1// SPDX-License-Identifier: GPL-2.0-or-later 2/* 3 * INET An implementation of the TCP/IP protocol suite for the LINUX 4 * operating system. INET is implemented using the BSD Socket 5 * interface as the means of communication with the user level. 6 * 7 * Implementation of the Transmission Control Protocol(TCP). 8 * 9 * Authors: Ross Biro 10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 11 * Mark Evans, <evansmp@uhura.aston.ac.uk> 12 * Corey Minyard <wf-rch!minyard@relay.EU.net> 13 * Florian La Roche, <flla@stud.uni-sb.de> 14 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu> 15 * Linus Torvalds, <torvalds@cs.helsinki.fi> 16 * Alan Cox, <gw4pts@gw4pts.ampr.org> 17 * Matthew Dillon, <dillon@apollo.west.oic.com> 18 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 19 * Jorge Cwik, <jorge@laser.satlink.net> 20 * 21 * Fixes: 22 * Alan Cox : Numerous verify_area() calls 23 * Alan Cox : Set the ACK bit on a reset 24 * Alan Cox : Stopped it crashing if it closed while 25 * sk->inuse=1 and was trying to connect 26 * (tcp_err()). 27 * Alan Cox : All icmp error handling was broken 28 * pointers passed where wrong and the 29 * socket was looked up backwards. Nobody 30 * tested any icmp error code obviously. 31 * Alan Cox : tcp_err() now handled properly. It 32 * wakes people on errors. poll 33 * behaves and the icmp error race 34 * has gone by moving it into sock.c 35 * Alan Cox : tcp_send_reset() fixed to work for 36 * everything not just packets for 37 * unknown sockets. 38 * Alan Cox : tcp option processing. 39 * Alan Cox : Reset tweaked (still not 100%) [Had 40 * syn rule wrong] 41 * Herp Rosmanith : More reset fixes 42 * Alan Cox : No longer acks invalid rst frames. 43 * Acking any kind of RST is right out. 44 * Alan Cox : Sets an ignore me flag on an rst 45 * receive otherwise odd bits of prattle 46 * escape still 47 * Alan Cox : Fixed another acking RST frame bug. 48 * Should stop LAN workplace lockups. 49 * Alan Cox : Some tidyups using the new skb list 50 * facilities 51 * Alan Cox : sk->keepopen now seems to work 52 * Alan Cox : Pulls options out correctly on accepts 53 * Alan Cox : Fixed assorted sk->rqueue->next errors 54 * Alan Cox : PSH doesn't end a TCP read. Switched a 55 * bit to skb ops. 56 * Alan Cox : Tidied tcp_data to avoid a potential 57 * nasty. 58 * Alan Cox : Added some better commenting, as the 59 * tcp is hard to follow 60 * Alan Cox : Removed incorrect check for 20 * psh 61 * Michael O'Reilly : ack < copied bug fix. 62 * Johannes Stille : Misc tcp fixes (not all in yet). 63 * Alan Cox : FIN with no memory -> CRASH 64 * Alan Cox : Added socket option proto entries. 65 * Also added awareness of them to accept. 66 * Alan Cox : Added TCP options (SOL_TCP) 67 * Alan Cox : Switched wakeup calls to callbacks, 68 * so the kernel can layer network 69 * sockets. 70 * Alan Cox : Use ip_tos/ip_ttl settings. 71 * Alan Cox : Handle FIN (more) properly (we hope). 72 * Alan Cox : RST frames sent on unsynchronised 73 * state ack error. 74 * Alan Cox : Put in missing check for SYN bit. 75 * Alan Cox : Added tcp_select_window() aka NET2E 76 * window non shrink trick. 77 * Alan Cox : Added a couple of small NET2E timer 78 * fixes 79 * Charles Hedrick : TCP fixes 80 * Toomas Tamm : TCP window fixes 81 * Alan Cox : Small URG fix to rlogin ^C ack fight 82 * Charles Hedrick : Rewrote most of it to actually work 83 * Linus : Rewrote tcp_read() and URG handling 84 * completely 85 * Gerhard Koerting: Fixed some missing timer handling 86 * Matthew Dillon : Reworked TCP machine states as per RFC 87 * Gerhard Koerting: PC/TCP workarounds 88 * Adam Caldwell : Assorted timer/timing errors 89 * Matthew Dillon : Fixed another RST bug 90 * Alan Cox : Move to kernel side addressing changes. 91 * Alan Cox : Beginning work on TCP fastpathing 92 * (not yet usable) 93 * Arnt Gulbrandsen: Turbocharged tcp_check() routine. 94 * Alan Cox : TCP fast path debugging 95 * Alan Cox : Window clamping 96 * Michael Riepe : Bug in tcp_check() 97 * Matt Dillon : More TCP improvements and RST bug fixes 98 * Matt Dillon : Yet more small nasties remove from the 99 * TCP code (Be very nice to this man if 100 * tcp finally works 100%) 8) 101 * Alan Cox : BSD accept semantics. 102 * Alan Cox : Reset on closedown bug. 103 * Peter De Schrijver : ENOTCONN check missing in tcp_sendto(). 104 * Michael Pall : Handle poll() after URG properly in 105 * all cases. 106 * Michael Pall : Undo the last fix in tcp_read_urg() 107 * (multi URG PUSH broke rlogin). 108 * Michael Pall : Fix the multi URG PUSH problem in 109 * tcp_readable(), poll() after URG 110 * works now. 111 * Michael Pall : recv(...,MSG_OOB) never blocks in the 112 * BSD api. 113 * Alan Cox : Changed the semantics of sk->socket to 114 * fix a race and a signal problem with 115 * accept() and async I/O. 116 * Alan Cox : Relaxed the rules on tcp_sendto(). 117 * Yury Shevchuk : Really fixed accept() blocking problem. 118 * Craig I. Hagan : Allow for BSD compatible TIME_WAIT for 119 * clients/servers which listen in on 120 * fixed ports. 121 * Alan Cox : Cleaned the above up and shrank it to 122 * a sensible code size. 123 * Alan Cox : Self connect lockup fix. 124 * Alan Cox : No connect to multicast. 125 * Ross Biro : Close unaccepted children on master 126 * socket close. 127 * Alan Cox : Reset tracing code. 128 * Alan Cox : Spurious resets on shutdown. 129 * Alan Cox : Giant 15 minute/60 second timer error 130 * Alan Cox : Small whoops in polling before an 131 * accept. 132 * Alan Cox : Kept the state trace facility since 133 * it's handy for debugging. 134 * Alan Cox : More reset handler fixes. 135 * Alan Cox : Started rewriting the code based on 136 * the RFC's for other useful protocol 137 * references see: Comer, KA9Q NOS, and 138 * for a reference on the difference 139 * between specifications and how BSD 140 * works see the 4.4lite source. 141 * A.N.Kuznetsov : Don't time wait on completion of tidy 142 * close. 143 * Linus Torvalds : Fin/Shutdown & copied_seq changes. 144 * Linus Torvalds : Fixed BSD port reuse to work first syn 145 * Alan Cox : Reimplemented timers as per the RFC 146 * and using multiple timers for sanity. 147 * Alan Cox : Small bug fixes, and a lot of new 148 * comments. 149 * Alan Cox : Fixed dual reader crash by locking 150 * the buffers (much like datagram.c) 151 * Alan Cox : Fixed stuck sockets in probe. A probe 152 * now gets fed up of retrying without 153 * (even a no space) answer. 154 * Alan Cox : Extracted closing code better 155 * Alan Cox : Fixed the closing state machine to 156 * resemble the RFC. 157 * Alan Cox : More 'per spec' fixes. 158 * Jorge Cwik : Even faster checksumming. 159 * Alan Cox : tcp_data() doesn't ack illegal PSH 160 * only frames. At least one pc tcp stack 161 * generates them. 162 * Alan Cox : Cache last socket. 163 * Alan Cox : Per route irtt. 164 * Matt Day : poll()->select() match BSD precisely on error 165 * Alan Cox : New buffers 166 * Marc Tamsky : Various sk->prot->retransmits and 167 * sk->retransmits misupdating fixed. 168 * Fixed tcp_write_timeout: stuck close, 169 * and TCP syn retries gets used now. 170 * Mark Yarvis : In tcp_read_wakeup(), don't send an 171 * ack if state is TCP_CLOSED. 172 * Alan Cox : Look up device on a retransmit - routes may 173 * change. Doesn't yet cope with MSS shrink right 174 * but it's a start! 175 * Marc Tamsky : Closing in closing fixes. 176 * Mike Shaver : RFC1122 verifications. 177 * Alan Cox : rcv_saddr errors. 178 * Alan Cox : Block double connect(). 179 * Alan Cox : Small hooks for enSKIP. 180 * Alexey Kuznetsov: Path MTU discovery. 181 * Alan Cox : Support soft errors. 182 * Alan Cox : Fix MTU discovery pathological case 183 * when the remote claims no mtu! 184 * Marc Tamsky : TCP_CLOSE fix. 185 * Colin (G3TNE) : Send a reset on syn ack replies in 186 * window but wrong (fixes NT lpd problems) 187 * Pedro Roque : Better TCP window handling, delayed ack. 188 * Joerg Reuter : No modification of locked buffers in 189 * tcp_do_retransmit() 190 * Eric Schenk : Changed receiver side silly window 191 * avoidance algorithm to BSD style 192 * algorithm. This doubles throughput 193 * against machines running Solaris, 194 * and seems to result in general 195 * improvement. 196 * Stefan Magdalinski : adjusted tcp_readable() to fix FIONREAD 197 * Willy Konynenberg : Transparent proxying support. 198 * Mike McLagan : Routing by source 199 * Keith Owens : Do proper merging with partial SKB's in 200 * tcp_do_sendmsg to avoid burstiness. 201 * Eric Schenk : Fix fast close down bug with 202 * shutdown() followed by close(). 203 * Andi Kleen : Make poll agree with SIGIO 204 * Salvatore Sanfilippo : Support SO_LINGER with linger == 1 and 205 * lingertime == 0 (RFC 793 ABORT Call) 206 * Hirokazu Takahashi : Use copy_from_user() instead of 207 * csum_and_copy_from_user() if possible. 208 * 209 * Description of States: 210 * 211 * TCP_SYN_SENT sent a connection request, waiting for ack 212 * 213 * TCP_SYN_RECV received a connection request, sent ack, 214 * waiting for final ack in three-way handshake. 215 * 216 * TCP_ESTABLISHED connection established 217 * 218 * TCP_FIN_WAIT1 our side has shutdown, waiting to complete 219 * transmission of remaining buffered data 220 * 221 * TCP_FIN_WAIT2 all buffered data sent, waiting for remote 222 * to shutdown 223 * 224 * TCP_CLOSING both sides have shutdown but we still have 225 * data we have to finish sending 226 * 227 * TCP_TIME_WAIT timeout to catch resent junk before entering 228 * closed, can only be entered from FIN_WAIT2 229 * or CLOSING. Required because the other end 230 * may not have gotten our last ACK causing it 231 * to retransmit the data packet (which we ignore) 232 * 233 * TCP_CLOSE_WAIT remote side has shutdown and is waiting for 234 * us to finish writing our data and to shutdown 235 * (we have to close() to move on to LAST_ACK) 236 * 237 * TCP_LAST_ACK out side has shutdown after remote has 238 * shutdown. There may still be data in our 239 * buffer that we have to finish sending 240 * 241 * TCP_CLOSE socket is finished 242 */ 243 244#define pr_fmt(fmt) "TCP: " fmt 245 246#include <crypto/hash.h> 247#include <linux/kernel.h> 248#include <linux/module.h> 249#include <linux/types.h> 250#include <linux/fcntl.h> 251#include <linux/poll.h> 252#include <linux/inet_diag.h> 253#include <linux/init.h> 254#include <linux/fs.h> 255#include <linux/skbuff.h> 256#include <linux/scatterlist.h> 257#include <linux/splice.h> 258#include <linux/net.h> 259#include <linux/socket.h> 260#include <linux/random.h> 261#include <linux/memblock.h> 262#include <linux/highmem.h> 263#include <linux/swap.h> 264#include <linux/cache.h> 265#include <linux/err.h> 266#include <linux/time.h> 267#include <linux/slab.h> 268#include <linux/errqueue.h> 269#include <linux/static_key.h> 270 271#include <net/icmp.h> 272#include <net/inet_common.h> 273#include <net/tcp.h> 274#include <net/mptcp.h> 275#include <net/xfrm.h> 276#include <net/ip.h> 277#include <net/sock.h> 278 279#include <linux/uaccess.h> 280#include <asm/ioctls.h> 281#include <net/busy_poll.h> 282#ifdef CONFIG_LOWPOWER_PROTOCOL 283#include <net/lowpower_protocol.h> 284#endif /* CONFIG_LOWPOWER_PROTOCOL */ 285#if defined(CONFIG_TCP_NATA_URC) || defined(CONFIG_TCP_NATA_STL) 286#include <net/nata.h> 287#endif 288 289DEFINE_PER_CPU(unsigned int, tcp_orphan_count); 290EXPORT_PER_CPU_SYMBOL_GPL(tcp_orphan_count); 291 292long sysctl_tcp_mem[3] __read_mostly; 293EXPORT_SYMBOL(sysctl_tcp_mem); 294 295atomic_long_t tcp_memory_allocated; /* Current allocated memory. */ 296EXPORT_SYMBOL(tcp_memory_allocated); 297 298#if IS_ENABLED(CONFIG_SMC) 299DEFINE_STATIC_KEY_FALSE(tcp_have_smc); 300EXPORT_SYMBOL(tcp_have_smc); 301#endif 302 303/* 304 * Current number of TCP sockets. 305 */ 306struct percpu_counter tcp_sockets_allocated; 307EXPORT_SYMBOL(tcp_sockets_allocated); 308 309/* 310 * TCP splice context 311 */ 312struct tcp_splice_state { 313 struct pipe_inode_info *pipe; 314 size_t len; 315 unsigned int flags; 316}; 317 318/* 319 * Pressure flag: try to collapse. 320 * Technical note: it is used by multiple contexts non atomically. 321 * All the __sk_mem_schedule() is of this nature: accounting 322 * is strict, actions are advisory and have some latency. 323 */ 324unsigned long tcp_memory_pressure __read_mostly; 325EXPORT_SYMBOL_GPL(tcp_memory_pressure); 326 327DEFINE_STATIC_KEY_FALSE(tcp_rx_skb_cache_key); 328EXPORT_SYMBOL(tcp_rx_skb_cache_key); 329 330DEFINE_STATIC_KEY_FALSE(tcp_tx_skb_cache_key); 331 332void tcp_enter_memory_pressure(struct sock *sk) 333{ 334 unsigned long val; 335 336 if (READ_ONCE(tcp_memory_pressure)) 337 return; 338 val = jiffies; 339 340 if (!val) 341 val--; 342 if (!cmpxchg(&tcp_memory_pressure, 0, val)) 343 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURES); 344} 345EXPORT_SYMBOL_GPL(tcp_enter_memory_pressure); 346 347void tcp_leave_memory_pressure(struct sock *sk) 348{ 349 unsigned long val; 350 351 if (!READ_ONCE(tcp_memory_pressure)) 352 return; 353 val = xchg(&tcp_memory_pressure, 0); 354 if (val) 355 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURESCHRONO, 356 jiffies_to_msecs(jiffies - val)); 357} 358EXPORT_SYMBOL_GPL(tcp_leave_memory_pressure); 359 360/* Convert seconds to retransmits based on initial and max timeout */ 361static u8 secs_to_retrans(int seconds, int timeout, int rto_max) 362{ 363 u8 res = 0; 364 365 if (seconds > 0) { 366 int period = timeout; 367 368 res = 1; 369 while (seconds > period && res < 255) { 370 res++; 371 timeout <<= 1; 372 if (timeout > rto_max) 373 timeout = rto_max; 374 period += timeout; 375 } 376 } 377 return res; 378} 379 380/* Convert retransmits to seconds based on initial and max timeout */ 381static int retrans_to_secs(u8 retrans, int timeout, int rto_max) 382{ 383 int period = 0; 384 385 if (retrans > 0) { 386 period = timeout; 387 while (--retrans) { 388 timeout <<= 1; 389 if (timeout > rto_max) 390 timeout = rto_max; 391 period += timeout; 392 } 393 } 394 return period; 395} 396 397static u64 tcp_compute_delivery_rate(const struct tcp_sock *tp) 398{ 399 u32 rate = READ_ONCE(tp->rate_delivered); 400 u32 intv = READ_ONCE(tp->rate_interval_us); 401 u64 rate64 = 0; 402 403 if (rate && intv) { 404 rate64 = (u64)rate * tp->mss_cache * USEC_PER_SEC; 405 do_div(rate64, intv); 406 } 407 return rate64; 408} 409 410/* Address-family independent initialization for a tcp_sock. 411 * 412 * NOTE: A lot of things set to zero explicitly by call to 413 * sk_alloc() so need not be done here. 414 */ 415void tcp_init_sock(struct sock *sk) 416{ 417 struct inet_connection_sock *icsk = inet_csk(sk); 418 struct tcp_sock *tp = tcp_sk(sk); 419 420 tp->out_of_order_queue = RB_ROOT; 421 sk->tcp_rtx_queue = RB_ROOT; 422 tcp_init_xmit_timers(sk); 423 INIT_LIST_HEAD(&tp->tsq_node); 424 INIT_LIST_HEAD(&tp->tsorted_sent_queue); 425 426 icsk->icsk_rto = TCP_TIMEOUT_INIT; 427 icsk->icsk_rto_min = TCP_RTO_MIN; 428 icsk->icsk_delack_max = TCP_DELACK_MAX; 429 tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT); 430 minmax_reset(&tp->rtt_min, tcp_jiffies32, ~0U); 431 432 /* So many TCP implementations out there (incorrectly) count the 433 * initial SYN frame in their delayed-ACK and congestion control 434 * algorithms that we must have the following bandaid to talk 435 * efficiently to them. -DaveM 436 */ 437 tp->snd_cwnd = TCP_INIT_CWND; 438 439 /* There's a bubble in the pipe until at least the first ACK. */ 440 tp->app_limited = ~0U; 441 tp->rate_app_limited = 1; 442 443 /* See draft-stevens-tcpca-spec-01 for discussion of the 444 * initialization of these values. 