1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Linux INET6 implementation
4 * Forwarding Information Database
5 *
6 * Authors:
7 * Pedro Roque <roque@di.fc.ul.pt>
8 *
9 * Changes:
10 * Yuji SEKIYA @USAGI: Support default route on router node;
11 * remove ip6_null_entry from the top of
12 * routing table.
13 * Ville Nuorvala: Fixed routing subtrees.
14 */
15
16 #define pr_fmt(fmt) "IPv6: " fmt
17
18 #include <linux/errno.h>
19 #include <linux/types.h>
20 #include <linux/net.h>
21 #include <linux/route.h>
22 #include <linux/netdevice.h>
23 #include <linux/in6.h>
24 #include <linux/init.h>
25 #include <linux/list.h>
26 #include <linux/slab.h>
27
28 #include <net/ip.h>
29 #include <net/ipv6.h>
30 #include <net/ndisc.h>
31 #include <net/addrconf.h>
32 #include <net/lwtunnel.h>
33 #include <net/fib_notifier.h>
34
35 #include <net/ip6_fib.h>
36 #include <net/ip6_route.h>
37
38 static struct kmem_cache *fib6_node_kmem __read_mostly;
39
40 struct fib6_cleaner {
41 struct fib6_walker w;
42 struct net *net;
43 int (*func)(struct fib6_info *, void *arg);
44 int sernum;
45 void *arg;
46 bool skip_notify;
47 };
48
49 #ifdef CONFIG_IPV6_SUBTREES
50 #define FWS_INIT FWS_S
51 #else
52 #define FWS_INIT FWS_L
53 #endif
54
55 static struct fib6_info *fib6_find_prefix(struct net *net,
56 struct fib6_table *table,
57 struct fib6_node *fn);
58 static struct fib6_node *fib6_repair_tree(struct net *net,
59 struct fib6_table *table,
60 struct fib6_node *fn);
61 static int fib6_walk(struct net *net, struct fib6_walker *w);
62 static int fib6_walk_continue(struct fib6_walker *w);
63
64 /*
65 * A routing update causes an increase of the serial number on the
66 * affected subtree. This allows for cached routes to be asynchronously
67 * tested when modifications are made to the destination cache as a
68 * result of redirects, path MTU changes, etc.
69 */
70
71 static void fib6_gc_timer_cb(struct timer_list *t);
72
73 #define FOR_WALKERS(net, w) \
74 list_for_each_entry(w, &(net)->ipv6.fib6_walkers, lh)
75
fib6_walker_link(struct net *net, struct fib6_walker *w)76 static void fib6_walker_link(struct net *net, struct fib6_walker *w)
77 {
78 write_lock_bh(&net->ipv6.fib6_walker_lock);
79 list_add(&w->lh, &net->ipv6.fib6_walkers);
80 write_unlock_bh(&net->ipv6.fib6_walker_lock);
81 }
82
fib6_walker_unlink(struct net *net, struct fib6_walker *w)83 static void fib6_walker_unlink(struct net *net, struct fib6_walker *w)
84 {
85 write_lock_bh(&net->ipv6.fib6_walker_lock);
86 list_del(&w->lh);
87 write_unlock_bh(&net->ipv6.fib6_walker_lock);
88 }
89
fib6_new_sernum(struct net *net)90 static int fib6_new_sernum(struct net *net)
91 {
92 int new, old;
93
94 do {
95 old = atomic_read(&net->ipv6.fib6_sernum);
96 new = old < INT_MAX ? old + 1 : 1;
97 } while (atomic_cmpxchg(&net->ipv6.fib6_sernum,
98 old, new) != old);
99 return new;
100 }
101
102 enum {
103 FIB6_NO_SERNUM_CHANGE = 0,
104 };
105
fib6_update_sernum(struct net *net, struct fib6_info *f6i)106 void fib6_update_sernum(struct net *net, struct fib6_info *f6i)
107 {
108 struct fib6_node *fn;
109
110 fn = rcu_dereference_protected(f6i->fib6_node,
111 lockdep_is_held(&f6i->fib6_table->tb6_lock));
112 if (fn)
113 WRITE_ONCE(fn->fn_sernum, fib6_new_sernum(net));
114 }
115
116 /*
117 * Auxiliary address test functions for the radix tree.
118 *
119 * These assume a 32bit processor (although it will work on
120 * 64bit processors)
121 */
122
123 /*
124 * test bit
125 */
126 #if defined(__LITTLE_ENDIAN)
127 # define BITOP_BE32_SWIZZLE (0x1F & ~7)
128 #else
129 # define BITOP_BE32_SWIZZLE 0
130 #endif
131
addr_bit_set(const void *token, int fn_bit)132 static __be32 addr_bit_set(const void *token, int fn_bit)
133 {
134 const __be32 *addr = token;
135 /*
136 * Here,
137 * 1 << ((~fn_bit ^ BITOP_BE32_SWIZZLE) & 0x1f)
138 * is optimized version of
139 * htonl(1 << ((~fn_bit)&0x1F))
140 * See include/asm-generic/bitops/le.h.
141 */
142 return (__force __be32)(1 << ((~fn_bit ^ BITOP_BE32_SWIZZLE) & 0x1f)) &
143 addr[fn_bit >> 5];
144 }
145
fib6_info_alloc(gfp_t gfp_flags, bool with_fib6_nh)146 struct fib6_info *fib6_info_alloc(gfp_t gfp_flags, bool with_fib6_nh)
147 {
148 struct fib6_info *f6i;
149 size_t sz = sizeof(*f6i);
150
151 if (with_fib6_nh)
152 sz += sizeof(struct fib6_nh);
153
154 f6i = kzalloc(sz, gfp_flags);
155 if (!f6i)
156 return NULL;
157
158 /* fib6_siblings is a union with nh_list, so this initializes both */
159 INIT_LIST_HEAD(&f6i->fib6_siblings);
160 refcount_set(&f6i->fib6_ref, 1);
161
162 return f6i;
163 }
164
fib6_info_destroy_rcu(struct rcu_head *head)165 void fib6_info_destroy_rcu(struct rcu_head *head)
166 {
167 struct fib6_info *f6i = container_of(head, struct fib6_info, rcu);
168
169 WARN_ON(f6i->fib6_node);
170
171 if (f6i->nh)
172 nexthop_put(f6i->nh);
173 else
174 fib6_nh_release(f6i->fib6_nh);
175
176 ip_fib_metrics_put(f6i->fib6_metrics);
177 kfree(f6i);
178 }
179 EXPORT_SYMBOL_GPL(fib6_info_destroy_rcu);
180
node_alloc(struct net *net)181 static struct fib6_node *node_alloc(struct net *net)
182 {
183 struct fib6_node *fn;
184
185 fn = kmem_cache_zalloc(fib6_node_kmem, GFP_ATOMIC);
186 if (fn)
187 net->ipv6.rt6_stats->fib_nodes++;
188
189 return fn;
190 }
191
node_free_immediate(struct net *net, struct fib6_node *fn)192 static void node_free_immediate(struct net *net, struct fib6_node *fn)
193 {
194 kmem_cache_free(fib6_node_kmem, fn);
195 net->ipv6.rt6_stats->fib_nodes--;
196 }
197
node_free_rcu(struct rcu_head *head)198 static void node_free_rcu(struct rcu_head *head)
199 {
200 struct fib6_node *fn = container_of(head, struct fib6_node, rcu);
201
202 kmem_cache_free(fib6_node_kmem, fn);
203 }
204
node_free(struct net *net, struct fib6_node *fn)205 static void node_free(struct net *net, struct fib6_node *fn)
206 {
207 call_rcu(&fn->rcu, node_free_rcu);
208 net->ipv6.rt6_stats->fib_nodes--;
209 }
210
fib6_free_table(struct fib6_table *table)211 static void fib6_free_table(struct fib6_table *table)
212 {
213 inetpeer_invalidate_tree(&table->tb6_peers);
214 kfree(table);
215 }
216
fib6_link_table(struct net *net, struct fib6_table *tb)217 static void fib6_link_table(struct net *net, struct fib6_table *tb)
218 {
219 unsigned int h;
220
221 /*
222 * Initialize table lock at a single place to give lockdep a key,
223 * tables aren't visible prior to being linked to the list.
224 */
225 spin_lock_init(&tb->tb6_lock);
226 h = tb->tb6_id & (FIB6_TABLE_HASHSZ - 1);
227
228 /*
229 * No protection necessary, this is the only list mutatation
230 * operation, tables never disappear once they exist.
231 */
232 hlist_add_head_rcu(&tb->tb6_hlist, &net->ipv6.fib_table_hash[h]);
233 }
234
235 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
236
fib6_alloc_table(struct net *net, u32 id)237 static struct fib6_table *fib6_alloc_table(struct net *net, u32 id)
238 {
239 struct fib6_table *table;
240
241 table = kzalloc(sizeof(*table), GFP_ATOMIC);
242 if (table) {
243 table->tb6_id = id;
244 rcu_assign_pointer(table->tb6_root.leaf,
245 net->ipv6.fib6_null_entry);
246 table->tb6_root.fn_flags = RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO;
247 inet_peer_base_init(&table->tb6_peers);
248 }
249
250 return table;
251 }
252
fib6_new_table(struct net *net, u32 id)253 struct fib6_table *fib6_new_table(struct net *net, u32 id)
254 {
255 struct fib6_table *tb;
256
257 if (id == 0)
258 id = RT6_TABLE_MAIN;
259 tb = fib6_get_table(net, id);
260 if (tb)
261 return tb;
262
263 tb = fib6_alloc_table(net, id);
264 if (tb)
265 fib6_link_table(net, tb);
266
267 return tb;
268 }
269 EXPORT_SYMBOL_GPL(fib6_new_table);
270
fib6_get_table(struct net *net, u32 id)271 struct fib6_table *fib6_get_table(struct net *net, u32 id)
272 {
273 struct fib6_table *tb;
274 struct hlist_head *head;
275 unsigned int h;
276
277 if (id == 0)
278 id = RT6_TABLE_MAIN;
279 h = id & (FIB6_TABLE_HASHSZ - 1);
280 rcu_read_lock();
281 head = &net->ipv6.fib_table_hash[h];
282 hlist_for_each_entry_rcu(tb, head, tb6_hlist) {
283 if (tb->tb6_id == id) {
284 rcu_read_unlock();
285 return tb;
286 }
287 }
288 rcu_read_unlock();
289
290 return NULL;
291 }
292 EXPORT_SYMBOL_GPL(fib6_get_table);
293
fib6_tables_init(struct net *net)294 static void __net_init fib6_tables_init(struct net *net)
295 {
296 fib6_link_table(net, net->ipv6.fib6_main_tbl);
297 fib6_link_table(net, net->ipv6.fib6_local_tbl);
298 }
299 #else
300
fib6_new_table(struct net *net, u32 id)301 struct fib6_table *fib6_new_table(struct net *net, u32 id)
302 {
303 return fib6_get_table(net, id);
304 }
305
fib6_get_table(struct net *net, u32 id)306 struct fib6_table *fib6_get_table(struct net *net, u32 id)
307 {
308 return net->ipv6.fib6_main_tbl;
309 }
310
fib6_rule_lookup(struct net *net, struct flowi6 *fl6, const struct sk_buff *skb, int flags, pol_lookup_t lookup)311 struct dst_entry *fib6_rule_lookup(struct net *net, struct flowi6 *fl6,
312 const struct sk_buff *skb,
313 int flags, pol_lookup_t lookup)
314 {
315 struct rt6_info *rt;
316
317 rt = pol_lookup_func(lookup,
318 net, net->ipv6.fib6_main_tbl, fl6, skb, flags);
319 if (rt->dst.error == -EAGAIN) {
320 ip6_rt_put_flags(rt, flags);
321 rt = net->ipv6.ip6_null_entry;
322 if (!(flags & RT6_LOOKUP_F_DST_NOREF))
323 dst_hold(&rt->dst);
324 }
325
326 return &rt->dst;
327 }
328
329 /* called with rcu lock held; no reference taken on fib6_info */
fib6_lookup(struct net *net, int oif, struct flowi6 *fl6, struct fib6_result *res, int flags)330 int fib6_lookup(struct net *net, int oif, struct flowi6 *fl6,
331 struct fib6_result *res, int flags)
332 {
333 return fib6_table_lookup(net, net->ipv6.fib6_main_tbl, oif, fl6,
334 res, flags);
335 }
336
fib6_tables_init(struct net *net)337 static void __net_init fib6_tables_init(struct net *net)
338 {
339 fib6_link_table(net, net->ipv6.fib6_main_tbl);
340 }
341
342 #endif
343
fib6_tables_seq_read(struct net *net)344 unsigned int fib6_tables_seq_read(struct net *net)
345 {
346 unsigned int h, fib_seq = 0;
347
348 rcu_read_lock();
349 for (h = 0; h < FIB6_TABLE_HASHSZ; h++) {
350 struct hlist_head *head = &net->ipv6.fib_table_hash[h];
351 struct fib6_table *tb;
352
353 hlist_for_each_entry_rcu(tb, head, tb6_hlist)
354 fib_seq += tb->fib_seq;
355 }
356 rcu_read_unlock();
