xref: /kernel/linux/linux-5.10/net/ipv4/tcp.c (revision 8c2ecf20)
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * INET		An implementation of the TCP/IP protocol suite for the LINUX
4 *		operating system.  INET is implemented using the  BSD Socket
5 *		interface as the means of communication with the user level.
6 *
7 *		Implementation of the Transmission Control Protocol(TCP).
8 *
9 * Authors:	Ross Biro
10 *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11 *		Mark Evans, <evansmp@uhura.aston.ac.uk>
12 *		Corey Minyard <wf-rch!minyard@relay.EU.net>
13 *		Florian La Roche, <flla@stud.uni-sb.de>
14 *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
15 *		Linus Torvalds, <torvalds@cs.helsinki.fi>
16 *		Alan Cox, <gw4pts@gw4pts.ampr.org>
17 *		Matthew Dillon, <dillon@apollo.west.oic.com>
18 *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
19 *		Jorge Cwik, <jorge@laser.satlink.net>
20 *
21 * Fixes:
22 *		Alan Cox	:	Numerous verify_area() calls
23 *		Alan Cox	:	Set the ACK bit on a reset
24 *		Alan Cox	:	Stopped it crashing if it closed while
25 *					sk->inuse=1 and was trying to connect
26 *					(tcp_err()).
27 *		Alan Cox	:	All icmp error handling was broken
28 *					pointers passed where wrong and the
29 *					socket was looked up backwards. Nobody
30 *					tested any icmp error code obviously.
31 *		Alan Cox	:	tcp_err() now handled properly. It
32 *					wakes people on errors. poll
33 *					behaves and the icmp error race
34 *					has gone by moving it into sock.c
35 *		Alan Cox	:	tcp_send_reset() fixed to work for
36 *					everything not just packets for
37 *					unknown sockets.
38 *		Alan Cox	:	tcp option processing.
39 *		Alan Cox	:	Reset tweaked (still not 100%) [Had
40 *					syn rule wrong]
41 *		Herp Rosmanith  :	More reset fixes
42 *		Alan Cox	:	No longer acks invalid rst frames.
43 *					Acking any kind of RST is right out.
44 *		Alan Cox	:	Sets an ignore me flag on an rst
45 *					receive otherwise odd bits of prattle
46 *					escape still
47 *		Alan Cox	:	Fixed another acking RST frame bug.
48 *					Should stop LAN workplace lockups.
49 *		Alan Cox	: 	Some tidyups using the new skb list
50 *					facilities
51 *		Alan Cox	:	sk->keepopen now seems to work
52 *		Alan Cox	:	Pulls options out correctly on accepts
53 *		Alan Cox	:	Fixed assorted sk->rqueue->next errors
54 *		Alan Cox	:	PSH doesn't end a TCP read. Switched a
55 *					bit to skb ops.
56 *		Alan Cox	:	Tidied tcp_data to avoid a potential
57 *					nasty.
58 *		Alan Cox	:	Added some better commenting, as the
59 *					tcp is hard to follow
60 *		Alan Cox	:	Removed incorrect check for 20 * psh
61 *	Michael O'Reilly	:	ack < copied bug fix.
62 *	Johannes Stille		:	Misc tcp fixes (not all in yet).
63 *		Alan Cox	:	FIN with no memory -> CRASH
64 *		Alan Cox	:	Added socket option proto entries.
65 *					Also added awareness of them to accept.
66 *		Alan Cox	:	Added TCP options (SOL_TCP)
67 *		Alan Cox	:	Switched wakeup calls to callbacks,
68 *					so the kernel can layer network
69 *					sockets.
70 *		Alan Cox	:	Use ip_tos/ip_ttl settings.
71 *		Alan Cox	:	Handle FIN (more) properly (we hope).
72 *		Alan Cox	:	RST frames sent on unsynchronised
73 *					state ack error.
74 *		Alan Cox	:	Put in missing check for SYN bit.
75 *		Alan Cox	:	Added tcp_select_window() aka NET2E
76 *					window non shrink trick.
77 *		Alan Cox	:	Added a couple of small NET2E timer
78 *					fixes
79 *		Charles Hedrick :	TCP fixes
80 *		Toomas Tamm	:	TCP window fixes
81 *		Alan Cox	:	Small URG fix to rlogin ^C ack fight
82 *		Charles Hedrick	:	Rewrote most of it to actually work
83 *		Linus		:	Rewrote tcp_read() and URG handling
84 *					completely
85 *		Gerhard Koerting:	Fixed some missing timer handling
86 *		Matthew Dillon  :	Reworked TCP machine states as per RFC
87 *		Gerhard Koerting:	PC/TCP workarounds
88 *		Adam Caldwell	:	Assorted timer/timing errors
89 *		Matthew Dillon	:	Fixed another RST bug
90 *		Alan Cox	:	Move to kernel side addressing changes.
91 *		Alan Cox	:	Beginning work on TCP fastpathing
92 *					(not yet usable)
93 *		Arnt Gulbrandsen:	Turbocharged tcp_check() routine.
94 *		Alan Cox	:	TCP fast path debugging
95 *		Alan Cox	:	Window clamping
96 *		Michael Riepe	:	Bug in tcp_check()
97 *		Matt Dillon	:	More TCP improvements and RST bug fixes
98 *		Matt Dillon	:	Yet more small nasties remove from the
99 *					TCP code (Be very nice to this man if
100 *					tcp finally works 100%) 8)
101 *		Alan Cox	:	BSD accept semantics.
102 *		Alan Cox	:	Reset on closedown bug.
103 *	Peter De Schrijver	:	ENOTCONN check missing in tcp_sendto().
104 *		Michael Pall	:	Handle poll() after URG properly in
105 *					all cases.
106 *		Michael Pall	:	Undo the last fix in tcp_read_urg()
107 *					(multi URG PUSH broke rlogin).
108 *		Michael Pall	:	Fix the multi URG PUSH problem in
109 *					tcp_readable(), poll() after URG
110 *					works now.
111 *		Michael Pall	:	recv(...,MSG_OOB) never blocks in the
112 *					BSD api.
113 *		Alan Cox	:	Changed the semantics of sk->socket to
114 *					fix a race and a signal problem with
115 *					accept() and async I/O.
116 *		Alan Cox	:	Relaxed the rules on tcp_sendto().
117 *		Yury Shevchuk	:	Really fixed accept() blocking problem.
118 *		Craig I. Hagan  :	Allow for BSD compatible TIME_WAIT for
119 *					clients/servers which listen in on
120 *					fixed ports.
121 *		Alan Cox	:	Cleaned the above up and shrank it to
122 *					a sensible code size.
123 *		Alan Cox	:	Self connect lockup fix.
124 *		Alan Cox	:	No connect to multicast.
125 *		Ross Biro	:	Close unaccepted children on master
126 *					socket close.
127 *		Alan Cox	:	Reset tracing code.
128 *		Alan Cox	:	Spurious resets on shutdown.
129 *		Alan Cox	:	Giant 15 minute/60 second timer error
130 *		Alan Cox	:	Small whoops in polling before an
131 *					accept.
132 *		Alan Cox	:	Kept the state trace facility since
133 *					it's handy for debugging.
134 *		Alan Cox	:	More reset handler fixes.
135 *		Alan Cox	:	Started rewriting the code based on
136 *					the RFC's for other useful protocol
137 *					references see: Comer, KA9Q NOS, and
138 *					for a reference on the difference
139 *					between specifications and how BSD
140 *					works see the 4.4lite source.
141 *		A.N.Kuznetsov	:	Don't time wait on completion of tidy
142 *					close.
143 *		Linus Torvalds	:	Fin/Shutdown & copied_seq changes.
144 *		Linus Torvalds	:	Fixed BSD port reuse to work first syn
145 *		Alan Cox	:	Reimplemented timers as per the RFC
146 *					and using multiple timers for sanity.
147 *		Alan Cox	:	Small bug fixes, and a lot of new
148 *					comments.
149 *		Alan Cox	:	Fixed dual reader crash by locking
150 *					the buffers (much like datagram.c)
151 *		Alan Cox	:	Fixed stuck sockets in probe. A probe
152 *					now gets fed up of retrying without
153 *					(even a no space) answer.
154 *		Alan Cox	:	Extracted closing code better
155 *		Alan Cox	:	Fixed the closing state machine to
156 *					resemble the RFC.
157 *		Alan Cox	:	More 'per spec' fixes.
158 *		Jorge Cwik	:	Even faster checksumming.
159 *		Alan Cox	:	tcp_data() doesn't ack illegal PSH
160 *					only frames. At least one pc tcp stack
161 *					generates them.
162 *		Alan Cox	:	Cache last socket.
163 *		Alan Cox	:	Per route irtt.
164 *		Matt Day	:	poll()->select() match BSD precisely on error
165 *		Alan Cox	:	New buffers
166 *		Marc Tamsky	:	Various sk->prot->retransmits and
167 *					sk->retransmits misupdating fixed.
168 *					Fixed tcp_write_timeout: stuck close,
169 *					and TCP syn retries gets used now.
170 *		Mark Yarvis	:	In tcp_read_wakeup(), don't send an
171 *					ack if state is TCP_CLOSED.
172 *		Alan Cox	:	Look up device on a retransmit - routes may
173 *					change. Doesn't yet cope with MSS shrink right
174 *					but it's a start!
175 *		Marc Tamsky	:	Closing in closing fixes.
176 *		Mike Shaver	:	RFC1122 verifications.
177 *		Alan Cox	:	rcv_saddr errors.
178 *		Alan Cox	:	Block double connect().
179 *		Alan Cox	:	Small hooks for enSKIP.
180 *		Alexey Kuznetsov:	Path MTU discovery.
181 *		Alan Cox	:	Support soft errors.
182 *		Alan Cox	:	Fix MTU discovery pathological case
183 *					when the remote claims no mtu!
184 *		Marc Tamsky	:	TCP_CLOSE fix.
185 *		Colin (G3TNE)	:	Send a reset on syn ack replies in
186 *					window but wrong (fixes NT lpd problems)
187 *		Pedro Roque	:	Better TCP window handling, delayed ack.
188 *		Joerg Reuter	:	No modification of locked buffers in
189 *					tcp_do_retransmit()
190 *		Eric Schenk	:	Changed receiver side silly window
191 *					avoidance algorithm to BSD style
192 *					algorithm. This doubles throughput
193 *					against machines running Solaris,
194 *					and seems to result in general
195 *					improvement.
196 *	Stefan Magdalinski	:	adjusted tcp_readable() to fix FIONREAD
197 *	Willy Konynenberg	:	Transparent proxying support.
198 *	Mike McLagan		:	Routing by source
199 *		Keith Owens	:	Do proper merging with partial SKB's in
200 *					tcp_do_sendmsg to avoid burstiness.
201 *		Eric Schenk	:	Fix fast close down bug with
202 *					shutdown() followed by close().
203 *		Andi Kleen 	:	Make poll agree with SIGIO
204 *	Salvatore Sanfilippo	:	Support SO_LINGER with linger == 1 and
205 *					lingertime == 0 (RFC 793 ABORT Call)
206 *	Hirokazu Takahashi	:	Use copy_from_user() instead of
207 *					csum_and_copy_from_user() if possible.
208 *
209 * Description of States:
210 *
211 *	TCP_SYN_SENT		sent a connection request, waiting for ack
212 *
213 *	TCP_SYN_RECV		received a connection request, sent ack,
214 *				waiting for final ack in three-way handshake.
215 *
216 *	TCP_ESTABLISHED		connection established
217 *
218 *	TCP_FIN_WAIT1		our side has shutdown, waiting to complete
219 *				transmission of remaining buffered data
220 *
221 *	TCP_FIN_WAIT2		all buffered data sent, waiting for remote
222 *				to shutdown
223 *
224 *	TCP_CLOSING		both sides have shutdown but we still have
225 *				data we have to finish sending
226 *
227 *	TCP_TIME_WAIT		timeout to catch resent junk before entering
228 *				closed, can only be entered from FIN_WAIT2
229 *				or CLOSING.  Required because the other end
230 *				may not have gotten our last ACK causing it
231 *				to retransmit the data packet (which we ignore)
232 *
233 *	TCP_CLOSE_WAIT		remote side has shutdown and is waiting for
234 *				us to finish writing our data and to shutdown
235 *				(we have to close() to move on to LAST_ACK)
236 *
237 *	TCP_LAST_ACK		out side has shutdown after remote has
238 *				shutdown.  There may still be data in our
239 *				buffer that we have to finish sending
240 *
241 *	TCP_CLOSE		socket is finished
242 */
243
244#define pr_fmt(fmt) "TCP: " fmt
245
246#include <crypto/hash.h>
247#include <linux/kernel.h>
248#include <linux/module.h>
249#include <linux/types.h>
250#include <linux/fcntl.h>
251#include <linux/poll.h>
252#include <linux/inet_diag.h>
253#include <linux/init.h>
254#include <linux/fs.h>
255#include <linux/skbuff.h>
256#include <linux/scatterlist.h>
257#include <linux/splice.h>
258#include <linux/net.h>
259#include <linux/socket.h>
260#include <linux/random.h>
261#include <linux/memblock.h>
262#include <linux/highmem.h>
263#include <linux/swap.h>
264#include <linux/cache.h>
265#include <linux/err.h>
266#include <linux/time.h>
267#include <linux/slab.h>
268#include <linux/errqueue.h>
269#include <linux/static_key.h>
270
271#include <net/icmp.h>
272#include <net/inet_common.h>
273#include <net/tcp.h>
274#include <net/mptcp.h>
275#include <net/xfrm.h>
276#include <net/ip.h>
277#include <net/sock.h>
278
279#include <linux/uaccess.h>
280#include <asm/ioctls.h>
281#include <net/busy_poll.h>
282#ifdef CONFIG_LOWPOWER_PROTOCOL
283#include <net/lowpower_protocol.h>
284#endif /* CONFIG_LOWPOWER_PROTOCOL */
285#if defined(CONFIG_TCP_NATA_URC) || defined(CONFIG_TCP_NATA_STL)
286#include <net/nata.h>
287#endif
288
289DEFINE_PER_CPU(unsigned int, tcp_orphan_count);
290EXPORT_PER_CPU_SYMBOL_GPL(tcp_orphan_count);
291
292long sysctl_tcp_mem[3] __read_mostly;
293EXPORT_SYMBOL(sysctl_tcp_mem);
294
295atomic_long_t tcp_memory_allocated;	/* Current allocated memory. */
296EXPORT_SYMBOL(tcp_memory_allocated);
297
298#if IS_ENABLED(CONFIG_SMC)
299DEFINE_STATIC_KEY_FALSE(tcp_have_smc);
300EXPORT_SYMBOL(tcp_have_smc);
301#endif
302
303/*
304 * Current number of TCP sockets.
305 */
306struct percpu_counter tcp_sockets_allocated;
307EXPORT_SYMBOL(tcp_sockets_allocated);
308
309/*
310 * TCP splice context
311 */
312struct tcp_splice_state {
313	struct pipe_inode_info *pipe;
314	size_t len;
315	unsigned int flags;
316};
317
318/*
319 * Pressure flag: try to collapse.
320 * Technical note: it is used by multiple contexts non atomically.
321 * All the __sk_mem_schedule() is of this nature: accounting
322 * is strict, actions are advisory and have some latency.
323 */
324unsigned long tcp_memory_pressure __read_mostly;
325EXPORT_SYMBOL_GPL(tcp_memory_pressure);
326
327DEFINE_STATIC_KEY_FALSE(tcp_rx_skb_cache_key);
328EXPORT_SYMBOL(tcp_rx_skb_cache_key);
329
330DEFINE_STATIC_KEY_FALSE(tcp_tx_skb_cache_key);
331
332void tcp_enter_memory_pressure(struct sock *sk)
333{
334	unsigned long val;
335
336	if (READ_ONCE(tcp_memory_pressure))
337		return;
338	val = jiffies;
339
340	if (!val)
341		val--;
342	if (!cmpxchg(&tcp_memory_pressure, 0, val))
343		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURES);
344}
345EXPORT_SYMBOL_GPL(tcp_enter_memory_pressure);
346
347void tcp_leave_memory_pressure(struct sock *sk)
348{
349	unsigned long val;
350
351	if (!READ_ONCE(tcp_memory_pressure))
352		return;
353	val = xchg(&tcp_memory_pressure, 0);
354	if (val)
355		NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURESCHRONO,
356			      jiffies_to_msecs(jiffies - val));
357}
358EXPORT_SYMBOL_GPL(tcp_leave_memory_pressure);
359
360/* Convert seconds to retransmits based on initial and max timeout */
361static u8 secs_to_retrans(int seconds, int timeout, int rto_max)
362{
363	u8 res = 0;
364
365	if (seconds > 0) {
366		int period = timeout;
367
368		res = 1;
369		while (seconds > period && res < 255) {
370			res++;
371			timeout <<= 1;
372			if (timeout > rto_max)
373				timeout = rto_max;
374			period += timeout;
375		}
376	}
377	return res;
378}
379
380/* Convert retransmits to seconds based on initial and max timeout */
381static int retrans_to_secs(u8 retrans, int timeout, int rto_max)
382{
383	int period = 0;
384
385	if (retrans > 0) {
386		period = timeout;
387		while (--retrans) {
388			timeout <<= 1;
389			if (timeout > rto_max)
390				timeout = rto_max;
391			period += timeout;
392		}
393	}
394	return period;
395}
396
397static u64 tcp_compute_delivery_rate(const struct tcp_sock *tp)
398{
399	u32 rate = READ_ONCE(tp->rate_delivered);
400	u32 intv = READ_ONCE(tp->rate_interval_us);
401	u64 rate64 = 0;
402
403	if (rate && intv) {
404		rate64 = (u64)rate * tp->mss_cache * USEC_PER_SEC;
405		do_div(rate64, intv);
406	}
407	return rate64;
408}
409
410/* Address-family independent initialization for a tcp_sock.
411 *
412 * NOTE: A lot of things set to zero explicitly by call to
413 *       sk_alloc() so need not be done here.
414 */
415void tcp_init_sock(struct sock *sk)
416{
417	struct inet_connection_sock *icsk = inet_csk(sk);
418	struct tcp_sock *tp = tcp_sk(sk);
419
420	tp->out_of_order_queue = RB_ROOT;
421	sk->tcp_rtx_queue = RB_ROOT;
422	tcp_init_xmit_timers(sk);
423	INIT_LIST_HEAD(&tp->tsq_node);
424	INIT_LIST_HEAD(&tp->tsorted_sent_queue);
425
426	icsk->icsk_rto = TCP_TIMEOUT_INIT;
427	icsk->icsk_rto_min = TCP_RTO_MIN;
428	icsk->icsk_delack_max = TCP_DELACK_MAX;
429	tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT);
430	minmax_reset(&tp->rtt_min, tcp_jiffies32, ~0U);
431
432	/* So many TCP implementations out there (incorrectly) count the
433	 * initial SYN frame in their delayed-ACK and congestion control
434	 * algorithms that we must have the following bandaid to talk
435	 * efficiently to them.  -DaveM
436	 */
437	tp->snd_cwnd = TCP_INIT_CWND;
438
439	/* There's a bubble in the pipe until at least the first ACK. */
440	tp->app_limited = ~0U;
441	tp->rate_app_limited = 1;
442
443	/* See draft-stevens-tcpca-spec-01 for discussion of the
444	 * initialization of these values.
445	 */
446	tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
447	tp->snd_cwnd_clamp = ~0;
448	tp->mss_cache = TCP_MSS_DEFAULT;
449
450	tp->reordering = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_reordering);
451	tcp_assign_congestion_control(sk);
452
453	tp->tsoffset = 0;
454	tp->rack.reo_wnd_steps = 1;
455
456	sk->sk_write_space = sk_stream_write_space;
457	sock_set_flag(sk, SOCK_USE_WRITE_QUEUE);
458
459	icsk->icsk_sync_mss = tcp_sync_mss;
460
461	WRITE_ONCE(sk->sk_sndbuf, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_wmem[1]));
462	WRITE_ONCE(sk->sk_rcvbuf, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[1]));
463
464	sk_sockets_allocated_inc(sk);
465	sk->sk_route_forced_caps = NETIF_F_GSO;
466#if defined(CONFIG_TCP_NATA_URC) || defined(CONFIG_TCP_NATA_STL)
467	icsk->nata_retries_enabled = 0;
468	icsk->nata_retries_type = NATA_NA;
469	icsk->nata_syn_rto = TCP_TIMEOUT_INIT;
470	icsk->nata_data_rto = TCP_TIMEOUT_INIT;
471	icsk->nata_data_retries = 0;
472#endif
473}
474EXPORT_SYMBOL(tcp_init_sock);
475
476static void tcp_tx_timestamp(struct sock *sk, u16 tsflags)
477{
478	struct sk_buff *skb = tcp_write_queue_tail(sk);
479
480	if (tsflags && skb) {
481		struct skb_shared_info *shinfo = skb_shinfo(skb);
482		struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
483
484		sock_tx_timestamp(sk, tsflags, &shinfo->tx_flags);
485		if (tsflags & SOF_TIMESTAMPING_TX_ACK)
486			tcb->txstamp_ack = 1;
487		if (tsflags & SOF_TIMESTAMPING_TX_RECORD_MASK)
488			shinfo->tskey = TCP_SKB_CB(skb)->seq + skb->len - 1;
489	}
490}
491
492static inline bool tcp_stream_is_readable(const struct tcp_sock *tp,
493					  int target, struct sock *sk)
494{
495	int avail = READ_ONCE(tp->rcv_nxt) - READ_ONCE(tp->copied_seq);
496
497	if (avail > 0) {
498		if (avail >= target)
499			return true;
500		if (tcp_rmem_pressure(sk))
501			return true;
502		if (tcp_receive_window(tp) <= inet_csk(sk)->icsk_ack.rcv_mss)
503			return true;
504	}
505	if (sk->sk_prot->stream_memory_read)
506		return sk->sk_prot->stream_memory_read(sk);
507	return false;
508}
509
510/*
511 *	Wait for a TCP event.