445 */ 446 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH; 447 tp->snd_cwnd_clamp = ~0; 448 tp->mss_cache = TCP_MSS_DEFAULT; 449 450 tp->reordering = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_reordering); 451 tcp_assign_congestion_control(sk); 452 453 tp->tsoffset = 0; 454 tp->rack.reo_wnd_steps = 1; 455 456 sk->sk_write_space = sk_stream_write_space; 457 sock_set_flag(sk, SOCK_USE_WRITE_QUEUE); 458 459 icsk->icsk_sync_mss = tcp_sync_mss; 460 461 WRITE_ONCE(sk->sk_sndbuf, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_wmem[1])); 462 WRITE_ONCE(sk->sk_rcvbuf, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[1])); 463 464 sk_sockets_allocated_inc(sk); 465 sk->sk_route_forced_caps = NETIF_F_GSO; 466#if defined(CONFIG_TCP_NATA_URC) || defined(CONFIG_TCP_NATA_STL) 467 icsk->nata_retries_enabled = 0; 468 icsk->nata_retries_type = NATA_NA; 469 icsk->nata_syn_rto = TCP_TIMEOUT_INIT; 470 icsk->nata_data_rto = TCP_TIMEOUT_INIT; 471 icsk->nata_data_retries = 0; 472#endif 473} 474EXPORT_SYMBOL(tcp_init_sock); 475 476static void tcp_tx_timestamp(struct sock *sk, u16 tsflags) 477{ 478 struct sk_buff *skb = tcp_write_queue_tail(sk); 479 480 if (tsflags && skb) { 481 struct skb_shared_info *shinfo = skb_shinfo(skb); 482 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb); 483 484 sock_tx_timestamp(sk, tsflags, &shinfo->tx_flags); 485 if (tsflags & SOF_TIMESTAMPING_TX_ACK) 486 tcb->txstamp_ack = 1; 487 if (tsflags & SOF_TIMESTAMPING_TX_RECORD_MASK) 488 shinfo->tskey = TCP_SKB_CB(skb)->seq + skb->len - 1; 489 } 490} 491 492static inline bool tcp_stream_is_readable(const struct tcp_sock *tp, 493 int target, struct sock *sk) 494{ 495 int avail = READ_ONCE(tp->rcv_nxt) - READ_ONCE(tp->copied_seq); 496 497 if (avail > 0) { 498 if (avail >= target) 499 return true; 500 if (tcp_rmem_pressure(sk)) 501 return true; 502 if (tcp_receive_window(tp) <= inet_csk(sk)->icsk_ack.rcv_mss) 503 return true; 504 } 505 if (sk->sk_prot->stream_memory_read) 506 return sk->sk_prot->stream_memory_read(sk); 507 return false; 508} 509 510/* 511 * Wait for a TCP event. 512 * 513 * Note that we don't need to lock the socket, as the upper poll layers 514 * take care of normal races (between the test and the event) and we don't 515 * go look at any of the socket buffers directly. 516 */ 517__poll_t tcp_poll(struct file *file, struct socket *sock, poll_table *wait) 518{ 519 __poll_t mask; 520 struct sock *sk = sock->sk; 521 const struct tcp_sock *tp = tcp_sk(sk); 522 u8 shutdown; 523 int state; 524 525 sock_poll_wait(file, sock, wait); 526 527 state = inet_sk_state_load(sk); 528 if (state == TCP_LISTEN) 529 return inet_csk_listen_poll(sk); 530 531 /* Socket is not locked. We are protected from async events 532 * by poll logic and correct handling of state changes 533 * made by other threads is impossible in any case. 534 */ 535 536 mask = 0; 537 538 /* 539 * EPOLLHUP is certainly not done right. But poll() doesn't 540 * have a notion of HUP in just one direction, and for a 541 * socket the read side is more interesting. 542 * 543 * Some poll() documentation says that EPOLLHUP is incompatible 544 * with the EPOLLOUT/POLLWR flags, so somebody should check this 545 * all. But careful, it tends to be safer to return too many 546 * bits than too few, and you can easily break real applications 547 * if you don't tell them that something has hung up! 548 * 549 * Check-me. 550 * 551 * Check number 1. EPOLLHUP is _UNMASKABLE_ event (see UNIX98 and 552 * our fs/select.c). It means that after we received EOF, 553 * poll always returns immediately, making impossible poll() on write() 554 * in state CLOSE_WAIT. One solution is evident --- to set EPOLLHUP 555 * if and only if shutdown has been made in both directions. 556 * Actually, it is interesting to look how Solaris and DUX 557 * solve this dilemma. I would prefer, if EPOLLHUP were maskable, 558 * then we could set it on SND_SHUTDOWN. BTW examples given 559 * in Stevens' books assume exactly this behaviour, it explains 560 * why EPOLLHUP is incompatible with EPOLLOUT. --ANK 561 * 562 * NOTE. Check for TCP_CLOSE is added. The goal is to prevent 563 * blocking on fresh not-connected or disconnected socket. --ANK 564 */ 565 shutdown = READ_ONCE(sk->sk_shutdown); 566 if (shutdown == SHUTDOWN_MASK || state == TCP_CLOSE) 567 mask |= EPOLLHUP; 568 if (shutdown & RCV_SHUTDOWN) 569 mask |= EPOLLIN | EPOLLRDNORM | EPOLLRDHUP; 570 571 /* Connected or passive Fast Open socket? */ 572 if (state != TCP_SYN_SENT && 573 (state != TCP_SYN_RECV || rcu_access_pointer(tp->fastopen_rsk))) { 574 int target = sock_rcvlowat(sk, 0, INT_MAX); 575 576 if (READ_ONCE(tp->urg_seq) == READ_ONCE(tp->copied_seq) && 577 !sock_flag(sk, SOCK_URGINLINE) && 578 tp->urg_data) 579 target++; 580 581 if (tcp_stream_is_readable(tp, target, sk)) 582 mask |= EPOLLIN | EPOLLRDNORM; 583 584 if (!(shutdown & SEND_SHUTDOWN)) { 585 if (__sk_stream_is_writeable(sk, 1)) { 586 mask |= EPOLLOUT | EPOLLWRNORM; 587 } else { /* send SIGIO later */ 588 sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk); 589 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 590 591 /* Race breaker. If space is freed after 592 * wspace test but before the flags are set, 593 * IO signal will be lost. Memory barrier 594 * pairs with the input side. 595 */ 596 smp_mb__after_atomic(); 597 if (__sk_stream_is_writeable(sk, 1)) 598 mask |= EPOLLOUT | EPOLLWRNORM; 599 } 600 } else 601 mask |= EPOLLOUT | EPOLLWRNORM; 602 603 if (tp->urg_data & TCP_URG_VALID) 604 mask |= EPOLLPRI; 605 } else if (state == TCP_SYN_SENT && inet_sk(sk)->defer_connect) { 606 /* Active TCP fastopen socket with defer_connect 607 * Return EPOLLOUT so application can call write() 608 * in order for kernel to generate SYN+data 609 */ 610 mask |= EPOLLOUT | EPOLLWRNORM; 611 } 612 /* This barrier is coupled with smp_wmb() in tcp_reset() */ 613 smp_rmb(); 614 if (sk->sk_err || !skb_queue_empty_lockless(&sk->sk_error_queue)) 615 mask |= EPOLLERR; 616 617 return mask; 618} 619EXPORT_SYMBOL(tcp_poll); 620 621int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg) 622{ 623 struct tcp_sock *tp = tcp_sk(sk); 624 int answ; 625 bool slow; 626 627 switch (cmd) { 628 case SIOCINQ: 629 if (sk->sk_state == TCP_LISTEN) 630 return -EINVAL; 631 632 slow = lock_sock_fast(sk); 633 answ = tcp_inq(sk); 634 unlock_sock_fast(sk, slow); 635 break; 636 case SIOCATMARK: 637 answ = tp->urg_data && 638 READ_ONCE(tp->urg_seq) == READ_ONCE(tp->copied_seq); 639 break; 640 case SIOCOUTQ: 641 if (sk->sk_state == TCP_LISTEN) 642 return -EINVAL; 643 644 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) 645 answ = 0; 646 else 647 answ = READ_ONCE(tp->write_seq) - tp->snd_una; 648 break; 649 case SIOCOUTQNSD: 650 if (sk->sk_state == TCP_LISTEN) 651 return -EINVAL; 652 653 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) 654 answ = 0; 655 else 656 answ = READ_ONCE(tp->write_seq) - 657 READ_ONCE(tp->snd_nxt); 658 break; 659 default: 660 return -ENOIOCTLCMD; 661 } 662 663 return put_user(answ, (int __user *)arg); 664} 665EXPORT_SYMBOL(tcp_ioctl); 666 667static inline void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb) 668{ 669 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH; 670 tp->pushed_seq = tp->write_seq; 671} 672 673static inline bool forced_push(const struct tcp_sock *tp) 674{ 675 return after(tp->write_seq, tp->pushed_seq + (tp->max_window >> 1)); 676} 677 678static void skb_entail(struct sock *sk, struct sk_buff *skb) 679{ 680 struct tcp_sock *tp = tcp_sk(sk); 681 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb); 682 683 skb->csum = 0; 684 tcb->seq = tcb->end_seq = tp->write_seq; 685 tcb->tcp_flags = TCPHDR_ACK; 686 tcb->sacked = 0; 687 __skb_header_release(skb); 688 tcp_add_write_queue_tail(sk, skb); 689 sk_wmem_queued_add(sk, skb->truesize); 690 sk_mem_charge(sk, skb->truesize); 691 if (tp->nonagle & TCP_NAGLE_PUSH) 692 tp->nonagle &= ~TCP_NAGLE_PUSH; 693 694 tcp_slow_start_after_idle_check(sk); 695} 696 697static inline void tcp_mark_urg(struct tcp_sock *tp, int flags) 698{ 699 if (flags & MSG_OOB) 700 tp->snd_up = tp->write_seq; 701} 702 703/* If a not yet filled skb is pushed, do not send it if 704 * we have data packets in Qdisc or NIC queues : 705 * Because TX completion will happen shortly, it gives a chance 706 * to coalesce future sendmsg() payload into this skb, without 707 * need for a timer, and with no latency trade off. 708 * As packets containing data payload have a bigger truesize 709 * than pure acks (dataless) packets, the last checks prevent 710 * autocorking if we only have an ACK in Qdisc/NIC queues, 711 * or if TX completion was delayed after we processed ACK packet. 712 */ 713static bool tcp_should_autocork(struct sock *sk, struct sk_buff *skb, 714 int size_goal) 715{ 716 return skb->len < size_goal && 717 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_autocorking) && 718 !tcp_rtx_queue_empty(sk) && 719 refcount_read(&sk->sk_wmem_alloc) > skb->truesize; 720} 721 722void tcp_push(struct sock *sk, int flags, int mss_now, 723 int nonagle, int size_goal) 724{ 725 struct tcp_sock *tp = tcp_sk(sk); 726 struct sk_buff *skb; 727 728 skb = tcp_write_queue_tail(sk); 729 if (!skb) 730 return; 731 if (!(flags & MSG_MORE) || forced_push(tp)) 732 tcp_mark_push(tp, skb); 733 734 tcp_mark_urg(tp, flags); 735 736 if (tcp_should_autocork(sk, skb, size_goal)) { 737 738 /* avoid atomic op if TSQ_THROTTLED bit is already set */ 739 if (!test_bit(TSQ_THROTTLED, &sk->sk_tsq_flags)) { 740 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAUTOCORKING); 741 set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags); 742 smp_mb__after_atomic(); 743 } 744 /* It is possible TX completion already happened 745 * before we set TSQ_THROTTLED. 746 */ 747 if (refcount_read(&sk->sk_wmem_alloc) > skb->truesize) 748 return; 749 } 750 751 if (flags & MSG_MORE) 752 nonagle = TCP_NAGLE_CORK; 753 754 __tcp_push_pending_frames(sk, mss_now, nonagle); 755} 756 757static int tcp_splice_data_recv(read_descriptor_t *rd_desc, struct sk_buff *skb, 758 unsigned int offset, size_t len) 759{ 760 struct tcp_splice_state *tss = rd_desc->arg.data; 761 int ret; 762 763 ret = skb_splice_bits(skb, skb->sk, offset, tss->pipe, 764 min(rd_desc->count, len), tss->flags); 765 if (ret > 0) 766 rd_desc->count -= ret; 767 return ret; 768} 769 770static int __tcp_splice_read(struct sock *sk, struct tcp_splice_state *tss) 771{ 772 /* Store TCP splice context information in read_descriptor_t. */ 773 read_descriptor_t rd_desc = { 774 .arg.data = tss, 775 .count = tss->len, 776 }; 777 778 return tcp_read_sock(sk, &rd_desc, tcp_splice_data_recv); 779} 780 781/** 782 * tcp_splice_read - splice data from TCP socket to a pipe 783 * @sock: socket to splice from 784 * @ppos: position (not valid) 785 * @pipe: pipe to splice to 786 * @len: number of bytes to splice 787 * @flags: splice modifier flags 788 * 789 * Description: 790 * Will read pages from given socket and fill them into a pipe. 791 * 792 **/ 793ssize_t tcp_splice_read(struct socket *sock, loff_t *ppos, 794 struct pipe_inode_info *pipe, size_t len, 795 unsigned int flags) 796{ 797 struct sock *sk = sock->sk; 798 struct tcp_splice_state tss = { 799 .pipe = pipe, 800 .len = len, 801 .flags = flags, 802 }; 803 long timeo; 804 ssize_t spliced; 805 int ret; 806 807 sock_rps_record_flow(sk); 808 /* 809 * We can't seek on a socket input 810 */ 811 if (unlikely(*ppos)) 812 return -ESPIPE; 813 814 ret = spliced = 0; 815 816 lock_sock(sk); 817 818 timeo = sock_rcvtimeo(sk, sock->file->f_flags & O_NONBLOCK); 819 while (tss.len) { 820 ret = __tcp_splice_read(sk, &tss); 821 if (ret < 0) 822 break; 823 else if (!ret) { 824 if (spliced) 825 break; 826 if (sock_flag(sk, SOCK_DONE)) 827 break; 828 if (sk->sk_err) { 829 ret = sock_error(sk); 830 break; 831 } 832 if (sk->sk_shutdown & RCV_SHUTDOWN) 833 break; 834 if (sk->sk_state == TCP_CLOSE) { 835 /* 836 * This occurs when user tries to read 837 * from never connected socket. 838 */ 839 ret = -ENOTCONN; 840 break; 841 } 842 if (!timeo) { 843 ret = -EAGAIN; 844 break; 845 } 846 /* if __tcp_splice_read() got nothing while we have 847 * an skb in receive queue, we do not want to loop. 848 * This might happen with URG data. 849 */ 850 if (!skb_queue_empty(&sk->sk_receive_queue)) 851 break; 852 sk_wait_data(sk, &timeo, NULL); 853 if (signal_pending(current)) { 854 ret = sock_intr_errno(timeo); 855 break; 856 } 857 continue; 858 } 859 tss.len -= ret; 860 spliced += ret; 861 862 if (!timeo) 863 break; 864 release_sock(sk); 865 lock_sock(sk); 866 867 if (sk->sk_err || sk->sk_state == TCP_CLOSE || 868 (sk->sk_shutdown & RCV_SHUTDOWN) || 869 signal_pending(current)) 870 break; 871 } 872 873 release_sock(sk); 874 875 if (spliced) 876 return spliced; 877 878 return ret; 879} 880EXPORT_SYMBOL(tcp_splice_read); 881 882struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp, 883 bool force_schedule) 884{ 885 struct sk_buff *skb; 886 887 if (likely(!size)) { 888 skb = sk->sk_tx_skb_cache; 889 if (skb) { 890 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb)); 891 sk->sk_tx_skb_cache = NULL; 892 pskb_trim(skb, 0); 893 INIT_LIST_HEAD(&skb->tcp_tsorted_anchor); 894 skb_shinfo(skb)->tx_flags = 0; 895 memset(TCP_SKB_CB(skb), 0, sizeof(struct tcp_skb_cb)); 896 return skb; 897 } 898 } 899 /* The TCP header must be at least 32-bit aligned. */ 900 size = ALIGN(size, 4); 901 902 if (unlikely(tcp_under_memory_pressure(sk))) 903 sk_mem_reclaim_partial(sk); 904 905 skb = alloc_skb_fclone(size + sk->sk_prot->max_header, gfp); 906 if (likely(skb)) { 907 bool mem_scheduled; 908 909 if (force_schedule) { 910 mem_scheduled = true; 911 sk_forced_mem_schedule(sk, skb->truesize); 912 } else { 913 mem_scheduled = sk_wmem_schedule(sk, skb->truesize); 914 } 915 if (likely(mem_scheduled)) { 916 skb_reserve(skb, sk->sk_prot->max_header); 917 /* 918 * Make sure that we have exactly size bytes 919 * available to the caller, no more, no less. 920 */ 921 skb->reserved_tailroom = skb->end - skb->tail - size; 922 INIT_LIST_HEAD(&skb->tcp_tsorted_anchor); 923 return skb; 924 } 925 __kfree_skb(skb); 926 } else { 927 sk->sk_prot->enter_memory_pressure(sk); 928 sk_stream_moderate_sndbuf(sk); 929 } 930 return NULL; 931} 932 933static unsigned int tcp_xmit_size_goal(struct sock *sk, u32 mss_now, 934 int large_allowed) 935{ 936 struct tcp_sock *tp = tcp_sk(sk); 937 u32 new_size_goal, size_goal; 938 939 if (!large_allowed) 940 return mss_now; 941 942 /* Note : tcp_tso_autosize() will eventually split this later */ 943 new_size_goal = sk->sk_gso_max_size - 1 - MAX_TCP_HEADER; 944 new_size_goal = tcp_bound_to_half_wnd(tp, new_size_goal); 945 946 /* We try hard to avoid divides here */ 947 size_goal = tp->gso_segs * mss_now; 948 if (unlikely(new_size_goal < size_goal || 949 new_size_goal >= size_goal + mss_now)) { 950 tp->gso_segs = min_t(u16, new_size_goal / mss_now, 951 sk->sk_gso_max_segs); 952 size_goal = tp->gso_segs * mss_now; 953 } 954 955 return max(size_goal, mss_now); 956} 957 958int tcp_send_mss(struct sock *sk, int *size_goal, int flags) 959{ 960 int mss_now; 961 962 mss_now = tcp_current_mss(sk); 963 *size_goal = tcp_xmit_size_goal(sk, mss_now, !(flags & MSG_OOB)); 964 965 return mss_now; 966} 967 968/* In some cases, both sendpage() and sendmsg() could have added 969 * an skb to the write queue, but failed adding payload on it. 970 * We need to remove it to consume less memory, but more 971 * importantly be able to generate EPOLLOUT for Edge Trigger epoll() 972 * users. 973 */ 974static void tcp_remove_empty_skb(struct sock *sk, struct sk_buff *skb) 975{ 976 if (skb && TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) { 977 tcp_unlink_write_queue(skb, sk); 978 if (tcp_write_queue_empty(sk)) 979 tcp_chrono_stop(sk, TCP_CHRONO_BUSY); 980 sk_wmem_free_skb(sk, skb); 981 } 982} 983 984ssize_t do_tcp_sendpages(struct sock *sk, struct page *page, int offset, 985 size_t size, int flags) 986{ 987 struct tcp_sock *tp = tcp_sk(sk); 988 int mss_now, size_goal; 989 int err; 990 ssize_t copied; 991 long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT); 992 993 if (IS_ENABLED(CONFIG_DEBUG_VM) && 994 WARN_ONCE(!sendpage_ok(page), 995 "page must not be a Slab one and have page_count > 0")) 996 return -EINVAL; 997 998 /* Wait for a connection to finish. One exception is TCP Fast Open 999 * (passive side) where data is allowed to be sent before a connection 1000 * is fully established. 1001 */ 1002 if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) && 1003 !tcp_passive_fastopen(sk)) { 1004 err = sk_stream_wait_connect(sk, &timeo); 1005 if (err != 0) 1006 goto out_err; 1007 } 1008 1009 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk); 1010 1011 mss_now = tcp_send_mss(sk, &size_goal, flags); 1012 copied = 0; 1013 1014 err = -EPIPE; 1015 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN)) 1016 goto out_err; 1017 1018 while (size > 0) { 1019 struct sk_buff *skb = tcp_write_queue_tail(sk); 1020 int copy, i; 1021 bool can_coalesce; 1022 1023 if (!skb || (copy = size_goal - skb->len) <= 0 || 1024 !tcp_skb_can_collapse_to(skb)) { 1025new_segment: 1026 if (!sk_stream_memory_free(sk)) 1027 goto wait_for_space; 1028 1029 skb = sk_stream_alloc_skb(sk, 0, sk->sk_allocation, 1030 tcp_rtx_and_write_queues_empty(sk)); 1031 if (!skb) 1032 goto wait_for_space; 1033 1034#ifdef CONFIG_TLS_DEVICE 1035 skb->decrypted = !!