1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * INET An implementation of the TCP/IP protocol suite for the LINUX
4 * operating system. INET is implemented using the BSD Socket
5 * interface as the means of communication with the user level.
6 *
7 * Implementation of the Transmission Control Protocol(TCP).
8 *
9 * Authors: Ross Biro
10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11 * Mark Evans, <evansmp@uhura.aston.ac.uk>
12 * Corey Minyard <wf-rch!minyard@relay.EU.net>
13 * Florian La Roche, <flla@stud.uni-sb.de>
14 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
15 * Linus Torvalds, <torvalds@cs.helsinki.fi>
16 * Alan Cox, <gw4pts@gw4pts.ampr.org>
17 * Matthew Dillon, <dillon@apollo.west.oic.com>
18 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
19 * Jorge Cwik, <jorge@laser.satlink.net>
20 *
21 * Fixes:
22 * Alan Cox : Numerous verify_area() calls
23 * Alan Cox : Set the ACK bit on a reset
24 * Alan Cox : Stopped it crashing if it closed while
25 * sk->inuse=1 and was trying to connect
26 * (tcp_err()).
27 * Alan Cox : All icmp error handling was broken
28 * pointers passed where wrong and the
29 * socket was looked up backwards. Nobody
30 * tested any icmp error code obviously.
31 * Alan Cox : tcp_err() now handled properly. It
32 * wakes people on errors. poll
33 * behaves and the icmp error race
34 * has gone by moving it into sock.c
35 * Alan Cox : tcp_send_reset() fixed to work for
36 * everything not just packets for
37 * unknown sockets.
38 * Alan Cox : tcp option processing.
39 * Alan Cox : Reset tweaked (still not 100%) [Had
40 * syn rule wrong]
41 * Herp Rosmanith : More reset fixes
42 * Alan Cox : No longer acks invalid rst frames.
43 * Acking any kind of RST is right out.
44 * Alan Cox : Sets an ignore me flag on an rst
45 * receive otherwise odd bits of prattle
46 * escape still
47 * Alan Cox : Fixed another acking RST frame bug.
48 * Should stop LAN workplace lockups.
49 * Alan Cox : Some tidyups using the new skb list
50 * facilities
51 * Alan Cox : sk->keepopen now seems to work
52 * Alan Cox : Pulls options out correctly on accepts
53 * Alan Cox : Fixed assorted sk->rqueue->next errors
54 * Alan Cox : PSH doesn't end a TCP read. Switched a
55 * bit to skb ops.
56 * Alan Cox : Tidied tcp_data to avoid a potential
57 * nasty.
58 * Alan Cox : Added some better commenting, as the
59 * tcp is hard to follow
60 * Alan Cox : Removed incorrect check for 20 * psh
61 * Michael O'Reilly : ack < copied bug fix.
62 * Johannes Stille : Misc tcp fixes (not all in yet).
63 * Alan Cox : FIN with no memory -> CRASH
64 * Alan Cox : Added socket option proto entries.
65 * Also added awareness of them to accept.
66 * Alan Cox : Added TCP options (SOL_TCP)
67 * Alan Cox : Switched wakeup calls to callbacks,
68 * so the kernel can layer network
69 * sockets.
70 * Alan Cox : Use ip_tos/ip_ttl settings.
71 * Alan Cox : Handle FIN (more) properly (we hope).
72 * Alan Cox : RST frames sent on unsynchronised
73 * state ack error.
74 * Alan Cox : Put in missing check for SYN bit.
75 * Alan Cox : Added tcp_select_window() aka NET2E
76 * window non shrink trick.
77 * Alan Cox : Added a couple of small NET2E timer
78 * fixes
79 * Charles Hedrick : TCP fixes
80 * Toomas Tamm : TCP window fixes
81 * Alan Cox : Small URG fix to rlogin ^C ack fight
82 * Charles Hedrick : Rewrote most of it to actually work
83 * Linus : Rewrote tcp_read() and URG handling
84 * completely
85 * Gerhard Koerting: Fixed some missing timer handling
86 * Matthew Dillon : Reworked TCP machine states as per RFC
87 * Gerhard Koerting: PC/TCP workarounds
88 * Adam Caldwell : Assorted timer/timing errors
89 * Matthew Dillon : Fixed another RST bug
90 * Alan Cox : Move to kernel side addressing changes.
91 * Alan Cox : Beginning work on TCP fastpathing
92 * (not yet usable)
93 * Arnt Gulbrandsen: Turbocharged tcp_check() routine.
94 * Alan Cox : TCP fast path debugging
95 * Alan Cox : Window clamping
96 * Michael Riepe : Bug in tcp_check()
97 * Matt Dillon : More TCP improvements and RST bug fixes
98 * Matt Dillon : Yet more small nasties remove from the
99 * TCP code (Be very nice to this man if
100 * tcp finally works 100%) 8)
101 * Alan Cox : BSD accept semantics.
102 * Alan Cox : Reset on closedown bug.
103 * Peter De Schrijver : ENOTCONN check missing in tcp_sendto().
104 * Michael Pall : Handle poll() after URG properly in
105 * all cases.
106 * Michael Pall : Undo the last fix in tcp_read_urg()
107 * (multi URG PUSH broke rlogin).
108 * Michael Pall : Fix the multi URG PUSH problem in
109 * tcp_readable(), poll() after URG
110 * works now.
111 * Michael Pall : recv(...,MSG_OOB) never blocks in the
112 * BSD api.
113 * Alan Cox : Changed the semantics of sk->socket to
114 * fix a race and a signal problem with
115 * accept() and async I/O.
116 * Alan Cox : Relaxed the rules on tcp_sendto().
117 * Yury Shevchuk : Really fixed accept() blocking problem.
118 * Craig I. Hagan : Allow for BSD compatible TIME_WAIT for
119 * clients/servers which listen in on
120 * fixed ports.
121 * Alan Cox : Cleaned the above up and shrank it to
122 * a sensible code size.
123 * Alan Cox : Self connect lockup fix.
124 * Alan Cox : No connect to multicast.
125 * Ross Biro : Close unaccepted children on master
126 * socket close.
127 * Alan Cox : Reset tracing code.
128 * Alan Cox : Spurious resets on shutdown.
129 * Alan Cox : Giant 15 minute/60 second timer error
130 * Alan Cox : Small whoops in polling before an
131 * accept.
132 * Alan Cox : Kept the state trace facility since
133 * it's handy for debugging.
134 * Alan Cox : More reset handler fixes.
135 * Alan Cox : Started rewriting the code based on
136 * the RFC's for other useful protocol
137 * references see: Comer, KA9Q NOS, and
138 * for a reference on the difference
139 * between specifications and how BSD
140 * works see the 4.4lite source.
141 * A.N.Kuznetsov : Don't time wait on completion of tidy
142 * close.
143 * Linus Torvalds : Fin/Shutdown & copied_seq changes.
144 * Linus Torvalds : Fixed BSD port reuse to work first syn
145 * Alan Cox : Reimplemented timers as per the RFC
146 * and using multiple timers for sanity.
147 * Alan Cox : Small bug fixes, and a lot of new
148 * comments.
149 * Alan Cox : Fixed dual reader crash by locking
150 * the buffers (much like datagram.c)
151 * Alan Cox : Fixed stuck sockets in probe. A probe
152 * now gets fed up of retrying without
153 * (even a no space) answer.
154 * Alan Cox : Extracted closing code better
155 * Alan Cox : Fixed the closing state machine to
156 * resemble the RFC.
157 * Alan Cox : More 'per spec' fixes.
158 * Jorge Cwik : Even faster checksumming.
159 * Alan Cox : tcp_data() doesn't ack illegal PSH
160 * only frames. At least one pc tcp stack
161 * generates them.
162 * Alan Cox : Cache last socket.
163 * Alan Cox : Per route irtt.
164 * Matt Day : poll()->select() match BSD precisely on error
165 * Alan Cox : New buffers
166 * Marc Tamsky : Various sk->prot->retransmits and
167 * sk->retransmits misupdating fixed.
168 * Fixed tcp_write_timeout: stuck close,
169 * and TCP syn retries gets used now.
170 * Mark Yarvis : In tcp_read_wakeup(), don't send an
171 * ack if state is TCP_CLOSED.
172 * Alan Cox : Look up device on a retransmit - routes may
173 * change. Doesn't yet cope with MSS shrink right
174 * but it's a start!
175 * Marc Tamsky : Closing in closing fixes.
176 * Mike Shaver : RFC1122 verifications.
177 * Alan Cox : rcv_saddr errors.
178 * Alan Cox : Block double connect().
179 * Alan Cox : Small hooks for enSKIP.
180 * Alexey Kuznetsov: Path MTU discovery.
181 * Alan Cox : Support soft errors.
182 * Alan Cox : Fix MTU discovery pathological case
183 * when the remote claims no mtu!
184 * Marc Tamsky : TCP_CLOSE fix.
185 * Colin (G3TNE) : Send a reset on syn ack replies in
186 * window but wrong (fixes NT lpd problems)
187 * Pedro Roque : Better TCP window handling, delayed ack.
188 * Joerg Reuter : No modification of locked buffers in
189 * tcp_do_retransmit()
190 * Eric Schenk : Changed receiver side silly window
191 * avoidance algorithm to BSD style
192 * algorithm. This doubles throughput
193 * against machines running Solaris,
194 * and seems to result in general
195 * improvement.
196 * Stefan Magdalinski : adjusted tcp_readable() to fix FIONREAD
197 * Willy Konynenberg : Transparent proxying support.
198 * Mike McLagan : Routing by source
199 * Keith Owens : Do proper merging with partial SKB's in
200 * tcp_do_sendmsg to avoid burstiness.
201 * Eric Schenk : Fix fast close down bug with
202 * shutdown() followed by close().
203 * Andi Kleen : Make poll agree with SIGIO
204 * Salvatore Sanfilippo : Support SO_LINGER with linger == 1 and
205 * lingertime == 0 (RFC 793 ABORT Call)
206 * Hirokazu Takahashi : Use copy_from_user() instead of
207 * csum_and_copy_from_user() if possible.
208 *
209 * Description of States:
210 *
211 * TCP_SYN_SENT sent a connection request, waiting for ack
212 *
213 * TCP_SYN_RECV received a connection request, sent ack,
214 * waiting for final ack in three-way handshake.
215 *
216 * TCP_ESTABLISHED connection established
217 *
218 * TCP_FIN_WAIT1 our side has shutdown, waiting to complete
219 * transmission of remaining buffered data
220 *
221 * TCP_FIN_WAIT2 all buffered data sent, waiting for remote
222 * to shutdown
223 *
224 * TCP_CLOSING both sides have shutdown but we still have
225 * data we have to finish sending
226 *
227 * TCP_TIME_WAIT timeout to catch resent junk before entering
228 * closed, can only be entered from FIN_WAIT2
229 * or CLOSING. Required because the other end
230 * may not have gotten our last ACK causing it
231 * to retransmit the data packet (which we ignore)
232 *
233 * TCP_CLOSE_WAIT remote side has shutdown and is waiting for
234 * us to finish writing our data and to shutdown
235 * (we have to close() to move on to LAST_ACK)
236 *
237 * TCP_LAST_ACK out side has shutdown after remote has
238 * shutdown. There may still be data in our
239 * buffer that we have to finish sending
240 *
241 * TCP_CLOSE socket is finished
242 */
243
244 #define pr_fmt(fmt) "TCP: " fmt
245
246 #include <crypto/hash.h>
247 #include <linux/kernel.h>
248 #include <linux/module.h>
249 #include <linux/types.h>
250 #include <linux/fcntl.h>
251 #include <linux/poll.h>
252 #include <linux/inet_diag.h>
253 #include <linux/init.h>
254 #include <linux/fs.h>
255 #include <linux/skbuff.h>
256 #include <linux/scatterlist.h>
257 #include <linux/splice.h>
258 #include <linux/net.h>
259 #include <linux/socket.h>
260 #include <linux/random.h>
261 #include <linux/memblock.h>
262 #include <linux/highmem.h>
263 #include <linux/swap.h>
264 #include <linux/cache.h>
265 #include <linux/err.h>
266 #include <linux/time.h>
267 #include <linux/slab.h>
268 #include <linux/errqueue.h>
269 #include <linux/static_key.h>
270
271 #include <net/icmp.h>
272 #include <net/inet_common.h>
273 #include <net/tcp.h>
274 #include <net/mptcp.h>
275 #include <net/xfrm.h>
276 #include <net/ip.h>
277 #include <net/sock.h>
278
279 #include <linux/uaccess.h>
280 #include <asm/ioctls.h>
281 #include <net/busy_poll.h>
282 #ifdef CONFIG_LOWPOWER_PROTOCOL
283 #include <net/lowpower_protocol.h>
284 #endif /* CONFIG_LOWPOWER_PROTOCOL */
285 #if defined(CONFIG_TCP_NATA_URC) || defined(CONFIG_TCP_NATA_STL)
286 #include <net/nata.h>
287 #endif
288
289 DEFINE_PER_CPU(unsigned int, tcp_orphan_count);
290 EXPORT_PER_CPU_SYMBOL_GPL(tcp_orphan_count);
291
292 long sysctl_tcp_mem[3] __read_mostly;
293 EXPORT_SYMBOL(sysctl_tcp_mem);
294
295 atomic_long_t tcp_memory_allocated; /* Current allocated memory. */
296 EXPORT_SYMBOL(tcp_memory_allocated);
297
298 #if IS_ENABLED(CONFIG_SMC)
299 DEFINE_STATIC_KEY_FALSE(tcp_have_smc);
300 EXPORT_SYMBOL(tcp_have_smc);
301 #endif
302
303 /*
304 * Current number of TCP sockets.
