS_ACCEPT4:
2979 		err = __sys_accept4(a0, (struct sockaddr __user *)a1,
2980 				    (int __user *)a[2], a[3]);
2981 		break;
2982 	default:
2983 		err = -EINVAL;
2984 		break;
2985 	}
2986 	return err;
2987 }
2988 
2989 #endif				/* __ARCH_WANT_SYS_SOCKETCALL */
2990 
2991 /**
2992  *	sock_register - add a socket protocol handler
2993  *	@ops: description of protocol
2994  *
2995  *	This function is called by a protocol handler that wants to
2996  *	advertise its address family, and have it linked into the
2997  *	socket interface. The value ops->family corresponds to the
2998  *	socket system call protocol family.
2999  */
sock_register(const struct net_proto_family *ops)3000 int sock_register(const struct net_proto_family *ops)
3001 {
3002 	int err;
3003 
3004 	if (ops->family >= NPROTO) {
3005 		pr_crit("protocol %d >= NPROTO(%d)\n", ops->family, NPROTO);
3006 		return -ENOBUFS;
3007 	}
3008 
3009 	spin_lock(&net_family_lock);
3010 	if (rcu_dereference_protected(net_families[ops->family],
3011 				      lockdep_is_held(&net_family_lock)))
3012 		err = -EEXIST;
3013 	else {
3014 		rcu_assign_pointer(net_families[ops->family], ops);
3015 		err = 0;
3016 	}
3017 	spin_unlock(&net_family_lock);
3018 
3019 	pr_info("NET: Registered protocol family %d\n", ops->family);
3020 	return err;
3021 }
3022 EXPORT_SYMBOL(sock_register);
3023 
3024 /**
3025  *	sock_unregister - remove a protocol handler
3026  *	@family: protocol family to remove
3027  *
3028  *	This function is called by a protocol handler that wants to
3029  *	remove its address family, and have it unlinked from the
3030  *	new socket creation.
3031  *
3032  *	If protocol handler is a module, then it can use module reference
3033  *	counts to protect against new references. If protocol handler is not
3034  *	a module then it needs to provide its own protection in
3035  *	the ops->create routine.
3036  */
sock_unregister(int family)3037 void sock_unregister(int family)
3038 {
3039 	BUG_ON(family < 0 || family >= NPROTO);
3040 
3041 	spin_lock(&net_family_lock);
3042 	RCU_INIT_POINTER(net_families[family], NULL);
3043 	spin_unlock(&net_family_lock);
3044 
3045 	synchronize_rcu();
3046 
3047 	pr_info("NET: Unregistered protocol family %d\n", family);
3048 }
3049 EXPORT_SYMBOL(sock_unregister);
3050 
sock_is_registered(int family)3051 bool sock_is_registered(int family)
3052 {
3053 	return family < NPROTO && rcu_access_pointer(net_families[family]);
3054 }
3055 
sock_init(void)3056 static int __init sock_init(void)
3057 {
3058 	int err;
3059 	/*
3060 	 *      Initialize the network sysctl infrastructure.
3061 	 */
3062 	err = net_sysctl_init();
3063 	if (err)
3064 		goto out;
3065 
3066 	/*
3067 	 *      Initialize skbuff SLAB cache
3068 	 */
3069 	skb_init();
3070 
3071 	/*
3072 	 *      Initialize the protocols module.
3073 	 */
3074 
3075 	init_inodecache();
3076 
3077 	err = register_filesystem(&sock_fs_type);
3078 	if (err)
3079 		goto out;
3080 	sock_mnt = kern_mount(&sock_fs_type);
3081 	if (IS_ERR(sock_mnt)) {
3082 		err = PTR_ERR(sock_mnt);
3083 		goto out_mount;
3084 	}
3085 
3086 	/* The real protocol initialization is performed in later initcalls.