512 *
513 *	Note that we don't need to lock the socket, as the upper poll layers
514 *	take care of normal races (between the test and the event) and we don't
515 *	go look at any of the socket buffers directly.
516 */
517__poll_t tcp_poll(struct file *file, struct socket *sock, poll_table *wait)
518{
519	__poll_t mask;
520	struct sock *sk = sock->sk;
521	const struct tcp_sock *tp = tcp_sk(sk);
522	u8 shutdown;
523	int state;
524
525	sock_poll_wait(file, sock, wait);
526
527	state = inet_sk_state_load(sk);
528	if (state == TCP_LISTEN)
529		return inet_csk_listen_poll(sk);
530
531	/* Socket is not locked. We are protected from async events
532	 * by poll logic and correct handling of state changes
533	 * made by other threads is impossible in any case.
534	 */
535
536	mask = 0;
537
538	/*
539	 * EPOLLHUP is certainly not done right. But poll() doesn't
540	 * have a notion of HUP in just one direction, and for a
541	 * socket the read side is more interesting.
542	 *
543	 * Some poll() documentation says that EPOLLHUP is incompatible
544	 * with the EPOLLOUT/POLLWR flags, so somebody should check this
545	 * all. But careful, it tends to be safer to return too many
546	 * bits than too few, and you can easily break real applications
547	 * if you don't tell them that something has hung up!
548	 *
549	 * Check-me.
550	 *
551	 * Check number 1. EPOLLHUP is _UNMASKABLE_ event (see UNIX98 and
552	 * our fs/select.c). It means that after we received EOF,
553	 * poll always returns immediately, making impossible poll() on write()
554	 * in state CLOSE_WAIT. One solution is evident --- to set EPOLLHUP
555	 * if and only if shutdown has been made in both directions.
556	 * Actually, it is interesting to look how Solaris and DUX
557	 * solve this dilemma. I would prefer, if EPOLLHUP were maskable,
558	 * then we could set it on SND_SHUTDOWN. BTW examples given
559	 * in Stevens' books assume exactly this behaviour, it explains
560	 * why EPOLLHUP is incompatible with EPOLLOUT.	--ANK
561	 *
562	 * NOTE. Check for TCP_CLOSE is added. The goal is to prevent
563	 * blocking on fresh not-connected or disconnected socket. --ANK
564	 */
565	shutdown = READ_ONCE(sk->sk_shutdown);
566	if (shutdown == SHUTDOWN_MASK || state == TCP_CLOSE)
567		mask |= EPOLLHUP;
568	if (shutdown & RCV_SHUTDOWN)
569		mask |= EPOLLIN | EPOLLRDNORM | EPOLLRDHUP;
570
571	/* Connected or passive Fast Open socket? */
572	if (state != TCP_SYN_SENT &&
573	    (state != TCP_SYN_RECV || rcu_access_pointer(tp->fastopen_rsk))) {
574		int target = sock_rcvlowat(sk, 0, INT_MAX);
575
576		if (READ_ONCE(tp->urg_seq) == READ_ONCE(tp->copied_seq) &&
577		    !sock_flag(sk, SOCK_URGINLINE) &&
578		    tp->urg_data)
579			target++;
580
581		if (tcp_stream_is_readable(tp, target, sk))
582			mask |= EPOLLIN | EPOLLRDNORM;
583
584		if (!(shutdown & SEND_SHUTDOWN)) {
585			if (__sk_stream_is_writeable(sk, 1)) {
586				mask |= EPOLLOUT | EPOLLWRNORM;
587			} else {  /* send SIGIO later */
588				sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk);
589				set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
590
591				/* Race breaker. If space is freed after
592				 * wspace test but before the flags are set,
593				 * IO signal will be lost. Memory barrier
594				 * pairs with the input side.
595				 */
596				smp_mb__after_atomic();
597				if (__sk_stream_is_writeable(sk, 1))
598					mask |= EPOLLOUT | EPOLLWRNORM;
599			}
600		} else
601			mask |= EPOLLOUT | EPOLLWRNORM;
602
603		if (tp->urg_data & TCP_URG_VALID)
604			mask |= EPOLLPRI;
605	} else if (state == TCP_SYN_SENT && inet_sk(sk)->defer_connect) {
606		/* Active TCP fastopen socket with defer_connect
607		 * Return EPOLLOUT so application can call write()
608		 * in order for kernel to generate SYN+data
609		 */
610		mask |= EPOLLOUT | EPOLLWRNORM;
611	}
612	/* This barrier is coupled with smp_wmb() in tcp_reset() */
613	smp_rmb();
614	if (sk->sk_err || !skb_queue_empty_lockless(&sk->sk_error_queue))
615		mask |= EPOLLERR;
616
617	return mask;
618}
619EXPORT_SYMBOL(tcp_poll);
620
621int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg)
622{
623	struct tcp_sock *tp = tcp_sk(sk);
624	int answ;
625	bool slow;
626
627	switch (cmd) {
628	case SIOCINQ:
629		if (sk->sk_state == TCP_LISTEN)
630			return -EINVAL;
631
632		slow = lock_sock_fast(sk);
633		answ = tcp_inq(sk);
634		unlock_sock_fast(sk, slow);
635		break;
636	case SIOCATMARK:
637		answ = tp->urg_data &&
638		       READ_ONCE(tp->urg_seq) == READ_ONCE(tp->copied_seq);
639		break;
640	case SIOCOUTQ:
641		if (sk->sk_state == TCP_LISTEN)
642			return -EINVAL;
643
644		if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
645			answ = 0;
646		else
647			answ = READ_ONCE(tp->write_seq) - tp->snd_una;
648		break;
649	case SIOCOUTQNSD:
650		if (sk->sk_state == TCP_LISTEN)
651			return -EINVAL;
652
653		if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
654			answ = 0;
655		else
656			answ = READ_ONCE(tp->write_seq) -
657			       READ_ONCE(tp->snd_nxt);
658		break;
659	default:
660		return -ENOIOCTLCMD;
661	}
662
663	return put_user(answ, (int __user *)arg);
664}
665EXPORT_SYMBOL(tcp_ioctl);
666
667static inline void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb)
668{
669	TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
670	tp->pushed_seq = tp->write_seq;
671}
672
673static inline bool forced_push(const struct tcp_sock *tp)
674{
675	return after(tp->write_seq, tp->pushed_seq + (tp->max_window >> 1));
676}
677
678static void skb_entail(struct sock *sk, struct sk_buff *skb)
679{
680	struct tcp_sock *tp = tcp_sk(sk);
681	struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
682
683	skb->csum    = 0;
684	tcb->seq     = tcb->end_seq = tp->write_seq;
685	tcb->tcp_flags = TCPHDR_ACK;
686	tcb->sacked  = 0;
687	__skb_header_release(skb);
688	tcp_add_write_queue_tail(sk, skb);
689	sk_wmem_queued_add(sk, skb->truesize);
690	sk_mem_charge(sk, skb->truesize);
691	if (tp->nonagle & TCP_NAGLE_PUSH)
692		tp->nonagle &= ~TCP_NAGLE_PUSH;
693
694	tcp_slow_start_after_idle_check(sk);
695}
696
697static inline void tcp_mark_urg(struct tcp_sock *tp, int flags)
698{
699	if (flags & MSG_OOB)
700		tp->snd_up = tp->write_seq;
701}
702
703/* If a not yet filled skb is pushed, do not send it if
704 * we have data packets in Qdisc or NIC queues :
705 * Because TX completion will happen shortly, it gives a chance
706 * to coalesce future sendmsg() payload into this skb, without
707 * need for a timer, and with no latency trade off.
708 * As packets containing data payload have a bigger truesize
709 * than pure acks (dataless) packets, the last checks prevent
710 * autocorking if we only have an ACK in Qdisc/NIC queues,
711 * or if TX completion was delayed after we processed ACK packet.
712 */
713static bool tcp_should_autocork(struct sock *sk, struct sk_buff *skb,
714				int size_goal)
715{
716	return skb->len < size_goal &&
717	       READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_autocorking) &&
718	       !tcp_rtx_queue_empty(sk) &&
719	       refcount_read(&sk->sk_wmem_alloc) > skb->truesize;
720}
721
722void tcp_push(struct sock *sk, int flags, int mss_now,
723	      int nonagle, int size_goal)
724{
725	struct tcp_sock *tp = tcp_sk(sk);
726	struct sk_buff *skb;
727
728	skb = tcp_write_queue_tail(sk);
729	if (!skb)
730		return;
731	if (!(flags & MSG_MORE) || forced_push(tp))
732		tcp_mark_push(tp, skb);
733
734	tcp_mark_urg(tp, flags);
735
736	if (tcp_should_autocork(sk, skb, size_goal)) {
737
738		/* avoid atomic op if TSQ_THROTTLED bit is already set */
739		if (!test_bit(TSQ_THROTTLED, &sk->sk_tsq_flags)) {
740			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAUTOCORKING);
741			set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags);
742			smp_mb__after_atomic();
743		}
744		/* It is possible TX completion already happened
745		 * before we set TSQ_THROTTLED.
746		 */
747		if (refcount_read(&sk->sk_wmem_alloc) > skb->truesize)
748			return;
749	}
750
751	if (flags & MSG_MORE)
752		nonagle = TCP_NAGLE_CORK;
753
754	__tcp_push_pending_frames(sk, mss_now, nonagle);
755}
756
757static int tcp_splice_data_recv(read_descriptor_t *rd_desc, struct sk_buff *skb,
758				unsigned int offset, size_t len)
759{
760	struct tcp_splice_state *tss = rd_desc->arg.data;
761	int ret;
762
763	ret = skb_splice_bits(skb, skb->sk, offset, tss->pipe,
764			      min(rd_desc->count, len), tss->flags);
765	if (ret > 0)
766		rd_desc->count -= ret;
767	return ret;
768}
769
770static int __tcp_splice_read(struct sock *sk, struct tcp_splice_state *tss)
771{
772	/* Store TCP splice context information in read_descriptor_t. */
773	read_descriptor_t rd_desc = {
774		.arg.data = tss,
775		.count	  = tss->len,
776	};
777
778	return tcp_read_sock(sk, &rd_desc, tcp_splice_data_recv);
779}
780
781/**
782 *  tcp_splice_read - splice data from TCP socket to a pipe
783 * @sock:	socket to splice from
784 * @ppos:	position (not valid)
785 * @pipe:	pipe to splice to
786 * @len:	number of bytes to splice
787 * @flags:	splice modifier flags
788 *
789 * Description:
790 *    Will read pages from given socket and fill them into a pipe.
791 *
792 **/
793ssize_t tcp_splice_read(struct socket *sock, loff_t *ppos,
794			struct pipe_inode_info *pipe, size_t len,
795			unsigned int flags)
796{
797	struct sock *sk = sock->sk;
798	struct tcp_splice_state tss = {
799		.pipe = pipe,
800		.len = len,
801		.flags = flags,
802	};
803	long timeo;
804	ssize_t spliced;
805	int ret;
806
807	sock_rps_record_flow(sk);
808	/*
809	 * We can't seek on a socket input
810	 */
811	if (unlikely(*ppos))
812		return -ESPIPE;
813
814	ret = spliced = 0;
815
816	lock_sock(sk);
817
818	timeo = sock_rcvtimeo(sk, sock->file->f_flags & O_NONBLOCK);
819	while (tss.len) {
820		ret = __tcp_splice_read(sk, &tss);
821		if (ret < 0)
822			break;
823		else if (!ret) {
824			if (spliced)
825				break;
826			if (sock_flag(sk, SOCK_DONE))
827				break;
828			if (sk->sk_err) {
829				ret = sock_error(sk);
830				break;
831			}
832			if (sk->sk_shutdown & RCV_SHUTDOWN)
833				break;
834			if (sk->sk_state == TCP_CLOSE) {
835				/*
836				 * This occurs when user tries to read
837				 * from never connected socket.
838				 */
839				ret = -ENOTCONN;
840				break;
841			}
842			if (!timeo) {
843				ret = -EAGAIN;
844				break;
845			}
846			/* if __tcp_splice_read() got nothing while we have
847			 * an skb in receive queue, we do not want to loop.
848			 * This might happen with URG data.
849			 */
850			if (!skb_queue_empty(&sk->sk_receive_queue))
851				break;
852			sk_wait_data(sk, &timeo, NULL);
853			if (signal_pending(current)) {
854				ret = sock_intr_errno(timeo);
855				break;
856			}
857			continue;
858		}
859		tss.len -= ret;
860		spliced += ret;
861
862		if (!timeo)
863			break;
864		release_sock(sk);
865		lock_sock(sk);
866
867		if (sk->sk_err || sk->sk_state == TCP_CLOSE ||
868		    (sk->sk_shutdown & RCV_SHUTDOWN) ||
869		    signal_pending(current))
870			break;
871	}
872
873	release_sock(sk);
874
875	if (spliced)
876		return spliced;
877
878	return ret;
879}
880EXPORT_SYMBOL(tcp_splice_read);
881
882struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp,
883				    bool force_schedule)
884{
885	struct sk_buff *skb;
886
887	if (likely(!size)) {
888		skb = sk->sk_tx_skb_cache;
889		if (skb) {
890			skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
891			sk->sk_tx_skb_cache = NULL;
892			pskb_trim(skb, 0);
893			INIT_LIST_HEAD(&skb->tcp_tsorted_anchor);
894			skb_shinfo(skb)->tx_flags = 0;
895			memset(TCP_SKB_CB(skb), 0, sizeof(struct tcp_skb_cb));
896			return skb;
897		}
898	}
899	/* The TCP header must be at least 32-bit aligned.  */
900	size = ALIGN(size, 4);
901
902	if (unlikely(tcp_under_memory_pressure(sk)))
903		sk_mem_reclaim_partial(sk);
904
905	skb = alloc_skb_fclone(size + sk->sk_prot->max_header, gfp);
906	if (likely(skb)) {
907		bool mem_scheduled;
908
909		if (force_schedule) {
910			mem_scheduled = true;
911			sk_forced_mem_schedule(sk, skb->truesize);
912		} else {
913			mem_scheduled = sk_wmem_schedule(sk, skb->truesize);
914		}
915		if (likely(mem_scheduled)) {
916			skb_reserve(skb, sk->sk_prot->max_header);
917			/*
918			 * Make sure that we have exactly size bytes
919			 * available to the caller, no more, no less.
920			 */
921			skb->reserved_tailroom = skb->end - skb->tail - size;
922			INIT_LIST_HEAD(&skb->tcp_tsorted_anchor);
923			return skb;
924		}
925		__kfree_skb(skb);
926	} else {
927		sk->sk_prot->enter_memory_pressure(sk);
928		sk_stream_moderate_sndbuf(sk);
929	}
930	return NULL;
931}
932
933static unsigned int tcp_xmit_size_goal(struct sock *sk, u32 mss_now,
934				       int large_allowed)
935{
936	struct tcp_sock *tp = tcp_sk(sk);
937	u32 new_size_goal, size_goal;
938
939	if (!large_allowed)
940		return mss_now;
941
942	/* Note : tcp_tso_autosize() will eventually split this later */
943	new_size_goal = sk->sk_gso_max_size - 1 - MAX_TCP_HEADER;
944	new_size_goal = tcp_bound_to_half_wnd(tp, new_size_goal);
945
946	/* We try hard to avoid divides here */
947	size_goal = tp->gso_segs * mss_now;
948	if (unlikely(new_size_goal < size_goal ||
949		     new_size_goal >= size_goal + mss_now)) {
950		tp->gso_segs = min_t(u16, new_size_goal / mss_now,
951				     sk->sk_gso_max_segs);
952		size_goal = tp->gso_segs * mss_now;
953	}
954
955	return max(size_goal, mss_now);
956}
957
958int tcp_send_mss(struct sock *sk, int *size_goal, int flags)
959{
960	int mss_now;
961
962	mss_now = tcp_current_mss(sk);
963	*size_goal = tcp_xmit_size_goal(sk, mss_now, !(flags & MSG_OOB));
964
965	return mss_now;
966}
967
968/* In some cases, both sendpage() and sendmsg() could have added
969 * an skb to the write queue, but failed adding payload on it.
970 * We need to remove it to consume less memory, but more
971 * importantly be able to generate EPOLLOUT for Edge Trigger epoll()
972 * users.
973 */
974static void tcp_remove_empty_skb(struct sock *sk, struct sk_buff *skb)
975{
976	if (skb && TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) {
977		tcp_unlink_write_queue(skb, sk);
978		if (tcp_write_queue_empty(sk))
979			tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
980		sk_wmem_free_skb(sk, skb);
981	}
982}
983
984ssize_t do_tcp_sendpages(struct sock *sk, struct page *page, int offset,
985			 size_t size, int flags)
986{
987	struct tcp_sock *tp = tcp_sk(sk);
988	int mss_now, size_goal;
989	int err;
990	ssize_t copied;
991	long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
992
993	if (IS_ENABLED(CONFIG_DEBUG_VM) &&
994	    WARN_ONCE(!sendpage_ok(page),
995		      "page must not be a Slab one and have page_count > 0"))
996		return -EINVAL;
997
998	/* Wait for a connection to finish. One exception is TCP Fast Open
999	 * (passive side) where data is allowed to be sent before a connection
1000	 * is fully established.
