1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Implementation of the Transmission Control Protocol(TCP).
8  *
9  * Authors:	Ross Biro
10  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11  *		Mark Evans, <evansmp@uhura.aston.ac.uk>
12  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
13  *		Florian La Roche, <flla@stud.uni-sb.de>
14  *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
15  *		Linus Torvalds, <torvalds@cs.helsinki.fi>
16  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
17  *		Matthew Dillon, <dillon@apollo.west.oic.com>
18  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
19  *		Jorge Cwik, <jorge@laser.satlink.net>
20  *
21  * Fixes:
22  *		Alan Cox	:	Numerous verify_area() calls
23  *		Alan Cox	:	Set the ACK bit on a reset
24  *		Alan Cox	:	Stopped it crashing if it closed while
25  *					sk->inuse=1 and was trying to connect
26  *					(tcp_err()).
27  *		Alan Cox	:	All icmp error handling was broken
28  *					pointers passed where wrong and the
29  *					socket was looked up backwards. Nobody
30  *					tested any icmp error code obviously.
31  *		Alan Cox	:	tcp_err() now handled properly. It
32  *					wakes people on errors. poll
33  *					behaves and the icmp error race
34  *					has gone by moving it into sock.c
35  *		Alan Cox	:	tcp_send_reset() fixed to work for
36  *					everything not just packets for
37  *					unknown sockets.
38  *		Alan Cox	:	tcp option processing.
39  *		Alan Cox	:	Reset tweaked (still not 100%) [Had
40  *					syn rule wrong]
41  *		Herp Rosmanith  :	More reset fixes
42  *		Alan Cox	:	No longer acks invalid rst frames.
43  *					Acking any kind of RST is right out.
44  *		Alan Cox	:	Sets an ignore me flag on an rst
45  *					receive otherwise odd bits of prattle
46  *					escape still
47  *		Alan Cox	:	Fixed another acking RST frame bug.
48  *					Should stop LAN workplace lockups.
49  *		Alan Cox	: 	Some tidyups using the new skb list
50  *					facilities
51  *		Alan Cox	:	sk->keepopen now seems to work
52  *		Alan Cox	:	Pulls options out correctly on accepts
53  *		Alan Cox	:	Fixed assorted sk->rqueue->next errors
54  *		Alan Cox	:	PSH doesn't end a TCP read. Switched a
55  *					bit to skb ops.
56  *		Alan Cox	:	Tidied tcp_data to avoid a potential
57  *					nasty.
58  *		Alan Cox	:	Added some better commenting, as the
59  *					tcp is hard to follow
60  *		Alan Cox	:	Removed incorrect check for 20 * psh
61  *	Michael O'Reilly	:	ack < copied bug fix.
62  *	Johannes Stille		:	Misc tcp fixes (not all in yet).
63  *		Alan Cox	:	FIN with no memory -> CRASH
64  *		Alan Cox	:	Added socket option proto entries.
65  *					Also added awareness of them to accept.
66  *		Alan Cox	:	Added TCP options (SOL_TCP)
67  *		Alan Cox	:	Switched wakeup calls to callbacks,
68  *					so the kernel can layer network
69  *					sockets.
70  *		Alan Cox	:	Use ip_tos/ip_ttl settings.
71  *		Alan Cox	:	Handle FIN (more) properly (we hope).
72  *		Alan Cox	:	RST frames sent on unsynchronised
73  *					state ack error.
74  *		Alan Cox	:	Put in missing check for SYN bit.
75  *		Alan Cox	:	Added tcp_select_window() aka NET2E
76  *					window non shrink trick.
77  *		Alan Cox	:	Added a couple of small NET2E timer
78  *					fixes
79  *		Charles Hedrick :	TCP fixes
80  *		Toomas Tamm	:	TCP window fixes
81  *		Alan Cox	:	Small URG fix to rlogin ^C ack fight
82  *		Charles Hedrick	:	Rewrote most of it to actually work
83  *		Linus		:	Rewrote tcp_read() and URG handling
84  *					completely
85  *		Gerhard Koerting:	Fixed some missing timer handling
86  *		Matthew Dillon  :	Reworked TCP machine states as per RFC
87  *		Gerhard Koerting:	PC/TCP workarounds
88  *		Adam Caldwell	:	Assorted timer/timing errors
89  *		Matthew Dillon	:	Fixed another RST bug
90  *		Alan Cox	:	Move to kernel side addressing changes.
91  *		Alan Cox	:	Beginning work on TCP fastpathing
92  *					(not yet usable)
93  *		Arnt Gulbrandsen:	Turbocharged tcp_check() routine.
94  *		Alan Cox	:	TCP fast path debugging
95  *		Alan Cox	:	Window clamping
96  *		Michael Riepe	:	Bug in tcp_check()
97  *		Matt Dillon	:	More TCP improvements and RST bug fixes
98  *		Matt Dillon	:	Yet more small nasties remove from the
99  *					TCP code (Be very nice to this man if
100  *					tcp finally works 100%) 8)
101  *		Alan Cox	:	BSD accept semantics.
102  *		Alan Cox	:	Reset on closedown bug.
103  *	Peter De Schrijver	:	ENOTCONN check missing in tcp_sendto().
104  *		Michael Pall	:	Handle poll() after URG properly in
105  *					all cases.
106  *		Michael Pall	:	Undo the last fix in tcp_read_urg()
107  *					(multi URG PUSH broke rlogin).
108  *		Michael Pall	:	Fix the multi URG PUSH problem in
109  *					tcp_readable(), poll() after URG
110  *					works now.
111  *		Michael Pall	:	recv(...,MSG_OOB) never blocks in the
112  *					BSD api.
113  *		Alan Cox	:	Changed the semantics of sk->socket to
114  *					fix a race and a signal problem with
115  *					accept() and async I/O.
116  *		Alan Cox	:	Relaxed the rules on tcp_sendto().
117  *		Yury Shevchuk	:	Really fixed accept() blocking problem.
118  *		Craig I. Hagan  :	Allow for BSD compatible TIME_WAIT for
119  *					clients/servers which listen in on
120  *					fixed ports.
121  *		Alan Cox	:	Cleaned the above up and shrank it to
122  *					a sensible code size.
123  *		Alan Cox	:	Self connect lockup fix.
124  *		Alan Cox	:	No connect to multicast.
125  *		Ross Biro	:	Close unaccepted children on master
126  *					socket close.
127  *		Alan Cox	:	Reset tracing code.
128  *		Alan Cox	:	Spurious resets on shutdown.
129  *		Alan Cox	:	Giant 15 minute/60 second timer error
130  *		Alan Cox	:	Small whoops in polling before an
131  *					accept.
132  *		Alan Cox	:	Kept the state trace facility since
133  *					it's handy for debugging.
134  *		Alan Cox	:	More reset handler fixes.
135  *		Alan Cox	:	Started rewriting the code based on
136  *					the RFC's for other useful protocol
137  *					references see: Comer, KA9Q NOS, and
138  *					for a reference on the difference
139  *					between specifications and how BSD
140  *					works see the 4.4lite source.
141  *		A.N.Kuznetsov	:	Don't time wait on completion of tidy
142  *					close.
143  *		Linus Torvalds	:	Fin/Shutdown & copied_seq changes.
144  *		Linus Torvalds	:	Fixed BSD port reuse to work first syn
145  *		Alan Cox	:	Reimplemented timers as per the RFC
146  *					and using multiple timers for sanity.
147  *		Alan Cox	:	Small bug fixes, and a lot of new
148  *					comments.
149  *		Alan Cox	:	Fixed dual reader crash by locking
150  *					the buffers (much like datagram.c)
151  *		Alan Cox	:	Fixed stuck sockets in probe. A probe
152  *					now gets fed up of retrying without
153  *					(even a no space) answer.
154  *		Alan Cox	:	Extracted closing code better
155  *		Alan Cox	:	Fixed the closing state machine to
156  *					resemble the RFC.
157  *		Alan Cox	:	More 'per spec' fixes.
158  *		Jorge Cwik	:	Even faster checksumming.
159  *		Alan Cox	:	tcp_data() doesn't ack illegal PSH
160  *					only frames. At least one pc tcp stack
161  *					generates them.
162  *		Alan Cox	:	Cache last socket.
163  *		Alan Cox	:	Per route irtt.
164  *		Matt Day	:	poll()->select() match BSD precisely on error
165  *		Alan Cox	:	New buffers
166  *		Marc Tamsky	:	Various sk->prot->retransmits and
167  *					sk->retransmits misupdating fixed.
168  *					Fixed tcp_write_timeout: stuck close,
169  *					and TCP syn retries gets used now.
170  *		Mark Yarvis	:	In tcp_read_wakeup(), don't send an
171  *					ack if state is TCP_CLOSED.
172  *		Alan Cox	:	Look up device on a retransmit - routes may
173  *					change. Doesn't yet cope with MSS shrink right
174  *					but it's a start!
175  *		Marc Tamsky	:	Closing in closing fixes.
176  *		Mike Shaver	:	RFC1122 verifications.
177  *		Alan Cox	:	rcv_saddr errors.
178  *		Alan Cox	:	Block double connect().
179  *		Alan Cox	:	Small hooks for enSKIP.
180  *		Alexey Kuznetsov:	Path MTU discovery.
181  *		Alan Cox	:	Support soft errors.
182  *		Alan Cox	:	Fix MTU discovery pathological case
183  *					when the remote claims no mtu!
184  *		Marc Tamsky	:	TCP_CLOSE fix.
185  *		Colin (G3TNE)	:	Send a reset on syn ack replies in
186  *					window but wrong (fixes NT lpd problems)
187  *		Pedro Roque	:	Better TCP window handling, delayed ack.
188  *		Joerg Reuter	:	No modification of locked buffers in
189  *					tcp_do_retransmit()
190  *		Eric Schenk	:	Changed receiver side silly window
191  *					avoidance algorithm to BSD style
192  *					algorithm. This doubles throughput
193  *					against machines running Solaris,
194  *					and seems to result in general
195  *					improvement.
196  *	Stefan Magdalinski	:	adjusted tcp_readable() to fix FIONREAD
197  *	Willy Konynenberg	:	Transparent proxying support.
198  *	Mike McLagan		:	Routing by source
199  *		Keith Owens	:	Do proper merging with partial SKB's in
200  *					tcp_do_sendmsg to avoid burstiness.
201  *		Eric Schenk	:	Fix fast close down bug with
202  *					shutdown() followed by close().
203  *		Andi Kleen 	:	Make poll agree with SIGIO
204  *	Salvatore Sanfilippo	:	Support SO_LINGER with linger == 1 and
205  *					lingertime == 0 (RFC 793 ABORT Call)
206  *	Hirokazu Takahashi	:	Use copy_from_user() instead of
207  *					csum_and_copy_from_user() if possible.
208  *
209  * Description of States:
210  *
211  *	TCP_SYN_SENT		sent a connection request, waiting for ack
212  *
213  *	TCP_SYN_RECV		received a connection request, sent ack,
214  *				waiting for final ack in three-way handshake.
215  *
216  *	TCP_ESTABLISHED		connection established
217  *
218  *	TCP_FIN_WAIT1		our side has shutdown, waiting to complete
219  *				transmission of remaining buffered data
220  *
221  *	TCP_FIN_WAIT2		all buffered data sent, waiting for remote
222  *				to shutdown
223  *
224  *	TCP_CLOSING		both sides have shutdown but we still have
225  *				data we have to finish sending
226  *
227  *	TCP_TIME_WAIT		timeout to catch resent junk before entering
228  *				closed, can only be entered from FIN_WAIT2
229  *				or CLOSING.  Required because the other end
230  *				may not have gotten our last ACK causing it
231  *				to retransmit the data packet (which we ignore)
232  *
233  *	TCP_CLOSE_WAIT		remote side has shutdown and is waiting for
234  *				us to finish writing our data and to shutdown
235  *				(we have to close() to move on to LAST_ACK)
236  *
237  *	TCP_LAST_ACK		out side has shutdown after remote has
238  *				shutdown.  There may still be data in our
239  *				buffer that we have to finish sending
240  *
241  *	TCP_CLOSE		socket is finished
242  */
243 
244 #define pr_fmt(fmt) "TCP: " fmt
245 
246 #include <crypto/hash.h>
247 #include <linux/kernel.h>
248 #include <linux/module.h>
249 #include <linux/types.h>
250 #include <linux/fcntl.h>
251 #include <linux/poll.h>
252 #include <linux/inet_diag.h>
253 #include <linux/init.h>
254 #include <linux/fs.h>
255 #include <linux/skbuff.h>
256 #include <linux/scatterlist.h>
257 #include <linux/splice.h>
258 #include <linux/net.h>
259 #include <linux/socket.h>
260 #include <linux/random.h>
261 #include <linux/memblock.h>
262 #include <linux/highmem.h>
263 #include <linux/swap.h>
264 #include <linux/cache.h>
265 #include <linux/err.h>
266 #include <linux/time.h>
267 #include <linux/slab.h>
268 #include <linux/errqueue.h>
269 #include <linux/static_key.h>
270 
271 #include <net/icmp.h>
272 #include <net/inet_common.h>
273 #include <net/tcp.h>
274 #include <net/mptcp.h>
275 #include <net/xfrm.h>
276 #include <net/ip.h>
277 #include <net/sock.h>
278 
279 #include <linux/uaccess.h>
280 #include <asm/ioctls.h>
281 #include <net/busy_poll.h>
282 #ifdef CONFIG_LOWPOWER_PROTOCOL
283 #include <net/lowpower_protocol.h>
284 #endif /* CONFIG_LOWPOWER_PROTOCOL */
285 #if defined(CONFIG_TCP_NATA_URC) || defined(CONFIG_TCP_NATA_STL)
286 #include <net/nata.h>
287 #endif
288 
289 DEFINE_PER_CPU(unsigned int, tcp_orphan_count);
290 EXPORT_PER_CPU_SYMBOL_GPL(tcp_orphan_count);
291 
292 long sysctl_tcp_mem[3] __read_mostly;
293 EXPORT_SYMBOL(sysctl_tcp_mem);
294 
295 atomic_long_t tcp_memory_allocated;	/* Current allocated memory. */
296 EXPORT_SYMBOL(tcp_memory_allocated);
297 
298 #if IS_ENABLED(CONFIG_SMC)
299 DEFINE_STATIC_KEY_FALSE(tcp_have_smc);
300 EXPORT_SYMBOL(tcp_have_smc);
301 #endif
302 
303 /*
304  * Current number of TCP sockets.
305  */
306 struct percpu_counter tcp_sockets_allocated;
307 EXPORT_SYMBOL(tcp_sockets_allocated);
308 
309 /*
310  * TCP splice context
311  */
312 struct tcp_splice_state {
313 	struct pipe_inode_info *pipe;
314 	size_t len;
315 	unsigned int flags;
316 };
317 
318 /*
319  * Pressure flag: try to collapse.
320  * Technical note: it is used by multiple contexts non atomically.
321  * All the __sk_mem_schedule() is of this nature: accounting
322  * is strict, actions are advisory and have some latency.
323  */
324 unsigned long tcp_memory_pressure __read_mostly;
325 EXPORT_SYMBOL_GPL(tcp_memory_pressure);
326 
327 DEFINE_STATIC_KEY_FALSE(tcp_rx_skb_cache_key);
328 EXPORT_SYMBOL(tcp_rx_skb_cache_key);
329 
330 DEFINE_STATIC_KEY_FALSE(tcp_tx_skb_cache_key);
331 
tcp_enter_memory_pressure(struct sock *sk)332 void tcp_enter_memory_pressure(struct sock *sk)
333 {
334 	unsigned long val;
335 
336 	if (READ_ONCE(tcp_memory_pressure))
337 		return;
338 	val = jiffies;
339 
340 	if (!val)
341 		val--;
342 	if (!cmpxchg(&tcp_memory_pressure, 0, val))
343 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURES);
344 }
345 EXPORT_SYMBOL_GPL(tcp_enter_memory_pressure);
346 
tcp_leave_memory_pressure(struct sock *sk)347 void tcp_leave_memory_pressure(struct sock *sk)
348 {
349 	unsigned long val;
350 
351 	if (!READ_ONCE(tcp_memory_pressure))
352 		return;
353 	val = xchg(&tcp_memory_pressure, 0);
354 	if (val)
355 		NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURESCHRONO,
356 			      jiffies_to_msecs(jiffies - val));
357 }
358 EXPORT_SYMBOL_GPL(tcp_leave_memory_pressure);
359 
360 /* Convert seconds to retransmits based on initial and max timeout */
secs_to_retrans(int seconds, int timeout, int rto_max)361 static u8 secs_to_retrans(int seconds, int timeout, int rto_max)
362 {
363 	u8 res = 0;
364 
365 	if (seconds > 0) {
366 		int period = timeout;
367 
368 		res = 1;
369 		while (seconds > period && res < 255) {
370 			res++;
371 			timeout <<= 1;
372 			if (timeout > rto_max)
373 				timeout = rto_max;
374 			period += timeout;
375 		}
376 	}
377 	return res;
378 }
379 
380 /* Convert retransmits to seconds based on initial and max timeout */
retrans_to_secs(u8 retrans, int timeout, int rto_max)381 static int retrans_to_secs(u8 retrans, int timeout, int rto_max)
382 {
383 	int period = 0;
384 
385 	if (retrans > 0) {
386 		period = timeout;
387 		while (--retrans) {
388 			timeout <<= 1;
389 			if (timeout > rto_max)
390 				timeout = rto_max;
391 			period += timeout;
392 		}
393 	}
394 	return period;
395 }
396 
tcp_compute_delivery_rate(const struct tcp_sock *tp)397 static u64 tcp_compute_delivery_rate(const struct tcp_sock *tp)
398 {
399 	u32 rate = READ_ONCE(tp->rate_delivered);
400 	u32 intv = READ_ONCE(tp->rate_interval_us);
401 	u64 rate64 = 0;
402 
403 	if (rate && intv) {
404 		rate64 = (u64)rate * tp->mss_cache * USEC_PER_SEC;
405 		do_div(rate64, intv);
406 	}
407 	return rate64;
408 }
409 
410 /* Address-family independent initialization for a tcp_sock.
411  *
412  * NOTE: A lot of things set to zero explicitly by call to
413  *       sk_alloc() so need not be done here.
414  */
tcp_init_sock(struct sock *sk)415 void tcp_init_sock(struct sock *sk)
416 {
417 	struct inet_connection_sock *icsk = inet_csk(sk);
418 	struct tcp_sock *tp = tcp_sk(sk);
419 
420 	tp->out_of_order_queue = RB_ROOT;
421 	sk->tcp_rtx_queue = RB_ROOT;
422 	tcp_init_xmit_timers(sk);
423 	INIT_LIST_HEAD(&tp->tsq_node);
424 	INIT_LIST_HEAD(&tp->tsorted_sent_queue);
425 
426 	icsk->icsk_rto = TCP_TIMEOUT_INIT;
427 	icsk->icsk_rto_min = TCP_RTO_MIN;
428 	icsk->icsk_delack_max = TCP_DELACK_MAX;
429 	tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT);
430 	minmax_reset(&tp->rtt_min, tcp_jiffies32, ~0U);
431 
432 	/* So many TCP implementations out there (incorrectly) count the
433 	 * initial SYN frame in their delayed-ACK and congestion control
434 	 * algorithms that we must have the following bandaid to talk
435 	 * efficiently to them.  -DaveM
436 	 */
437 	tp->snd_cwnd = TCP_INIT_CWND;
438 
439 	/* There's a bubble in the pipe until at least the first ACK. */
440 	tp->app_limited = ~0U;
441 	tp->rate_app_limited = 1;
442 
443 	/* See draft-stevens-tcpca-spec-01 for discussion of the
444 	 * initialization of these values.
445 	 */
446 	tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
447 	tp->snd_cwnd_clamp = ~0;
448 	tp->mss_cache = TCP_MSS_DEFAULT;
449 
450 	tp->reordering = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_reordering);
451 	tcp_assign_congestion_control(sk);
452 
453 	tp->tsoffset = 0;
454 	tp->rack.reo_wnd_steps = 1;
455 
456 	sk->sk_write_space = sk_stream_write_space;
457 	sock_set_flag(sk, SOCK_USE_WRITE_QUEUE);
458 
459 	icsk->icsk_sync_mss = tcp_sync_mss;
460 
461 	WRITE_ONCE(sk->sk_sndbuf, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_wmem[1]));
462 	WRITE_ONCE(sk->sk_rcvbuf, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[1]));
463 
464 	sk_sockets_allocated_inc(sk);
465 	sk->sk_route_forced_caps = NETIF_F_GSO;
466 #if defined(CONFIG_TCP_NATA_URC) || defined(CONFIG_TCP_NATA_STL)
467 	icsk->nata_retries_enabled = 0;
468 	icsk->nata_retries_type = NATA_NA;
469 	icsk->nata_syn_rto = TCP_TIMEOUT_INIT;
470 	icsk->nata_data_rto = TCP_TIMEOUT_INIT;
471 	icsk->nata_data_retries = 0;
472 #endif
473 }
474 EXPORT_SYMBOL(tcp_init_sock);
475 
tcp_tx_timestamp(struct sock *sk, u16 tsflags)476 static void tcp_tx_timestamp(struct sock *sk, u16 tsflags)
477 {
478 	struct sk_buff *skb = tcp_write_queue_tail(sk);
479 
480 	if (tsflags && skb) {
481 		struct skb_shared_info *shinfo = skb_shinfo(skb);
482 		struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
483 
484 		sock_tx_timestamp(sk, tsflags, &shinfo->tx_flags);
485 		if (tsflags & SOF_TIMESTAMPING_TX_ACK)
486 			tcb->txstamp_ack = 1;
487 		if (tsflags & SOF_TIMESTAMPING_TX_RECORD_MASK)
488 			shinfo->tskey = TCP_SKB_CB(skb)->seq + skb->len - 1;
489 	}
490 }
491 
tcp_stream_is_readable(const struct tcp_sock *tp, int target, struct sock *sk)492 static inline bool tcp_stream_is_readable(const struct tcp_sock *tp,
493 					  int target, struct sock *sk)
494 {
495 	int avail = READ_ONCE(tp->rcv_nxt) - READ_ONCE(tp->copied_seq);
496 
497 	if (avail > 0) {
498 		if (avail >= target)
499 			return true;
500 		if (tcp_rmem_pressure(sk))
501 			return true;
502 		if (tcp_receive_window(tp) <= inet_csk(sk)->icsk_ack.rcv_mss)
503 			return true;
504 	}
505 	if (sk->sk_prot->stream_memory_read)
506 		return sk->sk_prot->stream_memory_read(sk);
507 	return false;
508 }
509 
510 /*
511  *	Wait for a TCP event.
512  *
513  *	Note that we don't need to lock the socket, as the upper poll layers
514  *	take care of normal races (between the test and the event) and we don't
515  *	go look at any of the socket buffers directly.
516  */
tcp_poll(struct file *file, struct socket *sock, poll_table *wait)517 __poll_t tcp_poll(struct file *file, struct socket *sock, poll_table *wait)
518 {
519 	__poll_t mask;
520 	struct sock *sk = sock->sk;
521 	const struct tcp_sock *tp = tcp_sk(sk);
522 	u8 shutdown;
523 	int state;
524 
525 	sock_poll_wait(file, sock, wait);
526 
527 	state = inet_sk_state_load(sk);
528 	if (state == TCP_LISTEN)
529 		return inet_csk_listen_poll(sk);
530 
531 	/* Socket is not locked. We are protected from async events
532 	 * by poll logic and correct handling of state changes
533 	 * made by other threads is impossible in any case.