357
358 return fib_seq;
359 }
360
call_fib6_entry_notifier(struct notifier_block *nb, enum fib_event_type event_type, struct fib6_info *rt, struct netlink_ext_ack *extack)361 static int call_fib6_entry_notifier(struct notifier_block *nb,
362 enum fib_event_type event_type,
363 struct fib6_info *rt,
364 struct netlink_ext_ack *extack)
365 {
366 struct fib6_entry_notifier_info info = {
367 .info.extack = extack,
368 .rt = rt,
369 };
370
371 return call_fib6_notifier(nb, event_type, &info.info);
372 }
373
call_fib6_multipath_entry_notifier(struct notifier_block *nb, enum fib_event_type event_type, struct fib6_info *rt, unsigned int nsiblings, struct netlink_ext_ack *extack)374 static int call_fib6_multipath_entry_notifier(struct notifier_block *nb,
375 enum fib_event_type event_type,
376 struct fib6_info *rt,
377 unsigned int nsiblings,
378 struct netlink_ext_ack *extack)
379 {
380 struct fib6_entry_notifier_info info = {
381 .info.extack = extack,
382 .rt = rt,
383 .nsiblings = nsiblings,
384 };
385
386 return call_fib6_notifier(nb, event_type, &info.info);
387 }
388
call_fib6_entry_notifiers(struct net *net, enum fib_event_type event_type, struct fib6_info *rt, struct netlink_ext_ack *extack)389 int call_fib6_entry_notifiers(struct net *net,
390 enum fib_event_type event_type,
391 struct fib6_info *rt,
392 struct netlink_ext_ack *extack)
393 {
394 struct fib6_entry_notifier_info info = {
395 .info.extack = extack,
396 .rt = rt,
397 };
398
399 rt->fib6_table->fib_seq++;
400 return call_fib6_notifiers(net, event_type, &info.info);
401 }
402
call_fib6_multipath_entry_notifiers(struct net *net, enum fib_event_type event_type, struct fib6_info *rt, unsigned int nsiblings, struct netlink_ext_ack *extack)403 int call_fib6_multipath_entry_notifiers(struct net *net,
404 enum fib_event_type event_type,
405 struct fib6_info *rt,
406 unsigned int nsiblings,
407 struct netlink_ext_ack *extack)
408 {
409 struct fib6_entry_notifier_info info = {
410 .info.extack = extack,
411 .rt = rt,
412 .nsiblings = nsiblings,
413 };
414
415 rt->fib6_table->fib_seq++;
416 return call_fib6_notifiers(net, event_type, &info.info);
417 }
418
call_fib6_entry_notifiers_replace(struct net *net, struct fib6_info *rt)419 int call_fib6_entry_notifiers_replace(struct net *net, struct fib6_info *rt)
420 {
421 struct fib6_entry_notifier_info info = {
422 .rt = rt,
423 .nsiblings = rt->fib6_nsiblings,
424 };
425
426 rt->fib6_table->fib_seq++;
427 return call_fib6_notifiers(net, FIB_EVENT_ENTRY_REPLACE, &info.info);
428 }
429
430 struct fib6_dump_arg {
431 struct net *net;
432 struct notifier_block *nb;
433 struct netlink_ext_ack *extack;
434 };
435
fib6_rt_dump(struct fib6_info *rt, struct fib6_dump_arg *arg)436 static int fib6_rt_dump(struct fib6_info *rt, struct fib6_dump_arg *arg)
437 {
438 enum fib_event_type fib_event = FIB_EVENT_ENTRY_REPLACE;
439 int err;
440
441 if (!rt || rt == arg->net->ipv6.fib6_null_entry)
442 return 0;
443
444 if (rt->fib6_nsiblings)
445 err = call_fib6_multipath_entry_notifier(arg->nb, fib_event,
446 rt,
447 rt->fib6_nsiblings,
448 arg->extack);
449 else
450 err = call_fib6_entry_notifier(arg->nb, fib_event, rt,
451 arg->extack);
452
453 return err;
454 }
455
fib6_node_dump(struct fib6_walker *w)456 static int fib6_node_dump(struct fib6_walker *w)
457 {
458 int err;
459
460 err = fib6_rt_dump(w->leaf, w->args);
461 w->leaf = NULL;
462 return err;
463 }
464
fib6_table_dump(struct net *net, struct fib6_table *tb, struct fib6_walker *w)465 static int fib6_table_dump(struct net *net, struct fib6_table *tb,
466 struct fib6_walker *w)
467 {
468 int err;
469
470 w->root = &tb->tb6_root;
471 spin_lock_bh(&tb->tb6_lock);
472 err = fib6_walk(net, w);
473 spin_unlock_bh(&tb->tb6_lock);
474 return err;
475 }
476
477 /* Called with rcu_read_lock() */
fib6_tables_dump(struct net *net, struct notifier_block *nb, struct netlink_ext_ack *extack)478 int fib6_tables_dump(struct net *net, struct notifier_block *nb,
479 struct netlink_ext_ack *extack)
480 {
481 struct fib6_dump_arg arg;
482 struct fib6_walker *w;
483 unsigned int h;
484 int err = 0;
485
486 w = kzalloc(sizeof(*w), GFP_ATOMIC);
487 if (!w)
488 return -ENOMEM;
489
490 w->func = fib6_node_dump;
491 arg.net = net;
492 arg.nb = nb;
493 arg.extack = extack;
494 w->args = &arg;
495
496 for (h = 0; h < FIB6_TABLE_HASHSZ; h++) {
497 struct hlist_head *head = &net->ipv6.fib_table_hash[h];
498 struct fib6_table *tb;
499
500 hlist_for_each_entry_rcu(tb, head, tb6_hlist) {
501 err = fib6_table_dump(net, tb, w);
502 if (err)
503 goto out;
504 }
505 }
506
507 out:
508 kfree(w);
509
510 /* The tree traversal function should never return a positive value. */
511 return err > 0 ? -EINVAL : err;
512 }
513
fib6_dump_node(struct fib6_walker *w)514 static int fib6_dump_node(struct fib6_walker *w)
515 {
516 int res;
517 struct fib6_info *rt;
518
519 for_each_fib6_walker_rt(w) {
520 res = rt6_dump_route(rt, w->args, w->skip_in_node);
521 if (res >= 0) {
522 /* Frame is full, suspend walking */
523 w->leaf = rt;
524
525 /* We'll restart from this node, so if some routes were
526 * already dumped, skip them next time.
527 */
528 w->skip_in_node += res;
529
530 return 1;
531 }
532 w->skip_in_node = 0;
533
534 /* Multipath routes are dumped in one route with the
535 * RTA_MULTIPATH attribute. Jump 'rt' to point to the
536 * last sibling of this route (no need to dump the
537 * sibling routes again)
538 */
539 if (rt->fib6_nsiblings)
540 rt = list_last_entry(&rt->fib6_siblings,
541 struct fib6_info,
542 fib6_siblings);
543 }
544 w->leaf = NULL;
545 return 0;
546 }
547
fib6_dump_end(struct netlink_callback *cb)548 static void fib6_dump_end(struct netlink_callback *cb)
549 {
550 struct net *net = sock_net(cb->skb->sk);
551 struct fib6_walker *w = (void *)cb->args[2];
552
553 if (w) {
554 if (cb->args[4]) {
555 cb->args[4] = 0;
556 fib6_walker_unlink(net, w);
557 }
558 cb->args[2] = 0;
559 kfree(w);
560 }
561 cb->done = (void *)cb->args[3];
562 cb->args[1] = 3;
563 }
564
fib6_dump_done(struct netlink_callback *cb)565 static int fib6_dump_done(struct netlink_callback *cb)
566 {
567 fib6_dump_end(cb);
568 return cb->done ? cb->done(cb) : 0;
569 }
570
fib6_dump_table(struct fib6_table *table, struct sk_buff *skb, struct netlink_callback *cb)571 static int fib6_dump_table(struct fib6_table *table, struct sk_buff *skb,
572 struct netlink_callback *cb)
573 {
574 struct net *net = sock_net(skb->sk);
575 struct fib6_walker *w;
576 int res;
577
578 w = (void *)cb->args[2];
579 w->root = &table->tb6_root;
580
581 if (cb->args[4] == 0) {
582 w->count = 0;
583 w->skip = 0;
584 w->skip_in_node = 0;
585
586 spin_lock_bh(&table->tb6_lock);
587 res = fib6_walk(net, w);
588 spin_unlock_bh(&table->tb6_lock);
589 if (res > 0) {
590 cb->args[4] = 1;
591 cb->args[5] = READ_ONCE(w->root->fn_sernum);
592 }
593 } else {
594 int sernum = READ_ONCE(w->root->fn_sernum);
595 if (cb->args[5] != sernum) {
596 /* Begin at the root if the tree changed */
597 cb->args[5] = sernum;
598 w->state = FWS_INIT;
599 w->node = w->root;
600 w->skip = w->count;
601 w->skip_in_node = 0;
602 } else
603 w->skip = 0;
604
605 spin_lock_bh(&table->tb6_lock);
606 res = fib6_walk_continue(w);
607 spin_unlock_bh(&table->tb6_lock);
608 if (res <= 0) {
609 fib6_walker_unlink(net, w);
610 cb->args[4] = 0;
611 }
612 }
613
614 return res;
615 }
616
inet6_dump_fib(struct sk_buff *skb, struct netlink_callback *cb)617 static int inet6_dump_fib(struct sk_buff *skb, struct netlink_callback *cb)
618 {
619 struct rt6_rtnl_dump_arg arg = { .filter.dump_exceptions = true,
620 .filter.dump_routes = true };
621 const struct nlmsghdr *nlh = cb->nlh;
622 struct net *net = sock_net(skb->sk);
623 unsigned int h, s_h;
624 unsigned int e = 0, s_e;
625 struct fib6_walker *w;
626 struct fib6_table *tb;
627 struct hlist_head *head;
628 int res = 0;
629
630 if (cb->strict_check) {
631 int err;
632
633 err = ip_valid_fib_dump_req(net, nlh, &arg.filter, cb);
634 if (err < 0)
635 return err;
636 } else if (nlmsg_len(nlh) >= sizeof(struct rtmsg)) {
637 struct rtmsg *rtm = nlmsg_data(nlh);
638
639 if (rtm->rtm_flags & RTM_F_PREFIX)
640 arg.filter.flags = RTM_F_PREFIX;
641 }
642
643 w = (void *)cb->args[2];
644 if (!w) {
645 /* New dump:
646 *
647 * 1. allocate and initialize walker.
648 */
649 w = kzalloc(sizeof(*w), GFP_ATOMIC);
650 if (!w)
651 return -ENOMEM;
652 w->func = fib6_dump_node;
653 cb->args[2] = (long)w;
654
655 /* 2. hook callback destructor.
656 */
657 cb->args[3] = (long)cb->done;
658 cb->done = fib6_dump_done;
659
660 }
661
662 arg.skb = skb;
663 arg.cb = cb;
664 arg.net = net;
665 w->args = &arg;
666
667 if (arg.filter.table_id) {
668 tb = fib6_get_table(net, arg.filter.table_id);
669 if (!tb) {
670 if (rtnl_msg_family(cb->nlh) != PF_INET6)
671 goto out;
672
673 NL_SET_ERR_MSG_MOD(cb->extack, "FIB table does not exist");
674 return -ENOENT;
675 }
676
677 if (!cb->args[0]) {
678 res = fib6_dump_table(tb, skb, cb);
679 if (!res)
680 cb->args[0] = 1;
681 }
682 goto out;
683 }
684
685 s_h = cb->args[0];
686 s_e = cb->args[1];
687
688 rcu_read_lock();
689 for (h = s_h; h < FIB6_TABLE_HASHSZ; h++, s_e = 0) {
690 e = 0;
691 head = &net->ipv6.fib_table_hash[h];
692 hlist_for_each_entry_rcu(tb, head, tb6_hlist) {
693 if (e < s_e)
694 goto next;
695 res = fib6_dump_table(tb, skb, cb);
696 if (res != 0)
697 goto out_unlock;
698 next:
699 e++;
700 }
701 }
702 out_unlock:
703 rcu_read_unlock();
704 cb->args[1] = e;
705 cb->args[0] = h;
706 out:
707 res = res < 0 ? res : skb->len;
708 if (res <= 0)
709 fib6_dump_end(cb);
710 return res;
711 }
712
fib6_metric_set(struct fib6_info *f6i, int metric, u32 val)713 void fib6_metric_set(struct fib6_info *f6i, int metric, u32 val)
714 {
715 if (!f6i)
716 return;
717
718 if (f6i->fib6_metrics == &dst_default_metrics) {
719 struct dst_metrics *p = kzalloc(sizeof(*p), GFP_ATOMIC);
720
721 if (!p)
722 return;
723
724 refcount_set(&p->refcnt, 1);
725 f6i->fib6_metrics = p;
726 }
727
728 f6i->fib6_metrics->metrics[metric - 1] = val;
729 }
730
731 /*
732 * Routing Table
733 *
734 * return the appropriate node for a routing tree "add" operation
735 * by either creating and inserting or by returning an existing
736 * node.