(flags & MSG_SENDPAGE_DECRYPTED); 1036#endif 1037 skb_entail(sk, skb); 1038 copy = size_goal; 1039 } 1040 1041 if (copy > size) 1042 copy = size; 1043 1044 i = skb_shinfo(skb)->nr_frags; 1045 can_coalesce = skb_can_coalesce(skb, i, page, offset); 1046 if (!can_coalesce && i >= sysctl_max_skb_frags) { 1047 tcp_mark_push(tp, skb); 1048 goto new_segment; 1049 } 1050 if (!sk_wmem_schedule(sk, copy)) 1051 goto wait_for_space; 1052 1053 if (can_coalesce) { 1054 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy); 1055 } else { 1056 get_page(page); 1057 skb_fill_page_desc(skb, i, page, offset, copy); 1058 } 1059 1060 if (!(flags & MSG_NO_SHARED_FRAGS)) 1061 skb_shinfo(skb)->tx_flags |= SKBTX_SHARED_FRAG; 1062 1063 skb->len += copy; 1064 skb->data_len += copy; 1065 skb->truesize += copy; 1066 sk_wmem_queued_add(sk, copy); 1067 sk_mem_charge(sk, copy); 1068 skb->ip_summed = CHECKSUM_PARTIAL; 1069 WRITE_ONCE(tp->write_seq, tp->write_seq + copy); 1070 TCP_SKB_CB(skb)->end_seq += copy; 1071 tcp_skb_pcount_set(skb, 0); 1072 1073 if (!copied) 1074 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH; 1075 1076 copied += copy; 1077 offset += copy; 1078 size -= copy; 1079 if (!size) 1080 goto out; 1081 1082 if (skb->len < size_goal || (flags & MSG_OOB)) 1083 continue; 1084 1085 if (forced_push(tp)) { 1086 tcp_mark_push(tp, skb); 1087 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH); 1088 } else if (skb == tcp_send_head(sk)) 1089 tcp_push_one(sk, mss_now); 1090 continue; 1091 1092wait_for_space: 1093 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 1094 tcp_push(sk, flags & ~MSG_MORE, mss_now, 1095 TCP_NAGLE_PUSH, size_goal); 1096 1097 err = sk_stream_wait_memory(sk, &timeo); 1098 if (err != 0) 1099 goto do_error; 1100 1101 mss_now = tcp_send_mss(sk, &size_goal, flags); 1102 } 1103 1104out: 1105 if (copied) { 1106 tcp_tx_timestamp(sk, sk->sk_tsflags); 1107 if (!(flags & MSG_SENDPAGE_NOTLAST)) 1108 tcp_push(sk, flags, mss_now, tp->nonagle, size_goal); 1109 } 1110 return copied; 1111 1112do_error: 1113 tcp_remove_empty_skb(sk, tcp_write_queue_tail(sk)); 1114 if (copied) 1115 goto out; 1116out_err: 1117 /* make sure we wake any epoll edge trigger waiter */ 1118 if (unlikely(tcp_rtx_and_write_queues_empty(sk) && err == -EAGAIN)) { 1119 sk->sk_write_space(sk); 1120 tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED); 1121 } 1122 return sk_stream_error(sk, flags, err); 1123} 1124EXPORT_SYMBOL_GPL(do_tcp_sendpages); 1125 1126int tcp_sendpage_locked(struct sock *sk, struct page *page, int offset, 1127 size_t size, int flags) 1128{ 1129 if (!(sk->sk_route_caps & NETIF_F_SG)) 1130 return sock_no_sendpage_locked(sk, page, offset, size, flags); 1131 1132 tcp_rate_check_app_limited(sk); /* is sending application-limited? */ 1133 1134 return do_tcp_sendpages(sk, page, offset, size, flags); 1135} 1136EXPORT_SYMBOL_GPL(tcp_sendpage_locked); 1137 1138int tcp_sendpage(struct sock *sk, struct page *page, int offset, 1139 size_t size, int flags) 1140{ 1141 int ret; 1142 1143 lock_sock(sk); 1144 ret = tcp_sendpage_locked(sk, page, offset, size, flags); 1145 release_sock(sk); 1146 1147 return ret; 1148} 1149EXPORT_SYMBOL(tcp_sendpage); 1150 1151void tcp_free_fastopen_req(struct tcp_sock *tp) 1152{ 1153 if (tp->fastopen_req) { 1154 kfree(tp->fastopen_req); 1155 tp->fastopen_req = NULL; 1156 } 1157} 1158 1159static int tcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg, 1160 int *copied, size_t size, 1161 struct ubuf_info *uarg) 1162{ 1163 struct tcp_sock *tp = tcp_sk(sk); 1164 struct inet_sock *inet = inet_sk(sk); 1165 struct sockaddr *uaddr = msg->msg_name; 1166 int err, flags; 1167 1168 if (!(READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_fastopen) & 1169 TFO_CLIENT_ENABLE) || 1170 (uaddr && msg->msg_namelen >= sizeof(uaddr->sa_family) && 1171 uaddr->sa_family == AF_UNSPEC)) 1172 return -EOPNOTSUPP; 1173 if (tp->fastopen_req) 1174 return -EALREADY; /* Another Fast Open is in progress */ 1175 1176 tp->fastopen_req = kzalloc(sizeof(struct tcp_fastopen_request), 1177 sk->sk_allocation); 1178 if (unlikely(!tp->fastopen_req)) 1179 return -ENOBUFS; 1180 tp->fastopen_req->data = msg; 1181 tp->fastopen_req->size = size; 1182 tp->fastopen_req->uarg = uarg; 1183 1184 if (inet->defer_connect) { 1185 err = tcp_connect(sk); 1186 /* Same failure procedure as in tcp_v4/6_connect */ 1187 if (err) { 1188 tcp_set_state(sk, TCP_CLOSE); 1189 inet->inet_dport = 0; 1190 sk->sk_route_caps = 0; 1191 } 1192 } 1193 flags = (msg->msg_flags & MSG_DONTWAIT) ? O_NONBLOCK : 0; 1194 err = __inet_stream_connect(sk->sk_socket, uaddr, 1195 msg->msg_namelen, flags, 1); 1196 /* fastopen_req could already be freed in __inet_stream_connect 1197 * if the connection times out or gets rst 1198 */ 1199 if (tp->fastopen_req) { 1200 *copied = tp->fastopen_req->copied; 1201 tcp_free_fastopen_req(tp); 1202 inet->defer_connect = 0; 1203 } 1204 return err; 1205} 1206 1207int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size) 1208{ 1209 struct tcp_sock *tp = tcp_sk(sk); 1210 struct ubuf_info *uarg = NULL; 1211 struct sk_buff *skb; 1212 struct sockcm_cookie sockc; 1213 int flags, err, copied = 0; 1214 int mss_now = 0, size_goal, copied_syn = 0; 1215 int process_backlog = 0; 1216 bool zc = false; 1217 long timeo; 1218 1219 flags = msg->msg_flags; 1220 1221 if (flags & MSG_ZEROCOPY && size && sock_flag(sk, SOCK_ZEROCOPY)) { 1222 skb = tcp_write_queue_tail(sk); 1223 uarg = sock_zerocopy_realloc(sk, size, skb_zcopy(skb)); 1224 if (!uarg) { 1225 err = -ENOBUFS; 1226 goto out_err; 1227 } 1228 1229 zc = sk->sk_route_caps & NETIF_F_SG; 1230 if (!zc) 1231 uarg->zerocopy = 0; 1232 } 1233 1234 if (unlikely(flags & MSG_FASTOPEN || inet_sk(sk)->defer_connect) && 1235 !tp->repair) { 1236 err = tcp_sendmsg_fastopen(sk, msg, &copied_syn, size, uarg); 1237 if (err == -EINPROGRESS && copied_syn > 0) 1238 goto out; 1239 else if (err) 1240 goto out_err; 1241 } 1242 1243 timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT); 1244 1245 tcp_rate_check_app_limited(sk); /* is sending application-limited? */ 1246 1247 /* Wait for a connection to finish. One exception is TCP Fast Open 1248 * (passive side) where data is allowed to be sent before a connection 1249 * is fully established. 1250 */ 1251 if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) && 1252 !tcp_passive_fastopen(sk)) { 1253 err = sk_stream_wait_connect(sk, &timeo); 1254 if (err != 0) 1255 goto do_error; 1256 } 1257 1258 if (unlikely(tp->repair)) { 1259 if (tp->repair_queue == TCP_RECV_QUEUE) { 1260 copied = tcp_send_rcvq(sk, msg, size); 1261 goto out_nopush; 1262 } 1263 1264 err = -EINVAL; 1265 if (tp->repair_queue == TCP_NO_QUEUE) 1266 goto out_err; 1267 1268 /* 'common' sending to sendq */ 1269 } 1270 1271 sockcm_init(&sockc, sk); 1272 if (msg->msg_controllen) { 1273 err = sock_cmsg_send(sk, msg, &sockc); 1274 if (unlikely(err)) { 1275 err = -EINVAL; 1276 goto out_err; 1277 } 1278 } 1279 1280 /* This should be in poll */ 1281 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk); 1282 1283 /* Ok commence sending. */ 1284 copied = 0; 1285 1286restart: 1287 mss_now = tcp_send_mss(sk, &size_goal, flags); 1288 1289 err = -EPIPE; 1290 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN)) 1291 goto do_error; 1292 1293 while (msg_data_left(msg)) { 1294 int copy = 0; 1295 1296 skb = tcp_write_queue_tail(sk); 1297 if (skb) 1298 copy = size_goal - skb->len; 1299 1300 if (copy <= 0 || !tcp_skb_can_collapse_to(skb)) { 1301 bool first_skb; 1302 1303new_segment: 1304 if (!sk_stream_memory_free(sk)) 1305 goto wait_for_space; 1306 1307 if (unlikely(process_backlog >= 16)) { 1308 process_backlog = 0; 1309 if (sk_flush_backlog(sk)) 1310 goto restart; 1311 } 1312 first_skb = tcp_rtx_and_write_queues_empty(sk); 1313 skb = sk_stream_alloc_skb(sk, 0, sk->sk_allocation, 1314 first_skb); 1315 if (!skb) 1316 goto wait_for_space; 1317 1318 process_backlog++; 1319 skb->ip_summed = CHECKSUM_PARTIAL; 1320 1321 skb_entail(sk, skb); 1322 copy = size_goal; 1323 1324 /* All packets are restored as if they have 1325 * already been sent. skb_mstamp_ns isn't set to 1326 * avoid wrong rtt estimation. 1327 */ 1328 if (tp->repair) 1329 TCP_SKB_CB(skb)->sacked |= TCPCB_REPAIRED; 1330 } 1331 1332 /* Try to append data to the end of skb. */ 1333 if (copy > msg_data_left(msg)) 1334 copy = msg_data_left(msg); 1335 1336 /* Where to copy to? */ 1337 if (skb_availroom(skb) > 0 && !zc) { 1338 /* We have some space in skb head. Superb! */ 1339 copy = min_t(int, copy, skb_availroom(skb)); 1340 err = skb_add_data_nocache(sk, skb, &msg->msg_iter, copy); 1341 if (err) 1342 goto do_fault; 1343 } else if (!zc) { 1344 bool merge = true; 1345 int i = skb_shinfo(skb)->nr_frags; 1346 struct page_frag *pfrag = sk_page_frag(sk); 1347 1348 if (!sk_page_frag_refill(sk, pfrag)) 1349 goto wait_for_space; 1350 1351 if (!skb_can_coalesce(skb, i, pfrag->page, 1352 pfrag->offset)) { 1353 if (i >= sysctl_max_skb_frags) { 1354 tcp_mark_push(tp, skb); 1355 goto new_segment; 1356 } 1357 merge = false; 1358 } 1359 1360 copy = min_t(int, copy, pfrag->size - pfrag->offset); 1361 1362 if (!sk_wmem_schedule(sk, copy)) 1363 goto wait_for_space; 1364 1365 err = skb_copy_to_page_nocache(sk, &msg->msg_iter, skb, 1366 pfrag->page, 1367 pfrag->offset, 1368 copy); 1369 if (err) 1370 goto do_error; 1371 1372 /* Update the skb. */ 1373 if (merge) { 1374 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy); 1375 } else { 1376 skb_fill_page_desc(skb, i, pfrag->page, 1377 pfrag->offset, copy); 1378 page_ref_inc(pfrag->page); 1379 } 1380 pfrag->offset += copy; 1381 } else { 1382 if (!sk_wmem_schedule(sk, copy)) 1383 goto wait_for_space; 1384 1385 err = skb_zerocopy_iter_stream(sk, skb, msg, copy, uarg); 1386 if (err == -EMSGSIZE || err == -EEXIST) { 1387 tcp_mark_push(tp, skb); 1388 goto new_segment; 1389 } 1390 if (err < 0) 1391 goto do_error; 1392 copy = err; 1393 } 1394 1395 if (!copied) 1396 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH; 1397 1398 WRITE_ONCE(tp->write_seq, tp->write_seq + copy); 1399 TCP_SKB_CB(skb)->end_seq += copy; 1400 tcp_skb_pcount_set(skb, 0); 1401 1402 copied += copy; 1403 if (!msg_data_left(msg)) { 1404 if (unlikely(flags & MSG_EOR)) 1405 TCP_SKB_CB(skb)->eor = 1; 1406 goto out; 1407 } 1408 1409 if (skb->len < size_goal || (flags & MSG_OOB) || unlikely(tp->repair)) 1410 continue; 1411 1412 if (forced_push(tp)) { 1413 tcp_mark_push(tp, skb); 1414 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH); 1415 } else if (skb == tcp_send_head(sk)) 1416 tcp_push_one(sk, mss_now); 1417 continue; 1418 1419wait_for_space: 1420 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 1421 if (copied) 1422 tcp_push(sk, flags & ~MSG_MORE, mss_now, 1423 TCP_NAGLE_PUSH, size_goal); 1424 1425 err = sk_stream_wait_memory(sk, &timeo); 1426 if (err != 0) 1427 goto do_error; 1428 1429 mss_now = tcp_send_mss(sk, &size_goal, flags); 1430 } 1431 1432out: 1433 if (copied) { 1434 tcp_tx_timestamp(sk, sockc.tsflags); 1435 tcp_push(sk, flags, mss_now, tp->nonagle, size_goal); 1436 } 1437out_nopush: 1438 sock_zerocopy_put(uarg); 1439 return copied + copied_syn; 1440 1441do_error: 1442 skb = tcp_write_queue_tail(sk); 1443do_fault: 1444 tcp_remove_empty_skb(sk, skb); 1445 1446 if (copied + copied_syn) 1447 goto out; 1448out_err: 1449 sock_zerocopy_put_abort(uarg, true); 1450 err = sk_stream_error(sk, flags, err); 1451 /* make sure we wake any epoll edge trigger waiter */ 1452 if (unlikely(tcp_rtx_and_write_queues_empty(sk) && err == -EAGAIN)) { 1453 sk->sk_write_space(sk); 1454 tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED); 1455 } 1456 return err; 1457} 1458EXPORT_SYMBOL_GPL(tcp_sendmsg_locked); 1459 1460int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size) 1461{ 1462 int ret; 1463 1464 lock_sock(sk); 1465 ret = tcp_sendmsg_locked(sk, msg, size); 1466 release_sock(sk); 1467 1468 return ret; 1469} 1470EXPORT_SYMBOL(tcp_sendmsg); 1471 1472/* 1473 * Handle reading urgent data. BSD has very simple semantics for 1474 * this, no blocking and very strange errors 8) 1475 */ 1476 1477static int tcp_recv_urg(struct sock *sk, struct msghdr *msg, int len, int flags) 1478{ 1479 struct tcp_sock *tp = tcp_sk(sk); 1480 1481 /* No URG data to read. */ 1482 if (sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data || 1483 tp->urg_data == TCP_URG_READ) 1484 return -EINVAL; /* Yes this is right ! */ 1485 1486 if (sk->sk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DONE)) 1487 return -ENOTCONN; 1488 1489 if (tp->urg_data & TCP_URG_VALID) { 1490 int err = 0; 1491 char c = tp->urg_data; 1492 1493 if (!(flags & MSG_PEEK)) 1494 tp->urg_data = TCP_URG_READ; 1495 1496 /* Read urgent data. */ 1497 msg->msg_flags |= MSG_OOB; 1498 1499 if (len > 0) { 1500 if (!(flags & MSG_TRUNC)) 1501 err = memcpy_to_msg(msg, &c, 1); 1502 len = 1; 1503 } else 1504 msg->msg_flags |= MSG_TRUNC; 1505 1506 return err ? -EFAULT : len; 1507 } 1508 1509 if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN)) 1510 return 0; 1511 1512 /* Fixed the recv(..., MSG_OOB) behaviour. BSD docs and 1513 * the available implementations agree in this case: 1514 * this call should never block, independent of the 1515 * blocking state of the socket. 1516 * Mike <pall@rz.uni-karlsruhe.de> 1517 */ 1518 return -EAGAIN; 1519} 1520 1521static int tcp_peek_sndq(struct sock *sk, struct msghdr *msg, int len) 1522{ 1523 struct sk_buff *skb; 1524 int copied = 0, err = 0; 1525 1526 /* XXX -- need to support SO_PEEK_OFF */ 1527 1528 skb_rbtree_walk(skb, &sk->tcp_rtx_queue) { 1529 err = skb_copy_datagram_msg(skb, 0, msg, skb->len); 1530 if (err) 1531 return err; 1532 copied += skb->len; 1533 } 1534 1535 skb_queue_walk(&sk->sk_write_queue, skb) { 1536 err = skb_copy_datagram_msg(skb, 0, msg, skb->len); 1537 if (err) 1538 break; 1539 1540 copied += skb->len; 1541 } 1542 1543 return err ?: copied; 1544} 1545 1546/* Clean up the receive buffer for full frames taken by the user, 1547 * then send an ACK if necessary. COPIED is the number of bytes 1548 * tcp_recvmsg has given to the user so far, it speeds up the 1549 * calculation of whether or not we must ACK for the sake of 1550 * a window update. 1551 */ 1552void tcp_cleanup_rbuf(struct sock *sk, int copied) 1553{ 1554 struct tcp_sock *tp = tcp_sk(sk); 1555 bool time_to_ack = false; 1556 1557 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue); 1558 1559 WARN(skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq), 1560 "cleanup rbuf bug: copied %X seq %X rcvnxt %X\n", 1561 tp->copied_seq, TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt); 1562 1563 if (inet_csk_ack_scheduled(sk)) { 1564 const struct inet_connection_sock *icsk = inet_csk(sk); 1565 __u16 rcv_mss = icsk->icsk_ack.rcv_mss; 1566#ifdef CONFIG_LOWPOWER_PROTOCOL 1567 rcv_mss *= tcp_ack_num(sk); 1568#endif /* CONFIG_LOWPOWER_PROTOCOL */ 1569 1570 if (/* Once-per-two-segments ACK was not sent by tcp_input.c */ 1571 tp->rcv_nxt - tp->rcv_wup > rcv_mss || 1572 /* 1573 * If this read emptied read buffer, we send ACK, if 1574 * connection is not bidirectional, user drained 1575 * receive buffer and there was a small segment 1576 * in queue. 1577 */ 1578 (copied > 0 && 1579 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED2) || 1580 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED) && 1581 !inet_csk_in_pingpong_mode(sk))) && 1582 !atomic_read(&sk->sk_rmem_alloc))) 1583 time_to_ack = true; 1584 } 1585 1586 /* We send an ACK if we can now advertise a non-zero window 1587 * which has been raised "significantly". 1588 * 1589 * Even if window raised up to infinity, do not send window open ACK 1590 * in states, where we will not receive more. It is useless. 1591 */ 1592 if (copied > 0 && !time_to_ack && !(sk->sk_shutdown & RCV_SHUTDOWN)) { 1593 __u32 rcv_window_now = tcp_receive_window(tp); 1594 1595 /* Optimize, __tcp_select_window() is not cheap. */ 1596 if (2*rcv_window_now <= tp->window_clamp) { 1597 __u32 new_window = __tcp_select_window(sk); 1598 1599 /* Send ACK now, if this read freed lots of space 1600 * in our buffer. Certainly, new_window is new window. 