305 */
306 struct percpu_counter tcp_sockets_allocated;
307 EXPORT_SYMBOL(tcp_sockets_allocated);
308
309 /*
310 * TCP splice context
311 */
312 struct tcp_splice_state {
313 struct pipe_inode_info *pipe;
314 size_t len;
315 unsigned int flags;
316 };
317
318 /*
319 * Pressure flag: try to collapse.
320 * Technical note: it is used by multiple contexts non atomically.
321 * All the __sk_mem_schedule() is of this nature: accounting
322 * is strict, actions are advisory and have some latency.
323 */
324 unsigned long tcp_memory_pressure __read_mostly;
325 EXPORT_SYMBOL_GPL(tcp_memory_pressure);
326
327 DEFINE_STATIC_KEY_FALSE(tcp_rx_skb_cache_key);
328 EXPORT_SYMBOL(tcp_rx_skb_cache_key);
329
330 DEFINE_STATIC_KEY_FALSE(tcp_tx_skb_cache_key);
331
tcp_enter_memory_pressure(struct sock *sk)332 void tcp_enter_memory_pressure(struct sock *sk)
333 {
334 unsigned long val;
335
336 if (READ_ONCE(tcp_memory_pressure))
337 return;
338 val = jiffies;
339
340 if (!val)
341 val--;
342 if (!cmpxchg(&tcp_memory_pressure, 0, val))
343 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURES);
344 }
345 EXPORT_SYMBOL_GPL(tcp_enter_memory_pressure);
346
tcp_leave_memory_pressure(struct sock *sk)347 void tcp_leave_memory_pressure(struct sock *sk)
348 {
349 unsigned long val;
350
351 if (!READ_ONCE(tcp_memory_pressure))
352 return;
353 val = xchg(&tcp_memory_pressure, 0);
354 if (val)
355 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURESCHRONO,
356 jiffies_to_msecs(jiffies - val));
357 }
358 EXPORT_SYMBOL_GPL(tcp_leave_memory_pressure);
359
360 /* Convert seconds to retransmits based on initial and max timeout */
secs_to_retrans(int seconds, int timeout, int rto_max)361 static u8 secs_to_retrans(int seconds, int timeout, int rto_max)
362 {
363 u8 res = 0;
364
365 if (seconds > 0) {
366 int period = timeout;
367
368 res = 1;
369 while (seconds > period && res < 255) {
370 res++;
371 timeout <<= 1;
372 if (timeout > rto_max)
373 timeout = rto_max;
374 period += timeout;
375 }
376 }
377 return res;
378 }
379
380 /* Convert retransmits to seconds based on initial and max timeout */
retrans_to_secs(u8 retrans, int timeout, int rto_max)381 static int retrans_to_secs(u8 retrans, int timeout, int rto_max)
382 {
383 int period = 0;
384
385 if (retrans > 0) {
386 period = timeout;
387 while (--retrans) {
388 timeout <<= 1;
389 if (timeout > rto_max)
390 timeout = rto_max;
391 period += timeout;
392 }
393 }
394 return period;
395 }
396
tcp_compute_delivery_rate(const struct tcp_sock *tp)397 static u64 tcp_compute_delivery_rate(const struct tcp_sock *tp)
398 {
399 u32 rate = READ_ONCE(tp->rate_delivered);
400 u32 intv = READ_ONCE(tp->rate_interval_us);
401 u64 rate64 = 0;
402
403 if (rate && intv) {
404 rate64 = (u64)rate * tp->mss_cache * USEC_PER_SEC;
405 do_div(rate64, intv);
406 }
407 return rate64;
408 }
409
410 /* Address-family independent initialization for a tcp_sock.
411 *
412 * NOTE: A lot of things set to zero explicitly by call to
413 * sk_alloc() so need not be done here.
414 */
tcp_init_sock(struct sock *sk)415 void tcp_init_sock(struct sock *sk)
416 {
417 struct inet_connection_sock *icsk = inet_csk(sk);
418 struct tcp_sock *tp = tcp_sk(sk);
419
420 tp->out_of_order_queue = RB_ROOT;
421 sk->tcp_rtx_queue = RB_ROOT;
422 tcp_init_xmit_timers(sk);
423 INIT_LIST_HEAD(&tp->tsq_node);
424 INIT_LIST_HEAD(&tp->tsorted_sent_queue);
425
426 icsk->icsk_rto = TCP_TIMEOUT_INIT;
427 icsk->icsk_rto_min = TCP_RTO_MIN;
428 icsk->icsk_delack_max = TCP_DELACK_MAX;
429 tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT);
430 minmax_reset(&tp->rtt_min, tcp_jiffies32, ~0U);
431
432 /* So many TCP implementations out there (incorrectly) count the
433 * initial SYN frame in their delayed-ACK and congestion control
434 * algorithms that we must have the following bandaid to talk
435 * efficiently to them. -DaveM
436 */
437 tp->snd_cwnd = TCP_INIT_CWND;
438
439 /* There's a bubble in the pipe until at least the first ACK. */
440 tp->app_limited = ~0U;
441 tp->rate_app_limited = 1;
442
443 /* See draft-stevens-tcpca-spec-01 for discussion of the
444 * initialization of these values.
445 */
446 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
447 tp->snd_cwnd_clamp = ~0;
448 tp->mss_cache = TCP_MSS_DEFAULT;
449
450 tp->reordering = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_reordering);
451 tcp_assign_congestion_control(sk);
452
453 tp->tsoffset = 0;
454 tp->rack.reo_wnd_steps = 1;
455
456 sk->sk_write_space = sk_stream_write_space;
457 sock_set_flag(sk, SOCK_USE_WRITE_QUEUE);
458
459 icsk->icsk_sync_mss = tcp_sync_mss;
460
461 WRITE_ONCE(sk->sk_sndbuf, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_wmem[1]));
462 WRITE_ONCE(sk->sk_rcvbuf, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[1]));
463
464 sk_sockets_allocated_inc(sk);
465 sk->sk_route_forced_caps = NETIF_F_GSO;
466 #if defined(CONFIG_TCP_NATA_URC) || defined(CONFIG_TCP_NATA_STL)
467 icsk->nata_retries_enabled = 0;
468 icsk->nata_retries_type = NATA_NA;
469 icsk->nata_syn_rto = TCP_TIMEOUT_INIT;
470 icsk->nata_data_rto = TCP_TIMEOUT_INIT;
471 icsk->nata_data_retries = 0;
472 #endif
473 }
474 EXPORT_SYMBOL(tcp_init_sock);
475
tcp_tx_timestamp(struct sock *sk, u16 tsflags)476 static void tcp_tx_timestamp(struct sock *sk, u16 tsflags)
477 {
478 struct sk_buff *skb = tcp_write_queue_tail(sk);
479
480 if (tsflags && skb) {
481 struct skb_shared_info *shinfo = skb_shinfo(skb);
482 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
483
484 sock_tx_timestamp(sk, tsflags, &shinfo->tx_flags);
485 if (tsflags & SOF_TIMESTAMPING_TX_ACK)
486 tcb->txstamp_ack = 1;
487 if (tsflags & SOF_TIMESTAMPING_TX_RECORD_MASK)
488 shinfo->tskey = TCP_SKB_CB(skb)->seq + skb->len - 1;
489 }
490 }
491
tcp_stream_is_readable(const struct tcp_sock *tp, int target, struct sock *sk)492 static inline bool tcp_stream_is_readable(const struct tcp_sock *tp,
493 int target, struct sock *sk)
494 {
495 int avail = READ_ONCE(tp->rcv_nxt) - READ_ONCE(tp->copied_seq);
496
497 if (avail > 0) {
498 if (avail >= target)
499 return true;
500 if (tcp_rmem_pressure(sk))
501 return true;
502 if (tcp_receive_window(tp) <= inet_csk(sk)->icsk_ack.rcv_mss)
503 return true;
504 }
505 if (sk->sk_prot->stream_memory_read)
506 return sk->sk_prot->stream_memory_read(sk);
507 return false;
508 }
509
510 /*
511 * Wait for a TCP event.
512 *
513 * Note that we don't need to lock the socket, as the upper poll layers
514 * take care of normal races (between the test and the event) and we don't
515 * go look at any of the socket buffers directly.
516 */
tcp_poll(struct file *file, struct socket *sock, poll_table *wait)517 __poll_t tcp_poll(struct file *file, struct socket *sock, poll_table *wait)
518 {
519 __poll_t mask;
520 struct sock *sk = sock->sk;
521 const struct tcp_sock *tp = tcp_sk(sk);
522 u8 shutdown;
523 int state;
524
525 sock_poll_wait(file, sock, wait);
526
527 state = inet_sk_state_load(sk);
528 if (state == TCP_LISTEN)
529 return inet_csk_listen_poll(sk);
530
531 /* Socket is not locked. We are protected from async events
532 * by poll logic and correct handling of state changes
533 * made by other threads is impossible in any case.
534 */
535
536 mask = 0;
537
538 /*
539 * EPOLLHUP is certainly not done right. But poll() doesn't
540 * have a notion of HUP in just one direction, and for a
541 * socket the read side is more interesting.
542 *
543 * Some poll() documentation says that EPOLLHUP is incompatible
544 * with the EPOLLOUT/POLLWR flags, so somebody should check this
545 * all. But careful, it tends to be safer to return too many
546 * bits than too few, and you can easily break real applications
547 * if you don't tell them that something has hung up!
548 *
549 * Check-me.
550 *
551 * Check number 1. EPOLLHUP is _UNMASKABLE_ event (see UNIX98 and
552 * our fs/select.c). It means that after we received EOF,
553 * poll always returns immediately, making impossible poll() on write()
554 * in state CLOSE_WAIT. One solution is evident --- to set EPOLLHUP
555 * if and only if shutdown has been made in both directions.
556 * Actually, it is interesting to look how Solaris and DUX
557 * solve this dilemma. I would prefer, if EPOLLHUP were maskable,
558 * then we could set it on SND_SHUTDOWN. BTW examples given
559 * in Stevens' books assume exactly this behaviour, it explains
560 * why EPOLLHUP is incompatible with EPOLLOUT. --ANK
561 *
562 * NOTE. Check for TCP_CLOSE is added. The goal is to prevent
563 * blocking on fresh not-connected or disconnected socket. --ANK
564 */
565 shutdown = READ_ONCE(sk->sk_shutdown);
566 if (shutdown == SHUTDOWN_MASK || state == TCP_CLOSE)
567 mask |= EPOLLHUP;
568 if (shutdown & RCV_SHUTDOWN)
569 mask |= EPOLLIN | EPOLLRDNORM | EPOLLRDHUP;
570
571 /* Connected or passive Fast Open socket? */
572 if (state != TCP_SYN_SENT &&
573 (state != TCP_SYN_RECV || rcu_access_pointer(tp->fastopen_rsk))) {
574 int target = sock_rcvlowat(sk, 0, INT_MAX);
575
576 if (READ_ONCE(tp->urg_seq) == READ_ONCE(tp->copied_seq) &&
577 !sock_flag(sk, SOCK_URGINLINE) &&
578 tp->urg_data)
579 target++;
580
581 if (tcp_stream_is_readable(tp, target, sk))
582 mask |= EPOLLIN | EPOLLRDNORM;
583
584 if (!(shutdown & SEND_SHUTDOWN)) {
585 if (__sk_stream_is_writeable(sk, 1)) {
586 mask |= EPOLLOUT | EPOLLWRNORM;
587 } else { /* send SIGIO later */
588 sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk);
589 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
590
591 /* Race breaker. If space is freed after
592 * wspace test but before the flags are set,
593 * IO signal will be lost. Memory barrier
594 * pairs with the input side.