534 	 */
535 
536 	mask = 0;
537 
538 	/*
539 	 * EPOLLHUP is certainly not done right. But poll() doesn't
540 	 * have a notion of HUP in just one direction, and for a
541 	 * socket the read side is more interesting.
542 	 *
543 	 * Some poll() documentation says that EPOLLHUP is incompatible
544 	 * with the EPOLLOUT/POLLWR flags, so somebody should check this
545 	 * all. But careful, it tends to be safer to return too many
546 	 * bits than too few, and you can easily break real applications
547 	 * if you don't tell them that something has hung up!
548 	 *
549 	 * Check-me.
550 	 *
551 	 * Check number 1. EPOLLHUP is _UNMASKABLE_ event (see UNIX98 and
552 	 * our fs/select.c). It means that after we received EOF,
553 	 * poll always returns immediately, making impossible poll() on write()
554 	 * in state CLOSE_WAIT. One solution is evident --- to set EPOLLHUP
555 	 * if and only if shutdown has been made in both directions.
556 	 * Actually, it is interesting to look how Solaris and DUX
557 	 * solve this dilemma. I would prefer, if EPOLLHUP were maskable,
558 	 * then we could set it on SND_SHUTDOWN. BTW examples given
559 	 * in Stevens' books assume exactly this behaviour, it explains
560 	 * why EPOLLHUP is incompatible with EPOLLOUT.	--ANK
561 	 *
562 	 * NOTE. Check for TCP_CLOSE is added. The goal is to prevent
563 	 * blocking on fresh not-connected or disconnected socket. --ANK
564 	 */
565 	shutdown = READ_ONCE(sk->sk_shutdown);
566 	if (shutdown == SHUTDOWN_MASK || state == TCP_CLOSE)
567 		mask |= EPOLLHUP;
568 	if (shutdown & RCV_SHUTDOWN)
569 		mask |= EPOLLIN | EPOLLRDNORM | EPOLLRDHUP;
570 
571 	/* Connected or passive Fast Open socket? */
572 	if (state != TCP_SYN_SENT &&
573 	    (state != TCP_SYN_RECV || rcu_access_pointer(tp->fastopen_rsk))) {
574 		int target = sock_rcvlowat(sk, 0, INT_MAX);
575 
576 		if (READ_ONCE(tp->urg_seq) == READ_ONCE(tp->copied_seq) &&
577 		    !sock_flag(sk, SOCK_URGINLINE) &&
578 		    tp->urg_data)
579 			target++;
580 
581 		if (tcp_stream_is_readable(tp, target, sk))
582 			mask |= EPOLLIN | EPOLLRDNORM;
583 
584 		if (!(shutdown & SEND_SHUTDOWN)) {
585 			if (__sk_stream_is_writeable(sk, 1)) {
586 				mask |= EPOLLOUT | EPOLLWRNORM;
587 			} else {  /* send SIGIO later */
588 				sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk);
589 				set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
590 
591 				/* Race breaker. If space is freed after
592 				 * wspace test but before the flags are set,
593 				 * IO signal will be lost. Memory barrier
594 				 * pairs with the input side.
595 				 */
596 				smp_mb__after_atomic();
597 				if (__sk_stream_is_writeable(sk, 1))
598 					mask |= EPOLLOUT | EPOLLWRNORM;
599 			}
600 		} else
601 			mask |= EPOLLOUT | EPOLLWRNORM;
602 
603 		if (tp->urg_data & TCP_URG_VALID)
604 			mask |= EPOLLPRI;
605 	} else if (state == TCP_SYN_SENT && inet_sk(sk)->defer_connect) {
606 		/* Active TCP fastopen socket with defer_connect
607 		 * Return EPOLLOUT so application can call write()
608 		 * in order for kernel to generate SYN+data
609 		 */
610 		mask |= EPOLLOUT | EPOLLWRNORM;
611 	}
612 	/* This barrier is coupled with smp_wmb() in tcp_reset() */
613 	smp_rmb();
614 	if (sk->sk_err || !skb_queue_empty_lockless(&sk->sk_error_queue))
615 		mask |= EPOLLERR;
616 
617 	return mask;
618 }
619 EXPORT_SYMBOL(tcp_poll);
620 
tcp_ioctl(struct sock *sk, int cmd, unsigned long arg)621 int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg)
622 {
623 	struct tcp_sock *tp = tcp_sk(sk);
624 	int answ;
625 	bool slow;
626 
627 	switch (cmd) {
628 	case SIOCINQ:
629 		if (sk->sk_state == TCP_LISTEN)
630 			return -EINVAL;
631 
632 		slow = lock_sock_fast(sk);
633 		answ = tcp_inq(sk);
634 		unlock_sock_fast(sk, slow);
635 		break;
636 	case SIOCATMARK:
637 		answ = tp->urg_data &&
638 		       READ_ONCE(tp->urg_seq) == READ_ONCE(tp->copied_seq);
639 		break;
640 	case SIOCOUTQ:
641 		if (sk->sk_state == TCP_LISTEN)
642 			return -EINVAL;
643 
644 		if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
645 			answ = 0;
646 		else
647 			answ = READ_ONCE(tp->write_seq) - tp->snd_una;
648 		break;
649 	case SIOCOUTQNSD:
650 		if (sk->sk_state == TCP_LISTEN)
651 			return -EINVAL;
652 
653 		if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
654 			answ = 0;
655 		else
656 			answ = READ_ONCE(tp->write_seq) -
657 			       READ_ONCE(tp->snd_nxt);
658 		break;
659 	default:
660 		return -ENOIOCTLCMD;
661 	}
662 
663 	return put_user(answ, (int __user *)arg);
664 }
665 EXPORT_SYMBOL(tcp_ioctl);
666 
tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb)667 static inline void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb)
668 {
669 	TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
670 	tp->pushed_seq = tp->write_seq;
671 }
672 
forced_push(const struct tcp_sock *tp)673 static inline bool forced_push(const struct tcp_sock *tp)
674 {
675 	return after(tp->write_seq, tp->pushed_seq + (tp->max_window >> 1));
676 }
677 
skb_entail(struct sock *sk, struct sk_buff *skb)678 static void skb_entail(struct sock *sk, struct sk_buff *skb)
679 {
680 	struct tcp_sock *tp = tcp_sk(sk);
681 	struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
682 
683 	skb->csum    = 0;
684 	tcb->seq     = tcb->end_seq = tp->write_seq;
685 	tcb->tcp_flags = TCPHDR_ACK;
686 	tcb->sacked  = 0;
687 	__skb_header_release(skb);
688 	tcp_add_write_queue_tail(sk, skb);
689 	sk_wmem_queued_add(sk, skb->truesize);
690 	sk_mem_charge(sk, skb->truesize);
691 	if (tp->nonagle & TCP_NAGLE_PUSH)
692 		tp->nonagle &= ~TCP_NAGLE_PUSH;
693 
694 	tcp_slow_start_after_idle_check(sk);
695 }
696 
tcp_mark_urg(struct tcp_sock *tp, int flags)697 static inline void tcp_mark_urg(struct tcp_sock *tp, int flags)
698 {
699 	if (flags & MSG_OOB)
700 		tp->snd_up = tp->write_seq;
701 }
702 
703 /* If a not yet filled skb is pushed, do not send it if
704  * we have data packets in Qdisc or NIC queues :
705  * Because TX completion will happen shortly, it gives a chance
706  * to coalesce future sendmsg() payload into this skb, without
707  * need for a timer, and with no latency trade off.
708  * As packets containing data payload have a bigger truesize
709  * than pure acks (dataless) packets, the last checks prevent
710  * autocorking if we only have an ACK in Qdisc/NIC queues,
711  * or if TX completion was delayed after we processed ACK packet.
712  */
tcp_should_autocork(struct sock *sk, struct sk_buff *skb, int size_goal)713 static bool tcp_should_autocork(struct sock *sk, struct sk_buff *skb,
714 				int size_goal)
715 {
716 	return skb->len < size_goal &&
717 	       READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_autocorking) &&
718 	       !tcp_rtx_queue_empty(sk) &&
719 	       refcount_read(&sk->sk_wmem_alloc) > skb->truesize;
720 }
721 
tcp_push(struct sock *sk, int flags, int mss_now, int nonagle, int size_goal)722 void tcp_push(struct sock *sk, int flags, int mss_now,
723 	      int nonagle, int size_goal)
724 {
725 	struct tcp_sock *tp = tcp_sk(sk);
726 	struct sk_buff *skb;
727 
728 	skb = tcp_write_queue_tail(sk);
729 	if (!skb)
730 		return;
731 	if (!(flags & MSG_MORE) || forced_push(tp))
732 		tcp_mark_push(tp, skb);
733 
734 	tcp_mark_urg(tp, flags);
735 
736 	if (tcp_should_autocork(sk, skb, size_goal)) {
737 
738 		/* avoid atomic op if TSQ_THROTTLED bit is already set */
739 		if (!test_bit(TSQ_THROTTLED, &sk->sk_tsq_flags)) {
740 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAUTOCORKING);
741 			set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags);
742 			smp_mb__after_atomic();
743 		}
744 		/* It is possible TX completion already happened
745 		 * before we set TSQ_THROTTLED.
746 		 */
747 		if (refcount_read(&sk->sk_wmem_alloc) > skb->truesize)
748 			return;
749 	}
750 
751 	if (flags & MSG_MORE)
752 		nonagle = TCP_NAGLE_CORK;
753 
754 	__tcp_push_pending_frames(sk, mss_now, nonagle);
755 }
756 
tcp_splice_data_recv(read_descriptor_t *rd_desc, struct sk_buff *skb, unsigned int offset, size_t len)757 static int tcp_splice_data_recv(read_descriptor_t *rd_desc, struct sk_buff *skb,
758 				unsigned int offset, size_t len)
759 {
760 	struct tcp_splice_state *tss = rd_desc->arg.data;
761 	int ret;
762 
763 	ret = skb_splice_bits(skb, skb->sk, offset, tss->pipe,
764 			      min(rd_desc->count, len), tss->flags);
765 	if (ret > 0)
766 		rd_desc->count -= ret;
767 	return ret;
768 }
769 
__tcp_splice_read(struct sock *sk, struct tcp_splice_state *tss)770 static int __tcp_splice_read(struct sock *sk, struct tcp_splice_state *tss)
771 {
772 	/* Store TCP splice context information in read_descriptor_t. */
773 	read_descriptor_t rd_desc = {
774 		.arg.data = tss,
775 		.count	  = tss->len,
776 	};
777 
778 	return tcp_read_sock(sk, &rd_desc, tcp_splice_data_recv);
779 }
780 
781 /**
782  *  tcp_splice_read - splice data from TCP socket to a pipe
783  * @sock:	socket to splice from
784  * @ppos:	position (not valid)
785  * @pipe:	pipe to splice to
786  * @len:	number of bytes to splice
787  * @flags:	splice modifier flags
788  *
789  * Description:
790  *    Will read pages from given socket and fill them into a pipe.
791  *
792  **/
tcp_splice_read(struct socket *sock, loff_t *ppos, struct pipe_inode_info *pipe, size_t len, unsigned int flags)793 ssize_t tcp_splice_read(struct socket *sock, loff_t *ppos,
794 			struct pipe_inode_info *pipe, size_t len,
795 			unsigned int flags)
796 {
797 	struct sock *sk = sock->sk;
798 	struct tcp_splice_state tss = {
799 		.pipe = pipe,
800 		.len = len,
801 		.flags = flags,
802 	};
803 	long timeo;
804 	ssize_t spliced;
805 	int ret;
806 
807 	sock_rps_record_flow(sk);
808 	/*
809 	 * We can't seek on a socket input
810 	 */
811 	if (unlikely(*ppos))
812 		return -ESPIPE;
813 
814 	ret = spliced = 0;
815 
816 	lock_sock(sk);
817 
818 	timeo = sock_rcvtimeo(sk, sock->file->f_flags & O_NONBLOCK);
819 	while (tss.len) {
820 		ret = __tcp_splice_read(sk, &tss);
821 		if (ret < 0)
822 			break;
823 		else if (!ret) {
824 			if (spliced)
825 				break;
826 			if (sock_flag(sk, SOCK_DONE))
827 				break;
828 			if (sk->sk_err) {
829 				ret = sock_error(sk);
830 				break;
831 			}
832 			if (sk->sk_shutdown & RCV_SHUTDOWN)
833 				break;
834 			if (sk->sk_state == TCP_CLOSE) {
835 				/*
836 				 * This occurs when user tries to read
837 				 * from never connected socket.
838 				 */
839 				ret = -ENOTCONN;
840 				break;
841 			}
842 			if (!timeo) {
843 				ret = -EAGAIN;
844 				break;
845 			}
846 			/* if __tcp_splice_read() got nothing while we have
847 			 * an skb in receive queue, we do not want to loop.
848 			 * This might happen with URG data.
849 			 */
850 			if (!skb_queue_empty(&sk->sk_receive_queue))
851 				break;
852 			sk_wait_data(sk, &timeo, NULL);
853 			if (signal_pending(current)) {
854 				ret = sock_intr_errno(timeo);
855 				break;
856 			}
857 			continue;
858 		}
859 		tss.len -= ret;
860 		spliced += ret;
861 
862 		if (!timeo)
863 			break;
864 		release_sock(sk);
865 		lock_sock(sk);
866 
867 		if (sk->sk_err || sk->sk_state == TCP_CLOSE ||
868 		    (sk->sk_shutdown & RCV_SHUTDOWN) ||
869 		    signal_pending(current))
870 			break;
871 	}
872 
873 	release_sock(sk);
874 
875 	if (spliced)
876 		return spliced;
877 
878 	return ret;
879 }
880 EXPORT_SYMBOL(tcp_splice_read);
881 
sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp, bool force_schedule)882 struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp,
883 				    bool force_schedule)
884 {
885 	struct sk_buff *skb;
886 
887 	if (likely(!size)) {
888 		skb = sk->sk_tx_skb_cache;
889 		if (skb) {
890 			skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
891 			sk->sk_tx_skb_cache = NULL;
892 			pskb_trim(skb, 0);
893 			INIT_LIST_HEAD(&skb->tcp_tsorted_anchor);
894 			skb_shinfo(skb)->tx_flags = 0;
895 			memset(TCP_SKB_CB(skb), 0, sizeof(struct tcp_skb_cb));
896 			return skb;
897 		}
898 	}
899 	/* The TCP header must be at least 32-bit aligned.  */
900 	size = ALIGN(size, 4);
901 
902 	if (unlikely(tcp_under_memory_pressure(sk)))
903 		sk_mem_reclaim_partial(sk);
904 
905 	skb = alloc_skb_fclone(size + sk->sk_prot->max_header, gfp);
906 	if (likely(skb)) {
907 		bool mem_scheduled;
908 
909 		if (force_schedule) {
910 			mem_scheduled = true;
911 			sk_forced_mem_schedule(sk, skb->truesize);
912 		} else {
913 			mem_scheduled = sk_wmem_schedule(sk, skb->truesize);
914 		}
915 		if (likely(mem_scheduled)) {
916 			skb_reserve(skb, sk->sk_prot->max_header);
917 			/*
918 			 * Make sure that we have exactly size bytes
919 			 * available to the caller, no more, no less.
920 			 */
921 			skb->reserved_tailroom = skb->end - skb->tail - size;
922 			INIT_LIST_HEAD(&skb->tcp_tsorted_anchor);
923 			return skb;
924 		}
925 		__kfree_skb(skb);
926 	} else {
927 		sk->sk_prot->enter_memory_pressure(sk);
928 		sk_stream_moderate_sndbuf(sk);
929 	}
930 	return NULL;
931 }
932 
tcp_xmit_size_goal(struct sock *sk, u32 mss_now, int large_allowed)933 static unsigned int tcp_xmit_size_goal(struct sock *sk, u32 mss_now,
934 				       int large_allowed)
935 {
936 	struct tcp_sock *tp = tcp_sk(sk);
937 	u32 new_size_goal, size_goal;
938 
939 	if (!large_allowed)
940 		return mss_now;
941 
942 	/* Note : tcp_tso_autosize() will eventually split this later */
943 	new_size_goal = sk->sk_gso_max_size - 1 - MAX_TCP_HEADER;
944 	new_size_goal = tcp_bound_to_half_wnd(tp, new_size_goal);
945 
946 	/* We try hard to avoid divides here */
947 	size_goal = tp->gso_segs * mss_now;
948 	if (unlikely(new_size_goal < size_goal ||
949 		     new_size_goal >= size_goal + mss_now)) {
950 		tp->gso_segs = min_t(u16, new_size_goal / mss_now,
951 				     sk->sk_gso_max_segs);
952 		size_goal = tp->gso_segs * mss_now;
953 	}
954 
955 	return max(size_goal, mss_now);
956 }
957 
tcp_send_mss(struct sock *sk, int *size_goal, int flags)958 int tcp_send_mss(struct sock *sk, int *size_goal, int flags)
959 {
960 	int mss_now;
961 
962 	mss_now = tcp_current_mss(sk);
963 	*size_goal = tcp_xmit_size_goal(sk, mss_now, !(flags & MSG_OOB));
964 
965 	return mss_now;
966 }
967 
968 /* In some cases, both sendpage() and sendmsg() could have added
969  * an skb to the write queue, but failed adding payload on it.
970  * We need to remove it to consume less memory, but more
971  * importantly be able to generate EPOLLOUT for Edge Trigger epoll()
972  * users.
973  */
tcp_remove_empty_skb(struct sock *sk, struct sk_buff *skb)974 static void tcp_remove_empty_skb(struct sock *sk, struct sk_buff *skb)
975 {
976 	if (skb && TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) {
977 		tcp_unlink_write_queue(skb, sk);
978 		if (tcp_write_queue_empty(sk))
979 			tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
980 		sk_wmem_free_skb(sk, skb);
981 	}
982 }
983 
do_tcp_sendpages(struct sock *sk, struct page *page, int offset, size_t size, int flags)984 ssize_t do_tcp_sendpages(struct sock *sk, struct page *page, int offset,
985 			 size_t size, int flags)
986 {
987 	struct tcp_sock *tp = tcp_sk(sk);
988 	int mss_now, size_goal;
989 	int err;
990 	ssize_t copied;
991 	long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
992 
993 	if (IS_ENABLED(CONFIG_DEBUG_VM) &&
994 	    WARN_ONCE(!sendpage_ok(page),
995 		      "page must not be a Slab one and have page_count > 0"))
996 		return -EINVAL;
997 
998 	/* Wait for a connection to finish. One exception is TCP Fast Open
999 	 * (passive side) where data is allowed to be sent before a connection
1000 	 * is fully established.
1001 	 */
1002 	if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) &&
1003 	    !tcp_passive_fastopen(sk)) {
1004 		err = sk_stream_wait_connect(sk, &timeo);
1005 		if (err != 0)
1006 			goto out_err;
1007 	}
1008 
1009 	sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
1010 
1011 	mss_now = tcp_send_mss(sk, &size_goal, flags);
1012 	copied = 0;
1013 
1014 	err = -EPIPE;
1015 	if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
1016 		goto out_err;
1017 
1018 	while (size > 0) {
1019 		struct sk_buff *skb = tcp_write_queue_tail(sk);
1020 		int copy, i;
1021 		bool can_coalesce;
1022 
1023 		if (!skb || (copy = size_goal - skb->len) <= 0 ||
1024 		    !tcp_skb_can_collapse_to(skb)) {
1025 new_segment:
1026 			if (!sk_stream_memory_free(sk))
1027 				goto wait_for_space;
1028 
1029 			skb = sk_stream_alloc_skb(sk, 0, sk->sk_allocation,
1030 					tcp_rtx_and_write_queues_empty(sk));
1031 			if (!skb)
1032 				goto wait_for_space;
1033 
1034 #ifdef CONFIG_TLS_DEVICE
1035 			skb->decrypted = !!(flags & MSG_SENDPAGE_DECRYPTED);
1036 #endif
1037 			skb_entail(sk, skb);
1038 			copy = size_goal;
1039 		}
1040 
1041 		if (copy > size)
1042 			copy = size;
1043 
1044 		i = skb_shinfo(skb)->nr_frags;
1045 		can_coalesce = skb_can_coalesce(skb, i, page, offset);
1046 		if (!can_coalesce && i >= sysctl_max_skb_frags) {
1047 			tcp_mark_push(tp, skb);
1048 			goto new_segment;
1049 		}
1050 		if (!sk_wmem_schedule(sk, copy))
1051 			goto wait_for_space;
1052 
1053 		if (can_coalesce) {
1054 			skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1055 		} else {
1056 			get_page(page);
1057 			skb_fill_page_desc(skb, i, page, offset, copy);
1058 		}
1059 
1060 		if (!(flags & MSG_NO_SHARED_FRAGS))
1061 			skb_shinfo(skb)->tx_flags |= SKBTX_SHARED_FRAG;
1062 
1063 		skb->len += copy;
1064 		skb->data_len += copy;
1065 		skb->truesize += copy;
1066 		sk_wmem_queued_add(sk, copy);
1067 		sk_mem_charge(sk, copy);
1068 		skb->ip_summed = CHECKSUM_PARTIAL;
1069 		WRITE_ONCE(tp->write_seq, tp->write_seq + copy);
1070 		TCP_SKB_CB(skb)->end_seq += copy;
1071 		tcp_skb_pcount_set(skb, 0);
1072 
1073 		if (!copied)
1074 			TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
1075 
1076 		copied += copy;
1077 		offset += copy;
1078 		size -= copy;
1079 		if (!size)
1080 			goto out;
1081 
1082 		if (skb->len < size_goal || (flags & MSG_OOB))
1083 			continue;
1084 
1085 		if (forced_push(tp)) {
1086 			tcp_mark_push(tp, skb);
1087 			__tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
1088 		} else if (skb == tcp_send_head(sk))
1089 			tcp_push_one(sk, mss_now);
1090 		continue;
1091 
1092 wait_for_space:
1093 		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1094 		tcp_push(sk, flags & ~MSG_MORE, mss_now,
1095 			 TCP_NAGLE_PUSH, size_goal);
1096 
1097 		err = sk_stream_wait_memory(sk, &timeo);
1098 		if (err != 0)
1099 			goto do_error;
1100 
1101 		mss_now = tcp_send_mss(sk, &size_goal, flags);
1102 	}
1103 
1104 out:
1105 	if (copied) {
1106 		tcp_tx_timestamp(sk, sk->sk_tsflags);
1107 		if (!(flags & MSG_SENDPAGE_NOTLAST))
1108 			tcp_push(sk, flags, mss_now, tp->nonagle, size_goal);
1109 	}
1110 	return copied;
1111 
1112 do_error:
1113 	tcp_remove_empty_skb(sk, tcp_write_queue_tail(sk));
1114 	if (copied)
1115 		goto out;
1116 out_err:
1117 	/* make sure we wake any epoll edge trigger waiter */
1118 	if (unlikely(tcp_rtx_and_write_queues_empty(sk) && err == -EAGAIN)) {
1119 		sk->sk_write_space(sk);
1120 		tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
1121 	}
1122 	return sk_stream_error(sk, flags, err);
1123 }
1124 EXPORT_SYMBOL_GPL(do_tcp_sendpages);
1125 
tcp_sendpage_locked(struct sock *sk, struct page *page, int offset, size_t size, int flags)1126 int tcp_sendpage_locked(struct sock *sk, struct page *page, int offset,
1127 			size_t size, int flags)
1128 {
1129 	if (!(sk->sk_route_caps & NETIF_F_SG))
1130 		return sock_no_sendpage_locked(sk, page, offset, size, flags);
1131 
1132 	tcp_rate_check_app_limited(sk);  /* is sending application-limited? */
1133 
1134 	return do_tcp_sendpages(sk, page, offset, size, flags);
1135 }
1136 EXPORT_SYMBOL_GPL(tcp_sendpage_locked);
1137 
tcp_sendpage(struct sock *sk, struct page *page, int offset, size_t size, int flags)1138 int tcp_sendpage(struct sock *sk, struct page *page, int offset,
1139 		 size_t size, int flags)
1140 {
1141 	int ret;
1142 
1143 	lock_sock(sk);
1144 	ret = tcp_sendpage_locked(sk, page, offset, size, flags);
1145 	release_sock(sk);
1146 
1147 	return ret;
1148 }
1149 EXPORT_SYMBOL(tcp_sendpage);
1150 
tcp_free_fastopen_req(struct tcp_sock *tp)1151 void tcp_free_fastopen_req(struct tcp_sock *tp)
1152 {
1153 	if (tp->fastopen_req) {
1154 		kfree(tp->fastopen_req);
1155 		tp->fastopen_req = NULL;
1156 	}
1157 }
1158 
tcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg, int *copied, size_t size, struct ubuf_info *uarg)1159 static int tcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg,
1160 				int *copied, size_t size,
1161 				struct ubuf_info *uarg)
1162 {
1163 	struct tcp_sock *tp = tcp_sk(sk);
1164 	struct inet_sock *inet = inet_sk(sk);
1165 	struct sockaddr *uaddr = msg->msg_name;
1166 	int err, flags;
1167 
1168 	if (!(READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_fastopen) &
1169 	      TFO_CLIENT_ENABLE) ||
1170 	    (uaddr && msg->msg_namelen >= sizeof(uaddr->sa_family) &&
1171 	     uaddr->sa_family == AF_UNSPEC))
1172 		return -EOPNOTSUPP;
1173 	if (tp->fastopen_req)
1174 		return -EALREADY; /* Another Fast Open is in progress */
1175 
1176 	tp->fastopen_req = kzalloc(sizeof(struct tcp_fastopen_request),
1177 				   sk->sk_allocation);
1178 	if (unlikely(!tp->fastopen_req))
1179 		return -ENOBUFS;
1180 	tp->fastopen_req->data = msg;
1181 	tp->fastopen_req->size = size;
1182 	tp->fastopen_req->uarg = uarg;
1183 
1184 	if (inet->defer_connect) {
1185 		err = tcp_connect(sk);
1186 		/* Same failure procedure as in tcp_v4/6_connect */
1187 		if (err) {
1188 			tcp_set_state(sk, TCP_CLOSE);
1189 			inet->inet_dport = 0;
1190 			sk->sk_route_caps = 0;
1191 		}
1192 	}
1193 	flags = (msg->msg_flags & MSG_DONTWAIT) ? O_NONBLOCK : 0;
1194 	err = __inet_stream_connect(sk->sk_socket, uaddr,
1195 				    msg->msg_namelen, flags, 1);
1196 	/* fastopen_req could already be freed in __inet_stream_connect
1197 	 * if the connection times out or gets rst
1198 	 */
1199 	if (tp->fastopen_req) {
1200 		*copied = tp->fastopen_req->copied;
1201 		tcp_free_fastopen_req(tp);
1202 		inet->defer_connect = 0;
1203 	}
1204 	return err;
1205 }
1206 
tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size)1207 int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size)
1208 {
1209 	struct tcp_sock *tp = tcp_sk(sk);
1210 	struct ubuf_info *uarg = NULL;
1211 	struct sk_buff *skb;
1212 	struct sockcm_cookie sockc;
1213 	int flags, err, copied = 0;
1214 	int mss_now = 0, size_goal, copied_syn = 0;
1215 	int process_backlog = 0;
1216 	bool zc = false;
1217 	long timeo;
1218 
1219 	flags = msg->msg_flags;
1220 
1221 	if (flags & MSG_ZEROCOPY && size && sock_flag(sk, SOCK_ZEROCOPY)) {
1222 		skb = tcp_write_queue_tail(sk);
1223 		uarg = sock_zerocopy_realloc(sk, size, skb_zcopy(skb));
1224 		if (!uarg) {
1225 			err = -ENOBUFS;
1226 			goto out_err;
1227 		}
1228 
1229 		zc = sk->sk_route_caps & NETIF_F_SG;
1230 		if (!zc)
1231 			uarg->zerocopy = 0;
1232 	}
1233 
1234 	if (unlikely(flags & MSG_FASTOPEN || inet_sk(sk)->defer_connect) &&
1235 	    !tp->repair) {
1236 		err = tcp_sendmsg_fastopen(sk, msg, &copied_syn, size, uarg);
1237 		if (err == -EINPROGRESS && copied_syn > 0)
1238 			goto out;
1239 		else if (err)
1240 			goto out_err;
1241 	}
1242 
1243 	timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
1244 
1245 	tcp_rate_check_app_limited(sk);  /* is sending application-limited? */
1246 
1247 	/* Wait for a connection to finish. One exception is TCP Fast Open
1248 	 * (passive side) where data is allowed to be sent before a connection
1249 	 * is fully established.