1001	 */
1002	if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) &&
1003	    !tcp_passive_fastopen(sk)) {
1004		err = sk_stream_wait_connect(sk, &timeo);
1005		if (err != 0)
1006			goto out_err;
1007	}
1008
1009	sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
1010
1011	mss_now = tcp_send_mss(sk, &size_goal, flags);
1012	copied = 0;
1013
1014	err = -EPIPE;
1015	if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
1016		goto out_err;
1017
1018	while (size > 0) {
1019		struct sk_buff *skb = tcp_write_queue_tail(sk);
1020		int copy, i;
1021		bool can_coalesce;
1022
1023		if (!skb || (copy = size_goal - skb->len) <= 0 ||
1024		    !tcp_skb_can_collapse_to(skb)) {
1025new_segment:
1026			if (!sk_stream_memory_free(sk))
1027				goto wait_for_space;
1028
1029			skb = sk_stream_alloc_skb(sk, 0, sk->sk_allocation,
1030					tcp_rtx_and_write_queues_empty(sk));
1031			if (!skb)
1032				goto wait_for_space;
1033
1034#ifdef CONFIG_TLS_DEVICE
1035			skb->decrypted = !!(flags & MSG_SENDPAGE_DECRYPTED);
1036#endif
1037			skb_entail(sk, skb);
1038			copy = size_goal;
1039		}
1040
1041		if (copy > size)
1042			copy = size;
1043
1044		i = skb_shinfo(skb)->nr_frags;
1045		can_coalesce = skb_can_coalesce(skb, i, page, offset);
1046		if (!can_coalesce && i >= sysctl_max_skb_frags) {
1047			tcp_mark_push(tp, skb);
1048			goto new_segment;
1049		}
1050		if (!sk_wmem_schedule(sk, copy))
1051			goto wait_for_space;
1052
1053		if (can_coalesce) {
1054			skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1055		} else {
1056			get_page(page);
1057			skb_fill_page_desc(skb, i, page, offset, copy);
1058		}
1059
1060		if (!(flags & MSG_NO_SHARED_FRAGS))
1061			skb_shinfo(skb)->tx_flags |= SKBTX_SHARED_FRAG;
1062
1063		skb->len += copy;
1064		skb->data_len += copy;
1065		skb->truesize += copy;
1066		sk_wmem_queued_add(sk, copy);
1067		sk_mem_charge(sk, copy);
1068		skb->ip_summed = CHECKSUM_PARTIAL;
1069		WRITE_ONCE(tp->write_seq, tp->write_seq + copy);
1070		TCP_SKB_CB(skb)->end_seq += copy;
1071		tcp_skb_pcount_set(skb, 0);
1072
1073		if (!copied)
1074			TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
1075
1076		copied += copy;
1077		offset += copy;
1078		size -= copy;
1079		if (!size)
1080			goto out;
1081
1082		if (skb->len < size_goal || (flags & MSG_OOB))
1083			continue;
1084
1085		if (forced_push(tp)) {
1086			tcp_mark_push(tp, skb);
1087			__tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
1088		} else if (skb == tcp_send_head(sk))
1089			tcp_push_one(sk, mss_now);
1090		continue;
1091
1092wait_for_space:
1093		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1094		tcp_push(sk, flags & ~MSG_MORE, mss_now,
1095			 TCP_NAGLE_PUSH, size_goal);
1096
1097		err = sk_stream_wait_memory(sk, &timeo);
1098		if (err != 0)
1099			goto do_error;
1100
1101		mss_now = tcp_send_mss(sk, &size_goal, flags);
1102	}
1103
1104out:
1105	if (copied) {
1106		tcp_tx_timestamp(sk, sk->sk_tsflags);
1107		if (!(flags & MSG_SENDPAGE_NOTLAST))
1108			tcp_push(sk, flags, mss_now, tp->nonagle, size_goal);
1109	}
1110	return copied;
1111
1112do_error:
1113	tcp_remove_empty_skb(sk, tcp_write_queue_tail(sk));
1114	if (copied)
1115		goto out;
1116out_err:
1117	/* make sure we wake any epoll edge trigger waiter */
1118	if (unlikely(tcp_rtx_and_write_queues_empty(sk) && err == -EAGAIN)) {
1119		sk->sk_write_space(sk);
1120		tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
1121	}
1122	return sk_stream_error(sk, flags, err);
1123}
1124EXPORT_SYMBOL_GPL(do_tcp_sendpages);
1125
1126int tcp_sendpage_locked(struct sock *sk, struct page *page, int offset,
1127			size_t size, int flags)
1128{
1129	if (!(sk->sk_route_caps & NETIF_F_SG))
1130		return sock_no_sendpage_locked(sk, page, offset, size, flags);
1131
1132	tcp_rate_check_app_limited(sk);  /* is sending application-limited? */
1133
1134	return do_tcp_sendpages(sk, page, offset, size, flags);
1135}
1136EXPORT_SYMBOL_GPL(tcp_sendpage_locked);
1137
1138int tcp_sendpage(struct sock *sk, struct page *page, int offset,
1139		 size_t size, int flags)
1140{
1141	int ret;
1142
1143	lock_sock(sk);
1144	ret = tcp_sendpage_locked(sk, page, offset, size, flags);
1145	release_sock(sk);
1146
1147	return ret;
1148}
1149EXPORT_SYMBOL(tcp_sendpage);
1150
1151void tcp_free_fastopen_req(struct tcp_sock *tp)
1152{
1153	if (tp->fastopen_req) {
1154		kfree(tp->fastopen_req);
1155		tp->fastopen_req = NULL;
1156	}
1157}
1158
1159static int tcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg,
1160				int *copied, size_t size,
1161				struct ubuf_info *uarg)
1162{
1163	struct tcp_sock *tp = tcp_sk(sk);
1164	struct inet_sock *inet = inet_sk(sk);
1165	struct sockaddr *uaddr = msg->msg_name;
1166	int err, flags;
1167
1168	if (!(READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_fastopen) &
1169	      TFO_CLIENT_ENABLE) ||
1170	    (uaddr && msg->msg_namelen >= sizeof(uaddr->sa_family) &&
1171	     uaddr->sa_family == AF_UNSPEC))
1172		return -EOPNOTSUPP;
1173	if (tp->fastopen_req)
1174		return -EALREADY; /* Another Fast Open is in progress */
1175
1176	tp->fastopen_req = kzalloc(sizeof(struct tcp_fastopen_request),
1177				   sk->sk_allocation);
1178	if (unlikely(!tp->fastopen_req))
1179		return -ENOBUFS;
1180	tp->fastopen_req->data = msg;
1181	tp->fastopen_req->size = size;
1182	tp->fastopen_req->uarg = uarg;
1183
1184	if (inet->defer_connect) {
1185		err = tcp_connect(sk);
1186		/* Same failure procedure as in tcp_v4/6_connect */
1187		if (err) {
1188			tcp_set_state(sk, TCP_CLOSE);
1189			inet->inet_dport = 0;
1190			sk->sk_route_caps = 0;
1191		}
1192	}
1193	flags = (msg->msg_flags & MSG_DONTWAIT) ? O_NONBLOCK : 0;
1194	err = __inet_stream_connect(sk->sk_socket, uaddr,
1195				    msg->msg_namelen, flags, 1);
1196	/* fastopen_req could already be freed in __inet_stream_connect
1197	 * if the connection times out or gets rst
1198	 */
1199	if (tp->fastopen_req) {
1200		*copied = tp->fastopen_req->copied;
1201		tcp_free_fastopen_req(tp);
1202		inet->defer_connect = 0;
1203	}
1204	return err;
1205}
1206
1207int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size)
1208{
1209	struct tcp_sock *tp = tcp_sk(sk);
1210	struct ubuf_info *uarg = NULL;
1211	struct sk_buff *skb;
1212	struct sockcm_cookie sockc;
1213	int flags, err, copied = 0;
1214	int mss_now = 0, size_goal, copied_syn = 0;
1215	int process_backlog = 0;
1216	bool zc = false;
1217	long timeo;
1218
1219	flags = msg->msg_flags;
1220
1221	if (flags & MSG_ZEROCOPY && size && sock_flag(sk, SOCK_ZEROCOPY)) {
1222		skb = tcp_write_queue_tail(sk);
1223		uarg = sock_zerocopy_realloc(sk, size, skb_zcopy(skb));
1224		if (!uarg) {
1225			err = -ENOBUFS;
1226			goto out_err;
1227		}
1228
1229		zc = sk->sk_route_caps & NETIF_F_SG;
1230		if (!zc)
1231			uarg->zerocopy = 0;
1232	}
1233
1234	if (unlikely(flags & MSG_FASTOPEN || inet_sk(sk)->defer_connect) &&
1235	    !tp->repair) {
1236		err = tcp_sendmsg_fastopen(sk, msg, &copied_syn, size, uarg);
1237		if (err == -EINPROGRESS && copied_syn > 0)
1238			goto out;
1239		else if (err)
1240			goto out_err;
1241	}
1242
1243	timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
1244
1245	tcp_rate_check_app_limited(sk);  /* is sending application-limited? */
1246
1247	/* Wait for a connection to finish. One exception is TCP Fast Open
1248	 * (passive side) where data is allowed to be sent before a connection
1249	 * is fully established.
1250	 */
1251	if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) &&
1252	    !tcp_passive_fastopen(sk)) {
1253		err = sk_stream_wait_connect(sk, &timeo);
1254		if (err != 0)
1255			goto do_error;
1256	}
1257
1258	if (unlikely(tp->repair)) {
1259		if (tp->repair_queue == TCP_RECV_QUEUE) {
1260			copied = tcp_send_rcvq(sk, msg, size);
1261			goto out_nopush;
1262		}
1263
1264		err = -EINVAL;
1265		if (tp->repair_queue == TCP_NO_QUEUE)
1266			goto out_err;
1267
1268		/* 'common' sending to sendq */
1269	}
1270
1271	sockcm_init(&sockc, sk);
1272	if (msg->msg_controllen) {
1273		err = sock_cmsg_send(sk, msg, &sockc);
1274		if (unlikely(err)) {
1275			err = -EINVAL;
1276			goto out_err;
1277		}
1278	}
1279
1280	/* This should be in poll */
1281	sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
1282
1283	/* Ok commence sending. */
1284	copied = 0;
1285
1286restart:
1287	mss_now = tcp_send_mss(sk, &size_goal, flags);
1288
1289	err = -EPIPE;
1290	if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
1291		goto do_error;
1292
1293	while (msg_data_left(msg)) {
1294		int copy = 0;
1295
1296		skb = tcp_write_queue_tail(sk);
1297		if (skb)
1298			copy = size_goal - skb->len;
1299
1300		if (copy <= 0 || !tcp_skb_can_collapse_to(skb)) {
1301			bool first_skb;
1302
1303new_segment:
1304			if (!sk_stream_memory_free(sk))
1305				goto wait_for_space;
1306
1307			if (unlikely(process_backlog >= 16)) {
1308				process_backlog = 0;
1309				if (sk_flush_backlog(sk))
1310					goto restart;
1311			}
1312			first_skb = tcp_rtx_and_write_queues_empty(sk);
1313			skb = sk_stream_alloc_skb(sk, 0, sk->sk_allocation,
1314						  first_skb);
1315			if (!skb)
1316				goto wait_for_space;
1317
1318			process_backlog++;
1319			skb->ip_summed = CHECKSUM_PARTIAL;
1320
1321			skb_entail(sk, skb);
1322			copy = size_goal;
1323
1324			/* All packets are restored as if they have
1325			 * already been sent. skb_mstamp_ns isn't set to
1326			 * avoid wrong rtt estimation.
1327			 */
1328			if (tp->repair)
1329				TCP_SKB_CB(skb)->sacked |= TCPCB_REPAIRED;
1330		}
1331
1332		/* Try to append data to the end of skb. */
1333		if (copy > msg_data_left(msg))
1334			copy = msg_data_left(msg);
1335
1336		/* Where to copy to? */
1337		if (skb_availroom(skb) > 0 && !zc) {
1338			/* We have some space in skb head. Superb! */
1339			copy = min_t(int, copy, skb_availroom(skb));
1340			err = skb_add_data_nocache(sk, skb, &msg->msg_iter, copy);
1341			if (err)
1342				goto do_fault;
1343		} else if (!zc) {
1344			bool merge = true;
1345			int i = skb_shinfo(skb)->nr_frags;
1346			struct page_frag *pfrag = sk_page_frag(sk);
1347
1348			if (!sk_page_frag_refill(sk, pfrag))
1349				goto wait_for_space;
1350
1351			if (!skb_can_coalesce(skb, i, pfrag->page,
1352					      pfrag->offset)) {
1353				if (i >= sysctl_max_skb_frags) {
1354					tcp_mark_push(tp, skb);
1355					goto new_segment;
1356				}
1357				merge = false;
1358			}
1359
1360			copy = min_t(int, copy, pfrag->size - pfrag->offset);
1361
1362			if (!sk_wmem_schedule(sk, copy))
1363				goto wait_for_space;
1364
1365			err = skb_copy_to_page_nocache(sk, &msg->msg_iter, skb,
1366						       pfrag->page,
1367						       pfrag->offset,
1368						       copy);
1369			if (err)
1370				goto do_error;
1371
1372			/* Update the skb. */
1373			if (merge) {
1374				skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1375			} else {
1376				skb_fill_page_desc(skb, i, pfrag->page,
1377						   pfrag->offset, copy);
1378				page_ref_inc(pfrag->page);
1379			}
1380			pfrag->offset += copy;
1381		} else {
1382			if (!sk_wmem_schedule(sk, copy))
1383				goto wait_for_space;
1384
1385			err = skb_zerocopy_iter_stream(sk, skb, msg, copy, uarg);
1386			if (err == -EMSGSIZE || err == -EEXIST) {
1387				tcp_mark_push(tp, skb);
1388				goto new_segment;
1389			}
1390			if (err < 0)
1391				goto do_error;
1392			copy = err;
1393		}
1394
1395		if (!copied)
1396			TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
1397
1398		WRITE_ONCE(tp->write_seq, tp->write_seq + copy);
1399		TCP_SKB_CB(skb)->end_seq += copy;
1400		tcp_skb_pcount_set(skb, 0);
1401
1402		copied += copy;
1403		if (!msg_data_left(msg)) {
1404			if (unlikely(flags & MSG_EOR))
1405				TCP_SKB_CB(skb)->eor = 1;
1406			goto out;
1407		}
1408
1409		if (skb->len < size_goal || (flags & MSG_OOB) || unlikely(tp->repair))
1410			continue;
1411
1412		if (forced_push(tp)) {
1413			tcp_mark_push(tp, skb);
1414			__tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
1415		} else if (skb == tcp_send_head(sk))
1416			tcp_push_one(sk, mss_now);
1417		continue;
1418
1419wait_for_space:
1420		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1421		if (copied)
1422			tcp_push(sk, flags & ~MSG_MORE, mss_now,
1423				 TCP_NAGLE_PUSH, size_goal);
1424
1425		err = sk_stream_wait_memory(sk, &timeo);
1426		if (err != 0)
1427			goto do_error;
1428
1429		mss_now = tcp_send_mss(sk, &size_goal, flags);
1430	}
1431
1432out:
1433	if (copied) {
1434		tcp_tx_timestamp(sk, sockc.tsflags);
1435		tcp_push(sk, flags, mss_now, tp->nonagle, size_goal);
1436	}
1437out_nopush:
1438	sock_zerocopy_put(uarg);
1439	return copied + copied_syn;
1440
1441do_error:
1442	skb = tcp_write_queue_tail(sk);
1443do_fault:
1444	tcp_remove_empty_skb(sk, skb);
1445
1446	if (copied + copied_syn)
1447		goto out;
1448out_err:
1449	sock_zerocopy_put_abort(uarg, true);
1450	err = sk_stream_error(sk, flags, err);
1451	/* make sure we wake any epoll edge trigger waiter */
1452	if (unlikely(tcp_rtx_and_write_queues_empty(sk) && err == -EAGAIN)) {
1453		sk->sk_write_space(sk);
1454		tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
1455	}
1456	return err;
1457}
1458EXPORT_SYMBOL_GPL(tcp_sendmsg_locked);
1459
1460int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size)
1461{
1462	int ret;
1463
1464	lock_sock(sk);
1465	ret = tcp_sendmsg_locked(sk, msg, size);
1466	release_sock(sk);
1467
1468	return ret;
1469}
1470EXPORT_SYMBOL(tcp_sendmsg);
1471
1472/*
1473 *	Handle reading urgent data. BSD has very simple semantics for
1474 *	this, no blocking and very strange errors 8)
1475 */
1476
1477static int tcp_recv_urg(struct sock *sk, struct msghdr *msg, int len, int flags)
1478{
1479	struct tcp_sock *tp = tcp_sk(sk);
1480
1481	/* No URG data to read. */
1482	if (sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data ||
1483	    tp->urg_data == TCP_URG_READ)
1484		return -EINVAL;	/* Yes this is right ! */
1485
1486	if (sk->sk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DONE))
1487		return -ENOTCONN;
1488
1489	if (tp->urg_data & TCP_URG_VALID) {
1490		int err = 0;
1491		char c = tp->urg_data;
1492
1493		if (!(flags & MSG_PEEK))
1494			tp->urg_data = TCP_URG_READ;
1495
1496		/* Read urgent data. */
1497		msg->msg_flags |= MSG_OOB;
1498
1499		if (len > 0) {
1500			if (!(flags & MSG_TRUNC))
1501				err = memcpy_to_msg(msg, &c, 1);
1502			len = 1;
1503		} else
1504			msg->msg_flags |= MSG_TRUNC;
1505
1506		return err ? -EFAULT : len;
1507	}
1508
1509	if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN))
1510		return 0;
1511
1512	/* Fixed the recv(..., MSG_OOB) behaviour.  BSD docs and
1513	 * the available implementations agree in this case:
1514	 * this call should never block, independent of the
1515	 * blocking state of the socket.
1516	 * Mike <pall@rz.uni-karlsruhe.de>
1517	 */
1518	return -EAGAIN;
1519}
1520
1521static int tcp_peek_sndq(struct sock *sk, struct msghdr *msg, int len)
1522{
1523	struct sk_buff *skb;
1524	int copied = 0, err = 0;
1525
1526	/* XXX -- need to support SO_PEEK_OFF */
1527
1528	skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
1529		err = skb_copy_datagram_msg(skb, 0, msg, skb->len);
1530		if (err)
1531			return err;
1532		copied += skb->len;
1533	}
1534
1535	skb_queue_walk(&sk->sk_write_queue, skb) {
1536		err = skb_copy_datagram_msg(skb, 0, msg, skb->len);
1537		if (err)
1538			break;
1539
1540		copied += skb->len;
1541	}
1542
1543	return err ?: copied;
1544}
1545
1546/* Clean up the receive buffer for full frames taken by the user,
1547 * then send an ACK if necessary.  COPIED is the number of bytes
1548 * tcp_recvmsg has given to the user so far, it speeds up the
1549 * calculation of whether or not we must ACK for the sake of
1550 * a window update.
1551 */
1552void tcp_cleanup_rbuf(struct sock *sk, int copied)
1553{
1554	struct tcp_sock *tp = tcp_sk(sk);
1555	bool time_to_ack = false;
1556
1557	struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
1558
1559	WARN(skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq),
1560	     "cleanup rbuf bug: copied %X seq %X rcvnxt %X\n",
1561	     tp->copied_seq, TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt);
1562
1563	if (inet_csk_ack_scheduled(sk)) {
1564		const struct inet_connection_sock *icsk = inet_csk(sk);
1565		__u16 rcv_mss = icsk->icsk_ack.rcv_mss;
1566#ifdef CONFIG_LOWPOWER_PROTOCOL
1567		rcv_mss *= tcp_ack_num(sk);
1568#endif /* CONFIG_LOWPOWER_PROTOCOL */
1569
1570		if (/* Once-per-two-segments ACK was not sent by tcp_input.c */
1571		    tp->rcv_nxt - tp->rcv_wup > rcv_mss ||
1572		    /*
1573		     * If this read emptied read buffer, we send ACK, if
1574		     * connection is not bidirectional, user drained
1575		     * receive buffer and there was a small segment
1576		     * in queue.
1577		     */
1578		    (copied > 0 &&
1579		     ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED2) ||
1580		      ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED) &&
1581		       !inet_csk_in_pingpong_mode(sk))) &&
1582		      !atomic_read(&sk->sk_rmem_alloc)))
1583			time_to_ack = true;
1584	}
1585
1586	/* We send an ACK if we can now advertise a non-zero window
1587	 * which has been raised "significantly".
1588	 *
1589	 * Even if window raised up to infinity, do not send window open ACK
1590	 * in states, where we will not receive more. It is useless.
1591	 */
1592	if (copied > 0 && !time_to_ack && !(sk->sk_shutdown & RCV_SHUTDOWN)) {
1593		__u32 rcv_window_now = tcp_receive_window(tp);
1594
1595		/* Optimize, __tcp_select_window() is not cheap. */
1596		if (2*rcv_window_now <= tp->window_clamp) {
1597			__u32 new_window = __tcp_select_window(sk);
1598
1599			/* Send ACK now, if this read freed lots of space
1600			 * in our buffer. Certainly, new_window is new window.
1601			 * We can advertise it now, if it is not less than current one.
1602			 * "Lots" means "at least twice" here.
1603			 */
1604			if (new_window && new_window >= 2 * rcv_window_now)
1605				time_to_ack = true;
1606		}
1607	}
1608	if (time_to_ack)
1609		tcp_send_ack(sk);
1610}
1611
1612static struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off)
1613{
1614	struct sk_buff *skb;
1615	u32 offset;
1616
1617	while ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) {
1618		offset = seq - TCP_SKB_CB(skb)->seq;
1619		if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
1620			pr_err_once("%s: found a SYN, please report !\n", __func__);
1621			offset--;
1622		}
1623		if (offset < skb->len || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)) {
1624			*off = offset;
1625			return skb;
1626		}
1627		/* This looks weird, but this can happen if TCP collapsing
1628		 * splitted a fat GRO packet, while we released socket lock
1629		 * in skb_splice_bits()
1630		 */
1631		sk_eat_skb(sk, skb);
1632	}
1633	return NULL;
1634}
1635
1636/*
1637 * This routine provides an alternative to tcp_recvmsg() for routines
1638 * that would like to handle copying from skbuffs directly in 'sendfile'
1639 * fashion.
1640 * Note:
1641 *	- It is assumed that the socket was locked by the caller.
1642 *	- The routine does not block.
1643 *	- At present, there is no support for reading OOB data
1644 *	  or for 'peeking' the socket using this routine
1645 *	  (although both would be easy to implement).
1646 */
1647int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
1648		  sk_read_actor_t recv_actor)
1649{
1650	struct sk_buff *skb;
1651	struct tcp_sock *tp = tcp_sk(sk);
1652	u32 seq = tp->copied_seq;
1653	u32 offset;
1654	int copied = 0;
1655
1656	if (sk->sk_state == TCP_LISTEN)
1657		return -ENOTCONN;
1658	while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) {
1659		if (offset < skb->len) {
1660			int used;
1661			size_t len;
1662
1663			len = skb->len - offset;
1664			/* Stop reading if we hit a patch of urgent data */
1665			if (tp->urg_data) {
1666				u32 urg_offset = tp->urg_seq - seq;
1667				if (urg_offset < len)
1668					len = urg_offset;
1669				if (!len)
1670					break;
1671			}
1672			used = recv_actor(desc, skb, offset, len);
1673			if (used <= 0) {
1674				if (!copied)
1675					copied = used;
1676				break;
1677			}
1678			if (WARN_ON_ONCE(used > len))
1679				used = len;
1680			seq += used;
1681			copied += used;
1682			offset += used;
1683
1684			/* If recv_actor drops the lock (e.g. TCP splice
1685			 * receive) the skb pointer might be invalid when
1686			 * getting here: tcp_collapse might have deleted it
1687			 * while aggregating skbs from the socket queue.
1688			 */
1689			skb = tcp_recv_skb(sk, seq - 1, &offset);
1690			if (!skb)
1691				break;
1692			/* TCP coalescing might have appended data to the skb.