1601 * We can advertise it now, if it is not less than current one. 1602 * "Lots" means "at least twice" here. 1603 */ 1604 if (new_window && new_window >= 2 * rcv_window_now) 1605 time_to_ack = true; 1606 } 1607 } 1608 if (time_to_ack) 1609 tcp_send_ack(sk); 1610} 1611 1612static struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off) 1613{ 1614 struct sk_buff *skb; 1615 u32 offset; 1616 1617 while ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) { 1618 offset = seq - TCP_SKB_CB(skb)->seq; 1619 if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) { 1620 pr_err_once("%s: found a SYN, please report !\n", __func__); 1621 offset--; 1622 } 1623 if (offset < skb->len || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)) { 1624 *off = offset; 1625 return skb; 1626 } 1627 /* This looks weird, but this can happen if TCP collapsing 1628 * splitted a fat GRO packet, while we released socket lock 1629 * in skb_splice_bits() 1630 */ 1631 sk_eat_skb(sk, skb); 1632 } 1633 return NULL; 1634} 1635 1636/* 1637 * This routine provides an alternative to tcp_recvmsg() for routines 1638 * that would like to handle copying from skbuffs directly in 'sendfile' 1639 * fashion. 1640 * Note: 1641 * - It is assumed that the socket was locked by the caller. 1642 * - The routine does not block. 1643 * - At present, there is no support for reading OOB data 1644 * or for 'peeking' the socket using this routine 1645 * (although both would be easy to implement). 1646 */ 1647int tcp_read_sock(struct sock *sk, read_descriptor_t *desc, 1648 sk_read_actor_t recv_actor) 1649{ 1650 struct sk_buff *skb; 1651 struct tcp_sock *tp = tcp_sk(sk); 1652 u32 seq = tp->copied_seq; 1653 u32 offset; 1654 int copied = 0; 1655 1656 if (sk->sk_state == TCP_LISTEN) 1657 return -ENOTCONN; 1658 while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) { 1659 if (offset < skb->len) { 1660 int used; 1661 size_t len; 1662 1663 len = skb->len - offset; 1664 /* Stop reading if we hit a patch of urgent data */ 1665 if (tp->urg_data) { 1666 u32 urg_offset = tp->urg_seq - seq; 1667 if (urg_offset < len) 1668 len = urg_offset; 1669 if (!len) 1670 break; 1671 } 1672 used = recv_actor(desc, skb, offset, len); 1673 if (used <= 0) { 1674 if (!copied) 1675 copied = used; 1676 break; 1677 } 1678 if (WARN_ON_ONCE(used > len)) 1679 used = len; 1680 seq += used; 1681 copied += used; 1682 offset += used; 1683 1684 /* If recv_actor drops the lock (e.g. TCP splice 1685 * receive) the skb pointer might be invalid when 1686 * getting here: tcp_collapse might have deleted it 1687 * while aggregating skbs from the socket queue. 1688 */ 1689 skb = tcp_recv_skb(sk, seq - 1, &offset); 1690 if (!skb) 1691 break; 1692 /* TCP coalescing might have appended data to the skb. 1693 * Try to splice more frags 1694 */ 1695 if (offset + 1 != skb->len) 1696 continue; 1697 } 1698 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) { 1699 sk_eat_skb(sk, skb); 1700 ++seq; 1701 break; 1702 } 1703 sk_eat_skb(sk, skb); 1704 if (!desc->count) 1705 break; 1706 WRITE_ONCE(tp->copied_seq, seq); 1707 } 1708 WRITE_ONCE(tp->copied_seq, seq); 1709 1710 tcp_rcv_space_adjust(sk); 1711 1712 /* Clean up data we have read: This will do ACK frames. */ 1713 if (copied > 0) { 1714 tcp_recv_skb(sk, seq, &offset); 1715 tcp_cleanup_rbuf(sk, copied); 1716 } 1717 return copied; 1718} 1719EXPORT_SYMBOL(tcp_read_sock); 1720 1721int tcp_peek_len(struct socket *sock) 1722{ 1723 return tcp_inq(sock->sk); 1724} 1725EXPORT_SYMBOL(tcp_peek_len); 1726 1727/* Make sure sk_rcvbuf is big enough to satisfy SO_RCVLOWAT hint */ 1728int tcp_set_rcvlowat(struct sock *sk, int val) 1729{ 1730 int cap; 1731 1732 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK) 1733 cap = sk->sk_rcvbuf >> 1; 1734 else 1735 cap = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2]) >> 1; 1736 val = min(val, cap); 1737 WRITE_ONCE(sk->sk_rcvlowat, val ? : 1); 1738 1739 /* Check if we need to signal EPOLLIN right now */ 1740 tcp_data_ready(sk); 1741 1742 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK) 1743 return 0; 1744 1745 val <<= 1; 1746 if (val > sk->sk_rcvbuf) { 1747 WRITE_ONCE(sk->sk_rcvbuf, val); 1748 tcp_sk(sk)->window_clamp = tcp_win_from_space(sk, val); 1749 } 1750 return 0; 1751} 1752EXPORT_SYMBOL(tcp_set_rcvlowat); 1753 1754#ifdef CONFIG_MMU 1755static const struct vm_operations_struct tcp_vm_ops = { 1756}; 1757 1758int tcp_mmap(struct file *file, struct socket *sock, 1759 struct vm_area_struct *vma) 1760{ 1761 if (vma->vm_flags & (VM_WRITE | VM_EXEC)) 1762 return -EPERM; 1763 vma->vm_flags &= ~(VM_MAYWRITE | VM_MAYEXEC); 1764 1765 /* Instruct vm_insert_page() to not mmap_read_lock(mm) */ 1766 vma->vm_flags |= VM_MIXEDMAP; 1767 1768 vma->vm_ops = &tcp_vm_ops; 1769 return 0; 1770} 1771EXPORT_SYMBOL(tcp_mmap); 1772 1773static skb_frag_t *skb_advance_to_frag(struct sk_buff *skb, u32 offset_skb, 1774 u32 *offset_frag) 1775{ 1776 skb_frag_t *frag; 1777 1778 if (unlikely(offset_skb >= skb->len)) 1779 return NULL; 1780 1781 offset_skb -= skb_headlen(skb); 1782 if ((int)offset_skb < 0 || skb_has_frag_list(skb)) 1783 return NULL; 1784 1785 frag = skb_shinfo(skb)->frags; 1786 while (offset_skb) { 1787 if (skb_frag_size(frag) > offset_skb) { 1788 *offset_frag = offset_skb; 1789 return frag; 1790 } 1791 offset_skb -= skb_frag_size(frag); 1792 ++frag; 1793 } 1794 *offset_frag = 0; 1795 return frag; 1796} 1797 1798static bool can_map_frag(const skb_frag_t *frag) 1799{ 1800 struct page *page; 1801 1802 if (skb_frag_size(frag) != PAGE_SIZE || skb_frag_off(frag)) 1803 return false; 1804 1805 page = skb_frag_page(frag); 1806 1807 if (PageCompound(page) || page->mapping) 1808 return false; 1809 1810 return true; 1811} 1812 1813static int find_next_mappable_frag(const skb_frag_t *frag, 1814 int remaining_in_skb) 1815{ 1816 int offset = 0; 1817 1818 if (likely(can_map_frag(frag))) 1819 return 0; 1820 1821 while (offset < remaining_in_skb && !can_map_frag(frag)) { 1822 offset += skb_frag_size(frag); 1823 ++frag; 1824 } 1825 return offset; 1826} 1827 1828static int tcp_copy_straggler_data(struct tcp_zerocopy_receive *zc, 1829 struct sk_buff *skb, u32 copylen, 1830 u32 *offset, u32 *seq) 1831{ 1832 unsigned long copy_address = (unsigned long)zc->copybuf_address; 1833 struct msghdr msg = {}; 1834 struct iovec iov; 1835 int err; 1836 1837 if (copy_address != zc->copybuf_address) 1838 return -EINVAL; 1839 1840 err = import_single_range(READ, (void __user *)copy_address, 1841 copylen, &iov, &msg.msg_iter); 1842 if (err) 1843 return err; 1844 err = skb_copy_datagram_msg(skb, *offset, &msg, copylen); 1845 if (err) 1846 return err; 1847 zc->recv_skip_hint -= copylen; 1848 *offset += copylen; 1849 *seq += copylen; 1850 return (__s32)copylen; 1851} 1852 1853static int tcp_zerocopy_handle_leftover_data(struct tcp_zerocopy_receive *zc, 1854 struct sock *sk, 1855 struct sk_buff *skb, 1856 u32 *seq, 1857 s32 copybuf_len) 1858{ 1859 u32 offset, copylen = min_t(u32, copybuf_len, zc->recv_skip_hint); 1860 1861 if (!copylen) 1862 return 0; 1863 /* skb is null if inq < PAGE_SIZE. */ 1864 if (skb) 1865 offset = *seq - TCP_SKB_CB(skb)->seq; 1866 else 1867 skb = tcp_recv_skb(sk, *seq, &offset); 1868 1869 zc->copybuf_len = tcp_copy_straggler_data(zc, skb, copylen, &offset, 1870 seq); 1871 return zc->copybuf_len < 0 ? 0 : copylen; 1872} 1873 1874static int tcp_zerocopy_vm_insert_batch(struct vm_area_struct *vma, 1875 struct page **pages, 1876 unsigned long pages_to_map, 1877 unsigned long *insert_addr, 1878 u32 *length_with_pending, 1879 u32 *seq, 1880 struct tcp_zerocopy_receive *zc) 1881{ 1882 unsigned long pages_remaining = pages_to_map; 1883 int bytes_mapped; 1884 int ret; 1885 1886 ret = vm_insert_pages(vma, *insert_addr, pages, &pages_remaining); 1887 bytes_mapped = PAGE_SIZE * (pages_to_map - pages_remaining); 1888 /* Even if vm_insert_pages fails, it may have partially succeeded in 1889 * mapping (some but not all of the pages). 1890 */ 1891 *seq += bytes_mapped; 1892 *insert_addr += bytes_mapped; 1893 if (ret) { 1894 /* But if vm_insert_pages did fail, we have to unroll some state 1895 * we speculatively touched before. 1896 */ 1897 const int bytes_not_mapped = PAGE_SIZE * pages_remaining; 1898 *length_with_pending -= bytes_not_mapped; 1899 zc->recv_skip_hint += bytes_not_mapped; 1900 } 1901 return ret; 1902} 1903 1904static int tcp_zerocopy_receive(struct sock *sk, 1905 struct tcp_zerocopy_receive *zc) 1906{ 1907 u32 length = 0, offset, vma_len, avail_len, aligned_len, copylen = 0; 1908 unsigned long address = (unsigned long)zc->address; 1909 s32 copybuf_len = zc->copybuf_len; 1910 struct tcp_sock *tp = tcp_sk(sk); 1911 #define PAGE_BATCH_SIZE 8 1912 struct page *pages[PAGE_BATCH_SIZE]; 1913 const skb_frag_t *frags = NULL; 1914 struct vm_area_struct *vma; 1915 struct sk_buff *skb = NULL; 1916 unsigned long pg_idx = 0; 1917 unsigned long curr_addr; 1918 u32 seq = tp->copied_seq; 1919 int inq = tcp_inq(sk); 1920 int ret; 1921 1922 zc->copybuf_len = 0; 1923 1924 if (address & (PAGE_SIZE - 1) || address != zc->address) 1925 return -EINVAL; 1926 1927 if (sk->sk_state == TCP_LISTEN) 1928 return -ENOTCONN; 1929 1930 sock_rps_record_flow(sk); 1931 1932 mmap_read_lock(current->mm); 1933 1934 vma = find_vma(current->mm, address); 1935 if (!vma || vma->vm_start > address || vma->vm_ops != &tcp_vm_ops) { 1936 mmap_read_unlock(current->mm); 1937 return -EINVAL; 1938 } 1939 vma_len = min_t(unsigned long, zc->length, vma->vm_end - address); 1940 avail_len = min_t(u32, vma_len, inq); 1941 aligned_len = avail_len & ~(PAGE_SIZE - 1); 1942 if (aligned_len) { 1943 zap_page_range(vma, address, aligned_len); 1944 zc->length = aligned_len; 1945 zc->recv_skip_hint = 0; 1946 } else { 1947 zc->length = avail_len; 1948 zc->recv_skip_hint = avail_len; 1949 } 1950 ret = 0; 1951 curr_addr = address; 1952 while (length + PAGE_SIZE <= zc->length) { 1953 int mappable_offset; 1954 1955 if (zc->recv_skip_hint < PAGE_SIZE) { 1956 u32 offset_frag; 1957 1958 /* If we're here, finish the current batch. */ 1959 if (pg_idx) { 1960 ret = tcp_zerocopy_vm_insert_batch(vma, pages, 1961 pg_idx, 1962 &curr_addr, 1963 &length, 1964 &seq, zc); 1965 if (ret) 1966 goto out; 1967 pg_idx = 0; 1968 } 1969 if (skb) { 1970 if (zc->recv_skip_hint > 0) 1971 break; 1972 skb = skb->next; 1973 offset = seq - TCP_SKB_CB(skb)->seq; 1974 } else { 1975 skb = tcp_recv_skb(sk, seq, &offset); 1976 } 1977 zc->recv_skip_hint = skb->len - offset; 1978 frags = skb_advance_to_frag(skb, offset, &offset_frag); 1979 if (!frags || offset_frag) 1980 break; 1981 } 1982 1983 mappable_offset = find_next_mappable_frag(frags, 1984 zc->recv_skip_hint); 1985 if (mappable_offset) { 1986 zc->recv_skip_hint = mappable_offset; 1987 break; 1988 } 1989 pages[pg_idx] = skb_frag_page(frags); 1990 pg_idx++; 1991 length += PAGE_SIZE; 1992 zc->recv_skip_hint -= PAGE_SIZE; 1993 frags++; 1994 if (pg_idx == PAGE_BATCH_SIZE) { 1995 ret = tcp_zerocopy_vm_insert_batch(vma, pages, pg_idx, 1996 &curr_addr, &length, 1997 &seq, zc); 1998 if (ret) 1999 goto out; 2000 pg_idx = 0; 2001 } 2002 } 2003 if (pg_idx) { 2004 ret = tcp_zerocopy_vm_insert_batch(vma, pages, pg_idx, 2005 &curr_addr, &length, &seq, 2006 zc); 2007 } 2008out: 2009 mmap_read_unlock(current->mm); 2010 /* Try to copy straggler data. */ 2011 if (!ret) 2012 copylen = tcp_zerocopy_handle_leftover_data(zc, sk, skb, &seq, 2013 copybuf_len); 2014 2015 if (length + copylen) { 2016 WRITE_ONCE(tp->copied_seq, seq); 2017 tcp_rcv_space_adjust(sk); 2018 2019 /* Clean up data we have read: This will do ACK frames. */ 2020 tcp_recv_skb(sk, seq, &offset); 2021 tcp_cleanup_rbuf(sk, length + copylen); 2022 ret = 0; 2023 if (length == zc->length) 2024 zc->recv_skip_hint = 0; 2025 } else { 2026 if (!zc->recv_skip_hint && sock_flag(sk, SOCK_DONE)) 2027 ret = -EIO; 2028 } 2029 zc->length = length; 2030 return ret; 2031} 2032#endif 2033 2034static void tcp_update_recv_tstamps(struct sk_buff *skb, 2035 struct scm_timestamping_internal *tss) 2036{ 2037 if (skb->tstamp) 2038 tss->ts[0] = ktime_to_timespec64(skb->tstamp); 2039 else 2040 tss->ts[0] = (struct timespec64) {0}; 2041 2042 if (skb_hwtstamps(skb)->hwtstamp) 2043 tss->ts[2] = ktime_to_timespec64(skb_hwtstamps(skb)->hwtstamp); 2044 else 2045 tss->ts[2] = (struct timespec64) {0}; 2046} 2047 2048/* Similar to __sock_recv_timestamp, but does not require an skb */ 2049static void tcp_recv_timestamp(struct msghdr *msg, const struct sock *sk, 2050 struct scm_timestamping_internal *tss) 2051{ 2052 int new_tstamp = sock_flag(sk, SOCK_TSTAMP_NEW); 2053 bool has_timestamping = false; 2054 2055 if (tss->ts[0].tv_sec || tss->ts[0].tv_nsec) { 2056 if (sock_flag(sk, SOCK_RCVTSTAMP)) { 2057 if (sock_flag(sk, SOCK_RCVTSTAMPNS)) { 2058 if (new_tstamp) { 2059 struct __kernel_timespec kts = { 2060 .tv_sec = tss->ts[0].tv_sec, 2061 .tv_nsec = tss->ts[0].tv_nsec, 2062 }; 2063 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_NEW, 2064 sizeof(kts), &kts); 2065 } else { 2066 struct __kernel_old_timespec ts_old = { 2067 .tv_sec = tss->ts[0].tv_sec, 2068 .tv_nsec = tss->ts[0].tv_nsec, 2069 }; 2070 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_OLD, 2071 sizeof(ts_old), &ts_old); 2072 } 2073 } else { 2074 if (new_tstamp) { 2075 struct __kernel_sock_timeval stv = { 2076 .tv_sec = tss->ts[0].tv_sec, 2077 .tv_usec = tss->ts[0].tv_nsec / 1000, 2078 }; 2079 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_NEW, 2080 sizeof(stv), &stv); 2081 } else { 2082 struct __kernel_old_timeval tv = { 2083 .tv_sec = tss->ts[0].tv_sec, 2084 .tv_usec = tss->ts[0].tv_nsec / 1000, 2085 }; 2086 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_OLD, 2087 sizeof(tv), &tv); 2088 } 2089 } 2090 } 2091 2092 if (sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) 2093 has_timestamping = true; 2094 else 2095 tss->ts[0] = (struct timespec64) {0}; 2096 } 2097 2098 if (tss->ts[2].tv_sec || tss->ts[2].tv_nsec) { 2099 if (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) 2100 has_timestamping = true; 2101 else 2102 tss->ts[2] = (struct timespec64) {0}; 2103 } 2104 2105 if (has_timestamping) { 2106 tss->ts[1] = (struct timespec64) {0}; 2107 if (sock_flag(sk, SOCK_TSTAMP_NEW)) 2108 put_cmsg_scm_timestamping64(msg, tss); 2109 else 2110 put_cmsg_scm_timestamping(msg, tss); 2111 } 2112} 2113 2114static int tcp_inq_hint(struct sock *sk) 2115{ 2116 const struct tcp_sock *tp = tcp_sk(sk); 2117 u32 copied_seq = READ_ONCE(tp->copied_seq); 2118 u32 rcv_nxt = READ_ONCE(tp->rcv_nxt); 2119 int inq; 2120 2121 inq = rcv_nxt - copied_seq; 2122 if (unlikely(inq < 0 || copied_seq != READ_ONCE(tp->copied_seq))) { 2123 lock_sock(sk); 2124 inq = tp->rcv_nxt - tp->copied_seq; 2125 release_sock(sk); 2126 } 2127 /* After receiving a FIN, tell the user-space to continue reading 2128 * by returning a non-zero inq. 2129 */ 2130 if (inq == 0 && sock_flag(sk, SOCK_DONE)) 2131 inq = 1; 2132 return inq; 2133} 2134 2135/* 2136 * This routine copies from a sock struct into the user buffer. 2137 * 2138 * Technical note: in 2.3 we work on _locked_ socket, so that 2139 * tricks with *seq access order and skb->users are not required. 2140 * Probably, code can be easily improved even more. 2141 */ 2142 2143int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int nonblock, 2144 int flags, int *addr_len) 2145{ 2146 struct tcp_sock *tp = tcp_sk(sk); 2147 int copied = 0; 2148 u32 peek_seq; 2149 u32 *seq; 2150 unsigned long used; 2151 int err, inq; 2152 int target; /* Read at least this many bytes */ 2153 long timeo; 2154 struct sk_buff *skb, *last; 2155 u32 urg_hole = 0; 2156 struct scm_timestamping_internal tss; 2157 int cmsg_flags; 2158 2159 if (unlikely(flags & MSG_ERRQUEUE)) 2160 return inet_recv_error(sk, msg, len, addr_len); 2161 2162 if (sk_can_busy_loop(sk) && skb_queue_empty_lockless(&sk->sk_receive_queue) && 2163 (sk->sk_state == TCP_ESTABLISHED)) 2164 sk_busy_loop(sk, nonblock); 2165 2166 lock_sock(sk); 2167 2168 err = -ENOTCONN; 2169 if (sk->sk_state == TCP_LISTEN) 2170 goto out; 2171 2172 cmsg_flags = tp->recvmsg_inq ? 1 : 0; 2173 timeo = sock_rcvtimeo(sk, nonblock); 2174 2175 /* Urgent data needs to be handled specially. */ 2176 if (flags & MSG_OOB) 2177 goto recv_urg; 2178 2179 if (unlikely(tp->repair)) { 2180 err = -EPERM; 2181 if (!