1250 	 */
1251 	if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) &&
1252 	    !tcp_passive_fastopen(sk)) {
1253 		err = sk_stream_wait_connect(sk, &timeo);
1254 		if (err != 0)
1255 			goto do_error;
1256 	}
1257 
1258 	if (unlikely(tp->repair)) {
1259 		if (tp->repair_queue == TCP_RECV_QUEUE) {
1260 			copied = tcp_send_rcvq(sk, msg, size);
1261 			goto out_nopush;
1262 		}
1263 
1264 		err = -EINVAL;
1265 		if (tp->repair_queue == TCP_NO_QUEUE)
1266 			goto out_err;
1267 
1268 		/* 'common' sending to sendq */
1269 	}
1270 
1271 	sockcm_init(&sockc, sk);
1272 	if (msg->msg_controllen) {
1273 		err = sock_cmsg_send(sk, msg, &sockc);
1274 		if (unlikely(err)) {
1275 			err = -EINVAL;
1276 			goto out_err;
1277 		}
1278 	}
1279 
1280 	/* This should be in poll */
1281 	sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
1282 
1283 	/* Ok commence sending. */
1284 	copied = 0;
1285 
1286 restart:
1287 	mss_now = tcp_send_mss(sk, &size_goal, flags);
1288 
1289 	err = -EPIPE;
1290 	if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
1291 		goto do_error;
1292 
1293 	while (msg_data_left(msg)) {
1294 		int copy = 0;
1295 
1296 		skb = tcp_write_queue_tail(sk);
1297 		if (skb)
1298 			copy = size_goal - skb->len;
1299 
1300 		if (copy <= 0 || !tcp_skb_can_collapse_to(skb)) {
1301 			bool first_skb;
1302 
1303 new_segment:
1304 			if (!sk_stream_memory_free(sk))
1305 				goto wait_for_space;
1306 
1307 			if (unlikely(process_backlog >= 16)) {
1308 				process_backlog = 0;
1309 				if (sk_flush_backlog(sk))
1310 					goto restart;
1311 			}
1312 			first_skb = tcp_rtx_and_write_queues_empty(sk);
1313 			skb = sk_stream_alloc_skb(sk, 0, sk->sk_allocation,
1314 						  first_skb);
1315 			if (!skb)
1316 				goto wait_for_space;
1317 
1318 			process_backlog++;
1319 			skb->ip_summed = CHECKSUM_PARTIAL;
1320 
1321 			skb_entail(sk, skb);
1322 			copy = size_goal;
1323 
1324 			/* All packets are restored as if they have
1325 			 * already been sent. skb_mstamp_ns isn't set to
1326 			 * avoid wrong rtt estimation.
1327 			 */
1328 			if (tp->repair)
1329 				TCP_SKB_CB(skb)->sacked |= TCPCB_REPAIRED;
1330 		}
1331 
1332 		/* Try to append data to the end of skb. */
1333 		if (copy > msg_data_left(msg))
1334 			copy = msg_data_left(msg);
1335 
1336 		/* Where to copy to? */
1337 		if (skb_availroom(skb) > 0 && !zc) {
1338 			/* We have some space in skb head. Superb! */
1339 			copy = min_t(int, copy, skb_availroom(skb));
1340 			err = skb_add_data_nocache(sk, skb, &msg->msg_iter, copy);
1341 			if (err)
1342 				goto do_fault;
1343 		} else if (!zc) {
1344 			bool merge = true;
1345 			int i = skb_shinfo(skb)->nr_frags;
1346 			struct page_frag *pfrag = sk_page_frag(sk);
1347 
1348 			if (!sk_page_frag_refill(sk, pfrag))
1349 				goto wait_for_space;
1350 
1351 			if (!skb_can_coalesce(skb, i, pfrag->page,
1352 					      pfrag->offset)) {
1353 				if (i >= sysctl_max_skb_frags) {
1354 					tcp_mark_push(tp, skb);
1355 					goto new_segment;
1356 				}
1357 				merge = false;
1358 			}
1359 
1360 			copy = min_t(int, copy, pfrag->size - pfrag->offset);
1361 
1362 			if (!sk_wmem_schedule(sk, copy))
1363 				goto wait_for_space;
1364 
1365 			err = skb_copy_to_page_nocache(sk, &msg->msg_iter, skb,
1366 						       pfrag->page,
1367 						       pfrag->offset,
1368 						       copy);
1369 			if (err)
1370 				goto do_error;
1371 
1372 			/* Update the skb. */
1373 			if (merge) {
1374 				skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1375 			} else {
1376 				skb_fill_page_desc(skb, i, pfrag->page,
1377 						   pfrag->offset, copy);
1378 				page_ref_inc(pfrag->page);
1379 			}
1380 			pfrag->offset += copy;
1381 		} else {
1382 			if (!sk_wmem_schedule(sk, copy))
1383 				goto wait_for_space;
1384 
1385 			err = skb_zerocopy_iter_stream(sk, skb, msg, copy, uarg);
1386 			if (err == -EMSGSIZE || err == -EEXIST) {
1387 				tcp_mark_push(tp, skb);
1388 				goto new_segment;
1389 			}
1390 			if (err < 0)
1391 				goto do_error;
1392 			copy = err;
1393 		}
1394 
1395 		if (!copied)
1396 			TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
1397 
1398 		WRITE_ONCE(tp->write_seq, tp->write_seq + copy);
1399 		TCP_SKB_CB(skb)->end_seq += copy;
1400 		tcp_skb_pcount_set(skb, 0);
1401 
1402 		copied += copy;
1403 		if (!msg_data_left(msg)) {
1404 			if (unlikely(flags & MSG_EOR))
1405 				TCP_SKB_CB(skb)->eor = 1;
1406 			goto out;
1407 		}
1408 
1409 		if (skb->len < size_goal || (flags & MSG_OOB) || unlikely(tp->repair))
1410 			continue;
1411 
1412 		if (forced_push(tp)) {
1413 			tcp_mark_push(tp, skb);
1414 			__tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
1415 		} else if (skb == tcp_send_head(sk))
1416 			tcp_push_one(sk, mss_now);
1417 		continue;
1418 
1419 wait_for_space:
1420 		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1421 		if (copied)
1422 			tcp_push(sk, flags & ~MSG_MORE, mss_now,
1423 				 TCP_NAGLE_PUSH, size_goal);
1424 
1425 		err = sk_stream_wait_memory(sk, &timeo);
1426 		if (err != 0)
1427 			goto do_error;
1428 
1429 		mss_now = tcp_send_mss(sk, &size_goal, flags);
1430 	}
1431 
1432 out:
1433 	if (copied) {
1434 		tcp_tx_timestamp(sk, sockc.tsflags);
1435 		tcp_push(sk, flags, mss_now, tp->nonagle, size_goal);
1436 	}
1437 out_nopush:
1438 	sock_zerocopy_put(uarg);
1439 	return copied + copied_syn;
1440 
1441 do_error:
1442 	skb = tcp_write_queue_tail(sk);
1443 do_fault:
1444 	tcp_remove_empty_skb(sk, skb);
1445 
1446 	if (copied + copied_syn)
1447 		goto out;
1448 out_err:
1449 	sock_zerocopy_put_abort(uarg, true);
1450 	err = sk_stream_error(sk, flags, err);
1451 	/* make sure we wake any epoll edge trigger waiter */
1452 	if (unlikely(tcp_rtx_and_write_queues_empty(sk) && err == -EAGAIN)) {
1453 		sk->sk_write_space(sk);
1454 		tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
1455 	}
1456 	return err;
1457 }
1458 EXPORT_SYMBOL_GPL(tcp_sendmsg_locked);
1459 
tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size)1460 int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size)
1461 {
1462 	int ret;
1463 
1464 	lock_sock(sk);
1465 	ret = tcp_sendmsg_locked(sk, msg, size);
1466 	release_sock(sk);
1467 
1468 	return ret;
1469 }
1470 EXPORT_SYMBOL(tcp_sendmsg);
1471 
1472 /*
1473  *	Handle reading urgent data. BSD has very simple semantics for
1474  *	this, no blocking and very strange errors 8)
1475  */
1476 
tcp_recv_urg(struct sock *sk, struct msghdr *msg, int len, int flags)1477 static int tcp_recv_urg(struct sock *sk, struct msghdr *msg, int len, int flags)
1478 {
1479 	struct tcp_sock *tp = tcp_sk(sk);
1480 
1481 	/* No URG data to read. */
1482 	if (sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data ||
1483 	    tp->urg_data == TCP_URG_READ)
1484 		return -EINVAL;	/* Yes this is right ! */
1485 
1486 	if (sk->sk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DONE))
1487 		return -ENOTCONN;
1488 
1489 	if (tp->urg_data & TCP_URG_VALID) {
1490 		int err = 0;
1491 		char c = tp->urg_data;
1492 
1493 		if (!(flags & MSG_PEEK))
1494 			tp->urg_data = TCP_URG_READ;
1495 
1496 		/* Read urgent data. */
1497 		msg->msg_flags |= MSG_OOB;
1498 
1499 		if (len > 0) {
1500 			if (!(flags & MSG_TRUNC))
1501 				err = memcpy_to_msg(msg, &c, 1);
1502 			len = 1;
1503 		} else
1504 			msg->msg_flags |= MSG_TRUNC;
1505 
1506 		return err ? -EFAULT : len;
1507 	}
1508 
1509 	if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN))
1510 		return 0;
1511 
1512 	/* Fixed the recv(..., MSG_OOB) behaviour.  BSD docs and
1513 	 * the available implementations agree in this case:
1514 	 * this call should never block, independent of the
1515 	 * blocking state of the socket.
1516 	 * Mike <pall@rz.uni-karlsruhe.de>
1517 	 */
1518 	return -EAGAIN;
1519 }
1520 
tcp_peek_sndq(struct sock *sk, struct msghdr *msg, int len)1521 static int tcp_peek_sndq(struct sock *sk, struct msghdr *msg, int len)
1522 {
1523 	struct sk_buff *skb;
1524 	int copied = 0, err = 0;
1525 
1526 	/* XXX -- need to support SO_PEEK_OFF */
1527 
1528 	skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
1529 		err = skb_copy_datagram_msg(skb, 0, msg, skb->len);
1530 		if (err)
1531 			return err;
1532 		copied += skb->len;
1533 	}
1534 
1535 	skb_queue_walk(&sk->sk_write_queue, skb) {
1536 		err = skb_copy_datagram_msg(skb, 0, msg, skb->len);
1537 		if (err)
1538 			break;
1539 
1540 		copied += skb->len;
1541 	}
1542 
1543 	return err ?: copied;
1544 }
1545 
1546 /* Clean up the receive buffer for full frames taken by the user,
1547  * then send an ACK if necessary.  COPIED is the number of bytes
1548  * tcp_recvmsg has given to the user so far, it speeds up the
1549  * calculation of whether or not we must ACK for the sake of
1550  * a window update.
1551  */
tcp_cleanup_rbuf(struct sock *sk, int copied)1552 void tcp_cleanup_rbuf(struct sock *sk, int copied)
1553 {
1554 	struct tcp_sock *tp = tcp_sk(sk);
1555 	bool time_to_ack = false;
1556 
1557 	struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
1558 
1559 	WARN(skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq),
1560 	     "cleanup rbuf bug: copied %X seq %X rcvnxt %X\n",
1561 	     tp->copied_seq, TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt);
1562 
1563 	if (inet_csk_ack_scheduled(sk)) {
1564 		const struct inet_connection_sock *icsk = inet_csk(sk);
1565 		__u16 rcv_mss = icsk->icsk_ack.rcv_mss;
1566 #ifdef CONFIG_LOWPOWER_PROTOCOL
1567 		rcv_mss *= tcp_ack_num(sk);
1568 #endif /* CONFIG_LOWPOWER_PROTOCOL */
1569 
1570 		if (/* Once-per-two-segments ACK was not sent by tcp_input.c */
1571 		    tp->rcv_nxt - tp->rcv_wup > rcv_mss ||
1572 		    /*
1573 		     * If this read emptied read buffer, we send ACK, if
1574 		     * connection is not bidirectional, user drained
1575 		     * receive buffer and there was a small segment
1576 		     * in queue.
1577 		     */
1578 		    (copied > 0 &&
1579 		     ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED2) ||
1580 		      ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED) &&
1581 		       !inet_csk_in_pingpong_mode(sk))) &&
1582 		      !atomic_read(&sk->sk_rmem_alloc)))
1583 			time_to_ack = true;
1584 	}
1585 
1586 	/* We send an ACK if we can now advertise a non-zero window
1587 	 * which has been raised "significantly".
1588 	 *
1589 	 * Even if window raised up to infinity, do not send window open ACK
1590 	 * in states, where we will not receive more. It is useless.
1591 	 */
1592 	if (copied > 0 && !time_to_ack && !(sk->sk_shutdown & RCV_SHUTDOWN)) {
1593 		__u32 rcv_window_now = tcp_receive_window(tp);
1594 
1595 		/* Optimize, __tcp_select_window() is not cheap. */
1596 		if (2*rcv_window_now <= tp->window_clamp) {
1597 			__u32 new_window = __tcp_select_window(sk);
1598 
1599 			/* Send ACK now, if this read freed lots of space
1600 			 * in our buffer. Certainly, new_window is new window.
1601 			 * We can advertise it now, if it is not less than current one.
1602 			 * "Lots" means "at least twice" here.
1603 			 */
1604 			if (new_window && new_window >= 2 * rcv_window_now)
1605 				time_to_ack = true;
1606 		}
1607 	}
1608 	if (time_to_ack)
1609 		tcp_send_ack(sk);
1610 }
1611 
tcp_recv_skb(struct sock *sk, u32 seq, u32 *off)1612 static struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off)
1613 {
1614 	struct sk_buff *skb;
1615 	u32 offset;
1616 
1617 	while ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) {
1618 		offset = seq - TCP_SKB_CB(skb)->seq;
1619 		if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
1620 			pr_err_once("%s: found a SYN, please report !\n", __func__);
1621 			offset--;
1622 		}
1623 		if (offset < skb->len || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)) {
1624 			*off = offset;
1625 			return skb;
1626 		}
1627 		/* This looks weird, but this can happen if TCP collapsing
1628 		 * splitted a fat GRO packet, while we released socket lock
1629 		 * in skb_splice_bits()
1630 		 */
1631 		sk_eat_skb(sk, skb);
1632 	}
1633 	return NULL;
1634 }
1635 
1636 /*
1637  * This routine provides an alternative to tcp_recvmsg() for routines
1638  * that would like to handle copying from skbuffs directly in 'sendfile'
1639  * fashion.
1640  * Note:
1641  *	- It is assumed that the socket was locked by the caller.
1642  *	- The routine does not block.
1643  *	- At present, there is no support for reading OOB data
1644  *	  or for 'peeking' the socket using this routine
1645  *	  (although both would be easy to implement).
1646  */
tcp_read_sock(struct sock *sk, read_descriptor_t *desc, sk_read_actor_t recv_actor)1647 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
1648 		  sk_read_actor_t recv_actor)
1649 {
1650 	struct sk_buff *skb;
1651 	struct tcp_sock *tp = tcp_sk(sk);
1652 	u32 seq = tp->copied_seq;
1653 	u32 offset;
1654 	int copied = 0;
1655 
1656 	if (sk->sk_state == TCP_LISTEN)
1657 		return -ENOTCONN;
1658 	while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) {
1659 		if (offset < skb->len) {
1660 			int used;
1661 			size_t len;
1662 
1663 			len = skb->len - offset;
1664 			/* Stop reading if we hit a patch of urgent data */
1665 			if (tp->urg_data) {
1666 				u32 urg_offset = tp->urg_seq - seq;
1667 				if (urg_offset < len)
1668 					len = urg_offset;
1669 				if (!len)
1670 					break;
1671 			}
1672 			used = recv_actor(desc, skb, offset, len);
1673 			if (used <= 0) {
1674 				if (!copied)
1675 					copied = used;
1676 				break;
1677 			}
1678 			if (WARN_ON_ONCE(used > len))
1679 				used = len;
1680 			seq += used;
1681 			copied += used;
1682 			offset += used;
1683 
1684 			/* If recv_actor drops the lock (e.g. TCP splice
1685 			 * receive) the skb pointer might be invalid when
1686 			 * getting here: tcp_collapse might have deleted it
1687 			 * while aggregating skbs from the socket queue.
1688 			 */
1689 			skb = tcp_recv_skb(sk, seq - 1, &offset);
1690 			if (!skb)
1691 				break;
1692 			/* TCP coalescing might have appended data to the skb.