3087 	 */
3088 
3089 #ifdef CONFIG_NETFILTER
3090 	err = netfilter_init();
3091 	if (err)
3092 		goto out;
3093 #endif
3094 
3095 	ptp_classifier_init();
3096 
3097 out:
3098 	return err;
3099 
3100 out_mount:
3101 	unregister_filesystem(&sock_fs_type);
3102 	goto out;
3103 }
3104 
3105 core_initcall(sock_init);	/* early initcall */
3106 
3107 #ifdef CONFIG_PROC_FS
socket_seq_show(struct seq_file *seq)3108 void socket_seq_show(struct seq_file *seq)
3109 {
3110 	seq_printf(seq, "sockets: used %d\n",
3111 		   sock_inuse_get(seq->private));
3112 }
3113 #endif				/* CONFIG_PROC_FS */
3114 
3115 #ifdef CONFIG_COMPAT
compat_dev_ifconf(struct net *net, struct compat_ifconf __user *uifc32)3116 static int compat_dev_ifconf(struct net *net, struct compat_ifconf __user *uifc32)
3117 {
3118 	struct compat_ifconf ifc32;
3119 	struct ifconf ifc;
3120 	int err;
3121 
3122 	if (copy_from_user(&ifc32, uifc32, sizeof(struct compat_ifconf)))
3123 		return -EFAULT;
3124 
3125 	ifc.ifc_len = ifc32.ifc_len;
3126 	ifc.ifc_req = compat_ptr(ifc32.ifcbuf);
3127 
3128 	rtnl_lock();
3129 	err = dev_ifconf(net, &ifc, sizeof(struct compat_ifreq));
3130 	rtnl_unlock();
3131 	if (err)
3132 		return err;
3133 
3134 	ifc32.ifc_len = ifc.ifc_len;
3135 	if (copy_to_user(uifc32, &ifc32, sizeof(struct compat_ifconf)))
3136 		return -EFAULT;
3137 
3138 	return 0;
3139 }
3140 
compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32)3141 static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32)
3142 {
3143 	compat_uptr_t uptr32;
3144 	struct ifreq ifr;
3145 	void __user *saved;
3146 	int err;
3147 
3148 	if (copy_from_user(&ifr, uifr32, sizeof(struct compat_ifreq)))
3149 		return -EFAULT;
3150 
3151 	if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu))
3152 		return -EFAULT;
3153 
3154 	saved = ifr.ifr_settings.ifs_ifsu.raw_hdlc;
3155 	ifr.ifr_settings.ifs_ifsu.raw_hdlc = compat_ptr(uptr32);
3156 
3157 	err = dev_ioctl(net, SIOCWANDEV, &ifr, NULL);
3158 	if (!err) {
3159 		ifr.ifr_settings.ifs_ifsu.raw_hdlc = saved;
3160 		if (copy_to_user(uifr32, &ifr, sizeof(struct compat_ifreq)))
3161 			err = -EFAULT;
3162 	}
3163 	return err;
3164 }
3165 
3166 /* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */
compat_ifr_data_ioctl(struct net *net, unsigned int cmd, struct compat_ifreq __user *u_ifreq32)3167 static int compat_ifr_data_ioctl(struct net *net, unsigned int cmd,
3168 				 struct compat_ifreq __user *u_ifreq32)
3169 {
3170 	struct ifreq ifreq;
3171 	u32 data32;
3172 
3173 	if (!is_socket_ioctl_cmd(cmd))
3174 		return -ENOTTY;
3175 	if (copy_from_user(ifreq.ifr_name, u_ifreq32->ifr_name, IFNAMSIZ))
3176 		return -EFAULT;
3177 	if (get_user(data32, &u_ifreq32->ifr_data))
3178 		return -EFAULT;
3179 	ifreq.ifr_data = compat_ptr(data32);
3180 
3181 	return dev_ioctl(net, cmd, &ifreq, NULL);
3182 }
3183 
compat_ifreq_ioctl(struct net *net, struct socket *sock, unsigned int cmd, struct compat_ifreq __user *uifr32)3184 static int compat_ifreq_ioctl(struct net *net, struct socket *sock,
3185 			      unsigned int cmd,
3186 			      struct compat_ifreq __user *uifr32)
3187 {
3188 	struct ifreq __user *uifr;
3189 	int err;
3190 
3191 	/* Handle the fact that while struct ifreq has the same *layout* on
3192 	 * 32/64 for everything but ifreq::ifru_ifmap and ifreq::ifru_data,
3193 	 * which are handled elsewhere, it still has different *size* due to
3194 	 * ifreq::ifru_ifmap (which is 16 bytes on 32 bit, 24 bytes on 64-bit,
3195 	 * resulting in struct ifreq being 32 and 40 bytes respectively).