595 */
596 smp_mb__after_atomic();
597 if (__sk_stream_is_writeable(sk, 1))
598 mask |= EPOLLOUT | EPOLLWRNORM;
599 }
600 } else
601 mask |= EPOLLOUT | EPOLLWRNORM;
602
603 if (tp->urg_data & TCP_URG_VALID)
604 mask |= EPOLLPRI;
605 } else if (state == TCP_SYN_SENT && inet_sk(sk)->defer_connect) {
606 /* Active TCP fastopen socket with defer_connect
607 * Return EPOLLOUT so application can call write()
608 * in order for kernel to generate SYN+data
609 */
610 mask |= EPOLLOUT | EPOLLWRNORM;
611 }
612 /* This barrier is coupled with smp_wmb() in tcp_reset() */
613 smp_rmb();
614 if (sk->sk_err || !skb_queue_empty_lockless(&sk->sk_error_queue))
615 mask |= EPOLLERR;
616
617 return mask;
618 }
619 EXPORT_SYMBOL(tcp_poll);
620
tcp_ioctl(struct sock *sk, int cmd, unsigned long arg)621 int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg)
622 {
623 struct tcp_sock *tp = tcp_sk(sk);
624 int answ;
625 bool slow;
626
627 switch (cmd) {
628 case SIOCINQ:
629 if (sk->sk_state == TCP_LISTEN)
630 return -EINVAL;
631
632 slow = lock_sock_fast(sk);
633 answ = tcp_inq(sk);
634 unlock_sock_fast(sk, slow);
635 break;
636 case SIOCATMARK:
637 answ = tp->urg_data &&
638 READ_ONCE(tp->urg_seq) == READ_ONCE(tp->copied_seq);
639 break;
640 case SIOCOUTQ:
641 if (sk->sk_state == TCP_LISTEN)
642 return -EINVAL;
643
644 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
645 answ = 0;
646 else
647 answ = READ_ONCE(tp->write_seq) - tp->snd_una;
648 break;
649 case SIOCOUTQNSD:
650 if (sk->sk_state == TCP_LISTEN)
651 return -EINVAL;
652
653 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
654 answ = 0;
655 else
656 answ = READ_ONCE(tp->write_seq) -
657 READ_ONCE(tp->snd_nxt);
658 break;
659 default:
660 return -ENOIOCTLCMD;
661 }
662
663 return put_user(answ, (int __user *)arg);
664 }
665 EXPORT_SYMBOL(tcp_ioctl);
666
tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb)667 static inline void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb)
668 {
669 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
670 tp->pushed_seq = tp->write_seq;
671 }
672
forced_push(const struct tcp_sock *tp)673 static inline bool forced_push(const struct tcp_sock *tp)
674 {
675 return after(tp->write_seq, tp->pushed_seq + (tp->max_window >> 1));
676 }
677
skb_entail(struct sock *sk, struct sk_buff *skb)678 static void skb_entail(struct sock *sk, struct sk_buff *skb)
679 {
680 struct tcp_sock *tp = tcp_sk(sk);
681 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
682
683 skb->csum = 0;
684 tcb->seq = tcb->end_seq = tp->write_seq;
685 tcb->tcp_flags = TCPHDR_ACK;
686 tcb->sacked = 0;
687 __skb_header_release(skb);
688 tcp_add_write_queue_tail(sk, skb);
689 sk_wmem_queued_add(sk, skb->truesize);
690 sk_mem_charge(sk, skb->truesize);
691 if (tp->nonagle & TCP_NAGLE_PUSH)
692 tp->nonagle &= ~TCP_NAGLE_PUSH;
693
694 tcp_slow_start_after_idle_check(sk);
695 }
696
tcp_mark_urg(struct tcp_sock *tp, int flags)697 static inline void tcp_mark_urg(struct tcp_sock *tp, int flags)
698 {
699 if (flags & MSG_OOB)
700 tp->snd_up = tp->write_seq;
701 }
702
703 /* If a not yet filled skb is pushed, do not send it if
704 * we have data packets in Qdisc or NIC queues :
705 * Because TX completion will happen shortly, it gives a chance
706 * to coalesce future sendmsg() payload into this skb, without
707 * need for a timer, and with no latency trade off.
708 * As packets containing data payload have a bigger truesize
709 * than pure acks (dataless) packets, the last checks prevent
710 * autocorking if we only have an ACK in Qdisc/NIC queues,
711 * or if TX completion was delayed after we processed ACK packet.
712 */
tcp_should_autocork(struct sock *sk, struct sk_buff *skb, int size_goal)713 static bool tcp_should_autocork(struct sock *sk, struct sk_buff *skb,
714 int size_goal)
715 {
716 return skb->len < size_goal &&
717 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_autocorking) &&
718 !tcp_rtx_queue_empty(sk) &&
719 refcount_read(&sk->sk_wmem_alloc) > skb->truesize;
720 }
721
tcp_push(struct sock *sk, int flags, int mss_now, int nonagle, int size_goal)722 void tcp_push(struct sock *sk, int flags, int mss_now,
723 int nonagle, int size_goal)
724 {
725 struct tcp_sock *tp = tcp_sk(sk);
726 struct sk_buff *skb;
727
728 skb = tcp_write_queue_tail(sk);
729 if (!skb)
730 return;
731 if (!(flags & MSG_MORE) || forced_push(tp))
732 tcp_mark_push(tp, skb);
733
734 tcp_mark_urg(tp, flags);
735
736 if (tcp_should_autocork(sk, skb, size_goal)) {
737
738 /* avoid atomic op if TSQ_THROTTLED bit is already set */
739 if (!test_bit(TSQ_THROTTLED, &sk->sk_tsq_flags)) {
740 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAUTOCORKING);
741 set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags);
742 smp_mb__after_atomic();
743 }
744 /* It is possible TX completion already happened
745 * before we set TSQ_THROTTLED.
746 */
747 if (refcount_read(&sk->sk_wmem_alloc) > skb->truesize)
748 return;
749 }
750
751 if (flags & MSG_MORE)
752 nonagle = TCP_NAGLE_CORK;
753
754 __tcp_push_pending_frames(sk, mss_now, nonagle);
755 }
756
tcp_splice_data_recv(read_descriptor_t *rd_desc, struct sk_buff *skb, unsigned int offset, size_t len)757 static int tcp_splice_data_recv(read_descriptor_t *rd_desc, struct sk_buff *skb,
758 unsigned int offset, size_t len)
759 {
760 struct tcp_splice_state *tss = rd_desc->arg.data;
761 int ret;
762
763 ret = skb_splice_bits(skb, skb->sk, offset, tss->pipe,
764 min(rd_desc->count, len), tss->flags);
765 if (ret > 0)
766 rd_desc->count -= ret;
767 return ret;
768 }
769
__tcp_splice_read(struct sock *sk, struct tcp_splice_state *tss)770 static int __tcp_splice_read(struct sock *sk, struct tcp_splice_state *tss)
771 {
772 /* Store TCP splice context information in read_descriptor_t. */
773 read_descriptor_t rd_desc = {
774 .arg.data = tss,
775 .count = tss->len,
776 };
777
778 return tcp_read_sock(sk, &rd_desc, tcp_splice_data_recv);
779 }
780
781 /**
782 * tcp_splice_read - splice data from TCP socket to a pipe
783 * @sock: socket to splice from
784 * @ppos: position (not valid)
785 * @pipe: pipe to splice to
786 * @len: number of bytes to splice
787 * @flags: splice modifier flags
788 *
789 * Description:
790 * Will read pages from given socket and fill them into a pipe.
791 *
792 **/
tcp_splice_read(struct socket *sock, loff_t *ppos, struct pipe_inode_info *pipe, size_t len, unsigned int flags)793 ssize_t tcp_splice_read(struct socket *sock, loff_t *ppos,
794 struct pipe_inode_info *pipe, size_t len,
795 unsigned int flags)
796 {
797 struct sock *sk = sock->sk;
798 struct tcp_splice_state tss = {
799 .pipe = pipe,
800 .len = len,
801 .flags = flags,
802 };
803 long timeo;
804 ssize_t spliced;
805 int ret;
806
807 sock_rps_record_flow(sk);
808 /*
809 * We can't seek on a socket input
810 */
811 if (unlikely(*ppos))
812 return -ESPIPE;
813
814 ret = spliced = 0;
815
816 lock_sock(sk);
817
818 timeo = sock_rcvtimeo(sk, sock->file->f_flags & O_NONBLOCK);
819 while (tss.len) {
820 ret = __tcp_splice_read(sk, &tss);
821 if (ret < 0)
822 break;
823 else if (!ret) {
824 if (spliced)
825 break;
826 if (sock_flag(sk, SOCK_DONE))
827 break;
828 if (sk->sk_err) {
829 ret = sock_error(sk);
830 break;
831 }
832 if (sk->sk_shutdown & RCV_SHUTDOWN)
833 break;
834 if (sk->sk_state == TCP_CLOSE) {
835 /*
836 * This occurs when user tries to read
837 * from never connected socket.
838 */
839 ret = -ENOTCONN;
840 break;
841 }
842 if (!timeo) {
843 ret = -EAGAIN;
844 break;
845 }
846 /* if __tcp_splice_read() got nothing while we have
847 * an skb in receive queue, we do not want to loop.
848 * This might happen with URG data.
849 */
850 if (!skb_queue_empty(&sk->sk_receive_queue))
851 break;
852 sk_wait_data(sk, &timeo, NULL);
853 if (signal_pending(current)) {
854 ret = sock_intr_errno(timeo);
855 break;
856 }
857 continue;
858 }
859 tss.len -= ret;
860 spliced += ret;
861
862 if (!timeo)
863 break;
864 release_sock(sk);
865 lock_sock(sk);
866
867 if (sk->sk_err || sk->sk_state == TCP_CLOSE ||
868 (sk->sk_shutdown & RCV_SHUTDOWN) ||
869 signal_pending(current))
870 break;
871 }
872
873 release_sock(sk);
874
875 if (spliced)
876 return spliced;
877
878 return ret;
879 }
880 EXPORT_SYMBOL(tcp_splice_read);
881
sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp, bool force_schedule)882 struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp,
883 bool force_schedule)
884 {
885 struct sk_buff *skb;
886
887 if (likely(!size)) {
888 skb = sk->sk_tx_skb_cache;
889 if (skb) {
890 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
891 sk->sk_tx_skb_cache = NULL;
892 pskb_trim(skb, 0);
893 INIT_LIST_HEAD(&skb->tcp_tsorted_anchor);
894 skb_shinfo(skb)->tx_flags = 0;
895 memset(TCP_SKB_CB(skb), 0, sizeof(struct tcp_skb_cb));
896 return skb;
897 }
898 }
899 /* The TCP header must be at least 32-bit aligned. */
900 size = ALIGN(size, 4);
901
902 if (unlikely(tcp_under_memory_pressure(sk)))
903 sk_mem_reclaim_partial(sk);
904
905 skb = alloc_skb_fclone(size + sk->sk_prot->max_header, gfp);
906 if (likely(skb)) {
907 bool mem_scheduled;
908
909 if (force_schedule) {
910 mem_scheduled = true;
911 sk_forced_mem_schedule(sk, skb->truesize);
912 } else {
913 mem_scheduled = sk_wmem_schedule(sk, skb->truesize);
914 }
915 if (likely(mem_scheduled)) {
916 skb_reserve(skb, sk->sk_prot->max_header);
917 /*
918 * Make sure that we have exactly size bytes
919 * available to the caller, no more, no less.
920 */
921 skb->reserved_tailroom = skb->end - skb->tail - size;
922 INIT_LIST_HEAD(&skb->tcp_tsorted_anchor);
923 return skb;
924 }
925 __kfree_skb(skb);
926 } else {
927 sk->sk_prot->enter_memory_pressure(sk);
928 sk_stream_moderate_sndbuf(sk);
929 }
930 return NULL;
931 }
932
tcp_xmit_size_goal(struct sock *sk, u32 mss_now, int large_allowed)933 static unsigned int tcp_xmit_size_goal(struct sock *sk, u32 mss_now,
934 int large_allowed)
935 {
936 struct tcp_sock *tp = tcp_sk(sk);
937 u32 new_size_goal, size_goal;
938
939 if (!large_allowed)
940 return mss_now;
941
942 /* Note : tcp_tso_autosize() will eventually split this later */
943 new_size_goal = sk->sk_gso_max_size - 1 - MAX_TCP_HEADER;
944 new_size_goal = tcp_bound_to_half_wnd(tp, new_size_goal);
945
946 /* We try hard to avoid divides here */
947 size_goal = tp->gso_segs * mss_now;
948 if (unlikely(new_size_goal < size_goal ||
949 new_size_goal >= size_goal + mss_now)) {
950 tp->gso_segs = min_t(u16, new_size_goal / mss_now,
951 sk->sk_gso_max_segs);
952 size_goal = tp->gso_segs * mss_now;
953 }
954
955 return max(size_goal, mss_now);
956 }
957
tcp_send_mss(struct sock *sk, int *size_goal, int flags)958 int tcp_send_mss(struct sock *sk, int *size_goal, int flags)
959 {
960 int mss_now;
961
962 mss_now = tcp_current_mss(sk);
963 *size_goal = tcp_xmit_size_goal(sk, mss_now, !(flags & MSG_OOB));
964
965 return mss_now;
966 }
967
968 /* In some cases, both sendpage() and sendmsg() could have added
969 * an skb to the write queue, but failed adding payload on it.
970 * We need to remove it to consume less memory, but more
971 * importantly be able to generate EPOLLOUT for Edge Trigger epoll()
972 * users.