1693 			 * Try to splice more frags
1694 			 */
1695 			if (offset + 1 != skb->len)
1696 				continue;
1697 		}
1698 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) {
1699 			sk_eat_skb(sk, skb);
1700 			++seq;
1701 			break;
1702 		}
1703 		sk_eat_skb(sk, skb);
1704 		if (!desc->count)
1705 			break;
1706 		WRITE_ONCE(tp->copied_seq, seq);
1707 	}
1708 	WRITE_ONCE(tp->copied_seq, seq);
1709 
1710 	tcp_rcv_space_adjust(sk);
1711 
1712 	/* Clean up data we have read: This will do ACK frames. */
1713 	if (copied > 0) {
1714 		tcp_recv_skb(sk, seq, &offset);
1715 		tcp_cleanup_rbuf(sk, copied);
1716 	}
1717 	return copied;
1718 }
1719 EXPORT_SYMBOL(tcp_read_sock);
1720 
tcp_peek_len(struct socket *sock)1721 int tcp_peek_len(struct socket *sock)
1722 {
1723 	return tcp_inq(sock->sk);
1724 }
1725 EXPORT_SYMBOL(tcp_peek_len);
1726 
1727 /* Make sure sk_rcvbuf is big enough to satisfy SO_RCVLOWAT hint */
tcp_set_rcvlowat(struct sock *sk, int val)1728 int tcp_set_rcvlowat(struct sock *sk, int val)
1729 {
1730 	int cap;
1731 
1732 	if (sk->sk_userlocks & SOCK_RCVBUF_LOCK)
1733 		cap = sk->sk_rcvbuf >> 1;
1734 	else
1735 		cap = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2]) >> 1;
1736 	val = min(val, cap);
1737 	WRITE_ONCE(sk->sk_rcvlowat, val ? : 1);
1738 
1739 	/* Check if we need to signal EPOLLIN right now */
1740 	tcp_data_ready(sk);
1741 
1742 	if (sk->sk_userlocks & SOCK_RCVBUF_LOCK)
1743 		return 0;
1744 
1745 	val <<= 1;
1746 	if (val > sk->sk_rcvbuf) {
1747 		WRITE_ONCE(sk->sk_rcvbuf, val);
1748 		tcp_sk(sk)->window_clamp = tcp_win_from_space(sk, val);
1749 	}
1750 	return 0;
1751 }
1752 EXPORT_SYMBOL(tcp_set_rcvlowat);
1753 
1754 #ifdef CONFIG_MMU
1755 static const struct vm_operations_struct tcp_vm_ops = {
1756 };
1757 
tcp_mmap(struct file *file, struct socket *sock, struct vm_area_struct *vma)1758 int tcp_mmap(struct file *file, struct socket *sock,
1759 	     struct vm_area_struct *vma)
1760 {
1761 	if (vma->vm_flags & (VM_WRITE | VM_EXEC))
1762 		return -EPERM;
1763 	vma->vm_flags &= ~(VM_MAYWRITE | VM_MAYEXEC);
1764 
1765 	/* Instruct vm_insert_page() to not mmap_read_lock(mm) */
1766 	vma->vm_flags |= VM_MIXEDMAP;
1767 
1768 	vma->vm_ops = &tcp_vm_ops;
1769 	return 0;
1770 }
1771 EXPORT_SYMBOL(tcp_mmap);
1772 
skb_advance_to_frag(struct sk_buff *skb, u32 offset_skb, u32 *offset_frag)1773 static skb_frag_t *skb_advance_to_frag(struct sk_buff *skb, u32 offset_skb,
1774 				       u32 *offset_frag)
1775 {
1776 	skb_frag_t *frag;
1777 
1778 	if (unlikely(offset_skb >= skb->len))
1779 		return NULL;
1780 
1781 	offset_skb -= skb_headlen(skb);
1782 	if ((int)offset_skb < 0 || skb_has_frag_list(skb))
1783 		return NULL;
1784 
1785 	frag = skb_shinfo(skb)->frags;
1786 	while (offset_skb) {
1787 		if (skb_frag_size(frag) > offset_skb) {
1788 			*offset_frag = offset_skb;
1789 			return frag;
1790 		}
1791 		offset_skb -= skb_frag_size(frag);
1792 		++frag;
1793 	}
1794 	*offset_frag = 0;
1795 	return frag;
1796 }
1797 
can_map_frag(const skb_frag_t *frag)1798 static bool can_map_frag(const skb_frag_t *frag)
1799 {
1800 	struct page *page;
1801 
1802 	if (skb_frag_size(frag) != PAGE_SIZE || skb_frag_off(frag))
1803 		return false;
1804 
1805 	page = skb_frag_page(frag);
1806 
1807 	if (PageCompound(page) || page->mapping)
1808 		return false;
1809 
1810 	return true;
1811 }
1812 
find_next_mappable_frag(const skb_frag_t *frag, int remaining_in_skb)1813 static int find_next_mappable_frag(const skb_frag_t *frag,
1814 				   int remaining_in_skb)
1815 {
1816 	int offset = 0;
1817 
1818 	if (likely(can_map_frag(frag)))
1819 		return 0;
1820 
1821 	while (offset < remaining_in_skb && !can_map_frag(frag)) {
1822 		offset += skb_frag_size(frag);
1823 		++frag;
1824 	}
1825 	return offset;
1826 }
1827 
tcp_copy_straggler_data(struct tcp_zerocopy_receive *zc, struct sk_buff *skb, u32 copylen, u32 *offset, u32 *seq)1828 static int tcp_copy_straggler_data(struct tcp_zerocopy_receive *zc,
1829 				   struct sk_buff *skb, u32 copylen,
1830 				   u32 *offset, u32 *seq)
1831 {
1832 	unsigned long copy_address = (unsigned long)zc->copybuf_address;
1833 	struct msghdr msg = {};
1834 	struct iovec iov;
1835 	int err;
1836 
1837 	if (copy_address != zc->copybuf_address)
1838 		return -EINVAL;
1839 
1840 	err = import_single_range(READ, (void __user *)copy_address,
1841 				  copylen, &iov, &msg.msg_iter);
1842 	if (err)
1843 		return err;
1844 	err = skb_copy_datagram_msg(skb, *offset, &msg, copylen);
1845 	if (err)
1846 		return err;
1847 	zc->recv_skip_hint -= copylen;
1848 	*offset += copylen;
1849 	*seq += copylen;
1850 	return (__s32)copylen;
1851 }
1852 
tcp_zerocopy_handle_leftover_data(struct tcp_zerocopy_receive *zc, struct sock *sk, struct sk_buff *skb, u32 *seq, s32 copybuf_len)1853 static int tcp_zerocopy_handle_leftover_data(struct tcp_zerocopy_receive *zc,
1854 					     struct sock *sk,
1855 					     struct sk_buff *skb,
1856 					     u32 *seq,
1857 					     s32 copybuf_len)
1858 {
1859 	u32 offset, copylen = min_t(u32, copybuf_len, zc->recv_skip_hint);
1860 
1861 	if (!copylen)
1862 		return 0;
1863 	/* skb is null if inq < PAGE_SIZE. */
1864 	if (skb)
1865 		offset = *seq - TCP_SKB_CB(skb)->seq;
1866 	else
1867 		skb = tcp_recv_skb(sk, *seq, &offset);
1868 
1869 	zc->copybuf_len = tcp_copy_straggler_data(zc, skb, copylen, &offset,
1870 						  seq);
1871 	return zc->copybuf_len < 0 ? 0 : copylen;
1872 }
1873 
tcp_zerocopy_vm_insert_batch(struct vm_area_struct *vma, struct page **pages, unsigned long pages_to_map, unsigned long *insert_addr, u32 *length_with_pending, u32 *seq, struct tcp_zerocopy_receive *zc)1874 static int tcp_zerocopy_vm_insert_batch(struct vm_area_struct *vma,
1875 					struct page **pages,
1876 					unsigned long pages_to_map,
1877 					unsigned long *insert_addr,
1878 					u32 *length_with_pending,
1879 					u32 *seq,
1880 					struct tcp_zerocopy_receive *zc)
1881 {
1882 	unsigned long pages_remaining = pages_to_map;
1883 	int bytes_mapped;
1884 	int ret;
1885 
1886 	ret = vm_insert_pages(vma, *insert_addr, pages, &pages_remaining);
1887 	bytes_mapped = PAGE_SIZE * (pages_to_map - pages_remaining);
1888 	/* Even if vm_insert_pages fails, it may have partially succeeded in
1889 	 * mapping (some but not all of the pages).
1890 	 */
1891 	*seq += bytes_mapped;
1892 	*insert_addr += bytes_mapped;
1893 	if (ret) {
1894 		/* But if vm_insert_pages did fail, we have to unroll some state
1895 		 * we speculatively touched before.
1896 		 */
1897 		const int bytes_not_mapped = PAGE_SIZE * pages_remaining;
1898 		*length_with_pending -= bytes_not_mapped;
1899 		zc->recv_skip_hint += bytes_not_mapped;
1900 	}
1901 	return ret;
1902 }
1903 
tcp_zerocopy_receive(struct sock *sk, struct tcp_zerocopy_receive *zc)1904 static int tcp_zerocopy_receive(struct sock *sk,
1905 				struct tcp_zerocopy_receive *zc)
1906 {
1907 	u32 length = 0, offset, vma_len, avail_len, aligned_len, copylen = 0;
1908 	unsigned long address = (unsigned long)zc->address;
1909 	s32 copybuf_len = zc->copybuf_len;
1910 	struct tcp_sock *tp = tcp_sk(sk);
1911 	#define PAGE_BATCH_SIZE 8
1912 	struct page *pages[PAGE_BATCH_SIZE];
1913 	const skb_frag_t *frags = NULL;
1914 	struct vm_area_struct *vma;
1915 	struct sk_buff *skb = NULL;
1916 	unsigned long pg_idx = 0;
1917 	unsigned long curr_addr;
1918 	u32 seq = tp->copied_seq;
1919 	int inq = tcp_inq(sk);
1920 	int ret;
1921 
1922 	zc->copybuf_len = 0;
1923 
1924 	if (address & (PAGE_SIZE - 1) || address != zc->address)
1925 		return -EINVAL;
1926 
1927 	if (sk->sk_state == TCP_LISTEN)
1928 		return -ENOTCONN;
1929 
1930 	sock_rps_record_flow(sk);
1931 
1932 	mmap_read_lock(current->mm);
1933 
1934 	vma = find_vma(current->mm, address);
1935 	if (!vma || vma->vm_start > address || vma->vm_ops != &tcp_vm_ops) {
1936 		mmap_read_unlock(current->mm);
1937 		return -EINVAL;
1938 	}
1939 	vma_len = min_t(unsigned long, zc->length, vma->vm_end - address);
1940 	avail_len = min_t(u32, vma_len, inq);
1941 	aligned_len = avail_len & ~(PAGE_SIZE - 1);
1942 	if (aligned_len) {
1943 		zap_page_range(vma, address, aligned_len);
1944 		zc->length = aligned_len;
1945 		zc->recv_skip_hint = 0;
1946 	} else {
1947 		zc->length = avail_len;
1948 		zc->recv_skip_hint = avail_len;
1949 	}
1950 	ret = 0;
1951 	curr_addr = address;
1952 	while (length + PAGE_SIZE <= zc->length) {
1953 		int mappable_offset;
1954 
1955 		if (zc->recv_skip_hint < PAGE_SIZE) {
1956 			u32 offset_frag;
1957 
1958 			/* If we're here, finish the current batch. */
1959 			if (pg_idx) {
1960 				ret = tcp_zerocopy_vm_insert_batch(vma, pages,
1961 								   pg_idx,
1962 								   &curr_addr,
1963 								   &length,
1964 								   &seq, zc);
1965 				if (ret)
1966 					goto out;
1967 				pg_idx = 0;
1968 			}
1969 			if (skb) {
1970 				if (zc->recv_skip_hint > 0)
1971 					break;
1972 				skb = skb->next;
1973 				offset = seq - TCP_SKB_CB(skb)->seq;
1974 			} else {
1975 				skb = tcp_recv_skb(sk, seq, &offset);
1976 			}
1977 			zc->recv_skip_hint = skb->len - offset;
1978 			frags = skb_advance_to_frag(skb, offset, &offset_frag);
1979 			if (!frags || offset_frag)
1980 				break;
1981 		}
1982 
1983 		mappable_offset = find_next_mappable_frag(frags,
1984 							  zc->recv_skip_hint);
1985 		if (mappable_offset) {
1986 			zc->recv_skip_hint = mappable_offset;
1987 			break;
1988 		}
1989 		pages[pg_idx] = skb_frag_page(frags);
1990 		pg_idx++;
1991 		length += PAGE_SIZE;
1992 		zc->recv_skip_hint -= PAGE_SIZE;
1993 		frags++;
1994 		if (pg_idx == PAGE_BATCH_SIZE) {
1995 			ret = tcp_zerocopy_vm_insert_batch(vma, pages, pg_idx,
1996 							   &curr_addr, &length,
1997 							   &seq, zc);
1998 			if (ret)
1999 				goto out;
2000 			pg_idx = 0;
2001 		}
2002 	}
2003 	if (pg_idx) {
2004 		ret = tcp_zerocopy_vm_insert_batch(vma, pages, pg_idx,
2005 						   &curr_addr, &length, &seq,
2006 						   zc);
2007 	}
2008 out:
2009 	mmap_read_unlock(current->mm);
2010 	/* Try to copy straggler data. */
2011 	if (!ret)
2012 		copylen = tcp_zerocopy_handle_leftover_data(zc, sk, skb, &seq,
2013 							    copybuf_len);
2014 
2015 	if (length + copylen) {
2016 		WRITE_ONCE(tp->copied_seq, seq);
2017 		tcp_rcv_space_adjust(sk);
2018 
2019 		/* Clean up data we have read: This will do ACK frames. */
2020 		tcp_recv_skb(sk, seq, &offset);
2021 		tcp_cleanup_rbuf(sk, length + copylen);
2022 		ret = 0;
2023 		if (length == zc->length)
2024 			zc->recv_skip_hint = 0;
2025 	} else {
2026 		if (!zc->recv_skip_hint && sock_flag(sk, SOCK_DONE))
2027 			ret = -EIO;
2028 	}
2029 	zc->length = length;
2030 	return ret;
2031 }
2032 #endif
2033 
tcp_update_recv_tstamps(struct sk_buff *skb, struct scm_timestamping_internal *tss)2034 static void tcp_update_recv_tstamps(struct sk_buff *skb,
2035 				    struct scm_timestamping_internal *tss)
2036 {
2037 	if (skb->tstamp)
2038 		tss->ts[0] = ktime_to_timespec64(skb->tstamp);
2039 	else
2040 		tss->ts[0] = (struct timespec64) {0};
2041 
2042 	if (skb_hwtstamps(skb)->hwtstamp)
2043 		tss->ts[2] = ktime_to_timespec64(skb_hwtstamps(skb)->hwtstamp);
2044 	else
2045 		tss->ts[2] = (struct timespec64) {0};
2046 }
2047 
2048 /* Similar to __sock_recv_timestamp, but does not require an skb */
tcp_recv_timestamp(struct msghdr *msg, const struct sock *sk, struct scm_timestamping_internal *tss)2049 static void tcp_recv_timestamp(struct msghdr *msg, const struct sock *sk,
2050 			       struct scm_timestamping_internal *tss)
2051 {
2052 	int new_tstamp = sock_flag(sk, SOCK_TSTAMP_NEW);
2053 	bool has_timestamping = false;
2054 
2055 	if (tss->ts[0].tv_sec || tss->ts[0].tv_nsec) {
2056 		if (sock_flag(sk, SOCK_RCVTSTAMP)) {
2057 			if (sock_flag(sk, SOCK_RCVTSTAMPNS)) {
2058 				if (new_tstamp) {
2059 					struct __kernel_timespec kts = {
2060 						.tv_sec = tss->ts[0].tv_sec,
2061 						.tv_nsec = tss->ts[0].tv_nsec,
2062 					};
2063 					put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_NEW,
2064 						 sizeof(kts), &kts);
2065 				} else {
2066 					struct __kernel_old_timespec ts_old = {
2067 						.tv_sec = tss->ts[0].tv_sec,
2068 						.tv_nsec = tss->ts[0].tv_nsec,
2069 					};
2070 					put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_OLD,
2071 						 sizeof(ts_old), &ts_old);
2072 				}
2073 			} else {
2074 				if (new_tstamp) {
2075 					struct __kernel_sock_timeval stv = {
2076 						.tv_sec = tss->ts[0].tv_sec,
2077 						.tv_usec = tss->ts[0].tv_nsec / 1000,
2078 					};
2079 					put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_NEW,
2080 						 sizeof(stv), &stv);
2081 				} else {
2082 					struct __kernel_old_timeval tv = {
2083 						.tv_sec = tss->ts[0].tv_sec,
2084 						.tv_usec = tss->ts[0].tv_nsec / 1000,
2085 					};
2086 					put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_OLD,
2087 						 sizeof(tv), &tv);
2088 				}
2089 			}
2090 		}
2091 
2092 		if (sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE)
2093 			has_timestamping = true;
2094 		else
2095 			tss->ts[0] = (struct timespec64) {0};
2096 	}
2097 
2098 	if (tss->ts[2].tv_sec || tss->ts[2].tv_nsec) {
2099 		if (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE)
2100 			has_timestamping = true;
2101 		else
2102 			tss->ts[2] = (struct timespec64) {0};
2103 	}
2104 
2105 	if (has_timestamping) {
2106 		tss->ts[1] = (struct timespec64) {0};
2107 		if (sock_flag(sk, SOCK_TSTAMP_NEW))
2108 			put_cmsg_scm_timestamping64(msg, tss);
2109 		else
2110 			put_cmsg_scm_timestamping(msg, tss);
2111 	}
2112 }
2113 
tcp_inq_hint(struct sock *sk)2114 static int tcp_inq_hint(struct sock *sk)
2115 {
2116 	const struct tcp_sock *tp = tcp_sk(sk);
2117 	u32 copied_seq = READ_ONCE(tp->copied_seq);
2118 	u32 rcv_nxt = READ_ONCE(tp->rcv_nxt);
2119 	int inq;
2120 
2121 	inq = rcv_nxt - copied_seq;
2122 	if (unlikely(inq < 0 || copied_seq != READ_ONCE(tp->copied_seq))) {
2123 		lock_sock(sk);
2124 		inq = tp->rcv_nxt - tp->copied_seq;
2125 		release_sock(sk);
2126 	}
2127 	/* After receiving a FIN, tell the user-space to continue reading
2128 	 * by returning a non-zero inq.
2129 	 */
2130 	if (inq == 0 && sock_flag(sk, SOCK_DONE))
2131 		inq = 1;
2132 	return inq;
2133 }
2134 
2135 /*
2136  *	This routine copies from a sock struct into the user buffer.
2137  *
2138  *	Technical note: in 2.3 we work on _locked_ socket, so that
2139  *	tricks with *seq access order and skb->users are not required.
2140  *	Probably, code can be easily improved even more.
2141  */
2142 
tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int nonblock, int flags, int *addr_len)2143 int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int nonblock,
2144 		int flags, int *addr_len)
2145 {
2146 	struct tcp_sock *tp = tcp_sk(sk);
2147 	int copied = 0;
2148 	u32 peek_seq;
2149 	u32 *seq;
2150 	unsigned long used;
2151 	int err, inq;
2152 	int target;		/* Read at least this many bytes */
2153 	long timeo;
2154 	struct sk_buff *skb, *last;
2155 	u32 urg_hole = 0;
2156 	struct scm_timestamping_internal tss;
2157 	int cmsg_flags;
2158 
2159 	if (unlikely(flags & MSG_ERRQUEUE))
2160 		return inet_recv_error(sk, msg, len, addr_len);
2161 
2162 	if (sk_can_busy_loop(sk) && skb_queue_empty_lockless(&sk->sk_receive_queue) &&
2163 	    (sk->sk_state == TCP_ESTABLISHED))
2164 		sk_busy_loop(sk, nonblock);
2165 
2166 	lock_sock(sk);
2167 
2168 	err = -ENOTCONN;
2169 	if (sk->sk_state == TCP_LISTEN)
2170 		goto out;
2171 
2172 	cmsg_flags = tp->recvmsg_inq ? 1 : 0;
2173 	timeo = sock_rcvtimeo(sk, nonblock);
2174 
2175 	/* Urgent data needs to be handled specially. */
2176 	if (flags & MSG_OOB)
2177 		goto recv_urg;
2178 
2179 	if (unlikely(tp->repair)) {
2180 		err = -EPERM;
2181 		if (!(flags & MSG_PEEK))
2182 			goto out;
2183 
2184 		if (tp->repair_queue == TCP_SEND_QUEUE)
2185 			goto recv_sndq;
2186 
2187 		err = -EINVAL;
2188 		if (tp->repair_queue == TCP_NO_QUEUE)
2189 			goto out;
2190 
2191 		/* 'common' recv queue MSG_PEEK-ing */
2192 	}
2193 
2194 	seq = &tp->copied_seq;
2195 	if (flags & MSG_PEEK) {
2196 		peek_seq = tp->copied_seq;
2197 		seq = &peek_seq;
2198 	}
2199 
2200 	target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
2201 
2202 	do {
2203 		u32 offset;
2204 
2205 		/* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */
2206 		if (tp->urg_data && tp->urg_seq == *seq) {
2207 			if (copied)
2208 				break;
2209 			if (signal_pending(current)) {
2210 				copied = timeo ? sock_intr_errno(timeo) : -EAGAIN;
2211 				break;
2212 			}
2213 		}
2214 
2215 		/* Next get a buffer. */
2216 
2217 		last = skb_peek_tail(&sk->sk_receive_queue);
2218 		skb_queue_walk(&sk->sk_receive_queue, skb) {
2219 			last = skb;
2220 			/* Now that we have two receive queues this
2221 			 * shouldn't happen.
2222 			 */
2223 			if (WARN(before(*seq, TCP_SKB_CB(skb)->seq),
2224 				 "TCP recvmsg seq # bug: copied %X, seq %X, rcvnxt %X, fl %X\n",
2225 				 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt,
2226 				 flags))
2227 				break;
2228 
2229 			offset = *seq - TCP_SKB_CB(skb)->seq;
2230 			if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
2231 				pr_err_once("%s: found a SYN, please report !\n", __func__);
2232 				offset--;
2233 			}
2234 			if (offset < skb->len)
2235 				goto found_ok_skb;
2236 			if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
2237 				goto found_fin_ok;
2238 			WARN(!(flags & MSG_PEEK),
2239 			     "TCP recvmsg seq # bug 2: copied %X, seq %X, rcvnxt %X, fl %X\n",
2240 			     *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, flags);
2241 		}
2242 
2243 		/* Well, if we have backlog, try to process it now yet. */
2244 
2245 		if (copied >= target && !READ_ONCE(sk->sk_backlog.tail))
2246 			break;
2247 
2248 		if (copied) {
2249 			if (sk->sk_err ||
2250 			    sk->sk_state == TCP_CLOSE ||
2251 			    (sk->sk_shutdown & RCV_SHUTDOWN) ||
2252 			    !timeo ||
2253 			    signal_pending(current))
2254 				break;
2255 		} else {
2256 			if (sock_flag(sk, SOCK_DONE))
2257 				break;
2258 
2259 			if (sk->sk_err) {
2260 				copied = sock_error(sk);
2261 				break;
2262 			}
2263 
2264 			if (sk->sk_shutdown & RCV_SHUTDOWN)
2265 				break;
2266 
2267 			if (sk->sk_state == TCP_CLOSE) {
2268 				/* This occurs when user tries to read
2269 				 * from never connected socket.