3196 	 * As a result, if the struct happens to be at the end of a page and
3197 	 * the next page isn't readable/writable, we get a fault. To prevent
3198 	 * that, copy back and forth to the full size.
3199 	 */
3200 
3201 	uifr = compat_alloc_user_space(sizeof(*uifr));
3202 	if (copy_in_user(uifr, uifr32, sizeof(*uifr32)))
3203 		return -EFAULT;
3204 
3205 	err = sock_do_ioctl(net, sock, cmd, (unsigned long)uifr);
3206 
3207 	if (!err) {
3208 		switch (cmd) {
3209 		case SIOCGIFFLAGS:
3210 		case SIOCGIFMETRIC:
3211 		case SIOCGIFMTU:
3212 		case SIOCGIFMEM:
3213 		case SIOCGIFHWADDR:
3214 		case SIOCGIFINDEX:
3215 		case SIOCGIFADDR:
3216 		case SIOCGIFBRDADDR:
3217 		case SIOCGIFDSTADDR:
3218 		case SIOCGIFNETMASK:
3219 		case SIOCGIFPFLAGS:
3220 		case SIOCGIFTXQLEN:
3221 		case SIOCGMIIPHY:
3222 		case SIOCGMIIREG:
3223 		case SIOCGIFNAME:
3224 			if (copy_in_user(uifr32, uifr, sizeof(*uifr32)))
3225 				err = -EFAULT;
3226 			break;
3227 		}
3228 	}
3229 	return err;
3230 }
3231 
compat_sioc_ifmap(struct net *net, unsigned int cmd, struct compat_ifreq __user *uifr32)3232 static int compat_sioc_ifmap(struct net *net, unsigned int cmd,
3233 			struct compat_ifreq __user *uifr32)
3234 {
3235 	struct ifreq ifr;
3236 	struct compat_ifmap __user *uifmap32;
3237 	int err;
3238 
3239 	uifmap32 = &uifr32->ifr_ifru.ifru_map;
3240 	err = copy_from_user(&ifr, uifr32, sizeof(ifr.ifr_name));
3241 	err |= get_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
3242 	err |= get_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
3243 	err |= get_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
3244 	err |= get_user(ifr.ifr_map.irq, &uifmap32->irq);
3245 	err |= get_user(ifr.ifr_map.dma, &uifmap32->dma);
3246 	err |= get_user(ifr.ifr_map.port, &uifmap32->port);
3247 	if (err)
3248 		return -EFAULT;
3249 
3250 	err = dev_ioctl(net, cmd, &ifr, NULL);
3251 
3252 	if (cmd == SIOCGIFMAP && !err) {
3253 		err = copy_to_user(uifr32, &ifr, sizeof(ifr.ifr_name));
3254 		err |= put_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
3255 		err |= put_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
3256 		err |= put_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
3257 		err |= put_user(ifr.ifr_map.irq, &uifmap32->irq);
3258 		err |= put_user(ifr.ifr_map.dma, &uifmap32->dma);
3259 		err |= put_user(ifr.ifr_map.port, &uifmap32->port);
3260 		if (err)
3261 			err = -EFAULT;
3262 	}
3263 	return err;
3264 }
3265 
3266 /* Since old style bridge ioctl's endup using SIOCDEVPRIVATE
3267  * for some operations; this forces use of the newer bridge-utils that