737 */
738
fib6_add_1(struct net *net, struct fib6_table *table, struct fib6_node *root, struct in6_addr *addr, int plen, int offset, int allow_create, int replace_required, struct netlink_ext_ack *extack)739 static struct fib6_node *fib6_add_1(struct net *net,
740 struct fib6_table *table,
741 struct fib6_node *root,
742 struct in6_addr *addr, int plen,
743 int offset, int allow_create,
744 int replace_required,
745 struct netlink_ext_ack *extack)
746 {
747 struct fib6_node *fn, *in, *ln;
748 struct fib6_node *pn = NULL;
749 struct rt6key *key;
750 int bit;
751 __be32 dir = 0;
752
753 RT6_TRACE("fib6_add_1\n");
754
755 /* insert node in tree */
756
757 fn = root;
758
759 do {
760 struct fib6_info *leaf = rcu_dereference_protected(fn->leaf,
761 lockdep_is_held(&table->tb6_lock));
762 key = (struct rt6key *)((u8 *)leaf + offset);
763
764 /*
765 * Prefix match
766 */
767 if (plen < fn->fn_bit ||
768 !ipv6_prefix_equal(&key->addr, addr, fn->fn_bit)) {
769 if (!allow_create) {
770 if (replace_required) {
771 NL_SET_ERR_MSG(extack,
772 "Can not replace route - no match found");
773 pr_warn("Can't replace route, no match found\n");
774 return ERR_PTR(-ENOENT);
775 }
776 pr_warn("NLM_F_CREATE should be set when creating new route\n");
777 }
778 goto insert_above;
779 }
780
781 /*
782 * Exact match ?
783 */
784
785 if (plen == fn->fn_bit) {
786 /* clean up an intermediate node */
787 if (!(fn->fn_flags & RTN_RTINFO)) {
788 RCU_INIT_POINTER(fn->leaf, NULL);
789 fib6_info_release(leaf);
790 /* remove null_entry in the root node */
791 } else if (fn->fn_flags & RTN_TL_ROOT &&
792 rcu_access_pointer(fn->leaf) ==
793 net->ipv6.fib6_null_entry) {
794 RCU_INIT_POINTER(fn->leaf, NULL);
795 }
796
797 return fn;
798 }
799
800 /*
801 * We have more bits to go
802 */
803
804 /* Try to walk down on tree. */
805 dir = addr_bit_set(addr, fn->fn_bit);
806 pn = fn;
807 fn = dir ?
808 rcu_dereference_protected(fn->right,
809 lockdep_is_held(&table->tb6_lock)) :
810 rcu_dereference_protected(fn->left,
811 lockdep_is_held(&table->tb6_lock));
812 } while (fn);
813
814 if (!allow_create) {
815 /* We should not create new node because
816 * NLM_F_REPLACE was specified without NLM_F_CREATE
817 * I assume it is safe to require NLM_F_CREATE when
818 * REPLACE flag is used! Later we may want to remove the
819 * check for replace_required, because according
820 * to netlink specification, NLM_F_CREATE
821 * MUST be specified if new route is created.
822 * That would keep IPv6 consistent with IPv4
823 */
824 if (replace_required) {
825 NL_SET_ERR_MSG(extack,
826 "Can not replace route - no match found");
827 pr_warn("Can't replace route, no match found\n");
828 return ERR_PTR(-ENOENT);
829 }
830 pr_warn("NLM_F_CREATE should be set when creating new route\n");
831 }
832 /*
833 * We walked to the bottom of tree.
834 * Create new leaf node without children.
835 */
836
837 ln = node_alloc(net);
838
839 if (!ln)
840 return ERR_PTR(-ENOMEM);
841 ln->fn_bit = plen;
842 RCU_INIT_POINTER(ln->parent, pn);
843
844 if (dir)
845 rcu_assign_pointer(pn->right, ln);
846 else
847 rcu_assign_pointer(pn->left, ln);
848
849 return ln;
850
851
852 insert_above:
853 /*
854 * split since we don't have a common prefix anymore or
855 * we have a less significant route.
856 * we've to insert an intermediate node on the list
857 * this new node will point to the one we need to create
858 * and the current
859 */
860
861 pn = rcu_dereference_protected(fn->parent,
862 lockdep_is_held(&table->tb6_lock));
863
864 /* find 1st bit in difference between the 2 addrs.
865
866 See comment in __ipv6_addr_diff: bit may be an invalid value,
867 but if it is >= plen, the value is ignored in any case.
868 */
869
870 bit = __ipv6_addr_diff(addr, &key->addr, sizeof(*addr));
871
872 /*
873 * (intermediate)[in]
874 * / \
875 * (new leaf node)[ln] (old node)[fn]
876 */
877 if (plen > bit) {
878 in = node_alloc(net);
879 ln = node_alloc(net);
880
881 if (!in || !ln) {
882 if (in)
883 node_free_immediate(net, in);
884 if (ln)
885 node_free_immediate(net, ln);
886 return ERR_PTR(-ENOMEM);
887 }
888
889 /*
890 * new intermediate node.
891 * RTN_RTINFO will
892 * be off since that an address that chooses one of
893 * the branches would not match less specific routes
894 * in the other branch
895 */
896
897 in->fn_bit = bit;
898
899 RCU_INIT_POINTER(in->parent, pn);
900 in->leaf = fn->leaf;
901 fib6_info_hold(rcu_dereference_protected(in->leaf,
902 lockdep_is_held(&table->tb6_lock)));
903
904 /* update parent pointer */
905 if (dir)
906 rcu_assign_pointer(pn->right, in);
907 else
908 rcu_assign_pointer(pn->left, in);
909
910 ln->fn_bit = plen;
911
912 RCU_INIT_POINTER(ln->parent, in);
913 rcu_assign_pointer(fn->parent, in);
914
915 if (addr_bit_set(addr, bit)) {
916 rcu_assign_pointer(in->right, ln);
917 rcu_assign_pointer(in->left, fn);
918 } else {
919 rcu_assign_pointer(in->left, ln);
920 rcu_assign_pointer(in->right, fn);
921 }
922 } else { /* plen <= bit */
923
924 /*
925 * (new leaf node)[ln]
926 * / \
927 * (old node)[fn] NULL
928 */
929
930 ln = node_alloc(net);
931
932 if (!ln)
933 return ERR_PTR(-ENOMEM);
934
935 ln->fn_bit = plen;
936
937 RCU_INIT_POINTER(ln->parent, pn);
938
939 if (addr_bit_set(&key->addr, plen))
940 RCU_INIT_POINTER(ln->right, fn);
941 else
942 RCU_INIT_POINTER(ln->left, fn);
943
944 rcu_assign_pointer(fn->parent, ln);
945
946 if (dir)
947 rcu_assign_pointer(pn->right, ln);
948 else
949 rcu_assign_pointer(pn->left, ln);
950 }
951 return ln;
952 }
953
__fib6_drop_pcpu_from(struct fib6_nh *fib6_nh, const struct fib6_info *match, const struct fib6_table *table)954 static void __fib6_drop_pcpu_from(struct fib6_nh *fib6_nh,
955 const struct fib6_info *match,
956 const struct fib6_table *table)
957 {
958 int cpu;
959
960 if (!fib6_nh->rt6i_pcpu)
961 return;
962
963 rcu_read_lock();
964 /* release the reference to this fib entry from
965 * all of its cached pcpu routes
966 */
967 for_each_possible_cpu(cpu) {
968 struct rt6_info **ppcpu_rt;
969 struct rt6_info *pcpu_rt;
970
971 ppcpu_rt = per_cpu_ptr(fib6_nh->rt6i_pcpu, cpu);
972
973 /* Paired with xchg() in rt6_get_pcpu_route() */
974 pcpu_rt = READ_ONCE(*ppcpu_rt);
975
976 /* only dropping the 'from' reference if the cached route
977 * is using 'match'. The cached pcpu_rt->from only changes
978 * from a fib6_info to NULL (ip6_dst_destroy); it can never
979 * change from one fib6_info reference to another
980 */
981 if (pcpu_rt && rcu_access_pointer(pcpu_rt->from) == match) {
982 struct fib6_info *from;
983
984 from = xchg((__force struct fib6_info **)&pcpu_rt->from, NULL);
985 fib6_info_release(from);
986 }
987 }
988 rcu_read_unlock();
989 }
990
991 struct fib6_nh_pcpu_arg {
992 struct fib6_info *from;
993 const struct fib6_table *table;
994 };
995
fib6_nh_drop_pcpu_from(struct fib6_nh *nh, void *_arg)996 static int fib6_nh_drop_pcpu_from(struct fib6_nh *nh, void *_arg)
997 {
998 struct fib6_nh_pcpu_arg *arg = _arg;
999
1000 __fib6_drop_pcpu_from(nh, arg->from, arg->table);
1001 return 0;
1002 }
1003
fib6_drop_pcpu_from(struct fib6_info *f6i, const struct fib6_table *table)1004 static void fib6_drop_pcpu_from(struct fib6_info *f6i,
1005 const struct fib6_table *table)
1006 {
1007 /* Make sure rt6_make_pcpu_route() wont add other percpu routes
1008 * while we are cleaning them here.
1009 */
1010 f6i->fib6_destroying = 1;
1011 mb(); /* paired with the cmpxchg() in rt6_make_pcpu_route() */
1012
1013 if (f6i->nh) {
1014 struct fib6_nh_pcpu_arg arg = {
1015 .from = f6i,
1016 .table = table
1017 };
1018
1019 nexthop_for_each_fib6_nh(f6i->nh, fib6_nh_drop_pcpu_from,
1020 &arg);
1021 } else {
1022 struct fib6_nh *fib6_nh;
1023
1024 fib6_nh = f6i->fib6_nh;
1025 __fib6_drop_pcpu_from(fib6_nh, f6i, table);
1026 }
1027 }
1028
fib6_purge_rt(struct fib6_info *rt, struct fib6_node *fn, struct net *net)1029 static void fib6_purge_rt(struct fib6_info *rt, struct fib6_node *fn,
1030 struct net *net)
1031 {
1032 struct fib6_table *table = rt->fib6_table;
1033
1034 /* Flush all cached dst in exception table */
1035 rt6_flush_exceptions(rt);
1036 fib6_drop_pcpu_from(rt, table);
1037
1038 if (rt->nh && !list_empty(&rt->nh_list))
1039 list_del_init(&rt->nh_list);
1040
1041 if (refcount_read(&rt->fib6_ref) != 1) {
1042 /* This route is used as dummy address holder in some split
1043 * nodes. It is not leaked, but it still holds other resources,
1044 * which must be released in time. So, scan ascendant nodes
1045 * and replace dummy references to this route with references
1046 * to still alive ones.
1047 */
1048 while (fn) {
1049 struct fib6_info *leaf = rcu_dereference_protected(fn->leaf,
1050 lockdep_is_held(&table->tb6_lock));
1051 struct fib6_info *new_leaf;
1052 if (!(fn->fn_flags & RTN_RTINFO) && leaf == rt) {
1053 new_leaf = fib6_find_prefix(net, table, fn);
1054 fib6_info_hold(new_leaf);
1055
1056 rcu_assign_pointer(fn->leaf, new_leaf);
1057 fib6_info_release(rt);
1058 }
1059 fn = rcu_dereference_protected(fn->parent,
1060 lockdep_is_held(&table->tb6_lock));
1061 }
1062 }
1063 }
1064
1065 /*
1066 * Insert routing information in a node.