2270 				 */
2271 				copied = -ENOTCONN;
2272 				break;
2273 			}
2274 
2275 			if (!timeo) {
2276 				copied = -EAGAIN;
2277 				break;
2278 			}
2279 
2280 			if (signal_pending(current)) {
2281 				copied = sock_intr_errno(timeo);
2282 				break;
2283 			}
2284 		}
2285 
2286 		tcp_cleanup_rbuf(sk, copied);
2287 
2288 		if (copied >= target) {
2289 			/* Do not sleep, just process backlog. */
2290 			release_sock(sk);
2291 			lock_sock(sk);
2292 		} else {
2293 			sk_wait_data(sk, &timeo, last);
2294 		}
2295 
2296 		if ((flags & MSG_PEEK) &&
2297 		    (peek_seq - copied - urg_hole != tp->copied_seq)) {
2298 			net_dbg_ratelimited("TCP(%s:%d): Application bug, race in MSG_PEEK\n",
2299 					    current->comm,
2300 					    task_pid_nr(current));
2301 			peek_seq = tp->copied_seq;
2302 		}
2303 		continue;
2304 
2305 found_ok_skb:
2306 		/* Ok so how much can we use? */
2307 		used = skb->len - offset;
2308 		if (len < used)
2309 			used = len;
2310 
2311 		/* Do we have urgent data here? */
2312 		if (tp->urg_data) {
2313 			u32 urg_offset = tp->urg_seq - *seq;
2314 			if (urg_offset < used) {
2315 				if (!urg_offset) {
2316 					if (!sock_flag(sk, SOCK_URGINLINE)) {
2317 						WRITE_ONCE(*seq, *seq + 1);
2318 						urg_hole++;
2319 						offset++;
2320 						used--;
2321 						if (!used)
2322 							goto skip_copy;
2323 					}
2324 				} else
2325 					used = urg_offset;
2326 			}
2327 		}
2328 
2329 		if (!(flags & MSG_TRUNC)) {
2330 			err = skb_copy_datagram_msg(skb, offset, msg, used);
2331 			if (err) {
2332 				/* Exception. Bailout! */
2333 				if (!copied)
2334 					copied = -EFAULT;
2335 				break;
2336 			}
2337 		}
2338 
2339 		WRITE_ONCE(*seq, *seq + used);
2340 		copied += used;
2341 		len -= used;
2342 
2343 		tcp_rcv_space_adjust(sk);
2344 
2345 skip_copy:
2346 		if (tp->urg_data && after(tp->copied_seq, tp->urg_seq)) {
2347 			tp->urg_data = 0;
2348 			tcp_fast_path_check(sk);
2349 		}
2350 
2351 		if (TCP_SKB_CB(skb)->has_rxtstamp) {
2352 			tcp_update_recv_tstamps(skb, &tss);
2353 			cmsg_flags |= 2;
2354 		}
2355 
2356 		if (used + offset < skb->len)
2357 			continue;
2358 
2359 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
2360 			goto found_fin_ok;
2361 		if (!(flags & MSG_PEEK))
2362 			sk_eat_skb(sk, skb);
2363 		continue;
2364 
2365 found_fin_ok:
2366 		/* Process the FIN. */
2367 		WRITE_ONCE(*seq, *seq + 1);
2368 		if (!(flags & MSG_PEEK))
2369 			sk_eat_skb(sk, skb);
2370 		break;
2371 	} while (len > 0);
2372 
2373 	/* According to UNIX98, msg_name/msg_namelen are ignored
2374 	 * on connected socket. I was just happy when found this 8) --ANK
2375 	 */
2376 
2377 	/* Clean up data we have read: This will do ACK frames. */
2378 	tcp_cleanup_rbuf(sk, copied);
2379 
2380 	release_sock(sk);
2381 
2382 	if (cmsg_flags) {
2383 		if (cmsg_flags & 2)
2384 			tcp_recv_timestamp(msg, sk, &tss);
2385 		if (cmsg_flags & 1) {
2386 			inq = tcp_inq_hint(sk);
2387 			put_cmsg(msg, SOL_TCP, TCP_CM_INQ, sizeof(inq), &inq);
2388 		}
2389 	}
2390 
2391 	return copied;
2392 
2393 out:
2394 	release_sock(sk);
2395 	return err;
2396 
2397 recv_urg:
2398 	err = tcp_recv_urg(sk, msg, len, flags);
2399 	goto out;
2400 
2401 recv_sndq:
2402 	err = tcp_peek_sndq(sk, msg, len);
2403 	goto out;
2404 }
2405 EXPORT_SYMBOL(tcp_recvmsg);
2406 
tcp_set_state(struct sock *sk, int state)2407 void tcp_set_state(struct sock *sk, int state)
2408 {
2409 	int oldstate = sk->sk_state;
2410 
2411 	/* We defined a new enum for TCP states that are exported in BPF
2412 	 * so as not force the internal TCP states to be frozen. The
2413 	 * following checks will detect if an internal state value ever
2414 	 * differs from the BPF value. If this ever happens, then we will
2415 	 * need to remap the internal value to the BPF value before calling
2416 	 * tcp_call_bpf_2arg.
2417 	 */
2418 	BUILD_BUG_ON((int)BPF_TCP_ESTABLISHED != (int)TCP_ESTABLISHED);
2419 	BUILD_BUG_ON((int)BPF_TCP_SYN_SENT != (int)TCP_SYN_SENT);
2420 	BUILD_BUG_ON((int)BPF_TCP_SYN_RECV != (int)TCP_SYN_RECV);
2421 	BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT1 != (int)TCP_FIN_WAIT1);
2422 	BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT2 != (int)TCP_FIN_WAIT2);
2423 	BUILD_BUG_ON((int)BPF_TCP_TIME_WAIT != (int)TCP_TIME_WAIT);
2424 	BUILD_BUG_ON((int)BPF_TCP_CLOSE != (int)TCP_CLOSE);
2425 	BUILD_BUG_ON((int)BPF_TCP_CLOSE_WAIT != (int)TCP_CLOSE_WAIT);
2426 	BUILD_BUG_ON((int)BPF_TCP_LAST_ACK != (int)TCP_LAST_ACK);
2427 	BUILD_BUG_ON((int)BPF_TCP_LISTEN != (int)TCP_LISTEN);
2428 	BUILD_BUG_ON((int)BPF_TCP_CLOSING != (int)TCP_CLOSING);
2429 	BUILD_BUG_ON((int)BPF_TCP_NEW_SYN_RECV != (int)TCP_NEW_SYN_RECV);
2430 	BUILD_BUG_ON((int)BPF_TCP_MAX_STATES != (int)TCP_MAX_STATES);
2431 
2432 	if (BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), BPF_SOCK_OPS_STATE_CB_FLAG))
2433 		tcp_call_bpf_2arg(sk, BPF_SOCK_OPS_STATE_CB, oldstate, state);
2434 
2435 	switch (state) {
2436 	case TCP_ESTABLISHED:
2437 		if (oldstate != TCP_ESTABLISHED)
2438 			TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
2439 		break;
2440 
2441 	case TCP_CLOSE:
2442 		if (oldstate == TCP_CLOSE_WAIT || oldstate == TCP_ESTABLISHED)
2443 			TCP_INC_STATS(sock_net(sk), TCP_MIB_ESTABRESETS);
2444 
2445 		sk->sk_prot->unhash(sk);
2446 		if (inet_csk(sk)->icsk_bind_hash &&
2447 		    !(sk->sk_userlocks & SOCK_BINDPORT_LOCK))
2448 			inet_put_port(sk);
2449 		fallthrough;
2450 	default:
2451 		if (oldstate == TCP_ESTABLISHED)
2452 			TCP_DEC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
2453 	}
2454 
2455 	/* Change state AFTER socket is unhashed to avoid closed
2456 	 * socket sitting in hash tables.
2457 	 */
2458 	inet_sk_state_store(sk, state);
2459 }
2460 EXPORT_SYMBOL_GPL(tcp_set_state);
2461 
2462 /*
2463  *	State processing on a close. This implements the state shift for
2464  *	sending our FIN frame. Note that we only send a FIN for some
2465  *	states. A shutdown() may have already sent the FIN, or we may be
2466  *	closed.
2467  */
2468 
2469 static const unsigned char new_state[16] = {
2470   /* current state:        new state:      action:	*/
2471   [0 /* (Invalid) */]	= TCP_CLOSE,
2472   [TCP_ESTABLISHED]	= TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2473   [TCP_SYN_SENT]	= TCP_CLOSE,
2474   [TCP_SYN_RECV]	= TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2475   [TCP_FIN_WAIT1]	= TCP_FIN_WAIT1,
2476   [TCP_FIN_WAIT2]	= TCP_FIN_WAIT2,
2477   [TCP_TIME_WAIT]	= TCP_CLOSE,
2478   [TCP_CLOSE]		= TCP_CLOSE,
2479   [TCP_CLOSE_WAIT]	= TCP_LAST_ACK  | TCP_ACTION_FIN,
2480   [TCP_LAST_ACK]	= TCP_LAST_ACK,
2481   [TCP_LISTEN]		= TCP_CLOSE,
2482   [TCP_CLOSING]		= TCP_CLOSING,
2483   [TCP_NEW_SYN_RECV]	= TCP_CLOSE,	/* should not happen ! */
2484 };
2485 
tcp_close_state(struct sock *sk)2486 static int tcp_close_state(struct sock *sk)
2487 {
2488 	int next = (int)new_state[sk->sk_state];
2489 	int ns = next & TCP_STATE_MASK;
2490 
2491 	tcp_set_state(sk, ns);
2492 
2493 	return next & TCP_ACTION_FIN;
2494 }
2495 
2496 /*
2497  *	Shutdown the sending side of a connection. Much like close except
2498  *	that we don't receive shut down or sock_set_flag(sk, SOCK_DEAD).
2499  */
2500 
tcp_shutdown(struct sock *sk, int how)2501 void tcp_shutdown(struct sock *sk, int how)
2502 {
2503 	/*	We need to grab some memory, and put together a FIN,
2504 	 *	and then put it into the queue to be sent.
2505 	 *		Tim MacKenzie(tym@dibbler.cs.monash.edu.au) 4 Dec '92.
2506 	 */
2507 	if (!(how & SEND_SHUTDOWN))
2508 		return;
2509 
2510 	/* If we've already sent a FIN, or it's a closed state, skip this. */
2511 	if ((1 << sk->sk_state) &
2512 	    (TCPF_ESTABLISHED | TCPF_SYN_SENT |
2513 	     TCPF_CLOSE_WAIT)) {
2514 		/* Clear out any half completed packets.  FIN if needed. */
2515 		if (tcp_close_state(sk))
2516 			tcp_send_fin(sk);
2517 	}
2518 }
2519 EXPORT_SYMBOL(tcp_shutdown);
2520 
tcp_orphan_count_sum(void)2521 int tcp_orphan_count_sum(void)
2522 {
2523 	int i, total = 0;
2524 
2525 	for_each_possible_cpu(i)
2526 		total += per_cpu(tcp_orphan_count, i);
2527 
2528 	return max(total, 0);
2529 }
2530 
2531 static int tcp_orphan_cache;
2532 static struct timer_list tcp_orphan_timer;
2533 #define TCP_ORPHAN_TIMER_PERIOD msecs_to_jiffies(100)
2534 
tcp_orphan_update(struct timer_list *unused)2535 static void tcp_orphan_update(struct timer_list *unused)
2536 {
2537 	WRITE_ONCE(tcp_orphan_cache, tcp_orphan_count_sum());
2538 	mod_timer(&tcp_orphan_timer, jiffies + TCP_ORPHAN_TIMER_PERIOD);
2539 }
2540 
tcp_too_many_orphans(int shift)2541 static bool tcp_too_many_orphans(int shift)
2542 {
2543 	return READ_ONCE(tcp_orphan_cache) << shift >
2544 		READ_ONCE(sysctl_tcp_max_orphans);
2545 }
2546 
tcp_check_oom(struct sock *sk, int shift)2547 bool tcp_check_oom(struct sock *sk, int shift)
2548 {
2549 	bool too_many_orphans, out_of_socket_memory;
2550 
2551 	too_many_orphans = tcp_too_many_orphans(shift);
2552 	out_of_socket_memory = tcp_out_of_memory(sk);
2553 
2554 	if (too_many_orphans)
2555 		net_info_ratelimited("too many orphaned sockets\n");
2556 	if (out_of_socket_memory)
2557 		net_info_ratelimited("out of memory -- consider tuning tcp_mem\n");
2558 	return too_many_orphans || out_of_socket_memory;
2559 }
2560 
__tcp_close(struct sock *sk, long timeout)2561 void __tcp_close(struct sock *sk, long timeout)
2562 {
2563 	struct sk_buff *skb;
2564 	int data_was_unread = 0;
2565 	int state;
2566 
2567 	WRITE_ONCE(sk->sk_shutdown, SHUTDOWN_MASK);
2568 
2569 	if (sk->sk_state == TCP_LISTEN) {
2570 		tcp_set_state(sk, TCP_CLOSE);
2571 
2572 		/* Special case. */
2573 		inet_csk_listen_stop(sk);
2574 
2575 		goto adjudge_to_death;
2576 	}
2577 
2578 	/*  We need to flush the recv. buffs.  We do this only on the
2579 	 *  descriptor close, not protocol-sourced closes, because the
2580 	 *  reader process may not have drained the data yet!
2581 	 */
2582 	while ((skb = __skb_dequeue(&sk->sk_receive_queue)) != NULL) {
2583 		u32 len = TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq;
2584 
2585 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
2586 			len--;
2587 		data_was_unread += len;
2588 		__kfree_skb(skb);
2589 	}
2590 
2591 	sk_mem_reclaim(sk);
2592 
2593 	/* If socket has been already reset (e.g. in tcp_reset()) - kill it. */
2594 	if (sk->sk_state == TCP_CLOSE)
2595 		goto adjudge_to_death;
2596 
2597 	/* As outlined in RFC 2525, section 2.17, we send a RST here because
2598 	 * data was lost. To witness the awful effects of the old behavior of
2599 	 * always doing a FIN, run an older 2.1.x kernel or 2.0.x, start a bulk
2600 	 * GET in an FTP client, suspend the process, wait for the client to
2601 	 * advertise a zero window, then kill -9 the FTP client, wheee...
2602 	 * Note: timeout is always zero in such a case.
2603 	 */
2604 	if (unlikely(tcp_sk(sk)->repair)) {
2605 		sk->sk_prot->disconnect(sk, 0);
2606 	} else if (data_was_unread) {
2607 		/* Unread data was tossed, zap the connection. */
2608 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONCLOSE);
2609 		tcp_set_state(sk, TCP_CLOSE);
2610 		tcp_send_active_reset(sk, sk->sk_allocation);
2611 	} else if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) {
2612 		/* Check zero linger _after_ checking for unread data. */
2613 		sk->sk_prot->disconnect(sk, 0);
2614 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
2615 	} else if (tcp_close_state(sk)) {
2616 		/* We FIN if the application ate all the data before
2617 		 * zapping the connection.
2618 		 */
2619 
2620 		/* RED-PEN. Formally speaking, we have broken TCP state
2621 		 * machine. State transitions:
2622 		 *
2623 		 * TCP_ESTABLISHED -> TCP_FIN_WAIT1
2624 		 * TCP_SYN_RECV	-> TCP_FIN_WAIT1 (it is difficult)
2625 		 * TCP_CLOSE_WAIT -> TCP_LAST_ACK
2626 		 *
2627 		 * are legal only when FIN has been sent (i.e. in window),
2628 		 * rather than queued out of window. Purists blame.
2629 		 *
2630 		 * F.e. "RFC state" is ESTABLISHED,
2631 		 * if Linux state is FIN-WAIT-1, but FIN is still not sent.
2632 		 *
2633 		 * The visible declinations are that sometimes
2634 		 * we enter time-wait state, when it is not required really
2635 		 * (harmless), do not send active resets, when they are
2636 		 * required by specs (TCP_ESTABLISHED, TCP_CLOSE_WAIT, when
2637 		 * they look as CLOSING or LAST_ACK for Linux)
2638 		 * Probably, I missed some more holelets.
2639 		 * 						--ANK
2640 		 * XXX (TFO) - To start off we don't support SYN+ACK+FIN
2641 		 * in a single packet! (May consider it later but will
2642 		 * probably need API support or TCP_CORK SYN-ACK until
2643 		 * data is written and socket is closed.)
2644 		 */
2645 		tcp_send_fin(sk);
2646 	}
2647 
2648 	sk_stream_wait_close(sk, timeout);
2649 
2650 adjudge_to_death:
2651 	state = sk->sk_state;
2652 	sock_hold(sk);
2653 	sock_orphan(sk);
2654 
2655 	local_bh_disable();
2656 	bh_lock_sock(sk);
2657 	/* remove backlog if any, without releasing ownership. */
2658 	__release_sock(sk);
2659 
2660 	this_cpu_inc(tcp_orphan_count);
2661 
2662 	/* Have we already been destroyed by a softirq or backlog? */
2663 	if (state != TCP_CLOSE && sk->sk_state == TCP_CLOSE)
2664 		goto out;
2665 
2666 	/*	This is a (useful) BSD violating of the RFC. There is a
2667 	 *	problem with TCP as specified in that the other end could
2668 	 *	keep a socket open forever with no application left this end.
2669 	 *	We use a 1 minute timeout (about the same as BSD) then kill
2670 	 *	our end. If they send after that then tough - BUT: long enough
2671 	 *	that we won't make the old 4*rto = almost no time - whoops
2672 	 *	reset mistake.
2673 	 *
2674 	 *	Nope, it was not mistake. It is really desired behaviour
2675 	 *	f.e. on http servers, when such sockets are useless, but
2676 	 *	consume significant resources. Let's do it with special
2677 	 *	linger2	option.					--ANK
2678 	 */
2679 
2680 	if (sk->sk_state == TCP_FIN_WAIT2) {
2681 		struct tcp_sock *tp = tcp_sk(sk);
2682 		if (tp->linger2 < 0) {
2683 			tcp_set_state(sk, TCP_CLOSE);
2684 			tcp_send_active_reset(sk, GFP_ATOMIC);
2685 			__NET_INC_STATS(sock_net(sk),
2686 					LINUX_MIB_TCPABORTONLINGER);
2687 		} else {
2688 			const int tmo = tcp_fin_time(sk);
2689 
2690 			if (tmo > TCP_TIMEWAIT_LEN) {
2691 				inet_csk_reset_keepalive_timer(sk,
2692 						tmo - TCP_TIMEWAIT_LEN);
2693 			} else {
2694 				tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
2695 				goto out;
2696 			}
2697 		}
2698 	}
2699 	if (sk->sk_state != TCP_CLOSE) {
2700 		sk_mem_reclaim(sk);
2701 		if (tcp_check_oom(sk, 0)) {
2702 			tcp_set_state(sk, TCP_CLOSE);
2703 			tcp_send_active_reset(sk, GFP_ATOMIC);
2704 			__NET_INC_STATS(sock_net(sk),
2705 					LINUX_MIB_TCPABORTONMEMORY);
2706 		} else if (!check_net(sock_net(sk))) {
2707 			/* Not possible to send reset; just close */
2708 			tcp_set_state(sk, TCP_CLOSE);
2709 		}
2710 	}
2711 
2712 	if (sk->sk_state == TCP_CLOSE) {
2713 		struct request_sock *req;
2714 
2715 		req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk,
2716 						lockdep_sock_is_held(sk));
2717 		/* We could get here with a non-NULL req if the socket is
2718 		 * aborted (e.g., closed with unread data) before 3WHS
2719 		 * finishes.
2720 		 */
2721 		if (req)
2722 			reqsk_fastopen_remove(sk, req, false);
2723 		inet_csk_destroy_sock(sk);
2724 	}
2725 	/* Otherwise, socket is reprieved until protocol close. */
2726 
2727 out:
2728 	bh_unlock_sock(sk);
2729 	local_bh_enable();
2730 }
2731 
tcp_close(struct sock *sk, long timeout)2732 void tcp_close(struct sock *sk, long timeout)
2733 {
2734 	lock_sock(sk);
2735 	__tcp_close(sk, timeout);
2736 	release_sock(sk);
2737 	if (!sk->sk_net_refcnt)
2738 		inet_csk_clear_xmit_timers_sync(sk);
2739 	sock_put(sk);
2740 }
2741 EXPORT_SYMBOL(tcp_close);
2742 
2743 /* These states need RST on ABORT according to RFC793 */
2744 
tcp_need_reset(int state)2745 static inline bool tcp_need_reset(int state)
2746 {
2747 	return (1 << state) &
2748 	       (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT | TCPF_FIN_WAIT1 |
2749 		TCPF_FIN_WAIT2 | TCPF_SYN_RECV);
2750 }
2751 
tcp_rtx_queue_purge(struct sock *sk)2752 static void tcp_rtx_queue_purge(struct sock *sk)
2753 {
2754 	struct rb_node *p = rb_first(&sk->tcp_rtx_queue);
2755 
2756 	tcp_sk(sk)->highest_sack = NULL;
2757 	while (p) {
2758 		struct sk_buff *skb = rb_to_skb(p);
2759 
2760 		p = rb_next(p);
2761 		/* Since we are deleting whole queue, no need to
2762 		 * list_del(&skb->tcp_tsorted_anchor)
2763 		 */
2764 		tcp_rtx_queue_unlink(skb, sk);
2765 		sk_wmem_free_skb(sk, skb);
2766 	}
2767 }
2768 
tcp_write_queue_purge(struct sock *sk)2769 void tcp_write_queue_purge(struct sock *sk)
2770 {
2771 	struct sk_buff *skb;
2772 
2773 	tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
2774 	while ((skb = __skb_dequeue(&sk->sk_write_queue)) != NULL) {
2775 		tcp_skb_tsorted_anchor_cleanup(skb);
2776 		sk_wmem_free_skb(sk, skb);
2777 	}
2778 	tcp_rtx_queue_purge(sk);
2779 	skb = sk->sk_tx_skb_cache;
2780 	if (skb) {
2781 		__kfree_skb(skb);
2782 		sk->sk_tx_skb_cache = NULL;
2783 	}
2784 	INIT_LIST_HEAD(&tcp_sk(sk)->tsorted_sent_queue);
2785 	sk_mem_reclaim(sk);
2786 	tcp_clear_all_retrans_hints(tcp_sk(sk));
2787 	tcp_sk(sk)->packets_out = 0;
2788 	inet_csk(sk)->icsk_backoff = 0;
2789 }
2790 
tcp_disconnect(struct sock *sk, int flags)2791 int tcp_disconnect(struct sock *sk, int flags)
2792 {
2793 	struct inet_sock *inet = inet_sk(sk);
2794 	struct inet_connection_sock *icsk = inet_csk(sk);
2795 	struct tcp_sock *tp = tcp_sk(sk);
2796 	int old_state = sk->sk_state;
2797 	u32 seq;
2798 
2799 	/* Deny disconnect if other threads are blocked in sk_wait_event()
2800 	 * or inet_wait_for_connect().