1693			 * Try to splice more frags
1694			 */
1695			if (offset + 1 != skb->len)
1696				continue;
1697		}
1698		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) {
1699			sk_eat_skb(sk, skb);
1700			++seq;
1701			break;
1702		}
1703		sk_eat_skb(sk, skb);
1704		if (!desc->count)
1705			break;
1706		WRITE_ONCE(tp->copied_seq, seq);
1707	}
1708	WRITE_ONCE(tp->copied_seq, seq);
1709
1710	tcp_rcv_space_adjust(sk);
1711
1712	/* Clean up data we have read: This will do ACK frames. */
1713	if (copied > 0) {
1714		tcp_recv_skb(sk, seq, &offset);
1715		tcp_cleanup_rbuf(sk, copied);
1716	}
1717	return copied;
1718}
1719EXPORT_SYMBOL(tcp_read_sock);
1720
1721int tcp_peek_len(struct socket *sock)
1722{
1723	return tcp_inq(sock->sk);
1724}
1725EXPORT_SYMBOL(tcp_peek_len);
1726
1727/* Make sure sk_rcvbuf is big enough to satisfy SO_RCVLOWAT hint */
1728int tcp_set_rcvlowat(struct sock *sk, int val)
1729{
1730	int cap;
1731
1732	if (sk->sk_userlocks & SOCK_RCVBUF_LOCK)
1733		cap = sk->sk_rcvbuf >> 1;
1734	else
1735		cap = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2]) >> 1;
1736	val = min(val, cap);
1737	WRITE_ONCE(sk->sk_rcvlowat, val ? : 1);
1738
1739	/* Check if we need to signal EPOLLIN right now */
1740	tcp_data_ready(sk);
1741
1742	if (sk->sk_userlocks & SOCK_RCVBUF_LOCK)
1743		return 0;
1744
1745	val <<= 1;
1746	if (val > sk->sk_rcvbuf) {
1747		WRITE_ONCE(sk->sk_rcvbuf, val);
1748		tcp_sk(sk)->window_clamp = tcp_win_from_space(sk, val);
1749	}
1750	return 0;
1751}
1752EXPORT_SYMBOL(tcp_set_rcvlowat);
1753
1754#ifdef CONFIG_MMU
1755static const struct vm_operations_struct tcp_vm_ops = {
1756};
1757
1758int tcp_mmap(struct file *file, struct socket *sock,
1759	     struct vm_area_struct *vma)
1760{
1761	if (vma->vm_flags & (VM_WRITE | VM_EXEC))
1762		return -EPERM;
1763	vma->vm_flags &= ~(VM_MAYWRITE | VM_MAYEXEC);
1764
1765	/* Instruct vm_insert_page() to not mmap_read_lock(mm) */
1766	vma->vm_flags |= VM_MIXEDMAP;
1767
1768	vma->vm_ops = &tcp_vm_ops;
1769	return 0;
1770}
1771EXPORT_SYMBOL(tcp_mmap);
1772
1773static skb_frag_t *skb_advance_to_frag(struct sk_buff *skb, u32 offset_skb,
1774				       u32 *offset_frag)
1775{
1776	skb_frag_t *frag;
1777
1778	if (unlikely(offset_skb >= skb->len))
1779		return NULL;
1780
1781	offset_skb -= skb_headlen(skb);
1782	if ((int)offset_skb < 0 || skb_has_frag_list(skb))
1783		return NULL;
1784
1785	frag = skb_shinfo(skb)->frags;
1786	while (offset_skb) {
1787		if (skb_frag_size(frag) > offset_skb) {
1788			*offset_frag = offset_skb;
1789			return frag;
1790		}
1791		offset_skb -= skb_frag_size(frag);
1792		++frag;
1793	}
1794	*offset_frag = 0;
1795	return frag;
1796}
1797
1798static bool can_map_frag(const skb_frag_t *frag)
1799{
1800	struct page *page;
1801
1802	if (skb_frag_size(frag) != PAGE_SIZE || skb_frag_off(frag))
1803		return false;
1804
1805	page = skb_frag_page(frag);
1806
1807	if (PageCompound(page) || page->mapping)
1808		return false;
1809
1810	return true;
1811}
1812
1813static int find_next_mappable_frag(const skb_frag_t *frag,
1814				   int remaining_in_skb)
1815{
1816	int offset = 0;
1817
1818	if (likely(can_map_frag(frag)))
1819		return 0;
1820
1821	while (offset < remaining_in_skb && !can_map_frag(frag)) {
1822		offset += skb_frag_size(frag);
1823		++frag;
1824	}
1825	return offset;
1826}
1827
1828static int tcp_copy_straggler_data(struct tcp_zerocopy_receive *zc,
1829				   struct sk_buff *skb, u32 copylen,
1830				   u32 *offset, u32 *seq)
1831{
1832	unsigned long copy_address = (unsigned long)zc->copybuf_address;
1833	struct msghdr msg = {};
1834	struct iovec iov;
1835	int err;
1836
1837	if (copy_address != zc->copybuf_address)
1838		return -EINVAL;
1839
1840	err = import_single_range(READ, (void __user *)copy_address,
1841				  copylen, &iov, &msg.msg_iter);
1842	if (err)
1843		return err;
1844	err = skb_copy_datagram_msg(skb, *offset, &msg, copylen);
1845	if (err)
1846		return err;
1847	zc->recv_skip_hint -= copylen;
1848	*offset += copylen;
1849	*seq += copylen;
1850	return (__s32)copylen;
1851}
1852
1853static int tcp_zerocopy_handle_leftover_data(struct tcp_zerocopy_receive *zc,
1854					     struct sock *sk,
1855					     struct sk_buff *skb,
1856					     u32 *seq,
1857					     s32 copybuf_len)
1858{
1859	u32 offset, copylen = min_t(u32, copybuf_len, zc->recv_skip_hint);
1860
1861	if (!copylen)
1862		return 0;
1863	/* skb is null if inq < PAGE_SIZE. */
1864	if (skb)
1865		offset = *seq - TCP_SKB_CB(skb)->seq;
1866	else
1867		skb = tcp_recv_skb(sk, *seq, &offset);
1868
1869	zc->copybuf_len = tcp_copy_straggler_data(zc, skb, copylen, &offset,
1870						  seq);
1871	return zc->copybuf_len < 0 ? 0 : copylen;
1872}
1873
1874static int tcp_zerocopy_vm_insert_batch(struct vm_area_struct *vma,
1875					struct page **pages,
1876					unsigned long pages_to_map,
1877					unsigned long *insert_addr,
1878					u32 *length_with_pending,
1879					u32 *seq,
1880					struct tcp_zerocopy_receive *zc)
1881{
1882	unsigned long pages_remaining = pages_to_map;
1883	int bytes_mapped;
1884	int ret;
1885
1886	ret = vm_insert_pages(vma, *insert_addr, pages, &pages_remaining);
1887	bytes_mapped = PAGE_SIZE * (pages_to_map - pages_remaining);
1888	/* Even if vm_insert_pages fails, it may have partially succeeded in
1889	 * mapping (some but not all of the pages).
1890	 */
1891	*seq += bytes_mapped;
1892	*insert_addr += bytes_mapped;
1893	if (ret) {
1894		/* But if vm_insert_pages did fail, we have to unroll some state
1895		 * we speculatively touched before.
1896		 */
1897		const int bytes_not_mapped = PAGE_SIZE * pages_remaining;
1898		*length_with_pending -= bytes_not_mapped;
1899		zc->recv_skip_hint += bytes_not_mapped;
1900	}
1901	return ret;
1902}
1903
1904static int tcp_zerocopy_receive(struct sock *sk,
1905				struct tcp_zerocopy_receive *zc)
1906{
1907	u32 length = 0, offset, vma_len, avail_len, aligned_len, copylen = 0;
1908	unsigned long address = (unsigned long)zc->address;
1909	s32 copybuf_len = zc->copybuf_len;
1910	struct tcp_sock *tp = tcp_sk(sk);
1911	#define PAGE_BATCH_SIZE 8
1912	struct page *pages[PAGE_BATCH_SIZE];
1913	const skb_frag_t *frags = NULL;
1914	struct vm_area_struct *vma;
1915	struct sk_buff *skb = NULL;
1916	unsigned long pg_idx = 0;
1917	unsigned long curr_addr;
1918	u32 seq = tp->copied_seq;
1919	int inq = tcp_inq(sk);
1920	int ret;
1921
1922	zc->copybuf_len = 0;
1923
1924	if (address & (PAGE_SIZE - 1) || address != zc->address)
1925		return -EINVAL;
1926
1927	if (sk->sk_state == TCP_LISTEN)
1928		return -ENOTCONN;
1929
1930	sock_rps_record_flow(sk);
1931
1932	mmap_read_lock(current->mm);
1933
1934	vma = find_vma(current->mm, address);
1935	if (!vma || vma->vm_start > address || vma->vm_ops != &tcp_vm_ops) {
1936		mmap_read_unlock(current->mm);
1937		return -EINVAL;
1938	}
1939	vma_len = min_t(unsigned long, zc->length, vma->vm_end - address);
1940	avail_len = min_t(u32, vma_len, inq);
1941	aligned_len = avail_len & ~(PAGE_SIZE - 1);
1942	if (aligned_len) {
1943		zap_page_range(vma, address, aligned_len);
1944		zc->length = aligned_len;
1945		zc->recv_skip_hint = 0;
1946	} else {
1947		zc->length = avail_len;
1948		zc->recv_skip_hint = avail_len;
1949	}
1950	ret = 0;
1951	curr_addr = address;
1952	while (length + PAGE_SIZE <= zc->length) {
1953		int mappable_offset;
1954
1955		if (zc->recv_skip_hint < PAGE_SIZE) {
1956			u32 offset_frag;
1957
1958			/* If we're here, finish the current batch. */
1959			if (pg_idx) {
1960				ret = tcp_zerocopy_vm_insert_batch(vma, pages,
1961								   pg_idx,
1962								   &curr_addr,
1963								   &length,
1964								   &seq, zc);
1965				if (ret)
1966					goto out;
1967				pg_idx = 0;
1968			}
1969			if (skb) {
1970				if (zc->recv_skip_hint > 0)
1971					break;
1972				skb = skb->next;
1973				offset = seq - TCP_SKB_CB(skb)->seq;
1974			} else {
1975				skb = tcp_recv_skb(sk, seq, &offset);
1976			}
1977			zc->recv_skip_hint = skb->len - offset;
1978			frags = skb_advance_to_frag(skb, offset, &offset_frag);
1979			if (!frags || offset_frag)
1980				break;
1981		}
1982
1983		mappable_offset = find_next_mappable_frag(frags,
1984							  zc->recv_skip_hint);
1985		if (mappable_offset) {
1986			zc->recv_skip_hint = mappable_offset;
1987			break;
1988		}
1989		pages[pg_idx] = skb_frag_page(frags);
1990		pg_idx++;
1991		length += PAGE_SIZE;
1992		zc->recv_skip_hint -= PAGE_SIZE;
1993		frags++;
1994		if (pg_idx == PAGE_BATCH_SIZE) {
1995			ret = tcp_zerocopy_vm_insert_batch(vma, pages, pg_idx,
1996							   &curr_addr, &length,
1997							   &seq, zc);
1998			if (ret)
1999				goto out;
2000			pg_idx = 0;
2001		}
2002	}
2003	if (pg_idx) {
2004		ret = tcp_zerocopy_vm_insert_batch(vma, pages, pg_idx,
2005						   &curr_addr, &length, &seq,
2006						   zc);
2007	}
2008out:
2009	mmap_read_unlock(current->mm);
2010	/* Try to copy straggler data. */
2011	if (!ret)
2012		copylen = tcp_zerocopy_handle_leftover_data(zc, sk, skb, &seq,
2013							    copybuf_len);
2014
2015	if (length + copylen) {
2016		WRITE_ONCE(tp->copied_seq, seq);
2017		tcp_rcv_space_adjust(sk);
2018
2019		/* Clean up data we have read: This will do ACK frames. */
2020		tcp_recv_skb(sk, seq, &offset);
2021		tcp_cleanup_rbuf(sk, length + copylen);
2022		ret = 0;
2023		if (length == zc->length)
2024			zc->recv_skip_hint = 0;
2025	} else {
2026		if (!zc->recv_skip_hint && sock_flag(sk, SOCK_DONE))
2027			ret = -EIO;
2028	}
2029	zc->length = length;
2030	return ret;
2031}
2032#endif
2033
2034static void tcp_update_recv_tstamps(struct sk_buff *skb,
2035				    struct scm_timestamping_internal *tss)
2036{
2037	if (skb->tstamp)
2038		tss->ts[0] = ktime_to_timespec64(skb->tstamp);
2039	else
2040		tss->ts[0] = (struct timespec64) {0};
2041
2042	if (skb_hwtstamps(skb)->hwtstamp)
2043		tss->ts[2] = ktime_to_timespec64(skb_hwtstamps(skb)->hwtstamp);
2044	else
2045		tss->ts[2] = (struct timespec64) {0};
2046}
2047
2048/* Similar to __sock_recv_timestamp, but does not require an skb */
2049static void tcp_recv_timestamp(struct msghdr *msg, const struct sock *sk,
2050			       struct scm_timestamping_internal *tss)
2051{
2052	int new_tstamp = sock_flag(sk, SOCK_TSTAMP_NEW);
2053	bool has_timestamping = false;
2054
2055	if (tss->ts[0].tv_sec || tss->ts[0].tv_nsec) {
2056		if (sock_flag(sk, SOCK_RCVTSTAMP)) {
2057			if (sock_flag(sk, SOCK_RCVTSTAMPNS)) {
2058				if (new_tstamp) {
2059					struct __kernel_timespec kts = {
2060						.tv_sec = tss->ts[0].tv_sec,
2061						.tv_nsec = tss->ts[0].tv_nsec,
2062					};
2063					put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_NEW,
2064						 sizeof(kts), &kts);
2065				} else {
2066					struct __kernel_old_timespec ts_old = {
2067						.tv_sec = tss->ts[0].tv_sec,
2068						.tv_nsec = tss->ts[0].tv_nsec,
2069					};
2070					put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_OLD,
2071						 sizeof(ts_old), &ts_old);
2072				}
2073			} else {
2074				if (new_tstamp) {
2075					struct __kernel_sock_timeval stv = {
2076						.tv_sec = tss->ts[0].tv_sec,
2077						.tv_usec = tss->ts[0].tv_nsec / 1000,
2078					};
2079					put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_NEW,
2080						 sizeof(stv), &stv);
2081				} else {
2082					struct __kernel_old_timeval tv = {
2083						.tv_sec = tss->ts[0].tv_sec,
2084						.tv_usec = tss->ts[0].tv_nsec / 1000,
2085					};
2086					put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_OLD,
2087						 sizeof(tv), &tv);
2088				}
2089			}
2090		}
2091
2092		if (sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE)
2093			has_timestamping = true;
2094		else
2095			tss->ts[0] = (struct timespec64) {0};
2096	}
2097
2098	if (tss->ts[2].tv_sec || tss->ts[2].tv_nsec) {
2099		if (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE)
2100			has_timestamping = true;
2101		else
2102			tss->ts[2] = (struct timespec64) {0};
2103	}
2104
2105	if (has_timestamping) {
2106		tss->ts[1] = (struct timespec64) {0};
2107		if (sock_flag(sk, SOCK_TSTAMP_NEW))
2108			put_cmsg_scm_timestamping64(msg, tss);
2109		else
2110			put_cmsg_scm_timestamping(msg, tss);
2111	}
2112}
2113
2114static int tcp_inq_hint(struct sock *sk)
2115{
2116	const struct tcp_sock *tp = tcp_sk(sk);
2117	u32 copied_seq = READ_ONCE(tp->copied_seq);
2118	u32 rcv_nxt = READ_ONCE(tp->rcv_nxt);
2119	int inq;
2120
2121	inq = rcv_nxt - copied_seq;
2122	if (unlikely(inq < 0 || copied_seq != READ_ONCE(tp->copied_seq))) {
2123		lock_sock(sk);
2124		inq = tp->rcv_nxt - tp->copied_seq;
2125		release_sock(sk);
2126	}
2127	/* After receiving a FIN, tell the user-space to continue reading
2128	 * by returning a non-zero inq.
2129	 */
2130	if (inq == 0 && sock_flag(sk, SOCK_DONE))
2131		inq = 1;
2132	return inq;
2133}
2134
2135/*
2136 *	This routine copies from a sock struct into the user buffer.
2137 *
2138 *	Technical note: in 2.3 we work on _locked_ socket, so that
2139 *	tricks with *seq access order and skb->users are not required.
2140 *	Probably, code can be easily improved even more.
2141 */
2142
2143int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int nonblock,
2144		int flags, int *addr_len)
2145{
2146	struct tcp_sock *tp = tcp_sk(sk);
2147	int copied = 0;
2148	u32 peek_seq;
2149	u32 *seq;
2150	unsigned long used;
2151	int err, inq;
2152	int target;		/* Read at least this many bytes */
2153	long timeo;
2154	struct sk_buff *skb, *last;
2155	u32 urg_hole = 0;
2156	struct scm_timestamping_internal tss;
2157	int cmsg_flags;
2158
2159	if (unlikely(flags & MSG_ERRQUEUE))
2160		return inet_recv_error(sk, msg, len, addr_len);
2161
2162	if (sk_can_busy_loop(sk) && skb_queue_empty_lockless(&sk->sk_receive_queue) &&
2163	    (sk->sk_state == TCP_ESTABLISHED))
2164		sk_busy_loop(sk, nonblock);
2165
2166	lock_sock(sk);
2167
2168	err = -ENOTCONN;
2169	if (sk->sk_state == TCP_LISTEN)
2170		goto out;
2171
2172	cmsg_flags = tp->recvmsg_inq ? 1 : 0;
2173	timeo = sock_rcvtimeo(sk, nonblock);
2174
2175	/* Urgent data needs to be handled specially. */
2176	if (flags & MSG_OOB)
2177		goto recv_urg;
2178
2179	if (unlikely(tp->repair)) {
2180		err = -EPERM;
2181		if (!(flags & MSG_PEEK))
2182			goto out;
2183
2184		if (tp->repair_queue == TCP_SEND_QUEUE)
2185			goto recv_sndq;
2186
2187		err = -EINVAL;
2188		if (tp->repair_queue == TCP_NO_QUEUE)
2189			goto out;
2190
2191		/* 'common' recv queue MSG_PEEK-ing */
2192	}
2193
2194	seq = &tp->copied_seq;
2195	if (flags & MSG_PEEK) {
2196		peek_seq = tp->copied_seq;
2197		seq = &peek_seq;
2198	}
2199
2200	target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
2201
2202	do {
2203		u32 offset;
2204
2205		/* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */
2206		if (tp->urg_data && tp->urg_seq == *seq) {
2207			if (copied)
2208				break;
2209			if (signal_pending(current)) {
2210				copied = timeo ? sock_intr_errno(timeo) : -EAGAIN;
2211				break;
2212			}
2213		}
2214
2215		/* Next get a buffer. */
2216
2217		last = skb_peek_tail(&sk->sk_receive_queue);
2218		skb_queue_walk(&sk->sk_receive_queue, skb) {
2219			last = skb;
2220			/* Now that we have two receive queues this
2221			 * shouldn't happen.
2222			 */
2223			if (WARN(before(*seq, TCP_SKB_CB(skb)->seq),
2224				 "TCP recvmsg seq # bug: copied %X, seq %X, rcvnxt %X, fl %X\n",
2225				 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt,
2226				 flags))
2227				break;
2228
2229			offset = *seq - TCP_SKB_CB(skb)->seq;
2230			if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
2231				pr_err_once("%s: found a SYN, please report !\n", __func__);
2232				offset--;
2233			}
2234			if (offset < skb->len)
2235				goto found_ok_skb;
2236			if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
2237				goto found_fin_ok;
2238			WARN(!(flags & MSG_PEEK),
2239			     "TCP recvmsg seq # bug 2: copied %X, seq %X, rcvnxt %X, fl %X\n",
2240			     *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, flags);
2241		}
2242
2243		/* Well, if we have backlog, try to process it now yet. */
2244
2245		if (copied >= target && !READ_ONCE(sk->sk_backlog.tail))
2246			break;
2247
2248		if (copied) {
2249			if (sk->sk_err ||
2250			    sk->sk_state == TCP_CLOSE ||
2251			    (sk->sk_shutdown & RCV_SHUTDOWN) ||
2252			    !timeo ||
2253			    signal_pending(current))
2254				break;
2255		} else {
2256			if (sock_flag(sk, SOCK_DONE))
2257				break;
2258
2259			if (sk->sk_err) {
2260				copied = sock_error(sk);
2261				break;
2262			}
2263
2264			if (sk->sk_shutdown & RCV_SHUTDOWN)
2265				break;
2266
2267			if (sk->sk_state == TCP_CLOSE) {
2268				/* This occurs when user tries to read
2269				 * from never connected socket.
2270				 */
2271				copied = -ENOTCONN;
2272				break;
2273			}
2274
2275			if (!timeo) {
2276				copied = -EAGAIN;
2277				break;
2278			}
2279
2280			if (signal_pending(current)) {
2281				copied = sock_intr_errno(timeo);
2282				break;
2283			}
2284		}
2285
2286		tcp_cleanup_rbuf(sk, copied);
2287
2288		if (copied >= target) {
2289			/* Do not sleep, just process backlog. */
2290			release_sock(sk);
2291			lock_sock(sk);
2292		} else {
2293			sk_wait_data(sk, &timeo, last);
2294		}
2295
2296		if ((flags & MSG_PEEK) &&
2297		    (peek_seq - copied - urg_hole != tp->copied_seq)) {
2298			net_dbg_ratelimited("TCP(%s:%d): Application bug, race in MSG_PEEK\n",
2299					    current->comm,
2300					    task_pid_nr(current));
2301			peek_seq = tp->copied_seq;
2302		}
2303		continue;
2304
2305found_ok_skb:
2306		/* Ok so how much can we use? */
2307		used = skb->len - offset;
2308		if (len < used)
2309			used = len;
2310
2311		/* Do we have urgent data here? */
2312		if (tp->urg_data) {
2313			u32 urg_offset = tp->urg_seq - *seq;
2314			if (urg_offset < used) {
2315				if (!urg_offset) {
2316					if (!sock_flag(sk, SOCK_URGINLINE)) {
2317						WRITE_ONCE(*seq, *seq + 1);
2318						urg_hole++;
2319						offset++;
2320						used--;
2321						if (!used)
2322							goto skip_copy;
2323					}
2324				} else
2325					used = urg_offset;
2326			}
2327		}
2328
2329		if (!(flags & MSG_TRUNC)) {
2330			err = skb_copy_datagram_msg(skb, offset, msg, used);
2331			if (err) {
2332				/* Exception. Bailout! */
2333				if (!copied)
2334					copied = -EFAULT;
2335				break;
2336			}
2337		}
2338
2339		WRITE_ONCE(*seq, *seq + used);
2340		copied += used;
2341		len -= used;
2342
2343		tcp_rcv_space_adjust(sk);
2344
2345skip_copy:
2346		if (tp->urg_data && after(tp->copied_seq, tp->urg_seq)) {
2347			tp->urg_data = 0;
2348			tcp_fast_path_check(sk);
2349		}
2350
2351		if (TCP_SKB_CB(skb)->has_rxtstamp) {
2352			tcp_update_recv_tstamps(skb, &tss);
2353			cmsg_flags |= 2;
2354		}
2355
2356		if (used + offset < skb->len)
2357			continue;
2358
2359		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
2360			goto found_fin_ok;
2361		if (!(flags & MSG_PEEK))
2362			sk_eat_skb(sk, skb);
2363		continue;
2364
2365found_fin_ok:
2366		/* Process the FIN. */
2367		WRITE_ONCE(*seq, *seq + 1);
2368		if (!(flags & MSG_PEEK))
2369			sk_eat_skb(sk, skb);
2370		break;
2371	} while (len > 0);
2372
2373	/* According to UNIX98, msg_name/msg_namelen are ignored
2374	 * on connected socket. I was just happy when found this 8) --ANK
2375	 */
2376
2377	/* Clean up data we have read: This will do ACK frames. */
2378	tcp_cleanup_rbuf(sk, copied);
2379
2380	release_sock(sk);
2381
2382	if (cmsg_flags) {
2383		if (cmsg_flags & 2)
2384			tcp_recv_timestamp(msg, sk, &tss);
2385		if (cmsg_flags & 1) {
2386			inq = tcp_inq_hint(sk);
2387			put_cmsg(msg, SOL_TCP, TCP_CM_INQ, sizeof(inq), &inq);
2388		}
2389	}
2390
2391	return copied;
2392
2393out:
2394	release_sock(sk);
2395	return err;
2396
2397recv_urg:
2398	err = tcp_recv_urg(sk, msg, len, flags);
2399	goto out;
2400
2401recv_sndq:
2402	err = tcp_peek_sndq(sk, msg, len);
2403	goto out;
2404}
2405EXPORT_SYMBOL(tcp_recvmsg);
2406
2407void tcp_set_state(struct sock *sk, int state)
2408{
2409	int oldstate = sk->sk_state;
2410
2411	/* We defined a new enum for TCP states that are exported in BPF
2412	 * so as not force the internal TCP states to be frozen. The
2413	 * following checks will detect if an internal state value ever
2414	 * differs from the BPF value. If this ever happens, then we will
2415	 * need to remap the internal value to the BPF value before calling
2416	 * tcp_call_bpf_2arg.