1067 */
1068
fib6_add_rt2node(struct fib6_node *fn, struct fib6_info *rt, struct nl_info *info, struct netlink_ext_ack *extack)1069 static int fib6_add_rt2node(struct fib6_node *fn, struct fib6_info *rt,
1070 struct nl_info *info,
1071 struct netlink_ext_ack *extack)
1072 {
1073 struct fib6_info *leaf = rcu_dereference_protected(fn->leaf,
1074 lockdep_is_held(&rt->fib6_table->tb6_lock));
1075 struct fib6_info *iter = NULL;
1076 struct fib6_info __rcu **ins;
1077 struct fib6_info __rcu **fallback_ins = NULL;
1078 int replace = (info->nlh &&
1079 (info->nlh->nlmsg_flags & NLM_F_REPLACE));
1080 int add = (!info->nlh ||
1081 (info->nlh->nlmsg_flags & NLM_F_CREATE));
1082 int found = 0;
1083 bool rt_can_ecmp = rt6_qualify_for_ecmp(rt);
1084 bool notify_sibling_rt = false;
1085 u16 nlflags = NLM_F_EXCL;
1086 int err;
1087
1088 if (info->nlh && (info->nlh->nlmsg_flags & NLM_F_APPEND))
1089 nlflags |= NLM_F_APPEND;
1090
1091 ins = &fn->leaf;
1092
1093 for (iter = leaf; iter;
1094 iter = rcu_dereference_protected(iter->fib6_next,
1095 lockdep_is_held(&rt->fib6_table->tb6_lock))) {
1096 /*
1097 * Search for duplicates
1098 */
1099
1100 if (iter->fib6_metric == rt->fib6_metric) {
1101 /*
1102 * Same priority level
1103 */
1104 if (info->nlh &&
1105 (info->nlh->nlmsg_flags & NLM_F_EXCL))
1106 return -EEXIST;
1107
1108 nlflags &= ~NLM_F_EXCL;
1109 if (replace) {
1110 if (rt_can_ecmp == rt6_qualify_for_ecmp(iter)) {
1111 found++;
1112 break;
1113 }
1114 fallback_ins = fallback_ins ?: ins;
1115 goto next_iter;
1116 }
1117
1118 if (rt6_duplicate_nexthop(iter, rt)) {
1119 if (rt->fib6_nsiblings)
1120 rt->fib6_nsiblings = 0;
1121 if (!(iter->fib6_flags & RTF_EXPIRES))
1122 return -EEXIST;
1123 if (!(rt->fib6_flags & RTF_EXPIRES))
1124 fib6_clean_expires(iter);
1125 else
1126 fib6_set_expires(iter, rt->expires);
1127
1128 if (rt->fib6_pmtu)
1129 fib6_metric_set(iter, RTAX_MTU,
1130 rt->fib6_pmtu);
1131 return -EEXIST;
1132 }
1133 /* If we have the same destination and the same metric,
1134 * but not the same gateway, then the route we try to
1135 * add is sibling to this route, increment our counter
1136 * of siblings, and later we will add our route to the
1137 * list.
1138 * Only static routes (which don't have flag
1139 * RTF_EXPIRES) are used for ECMPv6.
1140 *
1141 * To avoid long list, we only had siblings if the
1142 * route have a gateway.
1143 */
1144 if (rt_can_ecmp &&
1145 rt6_qualify_for_ecmp(iter))
1146 rt->fib6_nsiblings++;
1147 }
1148
1149 if (iter->fib6_metric > rt->fib6_metric)
1150 break;
1151
1152 next_iter:
1153 ins = &iter->fib6_next;
1154 }
1155
1156 if (fallback_ins && !found) {
1157 /* No matching route with same ecmp-able-ness found, replace
1158 * first matching route
1159 */
1160 ins = fallback_ins;
1161 iter = rcu_dereference_protected(*ins,
1162 lockdep_is_held(&rt->fib6_table->tb6_lock));
1163 found++;
1164 }
1165
1166 /* Reset round-robin state, if necessary */
1167 if (ins == &fn->leaf)
1168 fn->rr_ptr = NULL;
1169
1170 /* Link this route to others same route. */
1171 if (rt->fib6_nsiblings) {
1172 unsigned int fib6_nsiblings;
1173 struct fib6_info *sibling, *temp_sibling;
1174
1175 /* Find the first route that have the same metric */
1176 sibling = leaf;
1177 notify_sibling_rt = true;
1178 while (sibling) {
1179 if (sibling->fib6_metric == rt->fib6_metric &&
1180 rt6_qualify_for_ecmp(sibling)) {
1181 list_add_tail(&rt->fib6_siblings,
1182 &sibling->fib6_siblings);
1183 break;
1184 }
1185 sibling = rcu_dereference_protected(sibling->fib6_next,
1186 lockdep_is_held(&rt->fib6_table->tb6_lock));
1187 notify_sibling_rt = false;
1188 }
1189 /* For each sibling in the list, increment the counter of
1190 * siblings. BUG() if counters does not match, list of siblings
1191 * is broken!
1192 */
1193 fib6_nsiblings = 0;
1194 list_for_each_entry_safe(sibling, temp_sibling,
1195 &rt->fib6_siblings, fib6_siblings) {
1196 sibling->fib6_nsiblings++;
1197 BUG_ON(sibling->fib6_nsiblings != rt->fib6_nsiblings);
1198 fib6_nsiblings++;
1199 }
1200 BUG_ON(fib6_nsiblings != rt->fib6_nsiblings);
1201 rt6_multipath_rebalance(temp_sibling);
1202 }
1203
1204 /*
1205 * insert node
1206 */
1207 if (!replace) {
1208 if (!add)
1209 pr_warn("NLM_F_CREATE should be set when creating new route\n");
1210
1211 add:
1212 nlflags |= NLM_F_CREATE;
1213
1214 /* The route should only be notified if it is the first
1215 * route in the node or if it is added as a sibling
1216 * route to the first route in the node.
1217 */
1218 if (!info->skip_notify_kernel &&
1219 (notify_sibling_rt || ins == &fn->leaf)) {
1220 enum fib_event_type fib_event;
1221
1222 if (notify_sibling_rt)
1223 fib_event = FIB_EVENT_ENTRY_APPEND;
1224 else
1225 fib_event = FIB_EVENT_ENTRY_REPLACE;
1226 err = call_fib6_entry_notifiers(info->nl_net,
1227 fib_event, rt,
1228 extack);
1229 if (err) {
1230 struct fib6_info *sibling, *next_sibling;
1231
1232 /* If the route has siblings, then it first
1233 * needs to be unlinked from them.
1234 */
1235 if (!rt->fib6_nsiblings)
1236 return err;
1237
1238 list_for_each_entry_safe(sibling, next_sibling,
1239 &rt->fib6_siblings,
1240 fib6_siblings)
1241 sibling->fib6_nsiblings--;
1242 rt->fib6_nsiblings = 0;
1243 list_del_init(&rt->fib6_siblings);
1244 rt6_multipath_rebalance(next_sibling);
1245 return err;
1246 }
1247 }
1248
1249 rcu_assign_pointer(rt->fib6_next, iter);
1250 fib6_info_hold(rt);
1251 rcu_assign_pointer(rt->fib6_node, fn);
1252 rcu_assign_pointer(*ins, rt);
1253 if (!info->skip_notify)
1254 inet6_rt_notify(RTM_NEWROUTE, rt, info, nlflags);
1255 info->nl_net->ipv6.rt6_stats->fib_rt_entries++;
1256
1257 if (!(fn->fn_flags & RTN_RTINFO)) {
1258 info->nl_net->ipv6.rt6_stats->fib_route_nodes++;
1259 fn->fn_flags |= RTN_RTINFO;
1260 }
1261
1262 } else {
1263 int nsiblings;
1264
1265 if (!found) {
1266 if (add)
1267 goto add;
1268 pr_warn("NLM_F_REPLACE set, but no existing node found!\n");
1269 return -ENOENT;
1270 }
1271
1272 if (!info->skip_notify_kernel && ins == &fn->leaf) {
1273 err = call_fib6_entry_notifiers(info->nl_net,
1274 FIB_EVENT_ENTRY_REPLACE,
1275 rt, extack);
1276 if (err)
1277 return err;
1278 }
1279
1280 fib6_info_hold(rt);
1281 rcu_assign_pointer(rt->fib6_node, fn);
1282 rt->fib6_next = iter->fib6_next;
1283 rcu_assign_pointer(*ins, rt);
1284 if (!info->skip_notify)
1285 inet6_rt_notify(RTM_NEWROUTE, rt, info, NLM_F_REPLACE);
1286 if (!(fn->fn_flags & RTN_RTINFO)) {
1287 info->nl_net->ipv6.rt6_stats->fib_route_nodes++;
1288 fn->fn_flags |= RTN_RTINFO;
1289 }
1290 nsiblings = iter->fib6_nsiblings;
1291 iter->fib6_node = NULL;
1292 fib6_purge_rt(iter, fn, info->nl_net);
1293 if (rcu_access_pointer(fn->rr_ptr) == iter)
1294 fn->rr_ptr = NULL;
1295 fib6_info_release(iter);
1296
1297 if (nsiblings) {
1298 /* Replacing an ECMP route, remove all siblings */
1299 ins = &rt->fib6_next;
1300 iter = rcu_dereference_protected(*ins,
1301 lockdep_is_held(&rt->fib6_table->tb6_lock));
1302 while (iter) {
1303 if (iter->fib6_metric > rt->fib6_metric)
1304 break;
1305 if (rt6_qualify_for_ecmp(iter)) {
1306 *ins = iter->fib6_next;
1307 iter->fib6_node = NULL;
1308 fib6_purge_rt(iter, fn, info->nl_net);
1309 if (rcu_access_pointer(fn->rr_ptr) == iter)
1310 fn->rr_ptr = NULL;
1311 fib6_info_release(iter);
1312 nsiblings--;
1313 info->nl_net->ipv6.rt6_stats->fib_rt_entries--;
1314 } else {
1315 ins = &iter->fib6_next;
1316 }
1317 iter = rcu_dereference_protected(*ins,
1318 lockdep_is_held(&rt->fib6_table->tb6_lock));
1319 }
1320 WARN_ON(nsiblings != 0);
1321 }
1322 }
1323
1324 return 0;
1325 }
1326
fib6_start_gc(struct net *net, struct fib6_info *rt)1327 static void fib6_start_gc(struct net *net, struct fib6_info *rt)
1328 {
1329 if (!timer_pending(&net->ipv6.ip6_fib_timer) &&
1330 (rt->fib6_flags & RTF_EXPIRES))
1331 mod_timer(&net->ipv6.ip6_fib_timer,
1332 jiffies + net->ipv6.sysctl.ip6_rt_gc_interval);
1333 }
1334
fib6_force_start_gc(struct net *net)1335 void fib6_force_start_gc(struct net *net)
1336 {
1337 if (!timer_pending(&net->ipv6.ip6_fib_timer))
1338 mod_timer(&net->ipv6.ip6_fib_timer,
1339 jiffies + net->ipv6.sysctl.ip6_rt_gc_interval);
1340 }
1341
__fib6_update_sernum_upto_root(struct fib6_info *rt, int sernum)1342 static void __fib6_update_sernum_upto_root(struct fib6_info *rt,
1343 int sernum)
1344 {
1345 struct fib6_node *fn = rcu_dereference_protected(rt->fib6_node,
1346 lockdep_is_held(&rt->fib6_table->tb6_lock));
1347
1348 /* paired with smp_rmb() in rt6_get_cookie_safe() */
1349 smp_wmb();
1350 while (fn) {
1351 WRITE_ONCE(fn->fn_sernum, sernum);
1352 fn = rcu_dereference_protected(fn->parent,
1353 lockdep_is_held(&rt->fib6_table->tb6_lock));
1354 }
1355 }
1356
fib6_update_sernum_upto_root(struct net *net, struct fib6_info *rt)1357 void fib6_update_sernum_upto_root(struct net *net, struct fib6_info *rt)
1358 {
1359 __fib6_update_sernum_upto_root(rt, fib6_new_sernum(net));
1360 }
1361
1362 /* allow ipv4 to update sernum via ipv6_stub */
fib6_update_sernum_stub(struct net *net, struct fib6_info *f6i)1363 void fib6_update_sernum_stub(struct net *net, struct fib6_info *f6i)
1364 {
1365 spin_lock_bh(&f6i->fib6_table->tb6_lock);
1366 fib6_update_sernum_upto_root(net, f6i);
1367 spin_unlock_bh(&f6i->fib6_table->tb6_lock);
1368 }
1369
1370 /*
1371 * Add routing information to the routing tree.