2801 	 */
2802 	if (sk->sk_wait_pending)
2803 		return -EBUSY;
2804 
2805 	if (old_state != TCP_CLOSE)
2806 		tcp_set_state(sk, TCP_CLOSE);
2807 
2808 	/* ABORT function of RFC793 */
2809 	if (old_state == TCP_LISTEN) {
2810 		inet_csk_listen_stop(sk);
2811 	} else if (unlikely(tp->repair)) {
2812 		sk->sk_err = ECONNABORTED;
2813 	} else if (tcp_need_reset(old_state) ||
2814 		   (tp->snd_nxt != tp->write_seq &&
2815 		    (1 << old_state) & (TCPF_CLOSING | TCPF_LAST_ACK))) {
2816 		/* The last check adjusts for discrepancy of Linux wrt. RFC
2817 		 * states
2818 		 */
2819 		tcp_send_active_reset(sk, gfp_any());
2820 		sk->sk_err = ECONNRESET;
2821 	} else if (old_state == TCP_SYN_SENT)
2822 		sk->sk_err = ECONNRESET;
2823 
2824 	tcp_clear_xmit_timers(sk);
2825 	__skb_queue_purge(&sk->sk_receive_queue);
2826 	if (sk->sk_rx_skb_cache) {
2827 		__kfree_skb(sk->sk_rx_skb_cache);
2828 		sk->sk_rx_skb_cache = NULL;
2829 	}
2830 	WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
2831 	tp->urg_data = 0;
2832 	tcp_write_queue_purge(sk);
2833 	tcp_fastopen_active_disable_ofo_check(sk);
2834 	skb_rbtree_purge(&tp->out_of_order_queue);
2835 
2836 	inet->inet_dport = 0;
2837 
2838 	if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK))
2839 		inet_reset_saddr(sk);
2840 
2841 	WRITE_ONCE(sk->sk_shutdown, 0);
2842 	sock_reset_flag(sk, SOCK_DONE);
2843 	tp->srtt_us = 0;
2844 	tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT);
2845 	tp->rcv_rtt_last_tsecr = 0;
2846 
2847 	seq = tp->write_seq + tp->max_window + 2;
2848 	if (!seq)
2849 		seq = 1;
2850 	WRITE_ONCE(tp->write_seq, seq);
2851 
2852 	icsk->icsk_backoff = 0;
2853 	icsk->icsk_probes_out = 0;
2854 	icsk->icsk_probes_tstamp = 0;
2855 	icsk->icsk_rto = TCP_TIMEOUT_INIT;
2856 	icsk->icsk_rto_min = TCP_RTO_MIN;
2857 	icsk->icsk_delack_max = TCP_DELACK_MAX;
2858 #if defined(CONFIG_TCP_NATA_URC) || defined(CONFIG_TCP_NATA_STL)
2859 	icsk->nata_retries_enabled = 0;
2860 	icsk->nata_retries_type = NATA_NA;
2861 	icsk->nata_syn_rto = TCP_TIMEOUT_INIT;
2862 	icsk->nata_data_rto = TCP_TIMEOUT_INIT;
2863 	icsk->nata_data_retries = 0;
2864 #endif
2865 	tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
2866 	tp->snd_cwnd = TCP_INIT_CWND;
2867 	tp->snd_cwnd_cnt = 0;
2868 	tp->is_cwnd_limited = 0;
2869 	tp->max_packets_out = 0;
2870 	tp->window_clamp = 0;
2871 	tp->delivered = 0;
2872 	tp->delivered_ce = 0;
2873 	if (icsk->icsk_ca_ops->release)
2874 		icsk->icsk_ca_ops->release(sk);
2875 	memset(icsk->icsk_ca_priv, 0, sizeof(icsk->icsk_ca_priv));
2876 	icsk->icsk_ca_initialized = 0;
2877 	tcp_set_ca_state(sk, TCP_CA_Open);
2878 	tp->is_sack_reneg = 0;
2879 	tcp_clear_retrans(tp);
2880 	tp->total_retrans = 0;
2881 	inet_csk_delack_init(sk);
2882 	/* Initialize rcv_mss to TCP_MIN_MSS to avoid division by 0
2883 	 * issue in __tcp_select_window()
2884 	 */
2885 	icsk->icsk_ack.rcv_mss = TCP_MIN_MSS;
2886 	memset(&tp->rx_opt, 0, sizeof(tp->rx_opt));
2887 	__sk_dst_reset(sk);
2888 	dst_release(xchg((__force struct dst_entry **)&sk->sk_rx_dst, NULL));
2889 	tcp_saved_syn_free(tp);
2890 	tp->compressed_ack = 0;
2891 	tp->segs_in = 0;
2892 	tp->segs_out = 0;
2893 	tp->bytes_sent = 0;
2894 	tp->bytes_acked = 0;
2895 	tp->bytes_received = 0;
2896 	tp->bytes_retrans = 0;
2897 	tp->data_segs_in = 0;
2898 	tp->data_segs_out = 0;
2899 	tp->duplicate_sack[0].start_seq = 0;
2900 	tp->duplicate_sack[0].end_seq = 0;
2901 	tp->dsack_dups = 0;
2902 	tp->reord_seen = 0;
2903 	tp->retrans_out = 0;
2904 	tp->sacked_out = 0;
2905 	tp->tlp_high_seq = 0;
2906 	tp->last_oow_ack_time = 0;
2907 	/* There's a bubble in the pipe until at least the first ACK. */
2908 	tp->app_limited = ~0U;
2909 	tp->rate_app_limited = 1;
2910 	tp->rack.mstamp = 0;
2911 	tp->rack.advanced = 0;
2912 	tp->rack.reo_wnd_steps = 1;
2913 	tp->rack.last_delivered = 0;
2914 	tp->rack.reo_wnd_persist = 0;
2915 	tp->rack.dsack_seen = 0;
2916 	tp->syn_data_acked = 0;
2917 	tp->rx_opt.saw_tstamp = 0;
2918 	tp->rx_opt.dsack = 0;
2919 	tp->rx_opt.num_sacks = 0;
2920 	tp->rcv_ooopack = 0;
2921 
2922 
2923 	/* Clean up fastopen related fields */
2924 	tcp_free_fastopen_req(tp);
2925 	inet->defer_connect = 0;
2926 	tp->fastopen_client_fail = 0;
2927 
2928 	WARN_ON(inet->inet_num && !icsk->icsk_bind_hash);
2929 
2930 	if (sk->sk_frag.page) {
2931 		put_page(sk->sk_frag.page);
2932 		sk->sk_frag.page = NULL;
2933 		sk->sk_frag.offset = 0;
2934 	}
2935 
2936 	sk->sk_error_report(sk);
2937 	return 0;
2938 }
2939 EXPORT_SYMBOL(tcp_disconnect);
2940 
tcp_can_repair_sock(const struct sock *sk)2941 static inline bool tcp_can_repair_sock(const struct sock *sk)
2942 {
2943 	return ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN) &&
2944 		(sk->sk_state != TCP_LISTEN);
2945 }
2946 
tcp_repair_set_window(struct tcp_sock *tp, sockptr_t optbuf, int len)2947 static int tcp_repair_set_window(struct tcp_sock *tp, sockptr_t optbuf, int len)
2948 {
2949 	struct tcp_repair_window opt;
2950 
2951 	if (!tp->repair)
2952 		return -EPERM;
2953 
2954 	if (len != sizeof(opt))
2955 		return -EINVAL;
2956 
2957 	if (copy_from_sockptr(&opt, optbuf, sizeof(opt)))
2958 		return -EFAULT;
2959 
2960 	if (opt.max_window < opt.snd_wnd)
2961 		return -EINVAL;
2962 
2963 	if (after(opt.snd_wl1, tp->rcv_nxt + opt.rcv_wnd))
2964 		return -EINVAL;
2965 
2966 	if (after(opt.rcv_wup, tp->rcv_nxt))
2967 		return -EINVAL;
2968 
2969 	tp->snd_wl1	= opt.snd_wl1;
2970 	tp->snd_wnd	= opt.snd_wnd;
2971 	tp->max_window	= opt.max_window;
2972 
2973 	tp->rcv_wnd	= opt.rcv_wnd;
2974 	tp->rcv_wup	= opt.rcv_wup;
2975 
2976 	return 0;
2977 }
2978 
tcp_repair_options_est(struct sock *sk, sockptr_t optbuf, unsigned int len)2979 static int tcp_repair_options_est(struct sock *sk, sockptr_t optbuf,
2980 		unsigned int len)
2981 {
2982 	struct tcp_sock *tp = tcp_sk(sk);
2983 	struct tcp_repair_opt opt;
2984 	size_t offset = 0;
2985 
2986 	while (len >= sizeof(opt)) {
2987 		if (copy_from_sockptr_offset(&opt, optbuf, offset, sizeof(opt)))
2988 			return -EFAULT;
2989 
2990 		offset += sizeof(opt);
2991 		len -= sizeof(opt);
2992 
2993 		switch (opt.opt_code) {
2994 		case TCPOPT_MSS:
2995 			tp->rx_opt.mss_clamp = opt.opt_val;
2996 			tcp_mtup_init(sk);
2997 			break;
2998 		case TCPOPT_WINDOW:
2999 			{
3000 				u16 snd_wscale = opt.opt_val & 0xFFFF;
3001 				u16 rcv_wscale = opt.opt_val >> 16;
3002 
3003 				if (snd_wscale > TCP_MAX_WSCALE || rcv_wscale > TCP_MAX_WSCALE)
3004 					return -EFBIG;
3005 
3006 				tp->rx_opt.snd_wscale = snd_wscale;
3007 				tp->rx_opt.rcv_wscale = rcv_wscale;
3008 				tp->rx_opt.wscale_ok = 1;
3009 			}
3010 			break;
3011 		case TCPOPT_SACK_PERM:
3012 			if (opt.opt_val != 0)
3013 				return -EINVAL;
3014 
3015 			tp->rx_opt.sack_ok |= TCP_SACK_SEEN;
3016 			break;
3017 		case TCPOPT_TIMESTAMP:
3018 			if (opt.opt_val != 0)
3019 				return -EINVAL;
3020 
3021 			tp->rx_opt.tstamp_ok = 1;
3022 			break;
3023 		}
3024 	}
3025 
3026 	return 0;
3027 }
3028 
3029 DEFINE_STATIC_KEY_FALSE(tcp_tx_delay_enabled);
3030 EXPORT_SYMBOL(tcp_tx_delay_enabled);
3031 
tcp_enable_tx_delay(void)3032 static void tcp_enable_tx_delay(void)
3033 {
3034 	if (!static_branch_unlikely(&tcp_tx_delay_enabled)) {
3035 		static int __tcp_tx_delay_enabled = 0;
3036 
3037 		if (cmpxchg(&__tcp_tx_delay_enabled, 0, 1) == 0) {
3038 			static_branch_enable(&tcp_tx_delay_enabled);
3039 			pr_info("TCP_TX_DELAY enabled\n");
3040 		}
3041 	}
3042 }
3043 
3044 /* When set indicates to always queue non-full frames.  Later the user clears
3045  * this option and we transmit any pending partial frames in the queue.  This is
3046  * meant to be used alongside sendfile() to get properly filled frames when the
3047  * user (for example) must write out headers with a write() call first and then
3048  * use sendfile to send out the data parts.
3049  *
3050  * TCP_CORK can be set together with TCP_NODELAY and it is stronger than
3051  * TCP_NODELAY.
3052  */
__tcp_sock_set_cork(struct sock *sk, bool on)3053 static void __tcp_sock_set_cork(struct sock *sk, bool on)
3054 {
3055 	struct tcp_sock *tp = tcp_sk(sk);
3056 
3057 	if (on) {
3058 		tp->nonagle |= TCP_NAGLE_CORK;
3059 	} else {
3060 		tp->nonagle &= ~TCP_NAGLE_CORK;
3061 		if (tp->nonagle & TCP_NAGLE_OFF)
3062 			tp->nonagle |= TCP_NAGLE_PUSH;
3063 		tcp_push_pending_frames(sk);
3064 	}
3065 }
3066 
tcp_sock_set_cork(struct sock *sk, bool on)3067 void tcp_sock_set_cork(struct sock *sk, bool on)
3068 {
3069 	lock_sock(sk);
3070 	__tcp_sock_set_cork(sk, on);
3071 	release_sock(sk);
3072 }
3073 EXPORT_SYMBOL(tcp_sock_set_cork);
3074 
3075 /* TCP_NODELAY is weaker than TCP_CORK, so that this option on corked socket is
3076  * remembered, but it is not activated until cork is cleared.
3077  *
3078  * However, when TCP_NODELAY is set we make an explicit push, which overrides
3079  * even TCP_CORK for currently queued segments.
3080  */
__tcp_sock_set_nodelay(struct sock *sk, bool on)3081 static void __tcp_sock_set_nodelay(struct sock *sk, bool on)
3082 {
3083 	if (on) {
3084 		tcp_sk(sk)->nonagle |= TCP_NAGLE_OFF|TCP_NAGLE_PUSH;
3085 		tcp_push_pending_frames(sk);
3086 	} else {
3087 		tcp_sk(sk)->nonagle &= ~TCP_NAGLE_OFF;
3088 	}
3089 }
3090 
tcp_sock_set_nodelay(struct sock *sk)3091 void tcp_sock_set_nodelay(struct sock *sk)
3092 {
3093 	lock_sock(sk);
3094 	__tcp_sock_set_nodelay(sk, true);
3095 	release_sock(sk);
3096 }
3097 EXPORT_SYMBOL(tcp_sock_set_nodelay);
3098 
__tcp_sock_set_quickack(struct sock *sk, int val)3099 static void __tcp_sock_set_quickack(struct sock *sk, int val)
3100 {
3101 	if (!val) {
3102 		inet_csk_enter_pingpong_mode(sk);
3103 		return;
3104 	}
3105 
3106 	inet_csk_exit_pingpong_mode(sk);
3107 	if ((1 << sk->sk_state) & (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT) &&
3108 	    inet_csk_ack_scheduled(sk)) {
3109 		inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_PUSHED;
3110 		tcp_cleanup_rbuf(sk, 1);
3111 		if (!(val & 1))
3112 			inet_csk_enter_pingpong_mode(sk);
3113 	}
3114 }
3115 
tcp_sock_set_quickack(struct sock *sk, int val)3116 void tcp_sock_set_quickack(struct sock *sk, int val)
3117 {
3118 	lock_sock(sk);
3119 	__tcp_sock_set_quickack(sk, val);
3120 	release_sock(sk);
3121 }
3122 EXPORT_SYMBOL(tcp_sock_set_quickack);
3123 
tcp_sock_set_syncnt(struct sock *sk, int val)3124 int tcp_sock_set_syncnt(struct sock *sk, int val)
3125 {
3126 	if (val < 1 || val > MAX_TCP_SYNCNT)
3127 		return -EINVAL;
3128 
3129 	lock_sock(sk);
3130 	WRITE_ONCE(inet_csk(sk)->icsk_syn_retries, val);
3131 	release_sock(sk);
3132 	return 0;
3133 }
3134 EXPORT_SYMBOL(tcp_sock_set_syncnt);
3135 
tcp_sock_set_user_timeout(struct sock *sk, u32 val)3136 void tcp_sock_set_user_timeout(struct sock *sk, u32 val)
3137 {
3138 	lock_sock(sk);
3139 	WRITE_ONCE(inet_csk(sk)->icsk_user_timeout, val);
3140 	release_sock(sk);
3141 }
3142 EXPORT_SYMBOL(tcp_sock_set_user_timeout);
3143 
tcp_sock_set_keepidle_locked(struct sock *sk, int val)3144 int tcp_sock_set_keepidle_locked(struct sock *sk, int val)
3145 {
3146 	struct tcp_sock *tp = tcp_sk(sk);
3147 
3148 	if (val < 1 || val > MAX_TCP_KEEPIDLE)
3149 		return -EINVAL;
3150 
3151 	/* Paired with WRITE_ONCE() in keepalive_time_when() */
3152 	WRITE_ONCE(tp->keepalive_time, val * HZ);
3153 	if (sock_flag(sk, SOCK_KEEPOPEN) &&
3154 	    !((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) {
3155 		u32 elapsed = keepalive_time_elapsed(tp);
3156 
3157 		if (tp->keepalive_time > elapsed)
3158 			elapsed = tp->keepalive_time - elapsed;
3159 		else
3160 			elapsed = 0;
3161 		inet_csk_reset_keepalive_timer(sk, elapsed);
3162 	}
3163 
3164 	return 0;
3165 }
3166 
tcp_sock_set_keepidle(struct sock *sk, int val)3167 int tcp_sock_set_keepidle(struct sock *sk, int val)
3168 {
3169 	int err;
3170 
3171 	lock_sock(sk);
3172 	err = tcp_sock_set_keepidle_locked(sk, val);
3173 	release_sock(sk);
3174 	return err;
3175 }
3176 EXPORT_SYMBOL(tcp_sock_set_keepidle);
3177 
tcp_sock_set_keepintvl(struct sock *sk, int val)3178 int tcp_sock_set_keepintvl(struct sock *sk, int val)
3179 {
3180 	if (val < 1 || val > MAX_TCP_KEEPINTVL)
3181 		return -EINVAL;
3182 
3183 	lock_sock(sk);
3184 	WRITE_ONCE(tcp_sk(sk)->keepalive_intvl, val * HZ);
3185 	release_sock(sk);
3186 	return 0;
3187 }
3188 EXPORT_SYMBOL(tcp_sock_set_keepintvl);
3189 
tcp_sock_set_keepcnt(struct sock *sk, int val)3190 int tcp_sock_set_keepcnt(struct sock *sk, int val)
3191 {
3192 	if (val < 1 || val > MAX_TCP_KEEPCNT)
3193 		return -EINVAL;
3194 
3195 	lock_sock(sk);
3196 	/* Paired with READ_ONCE() in keepalive_probes() */
3197 	WRITE_ONCE(tcp_sk(sk)->keepalive_probes, val);
3198 	release_sock(sk);
3199 	return 0;
3200 }
3201 EXPORT_SYMBOL(tcp_sock_set_keepcnt);
3202 
3203 /*
3204  *	Socket option code for TCP.
3205  */
do_tcp_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval, unsigned int optlen)3206 static int do_tcp_setsockopt(struct sock *sk, int level, int optname,
3207 		sockptr_t optval, unsigned int optlen)
3208 {
3209 	struct tcp_sock *tp = tcp_sk(sk);
3210 	struct inet_connection_sock *icsk = inet_csk(sk);
3211 	struct net *net = sock_net(sk);
3212 	int val;
3213 	int err = 0;
3214 
3215 	/* These are data/string values, all the others are ints */
3216 	switch (optname) {
3217 	case TCP_CONGESTION: {
3218 		char name[TCP_CA_NAME_MAX];
3219 
3220 		if (optlen < 1)
3221 			return -EINVAL;
3222 
3223 		val = strncpy_from_sockptr(name, optval,
3224 					min_t(long, TCP_CA_NAME_MAX-1, optlen));
3225 		if (val < 0)
3226 			return -EFAULT;
3227 		name[val] = 0;
3228 
3229 		lock_sock(sk);
3230 		err = tcp_set_congestion_control(sk, name, true,
3231 						 ns_capable(sock_net(sk)->user_ns,
3232 							    CAP_NET_ADMIN));
3233 		release_sock(sk);
3234 		return err;
3235 	}
3236 	case TCP_ULP: {
3237 		char name[TCP_ULP_NAME_MAX];
3238 
3239 		if (optlen < 1)
3240 			return -EINVAL;
3241 
3242 		val = strncpy_from_sockptr(name, optval,
3243 					min_t(long, TCP_ULP_NAME_MAX - 1,
3244 					      optlen));
3245 		if (val < 0)
3246 			return -EFAULT;
3247 		name[val] = 0;
3248 
3249 		lock_sock(sk);
3250 		err = tcp_set_ulp(sk, name);
3251 		release_sock(sk);
3252 		return err;
3253 	}
3254 	case TCP_FASTOPEN_KEY: {
3255 		__u8 key[TCP_FASTOPEN_KEY_BUF_LENGTH];
3256 		__u8 *backup_key = NULL;
3257 
3258 		/* Allow a backup key as well to facilitate key rotation
3259 		 * First key is the active one.
3260 		 */
3261 		if (optlen != TCP_FASTOPEN_KEY_LENGTH &&
3262 		    optlen != TCP_FASTOPEN_KEY_BUF_LENGTH)
3263 			return -EINVAL;
3264 
3265 		if (copy_from_sockptr(key, optval, optlen))
3266 			return -EFAULT;
3267 
3268 		if (optlen == TCP_FASTOPEN_KEY_BUF_LENGTH)
3269 			backup_key = key + TCP_FASTOPEN_KEY_LENGTH;
3270 
3271 		return tcp_fastopen_reset_cipher(net, sk, key, backup_key);
3272 	}
3273 	default:
3274 		/* fallthru */
3275 		break;
3276 	}
3277 
3278 	if (optlen < sizeof(int))
3279 		return -EINVAL;
3280 
3281 	if (copy_from_sockptr(&val, optval, sizeof(val)))
3282 		return -EFAULT;
3283 
3284 	lock_sock(sk);
3285 
3286 	switch (optname) {
3287 	case TCP_MAXSEG:
3288 		/* Values greater than interface MTU won't take effect. However
3289 		 * at the point when this call is done we typically don't yet
3290 		 * know which interface is going to be used
3291 		 */
3292 		if (val && (val < TCP_MIN_MSS || val > MAX_TCP_WINDOW)) {
3293 			err = -EINVAL;
3294 			break;
3295 		}
3296 		tp->rx_opt.user_mss = val;
3297 		break;
3298 
3299 	case TCP_NODELAY:
3300 		__tcp_sock_set_nodelay(sk, val);
3301 		break;
3302 
3303 	case TCP_THIN_LINEAR_TIMEOUTS:
3304 		if (val < 0 || val > 1)
3305 			err = -EINVAL;
3306 		else
3307 			tp->thin_lto = val;
3308 		break;
3309 
3310 	case TCP_THIN_DUPACK:
3311 		if (val < 0 || val > 1)
3312 			err = -EINVAL;
3313 		break;
3314 
3315 	case TCP_REPAIR:
3316 		if (!tcp_can_repair_sock(sk))
3317 			err = -EPERM;
3318 		else if (val == TCP_REPAIR_ON) {
3319 			tp->repair = 1;
3320 			sk->sk_reuse = SK_FORCE_REUSE;
3321 			tp->repair_queue = TCP_NO_QUEUE;
3322 		} else if (val == TCP_REPAIR_OFF) {
3323 			tp->repair = 0;
3324 			sk->sk_reuse = SK_NO_REUSE;
3325 			tcp_send_window_probe(sk);
3326 		} else if (val == TCP_REPAIR_OFF_NO_WP) {
3327 			tp->repair = 0;
3328 			sk->sk_reuse = SK_NO_REUSE;
3329 		} else
3330 			err = -EINVAL;
3331 
3332 		break;
3333 
3334 	case TCP_REPAIR_QUEUE:
3335 		if (!tp->repair)
3336 			err = -EPERM;
3337 		else if ((unsigned int)val < TCP_QUEUES_NR)
3338 			tp->repair_queue = val;
3339 		else
3340 			err = -EINVAL;
3341 		break;
3342 
3343 	case TCP_QUEUE_SEQ:
3344 		if (sk->sk_state != TCP_CLOSE) {
3345 			err = -EPERM;
3346 		} else if (tp->repair_queue == TCP_SEND_QUEUE) {
3347 			if (!tcp_rtx_queue_empty(sk))
3348 				err = -EPERM;
3349 			else
3350 				WRITE_ONCE(tp->write_seq, val);
3351 		} else if (tp->repair_queue == TCP_RECV_QUEUE) {
3352 			if (tp->rcv_nxt != tp->copied_seq) {
3353 				err = -EPERM;
3354 			} else {
3355 				WRITE_ONCE(tp->rcv_nxt, val);
3356 				WRITE_ONCE(tp->copied_seq, val);
3357 			}
3358 		} else {
3359 			err = -EINVAL;
3360 		}
3361 		break;
3362 
3363 	case TCP_REPAIR_OPTIONS:
3364 		if (!tp->repair)
3365 			err = -EINVAL;
3366 		else if (sk->sk_state == TCP_ESTABLISHED && !tp->bytes_sent)
3367 			err = tcp_repair_options_est(sk, optval, optlen);
3368 		else
3369 			err = -EPERM;
3370 		break;
3371 
3372 	case TCP_CORK:
3373 		__tcp_sock_set_cork(sk, val);
3374 		break;
3375 
3376 	case TCP_KEEPIDLE:
3377 		err = tcp_sock_set_keepidle_locked(sk, val);
3378 		break;
3379 	case TCP_KEEPINTVL:
3380 		if (val < 1 || val > MAX_TCP_KEEPINTVL)
3381 			err = -EINVAL;
3382 		else
3383 			WRITE_ONCE(tp->keepalive_intvl, val * HZ);
3384 		break;
3385 	case TCP_KEEPCNT:
3386 		if (val < 1 || val > MAX_TCP_KEEPCNT)
3387 			err = -EINVAL;
3388 		else
3389 			WRITE_ONCE(tp->keepalive_probes, val);
3390 		break;
3391 	case TCP_SYNCNT:
3392 		if (val < 1 || val > MAX_TCP_SYNCNT)
3393 			err = -EINVAL;
3394 		else
3395 			WRITE_ONCE(icsk->icsk_syn_retries, val);
3396 		break;
3397 
3398 	case TCP_SAVE_SYN:
3399 		/* 0: disable, 1: enable, 2: start from ether_header */
3400 		if (val < 0 || val > 2)
3401 			err = -EINVAL;
3402 		else
3403 			tp->save_syn = val;
3404 		break;
3405 
3406 	case TCP_LINGER2:
3407 		if (val < 0)
3408 			WRITE_ONCE(tp->linger2, -1);
3409 		else if (val > TCP_FIN_TIMEOUT_MAX / HZ)
3410 			WRITE_ONCE(tp->linger2, TCP_FIN_TIMEOUT_MAX);
3411 		else
3412 			WRITE_ONCE(tp->linger2, val * HZ);
3413 		break;
3414 
3415 	case TCP_DEFER_ACCEPT:
3416 		/* Translate value in seconds to number of retransmits */
3417 		WRITE_ONCE(icsk->icsk_accept_queue.rskq_defer_accept,
3418 			   secs_to_retrans(val, TCP_TIMEOUT_INIT / HZ,
3419 					   TCP_RTO_MAX / HZ));
3420 		break;
3421 
3422 	case TCP_WINDOW_CLAMP:
3423 		if (!val) {
3424 			if (sk->sk_state != TCP_CLOSE) {
3425 				err = -EINVAL;
3426 				break;
3427 			}
3428 			tp->window_clamp = 0;
3429 		} else
3430 			tp->window_clamp = val < SOCK_MIN_RCVBUF / 2 ?