(flags & MSG_PEEK)) 2182 goto out; 2183 2184 if (tp->repair_queue == TCP_SEND_QUEUE) 2185 goto recv_sndq; 2186 2187 err = -EINVAL; 2188 if (tp->repair_queue == TCP_NO_QUEUE) 2189 goto out; 2190 2191 /* 'common' recv queue MSG_PEEK-ing */ 2192 } 2193 2194 seq = &tp->copied_seq; 2195 if (flags & MSG_PEEK) { 2196 peek_seq = tp->copied_seq; 2197 seq = &peek_seq; 2198 } 2199 2200 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len); 2201 2202 do { 2203 u32 offset; 2204 2205 /* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */ 2206 if (tp->urg_data && tp->urg_seq == *seq) { 2207 if (copied) 2208 break; 2209 if (signal_pending(current)) { 2210 copied = timeo ? sock_intr_errno(timeo) : -EAGAIN; 2211 break; 2212 } 2213 } 2214 2215 /* Next get a buffer. */ 2216 2217 last = skb_peek_tail(&sk->sk_receive_queue); 2218 skb_queue_walk(&sk->sk_receive_queue, skb) { 2219 last = skb; 2220 /* Now that we have two receive queues this 2221 * shouldn't happen. 2222 */ 2223 if (WARN(before(*seq, TCP_SKB_CB(skb)->seq), 2224 "TCP recvmsg seq # bug: copied %X, seq %X, rcvnxt %X, fl %X\n", 2225 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, 2226 flags)) 2227 break; 2228 2229 offset = *seq - TCP_SKB_CB(skb)->seq; 2230 if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) { 2231 pr_err_once("%s: found a SYN, please report !\n", __func__); 2232 offset--; 2233 } 2234 if (offset < skb->len) 2235 goto found_ok_skb; 2236 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 2237 goto found_fin_ok; 2238 WARN(!(flags & MSG_PEEK), 2239 "TCP recvmsg seq # bug 2: copied %X, seq %X, rcvnxt %X, fl %X\n", 2240 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, flags); 2241 } 2242 2243 /* Well, if we have backlog, try to process it now yet. */ 2244 2245 if (copied >= target && !READ_ONCE(sk->sk_backlog.tail)) 2246 break; 2247 2248 if (copied) { 2249 if (sk->sk_err || 2250 sk->sk_state == TCP_CLOSE || 2251 (sk->sk_shutdown & RCV_SHUTDOWN) || 2252 !timeo || 2253 signal_pending(current)) 2254 break; 2255 } else { 2256 if (sock_flag(sk, SOCK_DONE)) 2257 break; 2258 2259 if (sk->sk_err) { 2260 copied = sock_error(sk); 2261 break; 2262 } 2263 2264 if (sk->sk_shutdown & RCV_SHUTDOWN) 2265 break; 2266 2267 if (sk->sk_state == TCP_CLOSE) { 2268 /* This occurs when user tries to read 2269 * from never connected socket. 2270 */ 2271 copied = -ENOTCONN; 2272 break; 2273 } 2274 2275 if (!timeo) { 2276 copied = -EAGAIN; 2277 break; 2278 } 2279 2280 if (signal_pending(current)) { 2281 copied = sock_intr_errno(timeo); 2282 break; 2283 } 2284 } 2285 2286 tcp_cleanup_rbuf(sk, copied); 2287 2288 if (copied >= target) { 2289 /* Do not sleep, just process backlog. */ 2290 release_sock(sk); 2291 lock_sock(sk); 2292 } else { 2293 sk_wait_data(sk, &timeo, last); 2294 } 2295 2296 if ((flags & MSG_PEEK) && 2297 (peek_seq - copied - urg_hole != tp->copied_seq)) { 2298 net_dbg_ratelimited("TCP(%s:%d): Application bug, race in MSG_PEEK\n", 2299 current->comm, 2300 task_pid_nr(current)); 2301 peek_seq = tp->copied_seq; 2302 } 2303 continue; 2304 2305found_ok_skb: 2306 /* Ok so how much can we use? */ 2307 used = skb->len - offset; 2308 if (len < used) 2309 used = len; 2310 2311 /* Do we have urgent data here? */ 2312 if (tp->urg_data) { 2313 u32 urg_offset = tp->urg_seq - *seq; 2314 if (urg_offset < used) { 2315 if (!urg_offset) { 2316 if (!sock_flag(sk, SOCK_URGINLINE)) { 2317 WRITE_ONCE(*seq, *seq + 1); 2318 urg_hole++; 2319 offset++; 2320 used--; 2321 if (!used) 2322 goto skip_copy; 2323 } 2324 } else 2325 used = urg_offset; 2326 } 2327 } 2328 2329 if (!(flags & MSG_TRUNC)) { 2330 err = skb_copy_datagram_msg(skb, offset, msg, used); 2331 if (err) { 2332 /* Exception. Bailout! */ 2333 if (!copied) 2334 copied = -EFAULT; 2335 break; 2336 } 2337 } 2338 2339 WRITE_ONCE(*seq, *seq + used); 2340 copied += used; 2341 len -= used; 2342 2343 tcp_rcv_space_adjust(sk); 2344 2345skip_copy: 2346 if (tp->urg_data && after(tp->copied_seq, tp->urg_seq)) { 2347 tp->urg_data = 0; 2348 tcp_fast_path_check(sk); 2349 } 2350 2351 if (TCP_SKB_CB(skb)->has_rxtstamp) { 2352 tcp_update_recv_tstamps(skb, &tss); 2353 cmsg_flags |= 2; 2354 } 2355 2356 if (used + offset < skb->len) 2357 continue; 2358 2359 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 2360 goto found_fin_ok; 2361 if (!(flags & MSG_PEEK)) 2362 sk_eat_skb(sk, skb); 2363 continue; 2364 2365found_fin_ok: 2366 /* Process the FIN. */ 2367 WRITE_ONCE(*seq, *seq + 1); 2368 if (!(flags & MSG_PEEK)) 2369 sk_eat_skb(sk, skb); 2370 break; 2371 } while (len > 0); 2372 2373 /* According to UNIX98, msg_name/msg_namelen are ignored 2374 * on connected socket. I was just happy when found this 8) --ANK 2375 */ 2376 2377 /* Clean up data we have read: This will do ACK frames. */ 2378 tcp_cleanup_rbuf(sk, copied); 2379 2380 release_sock(sk); 2381 2382 if (cmsg_flags) { 2383 if (cmsg_flags & 2) 2384 tcp_recv_timestamp(msg, sk, &tss); 2385 if (cmsg_flags & 1) { 2386 inq = tcp_inq_hint(sk); 2387 put_cmsg(msg, SOL_TCP, TCP_CM_INQ, sizeof(inq), &inq); 2388 } 2389 } 2390 2391 return copied; 2392 2393out: 2394 release_sock(sk); 2395 return err; 2396 2397recv_urg: 2398 err = tcp_recv_urg(sk, msg, len, flags); 2399 goto out; 2400 2401recv_sndq: 2402 err = tcp_peek_sndq(sk, msg, len); 2403 goto out; 2404} 2405EXPORT_SYMBOL(tcp_recvmsg); 2406 2407void tcp_set_state(struct sock *sk, int state) 2408{ 2409 int oldstate = sk->sk_state; 2410 2411 /* We defined a new enum for TCP states that are exported in BPF 2412 * so as not force the internal TCP states to be frozen. The 2413 * following checks will detect if an internal state value ever 2414 * differs from the BPF value. If this ever happens, then we will 2415 * need to remap the internal value to the BPF value before calling 2416 * tcp_call_bpf_2arg. 2417 */ 2418 BUILD_BUG_ON((int)BPF_TCP_ESTABLISHED != (int)TCP_ESTABLISHED); 2419 BUILD_BUG_ON((int)BPF_TCP_SYN_SENT != (int)TCP_SYN_SENT); 2420 BUILD_BUG_ON((int)BPF_TCP_SYN_RECV != (int)TCP_SYN_RECV); 2421 BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT1 != (int)TCP_FIN_WAIT1); 2422 BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT2 != (int)TCP_FIN_WAIT2); 2423 BUILD_BUG_ON((int)BPF_TCP_TIME_WAIT != (int)TCP_TIME_WAIT); 2424 BUILD_BUG_ON((int)BPF_TCP_CLOSE != (int)TCP_CLOSE); 2425 BUILD_BUG_ON((int)BPF_TCP_CLOSE_WAIT != (int)TCP_CLOSE_WAIT); 2426 BUILD_BUG_ON((int)BPF_TCP_LAST_ACK != (int)TCP_LAST_ACK); 2427 BUILD_BUG_ON((int)BPF_TCP_LISTEN != (int)TCP_LISTEN); 2428 BUILD_BUG_ON((int)BPF_TCP_CLOSING != (int)TCP_CLOSING); 2429 BUILD_BUG_ON((int)BPF_TCP_NEW_SYN_RECV != (int)TCP_NEW_SYN_RECV); 2430 BUILD_BUG_ON((int)BPF_TCP_MAX_STATES != (int)TCP_MAX_STATES); 2431 2432 if (BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), BPF_SOCK_OPS_STATE_CB_FLAG)) 2433 tcp_call_bpf_2arg(sk, BPF_SOCK_OPS_STATE_CB, oldstate, state); 2434 2435 switch (state) { 2436 case TCP_ESTABLISHED: 2437 if (oldstate != TCP_ESTABLISHED) 2438 TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB); 2439 break; 2440 2441 case TCP_CLOSE: 2442 if (oldstate == TCP_CLOSE_WAIT || oldstate == TCP_ESTABLISHED) 2443 TCP_INC_STATS(sock_net(sk), TCP_MIB_ESTABRESETS); 2444 2445 sk->sk_prot->unhash(sk); 2446 if (inet_csk(sk)->icsk_bind_hash && 2447 !(sk->sk_userlocks & SOCK_BINDPORT_LOCK)) 2448 inet_put_port(sk); 2449 fallthrough; 2450 default: 2451 if (oldstate == TCP_ESTABLISHED) 2452 TCP_DEC_STATS(sock_net(sk), TCP_MIB_CURRESTAB); 2453 } 2454 2455 /* Change state AFTER socket is unhashed to avoid closed 2456 * socket sitting in hash tables. 2457 */ 2458 inet_sk_state_store(sk, state); 2459} 2460EXPORT_SYMBOL_GPL(tcp_set_state); 2461 2462/* 2463 * State processing on a close. This implements the state shift for 2464 * sending our FIN frame. Note that we only send a FIN for some 2465 * states. A shutdown() may have already sent the FIN, or we may be 2466 * closed. 2467 */ 2468 2469static const unsigned char new_state[16] = { 2470 /* current state: new state: action: */ 2471 [0 /* (Invalid) */] = TCP_CLOSE, 2472 [TCP_ESTABLISHED] = TCP_FIN_WAIT1 | TCP_ACTION_FIN, 2473 [TCP_SYN_SENT] = TCP_CLOSE, 2474 [TCP_SYN_RECV] = TCP_FIN_WAIT1 | TCP_ACTION_FIN, 2475 [TCP_FIN_WAIT1] = TCP_FIN_WAIT1, 2476 [TCP_FIN_WAIT2] = TCP_FIN_WAIT2, 2477 [TCP_TIME_WAIT] = TCP_CLOSE, 2478 [TCP_CLOSE] = TCP_CLOSE, 2479 [TCP_CLOSE_WAIT] = TCP_LAST_ACK | TCP_ACTION_FIN, 2480 [TCP_LAST_ACK] = TCP_LAST_ACK, 2481 [TCP_LISTEN] = TCP_CLOSE, 2482 [TCP_CLOSING] = TCP_CLOSING, 2483 [TCP_NEW_SYN_RECV] = TCP_CLOSE, /* should not happen ! */ 2484}; 2485 2486static int tcp_close_state(struct sock *sk) 2487{ 2488 int next = (int)new_state[sk->sk_state]; 2489 int ns = next & TCP_STATE_MASK; 2490 2491 tcp_set_state(sk, ns); 2492 2493 return next & TCP_ACTION_FIN; 2494} 2495 2496/* 2497 * Shutdown the sending side of a connection. Much like close except 2498 * that we don't receive shut down or sock_set_flag(sk, SOCK_DEAD). 2499 */ 2500 2501void tcp_shutdown(struct sock *sk, int how) 2502{ 2503 /* We need to grab some memory, and put together a FIN, 2504 * and then put it into the queue to be sent. 2505 * Tim MacKenzie(tym@dibbler.cs.monash.edu.au) 4 Dec '92. 2506 */ 2507 if (!(how & SEND_SHUTDOWN)) 2508 return; 2509 2510 /* If we've already sent a FIN, or it's a closed state, skip this. */ 2511 if ((1 << sk->sk_state) & 2512 (TCPF_ESTABLISHED | TCPF_SYN_SENT | 2513 TCPF_CLOSE_WAIT)) { 2514 /* Clear out any half completed packets. FIN if needed. */ 2515 if (tcp_close_state(sk)) 2516 tcp_send_fin(sk); 2517 } 2518} 2519EXPORT_SYMBOL(tcp_shutdown); 2520 2521int tcp_orphan_count_sum(void) 2522{ 2523 int i, total = 0; 2524 2525 for_each_possible_cpu(i) 2526 total += per_cpu(tcp_orphan_count, i); 2527 2528 return max(total, 0); 2529} 2530 2531static int tcp_orphan_cache; 2532static struct timer_list tcp_orphan_timer; 2533#define TCP_ORPHAN_TIMER_PERIOD msecs_to_jiffies(100) 2534 2535static void tcp_orphan_update(struct timer_list *unused) 2536{ 2537 WRITE_ONCE(tcp_orphan_cache, tcp_orphan_count_sum()); 2538 mod_timer(&tcp_orphan_timer, jiffies + TCP_ORPHAN_TIMER_PERIOD); 2539} 2540 2541static bool tcp_too_many_orphans(int shift) 2542{ 2543 return READ_ONCE(tcp_orphan_cache) << shift > 2544 READ_ONCE(sysctl_tcp_max_orphans); 2545} 2546 2547bool tcp_check_oom(struct sock *sk, int shift) 2548{ 2549 bool too_many_orphans, out_of_socket_memory; 2550 2551 too_many_orphans = tcp_too_many_orphans(shift); 2552 out_of_socket_memory = tcp_out_of_memory(sk); 2553 2554 if (too_many_orphans) 2555 net_info_ratelimited("too many orphaned sockets\n"); 2556 if (out_of_socket_memory) 2557 net_info_ratelimited("out of memory -- consider tuning tcp_mem\n"); 2558 return too_many_orphans || out_of_socket_memory; 2559} 2560 2561void __tcp_close(struct sock *sk, long timeout) 2562{ 2563 struct sk_buff *skb; 2564 int data_was_unread = 0; 2565 int state; 2566 2567 WRITE_ONCE(sk->sk_shutdown, SHUTDOWN_MASK); 2568 2569 if (sk->sk_state == TCP_LISTEN) { 2570 tcp_set_state(sk, TCP_CLOSE); 2571 2572 /* Special case. */ 2573 inet_csk_listen_stop(sk); 2574 2575 goto adjudge_to_death; 2576 } 2577 2578 /* We need to flush the recv. buffs. We do this only on the 2579 * descriptor close, not protocol-sourced closes, because the 2580 * reader process may not have drained the data yet! 2581 */ 2582 while ((skb = __skb_dequeue(&sk->sk_receive_queue)) != NULL) { 2583 u32 len = TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq; 2584 2585 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 2586 len--; 2587 data_was_unread += len; 2588 __kfree_skb(skb); 2589 } 2590 2591 sk_mem_reclaim(sk); 2592 2593 /* If socket has been already reset (e.g. in tcp_reset()) - kill it. */ 2594 if (sk->sk_state == TCP_CLOSE) 2595 goto adjudge_to_death; 2596 2597 /* As outlined in RFC 2525, section 2.17, we send a RST here because 2598 * data was lost. To witness the awful effects of the old behavior of 2599 * always doing a FIN, run an older 2.1.x kernel or 2.0.x, start a bulk 2600 * GET in an FTP client, suspend the process, wait for the client to 2601 * advertise a zero window, then kill -9 the FTP client, wheee... 2602 * Note: timeout is always zero in such a case. 2603 */ 2604 if (unlikely(tcp_sk(sk)->repair)) { 2605 sk->sk_prot->disconnect(sk, 0); 2606 } else if (data_was_unread) { 2607 /* Unread data was tossed, zap the connection. */ 2608 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONCLOSE); 2609 tcp_set_state(sk, TCP_CLOSE); 2610 tcp_send_active_reset(sk, sk->sk_allocation); 2611 } else if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) { 2612 /* Check zero linger _after_ checking for unread data. */ 2613 sk->sk_prot->disconnect(sk, 0); 2614 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 2615 } else if (tcp_close_state(sk)) { 2616 /* We FIN if the application ate all the data before 2617 * zapping the connection. 2618 */ 2619 2620 /* RED-PEN. Formally speaking, we have broken TCP state 2621 * machine. State transitions: 2622 * 2623 * TCP_ESTABLISHED -> TCP_FIN_WAIT1 2624 * TCP_SYN_RECV -> TCP_FIN_WAIT1 (it is difficult) 2625 * TCP_CLOSE_WAIT -> TCP_LAST_ACK 2626 * 2627 * are legal only when FIN has been sent (i.e. in window), 2628 * rather than queued out of window. Purists blame. 2629 * 2630 * F.e. "RFC state" is ESTABLISHED, 2631 * if Linux state is FIN-WAIT-1, but FIN is still not sent. 2632 * 2633 * The visible declinations are that sometimes 2634 * we enter time-wait state, when it is not required really 2635 * (harmless), do not send active resets, when they are 2636 * required by specs (TCP_ESTABLISHED, TCP_CLOSE_WAIT, when 2637 * they look as CLOSING or LAST_ACK for Linux) 2638 * Probably, I missed some more holelets. 2639 * --ANK 2640 * XXX (TFO) - To start off we don't support SYN+ACK+FIN 2641 * in a single packet! (May consider it later but will 2642 * probably need API support or TCP_CORK SYN-ACK until 2643 * data is written and socket is closed.) 2644 */ 2645 tcp_send_fin(sk); 2646 } 2647 2648 sk_stream_wait_close(sk, timeout); 2649 2650adjudge_to_death: 2651 state = sk->sk_state; 2652 sock_hold(sk); 2653 sock_orphan(sk); 2654 2655 local_bh_disable(); 2656 bh_lock_sock(sk); 2657 /* remove backlog if any, without releasing ownership. */ 2658 __release_sock(sk); 2659 2660 this_cpu_inc(tcp_orphan_count); 2661 2662 /* Have we already been destroyed by a softirq or backlog? */ 2663 if (state != TCP_CLOSE && sk->sk_state == TCP_CLOSE) 2664 goto out; 2665 2666 /* This is a (useful) BSD violating of the RFC. There is a 2667 * problem with TCP as specified in that the other end could 2668 * keep a socket open forever with no application left this end. 2669 * We use a 1 minute timeout (about the same as BSD) then kill 2670 * our end. If they send after that then tough - BUT: long enough 2671 * that we won't make the old 4*rto = almost no time - whoops 2672 * reset mistake. 2673 * 2674 * Nope, it was not mistake. It is really desired behaviour 2675 * f.e. on http servers, when such sockets are useless, but 2676 * consume significant resources. Let's do it with special 2677 * linger2 option. --ANK 2678 */ 2679 2680 if (sk->sk_state == TCP_FIN_WAIT2) { 2681 struct tcp_sock *tp = tcp_sk(sk); 2682 if (tp->linger2 < 0) { 2683 tcp_set_state(sk, TCP_CLOSE); 2684 tcp_send_active_reset(sk, GFP_ATOMIC); 2685 __NET_INC_STATS(sock_net(sk), 2686 LINUX_MIB_TCPABORTONLINGER); 2687 } else { 2688 const int tmo = tcp_fin_time(sk); 2689 2690 if (tmo > TCP_TIMEWAIT_LEN) { 2691 inet_csk_reset_keepalive_timer(sk, 2692 tmo - TCP_TIMEWAIT_LEN); 2693 } else { 2694 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo); 2695 goto out; 2696 } 2697 } 2698 } 2699 if (sk->sk_state != TCP_CLOSE) { 2700 sk_mem_reclaim(sk); 2701 if (tcp_check_oom(sk, 0)) { 2702 tcp_set_state(sk, TCP_CLOSE); 2703 tcp_send_active_reset(sk, GFP_ATOMIC); 2704 __NET_INC_STATS(sock_net(sk), 2705 LINUX_MIB_TCPABORTONMEMORY); 2706 } else if (!check_net(sock_net(sk))) { 2707 /* Not possible to send reset; just close */ 2708 tcp_set_state(sk, TCP_CLOSE); 2709 } 2710 } 2711 2712 if (sk->sk_state == TCP_CLOSE) { 2713 struct request_sock *req; 2714 2715 req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk, 2716 lockdep_sock_is_held(sk)); 2717 /* We could get here with a non-NULL req if the socket is 2718 * aborted (e.g., closed with unread data) before 3WHS 2719 * finishes. 