973 */
tcp_remove_empty_skb(struct sock *sk, struct sk_buff *skb)974 static void tcp_remove_empty_skb(struct sock *sk, struct sk_buff *skb)
975 {
976 if (skb && TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) {
977 tcp_unlink_write_queue(skb, sk);
978 if (tcp_write_queue_empty(sk))
979 tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
980 sk_wmem_free_skb(sk, skb);
981 }
982 }
983
do_tcp_sendpages(struct sock *sk, struct page *page, int offset, size_t size, int flags)984 ssize_t do_tcp_sendpages(struct sock *sk, struct page *page, int offset,
985 size_t size, int flags)
986 {
987 struct tcp_sock *tp = tcp_sk(sk);
988 int mss_now, size_goal;
989 int err;
990 ssize_t copied;
991 long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
992
993 if (IS_ENABLED(CONFIG_DEBUG_VM) &&
994 WARN_ONCE(!sendpage_ok(page),
995 "page must not be a Slab one and have page_count > 0"))
996 return -EINVAL;
997
998 /* Wait for a connection to finish. One exception is TCP Fast Open
999 * (passive side) where data is allowed to be sent before a connection
1000 * is fully established.
1001 */
1002 if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) &&
1003 !tcp_passive_fastopen(sk)) {
1004 err = sk_stream_wait_connect(sk, &timeo);
1005 if (err != 0)
1006 goto out_err;
1007 }
1008
1009 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
1010
1011 mss_now = tcp_send_mss(sk, &size_goal, flags);
1012 copied = 0;
1013
1014 err = -EPIPE;
1015 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
1016 goto out_err;
1017
1018 while (size > 0) {
1019 struct sk_buff *skb = tcp_write_queue_tail(sk);
1020 int copy, i;
1021 bool can_coalesce;
1022
1023 if (!skb || (copy = size_goal - skb->len) <= 0 ||
1024 !tcp_skb_can_collapse_to(skb)) {
1025 new_segment:
1026 if (!sk_stream_memory_free(sk))
1027 goto wait_for_space;
1028
1029 skb = sk_stream_alloc_skb(sk, 0, sk->sk_allocation,
1030 tcp_rtx_and_write_queues_empty(sk));
1031 if (!skb)
1032 goto wait_for_space;
1033
1034 #ifdef CONFIG_TLS_DEVICE
1035 skb->decrypted = !!(flags & MSG_SENDPAGE_DECRYPTED);
1036 #endif
1037 skb_entail(sk, skb);
1038 copy = size_goal;
1039 }
1040
1041 if (copy > size)
1042 copy = size;
1043
1044 i = skb_shinfo(skb)->nr_frags;
1045 can_coalesce = skb_can_coalesce(skb, i, page, offset);
1046 if (!can_coalesce && i >= sysctl_max_skb_frags) {
1047 tcp_mark_push(tp, skb);
1048 goto new_segment;
1049 }
1050 if (!sk_wmem_schedule(sk, copy))
1051 goto wait_for_space;
1052
1053 if (can_coalesce) {
1054 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1055 } else {
1056 get_page(page);
1057 skb_fill_page_desc(skb, i, page, offset, copy);
1058 }
1059
1060 if (!(flags & MSG_NO_SHARED_FRAGS))
1061 skb_shinfo(skb)->tx_flags |= SKBTX_SHARED_FRAG;
1062
1063 skb->len += copy;
1064 skb->data_len += copy;
1065 skb->truesize += copy;
1066 sk_wmem_queued_add(sk, copy);
1067 sk_mem_charge(sk, copy);
1068 skb->ip_summed = CHECKSUM_PARTIAL;
1069 WRITE_ONCE(tp->write_seq, tp->write_seq + copy);
1070 TCP_SKB_CB(skb)->end_seq += copy;
1071 tcp_skb_pcount_set(skb, 0);
1072
1073 if (!copied)
1074 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
1075
1076 copied += copy;
1077 offset += copy;
1078 size -= copy;
1079 if (!size)
1080 goto out;
1081
1082 if (skb->len < size_goal || (flags & MSG_OOB))
1083 continue;
1084
1085 if (forced_push(tp)) {
1086 tcp_mark_push(tp, skb);
1087 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
1088 } else if (skb == tcp_send_head(sk))
1089 tcp_push_one(sk, mss_now);
1090 continue;
1091
1092 wait_for_space:
1093 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1094 tcp_push(sk, flags & ~MSG_MORE, mss_now,
1095 TCP_NAGLE_PUSH, size_goal);
1096
1097 err = sk_stream_wait_memory(sk, &timeo);
1098 if (err != 0)
1099 goto do_error;
1100
1101 mss_now = tcp_send_mss(sk, &size_goal, flags);
1102 }
1103
1104 out:
1105 if (copied) {
1106 tcp_tx_timestamp(sk, sk->sk_tsflags);
1107 if (!(flags & MSG_SENDPAGE_NOTLAST))
1108 tcp_push(sk, flags, mss_now, tp->nonagle, size_goal);
1109 }
1110 return copied;
1111
1112 do_error:
1113 tcp_remove_empty_skb(sk, tcp_write_queue_tail(sk));
1114 if (copied)
1115 goto out;
1116 out_err:
1117 /* make sure we wake any epoll edge trigger waiter */
1118 if (unlikely(tcp_rtx_and_write_queues_empty(sk) && err == -EAGAIN)) {
1119 sk->sk_write_space(sk);
1120 tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
1121 }
1122 return sk_stream_error(sk, flags, err);
1123 }
1124 EXPORT_SYMBOL_GPL(do_tcp_sendpages);
1125
tcp_sendpage_locked(struct sock *sk, struct page *page, int offset, size_t size, int flags)1126 int tcp_sendpage_locked(struct sock *sk, struct page *page, int offset,
1127 size_t size, int flags)
1128 {
1129 if (!(sk->sk_route_caps & NETIF_F_SG))
1130 return sock_no_sendpage_locked(sk, page, offset, size, flags);
1131
1132 tcp_rate_check_app_limited(sk); /* is sending application-limited? */
1133
1134 return do_tcp_sendpages(sk, page, offset, size, flags);
1135 }
1136 EXPORT_SYMBOL_GPL(tcp_sendpage_locked);
1137
tcp_sendpage(struct sock *sk, struct page *page, int offset, size_t size, int flags)1138 int tcp_sendpage(struct sock *sk, struct page *page, int offset,
1139 size_t size, int flags)
1140 {
1141 int ret;
1142
1143 lock_sock(sk);
1144 ret = tcp_sendpage_locked(sk, page, offset, size, flags);
1145 release_sock(sk);
1146
1147 return ret;
1148 }
1149 EXPORT_SYMBOL(tcp_sendpage);
1150
tcp_free_fastopen_req(struct tcp_sock *tp)1151 void tcp_free_fastopen_req(struct tcp_sock *tp)
1152 {
1153 if (tp->fastopen_req) {
1154 kfree(tp->fastopen_req);
1155 tp->fastopen_req = NULL;
1156 }
1157 }
1158
tcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg, int *copied, size_t size, struct ubuf_info *uarg)1159 static int tcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg,
1160 int *copied, size_t size,
1161 struct ubuf_info *uarg)
1162 {
1163 struct tcp_sock *tp = tcp_sk(sk);
1164 struct inet_sock *inet = inet_sk(sk);
1165 struct sockaddr *uaddr = msg->msg_name;
1166 int err, flags;
1167
1168 if (!(READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_fastopen) &
1169 TFO_CLIENT_ENABLE) ||
1170 (uaddr && msg->msg_namelen >= sizeof(uaddr->sa_family) &&
1171 uaddr->sa_family == AF_UNSPEC))
1172 return -EOPNOTSUPP;
1173 if (tp->fastopen_req)
1174 return -EALREADY; /* Another Fast Open is in progress */
1175
1176 tp->fastopen_req = kzalloc(sizeof(struct tcp_fastopen_request),
1177 sk->sk_allocation);
1178 if (unlikely(!tp->fastopen_req))
1179 return -ENOBUFS;
1180 tp->fastopen_req->data = msg;
1181 tp->fastopen_req->size = size;
1182 tp->fastopen_req->uarg = uarg;
1183
1184 if (inet->defer_connect) {
1185 err = tcp_connect(sk);
1186 /* Same failure procedure as in tcp_v4/6_connect */
1187 if (err) {
1188 tcp_set_state(sk, TCP_CLOSE);
1189 inet->inet_dport = 0;
1190 sk->sk_route_caps = 0;
1191 }
1192 }
1193 flags = (msg->msg_flags & MSG_DONTWAIT) ? O_NONBLOCK : 0;
1194 err = __inet_stream_connect(sk->sk_socket, uaddr,
1195 msg->msg_namelen, flags, 1);
1196 /* fastopen_req could already be freed in __inet_stream_connect
1197 * if the connection times out or gets rst
1198 */
1199 if (tp->fastopen_req) {
1200 *copied = tp->fastopen_req->copied;
1201 tcp_free_fastopen_req(tp);
1202 inet->defer_connect = 0;
1203 }
1204 return err;
1205 }
1206
tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size)1207 int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size)
1208 {
1209 struct tcp_sock *tp = tcp_sk(sk);
1210 struct ubuf_info *uarg = NULL;
1211 struct sk_buff *skb;
1212 struct sockcm_cookie sockc;
1213 int flags, err, copied = 0;
1214 int mss_now = 0, size_goal, copied_syn = 0;
1215 int process_backlog = 0;
1216 bool zc = false;
1217 long timeo;
1218
1219 flags = msg->msg_flags;
1220
1221 if (flags & MSG_ZEROCOPY && size && sock_flag(sk, SOCK_ZEROCOPY)) {
1222 skb = tcp_write_queue_tail(sk);
1223 uarg = sock_zerocopy_realloc(sk, size, skb_zcopy(skb));
1224 if (!uarg) {
1225 err = -ENOBUFS;
1226 goto out_err;
1227 }
1228
1229 zc = sk->sk_route_caps & NETIF_F_SG;
1230 if (!zc)
1231 uarg->zerocopy = 0;
1232 }
1233
1234 if (unlikely(flags & MSG_FASTOPEN || inet_sk(sk)->defer_connect) &&
1235 !tp->repair) {
1236 err = tcp_sendmsg_fastopen(sk, msg, &copied_syn, size, uarg);
1237 if (err == -EINPROGRESS && copied_syn > 0)
1238 goto out;
1239 else if (err)
1240 goto out_err;
1241 }
1242
1243 timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
1244
1245 tcp_rate_check_app_limited(sk); /* is sending application-limited? */
1246
1247 /* Wait for a connection to finish. One exception is TCP Fast Open
1248 * (passive side) where data is allowed to be sent before a connection
1249 * is fully established.
1250 */
1251 if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) &&
1252 !tcp_passive_fastopen(sk)) {
1253 err = sk_stream_wait_connect(sk, &timeo);
1254 if (err != 0)
1255 goto do_error;
1256 }
1257
1258 if (unlikely(tp->repair)) {
1259 if (tp->repair_queue == TCP_RECV_QUEUE) {
1260 copied = tcp_send_rcvq(sk, msg, size);
1261 goto out_nopush;
1262 }
1263
1264 err = -EINVAL;
1265 if (tp->repair_queue == TCP_NO_QUEUE)
1266 goto out_err;
1267
1268 /* 'common' sending to sendq */
1269 }
1270
1271 sockcm_init(&sockc, sk);
1272 if (msg->msg_controllen) {
1273 err = sock_cmsg_send(sk, msg, &sockc);
1274 if (unlikely(err)) {
1275 err = -EINVAL;
1276 goto out_err;
1277 }
1278 }
1279
1280 /* This should be in poll */
1281 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
1282
1283 /* Ok commence sending. */
1284 copied = 0;
1285
1286 restart:
1287 mss_now = tcp_send_mss(sk, &size_goal, flags);
1288
1289 err = -EPIPE;
1290 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
1291 goto do_error;
1292
1293 while (msg_data_left(msg)) {
1294 int copy = 0;
1295
1296 skb = tcp_write_queue_tail(sk);
1297 if (skb)
1298 copy = size_goal - skb->len;
1299
1300 if (copy <= 0 || !tcp_skb_can_collapse_to(skb)) {
1301 bool first_skb;
1302
1303 new_segment:
1304 if (!sk_stream_memory_free(sk))
1305 goto wait_for_space;
1306
1307 if (unlikely(process_backlog >= 16)) {
1308 process_backlog = 0;
1309 if (sk_flush_backlog(sk))
1310 goto restart;
1311 }
1312 first_skb = tcp_rtx_and_write_queues_empty(sk);
1313 skb = sk_stream_alloc_skb(sk, 0, sk->sk_allocation,
1314 first_skb);
1315 if (!skb)
1316 goto wait_for_space;
1317
1318 process_backlog++;
1319 skb->ip_summed = CHECKSUM_PARTIAL;
1320
1321 skb_entail(sk, skb);
1322 copy = size_goal;
1323
1324 /* All packets are restored as if they have
1325 * already been sent. skb_mstamp_ns isn't set to
1326 * avoid wrong rtt estimation.