3431 						SOCK_MIN_RCVBUF / 2 : val;
3432 		break;
3433 
3434 	case TCP_QUICKACK:
3435 		__tcp_sock_set_quickack(sk, val);
3436 		break;
3437 
3438 #ifdef CONFIG_TCP_MD5SIG
3439 	case TCP_MD5SIG:
3440 	case TCP_MD5SIG_EXT:
3441 		err = tp->af_specific->md5_parse(sk, optname, optval, optlen);
3442 		break;
3443 #endif
3444 	case TCP_USER_TIMEOUT:
3445 		/* Cap the max time in ms TCP will retry or probe the window
3446 		 * before giving up and aborting (ETIMEDOUT) a connection.
3447 		 */
3448 		if (val < 0)
3449 			err = -EINVAL;
3450 		else
3451 			WRITE_ONCE(icsk->icsk_user_timeout, val);
3452 		break;
3453 
3454 	case TCP_FASTOPEN:
3455 		if (val >= 0 && ((1 << sk->sk_state) & (TCPF_CLOSE |
3456 		    TCPF_LISTEN))) {
3457 			tcp_fastopen_init_key_once(net);
3458 
3459 			fastopen_queue_tune(sk, val);
3460 		} else {
3461 			err = -EINVAL;
3462 		}
3463 		break;
3464 	case TCP_FASTOPEN_CONNECT:
3465 		if (val > 1 || val < 0) {
3466 			err = -EINVAL;
3467 		} else if (READ_ONCE(net->ipv4.sysctl_tcp_fastopen) &
3468 			   TFO_CLIENT_ENABLE) {
3469 			if (sk->sk_state == TCP_CLOSE)
3470 				tp->fastopen_connect = val;
3471 			else
3472 				err = -EINVAL;
3473 		} else {
3474 			err = -EOPNOTSUPP;
3475 		}
3476 		break;
3477 	case TCP_FASTOPEN_NO_COOKIE:
3478 		if (val > 1 || val < 0)
3479 			err = -EINVAL;
3480 		else if (!((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
3481 			err = -EINVAL;
3482 		else
3483 			tp->fastopen_no_cookie = val;
3484 		break;
3485 	case TCP_TIMESTAMP:
3486 		if (!tp->repair)
3487 			err = -EPERM;
3488 		else
3489 			tp->tsoffset = val - tcp_time_stamp_raw();
3490 		break;
3491 	case TCP_REPAIR_WINDOW:
3492 		err = tcp_repair_set_window(tp, optval, optlen);
3493 		break;
3494 	case TCP_NOTSENT_LOWAT:
3495 		WRITE_ONCE(tp->notsent_lowat, val);
3496 		sk->sk_write_space(sk);
3497 		break;
3498 	case TCP_INQ:
3499 		if (val > 1 || val < 0)
3500 			err = -EINVAL;
3501 		else
3502 			tp->recvmsg_inq = val;
3503 		break;
3504 	case TCP_TX_DELAY:
3505 		if (val)
3506 			tcp_enable_tx_delay();
3507 		WRITE_ONCE(tp->tcp_tx_delay, val);
3508 		break;
3509 #ifdef CONFIG_TCP_NATA_URC
3510 	case TCP_NATA_URC:
3511 		err = tcp_set_nata_urc(sk, optval, optlen);
3512 		break;
3513 #endif
3514 #ifdef CONFIG_TCP_NATA_STL
3515 	case TCP_NATA_STL:
3516 		err = tcp_set_nata_stl(sk, optval, optlen);
3517 		break;
3518 #endif
3519 	default:
3520 		err = -ENOPROTOOPT;
3521 		break;
3522 	}
3523 
3524 	release_sock(sk);
3525 	return err;
3526 }
3527 
tcp_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval, unsigned int optlen)3528 int tcp_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval,
3529 		   unsigned int optlen)
3530 {
3531 	const struct inet_connection_sock *icsk = inet_csk(sk);
3532 
3533 	if (level != SOL_TCP)
3534 		/* Paired with WRITE_ONCE() in do_ipv6_setsockopt() and tcp_v6_connect() */
3535 		return READ_ONCE(icsk->icsk_af_ops)->setsockopt(sk, level, optname,
3536 								optval, optlen);
3537 	return do_tcp_setsockopt(sk, level, optname, optval, optlen);
3538 }
3539 EXPORT_SYMBOL(tcp_setsockopt);
3540 
tcp_get_info_chrono_stats(const struct tcp_sock *tp, struct tcp_info *info)3541 static void tcp_get_info_chrono_stats(const struct tcp_sock *tp,
3542 				      struct tcp_info *info)
3543 {
3544 	u64 stats[__TCP_CHRONO_MAX], total = 0;
3545 	enum tcp_chrono i;
3546 
3547 	for (i = TCP_CHRONO_BUSY; i < __TCP_CHRONO_MAX; ++i) {
3548 		stats[i] = tp->chrono_stat[i - 1];
3549 		if (i == tp->chrono_type)
3550 			stats[i] += tcp_jiffies32 - tp->chrono_start;
3551 		stats[i] *= USEC_PER_SEC / HZ;
3552 		total += stats[i];
3553 	}
3554 
3555 	info->tcpi_busy_time = total;
3556 	info->tcpi_rwnd_limited = stats[TCP_CHRONO_RWND_LIMITED];
3557 	info->tcpi_sndbuf_limited = stats[TCP_CHRONO_SNDBUF_LIMITED];
3558 }
3559 
3560 /* Return information about state of tcp endpoint in API format. */
tcp_get_info(struct sock *sk, struct tcp_info *info)3561 void tcp_get_info(struct sock *sk, struct tcp_info *info)
3562 {
3563 	const struct tcp_sock *tp = tcp_sk(sk); /* iff sk_type == SOCK_STREAM */
3564 	const struct inet_connection_sock *icsk = inet_csk(sk);
3565 	unsigned long rate;
3566 	u32 now;
3567 	u64 rate64;
3568 	bool slow;
3569 
3570 	memset(info, 0, sizeof(*info));
3571 	if (sk->sk_type != SOCK_STREAM)
3572 		return;
3573 
3574 	info->tcpi_state = inet_sk_state_load(sk);
3575 
3576 	/* Report meaningful fields for all TCP states, including listeners */
3577 	rate = READ_ONCE(sk->sk_pacing_rate);
3578 	rate64 = (rate != ~0UL) ? rate : ~0ULL;
3579 	info->tcpi_pacing_rate = rate64;
3580 
3581 	rate = READ_ONCE(sk->sk_max_pacing_rate);
3582 	rate64 = (rate != ~0UL) ? rate : ~0ULL;
3583 	info->tcpi_max_pacing_rate = rate64;
3584 
3585 	info->tcpi_reordering = tp->reordering;
3586 	info->tcpi_snd_cwnd = tp->snd_cwnd;
3587 
3588 	if (info->tcpi_state == TCP_LISTEN) {
3589 		/* listeners aliased fields :
3590 		 * tcpi_unacked -> Number of children ready for accept()
3591 		 * tcpi_sacked  -> max backlog
3592 		 */
3593 		info->tcpi_unacked = READ_ONCE(sk->sk_ack_backlog);
3594 		info->tcpi_sacked = READ_ONCE(sk->sk_max_ack_backlog);
3595 		return;
3596 	}
3597 
3598 	slow = lock_sock_fast(sk);
3599 
3600 	info->tcpi_ca_state = icsk->icsk_ca_state;
3601 	info->tcpi_retransmits = icsk->icsk_retransmits;
3602 	info->tcpi_probes = icsk->icsk_probes_out;
3603 	info->tcpi_backoff = icsk->icsk_backoff;
3604 
3605 	if (tp->rx_opt.tstamp_ok)
3606 		info->tcpi_options |= TCPI_OPT_TIMESTAMPS;
3607 	if (tcp_is_sack(tp))
3608 		info->tcpi_options |= TCPI_OPT_SACK;
3609 	if (tp->rx_opt.wscale_ok) {
3610 		info->tcpi_options |= TCPI_OPT_WSCALE;
3611 		info->tcpi_snd_wscale = tp->rx_opt.snd_wscale;
3612 		info->tcpi_rcv_wscale = tp->rx_opt.rcv_wscale;
3613 	}
3614 
3615 	if (tp->ecn_flags & TCP_ECN_OK)
3616 		info->tcpi_options |= TCPI_OPT_ECN;
3617 	if (tp->ecn_flags & TCP_ECN_SEEN)
3618 		info->tcpi_options |= TCPI_OPT_ECN_SEEN;
3619 	if (tp->syn_data_acked)
3620 		info->tcpi_options |= TCPI_OPT_SYN_DATA;
3621 
3622 	info->tcpi_rto = jiffies_to_usecs(icsk->icsk_rto);
3623 	info->tcpi_ato = jiffies_to_usecs(icsk->icsk_ack.ato);
3624 	info->tcpi_snd_mss = tp->mss_cache;
3625 	info->tcpi_rcv_mss = icsk->icsk_ack.rcv_mss;
3626 
3627 	info->tcpi_unacked = tp->packets_out;
3628 	info->tcpi_sacked = tp->sacked_out;
3629 
3630 	info->tcpi_lost = tp->lost_out;
3631 	info->tcpi_retrans = tp->retrans_out;
3632 
3633 	now = tcp_jiffies32;
3634 	info->tcpi_last_data_sent = jiffies_to_msecs(now - tp->lsndtime);
3635 	info->tcpi_last_data_recv = jiffies_to_msecs(now - icsk->icsk_ack.lrcvtime);
3636 	info->tcpi_last_ack_recv = jiffies_to_msecs(now - tp->rcv_tstamp);
3637 
3638 	info->tcpi_pmtu = icsk->icsk_pmtu_cookie;
3639 	info->tcpi_rcv_ssthresh = tp->rcv_ssthresh;
3640 	info->tcpi_rtt = tp->srtt_us >> 3;
3641 	info->tcpi_rttvar = tp->mdev_us >> 2;
3642 	info->tcpi_snd_ssthresh = tp->snd_ssthresh;
3643 	info->tcpi_advmss = tp->advmss;
3644 
3645 	info->tcpi_rcv_rtt = tp->rcv_rtt_est.rtt_us >> 3;
3646 	info->tcpi_rcv_space = tp->rcvq_space.space;
3647 
3648 	info->tcpi_total_retrans = tp->total_retrans;
3649 
3650 	info->tcpi_bytes_acked = tp->bytes_acked;
3651 	info->tcpi_bytes_received = tp->bytes_received;
3652 	info->tcpi_notsent_bytes = max_t(int, 0, tp->write_seq - tp->snd_nxt);
3653 	tcp_get_info_chrono_stats(tp, info);
3654 
3655 	info->tcpi_segs_out = tp->segs_out;
3656 	info->tcpi_segs_in = tp->segs_in;
3657 
3658 	info->tcpi_min_rtt = tcp_min_rtt(tp);
3659 	info->tcpi_data_segs_in = tp->data_segs_in;
3660 	info->tcpi_data_segs_out = tp->data_segs_out;
3661 
3662 	info->tcpi_delivery_rate_app_limited = tp->rate_app_limited ? 1 : 0;
3663 	rate64 = tcp_compute_delivery_rate(tp);
3664 	if (rate64)
3665 		info->tcpi_delivery_rate = rate64;
3666 	info->tcpi_delivered = tp->delivered;
3667 	info->tcpi_delivered_ce = tp->delivered_ce;
3668 	info->tcpi_bytes_sent = tp->bytes_sent;
3669 	info->tcpi_bytes_retrans = tp->bytes_retrans;
3670 	info->tcpi_dsack_dups = tp->dsack_dups;
3671 	info->tcpi_reord_seen = tp->reord_seen;
3672 	info->tcpi_rcv_ooopack = tp->rcv_ooopack;
3673 	info->tcpi_snd_wnd = tp->snd_wnd;
3674 	info->tcpi_fastopen_client_fail = tp->fastopen_client_fail;
3675 	unlock_sock_fast(sk, slow);
3676 }
3677 EXPORT_SYMBOL_GPL(tcp_get_info);
3678 
tcp_opt_stats_get_size(void)3679 static size_t tcp_opt_stats_get_size(void)
3680 {
3681 	return
3682 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BUSY */
3683 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_RWND_LIMITED */
3684 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_SNDBUF_LIMITED */
3685 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_DATA_SEGS_OUT */
3686 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_TOTAL_RETRANS */
3687 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_PACING_RATE */
3688 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_DELIVERY_RATE */
3689 		nla_total_size(sizeof(u32)) + /* TCP_NLA_SND_CWND */
3690 		nla_total_size(sizeof(u32)) + /* TCP_NLA_REORDERING */
3691 		nla_total_size(sizeof(u32)) + /* TCP_NLA_MIN_RTT */
3692 		nla_total_size(sizeof(u8)) + /* TCP_NLA_RECUR_RETRANS */
3693 		nla_total_size(sizeof(u8)) + /* TCP_NLA_DELIVERY_RATE_APP_LMT */
3694 		nla_total_size(sizeof(u32)) + /* TCP_NLA_SNDQ_SIZE */
3695 		nla_total_size(sizeof(u8)) + /* TCP_NLA_CA_STATE */
3696 		nla_total_size(sizeof(u32)) + /* TCP_NLA_SND_SSTHRESH */
3697 		nla_total_size(sizeof(u32)) + /* TCP_NLA_DELIVERED */
3698 		nla_total_size(sizeof(u32)) + /* TCP_NLA_DELIVERED_CE */
3699 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BYTES_SENT */
3700 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BYTES_RETRANS */
3701 		nla_total_size(sizeof(u32)) + /* TCP_NLA_DSACK_DUPS */
3702 		nla_total_size(sizeof(u32)) + /* TCP_NLA_REORD_SEEN */
3703 		nla_total_size(sizeof(u32)) + /* TCP_NLA_SRTT */
3704 		nla_total_size(sizeof(u16)) + /* TCP_NLA_TIMEOUT_REHASH */
3705 		nla_total_size(sizeof(u32)) + /* TCP_NLA_BYTES_NOTSENT */
3706 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_EDT */
3707 		0;
3708 }
3709 
tcp_get_timestamping_opt_stats(const struct sock *sk, const struct sk_buff *orig_skb)3710 struct sk_buff *tcp_get_timestamping_opt_stats(const struct sock *sk,
3711 					       const struct sk_buff *orig_skb)
3712 {
3713 	const struct tcp_sock *tp = tcp_sk(sk);
3714 	struct sk_buff *stats;
3715 	struct tcp_info info;
3716 	unsigned long rate;
3717 	u64 rate64;
3718 
3719 	stats = alloc_skb(tcp_opt_stats_get_size(), GFP_ATOMIC);
3720 	if (!stats)
3721 		return NULL;
3722 
3723 	tcp_get_info_chrono_stats(tp, &info);
3724 	nla_put_u64_64bit(stats, TCP_NLA_BUSY,
3725 			  info.tcpi_busy_time, TCP_NLA_PAD);
3726 	nla_put_u64_64bit(stats, TCP_NLA_RWND_LIMITED,
3727 			  info.tcpi_rwnd_limited, TCP_NLA_PAD);
3728 	nla_put_u64_64bit(stats, TCP_NLA_SNDBUF_LIMITED,
3729 			  info.tcpi_sndbuf_limited, TCP_NLA_PAD);
3730 	nla_put_u64_64bit(stats, TCP_NLA_DATA_SEGS_OUT,
3731 			  tp->data_segs_out, TCP_NLA_PAD);
3732 	nla_put_u64_64bit(stats, TCP_NLA_TOTAL_RETRANS,
3733 			  tp->total_retrans, TCP_NLA_PAD);
3734 
3735 	rate = READ_ONCE(sk->sk_pacing_rate);
3736 	rate64 = (rate != ~0UL) ? rate : ~0ULL;
3737 	nla_put_u64_64bit(stats, TCP_NLA_PACING_RATE, rate64, TCP_NLA_PAD);
3738 
3739 	rate64 = tcp_compute_delivery_rate(tp);
3740 	nla_put_u64_64bit(stats, TCP_NLA_DELIVERY_RATE, rate64, TCP_NLA_PAD);
3741 
3742 	nla_put_u32(stats, TCP_NLA_SND_CWND, tp->snd_cwnd);
3743 	nla_put_u32(stats, TCP_NLA_REORDERING, tp->reordering);
3744 	nla_put_u32(stats, TCP_NLA_MIN_RTT, tcp_min_rtt(tp));
3745 
3746 	nla_put_u8(stats, TCP_NLA_RECUR_RETRANS, inet_csk(sk)->icsk_retransmits);
3747 	nla_put_u8(stats, TCP_NLA_DELIVERY_RATE_APP_LMT, !!tp->rate_app_limited);
3748 	nla_put_u32(stats, TCP_NLA_SND_SSTHRESH, tp->snd_ssthresh);
3749 	nla_put_u32(stats, TCP_NLA_DELIVERED, tp->delivered);
3750 	nla_put_u32(stats, TCP_NLA_DELIVERED_CE, tp->delivered_ce);
3751 
3752 	nla_put_u32(stats, TCP_NLA_SNDQ_SIZE, tp->write_seq - tp->snd_una);
3753 	nla_put_u8(stats, TCP_NLA_CA_STATE, inet_csk(sk)->icsk_ca_state);
3754 
3755 	nla_put_u64_64bit(stats, TCP_NLA_BYTES_SENT, tp->bytes_sent,
3756 			  TCP_NLA_PAD);
3757 	nla_put_u64_64bit(stats, TCP_NLA_BYTES_RETRANS, tp->bytes_retrans,
3758 			  TCP_NLA_PAD);
3759 	nla_put_u32(stats, TCP_NLA_DSACK_DUPS, tp->dsack_dups);
3760 	nla_put_u32(stats, TCP_NLA_REORD_SEEN, tp->reord_seen);
3761 	nla_put_u32(stats, TCP_NLA_SRTT, tp->srtt_us >> 3);
3762 	nla_put_u16(stats, TCP_NLA_TIMEOUT_REHASH, tp->timeout_rehash);
3763 	nla_put_u32(stats, TCP_NLA_BYTES_NOTSENT,
3764 		    max_t(int, 0, tp->write_seq - tp->snd_nxt));
3765 	nla_put_u64_64bit(stats, TCP_NLA_EDT, orig_skb->skb_mstamp_ns,
3766 			  TCP_NLA_PAD);
3767 
3768 	return stats;
3769 }
3770 
do_tcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval, int __user *optlen)3771 static int do_tcp_getsockopt(struct sock *sk, int level,
3772 		int optname, char __user *optval, int __user *optlen)
3773 {
3774 	struct inet_connection_sock *icsk = inet_csk(sk);
3775 	struct tcp_sock *tp = tcp_sk(sk);
3776 	struct net *net = sock_net(sk);
3777 	int val, len;
3778 
3779 	if (get_user(len, optlen))
3780 		return -EFAULT;
3781 
3782 	len = min_t(unsigned int, len, sizeof(int));
3783 
3784 	if (len < 0)
3785 		return -EINVAL;
3786 
3787 	switch (optname) {
3788 	case TCP_MAXSEG:
3789 		val = tp->mss_cache;
3790 		if (tp->rx_opt.user_mss &&
3791 		    ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
3792 			val = tp->rx_opt.user_mss;
3793 		if (tp->repair)
3794 			val = tp->rx_opt.mss_clamp;
3795 		break;
3796 	case TCP_NODELAY:
3797 		val = !!(tp->nonagle&TCP_NAGLE_OFF);
3798 		break;
3799 	case TCP_CORK:
3800 		val = !!(tp->nonagle&TCP_NAGLE_CORK);
3801 		break;
3802 	case TCP_KEEPIDLE:
3803 		val = keepalive_time_when(tp) / HZ;
3804 		break;
3805 	case TCP_KEEPINTVL:
3806 		val = keepalive_intvl_when(tp) / HZ;
3807 		break;
3808 	case TCP_KEEPCNT:
3809 		val = keepalive_probes(tp);
3810 		break;
3811 	case TCP_SYNCNT:
3812 		val = READ_ONCE(icsk->icsk_syn_retries) ? :
3813 			READ_ONCE(net->ipv4.sysctl_tcp_syn_retries);
3814 		break;
3815 	case TCP_LINGER2:
3816 		val = READ_ONCE(tp->linger2);
3817 		if (val >= 0)
3818 			val = (val ? : READ_ONCE(net->ipv4.sysctl_tcp_fin_timeout)) / HZ;
3819 		break;
3820 	case TCP_DEFER_ACCEPT:
3821 		val = READ_ONCE(icsk->icsk_accept_queue.rskq_defer_accept);
3822 		val = retrans_to_secs(val, TCP_TIMEOUT_INIT / HZ,
3823 				      TCP_RTO_MAX / HZ);
3824 		break;
3825 	case TCP_WINDOW_CLAMP:
3826 		val = tp->window_clamp;
3827 		break;
3828 	case TCP_INFO: {
3829 		struct tcp_info info;
3830 
3831 		if (get_user(len, optlen))
3832 			return -EFAULT;
3833 
3834 		tcp_get_info(sk, &info);
3835 
3836 		len = min_t(unsigned int, len, sizeof(info));
3837 		if (put_user(len, optlen))
3838 			return -EFAULT;
3839 		if (copy_to_user(optval, &info, len))
3840 			return -EFAULT;
3841 		return 0;
3842 	}
3843 	case TCP_CC_INFO: {
3844 		const struct tcp_congestion_ops *ca_ops;
3845 		union tcp_cc_info info;
3846 		size_t sz = 0;
3847 		int attr;
3848 
3849 		if (get_user(len, optlen))
3850 			return -EFAULT;
3851 
3852 		ca_ops = icsk->icsk_ca_ops;
3853 		if (ca_ops && ca_ops->get_info)
3854 			sz = ca_ops->get_info(sk, ~0U, &attr, &info);
3855 
3856 		len = min_t(unsigned int, len, sz);
3857 		if (put_user(len, optlen))
3858 			return -EFAULT;
3859 		if (copy_to_user(optval, &info, len))
3860 			return -EFAULT;
3861 		return 0;
3862 	}
3863 	case TCP_QUICKACK:
3864 		val = !inet_csk_in_pingpong_mode(sk);
3865 		break;
3866 
3867 	case TCP_CONGESTION:
3868 		if (get_user(len, optlen))
3869 			return -EFAULT;
3870 		len = min_t(unsigned int, len, TCP_CA_NAME_MAX);
3871 		if (put_user(len, optlen))
3872 			return -EFAULT;
3873 		if (copy_to_user(optval, icsk->icsk_ca_ops->name, len))
3874 			return -EFAULT;
3875 		return 0;
3876 
3877 	case TCP_ULP:
3878 		if (get_user(len, optlen))
3879 			return -EFAULT;
3880 		len = min_t(unsigned int, len, TCP_ULP_NAME_MAX);
3881 		if (!icsk->icsk_ulp_ops) {
3882 			if (put_user(0, optlen))
3883 				return -EFAULT;
3884 			return 0;
3885 		}
3886 		if (put_user(len, optlen))
3887 			return -EFAULT;
3888 		if (copy_to_user(optval, icsk->icsk_ulp_ops->name, len))
3889 			return -EFAULT;
3890 		return 0;
3891 
3892 	case TCP_FASTOPEN_KEY: {
3893 		u64 key[TCP_FASTOPEN_KEY_BUF_LENGTH / sizeof(u64)];
3894 		unsigned int key_len;
3895 
3896 		if (get_user(len, optlen))
3897 			return -EFAULT;
3898 
3899 		key_len = tcp_fastopen_get_cipher(net, icsk, key) *
3900 				TCP_FASTOPEN_KEY_LENGTH;
3901 		len = min_t(unsigned int, len, key_len);
3902 		if (put_user(len, optlen))
3903 			return -EFAULT;
3904 		if (copy_to_user(optval, key, len))
3905 			return -EFAULT;
3906 		return 0;
3907 	}
3908 	case TCP_THIN_LINEAR_TIMEOUTS:
3909 		val = tp->thin_lto;
3910 		break;
3911 
3912 	case TCP_THIN_DUPACK:
3913 		val = 0;
3914 		break;
3915 
3916 	case TCP_REPAIR:
3917 		val = tp->repair;
3918 		break;
3919 
3920 	case TCP_REPAIR_QUEUE:
3921 		if (tp->repair)
3922 			val = tp->repair_queue;
3923 		else
3924 			return -EINVAL;
3925 		break;
3926 
3927 	case TCP_REPAIR_WINDOW: {
3928 		struct tcp_repair_window opt;
3929 
3930 		if (get_user(len, optlen))
3931 			return -EFAULT;
3932 
3933 		if (len != sizeof(opt))
3934 			return -EINVAL;
3935 
3936 		if (!tp->repair)
3937 			return -EPERM;
3938 
3939 		opt.snd_wl1	= tp->snd_wl1;
3940 		opt.snd_wnd	= tp->snd_wnd;
3941 		opt.max_window	= tp->max_window;
3942 		opt.rcv_wnd	= tp->rcv_wnd;
3943 		opt.rcv_wup	= tp->rcv_wup;
3944 
3945 		if (copy_to_user(optval, &opt, len))
3946 			return -EFAULT;
3947 		return 0;
3948 	}
3949 	case TCP_QUEUE_SEQ:
3950 		if (tp->repair_queue == TCP_SEND_QUEUE)
3951 			val = tp->write_seq;
3952 		else if (tp->repair_queue == TCP_RECV_QUEUE)
3953 			val = tp->rcv_nxt;
3954 		else
3955 			return -EINVAL;
3956 		break;
3957 
3958 	case TCP_USER_TIMEOUT:
3959 		val = READ_ONCE(icsk->icsk_user_timeout);
3960 		break;
3961 
3962 	case TCP_FASTOPEN:
3963 		val = READ_ONCE(icsk->icsk_accept_queue.fastopenq.max_qlen);
3964 		break;
3965 
3966 	case TCP_FASTOPEN_CONNECT:
3967 		val = tp->fastopen_connect;
3968 		break;
3969 
3970 	case TCP_FASTOPEN_NO_COOKIE:
3971 		val = tp->fastopen_no_cookie;
3972 		break;
3973 
3974 	case TCP_TX_DELAY:
3975 		val = READ_ONCE(tp->tcp_tx_delay);
3976 		break;
3977 
3978 	case TCP_TIMESTAMP:
3979 		val = tcp_time_stamp_raw() + tp->tsoffset;
3980 		break;
3981 	case TCP_NOTSENT_LOWAT:
3982 		val = READ_ONCE(tp->notsent_lowat);
3983 		break;
3984 	case TCP_INQ:
3985 		val = tp->recvmsg_inq;
3986 		break;
3987 	case TCP_SAVE_SYN:
3988 		val = tp->save_syn;
3989 		break;
3990 	case TCP_SAVED_SYN: {
3991 		if (get_user(len, optlen))
3992 			return -EFAULT;
3993 
3994 		lock_sock(sk);
3995 		if (tp->saved_syn) {
3996 			if (len < tcp_saved_syn_len(tp->saved_syn)) {
3997 				if (put_user(tcp_saved_syn_len(tp->saved_syn),
3998 					     optlen)) {
3999 					release_sock(sk);
4000 					return -EFAULT;
4001 				}
4002 				release_sock(sk);
4003 				return -EINVAL;
4004 			}
4005 			len = tcp_saved_syn_len(tp->saved_syn);
4006 			if (put_user(len, optlen)) {
4007 				release_sock(sk);
4008 				return -EFAULT;
4009 			}
4010 			if (copy_to_user(optval, tp->saved_syn->data, len)) {
4011 				release_sock(sk);
4012 				return -EFAULT;
4013 			}
4014 			tcp_saved_syn_free(tp);
4015 			release_sock(sk);
4016 		} else {
4017 			release_sock(sk);
4018 			len = 0;
4019 			if (put_user(len, optlen))
4020 				return -EFAULT;
4021 		}
4022 		return 0;
4023 	}
4024 #ifdef CONFIG_MMU
4025 	case TCP_ZEROCOPY_RECEIVE: {
4026 		struct tcp_zerocopy_receive zc = {};
4027 		int err;
4028 
4029 		if (get_user(len, optlen))
4030 			return -EFAULT;
4031 		if (len < 0 ||
4032 		    len < offsetofend(struct tcp_zerocopy_receive, length))
4033 			return -EINVAL;
4034 		if (len > sizeof(zc)) {
4035 			len = sizeof(zc);
4036 			if (put_user(len, optlen))
4037 				return -EFAULT;
4038 		}
4039 		if (copy_from_user(&zc, optval, len))
4040 			return -EFAULT;
4041 		lock_sock(sk);
4042 		err = tcp_zerocopy_receive(sk, &zc);
4043 		err = BPF_CGROUP_RUN_PROG_GETSOCKOPT_KERN(sk, level, optname,
4044 							  &zc, &len, err);
4045 		release_sock(sk);
4046 		if (len >= offsetofend(struct tcp_zerocopy_receive, err))
4047 			goto zerocopy_rcv_sk_err;
4048 		switch (len) {
4049 		case offsetofend(struct tcp_zerocopy_receive, err):
4050 			goto zerocopy_rcv_sk_err;
4051 		case offsetofend(struct tcp_zerocopy_receive, inq):
4052 			goto zerocopy_rcv_inq;
4053 		case offsetofend(struct tcp_zerocopy_receive, length):
4054 		default:
4055 			goto zerocopy_rcv_out;
4056 		}
4057 zerocopy_rcv_sk_err:
4058 		if (!err)
4059 			zc.err = sock_error(sk);
4060 zerocopy_rcv_inq:
4061 		zc.inq = tcp_inq_hint(sk);
4062 zerocopy_rcv_out:
4063 		if (!err && copy_to_user(optval, &zc, len))
4064 			err = -EFAULT;
4065 		return err;
4066 	}
4067 #endif
4068 	default:
4069 		return -ENOPROTOOPT;
4070 	}
4071 
4072 	if (put_user(len, optlen))
4073 		return -EFAULT;
4074 	if (copy_to_user(optval, &val, len))
4075 		return -EFAULT;
4076 	return 0;
4077 }
4078 
tcp_bpf_bypass_getsockopt(int level, int optname)4079 bool tcp_bpf_bypass_getsockopt(int level, int optname)
4080 {
4081 	/* TCP do_tcp_getsockopt has optimized getsockopt implementation
4082 	 * to avoid extra socket lock for TCP_ZEROCOPY_RECEIVE.