3268  * use compatible ioctls
3269  */
old_bridge_ioctl(compat_ulong_t __user *argp)3270 static int old_bridge_ioctl(compat_ulong_t __user *argp)
3271 {
3272 	compat_ulong_t tmp;
3273 
3274 	if (get_user(tmp, argp))
3275 		return -EFAULT;
3276 	if (tmp == BRCTL_GET_VERSION)
3277 		return BRCTL_VERSION + 1;
3278 	return -EINVAL;
3279 }
3280 
compat_sock_ioctl_trans(struct file *file, struct socket *sock, unsigned int cmd, unsigned long arg)3281 static int compat_sock_ioctl_trans(struct file *file, struct socket *sock,
3282 			 unsigned int cmd, unsigned long arg)
3283 {
3284 	void __user *argp = compat_ptr(arg);
3285 	struct sock *sk = sock->sk;
3286 	struct net *net = sock_net(sk);
3287 
3288 	if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))
3289 		return compat_ifr_data_ioctl(net, cmd, argp);
3290 
3291 	switch (cmd) {
3292 	case SIOCSIFBR:
3293 	case SIOCGIFBR:
3294 		return old_bridge_ioctl(argp);
3295 	case SIOCGIFCONF:
3296 		return compat_dev_ifconf(net, argp);
3297 	case SIOCWANDEV:
3298 		return compat_siocwandev(net, argp);
3299 	case SIOCGIFMAP:
3300 	case SIOCSIFMAP:
3301 		return compat_sioc_ifmap(net, cmd, argp);
3302 	case SIOCGSTAMP_OLD:
3303 	case SIOCGSTAMPNS_OLD:
3304 		if (!sock->ops->gettstamp)
3305 			return -ENOIOCTLCMD;
3306 		return sock->ops->gettstamp(sock, argp, cmd == SIOCGSTAMP_OLD,
3307 					    !COMPAT_USE_64BIT_TIME);
3308 
3309 	case SIOCETHTOOL:
3310 	case SIOCBONDSLAVEINFOQUERY:
3311 	case SIOCBONDINFOQUERY:
3312 	case SIOCSHWTSTAMP:
3313 	case SIOCGHWTSTAMP:
3314 		return compat_ifr_data_ioctl(net, cmd, argp);
3315 
3316 	case FIOSETOWN:
3317 	case SIOCSPGRP:
3318 	case FIOGETOWN:
3319 	case SIOCGPGRP:
3320 	case SIOCBRADDBR:
3321 	case SIOCBRDELBR:
3322 	case SIOCGIFVLAN:
3323 	case SIOCSIFVLAN:
3324 	case SIOCADDDLCI:
3325 	case SIOCDELDLCI:
3326 	case SIOCGSKNS:
3327 	case SIOCGSTAMP_NEW:
3328 	case SIOCGSTAMPNS_NEW:
3329 		return sock_ioctl(file, cmd, arg);
3330 
3331 	case SIOCGIFFLAGS:
3332 	case SIOCSIFFLAGS:
3333 	case SIOCGIFMETRIC:
3334 	case SIOCSIFMETRIC:
3335 	case SIOCGIFMTU:
3336 	case SIOCSIFMTU:
3337 	case SIOCGIFMEM:
3338 	case SIOCSIFMEM:
3339 	case SIOCGIFHWADDR:
3340 	case SIOCSIFHWADDR:
3341 	case SIOCADDMULTI:
3342 	case SIOCDELMULTI:
3343 	case SIOCGIFINDEX:
3344 	case SIOCGIFADDR:
3345 	case SIOCSIFADDR:
3346 	case SIOCSIFHWBROADCAST:
3347 	case SIOCDIFADDR:
3348 	case SIOCGIFBRDADDR:
3349 	case SIOCSIFBRDADDR:
3350 	case SIOCGIFDSTADDR:
3351 	case SIOCSIFDSTADDR:
3352 	case SIOCGIFNETMASK:
3353 	case SIOCSIFNETMASK:
3354 	case SIOCSIFPFLAGS:
3355 	case SIOCGIFPFLAGS:
3356 	case SIOCGIFTXQLEN:
3357 	case SIOCSIFTXQLEN:
3358 	case SIOCBRADDIF:
3359 	case SIOCBRDELIF:
3360 	case SIOCGIFNAME:
3361 	case SIOCSIFNAME:
3362 	case SIOCGMIIPHY:
3363 	case SIOCGMIIREG:
3364 	case SIOCSMIIREG:
3365 	case SIOCBONDENSLAVE:
3366 	case SIOCBONDRELEASE:
3367 	case SIOCBONDSETHWADDR:
3368 	case SIOCBONDCHANGEACTIVE:
3369 		return compat_ifreq_ioctl(net, sock, cmd, argp);
3370 
3371 	case SIOCSARP:
3372 	case SIOCGARP:
3373 	case SIOCDARP:
3374 	case SIOCOUTQ:
3375 	case SIOCOUTQNSD:
3376 	case SIOCATMARK:
3377 		return sock_do_ioctl(net, sock, cmd, arg);
3378 	}
3379 
3380 	return -ENOIOCTLCMD;
3381 }
3382 
compat_sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg)3383 static long compat_sock_ioctl(struct file *file, unsigned int cmd,
3384 			      unsigned long arg)
3385 {
3386 	struct socket *sock = file->private_data;
3387 	int ret = -ENOIOCTLCMD;
3388 	struct sock *sk;
3389 	struct net *net;
3390 
3391 	sk = sock->sk;
3392 	net = sock_net(sk);
3393 
3394 	if (sock->ops->compat_ioctl)
3395 		ret = sock->ops->compat_ioctl(sock, cmd, arg);
3396 
3397 	if (ret == -ENOIOCTLCMD &&
3398 	    (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST))
3399 		ret = compat_wext_handle_ioctl(net, cmd, arg);
3400 
3401 	if (ret == -ENOIOCTLCMD)
3402 		ret = compat_sock_ioctl_trans(file, sock, cmd, arg);
3403 
3404 	return ret;
3405 }
3406 #endif
3407 
3408 /**
3409  *	kernel_bind - bind an address to a socket (kernel space)
3410  *	@sock: socket
3411  *	@addr: address
3412  *	@addrlen: length of address
3413  *
3414  *	Returns 0 or an error.
3415  */
3416 
kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen)3417 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen)
3418 {
3419 	struct sockaddr_storage address;
3420 
3421 	memcpy(&address, addr, addrlen);
3422 
3423 	return sock->ops->bind(sock, (struct sockaddr *)&address, addrlen);
3424 }
3425 EXPORT_SYMBOL(kernel_bind);
3426 
3427 /**
3428  *	kernel_listen - move socket to listening state (kernel space)
3429  *	@sock: socket
3430  *	@backlog: pending connections queue size
3431  *
3432  *	Returns 0 or an error.
3433  */
3434 
kernel_listen(struct socket *sock, int backlog)3435 int kernel_listen(struct socket *sock, int backlog)
3436 {
3437 	return sock->ops->listen(sock, backlog);
3438 }
3439 EXPORT_SYMBOL(kernel_listen);
3440 
3441 /**
3442  *	kernel_accept - accept a connection (kernel space)
3443  *	@sock: listening socket
3444  *	@newsock: new connected socket
3445  *	@flags: flags
3446  *
3447  *	@flags must be SOCK_CLOEXEC, SOCK_NONBLOCK or 0.
3448  *	If it fails, @newsock is guaranteed to be %NULL.