2720 */ 2721 if (req) 2722 reqsk_fastopen_remove(sk, req, false); 2723 inet_csk_destroy_sock(sk); 2724 } 2725 /* Otherwise, socket is reprieved until protocol close. */ 2726 2727out: 2728 bh_unlock_sock(sk); 2729 local_bh_enable(); 2730} 2731 2732void tcp_close(struct sock *sk, long timeout) 2733{ 2734 lock_sock(sk); 2735 __tcp_close(sk, timeout); 2736 release_sock(sk); 2737 if (!sk->sk_net_refcnt) 2738 inet_csk_clear_xmit_timers_sync(sk); 2739 sock_put(sk); 2740} 2741EXPORT_SYMBOL(tcp_close); 2742 2743/* These states need RST on ABORT according to RFC793 */ 2744 2745static inline bool tcp_need_reset(int state) 2746{ 2747 return (1 << state) & 2748 (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT | TCPF_FIN_WAIT1 | 2749 TCPF_FIN_WAIT2 | TCPF_SYN_RECV); 2750} 2751 2752static void tcp_rtx_queue_purge(struct sock *sk) 2753{ 2754 struct rb_node *p = rb_first(&sk->tcp_rtx_queue); 2755 2756 tcp_sk(sk)->highest_sack = NULL; 2757 while (p) { 2758 struct sk_buff *skb = rb_to_skb(p); 2759 2760 p = rb_next(p); 2761 /* Since we are deleting whole queue, no need to 2762 * list_del(&skb->tcp_tsorted_anchor) 2763 */ 2764 tcp_rtx_queue_unlink(skb, sk); 2765 sk_wmem_free_skb(sk, skb); 2766 } 2767} 2768 2769void tcp_write_queue_purge(struct sock *sk) 2770{ 2771 struct sk_buff *skb; 2772 2773 tcp_chrono_stop(sk, TCP_CHRONO_BUSY); 2774 while ((skb = __skb_dequeue(&sk->sk_write_queue)) != NULL) { 2775 tcp_skb_tsorted_anchor_cleanup(skb); 2776 sk_wmem_free_skb(sk, skb); 2777 } 2778 tcp_rtx_queue_purge(sk); 2779 skb = sk->sk_tx_skb_cache; 2780 if (skb) { 2781 __kfree_skb(skb); 2782 sk->sk_tx_skb_cache = NULL; 2783 } 2784 INIT_LIST_HEAD(&tcp_sk(sk)->tsorted_sent_queue); 2785 sk_mem_reclaim(sk); 2786 tcp_clear_all_retrans_hints(tcp_sk(sk)); 2787 tcp_sk(sk)->packets_out = 0; 2788 inet_csk(sk)->icsk_backoff = 0; 2789} 2790 2791int tcp_disconnect(struct sock *sk, int flags) 2792{ 2793 struct inet_sock *inet = inet_sk(sk); 2794 struct inet_connection_sock *icsk = inet_csk(sk); 2795 struct tcp_sock *tp = tcp_sk(sk); 2796 int old_state = sk->sk_state; 2797 u32 seq; 2798 2799 /* Deny disconnect if other threads are blocked in sk_wait_event() 2800 * or inet_wait_for_connect(). 2801 */ 2802 if (sk->sk_wait_pending) 2803 return -EBUSY; 2804 2805 if (old_state != TCP_CLOSE) 2806 tcp_set_state(sk, TCP_CLOSE); 2807 2808 /* ABORT function of RFC793 */ 2809 if (old_state == TCP_LISTEN) { 2810 inet_csk_listen_stop(sk); 2811 } else if (unlikely(tp->repair)) { 2812 sk->sk_err = ECONNABORTED; 2813 } else if (tcp_need_reset(old_state) || 2814 (tp->snd_nxt != tp->write_seq && 2815 (1 << old_state) & (TCPF_CLOSING | TCPF_LAST_ACK))) { 2816 /* The last check adjusts for discrepancy of Linux wrt. RFC 2817 * states 2818 */ 2819 tcp_send_active_reset(sk, gfp_any()); 2820 sk->sk_err = ECONNRESET; 2821 } else if (old_state == TCP_SYN_SENT) 2822 sk->sk_err = ECONNRESET; 2823 2824 tcp_clear_xmit_timers(sk); 2825 __skb_queue_purge(&sk->sk_receive_queue); 2826 if (sk->sk_rx_skb_cache) { 2827 __kfree_skb(sk->sk_rx_skb_cache); 2828 sk->sk_rx_skb_cache = NULL; 2829 } 2830 WRITE_ONCE(tp->copied_seq, tp->rcv_nxt); 2831 tp->urg_data = 0; 2832 tcp_write_queue_purge(sk); 2833 tcp_fastopen_active_disable_ofo_check(sk); 2834 skb_rbtree_purge(&tp->out_of_order_queue); 2835 2836 inet->inet_dport = 0; 2837 2838 if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK)) 2839 inet_reset_saddr(sk); 2840 2841 WRITE_ONCE(sk->sk_shutdown, 0); 2842 sock_reset_flag(sk, SOCK_DONE); 2843 tp->srtt_us = 0; 2844 tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT); 2845 tp->rcv_rtt_last_tsecr = 0; 2846 2847 seq = tp->write_seq + tp->max_window + 2; 2848 if (!seq) 2849 seq = 1; 2850 WRITE_ONCE(tp->write_seq, seq); 2851 2852 icsk->icsk_backoff = 0; 2853 icsk->icsk_probes_out = 0; 2854 icsk->icsk_probes_tstamp = 0; 2855 icsk->icsk_rto = TCP_TIMEOUT_INIT; 2856 icsk->icsk_rto_min = TCP_RTO_MIN; 2857 icsk->icsk_delack_max = TCP_DELACK_MAX; 2858#if defined(CONFIG_TCP_NATA_URC) || defined(CONFIG_TCP_NATA_STL) 2859 icsk->nata_retries_enabled = 0; 2860 icsk->nata_retries_type = NATA_NA; 2861 icsk->nata_syn_rto = TCP_TIMEOUT_INIT; 2862 icsk->nata_data_rto = TCP_TIMEOUT_INIT; 2863 icsk->nata_data_retries = 0; 2864#endif 2865 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH; 2866 tp->snd_cwnd = TCP_INIT_CWND; 2867 tp->snd_cwnd_cnt = 0; 2868 tp->is_cwnd_limited = 0; 2869 tp->max_packets_out = 0; 2870 tp->window_clamp = 0; 2871 tp->delivered = 0; 2872 tp->delivered_ce = 0; 2873 if (icsk->icsk_ca_ops->release) 2874 icsk->icsk_ca_ops->release(sk); 2875 memset(icsk->icsk_ca_priv, 0, sizeof(icsk->icsk_ca_priv)); 2876 icsk->icsk_ca_initialized = 0; 2877 tcp_set_ca_state(sk, TCP_CA_Open); 2878 tp->is_sack_reneg = 0; 2879 tcp_clear_retrans(tp); 2880 tp->total_retrans = 0; 2881 inet_csk_delack_init(sk); 2882 /* Initialize rcv_mss to TCP_MIN_MSS to avoid division by 0 2883 * issue in __tcp_select_window() 2884 */ 2885 icsk->icsk_ack.rcv_mss = TCP_MIN_MSS; 2886 memset(&tp->rx_opt, 0, sizeof(tp->rx_opt)); 2887 __sk_dst_reset(sk); 2888 dst_release(xchg((__force struct dst_entry **)&sk->sk_rx_dst, NULL)); 2889 tcp_saved_syn_free(tp); 2890 tp->compressed_ack = 0; 2891 tp->segs_in = 0; 2892 tp->segs_out = 0; 2893 tp->bytes_sent = 0; 2894 tp->bytes_acked = 0; 2895 tp->bytes_received = 0; 2896 tp->bytes_retrans = 0; 2897 tp->data_segs_in = 0; 2898 tp->data_segs_out = 0; 2899 tp->duplicate_sack[0].start_seq = 0; 2900 tp->duplicate_sack[0].end_seq = 0; 2901 tp->dsack_dups = 0; 2902 tp->reord_seen = 0; 2903 tp->retrans_out = 0; 2904 tp->sacked_out = 0; 2905 tp->tlp_high_seq = 0; 2906 tp->last_oow_ack_time = 0; 2907 /* There's a bubble in the pipe until at least the first ACK. */ 2908 tp->app_limited = ~0U; 2909 tp->rate_app_limited = 1; 2910 tp->rack.mstamp = 0; 2911 tp->rack.advanced = 0; 2912 tp->rack.reo_wnd_steps = 1; 2913 tp->rack.last_delivered = 0; 2914 tp->rack.reo_wnd_persist = 0; 2915 tp->rack.dsack_seen = 0; 2916 tp->syn_data_acked = 0; 2917 tp->rx_opt.saw_tstamp = 0; 2918 tp->rx_opt.dsack = 0; 2919 tp->rx_opt.num_sacks = 0; 2920 tp->rcv_ooopack = 0; 2921 2922 2923 /* Clean up fastopen related fields */ 2924 tcp_free_fastopen_req(tp); 2925 inet->defer_connect = 0; 2926 tp->fastopen_client_fail = 0; 2927 2928 WARN_ON(inet->inet_num && !icsk->icsk_bind_hash); 2929 2930 if (sk->sk_frag.page) { 2931 put_page(sk->sk_frag.page); 2932 sk->sk_frag.page = NULL; 2933 sk->sk_frag.offset = 0; 2934 } 2935 2936 sk->sk_error_report(sk); 2937 return 0; 2938} 2939EXPORT_SYMBOL(tcp_disconnect); 2940 2941static inline bool tcp_can_repair_sock(const struct sock *sk) 2942{ 2943 return ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN) && 2944 (sk->sk_state != TCP_LISTEN); 2945} 2946 2947static int tcp_repair_set_window(struct tcp_sock *tp, sockptr_t optbuf, int len) 2948{ 2949 struct tcp_repair_window opt; 2950 2951 if (!tp->repair) 2952 return -EPERM; 2953 2954 if (len != sizeof(opt)) 2955 return -EINVAL; 2956 2957 if (copy_from_sockptr(&opt, optbuf, sizeof(opt))) 2958 return -EFAULT; 2959 2960 if (opt.max_window < opt.snd_wnd) 2961 return -EINVAL; 2962 2963 if (after(opt.snd_wl1, tp->rcv_nxt + opt.rcv_wnd)) 2964 return -EINVAL; 2965 2966 if (after(opt.rcv_wup, tp->rcv_nxt)) 2967 return -EINVAL; 2968 2969 tp->snd_wl1 = opt.snd_wl1; 2970 tp->snd_wnd = opt.snd_wnd; 2971 tp->max_window = opt.max_window; 2972 2973 tp->rcv_wnd = opt.rcv_wnd; 2974 tp->rcv_wup = opt.rcv_wup; 2975 2976 return 0; 2977} 2978 2979static int tcp_repair_options_est(struct sock *sk, sockptr_t optbuf, 2980 unsigned int len) 2981{ 2982 struct tcp_sock *tp = tcp_sk(sk); 2983 struct tcp_repair_opt opt; 2984 size_t offset = 0; 2985 2986 while (len >= sizeof(opt)) { 2987 if (copy_from_sockptr_offset(&opt, optbuf, offset, sizeof(opt))) 2988 return -EFAULT; 2989 2990 offset += sizeof(opt); 2991 len -= sizeof(opt); 2992 2993 switch (opt.opt_code) { 2994 case TCPOPT_MSS: 2995 tp->rx_opt.mss_clamp = opt.opt_val; 2996 tcp_mtup_init(sk); 2997 break; 2998 case TCPOPT_WINDOW: 2999 { 3000 u16 snd_wscale = opt.opt_val & 0xFFFF; 3001 u16 rcv_wscale = opt.opt_val >> 16; 3002 3003 if (snd_wscale > TCP_MAX_WSCALE || rcv_wscale > TCP_MAX_WSCALE) 3004 return -EFBIG; 3005 3006 tp->rx_opt.snd_wscale = snd_wscale; 3007 tp->rx_opt.rcv_wscale = rcv_wscale; 3008 tp->rx_opt.wscale_ok = 1; 3009 } 3010 break; 3011 case TCPOPT_SACK_PERM: 3012 if (opt.opt_val != 0) 3013 return -EINVAL; 3014 3015 tp->rx_opt.sack_ok |= TCP_SACK_SEEN; 3016 break; 3017 case TCPOPT_TIMESTAMP: 3018 if (opt.opt_val != 0) 3019 return -EINVAL; 3020 3021 tp->rx_opt.tstamp_ok = 1; 3022 break; 3023 } 3024 } 3025 3026 return 0; 3027} 3028 3029DEFINE_STATIC_KEY_FALSE(tcp_tx_delay_enabled); 3030EXPORT_SYMBOL(tcp_tx_delay_enabled); 3031 3032static void tcp_enable_tx_delay(void) 3033{ 3034 if (!static_branch_unlikely(&tcp_tx_delay_enabled)) { 3035 static int __tcp_tx_delay_enabled = 0; 3036 3037 if (cmpxchg(&__tcp_tx_delay_enabled, 0, 1) == 0) { 3038 static_branch_enable(&tcp_tx_delay_enabled); 3039 pr_info("TCP_TX_DELAY enabled\n"); 3040 } 3041 } 3042} 3043 3044/* When set indicates to always queue non-full frames. Later the user clears 3045 * this option and we transmit any pending partial frames in the queue. This is 3046 * meant to be used alongside sendfile() to get properly filled frames when the 3047 * user (for example) must write out headers with a write() call first and then 3048 * use sendfile to send out the data parts. 3049 * 3050 * TCP_CORK can be set together with TCP_NODELAY and it is stronger than 3051 * TCP_NODELAY. 3052 */ 3053static void __tcp_sock_set_cork(struct sock *sk, bool on) 3054{ 3055 struct tcp_sock *tp = tcp_sk(sk); 3056 3057 if (on) { 3058 tp->nonagle |= TCP_NAGLE_CORK; 3059 } else { 3060 tp->nonagle &= ~TCP_NAGLE_CORK; 3061 if (tp->nonagle & TCP_NAGLE_OFF) 3062 tp->nonagle |= TCP_NAGLE_PUSH; 3063 tcp_push_pending_frames(sk); 3064 } 3065} 3066 3067void tcp_sock_set_cork(struct sock *sk, bool on) 3068{ 3069 lock_sock(sk); 3070 __tcp_sock_set_cork(sk, on); 3071 release_sock(sk); 3072} 3073EXPORT_SYMBOL(tcp_sock_set_cork); 3074 3075/* TCP_NODELAY is weaker than TCP_CORK, so that this option on corked socket is 3076 * remembered, but it is not activated until cork is cleared. 3077 * 3078 * However, when TCP_NODELAY is set we make an explicit push, which overrides 3079 * even TCP_CORK for currently queued segments. 3080 */ 3081static void __tcp_sock_set_nodelay(struct sock *sk, bool on) 3082{ 3083 if (on) { 3084 tcp_sk(sk)->nonagle |= TCP_NAGLE_OFF|TCP_NAGLE_PUSH; 3085 tcp_push_pending_frames(sk); 3086 } else { 3087 tcp_sk(sk)->nonagle &= ~TCP_NAGLE_OFF; 3088 } 3089} 3090 3091void tcp_sock_set_nodelay(struct sock *sk) 3092{ 3093 lock_sock(sk); 3094 __tcp_sock_set_nodelay(sk, true); 3095 release_sock(sk); 3096} 3097EXPORT_SYMBOL(tcp_sock_set_nodelay); 3098 3099static void __tcp_sock_set_quickack(struct sock *sk, int val) 3100{ 3101 if (!val) { 3102 inet_csk_enter_pingpong_mode(sk); 3103 return; 3104 } 3105 3106 inet_csk_exit_pingpong_mode(sk); 3107 if ((1 << sk->sk_state) & (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT) && 3108 inet_csk_ack_scheduled(sk)) { 3109 inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_PUSHED; 3110 tcp_cleanup_rbuf(sk, 1); 3111 if (!(val & 1)) 3112 inet_csk_enter_pingpong_mode(sk); 3113 } 3114} 3115 3116void tcp_sock_set_quickack(struct sock *sk, int val) 3117{ 3118 lock_sock(sk); 3119 __tcp_sock_set_quickack(sk, val); 3120 release_sock(sk); 3121} 3122EXPORT_SYMBOL(tcp_sock_set_quickack); 3123 3124int tcp_sock_set_syncnt(struct sock *sk, int val) 3125{ 3126 if (val < 1 || val > MAX_TCP_SYNCNT) 3127 return -EINVAL; 3128 3129 lock_sock(sk); 3130 WRITE_ONCE(inet_csk(sk)->icsk_syn_retries, val); 3131 release_sock(sk); 3132 return 0; 3133} 3134EXPORT_SYMBOL(tcp_sock_set_syncnt); 3135 3136void tcp_sock_set_user_timeout(struct sock *sk, u32 val) 3137{ 3138 lock_sock(sk); 3139 WRITE_ONCE(inet_csk(sk)->icsk_user_timeout, val); 3140 release_sock(sk); 3141} 3142EXPORT_SYMBOL(tcp_sock_set_user_timeout); 3143 3144int tcp_sock_set_keepidle_locked(struct sock *sk, int val) 3145{ 3146 struct tcp_sock *tp = tcp_sk(sk); 3147 3148 if (val < 1 || val > MAX_TCP_KEEPIDLE) 3149 return -EINVAL; 3150 3151 /* Paired with WRITE_ONCE() in keepalive_time_when() */ 3152 WRITE_ONCE(tp->keepalive_time, val * HZ); 3153 if (sock_flag(sk, SOCK_KEEPOPEN) && 3154 !((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) { 3155 u32 elapsed = keepalive_time_elapsed(tp); 3156 3157 if (tp->keepalive_time > elapsed) 3158 elapsed = tp->keepalive_time - elapsed; 3159 else 3160 elapsed = 0; 3161 inet_csk_reset_keepalive_timer(sk, elapsed); 3162 } 3163 3164 return 0; 3165} 3166 3167int tcp_sock_set_keepidle(struct sock *sk, int val) 3168{ 3169 int err; 3170 3171 lock_sock(sk); 3172 err = tcp_sock_set_keepidle_locked(sk, val); 3173 release_sock(sk); 3174 return err; 3175} 3176EXPORT_SYMBOL(tcp_sock_set_keepidle); 3177 3178int tcp_sock_set_keepintvl(struct sock *sk, int val) 3179{ 3180 if (val < 1 || val > MAX_TCP_KEEPINTVL) 3181 return -EINVAL; 3182 3183 lock_sock(sk); 3184 WRITE_ONCE(tcp_sk(sk)->keepalive_intvl, val * HZ); 3185 release_sock(sk); 3186 return 0; 3187} 3188EXPORT_SYMBOL(tcp_sock_set_keepintvl); 3189 3190int tcp_sock_set_keepcnt(struct sock *sk, int val) 3191{ 3192 if (val < 1 || val > MAX_TCP_KEEPCNT) 3193 return -EINVAL; 3194 3195 lock_sock(sk); 3196 /* Paired with READ_ONCE() in keepalive_probes() */ 3197 WRITE_ONCE(tcp_sk(sk)->keepalive_probes, val); 3198 release_sock(sk); 3199 return 0; 3200} 3201EXPORT_SYMBOL(tcp_sock_set_keepcnt); 3202 3203/* 3204 * Socket option code for TCP. 3205 */ 3206static int do_tcp_setsockopt(struct sock *sk, int level, int optname, 3207 sockptr_t optval, unsigned int optlen) 3208{ 3209 struct tcp_sock *tp = tcp_sk(sk); 3210 struct inet_connection_sock *icsk = inet_csk(sk); 3211 struct net *net = sock_net(sk); 3212 int val; 3213 int err = 0; 3214 3215 /* These are data/string values, all the others are ints */ 3216 switch (optname) { 3217 case TCP_CONGESTION: { 3218 char name[TCP_CA_NAME_MAX]; 3219 3220 if (optlen < 1) 3221 return -EINVAL; 3222 3223 val = strncpy_from_sockptr(name, optval, 3224 min_t(long, TCP_CA_NAME_MAX-1, optlen)); 3225 if (val < 0) 3226 return -EFAULT; 3227 name[val] = 0; 3228 3229 lock_sock(sk); 3230 err = tcp_set_congestion_control(sk, name, true, 3231 ns_capable(sock_net(sk)->user_ns, 3232 CAP_NET_ADMIN)); 3233 release_sock(sk); 3234 return err; 3235 } 3236 case TCP_ULP: { 3237 char name[TCP_ULP_NAME_MAX]; 3238 3239 if (optlen < 1) 3240 return -EINVAL; 3241 3242 val = strncpy_from_sockptr(name, optval, 3243 min_t(long, TCP_ULP_NAME_MAX - 1, 3244 optlen)); 3245 if (val < 0) 3246 return -EFAULT; 3247 name[val] = 0; 3248 3249 lock_sock(sk); 3250 err = tcp_set_ulp(sk, name); 3251 release_sock(sk); 3252 return err; 3253 } 3254 case TCP_FASTOPEN_KEY: { 3255 __u8 key[TCP_FASTOPEN_KEY_BUF_LENGTH]; 3256 __u8 *backup_key = NULL; 3257 3258 /* Allow a backup key as well to facilitate key rotation 3259 * First key is the active one. 3260 */ 3261 if (optlen != TCP_FASTOPEN_KEY_LENGTH && 3262 optlen != TCP_FASTOPEN_KEY_BUF_LENGTH) 3263 return -EINVAL; 3264 3265 if (copy_from_sockptr(key, optval, optlen)) 3266 return -EFAULT; 3267 3268 if (optlen == TCP_FASTOPEN_KEY_BUF_LENGTH) 3269 backup_key = key + TCP_FASTOPEN_KEY_LENGTH; 3270 3271 return tcp_fastopen_reset_cipher(net, sk, key, backup_key); 3272 } 3273 default: 3274 /* fallthru */ 3275 break; 3276 } 3277 3278 if (optlen < sizeof(int)) 3279 return -EINVAL; 3280 3281 if (copy_from_sockptr(&val, optval, sizeof(val))) 3282 return -EFAULT; 3283 3284 lock_sock(sk); 3285 3286 switch (optname) { 3287 case TCP_MAXSEG: 3288 /* Values greater than interface MTU won't take effect. However 3289 * at the point when this call is done we typically don't yet 3290 * know which interface is going to be used 3291 */ 3292 if (val && (val < TCP_MIN_MSS || val > MAX_TCP_WINDOW)) { 3293 err = -EINVAL; 3294 break; 3295 } 3296 tp->rx_opt.user_mss = val; 3297 break; 3298 3299 case TCP_NODELAY: 3300 __tcp_sock_set_nodelay(sk, val); 3301 break; 3302 3303 case TCP_THIN_LINEAR_TIMEOUTS: 3304 if (val < 0 || val > 1) 3305 err = -EINVAL; 3306 else 3307 tp->thin_lto = val; 3308 break; 3309 3310 case TCP_THIN_DUPACK: 3311 if (val < 0 || val > 1) 3312 err = -EINVAL; 3313 break; 3314 3315 case TCP_REPAIR: 3316 if (!tcp_can_repair_sock(sk)) 3317 err = -EPERM; 3318 else if (val == TCP_REPAIR_ON) { 3319 tp->repair = 1; 3320 sk->sk_reuse = SK_FORCE_REUSE; 3321 tp->repair_queue = TCP_NO_QUEUE; 3322 } else if (val == TCP_REPAIR_OFF) { 3323 tp->repair = 0; 3324 sk->sk_reuse = SK_NO_REUSE; 3325 tcp_send_window_probe(sk); 3326 } else if (val == TCP_REPAIR_OFF_NO_WP) { 3327 tp->repair = 0; 3328 sk->sk_reuse = SK_NO_REUSE; 3329 } else 3330 err = -EINVAL; 3331 3332 break; 3333 3334 case TCP_REPAIR_QUEUE: 3335 if (!tp->repair) 3336 err = -EPERM; 3337 else if ((unsigned int)val < TCP_QUEUES_NR) 3338 tp->repair_queue = val; 3339 else 3340 err = -EINVAL; 3341 break; 3342 3343 case TCP_QUEUE_SEQ: 3344 if (sk->sk_state != TCP_CLOSE) { 3345 err = -EPERM; 3346 } else if (tp->repair_queue == TCP_SEND_QUEUE) { 3347 if (!tcp_rtx_queue_empty(sk)) 3348 err = -EPERM; 3349 else 3350 WRITE_ONCE(tp->write_seq, val); 3351 } else if (tp->repair_queue == TCP_RECV_QUEUE) { 3352 if (tp->rcv_nxt != tp->copied_seq) { 3353 err = -EPERM; 3354 } else { 3355 WRITE_ONCE(tp->rcv_nxt, val); 3356 WRITE_ONCE(tp->copied_seq, val); 3357 } 3358 } else { 3359 err = -EINVAL; 3360 } 3361 break; 3362 3363 case TCP_REPAIR_OPTIONS: 3364 if (!tp->repair) 3365 err = -EINVAL; 3366 else if (sk->sk_state == TCP_ESTABLISHED && !tp->bytes_sent) 3367 err = tcp_repair_options_est(sk, optval, optlen); 3368 else 3369 err = -EPERM; 3370 break; 3371 3372 case TCP_CORK: 3373 __tcp_sock_set_cork(sk, val); 3374 break; 3375 3376 case TCP_KEEPIDLE: 3377 err = tcp_sock_set_keepidle_locked(sk, val); 3378 break; 3379 case TCP_KEEPINTVL: 3380 if (val < 1 || val > MAX_TCP_KEEPINTVL) 3381 err = -EINVAL; 3382 else 3383 WRITE_ONCE(tp->keepalive_intvl, val * HZ); 3384 break; 3385 case TCP_KEEPCNT: 3386 if (val < 1 || val > MAX_TCP_KEEPCNT) 3387 err = -EINVAL; 3388 else 3389 WRITE_ONCE(tp->keepalive_probes, val); 3390 break; 3391 case TCP_SYNCNT: 3392 if (val < 1 || val > MAX_TCP_SYNCNT) 3393 err = -EINVAL; 3394 else 3395 WRITE_ONCE(icsk->icsk_syn_retries, val); 3396 break; 3397 3398 case TCP_SAVE_SYN: 3399 /* 0: disable, 1: enable, 2: start from ether_header */ 3400 if (val < 0 || val > 2) 3401 err = -EINVAL; 3402 else 3403 tp->save_syn = val; 3404 break; 3405 3406 case TCP_LINGER2: 3407 if (val < 0) 3408 WRITE_ONCE(tp->linger2, -1); 3409 else if (val > TCP_FIN_TIMEOUT_MAX / HZ) 3410 WRITE_ONCE(tp->linger2, TCP_FIN_TIMEOUT_MAX); 3411 else 3412 WRITE_ONCE(tp->linger2, val * HZ); 3413 break; 3414 3415 case TCP_DEFER_ACCEPT: 3416 /* Translate value in seconds to number of retransmits */ 3417 WRITE_ONCE(icsk->icsk_accept_queue.rskq_defer_accept, 3418 secs_to_retrans(val, TCP_TIMEOUT_INIT / HZ, 3419 TCP_RTO_MAX / HZ)); 3420 break; 3421 3422 case TCP_WINDOW_CLAMP: 3423 if (!val) { 3424 if (sk->sk_state != TCP_CLOSE) { 3425 err = -EINVAL; 3426 break; 3427 } 3428 tp->window_clamp = 0; 3429 } else 3430 tp->window_clamp = val < SOCK_MIN_RCVBUF / 2 ? 