4083 	 */
4084 	if (level == SOL_TCP && optname == TCP_ZEROCOPY_RECEIVE)
4085 		return true;
4086 
4087 	return false;
4088 }
4089 EXPORT_SYMBOL(tcp_bpf_bypass_getsockopt);
4090 
tcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval, int __user *optlen)4091 int tcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval,
4092 		   int __user *optlen)
4093 {
4094 	struct inet_connection_sock *icsk = inet_csk(sk);
4095 
4096 	if (level != SOL_TCP)
4097 		/* Paired with WRITE_ONCE() in do_ipv6_setsockopt() and tcp_v6_connect() */
4098 		return READ_ONCE(icsk->icsk_af_ops)->getsockopt(sk, level, optname,
4099 								optval, optlen);
4100 	return do_tcp_getsockopt(sk, level, optname, optval, optlen);
4101 }
4102 EXPORT_SYMBOL(tcp_getsockopt);
4103 
4104 #ifdef CONFIG_TCP_MD5SIG
4105 static DEFINE_PER_CPU(struct tcp_md5sig_pool, tcp_md5sig_pool);
4106 static DEFINE_MUTEX(tcp_md5sig_mutex);
4107 static bool tcp_md5sig_pool_populated = false;
4108 
__tcp_alloc_md5sig_pool(void)4109 static void __tcp_alloc_md5sig_pool(void)
4110 {
4111 	struct crypto_ahash *hash;
4112 	int cpu;
4113 
4114 	hash = crypto_alloc_ahash("md5", 0, CRYPTO_ALG_ASYNC);
4115 	if (IS_ERR(hash))
4116 		return;
4117 
4118 	for_each_possible_cpu(cpu) {
4119 		void *scratch = per_cpu(tcp_md5sig_pool, cpu).scratch;
4120 		struct ahash_request *req;
4121 
4122 		if (!scratch) {
4123 			scratch = kmalloc_node(sizeof(union tcp_md5sum_block) +
4124 					       sizeof(struct tcphdr),
4125 					       GFP_KERNEL,
4126 					       cpu_to_node(cpu));
4127 			if (!scratch)
4128 				return;
4129 			per_cpu(tcp_md5sig_pool, cpu).scratch = scratch;
4130 		}
4131 		if (per_cpu(tcp_md5sig_pool, cpu).md5_req)
4132 			continue;
4133 
4134 		req = ahash_request_alloc(hash, GFP_KERNEL);
4135 		if (!req)
4136 			return;
4137 
4138 		ahash_request_set_callback(req, 0, NULL, NULL);
4139 
4140 		per_cpu(tcp_md5sig_pool, cpu).md5_req = req;
4141 	}
4142 	/* before setting tcp_md5sig_pool_populated, we must commit all writes
4143 	 * to memory. See smp_rmb() in tcp_get_md5sig_pool()
4144 	 */
4145 	smp_wmb();
4146 	/* Paired with READ_ONCE() from tcp_alloc_md5sig_pool()
4147 	 * and tcp_get_md5sig_pool().
4148 	*/
4149 	WRITE_ONCE(tcp_md5sig_pool_populated, true);
4150 }
4151 
tcp_alloc_md5sig_pool(void)4152 bool tcp_alloc_md5sig_pool(void)
4153 {
4154 	/* Paired with WRITE_ONCE() from __tcp_alloc_md5sig_pool() */
4155 	if (unlikely(!READ_ONCE(tcp_md5sig_pool_populated))) {
4156 		mutex_lock(&tcp_md5sig_mutex);
4157 
4158 		if (!tcp_md5sig_pool_populated) {
4159 			__tcp_alloc_md5sig_pool();
4160 			if (tcp_md5sig_pool_populated)
4161 				static_branch_inc(&tcp_md5_needed);
4162 		}
4163 
4164 		mutex_unlock(&tcp_md5sig_mutex);
4165 	}
4166 	/* Paired with WRITE_ONCE() from __tcp_alloc_md5sig_pool() */
4167 	return READ_ONCE(tcp_md5sig_pool_populated);
4168 }
4169 EXPORT_SYMBOL(tcp_alloc_md5sig_pool);
4170 
4171 
4172 /**
4173  *	tcp_get_md5sig_pool - get md5sig_pool for this user
4174  *
4175  *	We use percpu structure, so if we succeed, we exit with preemption
4176  *	and BH disabled, to make sure another thread or softirq handling
4177  *	wont try to get same context.
4178  */
tcp_get_md5sig_pool(void)4179 struct tcp_md5sig_pool *tcp_get_md5sig_pool(void)
4180 {
4181 	local_bh_disable();
4182 
4183 	/* Paired with WRITE_ONCE() from __tcp_alloc_md5sig_pool() */
4184 	if (READ_ONCE(tcp_md5sig_pool_populated)) {
4185 		/* coupled with smp_wmb() in __tcp_alloc_md5sig_pool() */
4186 		smp_rmb();
4187 		return this_cpu_ptr(&tcp_md5sig_pool);
4188 	}
4189 	local_bh_enable();
4190 	return NULL;
4191 }
4192 EXPORT_SYMBOL(tcp_get_md5sig_pool);
4193 
tcp_md5_hash_skb_data(struct tcp_md5sig_pool *hp, const struct sk_buff *skb, unsigned int header_len)4194 int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *hp,
4195 			  const struct sk_buff *skb, unsigned int header_len)
4196 {
4197 	struct scatterlist sg;
4198 	const struct tcphdr *tp = tcp_hdr(skb);
4199 	struct ahash_request *req = hp->md5_req;
4200 	unsigned int i;
4201 	const unsigned int head_data_len = skb_headlen(skb) > header_len ?
4202 					   skb_headlen(skb) - header_len : 0;
4203 	const struct skb_shared_info *shi = skb_shinfo(skb);
4204 	struct sk_buff *frag_iter;
4205 
4206 	sg_init_table(&sg, 1);
4207 
4208 	sg_set_buf(&sg, ((u8 *) tp) + header_len, head_data_len);
4209 	ahash_request_set_crypt(req, &sg, NULL, head_data_len);
4210 	if (crypto_ahash_update(req))
4211 		return 1;
4212 
4213 	for (i = 0; i < shi->nr_frags; ++i) {
4214 		const skb_frag_t *f = &shi->frags[i];
4215 		unsigned int offset = skb_frag_off(f);
4216 		struct page *page = skb_frag_page(f) + (offset >> PAGE_SHIFT);
4217 
4218 		sg_set_page(&sg, page, skb_frag_size(f),
4219 			    offset_in_page(offset));
4220 		ahash_request_set_crypt(req, &sg, NULL, skb_frag_size(f));
4221 		if (crypto_ahash_update(req))
4222 			return 1;
4223 	}
4224 
4225 	skb_walk_frags(skb, frag_iter)
4226 		if (tcp_md5_hash_skb_data(hp, frag_iter, 0))
4227 			return 1;
4228 
4229 	return 0;
4230 }
4231 EXPORT_SYMBOL(tcp_md5_hash_skb_data);
4232 
tcp_md5_hash_key(struct tcp_md5sig_pool *hp, const struct tcp_md5sig_key *key)4233 int tcp_md5_hash_key(struct tcp_md5sig_pool *hp, const struct tcp_md5sig_key *key)
4234 {
4235 	u8 keylen = READ_ONCE(key->keylen); /* paired with WRITE_ONCE() in tcp_md5_do_add */
4236 	struct scatterlist sg;
4237 
4238 	sg_init_one(&sg, key->key, keylen);
4239 	ahash_request_set_crypt(hp->md5_req, &sg, NULL, keylen);
4240 
4241 	/* We use data_race() because tcp_md5_do_add() might change key->key under us */
4242 	return data_race(crypto_ahash_update(hp->md5_req));
4243 }
4244 EXPORT_SYMBOL(tcp_md5_hash_key);
4245 
4246 #endif
4247 
tcp_done(struct sock *sk)4248 void tcp_done(struct sock *sk)
4249 {
4250 	struct request_sock *req;
4251 
4252 	/* We might be called with a new socket, after
4253 	 * inet_csk_prepare_forced_close() has been called
4254 	 * so we can not use lockdep_sock_is_held(sk)
4255 	 */
4256 	req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk, 1);
4257 
4258 	if (sk->sk_state == TCP_SYN_SENT || sk->sk_state == TCP_SYN_RECV)
4259 		TCP_INC_STATS(sock_net(sk), TCP_MIB_ATTEMPTFAILS);
4260 
4261 	tcp_set_state(sk, TCP_CLOSE);
4262 	tcp_clear_xmit_timers(sk);
4263 	if (req)
4264 		reqsk_fastopen_remove(sk, req, false);
4265 
4266 	WRITE_ONCE(sk->sk_shutdown, SHUTDOWN_MASK);
4267 
4268 	if (!sock_flag(sk, SOCK_DEAD))
4269 		sk->sk_state_change(sk);
4270 	else
4271 		inet_csk_destroy_sock(sk);
4272 }
4273 EXPORT_SYMBOL_GPL(tcp_done);
4274 
tcp_abort(struct sock *sk, int err)4275 int tcp_abort(struct sock *sk, int err)
4276 {
4277 	if (!sk_fullsock(sk)) {
4278 		if (sk->sk_state == TCP_NEW_SYN_RECV) {
4279 			struct request_sock *req = inet_reqsk(sk);
4280 
4281 			local_bh_disable();
4282 			inet_csk_reqsk_queue_drop(req->rsk_listener, req);
4283 			local_bh_enable();
4284 			return 0;
4285 		}
4286 		return -EOPNOTSUPP;
4287 	}
4288 
4289 	/* Don't race with userspace socket closes such as tcp_close. */
4290 #ifdef CONFIG_TCP_SOCK_DESTROY
4291 	/* BPF context ensures sock locking. */
4292 	if (!has_current_bpf_ctx())
4293 #endif  /* CONFIG_TCP_SOCK_DESTROY */
4294 		lock_sock(sk);
4295 
4296 	if (sk->sk_state == TCP_LISTEN) {
4297 		tcp_set_state(sk, TCP_CLOSE);
4298 		inet_csk_listen_stop(sk);
4299 	}
4300 
4301 	/* Don't race with BH socket closes such as inet_csk_listen_stop. */
4302 	local_bh_disable();
4303 	bh_lock_sock(sk);
4304 
4305 	if (!sock_flag(sk, SOCK_DEAD)) {
4306 		sk->sk_err = err;
4307 		/* This barrier is coupled with smp_rmb() in tcp_poll() */
4308 		smp_wmb();
4309 		sk->sk_error_report(sk);
4310 		if (tcp_need_reset(sk->sk_state))
4311 			tcp_send_active_reset(sk, GFP_ATOMIC);
4312 		tcp_done(sk);
4313 	}
4314 
4315 	bh_unlock_sock(sk);
4316 	local_bh_enable();
4317 	tcp_write_queue_purge(sk);
4318 #ifdef CONFIG_TCP_SOCK_DESTROY
4319 	if (!has_current_bpf_ctx())
4320 #endif  /* CONFIG_TCP_SOCK_DESTROY */
4321 		release_sock(sk);
4322 	return 0;
4323 }
4324 EXPORT_SYMBOL_GPL(tcp_abort);
4325 
4326 extern struct tcp_congestion_ops tcp_reno;
4327 
4328 static __initdata unsigned long thash_entries;
set_thash_entries(char *str)4329 static int __init set_thash_entries(char *str)
4330 {
4331 	ssize_t ret;
4332 
4333 	if (!str)
4334 		return 0;
4335 
4336 	ret = kstrtoul(str, 0, &thash_entries);
4337 	if (ret)
4338 		return 0;
4339 
4340 	return 1;
4341 }
4342 __setup("thash_entries=", set_thash_entries);
4343 
tcp_init_mem(void)4344 static void __init tcp_init_mem(void)
4345 {
4346 	unsigned long limit = nr_free_buffer_pages() / 16;
4347 
4348 	limit = max(limit, 128UL);
4349 	sysctl_tcp_mem[0] = limit / 4 * 3;		/* 4.68 % */
4350 	sysctl_tcp_mem[1] = limit;			/* 6.25 % */
4351 	sysctl_tcp_mem[2] = sysctl_tcp_mem[0] * 2;	/* 9.37 % */
4352 }
4353 
tcp_init(void)4354 void __init tcp_init(void)
4355 {
4356 	int max_rshare, max_wshare, cnt;
4357 	unsigned long limit;
4358 	unsigned int i;
4359 
4360 	BUILD_BUG_ON(TCP_MIN_SND_MSS <= MAX_TCP_OPTION_SPACE);
4361 	BUILD_BUG_ON(sizeof(struct tcp_skb_cb) >
4362 		     sizeof_field(struct sk_buff, cb));
4363 
4364 	percpu_counter_init(&tcp_sockets_allocated, 0, GFP_KERNEL);
4365 
4366 	timer_setup(&tcp_orphan_timer, tcp_orphan_update, TIMER_DEFERRABLE);
4367 	mod_timer(&tcp_orphan_timer, jiffies + TCP_ORPHAN_TIMER_PERIOD);
4368 
4369 	inet_hashinfo_init(&tcp_hashinfo);
4370 	inet_hashinfo2_init(&tcp_hashinfo, "tcp_listen_portaddr_hash",
4371 			    thash_entries, 21,  /* one slot per 2 MB*/
4372 			    0, 64 * 1024);
4373 	tcp_hashinfo.bind_bucket_cachep =
4374 		kmem_cache_create("tcp_bind_bucket",
4375 				  sizeof(struct inet_bind_bucket), 0,
4376 				  SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
4377 
4378 	/* Size and allocate the main established and bind bucket
4379 	 * hash tables.
4380 	 *
4381 	 * The methodology is similar to that of the buffer cache.
4382 	 */
4383 	tcp_hashinfo.ehash =
4384 		alloc_large_system_hash("TCP established",
4385 					sizeof(struct inet_ehash_bucket),
4386 					thash_entries,
4387 					17, /* one slot per 128 KB of memory */
4388 					0,
4389 					NULL,
4390 					&tcp_hashinfo.ehash_mask,
4391 					0,
4392 					thash_entries ? 0 : 512 * 1024);
4393 	for (i = 0; i <= tcp_hashinfo.ehash_mask; i++)
4394 		INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].chain, i);
4395 
4396 	if (inet_ehash_locks_alloc(&tcp_hashinfo))
4397 		panic("TCP: failed to alloc ehash_locks");
4398 	tcp_hashinfo.bhash =
4399 		alloc_large_system_hash("TCP bind",
4400 					sizeof(struct inet_bind_hashbucket),
4401 					tcp_hashinfo.ehash_mask + 1,
4402 					17, /* one slot per 128 KB of memory */
4403 					0,
4404 					&tcp_hashinfo.bhash_size,
4405 					NULL,
4406 					0,
4407 					64 * 1024);
4408 	tcp_hashinfo.bhash_size = 1U << tcp_hashinfo.bhash_size;
4409 	for (i = 0; i < tcp_hashinfo.bhash_size; i++) {
4410 		spin_lock_init(&tcp_hashinfo.bhash[i].lock);
4411 		INIT_HLIST_HEAD(&tcp_hashinfo.bhash[i].chain);
4412 	}
4413 
4414 
4415 	cnt = tcp_hashinfo.ehash_mask + 1;
4416 	sysctl_tcp_max_orphans = cnt / 2;
4417 
4418 	tcp_init_mem();
4419 	/* Set per-socket limits to no more than 1/128 the pressure threshold */
4420 	limit = nr_free_buffer_pages() << (PAGE_SHIFT - 7);
4421 	max_wshare = min(4UL*1024*1024, limit);
4422 	max_rshare = min(6UL*1024*1024, limit);
4423 
4424 	init_net.ipv4.sysctl_tcp_wmem[0] = SK_MEM_QUANTUM;
4425 	init_net.ipv4.sysctl_tcp_wmem[1] = 16*1024;
4426 	init_net.ipv4.sysctl_tcp_wmem[2] = max(64*1024, max_wshare);
4427 
4428 	init_net.ipv4.sysctl_tcp_rmem[0] = SK_MEM_QUANTUM;
4429 	init_net.ipv4.sysctl_tcp_rmem[1] = 131072;
4430 	init_net.ipv4.sysctl_tcp_rmem[2] = max(131072, max_rshare);
4431 
4432 	pr_info("Hash tables configured (established %u bind %u)\n",
4433 		tcp_hashinfo.ehash_mask + 1, tcp_hashinfo.bhash_size);
4434 
4435 	tcp_v4_init();
4436 	tcp_metrics_init();
4437 	BUG_ON(tcp_register_congestion_control(&tcp_reno) != 0);
4438 	tcp_tasklet_init();
4439 	mptcp_init();
4440 }
4441