2417	 */
2418	BUILD_BUG_ON((int)BPF_TCP_ESTABLISHED != (int)TCP_ESTABLISHED);
2419	BUILD_BUG_ON((int)BPF_TCP_SYN_SENT != (int)TCP_SYN_SENT);
2420	BUILD_BUG_ON((int)BPF_TCP_SYN_RECV != (int)TCP_SYN_RECV);
2421	BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT1 != (int)TCP_FIN_WAIT1);
2422	BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT2 != (int)TCP_FIN_WAIT2);
2423	BUILD_BUG_ON((int)BPF_TCP_TIME_WAIT != (int)TCP_TIME_WAIT);
2424	BUILD_BUG_ON((int)BPF_TCP_CLOSE != (int)TCP_CLOSE);
2425	BUILD_BUG_ON((int)BPF_TCP_CLOSE_WAIT != (int)TCP_CLOSE_WAIT);
2426	BUILD_BUG_ON((int)BPF_TCP_LAST_ACK != (int)TCP_LAST_ACK);
2427	BUILD_BUG_ON((int)BPF_TCP_LISTEN != (int)TCP_LISTEN);
2428	BUILD_BUG_ON((int)BPF_TCP_CLOSING != (int)TCP_CLOSING);
2429	BUILD_BUG_ON((int)BPF_TCP_NEW_SYN_RECV != (int)TCP_NEW_SYN_RECV);
2430	BUILD_BUG_ON((int)BPF_TCP_MAX_STATES != (int)TCP_MAX_STATES);
2431
2432	if (BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), BPF_SOCK_OPS_STATE_CB_FLAG))
2433		tcp_call_bpf_2arg(sk, BPF_SOCK_OPS_STATE_CB, oldstate, state);
2434
2435	switch (state) {
2436	case TCP_ESTABLISHED:
2437		if (oldstate != TCP_ESTABLISHED)
2438			TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
2439		break;
2440
2441	case TCP_CLOSE:
2442		if (oldstate == TCP_CLOSE_WAIT || oldstate == TCP_ESTABLISHED)
2443			TCP_INC_STATS(sock_net(sk), TCP_MIB_ESTABRESETS);
2444
2445		sk->sk_prot->unhash(sk);
2446		if (inet_csk(sk)->icsk_bind_hash &&
2447		    !(sk->sk_userlocks & SOCK_BINDPORT_LOCK))
2448			inet_put_port(sk);
2449		fallthrough;
2450	default:
2451		if (oldstate == TCP_ESTABLISHED)
2452			TCP_DEC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
2453	}
2454
2455	/* Change state AFTER socket is unhashed to avoid closed
2456	 * socket sitting in hash tables.
2457	 */
2458	inet_sk_state_store(sk, state);
2459}
2460EXPORT_SYMBOL_GPL(tcp_set_state);
2461
2462/*
2463 *	State processing on a close. This implements the state shift for
2464 *	sending our FIN frame. Note that we only send a FIN for some
2465 *	states. A shutdown() may have already sent the FIN, or we may be
2466 *	closed.
2467 */
2468
2469static const unsigned char new_state[16] = {
2470  /* current state:        new state:      action:	*/
2471  [0 /* (Invalid) */]	= TCP_CLOSE,
2472  [TCP_ESTABLISHED]	= TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2473  [TCP_SYN_SENT]	= TCP_CLOSE,
2474  [TCP_SYN_RECV]	= TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2475  [TCP_FIN_WAIT1]	= TCP_FIN_WAIT1,
2476  [TCP_FIN_WAIT2]	= TCP_FIN_WAIT2,
2477  [TCP_TIME_WAIT]	= TCP_CLOSE,
2478  [TCP_CLOSE]		= TCP_CLOSE,
2479  [TCP_CLOSE_WAIT]	= TCP_LAST_ACK  | TCP_ACTION_FIN,
2480  [TCP_LAST_ACK]	= TCP_LAST_ACK,
2481  [TCP_LISTEN]		= TCP_CLOSE,
2482  [TCP_CLOSING]		= TCP_CLOSING,
2483  [TCP_NEW_SYN_RECV]	= TCP_CLOSE,	/* should not happen ! */
2484};
2485
2486static int tcp_close_state(struct sock *sk)
2487{
2488	int next = (int)new_state[sk->sk_state];
2489	int ns = next & TCP_STATE_MASK;
2490
2491	tcp_set_state(sk, ns);
2492
2493	return next & TCP_ACTION_FIN;
2494}
2495
2496/*
2497 *	Shutdown the sending side of a connection. Much like close except
2498 *	that we don't receive shut down or sock_set_flag(sk, SOCK_DEAD).
2499 */
2500
2501void tcp_shutdown(struct sock *sk, int how)
2502{
2503	/*	We need to grab some memory, and put together a FIN,
2504	 *	and then put it into the queue to be sent.
2505	 *		Tim MacKenzie(tym@dibbler.cs.monash.edu.au) 4 Dec '92.
2506	 */
2507	if (!(how & SEND_SHUTDOWN))
2508		return;
2509
2510	/* If we've already sent a FIN, or it's a closed state, skip this. */
2511	if ((1 << sk->sk_state) &
2512	    (TCPF_ESTABLISHED | TCPF_SYN_SENT |
2513	     TCPF_CLOSE_WAIT)) {
2514		/* Clear out any half completed packets.  FIN if needed. */
2515		if (tcp_close_state(sk))
2516			tcp_send_fin(sk);
2517	}
2518}
2519EXPORT_SYMBOL(tcp_shutdown);
2520
2521int tcp_orphan_count_sum(void)
2522{
2523	int i, total = 0;
2524
2525	for_each_possible_cpu(i)
2526		total += per_cpu(tcp_orphan_count, i);
2527
2528	return max(total, 0);
2529}
2530
2531static int tcp_orphan_cache;
2532static struct timer_list tcp_orphan_timer;
2533#define TCP_ORPHAN_TIMER_PERIOD msecs_to_jiffies(100)
2534
2535static void tcp_orphan_update(struct timer_list *unused)
2536{
2537	WRITE_ONCE(tcp_orphan_cache, tcp_orphan_count_sum());
2538	mod_timer(&tcp_orphan_timer, jiffies + TCP_ORPHAN_TIMER_PERIOD);
2539}
2540
2541static bool tcp_too_many_orphans(int shift)
2542{
2543	return READ_ONCE(tcp_orphan_cache) << shift >
2544		READ_ONCE(sysctl_tcp_max_orphans);
2545}
2546
2547bool tcp_check_oom(struct sock *sk, int shift)
2548{
2549	bool too_many_orphans, out_of_socket_memory;
2550
2551	too_many_orphans = tcp_too_many_orphans(shift);
2552	out_of_socket_memory = tcp_out_of_memory(sk);
2553
2554	if (too_many_orphans)
2555		net_info_ratelimited("too many orphaned sockets\n");
2556	if (out_of_socket_memory)
2557		net_info_ratelimited("out of memory -- consider tuning tcp_mem\n");
2558	return too_many_orphans || out_of_socket_memory;
2559}
2560
2561void __tcp_close(struct sock *sk, long timeout)
2562{
2563	struct sk_buff *skb;
2564	int data_was_unread = 0;
2565	int state;
2566
2567	WRITE_ONCE(sk->sk_shutdown, SHUTDOWN_MASK);
2568
2569	if (sk->sk_state == TCP_LISTEN) {
2570		tcp_set_state(sk, TCP_CLOSE);
2571
2572		/* Special case. */
2573		inet_csk_listen_stop(sk);
2574
2575		goto adjudge_to_death;
2576	}
2577
2578	/*  We need to flush the recv. buffs.  We do this only on the
2579	 *  descriptor close, not protocol-sourced closes, because the
2580	 *  reader process may not have drained the data yet!
2581	 */
2582	while ((skb = __skb_dequeue(&sk->sk_receive_queue)) != NULL) {
2583		u32 len = TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq;
2584
2585		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
2586			len--;
2587		data_was_unread += len;
2588		__kfree_skb(skb);
2589	}
2590
2591	sk_mem_reclaim(sk);
2592
2593	/* If socket has been already reset (e.g. in tcp_reset()) - kill it. */
2594	if (sk->sk_state == TCP_CLOSE)
2595		goto adjudge_to_death;
2596
2597	/* As outlined in RFC 2525, section 2.17, we send a RST here because
2598	 * data was lost. To witness the awful effects of the old behavior of
2599	 * always doing a FIN, run an older 2.1.x kernel or 2.0.x, start a bulk
2600	 * GET in an FTP client, suspend the process, wait for the client to
2601	 * advertise a zero window, then kill -9 the FTP client, wheee...
2602	 * Note: timeout is always zero in such a case.
2603	 */
2604	if (unlikely(tcp_sk(sk)->repair)) {
2605		sk->sk_prot->disconnect(sk, 0);
2606	} else if (data_was_unread) {
2607		/* Unread data was tossed, zap the connection. */
2608		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONCLOSE);
2609		tcp_set_state(sk, TCP_CLOSE);
2610		tcp_send_active_reset(sk, sk->sk_allocation);
2611	} else if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) {
2612		/* Check zero linger _after_ checking for unread data. */
2613		sk->sk_prot->disconnect(sk, 0);
2614		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
2615	} else if (tcp_close_state(sk)) {
2616		/* We FIN if the application ate all the data before
2617		 * zapping the connection.
2618		 */
2619
2620		/* RED-PEN. Formally speaking, we have broken TCP state
2621		 * machine. State transitions:
2622		 *
2623		 * TCP_ESTABLISHED -> TCP_FIN_WAIT1
2624		 * TCP_SYN_RECV	-> TCP_FIN_WAIT1 (it is difficult)
2625		 * TCP_CLOSE_WAIT -> TCP_LAST_ACK
2626		 *
2627		 * are legal only when FIN has been sent (i.e. in window),
2628		 * rather than queued out of window. Purists blame.
2629		 *
2630		 * F.e. "RFC state" is ESTABLISHED,
2631		 * if Linux state is FIN-WAIT-1, but FIN is still not sent.
2632		 *
2633		 * The visible declinations are that sometimes
2634		 * we enter time-wait state, when it is not required really
2635		 * (harmless), do not send active resets, when they are
2636		 * required by specs (TCP_ESTABLISHED, TCP_CLOSE_WAIT, when
2637		 * they look as CLOSING or LAST_ACK for Linux)
2638		 * Probably, I missed some more holelets.
2639		 * 						--ANK
2640		 * XXX (TFO) - To start off we don't support SYN+ACK+FIN
2641		 * in a single packet! (May consider it later but will
2642		 * probably need API support or TCP_CORK SYN-ACK until
2643		 * data is written and socket is closed.)
2644		 */
2645		tcp_send_fin(sk);
2646	}
2647
2648	sk_stream_wait_close(sk, timeout);
2649
2650adjudge_to_death:
2651	state = sk->sk_state;
2652	sock_hold(sk);
2653	sock_orphan(sk);
2654
2655	local_bh_disable();
2656	bh_lock_sock(sk);
2657	/* remove backlog if any, without releasing ownership. */
2658	__release_sock(sk);
2659
2660	this_cpu_inc(tcp_orphan_count);
2661
2662	/* Have we already been destroyed by a softirq or backlog? */
2663	if (state != TCP_CLOSE && sk->sk_state == TCP_CLOSE)
2664		goto out;
2665
2666	/*	This is a (useful) BSD violating of the RFC. There is a
2667	 *	problem with TCP as specified in that the other end could
2668	 *	keep a socket open forever with no application left this end.
2669	 *	We use a 1 minute timeout (about the same as BSD) then kill
2670	 *	our end. If they send after that then tough - BUT: long enough
2671	 *	that we won't make the old 4*rto = almost no time - whoops
2672	 *	reset mistake.
2673	 *
2674	 *	Nope, it was not mistake. It is really desired behaviour
2675	 *	f.e. on http servers, when such sockets are useless, but
2676	 *	consume significant resources. Let's do it with special
2677	 *	linger2	option.					--ANK
2678	 */
2679
2680	if (sk->sk_state == TCP_FIN_WAIT2) {
2681		struct tcp_sock *tp = tcp_sk(sk);
2682		if (tp->linger2 < 0) {
2683			tcp_set_state(sk, TCP_CLOSE);
2684			tcp_send_active_reset(sk, GFP_ATOMIC);
2685			__NET_INC_STATS(sock_net(sk),
2686					LINUX_MIB_TCPABORTONLINGER);
2687		} else {
2688			const int tmo = tcp_fin_time(sk);
2689
2690			if (tmo > TCP_TIMEWAIT_LEN) {
2691				inet_csk_reset_keepalive_timer(sk,
2692						tmo - TCP_TIMEWAIT_LEN);
2693			} else {
2694				tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
2695				goto out;
2696			}
2697		}
2698	}
2699	if (sk->sk_state != TCP_CLOSE) {
2700		sk_mem_reclaim(sk);
2701		if (tcp_check_oom(sk, 0)) {
2702			tcp_set_state(sk, TCP_CLOSE);
2703			tcp_send_active_reset(sk, GFP_ATOMIC);
2704			__NET_INC_STATS(sock_net(sk),
2705					LINUX_MIB_TCPABORTONMEMORY);
2706		} else if (!check_net(sock_net(sk))) {
2707			/* Not possible to send reset; just close */
2708			tcp_set_state(sk, TCP_CLOSE);
2709		}
2710	}
2711
2712	if (sk->sk_state == TCP_CLOSE) {
2713		struct request_sock *req;
2714
2715		req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk,
2716						lockdep_sock_is_held(sk));
2717		/* We could get here with a non-NULL req if the socket is
2718		 * aborted (e.g., closed with unread data) before 3WHS
2719		 * finishes.
2720		 */
2721		if (req)
2722			reqsk_fastopen_remove(sk, req, false);
2723		inet_csk_destroy_sock(sk);
2724	}
2725	/* Otherwise, socket is reprieved until protocol close. */
2726
2727out:
2728	bh_unlock_sock(sk);
2729	local_bh_enable();
2730}
2731
2732void tcp_close(struct sock *sk, long timeout)
2733{
2734	lock_sock(sk);
2735	__tcp_close(sk, timeout);
2736	release_sock(sk);
2737	if (!sk->sk_net_refcnt)
2738		inet_csk_clear_xmit_timers_sync(sk);
2739	sock_put(sk);
2740}
2741EXPORT_SYMBOL(tcp_close);
2742
2743/* These states need RST on ABORT according to RFC793 */
2744
2745static inline bool tcp_need_reset(int state)
2746{
2747	return (1 << state) &
2748	       (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT | TCPF_FIN_WAIT1 |
2749		TCPF_FIN_WAIT2 | TCPF_SYN_RECV);
2750}
2751
2752static void tcp_rtx_queue_purge(struct sock *sk)
2753{
2754	struct rb_node *p = rb_first(&sk->tcp_rtx_queue);
2755
2756	tcp_sk(sk)->highest_sack = NULL;
2757	while (p) {
2758		struct sk_buff *skb = rb_to_skb(p);
2759
2760		p = rb_next(p);
2761		/* Since we are deleting whole queue, no need to
2762		 * list_del(&skb->tcp_tsorted_anchor)
2763		 */
2764		tcp_rtx_queue_unlink(skb, sk);
2765		sk_wmem_free_skb(sk, skb);
2766	}
2767}
2768
2769void tcp_write_queue_purge(struct sock *sk)
2770{
2771	struct sk_buff *skb;
2772
2773	tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
2774	while ((skb = __skb_dequeue(&sk->sk_write_queue)) != NULL) {
2775		tcp_skb_tsorted_anchor_cleanup(skb);
2776		sk_wmem_free_skb(sk, skb);
2777	}
2778	tcp_rtx_queue_purge(sk);
2779	skb = sk->sk_tx_skb_cache;
2780	if (skb) {
2781		__kfree_skb(skb);
2782		sk->sk_tx_skb_cache = NULL;
2783	}
2784	INIT_LIST_HEAD(&tcp_sk(sk)->tsorted_sent_queue);
2785	sk_mem_reclaim(sk);
2786	tcp_clear_all_retrans_hints(tcp_sk(sk));
2787	tcp_sk(sk)->packets_out = 0;
2788	inet_csk(sk)->icsk_backoff = 0;
2789}
2790
2791int tcp_disconnect(struct sock *sk, int flags)
2792{
2793	struct inet_sock *inet = inet_sk(sk);
2794	struct inet_connection_sock *icsk = inet_csk(sk);
2795	struct tcp_sock *tp = tcp_sk(sk);
2796	int old_state = sk->sk_state;
2797	u32 seq;
2798
2799	/* Deny disconnect if other threads are blocked in sk_wait_event()
2800	 * or inet_wait_for_connect().