3431 SOCK_MIN_RCVBUF / 2 : val; 3432 break; 3433 3434 case TCP_QUICKACK: 3435 __tcp_sock_set_quickack(sk, val); 3436 break; 3437 3438#ifdef CONFIG_TCP_MD5SIG 3439 case TCP_MD5SIG: 3440 case TCP_MD5SIG_EXT: 3441 err = tp->af_specific->md5_parse(sk, optname, optval, optlen); 3442 break; 3443#endif 3444 case TCP_USER_TIMEOUT: 3445 /* Cap the max time in ms TCP will retry or probe the window 3446 * before giving up and aborting (ETIMEDOUT) a connection. 3447 */ 3448 if (val < 0) 3449 err = -EINVAL; 3450 else 3451 WRITE_ONCE(icsk->icsk_user_timeout, val); 3452 break; 3453 3454 case TCP_FASTOPEN: 3455 if (val >= 0 && ((1 << sk->sk_state) & (TCPF_CLOSE | 3456 TCPF_LISTEN))) { 3457 tcp_fastopen_init_key_once(net); 3458 3459 fastopen_queue_tune(sk, val); 3460 } else { 3461 err = -EINVAL; 3462 } 3463 break; 3464 case TCP_FASTOPEN_CONNECT: 3465 if (val > 1 || val < 0) { 3466 err = -EINVAL; 3467 } else if (READ_ONCE(net->ipv4.sysctl_tcp_fastopen) & 3468 TFO_CLIENT_ENABLE) { 3469 if (sk->sk_state == TCP_CLOSE) 3470 tp->fastopen_connect = val; 3471 else 3472 err = -EINVAL; 3473 } else { 3474 err = -EOPNOTSUPP; 3475 } 3476 break; 3477 case TCP_FASTOPEN_NO_COOKIE: 3478 if (val > 1 || val < 0) 3479 err = -EINVAL; 3480 else if (!((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) 3481 err = -EINVAL; 3482 else 3483 tp->fastopen_no_cookie = val; 3484 break; 3485 case TCP_TIMESTAMP: 3486 if (!tp->repair) 3487 err = -EPERM; 3488 else 3489 tp->tsoffset = val - tcp_time_stamp_raw(); 3490 break; 3491 case TCP_REPAIR_WINDOW: 3492 err = tcp_repair_set_window(tp, optval, optlen); 3493 break; 3494 case TCP_NOTSENT_LOWAT: 3495 WRITE_ONCE(tp->notsent_lowat, val); 3496 sk->sk_write_space(sk); 3497 break; 3498 case TCP_INQ: 3499 if (val > 1 || val < 0) 3500 err = -EINVAL; 3501 else 3502 tp->recvmsg_inq = val; 3503 break; 3504 case TCP_TX_DELAY: 3505 if (val) 3506 tcp_enable_tx_delay(); 3507 WRITE_ONCE(tp->tcp_tx_delay, val); 3508 break; 3509#ifdef CONFIG_TCP_NATA_URC 3510 case TCP_NATA_URC: 3511 err = tcp_set_nata_urc(sk, optval, optlen); 3512 break; 3513#endif 3514#ifdef CONFIG_TCP_NATA_STL 3515 case TCP_NATA_STL: 3516 err = tcp_set_nata_stl(sk, optval, optlen); 3517 break; 3518#endif 3519 default: 3520 err = -ENOPROTOOPT; 3521 break; 3522 } 3523 3524 release_sock(sk); 3525 return err; 3526} 3527 3528int tcp_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval, 3529 unsigned int optlen) 3530{ 3531 const struct inet_connection_sock *icsk = inet_csk(sk); 3532 3533 if (level != SOL_TCP) 3534 /* Paired with WRITE_ONCE() in do_ipv6_setsockopt() and tcp_v6_connect() */ 3535 return READ_ONCE(icsk->icsk_af_ops)->setsockopt(sk, level, optname, 3536 optval, optlen); 3537 return do_tcp_setsockopt(sk, level, optname, optval, optlen); 3538} 3539EXPORT_SYMBOL(tcp_setsockopt); 3540 3541static void tcp_get_info_chrono_stats(const struct tcp_sock *tp, 3542 struct tcp_info *info) 3543{ 3544 u64 stats[__TCP_CHRONO_MAX], total = 0; 3545 enum tcp_chrono i; 3546 3547 for (i = TCP_CHRONO_BUSY; i < __TCP_CHRONO_MAX; ++i) { 3548 stats[i] = tp->chrono_stat[i - 1]; 3549 if (i == tp->chrono_type) 3550 stats[i] += tcp_jiffies32 - tp->chrono_start; 3551 stats[i] *= USEC_PER_SEC / HZ; 3552 total += stats[i]; 3553 } 3554 3555 info->tcpi_busy_time = total; 3556 info->tcpi_rwnd_limited = stats[TCP_CHRONO_RWND_LIMITED]; 3557 info->tcpi_sndbuf_limited = stats[TCP_CHRONO_SNDBUF_LIMITED]; 3558} 3559 3560/* Return information about state of tcp endpoint in API format. */ 3561void tcp_get_info(struct sock *sk, struct tcp_info *info) 3562{ 3563 const struct tcp_sock *tp = tcp_sk(sk); /* iff sk_type == SOCK_STREAM */ 3564 const struct inet_connection_sock *icsk = inet_csk(sk); 3565 unsigned long rate; 3566 u32 now; 3567 u64 rate64; 3568 bool slow; 3569 3570 memset(info, 0, sizeof(*info)); 3571 if (sk->sk_type != SOCK_STREAM) 3572 return; 3573 3574 info->tcpi_state = inet_sk_state_load(sk); 3575 3576 /* Report meaningful fields for all TCP states, including listeners */ 3577 rate = READ_ONCE(sk->sk_pacing_rate); 3578 rate64 = (rate != ~0UL) ? rate : ~0ULL; 3579 info->tcpi_pacing_rate = rate64; 3580 3581 rate = READ_ONCE(sk->sk_max_pacing_rate); 3582 rate64 = (rate != ~0UL) ? rate : ~0ULL; 3583 info->tcpi_max_pacing_rate = rate64; 3584 3585 info->tcpi_reordering = tp->reordering; 3586 info->tcpi_snd_cwnd = tp->snd_cwnd; 3587 3588 if (info->tcpi_state == TCP_LISTEN) { 3589 /* listeners aliased fields : 3590 * tcpi_unacked -> Number of children ready for accept() 3591 * tcpi_sacked -> max backlog 3592 */ 3593 info->tcpi_unacked = READ_ONCE(sk->sk_ack_backlog); 3594 info->tcpi_sacked = READ_ONCE(sk->sk_max_ack_backlog); 3595 return; 3596 } 3597 3598 slow = lock_sock_fast(sk); 3599 3600 info->tcpi_ca_state = icsk->icsk_ca_state; 3601 info->tcpi_retransmits = icsk->icsk_retransmits; 3602 info->tcpi_probes = icsk->icsk_probes_out; 3603 info->tcpi_backoff = icsk->icsk_backoff; 3604 3605 if (tp->rx_opt.tstamp_ok) 3606 info->tcpi_options |= TCPI_OPT_TIMESTAMPS; 3607 if (tcp_is_sack(tp)) 3608 info->tcpi_options |= TCPI_OPT_SACK; 3609 if (tp->rx_opt.wscale_ok) { 3610 info->tcpi_options |= TCPI_OPT_WSCALE; 3611 info->tcpi_snd_wscale = tp->rx_opt.snd_wscale; 3612 info->tcpi_rcv_wscale = tp->rx_opt.rcv_wscale; 3613 } 3614 3615 if (tp->ecn_flags & TCP_ECN_OK) 3616 info->tcpi_options |= TCPI_OPT_ECN; 3617 if (tp->ecn_flags & TCP_ECN_SEEN) 3618 info->tcpi_options |= TCPI_OPT_ECN_SEEN; 3619 if (tp->syn_data_acked) 3620 info->tcpi_options |= TCPI_OPT_SYN_DATA; 3621 3622 info->tcpi_rto = jiffies_to_usecs(icsk->icsk_rto); 3623 info->tcpi_ato = jiffies_to_usecs(icsk->icsk_ack.ato); 3624 info->tcpi_snd_mss = tp->mss_cache; 3625 info->tcpi_rcv_mss = icsk->icsk_ack.rcv_mss; 3626 3627 info->tcpi_unacked = tp->packets_out; 3628 info->tcpi_sacked = tp->sacked_out; 3629 3630 info->tcpi_lost = tp->lost_out; 3631 info->tcpi_retrans = tp->retrans_out; 3632 3633 now = tcp_jiffies32; 3634 info->tcpi_last_data_sent = jiffies_to_msecs(now - tp->lsndtime); 3635 info->tcpi_last_data_recv = jiffies_to_msecs(now - icsk->icsk_ack.lrcvtime); 3636 info->tcpi_last_ack_recv = jiffies_to_msecs(now - tp->rcv_tstamp); 3637 3638 info->tcpi_pmtu = icsk->icsk_pmtu_cookie; 3639 info->tcpi_rcv_ssthresh = tp->rcv_ssthresh; 3640 info->tcpi_rtt = tp->srtt_us >> 3; 3641 info->tcpi_rttvar = tp->mdev_us >> 2; 3642 info->tcpi_snd_ssthresh = tp->snd_ssthresh; 3643 info->tcpi_advmss = tp->advmss; 3644 3645 info->tcpi_rcv_rtt = tp->rcv_rtt_est.rtt_us >> 3; 3646 info->tcpi_rcv_space = tp->rcvq_space.space; 3647 3648 info->tcpi_total_retrans = tp->total_retrans; 3649 3650 info->tcpi_bytes_acked = tp->bytes_acked; 3651 info->tcpi_bytes_received = tp->bytes_received; 3652 info->tcpi_notsent_bytes = max_t(int, 0, tp->write_seq - tp->snd_nxt); 3653 tcp_get_info_chrono_stats(tp, info); 3654 3655 info->tcpi_segs_out = tp->segs_out; 3656 info->tcpi_segs_in = tp->segs_in; 3657 3658 info->tcpi_min_rtt = tcp_min_rtt(tp); 3659 info->tcpi_data_segs_in = tp->data_segs_in; 3660 info->tcpi_data_segs_out = tp->data_segs_out; 3661 3662 info->tcpi_delivery_rate_app_limited = tp->rate_app_limited ? 1 : 0; 3663 rate64 = tcp_compute_delivery_rate(tp); 3664 if (rate64) 3665 info->tcpi_delivery_rate = rate64; 3666 info->tcpi_delivered = tp->delivered; 3667 info->tcpi_delivered_ce = tp->delivered_ce; 3668 info->tcpi_bytes_sent = tp->bytes_sent; 3669 info->tcpi_bytes_retrans = tp->bytes_retrans; 3670 info->tcpi_dsack_dups = tp->dsack_dups; 3671 info->tcpi_reord_seen = tp->reord_seen; 3672 info->tcpi_rcv_ooopack = tp->rcv_ooopack; 3673 info->tcpi_snd_wnd = tp->snd_wnd; 3674 info->tcpi_fastopen_client_fail = tp->fastopen_client_fail; 3675 unlock_sock_fast(sk, slow); 3676} 3677EXPORT_SYMBOL_GPL(tcp_get_info); 3678 3679static size_t tcp_opt_stats_get_size(void) 3680{ 3681 return 3682 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BUSY */ 3683 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_RWND_LIMITED */ 3684 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_SNDBUF_LIMITED */ 3685 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_DATA_SEGS_OUT */ 3686 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_TOTAL_RETRANS */ 3687 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_PACING_RATE */ 3688 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_DELIVERY_RATE */ 3689 nla_total_size(sizeof(u32)) + /* TCP_NLA_SND_CWND */ 3690 nla_total_size(sizeof(u32)) + /* TCP_NLA_REORDERING */ 3691 nla_total_size(sizeof(u32)) + /* TCP_NLA_MIN_RTT */ 3692 nla_total_size(sizeof(u8)) + /* TCP_NLA_RECUR_RETRANS */ 3693 nla_total_size(sizeof(u8)) + /* TCP_NLA_DELIVERY_RATE_APP_LMT */ 3694 nla_total_size(sizeof(u32)) + /* TCP_NLA_SNDQ_SIZE */ 3695 nla_total_size(sizeof(u8)) + /* TCP_NLA_CA_STATE */ 3696 nla_total_size(sizeof(u32)) + /* TCP_NLA_SND_SSTHRESH */ 3697 nla_total_size(sizeof(u32)) + /* TCP_NLA_DELIVERED */ 3698 nla_total_size(sizeof(u32)) + /* TCP_NLA_DELIVERED_CE */ 3699 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BYTES_SENT */ 3700 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BYTES_RETRANS */ 3701 nla_total_size(sizeof(u32)) + /* TCP_NLA_DSACK_DUPS */ 3702 nla_total_size(sizeof(u32)) + /* TCP_NLA_REORD_SEEN */ 3703 nla_total_size(sizeof(u32)) + /* TCP_NLA_SRTT */ 3704 nla_total_size(sizeof(u16)) + /* TCP_NLA_TIMEOUT_REHASH */ 3705 nla_total_size(sizeof(u32)) + /* TCP_NLA_BYTES_NOTSENT */ 3706 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_EDT */ 3707 0; 3708} 3709 3710struct sk_buff *tcp_get_timestamping_opt_stats(const struct sock *sk, 3711 const struct sk_buff *orig_skb) 3712{ 3713 const struct tcp_sock *tp = tcp_sk(sk); 3714 struct sk_buff *stats; 3715 struct tcp_info info; 3716 unsigned long rate; 3717 u64 rate64; 3718 3719 stats = alloc_skb(tcp_opt_stats_get_size(), GFP_ATOMIC); 3720 if (!stats) 3721 return NULL; 3722 3723 tcp_get_info_chrono_stats(tp, &info); 3724 nla_put_u64_64bit(stats, TCP_NLA_BUSY, 3725 info.tcpi_busy_time, TCP_NLA_PAD); 3726 nla_put_u64_64bit(stats, TCP_NLA_RWND_LIMITED, 3727 info.tcpi_rwnd_limited, TCP_NLA_PAD); 3728 nla_put_u64_64bit(stats, TCP_NLA_SNDBUF_LIMITED, 3729 info.tcpi_sndbuf_limited, TCP_NLA_PAD); 3730 nla_put_u64_64bit(stats, TCP_NLA_DATA_SEGS_OUT, 3731 tp->data_segs_out, TCP_NLA_PAD); 3732 nla_put_u64_64bit(stats, TCP_NLA_TOTAL_RETRANS, 3733 tp->total_retrans, TCP_NLA_PAD); 3734 3735 rate = READ_ONCE(sk->sk_pacing_rate); 3736 rate64 = (rate != ~0UL) ? rate : ~0ULL; 3737 nla_put_u64_64bit(stats, TCP_NLA_PACING_RATE, rate64, TCP_NLA_PAD); 3738 3739 rate64 = tcp_compute_delivery_rate(tp); 3740 nla_put_u64_64bit(stats, TCP_NLA_DELIVERY_RATE, rate64, TCP_NLA_PAD); 3741 3742 nla_put_u32(stats, TCP_NLA_SND_CWND, tp->snd_cwnd); 3743 nla_put_u32(stats, TCP_NLA_REORDERING, tp->reordering); 3744 nla_put_u32(stats, TCP_NLA_MIN_RTT, tcp_min_rtt(tp)); 3745 3746 nla_put_u8(stats, TCP_NLA_RECUR_RETRANS, inet_csk(sk)->icsk_retransmits); 3747 nla_put_u8(stats, TCP_NLA_DELIVERY_RATE_APP_LMT, !!tp->rate_app_limited); 3748 nla_put_u32(stats, TCP_NLA_SND_SSTHRESH, tp->snd_ssthresh); 3749 nla_put_u32(stats, TCP_NLA_DELIVERED, tp->delivered); 3750 nla_put_u32(stats, TCP_NLA_DELIVERED_CE, tp->delivered_ce); 3751 3752 nla_put_u32(stats, TCP_NLA_SNDQ_SIZE, tp->write_seq - tp->snd_una); 3753 nla_put_u8(stats, TCP_NLA_CA_STATE, inet_csk(sk)->icsk_ca_state); 3754 3755 nla_put_u64_64bit(stats, TCP_NLA_BYTES_SENT, tp->bytes_sent, 3756 TCP_NLA_PAD); 3757 nla_put_u64_64bit(stats, TCP_NLA_BYTES_RETRANS, tp->bytes_retrans, 3758 TCP_NLA_PAD); 3759 nla_put_u32(stats, TCP_NLA_DSACK_DUPS, tp->dsack_dups); 3760 nla_put_u32(stats, TCP_NLA_REORD_SEEN, tp->reord_seen); 3761 nla_put_u32(stats, TCP_NLA_SRTT, tp->srtt_us >> 3); 3762 nla_put_u16(stats, TCP_NLA_TIMEOUT_REHASH, tp->timeout_rehash); 3763 nla_put_u32(stats, TCP_NLA_BYTES_NOTSENT, 3764 max_t(int, 0, tp->write_seq - tp->snd_nxt)); 3765 nla_put_u64_64bit(stats, TCP_NLA_EDT, orig_skb->skb_mstamp_ns, 3766 TCP_NLA_PAD); 3767 3768 return stats; 3769} 3770 3771static int do_tcp_getsockopt(struct sock *sk, int level, 3772 int optname, char __user *optval, int __user *optlen) 3773{ 3774 struct inet_connection_sock *icsk = inet_csk(sk); 3775 struct tcp_sock *tp = tcp_sk(sk); 3776 struct net *net = sock_net(sk); 3777 int val, len; 3778 3779 if (get_user(len, optlen)) 3780 return -EFAULT; 3781 3782 len = min_t(unsigned int, len, sizeof(int)); 3783 3784 if (len < 0) 3785 return -EINVAL; 3786 3787 switch (optname) { 3788 case TCP_MAXSEG: 3789 val = tp->mss_cache; 3790 if (tp->rx_opt.user_mss && 3791 ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) 3792 val = tp->rx_opt.user_mss; 3793 if (tp->repair) 3794 val = tp->rx_opt.mss_clamp; 3795 break; 3796 case TCP_NODELAY: 3797 val = !!(tp->nonagle&TCP_NAGLE_OFF); 3798 break; 3799 case TCP_CORK: 3800 val = !!