1327 */
1328 if (tp->repair)
1329 TCP_SKB_CB(skb)->sacked |= TCPCB_REPAIRED;
1330 }
1331
1332 /* Try to append data to the end of skb. */
1333 if (copy > msg_data_left(msg))
1334 copy = msg_data_left(msg);
1335
1336 /* Where to copy to? */
1337 if (skb_availroom(skb) > 0 && !zc) {
1338 /* We have some space in skb head. Superb! */
1339 copy = min_t(int, copy, skb_availroom(skb));
1340 err = skb_add_data_nocache(sk, skb, &msg->msg_iter, copy);
1341 if (err)
1342 goto do_fault;
1343 } else if (!zc) {
1344 bool merge = true;
1345 int i = skb_shinfo(skb)->nr_frags;
1346 struct page_frag *pfrag = sk_page_frag(sk);
1347
1348 if (!sk_page_frag_refill(sk, pfrag))
1349 goto wait_for_space;
1350
1351 if (!skb_can_coalesce(skb, i, pfrag->page,
1352 pfrag->offset)) {
1353 if (i >= sysctl_max_skb_frags) {
1354 tcp_mark_push(tp, skb);
1355 goto new_segment;
1356 }
1357 merge = false;
1358 }
1359
1360 copy = min_t(int, copy, pfrag->size - pfrag->offset);
1361
1362 if (!sk_wmem_schedule(sk, copy))
1363 goto wait_for_space;
1364
1365 err = skb_copy_to_page_nocache(sk, &msg->msg_iter, skb,
1366 pfrag->page,
1367 pfrag->offset,
1368 copy);
1369 if (err)
1370 goto do_error;
1371
1372 /* Update the skb. */
1373 if (merge) {
1374 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1375 } else {
1376 skb_fill_page_desc(skb, i, pfrag->page,
1377 pfrag->offset, copy);
1378 page_ref_inc(pfrag->page);
1379 }
1380 pfrag->offset += copy;
1381 } else {
1382 if (!sk_wmem_schedule(sk, copy))
1383 goto wait_for_space;
1384
1385 err = skb_zerocopy_iter_stream(sk, skb, msg, copy, uarg);
1386 if (err == -EMSGSIZE || err == -EEXIST) {
1387 tcp_mark_push(tp, skb);
1388 goto new_segment;
1389 }
1390 if (err < 0)
1391 goto do_error;
1392 copy = err;
1393 }
1394
1395 if (!copied)
1396 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
1397
1398 WRITE_ONCE(tp->write_seq, tp->write_seq + copy);
1399 TCP_SKB_CB(skb)->end_seq += copy;
1400 tcp_skb_pcount_set(skb, 0);
1401
1402 copied += copy;
1403 if (!msg_data_left(msg)) {
1404 if (unlikely(flags & MSG_EOR))
1405 TCP_SKB_CB(skb)->eor = 1;
1406 goto out;
1407 }
1408
1409 if (skb->len < size_goal || (flags & MSG_OOB) || unlikely(tp->repair))
1410 continue;
1411
1412 if (forced_push(tp)) {
1413 tcp_mark_push(tp, skb);
1414 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
1415 } else if (skb == tcp_send_head(sk))
1416 tcp_push_one(sk, mss_now);
1417 continue;
1418
1419 wait_for_space:
1420 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1421 if (copied)
1422 tcp_push(sk, flags & ~MSG_MORE, mss_now,
1423 TCP_NAGLE_PUSH, size_goal);
1424
1425 err = sk_stream_wait_memory(sk, &timeo);
1426 if (err != 0)
1427 goto do_error;
1428
1429 mss_now = tcp_send_mss(sk, &size_goal, flags);
1430 }
1431
1432 out:
1433 if (copied) {
1434 tcp_tx_timestamp(sk, sockc.tsflags);
1435 tcp_push(sk, flags, mss_now, tp->nonagle, size_goal);
1436 }
1437 out_nopush:
1438 sock_zerocopy_put(uarg);
1439 return copied + copied_syn;
1440
1441 do_error:
1442 skb = tcp_write_queue_tail(sk);
1443 do_fault:
1444 tcp_remove_empty_skb(sk, skb);
1445
1446 if (copied + copied_syn)
1447 goto out;
1448 out_err:
1449 sock_zerocopy_put_abort(uarg, true);
1450 err = sk_stream_error(sk, flags, err);
1451 /* make sure we wake any epoll edge trigger waiter */
1452 if (unlikely(tcp_rtx_and_write_queues_empty(sk) && err == -EAGAIN)) {
1453 sk->sk_write_space(sk);
1454 tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
1455 }
1456 return err;
1457 }
1458 EXPORT_SYMBOL_GPL(tcp_sendmsg_locked);
1459
tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size)1460 int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size)
1461 {
1462 int ret;
1463
1464 lock_sock(sk);
1465 ret = tcp_sendmsg_locked(sk, msg, size);
1466 release_sock(sk);
1467
1468 return ret;
1469 }
1470 EXPORT_SYMBOL(tcp_sendmsg);
1471
1472 /*
1473 * Handle reading urgent data. BSD has very simple semantics for
1474 * this, no blocking and very strange errors 8)
1475 */
1476
tcp_recv_urg(struct sock *sk, struct msghdr *msg, int len, int flags)1477 static int tcp_recv_urg(struct sock *sk, struct msghdr *msg, int len, int flags)
1478 {
1479 struct tcp_sock *tp = tcp_sk(sk);
1480
1481 /* No URG data to read. */
1482 if (sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data ||
1483 tp->urg_data == TCP_URG_READ)
1484 return -EINVAL; /* Yes this is right ! */
1485
1486 if (sk->sk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DONE))
1487 return -ENOTCONN;
1488
1489 if (tp->urg_data & TCP_URG_VALID) {
1490 int err = 0;
1491 char c = tp->urg_data;
1492
1493 if (!(flags & MSG_PEEK))
1494 tp->urg_data = TCP_URG_READ;
1495
1496 /* Read urgent data. */
1497 msg->msg_flags |= MSG_OOB;
1498
1499 if (len > 0) {
1500 if (!(flags & MSG_TRUNC))
1501 err = memcpy_to_msg(msg, &c, 1);
1502 len = 1;
1503 } else
1504 msg->msg_flags |= MSG_TRUNC;
1505
1506 return err ? -EFAULT : len;
1507 }
1508
1509 if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN))
1510 return 0;
1511
1512 /* Fixed the recv(..., MSG_OOB) behaviour. BSD docs and
1513 * the available implementations agree in this case:
1514 * this call should never block, independent of the
1515 * blocking state of the socket.
1516 * Mike <pall@rz.uni-karlsruhe.de>
1517 */
1518 return -EAGAIN;
1519 }
1520
tcp_peek_sndq(struct sock *sk, struct msghdr *msg, int len)1521 static int tcp_peek_sndq(struct sock *sk, struct msghdr *msg, int len)
1522 {
1523 struct sk_buff *skb;
1524 int copied = 0, err = 0;
1525
1526 /* XXX -- need to support SO_PEEK_OFF */
1527
1528 skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
1529 err = skb_copy_datagram_msg(skb, 0, msg, skb->len);
1530 if (err)
1531 return err;
1532 copied += skb->len;
1533 }
1534
1535 skb_queue_walk(&sk->sk_write_queue, skb) {
1536 err = skb_copy_datagram_msg(skb, 0, msg, skb->len);
1537 if (err)
1538 break;
1539
1540 copied += skb->len;
1541 }
1542
1543 return err ?: copied;
1544 }
1545
1546 /* Clean up the receive buffer for full frames taken by the user,
1547 * then send an ACK if necessary. COPIED is the number of bytes
1548 * tcp_recvmsg has given to the user so far, it speeds up the
1549 * calculation of whether or not we must ACK for the sake of
1550 * a window update.
1551 */
tcp_cleanup_rbuf(struct sock *sk, int copied)1552 void tcp_cleanup_rbuf(struct sock *sk, int copied)
1553 {
1554 struct tcp_sock *tp = tcp_sk(sk);
1555 bool time_to_ack = false;
1556
1557 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
1558
1559 WARN(skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq),
1560 "cleanup rbuf bug: copied %X seq %X rcvnxt %X\n",
1561 tp->copied_seq, TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt);
1562
1563 if (inet_csk_ack_scheduled(sk)) {
1564 const struct inet_connection_sock *icsk = inet_csk(sk);
1565 __u16 rcv_mss = icsk->icsk_ack.rcv_mss;
1566 #ifdef CONFIG_LOWPOWER_PROTOCOL
1567 rcv_mss *= tcp_ack_num(sk);
1568 #endif /* CONFIG_LOWPOWER_PROTOCOL */
1569
1570 if (/* Once-per-two-segments ACK was not sent by tcp_input.c */
1571 tp->rcv_nxt - tp->rcv_wup > rcv_mss ||
1572 /*
1573 * If this read emptied read buffer, we send ACK, if
1574 * connection is not bidirectional, user drained
1575 * receive buffer and there was a small segment
1576 * in queue.
1577 */
1578 (copied > 0 &&
1579 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED2) ||
1580 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED) &&
1581 !inet_csk_in_pingpong_mode(sk))) &&
1582 !atomic_read(&sk->sk_rmem_alloc)))
1583 time_to_ack = true;
1584 }
1585
1586 /* We send an ACK if we can now advertise a non-zero window
1587 * which has been raised "significantly".
1588 *
1589 * Even if window raised up to infinity, do not send window open ACK
1590 * in states, where we will not receive more. It is useless.
1591 */
1592 if (copied > 0 && !time_to_ack && !(sk->sk_shutdown & RCV_SHUTDOWN)) {
1593 __u32 rcv_window_now = tcp_receive_window(tp);
1594
1595 /* Optimize, __tcp_select_window() is not cheap. */
1596 if (2*rcv_window_now <= tp->window_clamp) {
1597 __u32 new_window = __tcp_select_window(sk);
1598
1599 /* Send ACK now, if this read freed lots of space
1600 * in our buffer. Certainly, new_window is new window.
1601 * We can advertise it now, if it is not less than current one.
1602 * "Lots" means "at least twice" here.
1603 */
1604 if (new_window && new_window >= 2 * rcv_window_now)
1605 time_to_ack = true;
1606 }
1607 }
1608 if (time_to_ack)
1609 tcp_send_ack(sk);
1610 }
1611
tcp_recv_skb(struct sock *sk, u32 seq, u32 *off)1612 static struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off)
1613 {
1614 struct sk_buff *skb;
1615 u32 offset;
1616
1617 while ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) {
1618 offset = seq - TCP_SKB_CB(skb)->seq;
1619 if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
1620 pr_err_once("%s: found a SYN, please report !\n", __func__);
1621 offset--;
1622 }
1623 if (offset < skb->len || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)) {
1624 *off = offset;
1625 return skb;
1626 }
1627 /* This looks weird, but this can happen if TCP collapsing
1628 * splitted a fat GRO packet, while we released socket lock
1629 * in skb_splice_bits()
1630 */
1631 sk_eat_skb(sk, skb);
1632 }
1633 return NULL;
1634 }
1635
1636 /*
1637 * This routine provides an alternative to tcp_recvmsg() for routines
1638 * that would like to handle copying from skbuffs directly in 'sendfile'
1639 * fashion.
1640 * Note:
1641 * - It is assumed that the socket was locked by the caller.
1642 * - The routine does not block.
1643 * - At present, there is no support for reading OOB data
1644 * or for 'peeking' the socket using this routine
1645 * (although both would be easy to implement).
1646 */
tcp_read_sock(struct sock *sk, read_descriptor_t *desc, sk_read_actor_t recv_actor)1647 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
1648 sk_read_actor_t recv_actor)
1649 {
1650 struct sk_buff *skb;
1651 struct tcp_sock *tp = tcp_sk(sk);
1652 u32 seq = tp->copied_seq;
1653 u32 offset;
1654 int copied = 0;
1655
1656 if (sk->sk_state == TCP_LISTEN)
1657 return -ENOTCONN;
1658 while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) {
1659 if (offset < skb->len) {
1660 int used;
1661 size_t len;
1662
1663 len = skb->len - offset;
1664 /* Stop reading if we hit a patch of urgent data */
1665 if (tp->urg_data) {
1666 u32 urg_offset = tp->urg_seq - seq;
1667 if (urg_offset < len)
1668 len = urg_offset;
1669 if (!len)
1670 break;
1671 }
1672 used = recv_actor(desc, skb, offset, len);
1673 if (used <= 0) {
1674 if (!copied)
1675 copied = used;
1676 break;
1677 }
1678 if (WARN_ON_ONCE(used > len))
1679 used = len;
1680 seq += used;
1681 copied += used;
1682 offset += used;
1683
1684 /* If recv_actor drops the lock (e.g. TCP splice
1685 * receive) the skb pointer might be invalid when
1686 * getting here: tcp_collapse might have deleted it
1687 * while aggregating skbs from the socket queue.