2801	 */
2802	if (sk->sk_wait_pending)
2803		return -EBUSY;
2804
2805	if (old_state != TCP_CLOSE)
2806		tcp_set_state(sk, TCP_CLOSE);
2807
2808	/* ABORT function of RFC793 */
2809	if (old_state == TCP_LISTEN) {
2810		inet_csk_listen_stop(sk);
2811	} else if (unlikely(tp->repair)) {
2812		sk->sk_err = ECONNABORTED;
2813	} else if (tcp_need_reset(old_state) ||
2814		   (tp->snd_nxt != tp->write_seq &&
2815		    (1 << old_state) & (TCPF_CLOSING | TCPF_LAST_ACK))) {
2816		/* The last check adjusts for discrepancy of Linux wrt. RFC
2817		 * states
2818		 */
2819		tcp_send_active_reset(sk, gfp_any());
2820		sk->sk_err = ECONNRESET;
2821	} else if (old_state == TCP_SYN_SENT)
2822		sk->sk_err = ECONNRESET;
2823
2824	tcp_clear_xmit_timers(sk);
2825	__skb_queue_purge(&sk->sk_receive_queue);
2826	if (sk->sk_rx_skb_cache) {
2827		__kfree_skb(sk->sk_rx_skb_cache);
2828		sk->sk_rx_skb_cache = NULL;
2829	}
2830	WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
2831	tp->urg_data = 0;
2832	tcp_write_queue_purge(sk);
2833	tcp_fastopen_active_disable_ofo_check(sk);
2834	skb_rbtree_purge(&tp->out_of_order_queue);
2835
2836	inet->inet_dport = 0;
2837
2838	if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK))
2839		inet_reset_saddr(sk);
2840
2841	WRITE_ONCE(sk->sk_shutdown, 0);
2842	sock_reset_flag(sk, SOCK_DONE);
2843	tp->srtt_us = 0;
2844	tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT);
2845	tp->rcv_rtt_last_tsecr = 0;
2846
2847	seq = tp->write_seq + tp->max_window + 2;
2848	if (!seq)
2849		seq = 1;
2850	WRITE_ONCE(tp->write_seq, seq);
2851
2852	icsk->icsk_backoff = 0;
2853	icsk->icsk_probes_out = 0;
2854	icsk->icsk_probes_tstamp = 0;
2855	icsk->icsk_rto = TCP_TIMEOUT_INIT;
2856	icsk->icsk_rto_min = TCP_RTO_MIN;
2857	icsk->icsk_delack_max = TCP_DELACK_MAX;
2858#if defined(CONFIG_TCP_NATA_URC) || defined(CONFIG_TCP_NATA_STL)
2859	icsk->nata_retries_enabled = 0;
2860	icsk->nata_retries_type = NATA_NA;
2861	icsk->nata_syn_rto = TCP_TIMEOUT_INIT;
2862	icsk->nata_data_rto = TCP_TIMEOUT_INIT;
2863	icsk->nata_data_retries = 0;
2864#endif
2865	tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
2866	tp->snd_cwnd = TCP_INIT_CWND;
2867	tp->snd_cwnd_cnt = 0;
2868	tp->is_cwnd_limited = 0;
2869	tp->max_packets_out = 0;
2870	tp->window_clamp = 0;
2871	tp->delivered = 0;
2872	tp->delivered_ce = 0;
2873	if (icsk->icsk_ca_ops->release)
2874		icsk->icsk_ca_ops->release(sk);
2875	memset(icsk->icsk_ca_priv, 0, sizeof(icsk->icsk_ca_priv));
2876	icsk->icsk_ca_initialized = 0;
2877	tcp_set_ca_state(sk, TCP_CA_Open);
2878	tp->is_sack_reneg = 0;
2879	tcp_clear_retrans(tp);
2880	tp->total_retrans = 0;
2881	inet_csk_delack_init(sk);
2882	/* Initialize rcv_mss to TCP_MIN_MSS to avoid division by 0
2883	 * issue in __tcp_select_window()
2884	 */
2885	icsk->icsk_ack.rcv_mss = TCP_MIN_MSS;
2886	memset(&tp->rx_opt, 0, sizeof(tp->rx_opt));
2887	__sk_dst_reset(sk);
2888	dst_release(xchg((__force struct dst_entry **)&sk->sk_rx_dst, NULL));
2889	tcp_saved_syn_free(tp);
2890	tp->compressed_ack = 0;
2891	tp->segs_in = 0;
2892	tp->segs_out = 0;
2893	tp->bytes_sent = 0;
2894	tp->bytes_acked = 0;
2895	tp->bytes_received = 0;
2896	tp->bytes_retrans = 0;
2897	tp->data_segs_in = 0;
2898	tp->data_segs_out = 0;
2899	tp->duplicate_sack[0].start_seq = 0;
2900	tp->duplicate_sack[0].end_seq = 0;
2901	tp->dsack_dups = 0;
2902	tp->reord_seen = 0;
2903	tp->retrans_out = 0;
2904	tp->sacked_out = 0;
2905	tp->tlp_high_seq = 0;
2906	tp->last_oow_ack_time = 0;
2907	/* There's a bubble in the pipe until at least the first ACK. */
2908	tp->app_limited = ~0U;
2909	tp->rate_app_limited = 1;
2910	tp->rack.mstamp = 0;
2911	tp->rack.advanced = 0;
2912	tp->rack.reo_wnd_steps = 1;
2913	tp->rack.last_delivered = 0;
2914	tp->rack.reo_wnd_persist = 0;
2915	tp->rack.dsack_seen = 0;
2916	tp->syn_data_acked = 0;
2917	tp->rx_opt.saw_tstamp = 0;
2918	tp->rx_opt.dsack = 0;
2919	tp->rx_opt.num_sacks = 0;
2920	tp->rcv_ooopack = 0;
2921
2922
2923	/* Clean up fastopen related fields */
2924	tcp_free_fastopen_req(tp);
2925	inet->defer_connect = 0;
2926	tp->fastopen_client_fail = 0;
2927
2928	WARN_ON(inet->inet_num && !icsk->icsk_bind_hash);
2929
2930	if (sk->sk_frag.page) {
2931		put_page(sk->sk_frag.page);
2932		sk->sk_frag.page = NULL;
2933		sk->sk_frag.offset = 0;
2934	}
2935
2936	sk->sk_error_report(sk);
2937	return 0;
2938}
2939EXPORT_SYMBOL(tcp_disconnect);
2940
2941static inline bool tcp_can_repair_sock(const struct sock *sk)
2942{
2943	return ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN) &&
2944		(sk->sk_state != TCP_LISTEN);
2945}
2946
2947static int tcp_repair_set_window(struct tcp_sock *tp, sockptr_t optbuf, int len)
2948{
2949	struct tcp_repair_window opt;
2950
2951	if (!tp->repair)
2952		return -EPERM;
2953
2954	if (len != sizeof(opt))
2955		return -EINVAL;
2956
2957	if (copy_from_sockptr(&opt, optbuf, sizeof(opt)))
2958		return -EFAULT;
2959
2960	if (opt.max_window < opt.snd_wnd)
2961		return -EINVAL;
2962
2963	if (after(opt.snd_wl1, tp->rcv_nxt + opt.rcv_wnd))
2964		return -EINVAL;
2965
2966	if (after(opt.rcv_wup, tp->rcv_nxt))
2967		return -EINVAL;
2968
2969	tp->snd_wl1	= opt.snd_wl1;
2970	tp->snd_wnd	= opt.snd_wnd;
2971	tp->max_window	= opt.max_window;
2972
2973	tp->rcv_wnd	= opt.rcv_wnd;
2974	tp->rcv_wup	= opt.rcv_wup;
2975
2976	return 0;
2977}
2978
2979static int tcp_repair_options_est(struct sock *sk, sockptr_t optbuf,
2980		unsigned int len)
2981{
2982	struct tcp_sock *tp = tcp_sk(sk);
2983	struct tcp_repair_opt opt;
2984	size_t offset = 0;
2985
2986	while (len >= sizeof(opt)) {
2987		if (copy_from_sockptr_offset(&opt, optbuf, offset, sizeof(opt)))
2988			return -EFAULT;
2989
2990		offset += sizeof(opt);
2991		len -= sizeof(opt);
2992
2993		switch (opt.opt_code) {
2994		case TCPOPT_MSS:
2995			tp->rx_opt.mss_clamp = opt.opt_val;
2996			tcp_mtup_init(sk);
2997			break;
2998		case TCPOPT_WINDOW:
2999			{
3000				u16 snd_wscale = opt.opt_val & 0xFFFF;
3001				u16 rcv_wscale = opt.opt_val >> 16;
3002
3003				if (snd_wscale > TCP_MAX_WSCALE || rcv_wscale > TCP_MAX_WSCALE)
3004					return -EFBIG;
3005
3006				tp->rx_opt.snd_wscale = snd_wscale;
3007				tp->rx_opt.rcv_wscale = rcv_wscale;
3008				tp->rx_opt.wscale_ok = 1;
3009			}
3010			break;
3011		case TCPOPT_SACK_PERM:
3012			if (opt.opt_val != 0)
3013				return -EINVAL;
3014
3015			tp->rx_opt.sack_ok |= TCP_SACK_SEEN;
3016			break;
3017		case TCPOPT_TIMESTAMP:
3018			if (opt.opt_val != 0)
3019				return -EINVAL;
3020
3021			tp->rx_opt.tstamp_ok = 1;
3022			break;
3023		}
3024	}
3025
3026	return 0;
3027}
3028
3029DEFINE_STATIC_KEY_FALSE(tcp_tx_delay_enabled);
3030EXPORT_SYMBOL(tcp_tx_delay_enabled);
3031
3032static void tcp_enable_tx_delay(void)
3033{
3034	if (!static_branch_unlikely(&tcp_tx_delay_enabled)) {
3035		static int __tcp_tx_delay_enabled = 0;
3036
3037		if (cmpxchg(&__tcp_tx_delay_enabled, 0, 1) == 0) {
3038			static_branch_enable(&tcp_tx_delay_enabled);
3039			pr_info("TCP_TX_DELAY enabled\n");
3040		}
3041	}
3042}
3043
3044/* When set indicates to always queue non-full frames.  Later the user clears
3045 * this option and we transmit any pending partial frames in the queue.  This is
3046 * meant to be used alongside sendfile() to get properly filled frames when the
3047 * user (for example) must write out headers with a write() call first and then
3048 * use sendfile to send out the data parts.
3049 *
3050 * TCP_CORK can be set together with TCP_NODELAY and it is stronger than
3051 * TCP_NODELAY.
3052 */
3053static void __tcp_sock_set_cork(struct sock *sk, bool on)
3054{
3055	struct tcp_sock *tp = tcp_sk(sk);
3056
3057	if (on) {
3058		tp->nonagle |= TCP_NAGLE_CORK;
3059	} else {
3060		tp->nonagle &= ~TCP_NAGLE_CORK;
3061		if (tp->nonagle & TCP_NAGLE_OFF)
3062			tp->nonagle |= TCP_NAGLE_PUSH;
3063		tcp_push_pending_frames(sk);
3064	}
3065}
3066
3067void tcp_sock_set_cork(struct sock *sk, bool on)
3068{
3069	lock_sock(sk);
3070	__tcp_sock_set_cork(sk, on);
3071	release_sock(sk);
3072}
3073EXPORT_SYMBOL(tcp_sock_set_cork);
3074
3075/* TCP_NODELAY is weaker than TCP_CORK, so that this option on corked socket is
3076 * remembered, but it is not activated until cork is cleared.
3077 *
3078 * However, when TCP_NODELAY is set we make an explicit push, which overrides
3079 * even TCP_CORK for currently queued segments.
3080 */
3081static void __tcp_sock_set_nodelay(struct sock *sk, bool on)
3082{
3083	if (on) {
3084		tcp_sk(sk)->nonagle |= TCP_NAGLE_OFF|TCP_NAGLE_PUSH;
3085		tcp_push_pending_frames(sk);
3086	} else {
3087		tcp_sk(sk)->nonagle &= ~TCP_NAGLE_OFF;
3088	}
3089}
3090
3091void tcp_sock_set_nodelay(struct sock *sk)
3092{
3093	lock_sock(sk);
3094	__tcp_sock_set_nodelay(sk, true);
3095	release_sock(sk);
3096}
3097EXPORT_SYMBOL(tcp_sock_set_nodelay);
3098
3099static void __tcp_sock_set_quickack(struct sock *sk, int val)
3100{
3101	if (!val) {
3102		inet_csk_enter_pingpong_mode(sk);
3103		return;
3104	}
3105
3106	inet_csk_exit_pingpong_mode(sk);
3107	if ((1 << sk->sk_state) & (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT) &&
3108	    inet_csk_ack_scheduled(sk)) {
3109		inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_PUSHED;
3110		tcp_cleanup_rbuf(sk, 1);
3111		if (!(val & 1))
3112			inet_csk_enter_pingpong_mode(sk);
3113	}
3114}
3115
3116void tcp_sock_set_quickack(struct sock *sk, int val)
3117{
3118	lock_sock(sk);
3119	__tcp_sock_set_quickack(sk, val);
3120	release_sock(sk);
3121}
3122EXPORT_SYMBOL(tcp_sock_set_quickack);
3123
3124int tcp_sock_set_syncnt(struct sock *sk, int val)
3125{
3126	if (val < 1 || val > MAX_TCP_SYNCNT)
3127		return -EINVAL;
3128
3129	lock_sock(sk);
3130	WRITE_ONCE(inet_csk(sk)->icsk_syn_retries, val);
3131	release_sock(sk);
3132	return 0;
3133}
3134EXPORT_SYMBOL(tcp_sock_set_syncnt);
3135
3136void tcp_sock_set_user_timeout(struct sock *sk, u32 val)
3137{
3138	lock_sock(sk);
3139	WRITE_ONCE(inet_csk(sk)->icsk_user_timeout, val);
3140	release_sock(sk);
3141}
3142EXPORT_SYMBOL(tcp_sock_set_user_timeout);
3143
3144int tcp_sock_set_keepidle_locked(struct sock *sk, int val)
3145{
3146	struct tcp_sock *tp = tcp_sk(sk);
3147
3148	if (val < 1 || val > MAX_TCP_KEEPIDLE)
3149		return -EINVAL;
3150
3151	/* Paired with WRITE_ONCE() in keepalive_time_when() */
3152	WRITE_ONCE(tp->keepalive_time, val * HZ);
3153	if (sock_flag(sk, SOCK_KEEPOPEN) &&
3154	    !((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) {
3155		u32 elapsed = keepalive_time_elapsed(tp);
3156
3157		if (tp->keepalive_time > elapsed)
3158			elapsed = tp->keepalive_time - elapsed;
3159		else
3160			elapsed = 0;
3161		inet_csk_reset_keepalive_timer(sk, elapsed);
3162	}
3163
3164	return 0;
3165}
3166
3167int tcp_sock_set_keepidle(struct sock *sk, int val)
3168{
3169	int err;
3170
3171	lock_sock(sk);
3172	err = tcp_sock_set_keepidle_locked(sk, val);
3173	release_sock(sk);
3174	return err;
3175}
3176EXPORT_SYMBOL(tcp_sock_set_keepidle);
3177
3178int tcp_sock_set_keepintvl(struct sock *sk, int val)
3179{
3180	if (val < 1 || val > MAX_TCP_KEEPINTVL)
3181		return -EINVAL;
3182
3183	lock_sock(sk);
3184	WRITE_ONCE(tcp_sk(sk)->keepalive_intvl, val * HZ);
3185	release_sock(sk);
3186	return 0;
3187}
3188EXPORT_SYMBOL(tcp_sock_set_keepintvl);
3189
3190int tcp_sock_set_keepcnt(struct sock *sk, int val)
3191{
3192	if (val < 1 || val > MAX_TCP_KEEPCNT)
3193		return -EINVAL;
3194
3195	lock_sock(sk);
3196	/* Paired with READ_ONCE() in keepalive_probes() */
3197	WRITE_ONCE(tcp_sk(sk)->keepalive_probes, val);
3198	release_sock(sk);
3199	return 0;
3200}
3201EXPORT_SYMBOL(tcp_sock_set_keepcnt);
3202
3203/*
3204 *	Socket option code for TCP.
3205 */
3206static int do_tcp_setsockopt(struct sock *sk, int level, int optname,
3207		sockptr_t optval, unsigned int optlen)
3208{
3209	struct tcp_sock *tp = tcp_sk(sk);
3210	struct inet_connection_sock *icsk = inet_csk(sk);
3211	struct net *net = sock_net(sk);
3212	int val;
3213	int err = 0;
3214
3215	/* These are data/string values, all the others are ints */
3216	switch (optname) {
3217	case TCP_CONGESTION: {
3218		char name[TCP_CA_NAME_MAX];
3219
3220		if (optlen < 1)
3221			return -EINVAL;
3222
3223		val = strncpy_from_sockptr(name, optval,
3224					min_t(long, TCP_CA_NAME_MAX-1, optlen));
3225		if (val < 0)
3226			return -EFAULT;
3227		name[val] = 0;
3228
3229		lock_sock(sk);
3230		err = tcp_set_congestion_control(sk, name, true,
3231						 ns_capable(sock_net(sk)->user_ns,
3232							    CAP_NET_ADMIN));
3233		release_sock(sk);
3234		return err;
3235	}
3236	case TCP_ULP: {
3237		char name[TCP_ULP_NAME_MAX];
3238
3239		if (optlen < 1)
3240			return -EINVAL;
3241
3242		val = strncpy_from_sockptr(name, optval,
3243					min_t(long, TCP_ULP_NAME_MAX - 1,
3244					      optlen));
3245		if (val < 0)
3246			return -EFAULT;
3247		name[val] = 0;
3248
3249		lock_sock(sk);
3250		err = tcp_set_ulp(sk, name);
3251		release_sock(sk);
3252		return err;
3253	}
3254	case TCP_FASTOPEN_KEY: {
3255		__u8 key[TCP_FASTOPEN_KEY_BUF_LENGTH];
3256		__u8 *backup_key = NULL;
3257
3258		/* Allow a backup key as well to facilitate key rotation
3259		 * First key is the active one.
3260		 */
3261		if (optlen != TCP_FASTOPEN_KEY_LENGTH &&
3262		    optlen != TCP_FASTOPEN_KEY_BUF_LENGTH)
3263			return -EINVAL;
3264
3265		if (copy_from_sockptr(key, optval, optlen))
3266			return -EFAULT;
3267
3268		if (optlen == TCP_FASTOPEN_KEY_BUF_LENGTH)
3269			backup_key = key + TCP_FASTOPEN_KEY_LENGTH;
3270
3271		return tcp_fastopen_reset_cipher(net, sk, key, backup_key);
3272	}
3273	default:
3274		/* fallthru */
3275		break;
3276	}
3277
3278	if (optlen < sizeof(int))
3279		return -EINVAL;
3280
3281	if (copy_from_sockptr(&val, optval, sizeof(val)))
3282		return -EFAULT;
3283
3284	lock_sock(sk);
3285
3286	switch (optname) {
3287	case TCP_MAXSEG:
3288		/* Values greater than interface MTU won't take effect. However
3289		 * at the point when this call is done we typically don't yet
3290		 * know which interface is going to be used
3291		 */
3292		if (val && (val < TCP_MIN_MSS || val > MAX_TCP_WINDOW)) {
3293			err = -EINVAL;
3294			break;
3295		}
3296		tp->rx_opt.user_mss = val;
3297		break;
3298
3299	case TCP_NODELAY:
3300		__tcp_sock_set_nodelay(sk, val);
3301		break;
3302
3303	case TCP_THIN_LINEAR_TIMEOUTS:
3304		if (val < 0 || val > 1)
3305			err = -EINVAL;
3306		else
3307			tp->thin_lto = val;
3308		break;
3309
3310	case TCP_THIN_DUPACK:
3311		if (val < 0 || val > 1)
3312			err = -EINVAL;
3313		break;
3314
3315	case TCP_REPAIR:
3316		if (!tcp_can_repair_sock(sk))
3317			err = -EPERM;
3318		else if (val == TCP_REPAIR_ON) {
3319			tp->repair = 1;
3320			sk->sk_reuse = SK_FORCE_REUSE;
3321			tp->repair_queue = TCP_NO_QUEUE;
3322		} else if (val == TCP_REPAIR_OFF) {
3323			tp->repair = 0;
3324			sk->sk_reuse = SK_NO_REUSE;
3325			tcp_send_window_probe(sk);
3326		} else if (val == TCP_REPAIR_OFF_NO_WP) {
3327			tp->repair = 0;
3328			sk->sk_reuse = SK_NO_REUSE;
3329		} else
3330			err = -EINVAL;
3331
3332		break;
3333
3334	case TCP_REPAIR_QUEUE:
3335		if (!tp->repair)
3336			err = -EPERM;
3337		else if ((unsigned int)val < TCP_QUEUES_NR)
3338			tp->repair_queue = val;
3339		else
3340			err = -EINVAL;
3341		break;
3342
3343	case TCP_QUEUE_SEQ:
3344		if (sk->sk_state != TCP_CLOSE) {
3345			err = -EPERM;
3346		} else if (tp->repair_queue == TCP_SEND_QUEUE) {
3347			if (!tcp_rtx_queue_empty(sk))
3348				err = -EPERM;
3349			else
3350				WRITE_ONCE(tp->write_seq, val);
3351		} else if (tp->repair_queue == TCP_RECV_QUEUE) {
3352			if (tp->rcv_nxt != tp->copied_seq) {
3353				err = -EPERM;
3354			} else {
3355				WRITE_ONCE(tp->rcv_nxt, val);
3356				WRITE_ONCE(tp->copied_seq, val);
3357			}
3358		} else {
3359			err = -EINVAL;
3360		}
3361		break;
3362
3363	case TCP_REPAIR_OPTIONS:
3364		if (!tp->repair)
3365			err = -EINVAL;
3366		else if (sk->sk_state == TCP_ESTABLISHED && !tp->bytes_sent)
3367			err = tcp_repair_options_est(sk, optval, optlen);
3368		else
3369			err = -EPERM;
3370		break;
3371
3372	case TCP_CORK:
3373		__tcp_sock_set_cork(sk, val);
3374		break;
3375
3376	case TCP_KEEPIDLE:
3377		err = tcp_sock_set_keepidle_locked(sk, val);
3378		break;
3379	case TCP_KEEPINTVL:
3380		if (val < 1 || val > MAX_TCP_KEEPINTVL)
3381			err = -EINVAL;
3382		else
3383			WRITE_ONCE(tp->keepalive_intvl, val * HZ);
3384		break;
3385	case TCP_KEEPCNT:
3386		if (val < 1 || val > MAX_TCP_KEEPCNT)
3387			err = -EINVAL;
3388		else
3389			WRITE_ONCE(tp->keepalive_probes, val);
3390		break;
3391	case TCP_SYNCNT:
3392		if (val < 1 || val > MAX_TCP_SYNCNT)
3393			err = -EINVAL;
3394		else
3395			WRITE_ONCE(icsk->icsk_syn_retries, val);
3396		break;
3397
3398	case TCP_SAVE_SYN:
3399		/* 0: disable, 1: enable, 2: start from ether_header */
3400		if (val < 0 || val > 2)
3401			err = -EINVAL;
3402		else
3403			tp->save_syn = val;
3404		break;
3405
3406	case TCP_LINGER2:
3407		if (val < 0)
3408			WRITE_ONCE(tp->linger2, -1);
3409		else if (val > TCP_FIN_TIMEOUT_MAX / HZ)
3410			WRITE_ONCE(tp->linger2, TCP_FIN_TIMEOUT_MAX);
3411		else
3412			WRITE_ONCE(tp->linger2, val * HZ);
3413		break;
3414
3415	case TCP_DEFER_ACCEPT:
3416		/* Translate value in seconds to number of retransmits */
3417		WRITE_ONCE(icsk->icsk_accept_queue.rskq_defer_accept,
3418			   secs_to_retrans(val, TCP_TIMEOUT_INIT / HZ,
3419					   TCP_RTO_MAX / HZ));
3420		break;
3421
3422	case TCP_WINDOW_CLAMP:
3423		if (!val) {
3424			if (sk->sk_state != TCP_CLOSE) {
3425				err = -EINVAL;
3426				break;
3427			}
3428			tp->window_clamp = 0;
3429		} else
3430			tp->window_clamp = val < SOCK_MIN_RCVBUF / 2 ?