3449  *	Returns 0 or an error.
3450  */
3451 
kernel_accept(struct socket *sock, struct socket **newsock, int flags)3452 int kernel_accept(struct socket *sock, struct socket **newsock, int flags)
3453 {
3454 	struct sock *sk = sock->sk;
3455 	int err;
3456 
3457 	err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol,
3458 			       newsock);
3459 	if (err < 0)
3460 		goto done;
3461 
3462 	err = sock->ops->accept(sock, *newsock, flags, true);
3463 	if (err < 0) {
3464 		sock_release(*newsock);
3465 		*newsock = NULL;
3466 		goto done;
3467 	}
3468 
3469 	(*newsock)->ops = sock->ops;
3470 	__module_get((*newsock)->ops->owner);
3471 
3472 done:
3473 	return err;
3474 }
3475 EXPORT_SYMBOL(kernel_accept);
3476 
3477 /**
3478  *	kernel_connect - connect a socket (kernel space)
3479  *	@sock: socket
3480  *	@addr: address
3481  *	@addrlen: address length
3482  *	@flags: flags (O_NONBLOCK, ...)
3483  *
3484  *	For datagram sockets, @addr is the addres to which datagrams are sent
3485  *	by default, and the only address from which datagrams are received.
3486  *	For stream sockets, attempts to connect to @addr.
3487  *	Returns 0 or an error code.
3488  */
3489 
kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen, int flags)3490 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen,
3491 		   int flags)
3492 {
3493 	struct sockaddr_storage address;
3494 
3495 	memcpy(&address, addr, addrlen);
3496 
3497 	return sock->ops->connect(sock, (struct sockaddr *)&address, addrlen, flags);
3498 }
3499 EXPORT_SYMBOL(kernel_connect);
3500 
3501 /**
3502  *	kernel_getsockname - get the address which the socket is bound (kernel space)
3503  *	@sock: socket
3504  *	@addr: address holder
3505  *
3506  * 	Fills the @addr pointer with the address which the socket is bound.
3507  *	Returns 0 or an error code.
3508  */
3509 
kernel_getsockname(struct socket *sock, struct sockaddr *addr)3510 int kernel_getsockname(struct socket *sock, struct sockaddr *addr)
3511 {
3512 	return sock->ops->getname(sock, addr, 0);
3513 }
3514 EXPORT_SYMBOL(kernel_getsockname);
3515 
3516 /**
3517  *	kernel_getpeername - get the address which the socket is connected (kernel space)
3518  *	@sock: socket
3519  *	@addr: address holder
3520  *
3521  * 	Fills the @addr pointer with the address which the socket is connected.
3522  *	Returns 0 or an error code.
3523  */
3524 
kernel_getpeername(struct socket *sock, struct sockaddr *addr)3525 int kernel_getpeername(struct socket *sock, struct sockaddr *addr)
3526 {
3527 	return sock->ops->getname(sock, addr, 1);
3528 }
3529 EXPORT_SYMBOL(kernel_getpeername);
3530 
3531 /**
3532  *	kernel_sendpage - send a &page through a socket (kernel space)
3533  *	@sock: socket
3534  *	@page: page
3535  *	@offset: page offset
3536  *	@size: total size in bytes
3537  *	@flags: flags (MSG_DONTWAIT, ...)
3538  *
3539  *	Returns the total amount sent in bytes or an error.
3540  */
3541 
kernel_sendpage(struct socket *sock, struct page *page, int offset, size_t size, int flags)3542 int kernel_sendpage(struct socket *sock, struct page *page, int offset,
3543 		    size_t size, int flags)
3544 {
3545 	if (sock->ops->sendpage) {
3546 		/* Warn in case the improper page to zero-copy send */
3547 		WARN_ONCE(!sendpage_ok(page), "improper page for zero-copy send");
3548 		return sock->ops->sendpage(sock, page, offset, size, flags);
3549 	}
3550 	return sock_no_sendpage(sock, page, offset, size, flags);
3551 }
3552 EXPORT_SYMBOL(kernel_sendpage);
3553 
3554 /**
3555  *	kernel_sendpage_locked - send a &page through the locked sock (kernel space)
3556  *	@sk: sock
3557  *	@page: page
3558  *	@offset: page offset
3559  *	@size: total size in bytes
3560  *	@flags: flags (MSG_DONTWAIT, ...)