1372 * <destination addr>/<source addr>
1373 * with source addr info in sub-trees
1374 * Need to own table->tb6_lock
1375 */
1376
fib6_add(struct fib6_node *root, struct fib6_info *rt, struct nl_info *info, struct netlink_ext_ack *extack)1377 int fib6_add(struct fib6_node *root, struct fib6_info *rt,
1378 struct nl_info *info, struct netlink_ext_ack *extack)
1379 {
1380 struct fib6_table *table = rt->fib6_table;
1381 struct fib6_node *fn, *pn = NULL;
1382 int err = -ENOMEM;
1383 int allow_create = 1;
1384 int replace_required = 0;
1385
1386 if (info->nlh) {
1387 if (!(info->nlh->nlmsg_flags & NLM_F_CREATE))
1388 allow_create = 0;
1389 if (info->nlh->nlmsg_flags & NLM_F_REPLACE)
1390 replace_required = 1;
1391 }
1392 if (!allow_create && !replace_required)
1393 pr_warn("RTM_NEWROUTE with no NLM_F_CREATE or NLM_F_REPLACE\n");
1394
1395 fn = fib6_add_1(info->nl_net, table, root,
1396 &rt->fib6_dst.addr, rt->fib6_dst.plen,
1397 offsetof(struct fib6_info, fib6_dst), allow_create,
1398 replace_required, extack);
1399 if (IS_ERR(fn)) {
1400 err = PTR_ERR(fn);
1401 fn = NULL;
1402 goto out;
1403 }
1404
1405 pn = fn;
1406
1407 #ifdef CONFIG_IPV6_SUBTREES
1408 if (rt->fib6_src.plen) {
1409 struct fib6_node *sn;
1410
1411 if (!rcu_access_pointer(fn->subtree)) {
1412 struct fib6_node *sfn;
1413
1414 /*
1415 * Create subtree.
1416 *
1417 * fn[main tree]
1418 * |
1419 * sfn[subtree root]
1420 * \
1421 * sn[new leaf node]
1422 */
1423
1424 /* Create subtree root node */
1425 sfn = node_alloc(info->nl_net);
1426 if (!sfn)
1427 goto failure;
1428
1429 fib6_info_hold(info->nl_net->ipv6.fib6_null_entry);
1430 rcu_assign_pointer(sfn->leaf,
1431 info->nl_net->ipv6.fib6_null_entry);
1432 sfn->fn_flags = RTN_ROOT;
1433
1434 /* Now add the first leaf node to new subtree */
1435
1436 sn = fib6_add_1(info->nl_net, table, sfn,
1437 &rt->fib6_src.addr, rt->fib6_src.plen,
1438 offsetof(struct fib6_info, fib6_src),
1439 allow_create, replace_required, extack);
1440
1441 if (IS_ERR(sn)) {
1442 /* If it is failed, discard just allocated
1443 root, and then (in failure) stale node
1444 in main tree.
1445 */
1446 node_free_immediate(info->nl_net, sfn);
1447 err = PTR_ERR(sn);
1448 goto failure;
1449 }
1450
1451 /* Now link new subtree to main tree */
1452 rcu_assign_pointer(sfn->parent, fn);
1453 rcu_assign_pointer(fn->subtree, sfn);
1454 } else {
1455 sn = fib6_add_1(info->nl_net, table, FIB6_SUBTREE(fn),
1456 &rt->fib6_src.addr, rt->fib6_src.plen,
1457 offsetof(struct fib6_info, fib6_src),
1458 allow_create, replace_required, extack);
1459
1460 if (IS_ERR(sn)) {
1461 err = PTR_ERR(sn);
1462 goto failure;
1463 }
1464 }
1465
1466 if (!rcu_access_pointer(fn->leaf)) {
1467 if (fn->fn_flags & RTN_TL_ROOT) {
1468 /* put back null_entry for root node */
1469 rcu_assign_pointer(fn->leaf,
1470 info->nl_net->ipv6.fib6_null_entry);
1471 } else {
1472 fib6_info_hold(rt);
1473 rcu_assign_pointer(fn->leaf, rt);
1474 }
1475 }
1476 fn = sn;
1477 }
1478 #endif
1479
1480 err = fib6_add_rt2node(fn, rt, info, extack);
1481 if (!err) {
1482 if (rt->nh)
1483 list_add(&rt->nh_list, &rt->nh->f6i_list);
1484 __fib6_update_sernum_upto_root(rt, fib6_new_sernum(info->nl_net));
1485 fib6_start_gc(info->nl_net, rt);
1486 }
1487
1488 out:
1489 if (err) {
1490 #ifdef CONFIG_IPV6_SUBTREES
1491 /*
1492 * If fib6_add_1 has cleared the old leaf pointer in the
1493 * super-tree leaf node we have to find a new one for it.
1494 */
1495 if (pn != fn) {
1496 struct fib6_info *pn_leaf =
1497 rcu_dereference_protected(pn->leaf,
1498 lockdep_is_held(&table->tb6_lock));
1499 if (pn_leaf == rt) {
1500 pn_leaf = NULL;
1501 RCU_INIT_POINTER(pn->leaf, NULL);
1502 fib6_info_release(rt);
1503 }
1504 if (!pn_leaf && !(pn->fn_flags & RTN_RTINFO)) {
1505 pn_leaf = fib6_find_prefix(info->nl_net, table,
1506 pn);
1507 if (!pn_leaf)
1508 pn_leaf =
1509 info->nl_net->ipv6.fib6_null_entry;
1510 fib6_info_hold(pn_leaf);
1511 rcu_assign_pointer(pn->leaf, pn_leaf);
1512 }
1513 }
1514 #endif
1515 goto failure;
1516 } else if (fib6_requires_src(rt)) {
1517 fib6_routes_require_src_inc(info->nl_net);
1518 }
1519 return err;
1520
1521 failure:
1522 /* fn->leaf could be NULL and fib6_repair_tree() needs to be called if:
1523 * 1. fn is an intermediate node and we failed to add the new
1524 * route to it in both subtree creation failure and fib6_add_rt2node()
1525 * failure case.
1526 * 2. fn is the root node in the table and we fail to add the first
1527 * default route to it.
1528 */
1529 if (fn &&
1530 (!(fn->fn_flags & (RTN_RTINFO|RTN_ROOT)) ||
1531 (fn->fn_flags & RTN_TL_ROOT &&
1532 !rcu_access_pointer(fn->leaf))))
1533 fib6_repair_tree(info->nl_net, table, fn);
1534 return err;
1535 }
1536
1537 /*
1538 * Routing tree lookup
1539 *
1540 */
1541
1542 struct lookup_args {
1543 int offset; /* key offset on fib6_info */
1544 const struct in6_addr *addr; /* search key */
1545 };
1546
fib6_node_lookup_1(struct fib6_node *root, struct lookup_args *args)1547 static struct fib6_node *fib6_node_lookup_1(struct fib6_node *root,
1548 struct lookup_args *args)
1549 {
1550 struct fib6_node *fn;
1551 __be32 dir;
1552
1553 if (unlikely(args->offset == 0))
1554 return NULL;
1555
1556 /*
1557 * Descend on a tree
1558 */
1559
1560 fn = root;
1561
1562 for (;;) {
1563 struct fib6_node *next;
1564
1565 dir = addr_bit_set(args->addr, fn->fn_bit);
1566
1567 next = dir ? rcu_dereference(fn->right) :
1568 rcu_dereference(fn->left);
1569
1570 if (next) {
1571 fn = next;
1572 continue;
1573 }
1574 break;
1575 }
1576
1577 while (fn) {
1578 struct fib6_node *subtree = FIB6_SUBTREE(fn);
1579
1580 if (subtree || fn->fn_flags & RTN_RTINFO) {
1581 struct fib6_info *leaf = rcu_dereference(fn->leaf);
1582 struct rt6key *key;
1583
1584 if (!leaf)
1585 goto backtrack;
1586
1587 key = (struct rt6key *) ((u8 *)leaf + args->offset);
1588
1589 if (ipv6_prefix_equal(&key->addr, args->addr, key->plen)) {
1590 #ifdef CONFIG_IPV6_SUBTREES
1591 if (subtree) {
1592 struct fib6_node *sfn;
1593 sfn = fib6_node_lookup_1(subtree,
1594 args + 1);
1595 if (!sfn)
1596 goto backtrack;
1597 fn = sfn;
1598 }
1599 #endif
1600 if (fn->fn_flags & RTN_RTINFO)
1601 return fn;
1602 }
1603 }
1604 backtrack:
1605 if (fn->fn_flags & RTN_ROOT)
1606 break;
1607
1608 fn = rcu_dereference(fn->parent);
1609 }
1610
1611 return NULL;
1612 }
1613
1614 /* called with rcu_read_lock() held
1615 */
fib6_node_lookup(struct fib6_node *root, const struct in6_addr *daddr, const struct in6_addr *saddr)1616 struct fib6_node *fib6_node_lookup(struct fib6_node *root,
1617 const struct in6_addr *daddr,
1618 const struct in6_addr *saddr)
1619 {
1620 struct fib6_node *fn;
1621 struct lookup_args args[] = {
1622 {
1623 .offset = offsetof(struct fib6_info, fib6_dst),
1624 .addr = daddr,
1625 },
1626 #ifdef CONFIG_IPV6_SUBTREES
1627 {
1628 .offset = offsetof(struct fib6_info, fib6_src),
1629 .addr = saddr,
1630 },
1631 #endif
1632 {
1633 .offset = 0, /* sentinel */
1634 }
1635 };
1636
1637 fn = fib6_node_lookup_1(root, daddr ? args : args + 1);
1638 if (!fn || fn->fn_flags & RTN_TL_ROOT)
1639 fn = root;
1640
1641 return fn;
1642 }
1643
1644 /*
1645 * Get node with specified destination prefix (and source prefix,
1646 * if subtrees are used)
1647 * exact_match == true means we try to find fn with exact match of
1648 * the passed in prefix addr
1649 * exact_match == false means we try to find fn with longest prefix
1650 * match of the passed in prefix addr. This is useful for finding fn
1651 * for cached route as it will be stored in the exception table under
1652 * the node with longest prefix length.
1653 */
1654
1655
fib6_locate_1(struct fib6_node *root, const struct in6_addr *addr, int plen, int offset, bool exact_match)1656 static struct fib6_node *fib6_locate_1(struct fib6_node *root,
1657 const struct in6_addr *addr,
1658 int plen, int offset,
1659 bool exact_match)
1660 {
1661 struct fib6_node *fn, *prev = NULL;
1662
1663 for (fn = root; fn ; ) {
1664 struct fib6_info *leaf = rcu_dereference(fn->leaf);
1665 struct rt6key *key;
1666
1667 /* This node is being deleted */
1668 if (!leaf) {
1669 if (plen <= fn->fn_bit)
1670 goto out;
1671 else
1672 goto next;
1673 }
1674
1675 key = (struct rt6key *)((u8 *)leaf + offset);
1676
1677 /*
1678 * Prefix match
1679 */
1680 if (plen < fn->fn_bit ||
1681 !ipv6_prefix_equal(&key->addr, addr, fn->fn_bit))
1682 goto out;
1683
1684 if (plen == fn->fn_bit)
1685 return fn;
1686
1687 if (fn->fn_flags & RTN_RTINFO)
1688 prev = fn;
1689
1690 next:
1691 /*
1692 * We have more bits to go
1693 */
1694 if (addr_bit_set(addr, fn->fn_bit))
1695 fn = rcu_dereference(fn->right);
1696 else
1697 fn = rcu_dereference(fn->left);
1698 }
1699 out:
1700 if (exact_match)
1701 return NULL;
1702 else
1703 return prev;
1704 }
1705
fib6_locate(struct fib6_node *root, const struct in6_addr *daddr, int dst_len, const struct in6_addr *saddr, int src_len, bool exact_match)1706 struct fib6_node *fib6_locate(struct fib6_node *root,
1707 const struct in6_addr *daddr, int dst_len,
1708 const struct in6_addr *saddr, int src_len,
1709 bool exact_match)
1710 {
1711 struct fib6_node *fn;
1712
1713 fn = fib6_locate_1(root, daddr, dst_len,
1714 offsetof(struct fib6_info, fib6_dst),
1715 exact_match);
1716
1717 #ifdef CONFIG_IPV6_SUBTREES
1718 if (src_len) {
1719 WARN_ON(saddr == NULL);
1720 if (fn) {
1721 struct fib6_node *subtree = FIB6_SUBTREE(fn);
1722
1723 if (subtree) {
1724 fn = fib6_locate_1(subtree, saddr, src_len,
1725 offsetof(struct fib6_info, fib6_src),
1726 exact_match);
1727 }
1728 }
1729 }
1730 #endif
1731
1732 if (fn && fn->fn_flags & RTN_RTINFO)
1733 return fn;
1734
1735 return NULL;
1736 }
1737
1738
1739 /*
1740 * Deletion
1741 *
1742 */
1743
fib6_find_prefix(struct net *net, struct fib6_table *table, struct fib6_node *fn)1744 static struct fib6_info *fib6_find_prefix(struct net *net,
1745 struct fib6_table *table,
1746 struct fib6_node *fn)
1747 {
1748 struct fib6_node *child_left, *child_right;
1749
1750 if (fn->fn_flags & RTN_ROOT)
1751 return net->ipv6.fib6_null_entry;
1752
1753 while (fn) {
1754 child_left = rcu_dereference_protected(fn->left,
1755 lockdep_is_held(&table->tb6_lock));
1756 child_right = rcu_dereference_protected(fn->right,
1757 lockdep_is_held(&table->tb6_lock));
1758 if (child_left)
1759 return rcu_dereference_protected(child_left->leaf,
1760 lockdep_is_held(&table->tb6_lock));
1761 if (child_right)
1762 return rcu_dereference_protected(child_right->leaf,
1763 lockdep_is_held(&table->tb6_lock));
1764
1765 fn = FIB6_SUBTREE(fn);
1766 }
1767 return NULL;
1768 }
1769
1770 /*
1771 * Called to trim the tree of intermediate nodes when possible. "fn"
1772 * is the node we want to try and remove.