3431						SOCK_MIN_RCVBUF / 2 : val;
3432		break;
3433
3434	case TCP_QUICKACK:
3435		__tcp_sock_set_quickack(sk, val);
3436		break;
3437
3438#ifdef CONFIG_TCP_MD5SIG
3439	case TCP_MD5SIG:
3440	case TCP_MD5SIG_EXT:
3441		err = tp->af_specific->md5_parse(sk, optname, optval, optlen);
3442		break;
3443#endif
3444	case TCP_USER_TIMEOUT:
3445		/* Cap the max time in ms TCP will retry or probe the window
3446		 * before giving up and aborting (ETIMEDOUT) a connection.
3447		 */
3448		if (val < 0)
3449			err = -EINVAL;
3450		else
3451			WRITE_ONCE(icsk->icsk_user_timeout, val);
3452		break;
3453
3454	case TCP_FASTOPEN:
3455		if (val >= 0 && ((1 << sk->sk_state) & (TCPF_CLOSE |
3456		    TCPF_LISTEN))) {
3457			tcp_fastopen_init_key_once(net);
3458
3459			fastopen_queue_tune(sk, val);
3460		} else {
3461			err = -EINVAL;
3462		}
3463		break;
3464	case TCP_FASTOPEN_CONNECT:
3465		if (val > 1 || val < 0) {
3466			err = -EINVAL;
3467		} else if (READ_ONCE(net->ipv4.sysctl_tcp_fastopen) &
3468			   TFO_CLIENT_ENABLE) {
3469			if (sk->sk_state == TCP_CLOSE)
3470				tp->fastopen_connect = val;
3471			else
3472				err = -EINVAL;
3473		} else {
3474			err = -EOPNOTSUPP;
3475		}
3476		break;
3477	case TCP_FASTOPEN_NO_COOKIE:
3478		if (val > 1 || val < 0)
3479			err = -EINVAL;
3480		else if (!((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
3481			err = -EINVAL;
3482		else
3483			tp->fastopen_no_cookie = val;
3484		break;
3485	case TCP_TIMESTAMP:
3486		if (!tp->repair)
3487			err = -EPERM;
3488		else
3489			tp->tsoffset = val - tcp_time_stamp_raw();
3490		break;
3491	case TCP_REPAIR_WINDOW:
3492		err = tcp_repair_set_window(tp, optval, optlen);
3493		break;
3494	case TCP_NOTSENT_LOWAT:
3495		WRITE_ONCE(tp->notsent_lowat, val);
3496		sk->sk_write_space(sk);
3497		break;
3498	case TCP_INQ:
3499		if (val > 1 || val < 0)
3500			err = -EINVAL;
3501		else
3502			tp->recvmsg_inq = val;
3503		break;
3504	case TCP_TX_DELAY:
3505		if (val)
3506			tcp_enable_tx_delay();
3507		WRITE_ONCE(tp->tcp_tx_delay, val);
3508		break;
3509#ifdef CONFIG_TCP_NATA_URC
3510	case TCP_NATA_URC:
3511		err = tcp_set_nata_urc(sk, optval, optlen);
3512		break;
3513#endif
3514#ifdef CONFIG_TCP_NATA_STL
3515	case TCP_NATA_STL:
3516		err = tcp_set_nata_stl(sk, optval, optlen);
3517		break;
3518#endif
3519	default:
3520		err = -ENOPROTOOPT;
3521		break;
3522	}
3523
3524	release_sock(sk);
3525	return err;
3526}
3527
3528int tcp_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval,
3529		   unsigned int optlen)
3530{
3531	const struct inet_connection_sock *icsk = inet_csk(sk);
3532
3533	if (level != SOL_TCP)
3534		/* Paired with WRITE_ONCE() in do_ipv6_setsockopt() and tcp_v6_connect() */
3535		return READ_ONCE(icsk->icsk_af_ops)->setsockopt(sk, level, optname,
3536								optval, optlen);
3537	return do_tcp_setsockopt(sk, level, optname, optval, optlen);
3538}
3539EXPORT_SYMBOL(tcp_setsockopt);
3540
3541static void tcp_get_info_chrono_stats(const struct tcp_sock *tp,
3542				      struct tcp_info *info)
3543{
3544	u64 stats[__TCP_CHRONO_MAX], total = 0;
3545	enum tcp_chrono i;
3546
3547	for (i = TCP_CHRONO_BUSY; i < __TCP_CHRONO_MAX; ++i) {
3548		stats[i] = tp->chrono_stat[i - 1];
3549		if (i == tp->chrono_type)
3550			stats[i] += tcp_jiffies32 - tp->chrono_start;
3551		stats[i] *= USEC_PER_SEC / HZ;
3552		total += stats[i];
3553	}
3554
3555	info->tcpi_busy_time = total;
3556	info->tcpi_rwnd_limited = stats[TCP_CHRONO_RWND_LIMITED];
3557	info->tcpi_sndbuf_limited = stats[TCP_CHRONO_SNDBUF_LIMITED];
3558}
3559
3560/* Return information about state of tcp endpoint in API format. */
3561void tcp_get_info(struct sock *sk, struct tcp_info *info)
3562{
3563	const struct tcp_sock *tp = tcp_sk(sk); /* iff sk_type == SOCK_STREAM */
3564	const struct inet_connection_sock *icsk = inet_csk(sk);
3565	unsigned long rate;
3566	u32 now;
3567	u64 rate64;
3568	bool slow;
3569
3570	memset(info, 0, sizeof(*info));
3571	if (sk->sk_type != SOCK_STREAM)
3572		return;
3573
3574	info->tcpi_state = inet_sk_state_load(sk);
3575
3576	/* Report meaningful fields for all TCP states, including listeners */
3577	rate = READ_ONCE(sk->sk_pacing_rate);
3578	rate64 = (rate != ~0UL) ? rate : ~0ULL;
3579	info->tcpi_pacing_rate = rate64;
3580
3581	rate = READ_ONCE(sk->sk_max_pacing_rate);
3582	rate64 = (rate != ~0UL) ? rate : ~0ULL;
3583	info->tcpi_max_pacing_rate = rate64;
3584
3585	info->tcpi_reordering = tp->reordering;
3586	info->tcpi_snd_cwnd = tp->snd_cwnd;
3587
3588	if (info->tcpi_state == TCP_LISTEN) {
3589		/* listeners aliased fields :
3590		 * tcpi_unacked -> Number of children ready for accept()
3591		 * tcpi_sacked  -> max backlog
3592		 */
3593		info->tcpi_unacked = READ_ONCE(sk->sk_ack_backlog);
3594		info->tcpi_sacked = READ_ONCE(sk->sk_max_ack_backlog);
3595		return;
3596	}
3597
3598	slow = lock_sock_fast(sk);
3599
3600	info->tcpi_ca_state = icsk->icsk_ca_state;
3601	info->tcpi_retransmits = icsk->icsk_retransmits;
3602	info->tcpi_probes = icsk->icsk_probes_out;
3603	info->tcpi_backoff = icsk->icsk_backoff;
3604
3605	if (tp->rx_opt.tstamp_ok)
3606		info->tcpi_options |= TCPI_OPT_TIMESTAMPS;
3607	if (tcp_is_sack(tp))
3608		info->tcpi_options |= TCPI_OPT_SACK;
3609	if (tp->rx_opt.wscale_ok) {
3610		info->tcpi_options |= TCPI_OPT_WSCALE;
3611		info->tcpi_snd_wscale = tp->rx_opt.snd_wscale;
3612		info->tcpi_rcv_wscale = tp->rx_opt.rcv_wscale;
3613	}
3614
3615	if (tp->ecn_flags & TCP_ECN_OK)
3616		info->tcpi_options |= TCPI_OPT_ECN;
3617	if (tp->ecn_flags & TCP_ECN_SEEN)
3618		info->tcpi_options |= TCPI_OPT_ECN_SEEN;
3619	if (tp->syn_data_acked)
3620		info->tcpi_options |= TCPI_OPT_SYN_DATA;
3621
3622	info->tcpi_rto = jiffies_to_usecs(icsk->icsk_rto);
3623	info->tcpi_ato = jiffies_to_usecs(icsk->icsk_ack.ato);
3624	info->tcpi_snd_mss = tp->mss_cache;
3625	info->tcpi_rcv_mss = icsk->icsk_ack.rcv_mss;
3626
3627	info->tcpi_unacked = tp->packets_out;
3628	info->tcpi_sacked = tp->sacked_out;
3629
3630	info->tcpi_lost = tp->lost_out;
3631	info->tcpi_retrans = tp->retrans_out;
3632
3633	now = tcp_jiffies32;
3634	info->tcpi_last_data_sent = jiffies_to_msecs(now - tp->lsndtime);
3635	info->tcpi_last_data_recv = jiffies_to_msecs(now - icsk->icsk_ack.lrcvtime);
3636	info->tcpi_last_ack_recv = jiffies_to_msecs(now - tp->rcv_tstamp);
3637
3638	info->tcpi_pmtu = icsk->icsk_pmtu_cookie;
3639	info->tcpi_rcv_ssthresh = tp->rcv_ssthresh;
3640	info->tcpi_rtt = tp->srtt_us >> 3;
3641	info->tcpi_rttvar = tp->mdev_us >> 2;
3642	info->tcpi_snd_ssthresh = tp->snd_ssthresh;
3643	info->tcpi_advmss = tp->advmss;
3644
3645	info->tcpi_rcv_rtt = tp->rcv_rtt_est.rtt_us >> 3;
3646	info->tcpi_rcv_space = tp->rcvq_space.space;
3647
3648	info->tcpi_total_retrans = tp->total_retrans;
3649
3650	info->tcpi_bytes_acked = tp->bytes_acked;
3651	info->tcpi_bytes_received = tp->bytes_received;
3652	info->tcpi_notsent_bytes = max_t(int, 0, tp->write_seq - tp->snd_nxt);
3653	tcp_get_info_chrono_stats(tp, info);
3654
3655	info->tcpi_segs_out = tp->segs_out;
3656	info->tcpi_segs_in = tp->segs_in;
3657
3658	info->tcpi_min_rtt = tcp_min_rtt(tp);
3659	info->tcpi_data_segs_in = tp->data_segs_in;
3660	info->tcpi_data_segs_out = tp->data_segs_out;
3661
3662	info->tcpi_delivery_rate_app_limited = tp->rate_app_limited ? 1 : 0;
3663	rate64 = tcp_compute_delivery_rate(tp);
3664	if (rate64)
3665		info->tcpi_delivery_rate = rate64;
3666	info->tcpi_delivered = tp->delivered;
3667	info->tcpi_delivered_ce = tp->delivered_ce;
3668	info->tcpi_bytes_sent = tp->bytes_sent;
3669	info->tcpi_bytes_retrans = tp->bytes_retrans;
3670	info->tcpi_dsack_dups = tp->dsack_dups;
3671	info->tcpi_reord_seen = tp->reord_seen;
3672	info->tcpi_rcv_ooopack = tp->rcv_ooopack;
3673	info->tcpi_snd_wnd = tp->snd_wnd;
3674	info->tcpi_fastopen_client_fail = tp->fastopen_client_fail;
3675	unlock_sock_fast(sk, slow);
3676}
3677EXPORT_SYMBOL_GPL(tcp_get_info);
3678
3679static size_t tcp_opt_stats_get_size(void)
3680{
3681	return
3682		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BUSY */
3683		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_RWND_LIMITED */
3684		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_SNDBUF_LIMITED */
3685		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_DATA_SEGS_OUT */
3686		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_TOTAL_RETRANS */
3687		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_PACING_RATE */
3688		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_DELIVERY_RATE */
3689		nla_total_size(sizeof(u32)) + /* TCP_NLA_SND_CWND */
3690		nla_total_size(sizeof(u32)) + /* TCP_NLA_REORDERING */
3691		nla_total_size(sizeof(u32)) + /* TCP_NLA_MIN_RTT */
3692		nla_total_size(sizeof(u8)) + /* TCP_NLA_RECUR_RETRANS */
3693		nla_total_size(sizeof(u8)) + /* TCP_NLA_DELIVERY_RATE_APP_LMT */
3694		nla_total_size(sizeof(u32)) + /* TCP_NLA_SNDQ_SIZE */
3695		nla_total_size(sizeof(u8)) + /* TCP_NLA_CA_STATE */
3696		nla_total_size(sizeof(u32)) + /* TCP_NLA_SND_SSTHRESH */
3697		nla_total_size(sizeof(u32)) + /* TCP_NLA_DELIVERED */
3698		nla_total_size(sizeof(u32)) + /* TCP_NLA_DELIVERED_CE */
3699		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BYTES_SENT */
3700		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BYTES_RETRANS */
3701		nla_total_size(sizeof(u32)) + /* TCP_NLA_DSACK_DUPS */
3702		nla_total_size(sizeof(u32)) + /* TCP_NLA_REORD_SEEN */
3703		nla_total_size(sizeof(u32)) + /* TCP_NLA_SRTT */
3704		nla_total_size(sizeof(u16)) + /* TCP_NLA_TIMEOUT_REHASH */
3705		nla_total_size(sizeof(u32)) + /* TCP_NLA_BYTES_NOTSENT */
3706		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_EDT */
3707		0;
3708}
3709
3710struct sk_buff *tcp_get_timestamping_opt_stats(const struct sock *sk,
3711					       const struct sk_buff *orig_skb)
3712{
3713	const struct tcp_sock *tp = tcp_sk(sk);
3714	struct sk_buff *stats;
3715	struct tcp_info info;
3716	unsigned long rate;
3717	u64 rate64;
3718
3719	stats = alloc_skb(tcp_opt_stats_get_size(), GFP_ATOMIC);
3720	if (!stats)
3721		return NULL;
3722
3723	tcp_get_info_chrono_stats(tp, &info);
3724	nla_put_u64_64bit(stats, TCP_NLA_BUSY,
3725			  info.tcpi_busy_time, TCP_NLA_PAD);
3726	nla_put_u64_64bit(stats, TCP_NLA_RWND_LIMITED,
3727			  info.tcpi_rwnd_limited, TCP_NLA_PAD);
3728	nla_put_u64_64bit(stats, TCP_NLA_SNDBUF_LIMITED,
3729			  info.tcpi_sndbuf_limited, TCP_NLA_PAD);
3730	nla_put_u64_64bit(stats, TCP_NLA_DATA_SEGS_OUT,
3731			  tp->data_segs_out, TCP_NLA_PAD);
3732	nla_put_u64_64bit(stats, TCP_NLA_TOTAL_RETRANS,
3733			  tp->total_retrans, TCP_NLA_PAD);
3734
3735	rate = READ_ONCE(sk->sk_pacing_rate);
3736	rate64 = (rate != ~0UL) ? rate : ~0ULL;
3737	nla_put_u64_64bit(stats, TCP_NLA_PACING_RATE, rate64, TCP_NLA_PAD);
3738
3739	rate64 = tcp_compute_delivery_rate(tp);
3740	nla_put_u64_64bit(stats, TCP_NLA_DELIVERY_RATE, rate64, TCP_NLA_PAD);
3741
3742	nla_put_u32(stats, TCP_NLA_SND_CWND, tp->snd_cwnd);
3743	nla_put_u32(stats, TCP_NLA_REORDERING, tp->reordering);
3744	nla_put_u32(stats, TCP_NLA_MIN_RTT, tcp_min_rtt(tp));
3745
3746	nla_put_u8(stats, TCP_NLA_RECUR_RETRANS, inet_csk(sk)->icsk_retransmits);
3747	nla_put_u8(stats, TCP_NLA_DELIVERY_RATE_APP_LMT, !!tp->rate_app_limited);
3748	nla_put_u32(stats, TCP_NLA_SND_SSTHRESH, tp->snd_ssthresh);
3749	nla_put_u32(stats, TCP_NLA_DELIVERED, tp->delivered);
3750	nla_put_u32(stats, TCP_NLA_DELIVERED_CE, tp->delivered_ce);
3751
3752	nla_put_u32(stats, TCP_NLA_SNDQ_SIZE, tp->write_seq - tp->snd_una);
3753	nla_put_u8(stats, TCP_NLA_CA_STATE, inet_csk(sk)->icsk_ca_state);
3754
3755	nla_put_u64_64bit(stats, TCP_NLA_BYTES_SENT, tp->bytes_sent,
3756			  TCP_NLA_PAD);
3757	nla_put_u64_64bit(stats, TCP_NLA_BYTES_RETRANS, tp->bytes_retrans,
3758			  TCP_NLA_PAD);
3759	nla_put_u32(stats, TCP_NLA_DSACK_DUPS, tp->dsack_dups);
3760	nla_put_u32(stats, TCP_NLA_REORD_SEEN, tp->reord_seen);
3761	nla_put_u32(stats, TCP_NLA_SRTT, tp->srtt_us >> 3);
3762	nla_put_u16(stats, TCP_NLA_TIMEOUT_REHASH, tp->timeout_rehash);
3763	nla_put_u32(stats, TCP_NLA_BYTES_NOTSENT,
3764		    max_t(int, 0, tp->write_seq - tp->snd_nxt));
3765	nla_put_u64_64bit(stats, TCP_NLA_EDT, orig_skb->skb_mstamp_ns,
3766			  TCP_NLA_PAD);
3767
3768	return stats;
3769}
3770
3771static int do_tcp_getsockopt(struct sock *sk, int level,
3772		int optname, char __user *optval, int __user *optlen)
3773{
3774	struct inet_connection_sock *icsk = inet_csk(sk);
3775	struct tcp_sock *tp = tcp_sk(sk);
3776	struct net *net = sock_net(sk);
3777	int val, len;
3778
3779	if (get_user(len, optlen))
3780		return -EFAULT;
3781
3782	len = min_t(unsigned int, len, sizeof(int));
3783
3784	if (len < 0)
3785		return -EINVAL;
3786
3787	switch (optname) {
3788	case TCP_MAXSEG:
3789		val = tp->mss_cache;
3790		if (tp->rx_opt.user_mss &&
3791		    ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
3792			val = tp->rx_opt.user_mss;
3793		if (tp->repair)
3794			val = tp->rx_opt.mss_clamp;
3795		break;
3796	case TCP_NODELAY:
3797		val = !!(tp->nonagle&TCP_NAGLE_OFF);
3798		break;
3799	case TCP_CORK:
3800		val = !!(tp->nonagle&TCP_NAGLE_CORK);
3801		break;
3802	case TCP_KEEPIDLE:
3803		val = keepalive_time_when(tp) / HZ;
3804		break;
3805	case TCP_KEEPINTVL:
3806		val = keepalive_intvl_when(tp) / HZ;
3807		break;
3808	case TCP_KEEPCNT:
3809		val = keepalive_probes(tp);
3810		break;
3811	case TCP_SYNCNT:
3812		val = READ_ONCE(icsk->icsk_syn_retries) ? :
3813			READ_ONCE(net->ipv4.sysctl_tcp_syn_retries);
3814		break;
3815	case TCP_LINGER2:
3816		val = READ_ONCE(tp->linger2);
3817		if (val >= 0)
3818			val = (val ? : READ_ONCE(net->ipv4.sysctl_tcp_fin_timeout)) / HZ;
3819		break;
3820	case TCP_DEFER_ACCEPT:
3821		val = READ_ONCE(icsk->icsk_accept_queue.rskq_defer_accept);
3822		val = retrans_to_secs(val, TCP_TIMEOUT_INIT / HZ,
3823				      TCP_RTO_MAX / HZ);
3824		break;
3825	case TCP_WINDOW_CLAMP:
3826		val = tp->window_clamp;
3827		break;
3828	case TCP_INFO: {
3829		struct tcp_info info;
3830
3831		if (get_user(len, optlen))
3832			return -EFAULT;
3833
3834		tcp_get_info(sk, &info);
3835
3836		len = min_t(unsigned int, len, sizeof(info));
3837		if (put_user(len, optlen))
3838			return -EFAULT;
3839		if (copy_to_user(optval, &info, len))
3840			return -EFAULT;
3841		return 0;
3842	}
3843	case TCP_CC_INFO: {
3844		const struct tcp_congestion_ops *ca_ops;
3845		union tcp_cc_info info;
3846		size_t sz = 0;
3847		int attr;
3848
3849		if (get_user(len, optlen))
3850			return -EFAULT;
3851
3852		ca_ops = icsk->icsk_ca_ops;
3853		if (ca_ops && ca_ops->get_info)
3854			sz = ca_ops->get_info(sk, ~0U, &attr, &info);
3855
3856		len = min_t(unsigned int, len, sz);
3857		if (put_user(len, optlen))
3858			return -EFAULT;
3859		if (copy_to_user(optval, &info, len))
3860			return -EFAULT;
3861		return 0;
3862	}
3863	case TCP_QUICKACK:
3864		val = !inet_csk_in_pingpong_mode(sk);
3865		break;
3866
3867	case TCP_CONGESTION:
3868		if (get_user(len, optlen))
3869			return -EFAULT;
3870		len = min_t(unsigned int, len, TCP_CA_NAME_MAX);
3871		if (put_user(len, optlen))
3872			return -EFAULT;
3873		if (copy_to_user(optval, icsk->icsk_ca_ops->name, len))
3874			return -EFAULT;
3875		return 0;
3876
3877	case TCP_ULP:
3878		if (get_user(len, optlen))
3879			return -EFAULT;
3880		len = min_t(unsigned int, len, TCP_ULP_NAME_MAX);
3881		if (!icsk->icsk_ulp_ops) {
3882			if (put_user(0, optlen))
3883				return -EFAULT;
3884			return 0;
3885		}
3886		if (put_user(len, optlen))
3887			return -EFAULT;
3888		if (copy_to_user(optval, icsk->icsk_ulp_ops->name, len))
3889			return -EFAULT;
3890		return 0;
3891
3892	case TCP_FASTOPEN_KEY: {
3893		u64 key[TCP_FASTOPEN_KEY_BUF_LENGTH / sizeof(u64)];
3894		unsigned int key_len;
3895
3896		if (get_user(len, optlen))
3897			return -EFAULT;
3898
3899		key_len = tcp_fastopen_get_cipher(net, icsk, key) *
3900				TCP_FASTOPEN_KEY_LENGTH;
3901		len = min_t(unsigned int, len, key_len);
3902		if (put_user(len, optlen))
3903			return -EFAULT;
3904		if (copy_to_user(optval, key, len))
3905			return -EFAULT;
3906		return 0;
3907	}
3908	case TCP_THIN_LINEAR_TIMEOUTS:
3909		val = tp->thin_lto;
3910		break;
3911
3912	case TCP_THIN_DUPACK:
3913		val = 0;
3914		break;
3915
3916	case TCP_REPAIR:
3917		val = tp->repair;
3918		break;
3919
3920	case TCP_REPAIR_QUEUE:
3921		if (tp->repair)
3922			val = tp->repair_queue;
3923		else
3924			return -EINVAL;
3925		break;
3926
3927	case TCP_REPAIR_WINDOW: {
3928		struct tcp_repair_window opt;
3929
3930		if (get_user(len, optlen))
3931			return -EFAULT;
3932
3933		if (len != sizeof(opt))
3934			return -EINVAL;
3935
3936		if (!tp->repair)
3937			return -EPERM;
3938
3939		opt.snd_wl1	= tp->snd_wl1;
3940		opt.snd_wnd	= tp->snd_wnd;
3941		opt.max_window	= tp->max_window;
3942		opt.rcv_wnd	= tp->rcv_wnd;
3943		opt.rcv_wup	= tp->rcv_wup;
3944
3945		if (copy_to_user(optval, &opt, len))
3946			return -EFAULT;
3947		return 0;
3948	}
3949	case TCP_QUEUE_SEQ:
3950		if (tp->repair_queue == TCP_SEND_QUEUE)
3951			val = tp->write_seq;
3952		else if (tp->repair_queue == TCP_RECV_QUEUE)
3953			val = tp->rcv_nxt;
3954		else
3955			return -EINVAL;
3956		break;
3957
3958	case TCP_USER_TIMEOUT:
3959		val = READ_ONCE(icsk->icsk_user_timeout);
3960		break;
3961
3962	case TCP_FASTOPEN:
3963		val = READ_ONCE(icsk->icsk_accept_queue.fastopenq.max_qlen);
3964		break;
3965
3966	case TCP_FASTOPEN_CONNECT:
3967		val = tp->fastopen_connect;
3968		break;
3969
3970	case TCP_FASTOPEN_NO_COOKIE:
3971		val = tp->fastopen_no_cookie;
3972		break;
3973
3974	case TCP_TX_DELAY:
3975		val = READ_ONCE(tp->tcp_tx_delay);
3976		break;
3977
3978	case TCP_TIMESTAMP:
3979		val = tcp_time_stamp_raw() + tp->tsoffset;
3980		break;
3981	case TCP_NOTSENT_LOWAT:
3982		val = READ_ONCE(tp->notsent_lowat);
3983		break;
3984	case TCP_INQ:
3985		val = tp->recvmsg_inq;
3986		break;
3987	case TCP_SAVE_SYN:
3988		val = tp->save_syn;
3989		break;
3990	case TCP_SAVED_SYN: {
3991		if (get_user(len, optlen))
3992			return -EFAULT;
3993
3994		lock_sock(sk);
3995		if (tp->saved_syn) {
3996			if (len < tcp_saved_syn_len(tp->saved_syn)) {
3997				if (put_user(tcp_saved_syn_len(tp->saved_syn),
3998					     optlen)) {
3999					release_sock(sk);
4000					return -EFAULT;
4001				}
4002				release_sock(sk);
4003				return -EINVAL;
4004			}
4005			len = tcp_saved_syn_len(tp->saved_syn);
4006			if (put_user(len, optlen)) {
4007				release_sock(sk);
4008				return -EFAULT;
4009			}
4010			if (copy_to_user(optval, tp->saved_syn->data, len)) {
4011				release_sock(sk);
4012				return -EFAULT;
4013			}
4014			tcp_saved_syn_free(tp);
4015			release_sock(sk);
4016		} else {
4017			release_sock(sk);
4018			len = 0;
4019			if (put_user(len, optlen))
4020				return -EFAULT;
4021		}
4022		return 0;
4023	}
4024#ifdef CONFIG_MMU
4025	case TCP_ZEROCOPY_RECEIVE: {
4026		struct tcp_zerocopy_receive zc = {};
4027		int err;
4028
4029		if (get_user(len, optlen))
4030			return -EFAULT;
4031		if (len < 0 ||
4032		    len < offsetofend(struct tcp_zerocopy_receive, length))
4033			return -EINVAL;
4034		if (len > sizeof(zc)) {
4035			len = sizeof(zc);
4036			if (put_user(len, optlen))
4037				return -EFAULT;
4038		}
4039		if (copy_from_user(&zc, optval, len))
4040			return -EFAULT;
4041		lock_sock(sk);
4042		err = tcp_zerocopy_receive(sk, &zc);
4043		err = BPF_CGROUP_RUN_PROG_GETSOCKOPT_KERN(sk, level, optname,
4044							  &zc, &len, err);
4045		release_sock(sk);
4046		if (len >= offsetofend(struct tcp_zerocopy_receive, err))
4047			goto zerocopy_rcv_sk_err;
4048		switch (len) {
4049		case offsetofend(struct tcp_zerocopy_receive, err):
4050			goto zerocopy_rcv_sk_err;
4051		case offsetofend(struct tcp_zerocopy_receive, inq):
4052			goto zerocopy_rcv_inq;
4053		case offsetofend(struct tcp_zerocopy_receive, length):
4054		default:
4055			goto zerocopy_rcv_out;
4056		}
4057zerocopy_rcv_sk_err:
4058		if (!err)
4059			zc.err = sock_error(sk);
4060zerocopy_rcv_inq:
4061		zc.inq = tcp_inq_hint(sk);
4062zerocopy_rcv_out:
4063		if (!err && copy_to_user(optval, &zc, len))
4064			err = -EFAULT;
4065		return err;
4066	}
4067#endif
4068	default:
4069		return -ENOPROTOOPT;
4070	}
4071
4072	if (put_user(len, optlen))
4073		return -EFAULT;
4074	if (copy_to_user(optval, &val, len))
4075		return -EFAULT;
4076	return 0;
4077}
4078
4079bool tcp_bpf_bypass_getsockopt(int level, int optname)
4080{
4081	/* TCP do_tcp_getsockopt has optimized getsockopt implementation
4082	 * to avoid extra socket lock for TCP_ZEROCOPY_RECEIVE.