1688 */
1689 skb = tcp_recv_skb(sk, seq - 1, &offset);
1690 if (!skb)
1691 break;
1692 /* TCP coalescing might have appended data to the skb.
1693 * Try to splice more frags
1694 */
1695 if (offset + 1 != skb->len)
1696 continue;
1697 }
1698 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) {
1699 sk_eat_skb(sk, skb);
1700 ++seq;
1701 break;
1702 }
1703 sk_eat_skb(sk, skb);
1704 if (!desc->count)
1705 break;
1706 WRITE_ONCE(tp->copied_seq, seq);
1707 }
1708 WRITE_ONCE(tp->copied_seq, seq);
1709
1710 tcp_rcv_space_adjust(sk);
1711
1712 /* Clean up data we have read: This will do ACK frames. */
1713 if (copied > 0) {
1714 tcp_recv_skb(sk, seq, &offset);
1715 tcp_cleanup_rbuf(sk, copied);
1716 }
1717 return copied;
1718 }
1719 EXPORT_SYMBOL(tcp_read_sock);
1720
tcp_peek_len(struct socket *sock)1721 int tcp_peek_len(struct socket *sock)
1722 {
1723 return tcp_inq(sock->sk);
1724 }
1725 EXPORT_SYMBOL(tcp_peek_len);
1726
1727 /* Make sure sk_rcvbuf is big enough to satisfy SO_RCVLOWAT hint */
tcp_set_rcvlowat(struct sock *sk, int val)1728 int tcp_set_rcvlowat(struct sock *sk, int val)
1729 {
1730 int cap;
1731
1732 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK)
1733 cap = sk->sk_rcvbuf >> 1;
1734 else
1735 cap = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2]) >> 1;
1736 val = min(val, cap);
1737 WRITE_ONCE(sk->sk_rcvlowat, val ? : 1);
1738
1739 /* Check if we need to signal EPOLLIN right now */
1740 tcp_data_ready(sk);
1741
1742 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK)
1743 return 0;
1744
1745 val <<= 1;
1746 if (val > sk->sk_rcvbuf) {
1747 WRITE_ONCE(sk->sk_rcvbuf, val);
1748 tcp_sk(sk)->window_clamp = tcp_win_from_space(sk, val);
1749 }
1750 return 0;
1751 }
1752 EXPORT_SYMBOL(tcp_set_rcvlowat);
1753
1754 #ifdef CONFIG_MMU
1755 static const struct vm_operations_struct tcp_vm_ops = {
1756 };
1757
tcp_mmap(struct file *file, struct socket *sock, struct vm_area_struct *vma)1758 int tcp_mmap(struct file *file, struct socket *sock,
1759 struct vm_area_struct *vma)
1760 {
1761 if (vma->vm_flags & (VM_WRITE | VM_EXEC))
1762 return -EPERM;
1763 vma->vm_flags &= ~(VM_MAYWRITE | VM_MAYEXEC);
1764
1765 /* Instruct vm_insert_page() to not mmap_read_lock(mm) */
1766 vma->vm_flags |= VM_MIXEDMAP;
1767
1768 vma->vm_ops = &tcp_vm_ops;
1769 return 0;
1770 }
1771 EXPORT_SYMBOL(tcp_mmap);
1772
skb_advance_to_frag(struct sk_buff *skb, u32 offset_skb, u32 *offset_frag)1773 static skb_frag_t *skb_advance_to_frag(struct sk_buff *skb, u32 offset_skb,
1774 u32 *offset_frag)
1775 {
1776 skb_frag_t *frag;
1777
1778 if (unlikely(offset_skb >= skb->len))
1779 return NULL;
1780
1781 offset_skb -= skb_headlen(skb);
1782 if ((int)offset_skb < 0 || skb_has_frag_list(skb))
1783 return NULL;
1784
1785 frag = skb_shinfo(skb)->frags;
1786 while (offset_skb) {
1787 if (skb_frag_size(frag) > offset_skb) {
1788 *offset_frag = offset_skb;
1789 return frag;
1790 }
1791 offset_skb -= skb_frag_size(frag);
1792 ++frag;
1793 }
1794 *offset_frag = 0;
1795 return frag;
1796 }
1797
can_map_frag(const skb_frag_t *frag)1798 static bool can_map_frag(const skb_frag_t *frag)
1799 {
1800 struct page *page;
1801
1802 if (skb_frag_size(frag) != PAGE_SIZE || skb_frag_off(frag))
1803 return false;
1804
1805 page = skb_frag_page(frag);
1806
1807 if (PageCompound(page) || page->mapping)
1808 return false;
1809
1810 return true;
1811 }
1812
find_next_mappable_frag(const skb_frag_t *frag, int remaining_in_skb)1813 static int find_next_mappable_frag(const skb_frag_t *frag,
1814 int remaining_in_skb)
1815 {
1816 int offset = 0;
1817
1818 if (likely(can_map_frag(frag)))
1819 return 0;
1820
1821 while (offset < remaining_in_skb && !can_map_frag(frag)) {
1822 offset += skb_frag_size(frag);
1823 ++frag;
1824 }
1825 return offset;
1826 }
1827
tcp_copy_straggler_data(struct tcp_zerocopy_receive *zc, struct sk_buff *skb, u32 copylen, u32 *offset, u32 *seq)1828 static int tcp_copy_straggler_data(struct tcp_zerocopy_receive *zc,
1829 struct sk_buff *skb, u32 copylen,
1830 u32 *offset, u32 *seq)
1831 {
1832 unsigned long copy_address = (unsigned long)zc->copybuf_address;
1833 struct msghdr msg = {};
1834 struct iovec iov;
1835 int err;
1836
1837 if (copy_address != zc->copybuf_address)
1838 return -EINVAL;
1839
1840 err = import_single_range(READ, (void __user *)copy_address,
1841 copylen, &iov, &msg.msg_iter);
1842 if (err)
1843 return err;
1844 err = skb_copy_datagram_msg(skb, *offset, &msg, copylen);
1845 if (err)
1846 return err;
1847 zc->recv_skip_hint -= copylen;
1848 *offset += copylen;
1849 *seq += copylen;
1850 return (__s32)copylen;
1851 }
1852
tcp_zerocopy_handle_leftover_data(struct tcp_zerocopy_receive *zc, struct sock *sk, struct sk_buff *skb, u32 *seq, s32 copybuf_len)1853 static int tcp_zerocopy_handle_leftover_data(struct tcp_zerocopy_receive *zc,
1854 struct sock *sk,
1855 struct sk_buff *skb,
1856 u32 *seq,
1857 s32 copybuf_len)
1858 {
1859 u32 offset, copylen = min_t(u32, copybuf_len, zc->recv_skip_hint);
1860
1861 if (!copylen)
1862 return 0;
1863 /* skb is null if inq < PAGE_SIZE. */
1864 if (skb)
1865 offset = *seq - TCP_SKB_CB(skb)->seq;
1866 else
1867 skb = tcp_recv_skb(sk, *seq, &offset);
1868
1869 zc->copybuf_len = tcp_copy_straggler_data(zc, skb, copylen, &offset,
1870 seq);
1871 return zc->copybuf_len < 0 ? 0 : copylen;
1872 }
1873
tcp_zerocopy_vm_insert_batch(struct vm_area_struct *vma, struct page **pages, unsigned long pages_to_map, unsigned long *insert_addr, u32 *length_with_pending, u32 *seq, struct tcp_zerocopy_receive *zc)1874 static int tcp_zerocopy_vm_insert_batch(struct vm_area_struct *vma,
1875 struct page **pages,
1876 unsigned long pages_to_map,
1877 unsigned long *insert_addr,
1878 u32 *length_with_pending,
1879 u32 *seq,
1880 struct tcp_zerocopy_receive *zc)
1881 {
1882 unsigned long pages_remaining = pages_to_map;
1883 int bytes_mapped;
1884 int ret;
1885
1886 ret = vm_insert_pages(vma, *insert_addr, pages, &pages_remaining);
1887 bytes_mapped = PAGE_SIZE * (pages_to_map - pages_remaining);
1888 /* Even if vm_insert_pages fails, it may have partially succeeded in
1889 * mapping (some but not all of the pages).
1890 */
1891 *seq += bytes_mapped;
1892 *insert_addr += bytes_mapped;
1893 if (ret) {
1894 /* But if vm_insert_pages did fail, we have to unroll some state
1895 * we speculatively touched before.
1896 */
1897 const int bytes_not_mapped = PAGE_SIZE * pages_remaining;
1898 *length_with_pending -= bytes_not_mapped;
1899 zc->recv_skip_hint += bytes_not_mapped;
1900 }
1901 return ret;
1902 }
1903
tcp_zerocopy_receive(struct sock *sk, struct tcp_zerocopy_receive *zc)1904 static int tcp_zerocopy_receive(struct sock *sk,
1905 struct tcp_zerocopy_receive *zc)
1906 {
1907 u32 length = 0, offset, vma_len, avail_len, aligned_len, copylen = 0;
1908 unsigned long address = (unsigned long)zc->address;
1909 s32 copybuf_len = zc->copybuf_len;
1910 struct tcp_sock *tp = tcp_sk(sk);
1911 #define PAGE_BATCH_SIZE 8
1912 struct page *pages[PAGE_BATCH_SIZE];
1913 const skb_frag_t *frags = NULL;
1914 struct vm_area_struct *vma;
1915 struct sk_buff *skb = NULL;
1916 unsigned long pg_idx = 0;
1917 unsigned long curr_addr;
1918 u32 seq = tp->copied_seq;
1919 int inq = tcp_inq(sk);
1920 int ret;
1921
1922 zc->copybuf_len = 0;
1923
1924 if (address & (PAGE_SIZE - 1) || address != zc->address)
1925 return -EINVAL;
1926
1927 if (sk->sk_state == TCP_LISTEN)
1928 return -ENOTCONN;
1929
1930 sock_rps_record_flow(sk);
1931
1932 mmap_read_lock(current->mm);
1933
1934 vma = find_vma(current->mm, address);
1935 if (!vma || vma->vm_start > address || vma->vm_ops != &tcp_vm_ops) {
1936 mmap_read_unlock(current->mm);
1937 return -EINVAL;
1938 }
1939 vma_len = min_t(unsigned long, zc->length, vma->vm_end - address);
1940 avail_len = min_t(u32, vma_len, inq);
1941 aligned_len = avail_len & ~(PAGE_SIZE - 1);
1942 if (aligned_len) {
1943 zap_page_range(vma, address, aligned_len);
1944 zc->length = aligned_len;
1945 zc->recv_skip_hint = 0;
1946 } else {
1947 zc->length = avail_len;
1948 zc->recv_skip_hint = avail_len;
1949 }
1950 ret = 0;
1951 curr_addr = address;
1952 while (length + PAGE_SIZE <= zc->length) {
1953 int mappable_offset;
1954
1955 if (zc->recv_skip_hint < PAGE_SIZE) {
1956 u32 offset_frag;
1957
1958 /* If we're here, finish the current batch. */
1959 if (pg_idx) {
1960 ret = tcp_zerocopy_vm_insert_batch(vma, pages,
1961 pg_idx,
1962 &curr_addr,
1963 &length,
1964 &seq, zc);
1965 if (ret)
1966 goto out;
1967 pg_idx = 0;
1968 }
1969 if (skb) {
1970 if (zc->recv_skip_hint > 0)
1971 break;
1972 skb = skb->next;
1973 offset = seq - TCP_SKB_CB(skb)->seq;
1974 } else {
1975 skb = tcp_recv_skb(sk, seq, &offset);
1976 }
1977 zc->recv_skip_hint = skb->len - offset;
1978 frags = skb_advance_to_frag(skb, offset, &offset_frag);
1979 if (!frags || offset_frag)
1980 break;
1981 }
1982
1983 mappable_offset = find_next_mappable_frag(frags,
1984 zc->recv_skip_hint);
1985 if (mappable_offset) {
1986 zc->recv_skip_hint = mappable_offset;
1987 break;
1988 }
1989 pages[pg_idx] = skb_frag_page(frags);
1990 pg_idx++;
1991 length += PAGE_SIZE;
1992 zc->recv_skip_hint -= PAGE_SIZE;
1993 frags++;
1994 if (pg_idx == PAGE_BATCH_SIZE) {
1995 ret = tcp_zerocopy_vm_insert_batch(vma, pages, pg_idx,
1996 &curr_addr, &length,
1997 &seq, zc);
1998 if (ret)
1999 goto out;
2000 pg_idx = 0;
2001 }
2002 }
2003 if (pg_idx) {
2004 ret = tcp_zerocopy_vm_insert_batch(vma, pages, pg_idx,
2005 &curr_addr, &length, &seq,
2006 zc);
2007 }
2008 out:
2009 mmap_read_unlock(current->mm);
2010 /* Try to copy straggler data. */
2011 if (!ret)
2012 copylen = tcp_zerocopy_handle_leftover_data(zc, sk, skb, &seq,
2013 copybuf_len);
2014
2015 if (length + copylen) {
2016 WRITE_ONCE(tp->copied_seq, seq);
2017 tcp_rcv_space_adjust(sk);
2018
2019 /* Clean up data we have read: This will do ACK frames. */
2020 tcp_recv_skb(sk, seq, &offset);
2021 tcp_cleanup_rbuf(sk, length + copylen);
2022 ret = 0;
2023 if (length == zc->length)
2024 zc->recv_skip_hint = 0;
2025 } else {
2026 if (!zc->recv_skip_hint && sock_flag(sk, SOCK_DONE))
2027 ret = -EIO;
2028 }
2029 zc->length = length;
2030 return ret;
2031 }
2032 #endif
2033
tcp_update_recv_tstamps(struct sk_buff *skb, struct scm_timestamping_internal *tss)2034 static void tcp_update_recv_tstamps(struct sk_buff *skb,
2035 struct scm_timestamping_internal *tss)
2036 {