1773 * Need to own table->tb6_lock
1774 */
1775
fib6_repair_tree(struct net *net, struct fib6_table *table, struct fib6_node *fn)1776 static struct fib6_node *fib6_repair_tree(struct net *net,
1777 struct fib6_table *table,
1778 struct fib6_node *fn)
1779 {
1780 int children;
1781 int nstate;
1782 struct fib6_node *child;
1783 struct fib6_walker *w;
1784 int iter = 0;
1785
1786 /* Set fn->leaf to null_entry for root node. */
1787 if (fn->fn_flags & RTN_TL_ROOT) {
1788 rcu_assign_pointer(fn->leaf, net->ipv6.fib6_null_entry);
1789 return fn;
1790 }
1791
1792 for (;;) {
1793 struct fib6_node *fn_r = rcu_dereference_protected(fn->right,
1794 lockdep_is_held(&table->tb6_lock));
1795 struct fib6_node *fn_l = rcu_dereference_protected(fn->left,
1796 lockdep_is_held(&table->tb6_lock));
1797 struct fib6_node *pn = rcu_dereference_protected(fn->parent,
1798 lockdep_is_held(&table->tb6_lock));
1799 struct fib6_node *pn_r = rcu_dereference_protected(pn->right,
1800 lockdep_is_held(&table->tb6_lock));
1801 struct fib6_node *pn_l = rcu_dereference_protected(pn->left,
1802 lockdep_is_held(&table->tb6_lock));
1803 struct fib6_info *fn_leaf = rcu_dereference_protected(fn->leaf,
1804 lockdep_is_held(&table->tb6_lock));
1805 struct fib6_info *pn_leaf = rcu_dereference_protected(pn->leaf,
1806 lockdep_is_held(&table->tb6_lock));
1807 struct fib6_info *new_fn_leaf;
1808
1809 RT6_TRACE("fixing tree: plen=%d iter=%d\n", fn->fn_bit, iter);
1810 iter++;
1811
1812 WARN_ON(fn->fn_flags & RTN_RTINFO);
1813 WARN_ON(fn->fn_flags & RTN_TL_ROOT);
1814 WARN_ON(fn_leaf);
1815
1816 children = 0;
1817 child = NULL;
1818 if (fn_r) {
1819 child = fn_r;
1820 children |= 1;
1821 }
1822 if (fn_l) {
1823 child = fn_l;
1824 children |= 2;
1825 }
1826
1827 if (children == 3 || FIB6_SUBTREE(fn)
1828 #ifdef CONFIG_IPV6_SUBTREES
1829 /* Subtree root (i.e. fn) may have one child */
1830 || (children && fn->fn_flags & RTN_ROOT)
1831 #endif
1832 ) {
1833 new_fn_leaf = fib6_find_prefix(net, table, fn);
1834 #if RT6_DEBUG >= 2
1835 if (!new_fn_leaf) {
1836 WARN_ON(!new_fn_leaf);
1837 new_fn_leaf = net->ipv6.fib6_null_entry;
1838 }
1839 #endif
1840 fib6_info_hold(new_fn_leaf);
1841 rcu_assign_pointer(fn->leaf, new_fn_leaf);
1842 return pn;
1843 }
1844
1845 #ifdef CONFIG_IPV6_SUBTREES
1846 if (FIB6_SUBTREE(pn) == fn) {
1847 WARN_ON(!(fn->fn_flags & RTN_ROOT));
1848 RCU_INIT_POINTER(pn->subtree, NULL);
1849 nstate = FWS_L;
1850 } else {
1851 WARN_ON(fn->fn_flags & RTN_ROOT);
1852 #endif
1853 if (pn_r == fn)
1854 rcu_assign_pointer(pn->right, child);
1855 else if (pn_l == fn)
1856 rcu_assign_pointer(pn->left, child);
1857 #if RT6_DEBUG >= 2
1858 else
1859 WARN_ON(1);
1860 #endif
1861 if (child)
1862 rcu_assign_pointer(child->parent, pn);
1863 nstate = FWS_R;
1864 #ifdef CONFIG_IPV6_SUBTREES
1865 }
1866 #endif
1867
1868 read_lock(&net->ipv6.fib6_walker_lock);
1869 FOR_WALKERS(net, w) {
1870 if (!child) {
1871 if (w->node == fn) {
1872 RT6_TRACE("W %p adjusted by delnode 1, s=%d/%d\n", w, w->state, nstate);
1873 w->node = pn;
1874 w->state = nstate;
1875 }
1876 } else {
1877 if (w->node == fn) {
1878 w->node = child;
1879 if (children&2) {
1880 RT6_TRACE("W %p adjusted by delnode 2, s=%d\n", w, w->state);
1881 w->state = w->state >= FWS_R ? FWS_U : FWS_INIT;
1882 } else {
1883 RT6_TRACE("W %p adjusted by delnode 2, s=%d\n", w, w->state);
1884 w->state = w->state >= FWS_C ? FWS_U : FWS_INIT;
1885 }
1886 }
1887 }
1888 }
1889 read_unlock(&net->ipv6.fib6_walker_lock);
1890
1891 node_free(net, fn);
1892 if (pn->fn_flags & RTN_RTINFO || FIB6_SUBTREE(pn))
1893 return pn;
1894
1895 RCU_INIT_POINTER(pn->leaf, NULL);
1896 fib6_info_release(pn_leaf);
1897 fn = pn;
1898 }
1899 }
1900
fib6_del_route(struct fib6_table *table, struct fib6_node *fn, struct fib6_info __rcu **rtp, struct nl_info *info)1901 static void fib6_del_route(struct fib6_table *table, struct fib6_node *fn,
1902 struct fib6_info __rcu **rtp, struct nl_info *info)
1903 {
1904 struct fib6_info *leaf, *replace_rt = NULL;
1905 struct fib6_walker *w;
1906 struct fib6_info *rt = rcu_dereference_protected(*rtp,
1907 lockdep_is_held(&table->tb6_lock));
1908 struct net *net = info->nl_net;
1909 bool notify_del = false;
1910
1911 RT6_TRACE("fib6_del_route\n");
1912
1913 /* If the deleted route is the first in the node and it is not part of
1914 * a multipath route, then we need to replace it with the next route
1915 * in the node, if exists.
1916 */
1917 leaf = rcu_dereference_protected(fn->leaf,
1918 lockdep_is_held(&table->tb6_lock));
1919 if (leaf == rt && !rt->fib6_nsiblings) {
1920 if (rcu_access_pointer(rt->fib6_next))
1921 replace_rt = rcu_dereference_protected(rt->fib6_next,
1922 lockdep_is_held(&table->tb6_lock));
1923 else
1924 notify_del = true;
1925 }
1926
1927 /* Unlink it */
1928 *rtp = rt->fib6_next;
1929 rt->fib6_node = NULL;
1930 net->ipv6.rt6_stats->fib_rt_entries--;
1931 net->ipv6.rt6_stats->fib_discarded_routes++;
1932
1933 /* Reset round-robin state, if necessary */
1934 if (rcu_access_pointer(fn->rr_ptr) == rt)
1935 fn->rr_ptr = NULL;
1936
1937 /* Remove this entry from other siblings */
1938 if (rt->fib6_nsiblings) {
1939 struct fib6_info *sibling, *next_sibling;
1940
1941 /* The route is deleted from a multipath route. If this
1942 * multipath route is the first route in the node, then we need
1943 * to emit a delete notification. Otherwise, we need to skip
1944 * the notification.
1945 */
1946 if (rt->fib6_metric == leaf->fib6_metric &&
1947 rt6_qualify_for_ecmp(leaf))
1948 notify_del = true;
1949 list_for_each_entry_safe(sibling, next_sibling,
1950 &rt->fib6_siblings, fib6_siblings)
1951 sibling->fib6_nsiblings--;
1952 rt->fib6_nsiblings = 0;
1953 list_del_init(&rt->fib6_siblings);
1954 rt6_multipath_rebalance(next_sibling);
1955 }
1956
1957 /* Adjust walkers */
1958 read_lock(&net->ipv6.fib6_walker_lock);
1959 FOR_WALKERS(net, w) {
1960 if (w->state == FWS_C && w->leaf == rt) {
1961 RT6_TRACE("walker %p adjusted by delroute\n", w);
1962 w->leaf = rcu_dereference_protected(rt->fib6_next,
1963 lockdep_is_held(&table->tb6_lock));
1964 if (!w->leaf)
1965 w->state = FWS_U;
1966 }
1967 }
1968 read_unlock(&net->ipv6.fib6_walker_lock);
1969
1970 /* If it was last route, call fib6_repair_tree() to:
1971 * 1. For root node, put back null_entry as how the table was created.
1972 * 2. For other nodes, expunge its radix tree node.
1973 */
1974 if (!rcu_access_pointer(fn->leaf)) {
1975 if (!(fn->fn_flags & RTN_TL_ROOT)) {
1976 fn->fn_flags &= ~RTN_RTINFO;
1977 net->ipv6.rt6_stats->fib_route_nodes--;
1978 }
1979 fn = fib6_repair_tree(net, table, fn);
1980 }
1981
1982 fib6_purge_rt(rt, fn, net);
1983
1984 if (!info->skip_notify_kernel) {
1985 if (notify_del)
1986 call_fib6_entry_notifiers(net, FIB_EVENT_ENTRY_DEL,
1987 rt, NULL);
1988 else if (replace_rt)
1989 call_fib6_entry_notifiers_replace(net, replace_rt);
1990 }
1991 if (!info->skip_notify)
1992 inet6_rt_notify(RTM_DELROUTE, rt, info, 0);
1993
1994 fib6_info_release(rt);
1995 }
1996
1997 /* Need to own table->tb6_lock */
fib6_del(struct fib6_info *rt, struct nl_info *info)1998 int fib6_del(struct fib6_info *rt, struct nl_info *info)
1999 {
2000 struct net *net = info->nl_net;
2001 struct fib6_info __rcu **rtp;
2002 struct fib6_info __rcu **rtp_next;
2003 struct fib6_table *table;
2004 struct fib6_node *fn;
2005
2006 if (rt == net->ipv6.fib6_null_entry)
2007 return -ENOENT;
2008
2009 table = rt->fib6_table;
2010 fn = rcu_dereference_protected(rt->fib6_node,
2011 lockdep_is_held(&table->tb6_lock));
2012 if (!fn)
2013 return -ENOENT;
2014
2015 WARN_ON(!(fn->fn_flags & RTN_RTINFO));
2016
2017 /*
2018 * Walk the leaf entries looking for ourself
2019 */
2020
2021 for (rtp = &fn->leaf; *rtp; rtp = rtp_next) {
2022 struct fib6_info *cur = rcu_dereference_protected(*rtp,
2023 lockdep_is_held(&table->tb6_lock));
2024 if (rt == cur) {
2025 if (fib6_requires_src(cur))
2026 fib6_routes_require_src_dec(info->nl_net);
2027 fib6_del_route(table, fn, rtp, info);
2028 return 0;
2029 }
2030 rtp_next = &cur->fib6_next;
2031 }
2032 return -ENOENT;
2033 }
2034
2035 /*
2036 * Tree traversal function.
2037 *
2038 * Certainly, it is not interrupt safe.
2039 * However, it is internally reenterable wrt itself and fib6_add/fib6_del.
2040 * It means, that we can modify tree during walking
2041 * and use this function for garbage collection, clone pruning,
2042 * cleaning tree when a device goes down etc. etc.
2043 *
2044 * It guarantees that every node will be traversed,
2045 * and that it will be traversed only once.
2046 *
2047 * Callback function w->func may return:
2048 * 0 -> continue walking.
2049 * positive value -> walking is suspended (used by tree dumps,
2050 * and probably by gc, if it will be split to several slices)
2051 * negative value -> terminate walking.
2052 *
2053 * The function itself returns:
2054 * 0 -> walk is complete.
2055 * >0 -> walk is incomplete (i.e. suspended)
2056 * <0 -> walk is terminated by an error.
2057 *
2058 * This function is called with tb6_lock held.