4083	 */
4084	if (level == SOL_TCP && optname == TCP_ZEROCOPY_RECEIVE)
4085		return true;
4086
4087	return false;
4088}
4089EXPORT_SYMBOL(tcp_bpf_bypass_getsockopt);
4090
4091int tcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval,
4092		   int __user *optlen)
4093{
4094	struct inet_connection_sock *icsk = inet_csk(sk);
4095
4096	if (level != SOL_TCP)
4097		/* Paired with WRITE_ONCE() in do_ipv6_setsockopt() and tcp_v6_connect() */
4098		return READ_ONCE(icsk->icsk_af_ops)->getsockopt(sk, level, optname,
4099								optval, optlen);
4100	return do_tcp_getsockopt(sk, level, optname, optval, optlen);
4101}
4102EXPORT_SYMBOL(tcp_getsockopt);
4103
4104#ifdef CONFIG_TCP_MD5SIG
4105static DEFINE_PER_CPU(struct tcp_md5sig_pool, tcp_md5sig_pool);
4106static DEFINE_MUTEX(tcp_md5sig_mutex);
4107static bool tcp_md5sig_pool_populated = false;
4108
4109static void __tcp_alloc_md5sig_pool(void)
4110{
4111	struct crypto_ahash *hash;
4112	int cpu;
4113
4114	hash = crypto_alloc_ahash("md5", 0, CRYPTO_ALG_ASYNC);
4115	if (IS_ERR(hash))
4116		return;
4117
4118	for_each_possible_cpu(cpu) {
4119		void *scratch = per_cpu(tcp_md5sig_pool, cpu).scratch;
4120		struct ahash_request *req;
4121
4122		if (!scratch) {
4123			scratch = kmalloc_node(sizeof(union tcp_md5sum_block) +
4124					       sizeof(struct tcphdr),
4125					       GFP_KERNEL,
4126					       cpu_to_node(cpu));
4127			if (!scratch)
4128				return;
4129			per_cpu(tcp_md5sig_pool, cpu).scratch = scratch;
4130		}
4131		if (per_cpu(tcp_md5sig_pool, cpu).md5_req)
4132			continue;
4133
4134		req = ahash_request_alloc(hash, GFP_KERNEL);
4135		if (!req)
4136			return;
4137
4138		ahash_request_set_callback(req, 0, NULL, NULL);
4139
4140		per_cpu(tcp_md5sig_pool, cpu).md5_req = req;
4141	}
4142	/* before setting tcp_md5sig_pool_populated, we must commit all writes
4143	 * to memory. See smp_rmb() in tcp_get_md5sig_pool()
4144	 */
4145	smp_wmb();
4146	/* Paired with READ_ONCE() from tcp_alloc_md5sig_pool()
4147	 * and tcp_get_md5sig_pool().
4148	*/
4149	WRITE_ONCE(tcp_md5sig_pool_populated, true);
4150}
4151
4152bool tcp_alloc_md5sig_pool(void)
4153{
4154	/* Paired with WRITE_ONCE() from __tcp_alloc_md5sig_pool() */
4155	if (unlikely(!READ_ONCE(tcp_md5sig_pool_populated))) {
4156		mutex_lock(&tcp_md5sig_mutex);
4157
4158		if (!tcp_md5sig_pool_populated) {
4159			__tcp_alloc_md5sig_pool();
4160			if (tcp_md5sig_pool_populated)
4161				static_branch_inc(&tcp_md5_needed);
4162		}
4163
4164		mutex_unlock(&tcp_md5sig_mutex);
4165	}
4166	/* Paired with WRITE_ONCE() from __tcp_alloc_md5sig_pool() */
4167	return READ_ONCE(tcp_md5sig_pool_populated);
4168}
4169EXPORT_SYMBOL(tcp_alloc_md5sig_pool);
4170
4171
4172/**
4173 *	tcp_get_md5sig_pool - get md5sig_pool for this user
4174 *
4175 *	We use percpu structure, so if we succeed, we exit with preemption
4176 *	and BH disabled, to make sure another thread or softirq handling
4177 *	wont try to get same context.
4178 */
4179struct tcp_md5sig_pool *tcp_get_md5sig_pool(void)
4180{
4181	local_bh_disable();
4182
4183	/* Paired with WRITE_ONCE() from __tcp_alloc_md5sig_pool() */
4184	if (READ_ONCE(tcp_md5sig_pool_populated)) {
4185		/* coupled with smp_wmb() in __tcp_alloc_md5sig_pool() */
4186		smp_rmb();
4187		return this_cpu_ptr(&tcp_md5sig_pool);
4188	}
4189	local_bh_enable();
4190	return NULL;
4191}
4192EXPORT_SYMBOL(tcp_get_md5sig_pool);
4193
4194int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *hp,
4195			  const struct sk_buff *skb, unsigned int header_len)
4196{
4197	struct scatterlist sg;
4198	const struct tcphdr *tp = tcp_hdr(skb);
4199	struct ahash_request *req = hp->md5_req;
4200	unsigned int i;
4201	const unsigned int head_data_len = skb_headlen(skb) > header_len ?
4202					   skb_headlen(skb) - header_len : 0;
4203	const struct skb_shared_info *shi = skb_shinfo(skb);
4204	struct sk_buff *frag_iter;
4205
4206	sg_init_table(&sg, 1);
4207
4208	sg_set_buf(&sg, ((u8 *) tp) + header_len, head_data_len);
4209	ahash_request_set_crypt(req, &sg, NULL, head_data_len);
4210	if (crypto_ahash_update(req))
4211		return 1;
4212
4213	for (i = 0; i < shi->nr_frags; ++i) {
4214		const skb_frag_t *f = &shi->frags[i];
4215		unsigned int offset = skb_frag_off(f);
4216		struct page *page = skb_frag_page(f) + (offset >> PAGE_SHIFT);
4217
4218		sg_set_page(&sg, page, skb_frag_size(f),
4219			    offset_in_page(offset));
4220		ahash_request_set_crypt(req, &sg, NULL, skb_frag_size(f));
4221		if (crypto_ahash_update(req))
4222			return 1;
4223	}
4224
4225	skb_walk_frags(skb, frag_iter)
4226		if (tcp_md5_hash_skb_data(hp, frag_iter, 0))
4227			return 1;
4228
4229	return 0;
4230}
4231EXPORT_SYMBOL(tcp_md5_hash_skb_data);
4232
4233int tcp_md5_hash_key(struct tcp_md5sig_pool *hp, const struct tcp_md5sig_key *key)
4234{
4235	u8 keylen = READ_ONCE(key->keylen); /* paired with WRITE_ONCE() in tcp_md5_do_add */
4236	struct scatterlist sg;
4237
4238	sg_init_one(&sg, key->key, keylen);
4239	ahash_request_set_crypt(hp->md5_req, &sg, NULL, keylen);
4240
4241	/* We use data_race() because tcp_md5_do_add() might change key->key under us */
4242	return data_race(crypto_ahash_update(hp->md5_req));
4243}
4244EXPORT_SYMBOL(tcp_md5_hash_key);
4245
4246#endif
4247
4248void tcp_done(struct sock *sk)
4249{
4250	struct request_sock *req;
4251
4252	/* We might be called with a new socket, after
4253	 * inet_csk_prepare_forced_close() has been called
4254	 * so we can not use lockdep_sock_is_held(sk)
4255	 */
4256	req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk, 1);
4257
4258	if (sk->sk_state == TCP_SYN_SENT || sk->sk_state == TCP_SYN_RECV)
4259		TCP_INC_STATS(sock_net(sk), TCP_MIB_ATTEMPTFAILS);
4260
4261	tcp_set_state(sk, TCP_CLOSE);
4262	tcp_clear_xmit_timers(sk);
4263	if (req)
4264		reqsk_fastopen_remove(sk, req, false);
4265
4266	WRITE_ONCE(sk->sk_shutdown, SHUTDOWN_MASK);
4267
4268	if (!sock_flag(sk, SOCK_DEAD))
4269		sk->sk_state_change(sk);
4270	else
4271		inet_csk_destroy_sock(sk);
4272}
4273EXPORT_SYMBOL_GPL(tcp_done);
4274
4275int tcp_abort(struct sock *sk, int err)
4276{
4277	if (!sk_fullsock(sk)) {
4278		if (sk->sk_state == TCP_NEW_SYN_RECV) {
4279			struct request_sock *req = inet_reqsk(sk);
4280
4281			local_bh_disable();
4282			inet_csk_reqsk_queue_drop(req->rsk_listener, req);
4283			local_bh_enable();
4284			return 0;
4285		}
4286		return -EOPNOTSUPP;
4287	}
4288
4289	/* Don't race with userspace socket closes such as tcp_close. */
4290#ifdef CONFIG_TCP_SOCK_DESTROY
4291	/* BPF context ensures sock locking. */
4292	if (!has_current_bpf_ctx())
4293#endif  /* CONFIG_TCP_SOCK_DESTROY */
4294		lock_sock(sk);
4295
4296	if (sk->sk_state == TCP_LISTEN) {
4297		tcp_set_state(sk, TCP_CLOSE);
4298		inet_csk_listen_stop(sk);
4299	}
4300
4301	/* Don't race with BH socket closes such as inet_csk_listen_stop. */
4302	local_bh_disable();
4303	bh_lock_sock(sk);
4304
4305	if (!sock_flag(sk, SOCK_DEAD)) {
4306		sk->sk_err = err;
4307		/* This barrier is coupled with smp_rmb() in tcp_poll() */
4308		smp_wmb();
4309		sk->sk_error_report(sk);
4310		if (tcp_need_reset(sk->sk_state))
4311			tcp_send_active_reset(sk, GFP_ATOMIC);
4312		tcp_done(sk);
4313	}
4314
4315	bh_unlock_sock(sk);
4316	local_bh_enable();
4317	tcp_write_queue_purge(sk);
4318#ifdef CONFIG_TCP_SOCK_DESTROY
4319	if (!has_current_bpf_ctx())
4320#endif  /* CONFIG_TCP_SOCK_DESTROY */
4321		release_sock(sk);
4322	return 0;
4323}
4324EXPORT_SYMBOL_GPL(tcp_abort);
4325
4326extern struct tcp_congestion_ops tcp_reno;
4327
4328static __initdata unsigned long thash_entries;
4329static int __init set_thash_entries(char *str)
4330{
4331	ssize_t ret;
4332
4333	if (!str)
4334		return 0;
4335
4336	ret = kstrtoul(str, 0, &thash_entries);
4337	if (ret)
4338		return 0;
4339
4340	return 1;
4341}
4342__setup("thash_entries=", set_thash_entries);
4343
4344static void __init tcp_init_mem(void)
4345{
4346	unsigned long limit = nr_free_buffer_pages() / 16;
4347
4348	limit = max(limit, 128UL);
4349	sysctl_tcp_mem[0] = limit / 4 * 3;		/* 4.68 % */
4350	sysctl_tcp_mem[1] = limit;			/* 6.25 % */
4351	sysctl_tcp_mem[2] = sysctl_tcp_mem[0] * 2;	/* 9.37 % */
4352}
4353
4354void __init tcp_init(void)
4355{
4356	int max_rshare, max_wshare, cnt;
4357	unsigned long limit;
4358	unsigned int i;
4359
4360	BUILD_BUG_ON(TCP_MIN_SND_MSS <= MAX_TCP_OPTION_SPACE);
4361	BUILD_BUG_ON(sizeof(struct tcp_skb_cb) >
4362		     sizeof_field(struct sk_buff, cb));
4363
4364	percpu_counter_init(&tcp_sockets_allocated, 0, GFP_KERNEL);
4365
4366	timer_setup(&tcp_orphan_timer, tcp_orphan_update, TIMER_DEFERRABLE);
4367	mod_timer(&tcp_orphan_timer, jiffies + TCP_ORPHAN_TIMER_PERIOD);
4368
4369	inet_hashinfo_init(&tcp_hashinfo);
4370	inet_hashinfo2_init(&tcp_hashinfo, "tcp_listen_portaddr_hash",
4371			    thash_entries, 21,  /* one slot per 2 MB*/
4372			    0, 64 * 1024);
4373	tcp_hashinfo.bind_bucket_cachep =
4374		kmem_cache_create("tcp_bind_bucket",
4375				  sizeof(struct inet_bind_bucket), 0,
4376				  SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
4377
4378	/* Size and allocate the main established and bind bucket
4379	 * hash tables.
4380	 *
4381	 * The methodology is similar to that of the buffer cache.
4382	 */
4383	tcp_hashinfo.ehash =
4384		alloc_large_system_hash("TCP established",
4385					sizeof(struct inet_ehash_bucket),
4386					thash_entries,
4387					17, /* one slot per 128 KB of memory */
4388					0,
4389					NULL,
4390					&tcp_hashinfo.ehash_mask,
4391					0,
4392					thash_entries ? 0 : 512 * 1024);
4393	for (i = 0; i <= tcp_hashinfo.ehash_mask; i++)
4394		INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].chain, i);
4395
4396	if (inet_ehash_locks_alloc(&tcp_hashinfo))
4397		panic("TCP: failed to alloc ehash_locks");
4398	tcp_hashinfo.bhash =
4399		alloc_large_system_hash("TCP bind",
4400					sizeof(struct inet_bind_hashbucket),
4401					tcp_hashinfo.ehash_mask + 1,
4402					17, /* one slot per 128 KB of memory */
4403					0,
4404					&tcp_hashinfo.bhash_size,
4405					NULL,
4406					0,
4407					64 * 1024);
4408	tcp_hashinfo.bhash_size = 1U << tcp_hashinfo.bhash_size;
4409	for (i = 0; i < tcp_hashinfo.bhash_size; i++) {
4410		spin_lock_init(&tcp_hashinfo.bhash[i].lock);
4411		INIT_HLIST_HEAD(&tcp_hashinfo.bhash[i].chain);
4412	}
4413
4414
4415	cnt = tcp_hashinfo.ehash_mask + 1;
4416	sysctl_tcp_max_orphans = cnt / 2;
4417
4418	tcp_init_mem();
4419	/* Set per-socket limits to no more than 1/128 the pressure threshold */
4420	limit = nr_free_buffer_pages() << (PAGE_SHIFT - 7);
4421	max_wshare = min(4UL*1024*1024, limit);
4422	max_rshare = min(6UL*1024*1024, limit);
4423
4424	init_net.ipv4.sysctl_tcp_wmem[0] = SK_MEM_QUANTUM;
4425	init_net.ipv4.sysctl_tcp_wmem[1] = 16*1024;
4426	init_net.ipv4.sysctl_tcp_wmem[2] = max(64*1024, max_wshare);
4427
4428	init_net.ipv4.sysctl_tcp_rmem[0] = SK_MEM_QUANTUM;
4429	init_net.ipv4.sysctl_tcp_rmem[1] = 131072;
4430	init_net.ipv4.sysctl_tcp_rmem[2] = max(131072, max_rshare);
4431
4432	pr_info("Hash tables configured (established %u bind %u)\n",
4433		tcp_hashinfo.ehash_mask + 1, tcp_hashinfo.bhash_size);
4434
4435	tcp_v4_init();
4436	tcp_metrics_init();
4437	BUG_ON(tcp_register_congestion_control(&tcp_reno) != 0);
4438	tcp_tasklet_init();
4439	mptcp_init();
4440}
4441