3561  *
3562  *	Returns the total amount sent in bytes or an error.
3563  *	Caller must hold @sk.
3564  */
3565 
kernel_sendpage_locked(struct sock *sk, struct page *page, int offset, size_t size, int flags)3566 int kernel_sendpage_locked(struct sock *sk, struct page *page, int offset,
3567 			   size_t size, int flags)
3568 {
3569 	struct socket *sock = sk->sk_socket;
3570 
3571 	if (sock->ops->sendpage_locked)
3572 		return sock->ops->sendpage_locked(sk, page, offset, size,
3573 						  flags);
3574 
3575 	return sock_no_sendpage_locked(sk, page, offset, size, flags);
3576 }
3577 EXPORT_SYMBOL(kernel_sendpage_locked);
3578 
3579 /**
3580  *	kernel_sock_shutdown - shut down part of a full-duplex connection (kernel space)
3581  *	@sock: socket
3582  *	@how: connection part
3583  *
3584  *	Returns 0 or an error.
3585  */
3586 
kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how)3587 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how)
3588 {
3589 	return sock->ops->shutdown(sock, how);
3590 }
3591 EXPORT_SYMBOL(kernel_sock_shutdown);
3592 
3593 /**
3594  *	kernel_sock_ip_overhead - returns the IP overhead imposed by a socket
3595  *	@sk: socket
3596  *
3597  *	This routine returns the IP overhead imposed by a socket i.e.
3598  *	the length of the underlying IP header, depending on whether
3599  *	this is an IPv4 or IPv6 socket and the length from IP options turned
3600  *	on at the socket. Assumes that the caller has a lock on the socket.
3601  */
3602 
kernel_sock_ip_overhead(struct sock *sk)3603 u32 kernel_sock_ip_overhead(struct sock *sk)
3604 {
3605 	struct inet_sock *inet;
3606 	struct ip_options_rcu *opt;
3607 	u32 overhead = 0;
3608 #if IS_ENABLED(CONFIG_IPV6)
3609 	struct ipv6_pinfo *np;
3610 	struct ipv6_txoptions *optv6 = NULL;
3611 #endif /* IS_ENABLED(CONFIG_IPV6) */
3612 
3613 	if (!sk)
3614 		return overhead;
3615 
3616 	switch (sk->sk_family) {
3617 	case AF_INET:
3618 		inet = inet_sk(sk);
3619 		overhead += sizeof(struct iphdr);
3620 		opt = rcu_dereference_protected(inet->inet_opt,
3621 						sock_owned_by_user(sk));
3622 		if (opt)
3623 			overhead += opt->opt.optlen;
3624 		return overhead;
3625 #if IS_ENABLED(CONFIG_IPV6)
3626 	case AF_INET6:
3627 		np = inet6_sk(sk);
3628 		overhead += sizeof(struct ipv6hdr);
3629 		if (np)
3630 			optv6 = rcu_dereference_protected(np->opt,
3631 							  sock_owned_by_user(sk));
3632 		if (optv6)
3633 			overhead += (optv6->opt_flen + optv6->opt_nflen);
3634 		return overhead;
3635 #endif /* IS_ENABLED(CONFIG_IPV6) */
3636 	default: /* Returns 0 overhead if the socket is not ipv4 or ipv6 */
3637 		return overhead;
3638 	}
3639 }
3640 EXPORT_SYMBOL(kernel_sock_ip_overhead);
3641