2059 */
2060
fib6_walk_continue(struct fib6_walker *w)2061 static int fib6_walk_continue(struct fib6_walker *w)
2062 {
2063 struct fib6_node *fn, *pn, *left, *right;
2064
2065 /* w->root should always be table->tb6_root */
2066 WARN_ON_ONCE(!(w->root->fn_flags & RTN_TL_ROOT));
2067
2068 for (;;) {
2069 fn = w->node;
2070 if (!fn)
2071 return 0;
2072
2073 switch (w->state) {
2074 #ifdef CONFIG_IPV6_SUBTREES
2075 case FWS_S:
2076 if (FIB6_SUBTREE(fn)) {
2077 w->node = FIB6_SUBTREE(fn);
2078 continue;
2079 }
2080 w->state = FWS_L;
2081 fallthrough;
2082 #endif
2083 case FWS_L:
2084 left = rcu_dereference_protected(fn->left, 1);
2085 if (left) {
2086 w->node = left;
2087 w->state = FWS_INIT;
2088 continue;
2089 }
2090 w->state = FWS_R;
2091 fallthrough;
2092 case FWS_R:
2093 right = rcu_dereference_protected(fn->right, 1);
2094 if (right) {
2095 w->node = right;
2096 w->state = FWS_INIT;
2097 continue;
2098 }
2099 w->state = FWS_C;
2100 w->leaf = rcu_dereference_protected(fn->leaf, 1);
2101 fallthrough;
2102 case FWS_C:
2103 if (w->leaf && fn->fn_flags & RTN_RTINFO) {
2104 int err;
2105
2106 if (w->skip) {
2107 w->skip--;
2108 goto skip;
2109 }
2110
2111 err = w->func(w);
2112 if (err)
2113 return err;
2114
2115 w->count++;
2116 continue;
2117 }
2118 skip:
2119 w->state = FWS_U;
2120 fallthrough;
2121 case FWS_U:
2122 if (fn == w->root)
2123 return 0;
2124 pn = rcu_dereference_protected(fn->parent, 1);
2125 left = rcu_dereference_protected(pn->left, 1);
2126 right = rcu_dereference_protected(pn->right, 1);
2127 w->node = pn;
2128 #ifdef CONFIG_IPV6_SUBTREES
2129 if (FIB6_SUBTREE(pn) == fn) {
2130 WARN_ON(!(fn->fn_flags & RTN_ROOT));
2131 w->state = FWS_L;
2132 continue;
2133 }
2134 #endif
2135 if (left == fn) {
2136 w->state = FWS_R;
2137 continue;
2138 }
2139 if (right == fn) {
2140 w->state = FWS_C;
2141 w->leaf = rcu_dereference_protected(w->node->leaf, 1);
2142 continue;
2143 }
2144 #if RT6_DEBUG >= 2
2145 WARN_ON(1);
2146 #endif
2147 }
2148 }
2149 }
2150
fib6_walk(struct net *net, struct fib6_walker *w)2151 static int fib6_walk(struct net *net, struct fib6_walker *w)
2152 {
2153 int res;
2154
2155 w->state = FWS_INIT;
2156 w->node = w->root;
2157
2158 fib6_walker_link(net, w);
2159 res = fib6_walk_continue(w);
2160 if (res <= 0)
2161 fib6_walker_unlink(net, w);
2162 return res;
2163 }
2164
fib6_clean_node(struct fib6_walker *w)2165 static int fib6_clean_node(struct fib6_walker *w)
2166 {
2167 int res;
2168 struct fib6_info *rt;
2169 struct fib6_cleaner *c = container_of(w, struct fib6_cleaner, w);
2170 struct nl_info info = {
2171 .nl_net = c->net,
2172 .skip_notify = c->skip_notify,
2173 };
2174
2175 if (c->sernum != FIB6_NO_SERNUM_CHANGE &&
2176 READ_ONCE(w->node->fn_sernum) != c->sernum)
2177 WRITE_ONCE(w->node->fn_sernum, c->sernum);
2178
2179 if (!c->func) {
2180 WARN_ON_ONCE(c->sernum == FIB6_NO_SERNUM_CHANGE);
2181 w->leaf = NULL;
2182 return 0;
2183 }
2184
2185 for_each_fib6_walker_rt(w) {
2186 res = c->func(rt, c->arg);
2187 if (res == -1) {
2188 w->leaf = rt;
2189 res = fib6_del(rt, &info);
2190 if (res) {
2191 #if RT6_DEBUG >= 2
2192 pr_debug("%s: del failed: rt=%p@%p err=%d\n",
2193 __func__, rt,
2194 rcu_access_pointer(rt->fib6_node),
2195 res);
2196 #endif
2197 continue;
2198 }
2199 return 0;
2200 } else if (res == -2) {
2201 if (WARN_ON(!rt->fib6_nsiblings))
2202 continue;
2203 rt = list_last_entry(&rt->fib6_siblings,
2204 struct fib6_info, fib6_siblings);
2205 continue;
2206 }
2207 WARN_ON(res != 0);
2208 }
2209 w->leaf = rt;
2210 return 0;
2211 }
2212
2213 /*
2214 * Convenient frontend to tree walker.
2215 *
2216 * func is called on each route.
2217 * It may return -2 -> skip multipath route.
2218 * -1 -> delete this route.
2219 * 0 -> continue walking
2220 */
2221
fib6_clean_tree(struct net *net, struct fib6_node *root, int (*func)(struct fib6_info *, void *arg), int sernum, void *arg, bool skip_notify)2222 static void fib6_clean_tree(struct net *net, struct fib6_node *root,
2223 int (*func)(struct fib6_info *, void *arg),
2224 int sernum, void *arg, bool skip_notify)
2225 {
2226 struct fib6_cleaner c;
2227
2228 c.w.root = root;
2229 c.w.func = fib6_clean_node;
2230 c.w.count = 0;
2231 c.w.skip = 0;
2232 c.w.skip_in_node = 0;
2233 c.func = func;
2234 c.sernum = sernum;
2235 c.arg = arg;
2236 c.net = net;
2237 c.skip_notify = skip_notify;
2238
2239 fib6_walk(net, &c.w);
2240 }
2241
__fib6_clean_all(struct net *net, int (*func)(struct fib6_info *, void *), int sernum, void *arg, bool skip_notify)2242 static void __fib6_clean_all(struct net *net,
2243 int (*func)(struct fib6_info *, void *),
2244 int sernum, void *arg, bool skip_notify)
2245 {
2246 struct fib6_table *table;
2247 struct hlist_head *head;
2248 unsigned int h;
2249
2250 rcu_read_lock();
2251 for (h = 0; h < FIB6_TABLE_HASHSZ; h++) {
2252 head = &net->ipv6.fib_table_hash[h];
2253 hlist_for_each_entry_rcu(table, head, tb6_hlist) {
2254 spin_lock_bh(&table->tb6_lock);
2255 fib6_clean_tree(net, &table->tb6_root,
2256 func, sernum, arg, skip_notify);
2257 spin_unlock_bh(&table->tb6_lock);
2258 }
2259 }
2260 rcu_read_unlock();
2261 }
2262
fib6_clean_all(struct net *net, int (*func)(struct fib6_info *, void *), void *arg)2263 void fib6_clean_all(struct net *net, int (*func)(struct fib6_info *, void *),
2264 void *arg)
2265 {
2266 __fib6_clean_all(net, func, FIB6_NO_SERNUM_CHANGE, arg, false);
2267 }
2268
fib6_clean_all_skip_notify(struct net *net, int (*func)(struct fib6_info *, void *), void *arg)2269 void fib6_clean_all_skip_notify(struct net *net,
2270 int (*func)(struct fib6_info *, void *),
2271 void *arg)
2272 {
2273 __fib6_clean_all(net, func, FIB6_NO_SERNUM_CHANGE, arg, true);
2274 }
2275
fib6_flush_trees(struct net *net)2276 static void fib6_flush_trees(struct net *net)
2277 {
2278 int new_sernum = fib6_new_sernum(net);
2279
2280 __fib6_clean_all(net, NULL, new_sernum, NULL, false);
2281 }
2282
2283 /*
2284 * Garbage collection
2285 */
2286
fib6_age(struct fib6_info *rt, void *arg)2287 static int fib6_age(struct fib6_info *rt, void *arg)
2288 {
2289 struct fib6_gc_args *gc_args = arg;
2290 unsigned long now = jiffies;
2291
2292 /*
2293 * check addrconf expiration here.
2294 * Routes are expired even if they are in use.
2295 */
2296
2297 if (rt->fib6_flags & RTF_EXPIRES && rt->expires) {
2298 if (time_after(now, rt->expires)) {
2299 RT6_TRACE("expiring %p\n", rt);
2300 return -1;
2301 }
2302 gc_args->more++;
2303 }
2304
2305 /* Also age clones in the exception table.
2306 * Note, that clones are aged out
2307 * only if they are not in use now.
2308 */
2309 rt6_age_exceptions(rt, gc_args, now);
2310
2311 return 0;
2312 }
2313
fib6_run_gc(unsigned long expires, struct net *net, bool force)2314 void fib6_run_gc(unsigned long expires, struct net *net, bool force)
2315 {
2316 struct fib6_gc_args gc_args;
2317 unsigned long now;
2318
2319 if (force) {
2320 spin_lock_bh(&net->ipv6.fib6_gc_lock);
2321 } else if (!spin_trylock_bh(&net->ipv6.fib6_gc_lock)) {
2322 mod_timer(&net->ipv6.ip6_fib_timer, jiffies + HZ);
2323 return;
2324 }
2325 gc_args.timeout = expires ? (int)expires :
2326 net->ipv6.sysctl.ip6_rt_gc_interval;
2327 gc_args.more = 0;
2328
2329 fib6_clean_all(net, fib6_age, &gc_args);
2330 now = jiffies;
2331 net->ipv6.ip6_rt_last_gc = now;
2332
2333 if (gc_args.more)
2334 mod_timer(&net->ipv6.ip6_fib_timer,
2335 round_jiffies(now
2336 + net->ipv6.sysctl.ip6_rt_gc_interval));
2337 else
2338 del_timer(&net->ipv6.ip6_fib_timer);
2339 spin_unlock_bh(&net->ipv6.fib6_gc_lock);
2340 }
2341
fib6_gc_timer_cb(struct timer_list *t)2342 static void fib6_gc_timer_cb(struct timer_list *t)
2343 {
2344 struct net *arg = from_timer(arg, t, ipv6.ip6_fib_timer);
2345
2346 fib6_run_gc(0, arg, true);
2347 }
2348
fib6_net_init(struct net *net)2349 static int __net_init fib6_net_init(struct net *net)
2350 {
2351 size_t size = sizeof(struct hlist_head) * FIB6_TABLE_HASHSZ;
2352 int err;
2353
2354 err = fib6_notifier_init(net);
2355 if (err)
2356 return err;
2357
2358 spin_lock_init(&net->ipv6.fib6_gc_lock);
2359 rwlock_init(&net->ipv6.fib6_walker_lock);
2360 INIT_LIST_HEAD(&net->ipv6.fib6_walkers);
2361 timer_setup(&net->ipv6.ip6_fib_timer, fib6_gc_timer_cb, 0);
2362
2363 net->ipv6.rt6_stats = kzalloc(sizeof(*net->ipv6.rt6_stats), GFP_KERNEL);
2364 if (!net->ipv6.rt6_stats)
2365 goto out_timer;
2366
2367 /* Avoid false sharing : Use at least a full cache line */
2368 size = max_t(size_t, size, L1_CACHE_BYTES);
2369
2370 net->ipv6.fib_table_hash = kzalloc(size, GFP_KERNEL);
2371 if (!net->ipv6.fib_table_hash)
2372 goto out_rt6_stats;
2373
2374 net->ipv6.fib6_main_tbl = kzalloc(sizeof(*net->ipv6.fib6_main_tbl),
2375 GFP_KERNEL);
2376 if (!net->ipv6.fib6_main_tbl)
2377 goto out_fib_table_hash;
2378
2379 net->ipv6.fib6_main_tbl->tb6_id = RT6_TABLE_MAIN;
2380 rcu_assign_pointer(net->ipv6.fib6_main_tbl->tb6_root.leaf,
2381 net->ipv6.fib6_null_entry);
2382 net->ipv6.fib6_main_tbl->tb6_root.fn_flags =
2383 RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO;
2384 inet_peer_base_init(&net->ipv6.fib6_main_tbl->tb6_peers);
2385
2386 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
2387 net->ipv6.fib6_local_tbl = kzalloc(sizeof(*net->ipv6.fib6_local_tbl),
2388 GFP_KERNEL);
2389 if (!net->ipv6.fib6_local_tbl)
2390 goto out_fib6_main_tbl;
2391 net->ipv6.fib6_local_tbl->tb6_id = RT6_TABLE_LOCAL;
2392 rcu_assign_pointer(net->ipv6.fib6_local_tbl->tb6_root.leaf,