2037 if (skb->tstamp)
2038 tss->ts[0] = ktime_to_timespec64(skb->tstamp);
2039 else
2040 tss->ts[0] = (struct timespec64) {0};
2041
2042 if (skb_hwtstamps(skb)->hwtstamp)
2043 tss->ts[2] = ktime_to_timespec64(skb_hwtstamps(skb)->hwtstamp);
2044 else
2045 tss->ts[2] = (struct timespec64) {0};
2046 }
2047
2048 /* Similar to __sock_recv_timestamp, but does not require an skb */
tcp_recv_timestamp(struct msghdr *msg, const struct sock *sk, struct scm_timestamping_internal *tss)2049 static void tcp_recv_timestamp(struct msghdr *msg, const struct sock *sk,
2050 struct scm_timestamping_internal *tss)
2051 {
2052 int new_tstamp = sock_flag(sk, SOCK_TSTAMP_NEW);
2053 bool has_timestamping = false;
2054
2055 if (tss->ts[0].tv_sec || tss->ts[0].tv_nsec) {
2056 if (sock_flag(sk, SOCK_RCVTSTAMP)) {
2057 if (sock_flag(sk, SOCK_RCVTSTAMPNS)) {
2058 if (new_tstamp) {
2059 struct __kernel_timespec kts = {
2060 .tv_sec = tss->ts[0].tv_sec,
2061 .tv_nsec = tss->ts[0].tv_nsec,
2062 };
2063 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_NEW,
2064 sizeof(kts), &kts);
2065 } else {
2066 struct __kernel_old_timespec ts_old = {
2067 .tv_sec = tss->ts[0].tv_sec,
2068 .tv_nsec = tss->ts[0].tv_nsec,
2069 };
2070 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_OLD,
2071 sizeof(ts_old), &ts_old);
2072 }
2073 } else {
2074 if (new_tstamp) {
2075 struct __kernel_sock_timeval stv = {
2076 .tv_sec = tss->ts[0].tv_sec,
2077 .tv_usec = tss->ts[0].tv_nsec / 1000,
2078 };
2079 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_NEW,
2080 sizeof(stv), &stv);
2081 } else {
2082 struct __kernel_old_timeval tv = {
2083 .tv_sec = tss->ts[0].tv_sec,
2084 .tv_usec = tss->ts[0].tv_nsec / 1000,
2085 };
2086 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_OLD,
2087 sizeof(tv), &tv);
2088 }
2089 }
2090 }
2091
2092 if (sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE)
2093 has_timestamping = true;
2094 else
2095 tss->ts[0] = (struct timespec64) {0};
2096 }
2097
2098 if (tss->ts[2].tv_sec || tss->ts[2].tv_nsec) {
2099 if (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE)
2100 has_timestamping = true;
2101 else
2102 tss->ts[2] = (struct timespec64) {0};
2103 }
2104
2105 if (has_timestamping) {
2106 tss->ts[1] = (struct timespec64) {0};
2107 if (sock_flag(sk, SOCK_TSTAMP_NEW))
2108 put_cmsg_scm_timestamping64(msg, tss);
2109 else
2110 put_cmsg_scm_timestamping(msg, tss);
2111 }
2112 }
2113
tcp_inq_hint(struct sock *sk)2114 static int tcp_inq_hint(struct sock *sk)
2115 {
2116 const struct tcp_sock *tp = tcp_sk(sk);
2117 u32 copied_seq = READ_ONCE(tp->copied_seq);
2118 u32 rcv_nxt = READ_ONCE(tp->rcv_nxt);
2119 int inq;
2120
2121 inq = rcv_nxt - copied_seq;
2122 if (unlikely(inq < 0 || copied_seq != READ_ONCE(tp->copied_seq))) {
2123 lock_sock(sk);
2124 inq = tp->rcv_nxt - tp->copied_seq;
2125 release_sock(sk);
2126 }
2127 /* After receiving a FIN, tell the user-space to continue reading
2128 * by returning a non-zero inq.
2129 */
2130 if (inq == 0 && sock_flag(sk, SOCK_DONE))
2131 inq = 1;
2132 return inq;
2133 }
2134
2135 /*
2136 * This routine copies from a sock struct into the user buffer.
2137 *
2138 * Technical note: in 2.3 we work on _locked_ socket, so that
2139 * tricks with *seq access order and skb->users are not required.
2140 * Probably, code can be easily improved even more.
2141 */
2142
tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int nonblock, int flags, int *addr_len)2143 int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int nonblock,
2144 int flags, int *addr_len)
2145 {
2146 struct tcp_sock *tp = tcp_sk(sk);
2147 int copied = 0;
2148 u32 peek_seq;
2149 u32 *seq;
2150 unsigned long used;
2151 int err, inq;
2152 int target; /* Read at least this many bytes */
2153 long timeo;
2154 struct sk_buff *skb, *last;
2155 u32 urg_hole = 0;
2156 struct scm_timestamping_internal tss;
2157 int cmsg_flags;
2158
2159 if (unlikely(flags & MSG_ERRQUEUE))
2160 return inet_recv_error(sk, msg, len, addr_len);
2161
2162 if (sk_can_busy_loop(sk) && skb_queue_empty_lockless(&sk->sk_receive_queue) &&
2163 (sk->sk_state == TCP_ESTABLISHED))
2164 sk_busy_loop(sk, nonblock);
2165
2166 lock_sock(sk);
2167
2168 err = -ENOTCONN;
2169 if (sk->sk_state == TCP_LISTEN)
2170 goto out;
2171
2172 cmsg_flags = tp->recvmsg_inq ? 1 : 0;
2173 timeo = sock_rcvtimeo(sk, nonblock);
2174
2175 /* Urgent data needs to be handled specially. */
2176 if (flags & MSG_OOB)
2177 goto recv_urg;
2178
2179 if (unlikely(tp->repair)) {
2180 err = -EPERM;
2181 if (!(flags & MSG_PEEK))
2182 goto out;
2183
2184 if (tp->repair_queue == TCP_SEND_QUEUE)
2185 goto recv_sndq;
2186
2187 err = -EINVAL;
2188 if (tp->repair_queue == TCP_NO_QUEUE)
2189 goto out;
2190
2191 /* 'common' recv queue MSG_PEEK-ing */
2192 }
2193
2194 seq = &tp->copied_seq;
2195 if (flags & MSG_PEEK) {
2196 peek_seq = tp->copied_seq;
2197 seq = &peek_seq;
2198 }
2199
2200 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
2201
2202 do {
2203 u32 offset;
2204
2205 /* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */
2206 if (tp->urg_data && tp->urg_seq == *seq) {
2207 if (copied)
2208 break;
2209 if (signal_pending(current)) {
2210 copied = timeo ? sock_intr_errno(timeo) : -EAGAIN;
2211 break;
2212 }
2213 }
2214
2215 /* Next get a buffer. */
2216
2217 last = skb_peek_tail(&sk->sk_receive_queue);
2218 skb_queue_walk(&sk->sk_receive_queue, skb) {
2219 last = skb;
2220 /* Now that we have two receive queues this
2221 * shouldn't happen.
2222 */
2223 if (WARN(before(*seq, TCP_SKB_CB(skb)->seq),
2224 "TCP recvmsg seq # bug: copied %X, seq %X, rcvnxt %X, fl %X\n",
2225 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt,
2226 flags))
2227 break;
2228
2229 offset = *seq - TCP_SKB_CB(skb)->seq;
2230 if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
2231 pr_err_once("%s: found a SYN, please report !\n", __func__);
2232 offset--;
2233 }
2234 if (offset < skb->len)
2235 goto found_ok_skb;
2236 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
2237 goto found_fin_ok;
2238 WARN(!(flags & MSG_PEEK),
2239 "TCP recvmsg seq # bug 2: copied %X, seq %X, rcvnxt %X, fl %X\n",
2240 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, flags);
2241 }
2242
2243 /* Well, if we have backlog, try to process it now yet. */
2244
2245 if (copied >= target && !READ_ONCE(sk->sk_backlog.tail))
2246 break;
2247
2248 if (copied) {
2249 if (sk->sk_err ||
2250 sk->sk_state == TCP_CLOSE ||
2251 (sk->sk_shutdown & RCV_SHUTDOWN) ||
2252 !timeo ||
2253 signal_pending(current))
2254 break;
2255 } else {
2256 if (sock_flag(sk, SOCK_DONE))
2257 break;
2258
2259 if (sk->sk_err) {
2260 copied = sock_error(sk);
2261 break;
2262 }
2263
2264 if (sk->sk_shutdown & RCV_SHUTDOWN)
2265 break;
2266
2267 if (sk->sk_state == TCP_CLOSE) {
2268 /* This occurs when user tries to read
2269 * from never connected socket.
2270 */
2271 copied = -ENOTCONN;
2272 break;
2273 }
2274
2275 if (!timeo) {
2276 copied = -EAGAIN;
2277 break;
2278 }
2279
2280 if (signal_pending(current)) {
2281 copied = sock_intr_errno(timeo);
2282 break;
2283 }
2284 }
2285
2286 tcp_cleanup_rbuf(sk, copied);
2287
2288 if (copied >= target) {
2289 /* Do not sleep, just process backlog. */
2290 release_sock(sk);
2291 lock_sock(sk);
2292 } else {
2293 sk_wait_data(sk, &timeo, last);
2294 }
2295
2296 if ((flags & MSG_PEEK) &&
2297 (peek_seq - copied - urg_hole != tp->copied_seq)) {
2298 net_dbg_ratelimited("TCP(%s:%d): Application bug, race in MSG_PEEK\n",
2299 current->comm,
2300 task_pid_nr(current));
2301 peek_seq = tp->copied_seq;
2302 }
2303 continue;
2304
2305 found_ok_skb:
2306 /* Ok so how much can we use? */
2307 used = skb->len - offset;
2308 if (len < used)
2309 used = len;
2310
2311 /* Do we have urgent data here? */
2312 if (tp->urg_data) {
2313 u32 urg_offset = tp->urg_seq - *seq;
2314 if (urg_offset < used) {
2315 if (!urg_offset) {
2316 if (!sock_flag(sk, SOCK_URGINLINE)) {
2317 WRITE_ONCE(*seq, *seq + 1);
2318 urg_hole++;
2319 offset++;
2320 used--;
2321 if (!used)
2322 goto skip_copy;
2323 }
2324 } else
2325 used = urg_offset;
2326 }
2327 }
2328
2329 if (!(flags & MSG_TRUNC)) {
2330 err = skb_copy_datagram_msg(skb, offset, msg, used);
2331 if (err) {
2332 /* Exception. Bailout! */
2333 if (!copied)
2334 copied = -EFAULT;
2335 break;
2336 }
2337 }
2338
2339 WRITE_ONCE(*seq, *seq + used);
2340 copied += used;
2341 len -= used;
2342
2343 tcp_rcv_space_adjust(sk);
2344
2345 skip_copy:
2346 if (tp->urg_data && after(tp->copied_seq, tp->urg_seq)) {
2347 tp->urg_data = 0;
2348 tcp_fast_path_check(sk);
2349 }
2350
2351 if (TCP_SKB_CB(skb)->has_rxtstamp) {
2352 tcp_update_recv_tstamps(skb, &tss);
2353 cmsg_flags |= 2;
2354 }
2355
2356 if (used + offset < skb->len)
2357 continue;
2358
2359 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
2360 goto found_fin_ok;
2361 if (!(flags & MSG_PEEK))
2362 sk_eat_skb(sk, skb);
2363 continue;
2364
2365 found_fin_ok:
2366 /* Process the FIN. */
2367 WRITE_ONCE(*seq, *seq + 1);
2368 if (!(flags & MSG_PEEK))
2369 sk_eat_skb(sk, skb);
2370 break;
2371 } while (len > 0);
2372
2373 /* According to UNIX98, msg_name/msg_namelen are ignored
2374 * on connected socket. I was just happy when found this 8) --ANK
2375 */
2376
2377 /* Clean up data we have read: This will do ACK frames. */
2378 tcp_cleanup_rbuf(sk, copied);
2379
2380 release_sock(sk);
2381
2382 if (cmsg_flags) {
2383 if (cmsg_flags & 2)
2384 tcp_recv_timestamp(msg, sk, &tss);
2385 if (cmsg_flags & 1) {
2386 inq = tcp_inq_hint(sk);
2387 put_cmsg(msg, SOL_TCP, TCP_CM_INQ, sizeof(inq), &inq);
2388 }
2389 }
2390
2391 return copied;
2392
2393 out:
2394 release_sock(sk);
2395 return err;
2396
2397 recv_urg:
2398 err = tcp_recv_urg(sk, msg, len, flags);
2399 goto out;
2400
2401 recv_sndq:
2402 err = tcp_peek_sndq(sk, msg, len);
2403 goto out;
2404 }
2405 EXPORT_SYMBOL(tcp_recvmsg);
2406
tcp_set_state(struct sock *sk, int state)2407 void tcp_set_state(struct sock *sk, int state)
2408 {
2409 int oldstate = sk->sk_state;
2410
2411 /* We defined a new enum for TCP states that are exported in BPF
2412 * so as not force the internal TCP states to be frozen. The
2413 * following checks will detect if an internal state value ever
2414 * differs from the BPF value. If this ever happens, then we will
2415 * need to remap the internal value to the BPF value before calling
2416 * tcp_call_bpf_2arg.