(tp->nonagle&TCP_NAGLE_CORK); 3801 break; 3802 case TCP_KEEPIDLE: 3803 val = keepalive_time_when(tp) / HZ; 3804 break; 3805 case TCP_KEEPINTVL: 3806 val = keepalive_intvl_when(tp) / HZ; 3807 break; 3808 case TCP_KEEPCNT: 3809 val = keepalive_probes(tp); 3810 break; 3811 case TCP_SYNCNT: 3812 val = READ_ONCE(icsk->icsk_syn_retries) ? : 3813 READ_ONCE(net->ipv4.sysctl_tcp_syn_retries); 3814 break; 3815 case TCP_LINGER2: 3816 val = READ_ONCE(tp->linger2); 3817 if (val >= 0) 3818 val = (val ? : READ_ONCE(net->ipv4.sysctl_tcp_fin_timeout)) / HZ; 3819 break; 3820 case TCP_DEFER_ACCEPT: 3821 val = READ_ONCE(icsk->icsk_accept_queue.rskq_defer_accept); 3822 val = retrans_to_secs(val, TCP_TIMEOUT_INIT / HZ, 3823 TCP_RTO_MAX / HZ); 3824 break; 3825 case TCP_WINDOW_CLAMP: 3826 val = tp->window_clamp; 3827 break; 3828 case TCP_INFO: { 3829 struct tcp_info info; 3830 3831 if (get_user(len, optlen)) 3832 return -EFAULT; 3833 3834 tcp_get_info(sk, &info); 3835 3836 len = min_t(unsigned int, len, sizeof(info)); 3837 if (put_user(len, optlen)) 3838 return -EFAULT; 3839 if (copy_to_user(optval, &info, len)) 3840 return -EFAULT; 3841 return 0; 3842 } 3843 case TCP_CC_INFO: { 3844 const struct tcp_congestion_ops *ca_ops; 3845 union tcp_cc_info info; 3846 size_t sz = 0; 3847 int attr; 3848 3849 if (get_user(len, optlen)) 3850 return -EFAULT; 3851 3852 ca_ops = icsk->icsk_ca_ops; 3853 if (ca_ops && ca_ops->get_info) 3854 sz = ca_ops->get_info(sk, ~0U, &attr, &info); 3855 3856 len = min_t(unsigned int, len, sz); 3857 if (put_user(len, optlen)) 3858 return -EFAULT; 3859 if (copy_to_user(optval, &info, len)) 3860 return -EFAULT; 3861 return 0; 3862 } 3863 case TCP_QUICKACK: 3864 val = !inet_csk_in_pingpong_mode(sk); 3865 break; 3866 3867 case TCP_CONGESTION: 3868 if (get_user(len, optlen)) 3869 return -EFAULT; 3870 len = min_t(unsigned int, len, TCP_CA_NAME_MAX); 3871 if (put_user(len, optlen)) 3872 return -EFAULT; 3873 if (copy_to_user(optval, icsk->icsk_ca_ops->name, len)) 3874 return -EFAULT; 3875 return 0; 3876 3877 case TCP_ULP: 3878 if (get_user(len, optlen)) 3879 return -EFAULT; 3880 len = min_t(unsigned int, len, TCP_ULP_NAME_MAX); 3881 if (!icsk->icsk_ulp_ops) { 3882 if (put_user(0, optlen)) 3883 return -EFAULT; 3884 return 0; 3885 } 3886 if (put_user(len, optlen)) 3887 return -EFAULT; 3888 if (copy_to_user(optval, icsk->icsk_ulp_ops->name, len)) 3889 return -EFAULT; 3890 return 0; 3891 3892 case TCP_FASTOPEN_KEY: { 3893 u64 key[TCP_FASTOPEN_KEY_BUF_LENGTH / sizeof(u64)]; 3894 unsigned int key_len; 3895 3896 if (get_user(len, optlen)) 3897 return -EFAULT; 3898 3899 key_len = tcp_fastopen_get_cipher(net, icsk, key) * 3900 TCP_FASTOPEN_KEY_LENGTH; 3901 len = min_t(unsigned int, len, key_len); 3902 if (put_user(len, optlen)) 3903 return -EFAULT; 3904 if (copy_to_user(optval, key, len)) 3905 return -EFAULT; 3906 return 0; 3907 } 3908 case TCP_THIN_LINEAR_TIMEOUTS: 3909 val = tp->thin_lto; 3910 break; 3911 3912 case TCP_THIN_DUPACK: 3913 val = 0; 3914 break; 3915 3916 case TCP_REPAIR: 3917 val = tp->repair; 3918 break; 3919 3920 case TCP_REPAIR_QUEUE: 3921 if (tp->repair) 3922 val = tp->repair_queue; 3923 else 3924 return -EINVAL; 3925 break; 3926 3927 case TCP_REPAIR_WINDOW: { 3928 struct tcp_repair_window opt; 3929 3930 if (get_user(len, optlen)) 3931 return -EFAULT; 3932 3933 if (len != sizeof(opt)) 3934 return -EINVAL; 3935 3936 if (!tp->repair) 3937 return -EPERM; 3938 3939 opt.snd_wl1 = tp->snd_wl1; 3940 opt.snd_wnd = tp->snd_wnd; 3941 opt.max_window = tp->max_window; 3942 opt.rcv_wnd = tp->rcv_wnd; 3943 opt.rcv_wup = tp->rcv_wup; 3944 3945 if (copy_to_user(optval, &opt, len)) 3946 return -EFAULT; 3947 return 0; 3948 } 3949 case TCP_QUEUE_SEQ: 3950 if (tp->repair_queue == TCP_SEND_QUEUE) 3951 val = tp->write_seq; 3952 else if (tp->repair_queue == TCP_RECV_QUEUE) 3953 val = tp->rcv_nxt; 3954 else 3955 return -EINVAL; 3956 break; 3957 3958 case TCP_USER_TIMEOUT: 3959 val = READ_ONCE(icsk->icsk_user_timeout); 3960 break; 3961 3962 case TCP_FASTOPEN: 3963 val = READ_ONCE(icsk->icsk_accept_queue.fastopenq.max_qlen); 3964 break; 3965 3966 case TCP_FASTOPEN_CONNECT: 3967 val = tp->fastopen_connect; 3968 break; 3969 3970 case TCP_FASTOPEN_NO_COOKIE: 3971 val = tp->fastopen_no_cookie; 3972 break; 3973 3974 case TCP_TX_DELAY: 3975 val = READ_ONCE(tp->tcp_tx_delay); 3976 break; 3977 3978 case TCP_TIMESTAMP: 3979 val = tcp_time_stamp_raw() + tp->tsoffset; 3980 break; 3981 case TCP_NOTSENT_LOWAT: 3982 val = READ_ONCE(tp->notsent_lowat); 3983 break; 3984 case TCP_INQ: 3985 val = tp->recvmsg_inq; 3986 break; 3987 case TCP_SAVE_SYN: 3988 val = tp->save_syn; 3989 break; 3990 case TCP_SAVED_SYN: { 3991 if (get_user(len, optlen)) 3992 return -EFAULT; 3993 3994 lock_sock(sk); 3995 if (tp->saved_syn) { 3996 if (len < tcp_saved_syn_len(tp->saved_syn)) { 3997 if (put_user(tcp_saved_syn_len(tp->saved_syn), 3998 optlen)) { 3999 release_sock(sk); 4000 return -EFAULT; 4001 } 4002 release_sock(sk); 4003 return -EINVAL; 4004 } 4005 len = tcp_saved_syn_len(tp->saved_syn); 4006 if (put_user(len, optlen)) { 4007 release_sock(sk); 4008 return -EFAULT; 4009 } 4010 if (copy_to_user(optval, tp->saved_syn->data, len)) { 4011 release_sock(sk); 4012 return -EFAULT; 4013 } 4014 tcp_saved_syn_free(tp); 4015 release_sock(sk); 4016 } else { 4017 release_sock(sk); 4018 len = 0; 4019 if (put_user(len, optlen)) 4020 return -EFAULT; 4021 } 4022 return 0; 4023 } 4024#ifdef CONFIG_MMU 4025 case TCP_ZEROCOPY_RECEIVE: { 4026 struct tcp_zerocopy_receive zc = {}; 4027 int err; 4028 4029 if (get_user(len, optlen)) 4030 return -EFAULT; 4031 if (len < 0 || 4032 len < offsetofend(struct tcp_zerocopy_receive, length)) 4033 return -EINVAL; 4034 if (len > sizeof(zc)) { 4035 len = sizeof(zc); 4036 if (put_user(len, optlen)) 4037 return -EFAULT; 4038 } 4039 if (copy_from_user(&zc, optval, len)) 4040 return -EFAULT; 4041 lock_sock(sk); 4042 err = tcp_zerocopy_receive(sk, &zc); 4043 err = BPF_CGROUP_RUN_PROG_GETSOCKOPT_KERN(sk, level, optname, 4044 &zc, &len, err); 4045 release_sock(sk); 4046 if (len >= offsetofend(struct tcp_zerocopy_receive, err)) 4047 goto zerocopy_rcv_sk_err; 4048 switch (len) { 4049 case offsetofend(struct tcp_zerocopy_receive, err): 4050 goto zerocopy_rcv_sk_err; 4051 case offsetofend(struct tcp_zerocopy_receive, inq): 4052 goto zerocopy_rcv_inq; 4053 case offsetofend(struct tcp_zerocopy_receive, length): 4054 default: 4055 goto zerocopy_rcv_out; 4056 } 4057zerocopy_rcv_sk_err: 4058 if (!err) 4059 zc.err = sock_error(sk); 4060zerocopy_rcv_inq: 4061 zc.inq = tcp_inq_hint(sk); 4062zerocopy_rcv_out: 4063 if (!err && copy_to_user(optval, &zc, len)) 4064 err = -EFAULT; 4065 return err; 4066 } 4067#endif 4068 default: 4069 return -ENOPROTOOPT; 4070 } 4071 4072 if (put_user(len, optlen)) 4073 return -EFAULT; 4074 if (copy_to_user(optval, &val, len)) 4075 return -EFAULT; 4076 return 0; 4077} 4078 4079bool tcp_bpf_bypass_getsockopt(int level, int optname) 4080{ 4081 /* TCP do_tcp_getsockopt has optimized getsockopt implementation 4082 * to avoid extra socket lock for TCP_ZEROCOPY_RECEIVE. 4083 */ 4084 if (level == SOL_TCP && optname == TCP_ZEROCOPY_RECEIVE) 4085 return true; 4086 4087 return false; 4088} 4089EXPORT_SYMBOL(tcp_bpf_bypass_getsockopt); 4090 4091int tcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval, 4092 int __user *optlen) 4093{ 4094 struct inet_connection_sock *icsk = inet_csk(sk); 4095 4096 if (level != SOL_TCP) 4097 /* Paired with WRITE_ONCE() in do_ipv6_setsockopt() and tcp_v6_connect() */ 4098 return READ_ONCE(icsk->icsk_af_ops)->getsockopt(sk, level, optname, 4099 optval, optlen); 4100 return do_tcp_getsockopt(sk, level, optname, optval, optlen); 4101} 4102EXPORT_SYMBOL(tcp_getsockopt); 4103 4104#ifdef CONFIG_TCP_MD5SIG 4105static DEFINE_PER_CPU(struct tcp_md5sig_pool, tcp_md5sig_pool); 4106static DEFINE_MUTEX(tcp_md5sig_mutex); 4107static bool tcp_md5sig_pool_populated = false; 4108 4109static void __tcp_alloc_md5sig_pool(void) 4110{ 4111 struct crypto_ahash *hash; 4112 int cpu; 4113 4114 hash = crypto_alloc_ahash("md5", 0, CRYPTO_ALG_ASYNC); 4115 if (IS_ERR(hash)) 4116 return; 4117 4118 for_each_possible_cpu(cpu) { 4119 void *scratch = per_cpu(tcp_md5sig_pool, cpu).scratch; 4120 struct ahash_request *req; 4121 4122 if (!scratch) { 4123 scratch = kmalloc_node(sizeof(union tcp_md5sum_block) + 4124 sizeof(struct tcphdr), 4125 GFP_KERNEL, 4126 cpu_to_node(cpu)); 4127 if (!scratch) 4128 return; 4129 per_cpu(tcp_md5sig_pool, cpu).scratch = scratch; 4130 } 4131 if (per_cpu(tcp_md5sig_pool, cpu).md5_req) 4132 continue; 4133 4134 req = ahash_request_alloc(hash, GFP_KERNEL); 4135 if (!req) 4136 return; 4137 4138 ahash_request_set_callback(req, 0, NULL, NULL); 4139 4140 per_cpu(tcp_md5sig_pool, cpu).md5_req = req; 4141 } 4142 /* before setting tcp_md5sig_pool_populated, we must commit all writes 4143 * to memory. See smp_rmb() in tcp_get_md5sig_pool() 4144 */ 4145 smp_wmb(); 4146 /* Paired with READ_ONCE() from tcp_alloc_md5sig_pool() 4147 * and tcp_get_md5sig_pool(). 4148 */ 4149 WRITE_ONCE(tcp_md5sig_pool_populated, true); 4150} 4151 4152bool tcp_alloc_md5sig_pool(void) 4153{ 4154 /* Paired with WRITE_ONCE() from __tcp_alloc_md5sig_pool() */ 4155 if (unlikely(!READ_ONCE(tcp_md5sig_pool_populated))) { 4156 mutex_lock(&tcp_md5sig_mutex); 4157 4158 if (!tcp_md5sig_pool_populated) { 4159 __tcp_alloc_md5sig_pool(); 4160 if (tcp_md5sig_pool_populated) 4161 static_branch_inc(&tcp_md5_needed); 4162 } 4163 4164 mutex_unlock(&tcp_md5sig_mutex); 4165 } 4166 /* Paired with WRITE_ONCE() from __tcp_alloc_md5sig_pool() */ 4167 return READ_ONCE(tcp_md5sig_pool_populated); 4168} 4169EXPORT_SYMBOL(tcp_alloc_md5sig_pool); 4170 4171 4172/** 4173 * tcp_get_md5sig_pool - get md5sig_pool for this user 4174 * 4175 * We use percpu structure, so if we succeed, we exit with preemption 4176 * and BH disabled, to make sure another thread or softirq handling 4177 * wont try to get same context. 4178 */ 4179struct tcp_md5sig_pool *tcp_get_md5sig_pool(void) 4180{ 4181 local_bh_disable(); 4182 4183 /* Paired with WRITE_ONCE() from __tcp_alloc_md5sig_pool() */ 4184 if (READ_ONCE(tcp_md5sig_pool_populated)) { 4185 /* coupled with smp_wmb() in __tcp_alloc_md5sig_pool() */ 4186 smp_rmb(); 4187 return this_cpu_ptr(&tcp_md5sig_pool); 4188 } 4189 local_bh_enable(); 4190 return NULL; 4191} 4192EXPORT_SYMBOL(tcp_get_md5sig_pool); 4193 4194int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *hp, 4195 const struct sk_buff *skb, unsigned int header_len) 4196{ 4197 struct scatterlist sg; 4198 const struct tcphdr *tp = tcp_hdr(skb); 4199 struct ahash_request *req = hp->md5_req; 4200 unsigned int i; 4201 const unsigned int head_data_len = skb_headlen(skb) > header_len ? 4202 skb_headlen(skb) - header_len : 0; 4203 const struct skb_shared_info *shi = skb_shinfo(skb); 4204 struct sk_buff *frag_iter; 4205 4206 sg_init_table(&sg, 1); 4207 4208 sg_set_buf(&sg, ((u8 *) tp) + header_len, head_data_len); 4209 ahash_request_set_crypt(req, &sg, NULL, head_data_len); 4210 if (crypto_ahash_update(req)) 4211 return 1; 4212 4213 for (i = 0; i < shi->nr_frags; ++i) { 4214 const skb_frag_t *f = &shi->frags[i]; 4215 unsigned int offset = skb_frag_off(f); 4216 struct page *page = skb_frag_page(f) + (offset >> PAGE_SHIFT); 4217 4218 sg_set_page(&sg, page, skb_frag_size(f), 4219 offset_in_page(offset)); 4220 ahash_request_set_crypt(req, &sg, NULL, skb_frag_size(f)); 4221 if (crypto_ahash_update(req)) 4222 return 1; 4223 } 4224 4225 skb_walk_frags(skb, frag_iter) 4226 if (tcp_md5_hash_skb_data(hp, frag_iter, 0)) 4227 return 1; 4228 4229 return 0; 4230} 4231EXPORT_SYMBOL(tcp_md5_hash_skb_data); 4232 4233int tcp_md5_hash_key(struct tcp_md5sig_pool *hp, const struct tcp_md5sig_key *key) 4234{ 4235 u8 keylen = READ_ONCE(key->keylen); /* paired with WRITE_ONCE() in tcp_md5_do_add */ 4236 struct scatterlist sg; 4237 4238 sg_init_one(&sg, key->key, keylen); 4239 ahash_request_set_crypt(hp->md5_req, &sg, NULL, keylen); 4240 4241 /* We use data_race() because tcp_md5_do_add() might change key->key under us */ 4242 return data_race(crypto_ahash_update(hp->md5_req)); 4243} 4244EXPORT_SYMBOL(tcp_md5_hash_key); 4245 4246#endif 4247 4248void tcp_done(struct sock *sk) 4249{ 4250 struct request_sock *req; 4251 4252 /* We might be called with a new socket, after 4253 * inet_csk_prepare_forced_close() has been called 4254 * so we can not use lockdep_sock_is_held(sk) 4255 */ 4256 req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk, 1); 4257 4258 if (sk->sk_state == TCP_SYN_SENT || sk->sk_state == TCP_SYN_RECV) 4259 TCP_INC_STATS(sock_net(sk), TCP_MIB_ATTEMPTFAILS); 4260 4261 tcp_set_state(sk, TCP_CLOSE); 4262 tcp_clear_xmit_timers(sk); 4263 if (req) 4264 reqsk_fastopen_remove(sk, req, false); 4265 4266 WRITE_ONCE(sk->sk_shutdown, SHUTDOWN_MASK); 4267 4268 if (!sock_flag(sk, SOCK_DEAD)) 4269 sk->sk_state_change(sk); 4270 else 4271 inet_csk_destroy_sock(sk); 4272} 4273EXPORT_SYMBOL_GPL(tcp_done); 4274 4275int tcp_abort(struct sock *sk, int err) 4276{ 4277 if (!sk_fullsock(sk)) { 4278 if (sk->sk_state == TCP_NEW_SYN_RECV) { 4279 struct request_sock *req = inet_reqsk(sk); 4280 4281 local_bh_disable(); 4282 inet_csk_reqsk_queue_drop(req->rsk_listener, req); 4283 local_bh_enable(); 4284 return 0; 4285 } 4286 return -EOPNOTSUPP; 4287 } 4288 4289 /* Don't race with userspace socket closes such as tcp_close. */ 4290#ifdef CONFIG_TCP_SOCK_DESTROY 4291 /* BPF context ensures sock locking. */ 4292 if (!has_current_bpf_ctx()) 4293#endif /* CONFIG_TCP_SOCK_DESTROY */ 4294 lock_sock(sk); 4295 4296 if (sk->sk_state == TCP_LISTEN) { 4297 tcp_set_state(sk, TCP_CLOSE); 4298 inet_csk_listen_stop(sk); 4299 } 4300 4301 /* Don't race with BH socket closes such as inet_csk_listen_stop. */ 4302 local_bh_disable(); 4303 bh_lock_sock(sk); 4304 4305 if (!sock_flag(sk, SOCK_DEAD)) { 4306 sk->sk_err = err; 4307 /* This barrier is coupled with smp_rmb() in tcp_poll() */ 4308 smp_wmb(); 4309 sk->sk_error_report(sk); 4310 if (tcp_need_reset(sk->sk_state)) 4311 tcp_send_active_reset(sk, GFP_ATOMIC); 4312 tcp_done(sk); 4313 } 4314 4315 bh_unlock_sock(sk); 4316 local_bh_enable(); 4317 tcp_write_queue_purge(sk); 4318#ifdef CONFIG_TCP_SOCK_DESTROY 4319 if (!has_current_bpf_ctx()) 4320#endif /* CONFIG_TCP_SOCK_DESTROY */ 4321 release_sock(sk); 4322 return 0; 4323} 4324EXPORT_SYMBOL_GPL(tcp_abort); 4325 4326extern struct tcp_congestion_ops tcp_reno; 4327 4328static __initdata unsigned long thash_entries; 4329static int __init set_thash_entries(char *str) 4330{ 4331 ssize_t ret; 4332 4333 if (!str) 4334 return 0; 4335 4336 ret = kstrtoul(str, 0, &thash_entries); 4337 if (ret) 4338 return 0; 4339 4340 return 1; 4341} 4342__setup("thash_entries=", set_thash_entries); 4343 4344static void __init tcp_init_mem(void) 4345{ 4346 unsigned long limit = nr_free_buffer_pages() / 16; 4347 4348 limit = max(limit, 128UL); 4349 sysctl_tcp_mem[0] = limit / 4 * 3; /* 4.68 % */ 4350 sysctl_tcp_mem[1] = limit; /* 6.25 % */ 4351 sysctl_tcp_mem[2] = sysctl_tcp_mem[0] * 2; /* 9.37 % */ 4352} 4353 4354void __init tcp_init(void) 4355{ 4356 int max_rshare, max_wshare, cnt; 4357 unsigned long limit; 4358 unsigned int i; 4359 4360 BUILD_BUG_ON(TCP_MIN_SND_MSS <= MAX_TCP_OPTION_SPACE); 4361 BUILD_BUG_ON(sizeof(struct tcp_skb_cb) > 4362 sizeof_field(struct sk_buff, cb)); 4363 4364 percpu_counter_init(&tcp_sockets_allocated, 0, GFP_KERNEL); 4365 4366 timer_setup(&tcp_orphan_timer, tcp_orphan_update, TIMER_DEFERRABLE); 4367 mod_timer(&tcp_orphan_timer, jiffies + TCP_ORPHAN_TIMER_PERIOD); 4368 4369 inet_hashinfo_init(&tcp_hashinfo); 4370 inet_hashinfo2_init(&tcp_hashinfo, "tcp_listen_portaddr_hash", 4371 thash_entries, 21, /* one slot per 2 MB*/ 4372 0, 64 * 1024); 4373 tcp_hashinfo.bind_bucket_cachep = 4374 kmem_cache_create("tcp_bind_bucket", 4375 sizeof(struct inet_bind_bucket), 0, 4376 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL); 4377 4378 /* Size and allocate the main established and bind bucket 4379 * hash tables. 4380 * 4381 * The methodology is similar to that of the buffer cache. 4382 */ 4383 tcp_hashinfo.ehash = 4384 alloc_large_system_hash("TCP established", 4385 sizeof(struct inet_ehash_bucket), 4386 thash_entries, 4387 17, /* one slot per 128 KB of memory */ 4388 0, 4389 NULL, 4390 &tcp_hashinfo.ehash_mask, 4391 0, 4392 thash_entries ? 0 : 512 * 1024); 4393 for (i = 0; i <= tcp_hashinfo.ehash_mask; i++) 4394 INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].chain, i); 4395 4396 if (inet_ehash_locks_alloc(&tcp_hashinfo)) 4397 panic("TCP: failed to alloc ehash_locks"); 4398 tcp_hashinfo.bhash = 4399 alloc_large_system_hash("TCP bind", 4400 sizeof(struct inet_bind_hashbucket), 4401 tcp_hashinfo.ehash_mask + 1, 4402 17, /* one slot per 128 KB of memory */ 4403 0, 4404 &tcp_hashinfo.bhash_size, 4405 NULL, 4406 0, 4407 64 * 1024); 4408 tcp_hashinfo.bhash_size = 1U << tcp_hashinfo.bhash_size; 4409 for (i = 0; i < tcp_hashinfo.bhash_size; i++) { 4410 spin_lock_init(&tcp_hashinfo.bhash[i].lock); 4411 INIT_HLIST_HEAD(&tcp_hashinfo.bhash[i].chain); 4412 } 4413 4414 4415 cnt = tcp_hashinfo.ehash_mask + 1; 4416 sysctl_tcp_max_orphans = cnt / 2; 4417 4418 tcp_init_mem(); 4419 /* Set per-socket limits to no more than 1/128 the pressure threshold */ 4420 limit = nr_free_buffer_pages() << (PAGE_SHIFT - 7); 4421 max_wshare = min(4UL*1024*1024, limit); 4422 max_rshare = min(6UL*1024*1024, limit); 4423 4424 init_net.ipv4.sysctl_tcp_wmem[0] = SK_MEM_QUANTUM; 4425 init_net.ipv4.sysctl_tcp_wmem[1] = 16*1024; 4426 init_net.ipv4.sysctl_tcp_wmem[2] = max(64*1024, max_wshare); 4427 4428 init_net.ipv4.sysctl_tcp_rmem[0] = SK_MEM_QUANTUM; 4429 init_net.ipv4.sysctl_tcp_rmem[1] = 131072; 4430 init_net.ipv4.sysctl_tcp_rmem[2] = max(131072, max_rshare); 4431 4432 pr_info("Hash tables configured (established %u bind %u)\n", 4433 tcp_hashinfo.ehash_mask + 1, tcp_hashinfo.bhash_size); 4434 4435 tcp_v4_init(); 4436 tcp_metrics_init(); 4437 BUG_ON(tcp_register_congestion_control(&tcp_reno) != 0); 4438 tcp_tasklet_init(); 4439 mptcp_init(); 4440} 4441