2393 net->ipv6.fib6_null_entry);
2394 net->ipv6.fib6_local_tbl->tb6_root.fn_flags =
2395 RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO;
2396 inet_peer_base_init(&net->ipv6.fib6_local_tbl->tb6_peers);
2397 #endif
2398 fib6_tables_init(net);
2399
2400 return 0;
2401
2402 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
2403 out_fib6_main_tbl:
2404 kfree(net->ipv6.fib6_main_tbl);
2405 #endif
2406 out_fib_table_hash:
2407 kfree(net->ipv6.fib_table_hash);
2408 out_rt6_stats:
2409 kfree(net->ipv6.rt6_stats);
2410 out_timer:
2411 fib6_notifier_exit(net);
2412 return -ENOMEM;
2413 }
2414
fib6_net_exit(struct net *net)2415 static void fib6_net_exit(struct net *net)
2416 {
2417 unsigned int i;
2418
2419 del_timer_sync(&net->ipv6.ip6_fib_timer);
2420
2421 for (i = 0; i < FIB6_TABLE_HASHSZ; i++) {
2422 struct hlist_head *head = &net->ipv6.fib_table_hash[i];
2423 struct hlist_node *tmp;
2424 struct fib6_table *tb;
2425
2426 hlist_for_each_entry_safe(tb, tmp, head, tb6_hlist) {
2427 hlist_del(&tb->tb6_hlist);
2428 fib6_free_table(tb);
2429 }
2430 }
2431
2432 kfree(net->ipv6.fib_table_hash);
2433 kfree(net->ipv6.rt6_stats);
2434 fib6_notifier_exit(net);
2435 }
2436
2437 static struct pernet_operations fib6_net_ops = {
2438 .init = fib6_net_init,
2439 .exit = fib6_net_exit,
2440 };
2441
fib6_init(void)2442 int __init fib6_init(void)
2443 {
2444 int ret = -ENOMEM;
2445
2446 fib6_node_kmem = kmem_cache_create("fib6_nodes",
2447 sizeof(struct fib6_node),
2448 0, SLAB_HWCACHE_ALIGN,
2449 NULL);
2450 if (!fib6_node_kmem)
2451 goto out;
2452
2453 ret = register_pernet_subsys(&fib6_net_ops);
2454 if (ret)
2455 goto out_kmem_cache_create;
2456
2457 ret = rtnl_register_module(THIS_MODULE, PF_INET6, RTM_GETROUTE, NULL,
2458 inet6_dump_fib, 0);
2459 if (ret)
2460 goto out_unregister_subsys;
2461
2462 __fib6_flush_trees = fib6_flush_trees;
2463 out:
2464 return ret;
2465
2466 out_unregister_subsys:
2467 unregister_pernet_subsys(&fib6_net_ops);
2468 out_kmem_cache_create:
2469 kmem_cache_destroy(fib6_node_kmem);
2470 goto out;
2471 }
2472
fib6_gc_cleanup(void)2473 void fib6_gc_cleanup(void)
2474 {
2475 unregister_pernet_subsys(&fib6_net_ops);
2476 kmem_cache_destroy(fib6_node_kmem);
2477 }
2478
2479 #ifdef CONFIG_PROC_FS
ipv6_route_native_seq_show(struct seq_file *seq, void *v)2480 static int ipv6_route_native_seq_show(struct seq_file *seq, void *v)
2481 {
2482 struct fib6_info *rt = v;
2483 struct ipv6_route_iter *iter = seq->private;
2484 struct fib6_nh *fib6_nh = rt->fib6_nh;
2485 unsigned int flags = rt->fib6_flags;
2486 const struct net_device *dev;
2487
2488 if (rt->nh)
2489 fib6_nh = nexthop_fib6_nh_bh(rt->nh);
2490
2491 seq_printf(seq, "%pi6 %02x ", &rt->fib6_dst.addr, rt->fib6_dst.plen);
2492
2493 #ifdef CONFIG_IPV6_SUBTREES
2494 seq_printf(seq, "%pi6 %02x ", &rt->fib6_src.addr, rt->fib6_src.plen);
2495 #else
2496 seq_puts(seq, "00000000000000000000000000000000 00 ");
2497 #endif
2498 if (fib6_nh->fib_nh_gw_family) {
2499 flags |= RTF_GATEWAY;
2500 seq_printf(seq, "%pi6", &fib6_nh->fib_nh_gw6);
2501 } else {
2502 seq_puts(seq, "00000000000000000000000000000000");
2503 }
2504
2505 dev = fib6_nh->fib_nh_dev;
2506 seq_printf(seq, " %08x %08x %08x %08x %8s\n",
2507 rt->fib6_metric, refcount_read(&rt->fib6_ref), 0,
2508 flags, dev ? dev->name : "");
2509 iter->w.leaf = NULL;
2510 return 0;
2511 }
2512
ipv6_route_yield(struct fib6_walker *w)2513 static int ipv6_route_yield(struct fib6_walker *w)
2514 {
2515 struct ipv6_route_iter *iter = w->args;
2516
2517 if (!iter->skip)
2518 return 1;
2519
2520 do {
2521 iter->w.leaf = rcu_dereference_protected(
2522 iter->w.leaf->fib6_next,
2523 lockdep_is_held(&iter->tbl->tb6_lock));
2524 iter->skip--;
2525 if (!iter->skip && iter->w.leaf)
2526 return 1;
2527 } while (iter->w.leaf);
2528
2529 return 0;
2530 }
2531
ipv6_route_seq_setup_walk(struct ipv6_route_iter *iter, struct net *net)2532 static void ipv6_route_seq_setup_walk(struct ipv6_route_iter *iter,
2533 struct net *net)
2534 {
2535 memset(&iter->w, 0, sizeof(iter->w));
2536 iter->w.func = ipv6_route_yield;
2537 iter->w.root = &iter->tbl->tb6_root;
2538 iter->w.state = FWS_INIT;
2539 iter->w.node = iter->w.root;
2540 iter->w.args = iter;
2541 iter->sernum = READ_ONCE(iter->w.root->fn_sernum);
2542 INIT_LIST_HEAD(&iter->w.lh);
2543 fib6_walker_link(net, &iter->w);
2544 }
2545
ipv6_route_seq_next_table(struct fib6_table *tbl, struct net *net)2546 static struct fib6_table *ipv6_route_seq_next_table(struct fib6_table *tbl,
2547 struct net *net)
2548 {
2549 unsigned int h;
2550 struct hlist_node *node;
2551
2552 if (tbl) {
2553 h = (tbl->tb6_id & (FIB6_TABLE_HASHSZ - 1)) + 1;
2554 node = rcu_dereference_bh(hlist_next_rcu(&tbl->tb6_hlist));
2555 } else {
2556 h = 0;
2557 node = NULL;
2558 }
2559
2560 while (!node && h < FIB6_TABLE_HASHSZ) {
2561 node = rcu_dereference_bh(
2562 hlist_first_rcu(&net->ipv6.fib_table_hash[h++]));
2563 }
2564 return hlist_entry_safe(node, struct fib6_table, tb6_hlist);
2565 }
2566
ipv6_route_check_sernum(struct ipv6_route_iter *iter)2567 static void ipv6_route_check_sernum(struct ipv6_route_iter *iter)
2568 {
2569 int sernum = READ_ONCE(iter->w.root->fn_sernum);
2570
2571 if (iter->sernum != sernum) {
2572 iter->sernum = sernum;
2573 iter->w.state = FWS_INIT;
2574 iter->w.node = iter->w.root;
2575 WARN_ON(iter->w.skip);
2576 iter->w.skip = iter->w.count;
2577 }
2578 }
2579
ipv6_route_seq_next(struct seq_file *seq, void *v, loff_t *pos)2580 static void *ipv6_route_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2581 {
2582 int r;
2583 struct fib6_info *n;
2584 struct net *net = seq_file_net(seq);
2585 struct ipv6_route_iter *iter = seq->private;
2586
2587 ++(*pos);
2588 if (!v)
2589 goto iter_table;
2590
2591 n = rcu_dereference_bh(((struct fib6_info *)v)->fib6_next);
2592 if (n)
2593 return n;
2594
2595 iter_table:
2596 ipv6_route_check_sernum(iter);
2597 spin_lock_bh(&iter->tbl->tb6_lock);
2598 r = fib6_walk_continue(&iter->w);
2599 spin_unlock_bh(&iter->tbl->tb6_lock);
2600 if (r > 0) {
2601 return iter->w.leaf;
2602 } else if (r < 0) {
2603 fib6_walker_unlink(net, &iter->w);
2604 return NULL;
2605 }
2606 fib6_walker_unlink(net, &iter->w);
2607
2608 iter->tbl = ipv6_route_seq_next_table(iter->tbl, net);
2609 if (!iter->tbl)
2610 return NULL;
2611
2612 ipv6_route_seq_setup_walk(iter, net);
2613 goto iter_table;
2614 }
2615
2616 static void *ipv6_route_seq_start(struct seq_file *seq, loff_t *pos)
__acquiresnull2617 __acquires(RCU_BH)
2618 {
2619 struct net *net = seq_file_net(seq);
2620 struct ipv6_route_iter *iter = seq->private;
2621
2622 rcu_read_lock_bh();
2623 iter->tbl = ipv6_route_seq_next_table(NULL, net);
2624 iter->skip = *pos;
2625
2626 if (iter->tbl) {
2627 loff_t p = 0;
2628
2629 ipv6_route_seq_setup_walk(iter, net);
2630 return ipv6_route_seq_next(seq, NULL, &p);
2631 } else {
2632 return NULL;
2633 }
2634 }
2635
ipv6_route_iter_active(struct ipv6_route_iter *iter)2636 static bool ipv6_route_iter_active(struct ipv6_route_iter *iter)
2637 {
2638 struct fib6_walker *w = &iter->w;
2639 return w->node && !(w->state == FWS_U && w->node == w->root);
2640 }
2641
2642 static void ipv6_route_native_seq_stop(struct seq_file *seq, void *v)
__releasesnull2643 __releases(RCU_BH)
2644 {
2645 struct net *net = seq_file_net(seq);
2646 struct ipv6_route_iter *iter = seq->private;
2647
2648 if (ipv6_route_iter_active(iter))
2649 fib6_walker_unlink(net, &iter->w);
2650
2651 rcu_read_unlock_bh();
2652 }
2653
2654 #if IS_BUILTIN(CONFIG_IPV6) && defined(CONFIG_BPF_SYSCALL)
ipv6_route_prog_seq_show(struct bpf_prog *prog, struct bpf_iter_meta *meta, void *v)2655 static int ipv6_route_prog_seq_show(struct bpf_prog *prog,
2656 struct bpf_iter_meta *meta,
2657 void *v)
2658 {
2659 struct bpf_iter__ipv6_route ctx;
2660
2661 ctx.meta = meta;
2662 ctx.rt = v;
2663 return bpf_iter_run_prog(prog, &ctx);
2664 }
2665
ipv6_route_seq_show(struct seq_file *seq, void *v)2666 static int ipv6_route_seq_show(struct seq_file *seq, void *v)
2667 {
2668 struct ipv6_route_iter *iter = seq->private;
2669 struct bpf_iter_meta meta;
2670 struct bpf_prog *prog;
2671 int ret;
2672
2673 meta.seq = seq;
2674 prog = bpf_iter_get_info(&meta, false);
2675 if (!prog)
2676 return ipv6_route_native_seq_show(seq, v);
2677
2678 ret = ipv6_route_prog_seq_show(prog, &meta, v);
2679 iter->w.leaf = NULL;
2680
2681 return ret;
2682 }
2683
ipv6_route_seq_stop(struct seq_file *seq, void *v)2684 static void ipv6_route_seq_stop(struct seq_file *seq, void *v)
2685 {
2686 struct bpf_iter_meta meta;
2687 struct bpf_prog *prog;
2688
2689 if (!v) {
2690 meta.seq = seq;
2691 prog = bpf_iter_get_info(&meta, true);
2692 if (prog)
2693 (void)ipv6_route_prog_seq_show(prog, &meta, v);
2694 }
2695
2696 ipv6_route_native_seq_stop(seq, v);
2697 }
2698 #else
ipv6_route_seq_show(struct seq_file *seq, void *v)2699 static int ipv6_route_seq_show(struct seq_file *seq, void *v)
2700 {
2701 return ipv6_route_native_seq_show(seq, v);
2702 }
2703
ipv6_route_seq_stop(struct seq_file *seq, void *v)2704 static void ipv6_route_seq_stop(struct seq_file *seq, void *v)
2705 {
2706 ipv6_route_native_seq_stop(seq, v);
2707 }
2708 #endif
2709
2710 const struct seq_operations ipv6_route_seq_ops = {
2711 .start = ipv6_route_seq_start,
2712 .next = ipv6_route_seq_next,
2713 .stop = ipv6_route_seq_stop,
2714 .show = ipv6_route_seq_show
2715 };
2716 #endif /* CONFIG_PROC_FS */
2717