2417 */
2418 BUILD_BUG_ON((int)BPF_TCP_ESTABLISHED != (int)TCP_ESTABLISHED);
2419 BUILD_BUG_ON((int)BPF_TCP_SYN_SENT != (int)TCP_SYN_SENT);
2420 BUILD_BUG_ON((int)BPF_TCP_SYN_RECV != (int)TCP_SYN_RECV);
2421 BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT1 != (int)TCP_FIN_WAIT1);
2422 BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT2 != (int)TCP_FIN_WAIT2);
2423 BUILD_BUG_ON((int)BPF_TCP_TIME_WAIT != (int)TCP_TIME_WAIT);
2424 BUILD_BUG_ON((int)BPF_TCP_CLOSE != (int)TCP_CLOSE);
2425 BUILD_BUG_ON((int)BPF_TCP_CLOSE_WAIT != (int)TCP_CLOSE_WAIT);
2426 BUILD_BUG_ON((int)BPF_TCP_LAST_ACK != (int)TCP_LAST_ACK);
2427 BUILD_BUG_ON((int)BPF_TCP_LISTEN != (int)TCP_LISTEN);
2428 BUILD_BUG_ON((int)BPF_TCP_CLOSING != (int)TCP_CLOSING);
2429 BUILD_BUG_ON((int)BPF_TCP_NEW_SYN_RECV != (int)TCP_NEW_SYN_RECV);
2430 BUILD_BUG_ON((int)BPF_TCP_MAX_STATES != (int)TCP_MAX_STATES);
2431
2432 if (BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), BPF_SOCK_OPS_STATE_CB_FLAG))
2433 tcp_call_bpf_2arg(sk, BPF_SOCK_OPS_STATE_CB, oldstate, state);
2434
2435 switch (state) {
2436 case TCP_ESTABLISHED:
2437 if (oldstate != TCP_ESTABLISHED)
2438 TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
2439 break;
2440
2441 case TCP_CLOSE:
2442 if (oldstate == TCP_CLOSE_WAIT || oldstate == TCP_ESTABLISHED)
2443 TCP_INC_STATS(sock_net(sk), TCP_MIB_ESTABRESETS);
2444
2445 sk->sk_prot->unhash(sk);
2446 if (inet_csk(sk)->icsk_bind_hash &&
2447 !(sk->sk_userlocks & SOCK_BINDPORT_LOCK))
2448 inet_put_port(sk);
2449 fallthrough;
2450 default:
2451 if (oldstate == TCP_ESTABLISHED)
2452 TCP_DEC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
2453 }
2454
2455 /* Change state AFTER socket is unhashed to avoid closed
2456 * socket sitting in hash tables.
2457 */
2458 inet_sk_state_store(sk, state);
2459 }
2460 EXPORT_SYMBOL_GPL(tcp_set_state);
2461
2462 /*
2463 * State processing on a close. This implements the state shift for
2464 * sending our FIN frame. Note that we only send a FIN for some
2465 * states. A shutdown() may have already sent the FIN, or we may be
2466 * closed.
2467 */
2468
2469 static const unsigned char new_state[16] = {
2470 /* current state: new state: action: */
2471 [0 /* (Invalid) */] = TCP_CLOSE,
2472 [TCP_ESTABLISHED] = TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2473 [TCP_SYN_SENT] = TCP_CLOSE,
2474 [TCP_SYN_RECV] = TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2475 [TCP_FIN_WAIT1] = TCP_FIN_WAIT1,
2476 [TCP_FIN_WAIT2] = TCP_FIN_WAIT2,
2477 [TCP_TIME_WAIT] = TCP_CLOSE,
2478 [TCP_CLOSE] = TCP_CLOSE,
2479 [TCP_CLOSE_WAIT] = TCP_LAST_ACK | TCP_ACTION_FIN,
2480 [TCP_LAST_ACK] = TCP_LAST_ACK,
2481 [TCP_LISTEN] = TCP_CLOSE,
2482 [TCP_CLOSING] = TCP_CLOSING,
2483 [TCP_NEW_SYN_RECV] = TCP_CLOSE, /* should not happen ! */
2484 };
2485
tcp_close_state(struct sock *sk)2486 static int tcp_close_state(struct sock *sk)
2487 {
2488 int next = (int)new_state[sk->sk_state];
2489 int ns = next & TCP_STATE_MASK;
2490
2491 tcp_set_state(sk, ns);
2492
2493 return next & TCP_ACTION_FIN;
2494 }
2495
2496 /*
2497 * Shutdown the sending side of a connection. Much like close except
2498 * that we don't receive shut down or sock_set_flag(sk, SOCK_DEAD).
2499 */
2500
tcp_shutdown(struct sock *sk, int how)2501 void tcp_shutdown(struct sock *sk, int how)
2502 {
2503 /* We need to grab some memory, and put together a FIN,
2504 * and then put it into the queue to be sent.
2505 * Tim MacKenzie(tym@dibbler.cs.monash.edu.au) 4 Dec '92.
2506 */
2507 if (!(how & SEND_SHUTDOWN))
2508 return;
2509
2510 /* If we've already sent a FIN, or it's a closed state, skip this. */
2511 if ((1 << sk->sk_state) &
2512 (TCPF_ESTABLISHED | TCPF_SYN_SENT |
2513 TCPF_CLOSE_WAIT)) {
2514 /* Clear out any half completed packets. FIN if needed. */
2515 if (tcp_close_state(sk))
2516 tcp_send_fin(sk);
2517 }
2518 }
2519 EXPORT_SYMBOL(tcp_shutdown);
2520
tcp_orphan_count_sum(void)2521 int tcp_orphan_count_sum(void)
2522 {
2523 int i, total = 0;
2524
2525 for_each_possible_cpu(i)
2526 total += per_cpu(tcp_orphan_count, i);
2527
2528 return max(total, 0);
2529 }
2530
2531 static int tcp_orphan_cache;
2532 static struct timer_list tcp_orphan_timer;
2533 #define TCP_ORPHAN_TIMER_PERIOD msecs_to_jiffies(100)
2534
tcp_orphan_update(struct timer_list *unused)2535 static void tcp_orphan_update(struct timer_list *unused)
2536 {
2537 WRITE_ONCE(tcp_orphan_cache, tcp_orphan_count_sum());
2538 mod_timer(&tcp_orphan_timer, jiffies + TCP_ORPHAN_TIMER_PERIOD);
2539 }
2540
tcp_too_many_orphans(int shift)2541 static bool tcp_too_many_orphans(int shift)
2542 {
2543 return READ_ONCE(tcp_orphan_cache) << shift >
2544 READ_ONCE(sysctl_tcp_max_orphans);
2545 }
2546
tcp_check_oom(struct sock *sk, int shift)2547 bool tcp_check_oom(struct sock *sk, int shift)
2548 {
2549 bool too_many_orphans, out_of_socket_memory;
2550
2551 too_many_orphans = tcp_too_many_orphans(shift);
2552 out_of_socket_memory = tcp_out_of_memory(sk);
2553
2554 if (too_many_orphans)
2555 net_info_ratelimited("too many orphaned sockets\n");
2556 if (out_of_socket_memory)
2557 net_info_ratelimited("out of memory -- consider tuning tcp_mem\n");
2558 return too_many_orphans || out_of_socket_memory;
2559 }
2560
__tcp_close(struct sock *sk, long timeout)2561 void __tcp_close(struct sock *sk, long timeout)
2562 {
2563 struct sk_buff *skb;
2564 int data_was_unread = 0;
2565 int state;
2566
2567 WRITE_ONCE(sk->sk_shutdown, SHUTDOWN_MASK);
2568
2569 if (sk->sk_state == TCP_LISTEN) {
2570 tcp_set_state(sk, TCP_CLOSE);
2571
2572 /* Special case. */
2573 inet_csk_listen_stop(sk);
2574
2575 goto adjudge_to_death;
2576 }
2577
2578 /* We need to flush the recv. buffs. We do this only on the
2579 * descriptor close, not protocol-sourced closes, because the
2580 * reader process may not have drained the data yet!
2581 */
2582 while ((skb = __skb_dequeue(&sk->sk_receive_queue)) != NULL) {
2583 u32 len = TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq;
2584
2585 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
2586 len--;
2587 data_was_unread += len;
2588 __kfree_skb(skb);
2589 }
2590
2591 sk_mem_reclaim(sk);
2592
2593 /* If socket has been already reset (e.g. in tcp_reset()) - kill it. */
2594 if (sk->sk_state == TCP_CLOSE)
2595 goto adjudge_to_death;
2596
2597 /* As outlined in RFC 2525, section 2.17, we send a RST here because
2598 * data was lost. To witness the awful effects of the old behavior of
2599 * always doing a FIN, run an older 2.1.x kernel or 2.0.x, start a bulk
2600 * GET in an FTP client, suspend the process, wait for the client to
2601 * advertise a zero window, then kill -9 the FTP client, wheee...
2602 * Note: timeout is always zero in such a case.
2603 */
2604 if (unlikely(tcp_sk(sk)->repair)) {
2605 sk->sk_prot->disconnect(sk, 0);
2606 } else if (data_was_unread) {
2607 /* Unread data was tossed, zap the connection. */
2608 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONCLOSE);
2609 tcp_set_state(sk, TCP_CLOSE);
2610 tcp_send_active_reset(sk, sk->sk_allocation);
2611 } else if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) {
2612 /* Check zero linger _after_ checking for unread data. */
2613 sk->sk_prot->disconnect(sk, 0);
2614 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
2615 } else if (tcp_close_state(sk)) {
2616 /* We FIN if the application ate all the data before
2617 * zapping the connection.
2618 */
2619
2620 /* RED-PEN. Formally speaking, we have broken TCP state
2621 * machine. State transitions:
2622 *
2623 * TCP_ESTABLISHED -> TCP_FIN_WAIT1
2624 * TCP_SYN_RECV -> TCP_FIN_WAIT1 (it is difficult)
2625 * TCP_CLOSE_WAIT -> TCP_LAST_ACK
2626 *
2627 * are legal only when FIN has been sent (i.e. in window),
2628 * rather than queued out of window. Purists blame.
2629 *
2630 * F.e. "RFC state" is ESTABLISHED,
2631 * if Linux state is FIN-WAIT-1, but FIN is still not sent.
2632 *
2633 * The visible declinations are that sometimes
2634 * we enter time-wait state, when it is not required really
2635 * (harmless), do not send active resets, when they are
2636 * required by specs (TCP_ESTABLISHED, TCP_CLOSE_WAIT, when
2637 * they look as CLOSING or LAST_ACK for Linux)
2638 * Probably, I missed some more holelets.
2639 * --ANK
2640 * XXX (TFO) - To start off we don't support SYN+ACK+FIN
2641 * in a single packet! (May consider it later but will
2642 * probably need API support or TCP_CORK SYN-ACK until
2643 * data is written and socket is closed.)
2644 */
2645 tcp_send_fin(sk);
2646 }
2647
2648 sk_stream_wait_close(sk, timeout);
2649
2650 adjudge_to_death:
2651 state = sk->sk_state;
2652 sock_hold(sk);
2653 sock_orphan(sk);
2654
2655 local_bh_disable();
2656 bh_lock_sock(sk);
2657 /* remove backlog if any, without releasing ownership. */
2658 __release_sock(sk);
2659
2660 this_cpu_inc(tcp_orphan_count);
2661
2662 /* Have we already been destroyed by a softirq or backlog? */
2663 if (state != TCP_CLOSE && sk->sk_state == TCP_CLOSE)
2664 goto out;
2665
2666 /* This is a (useful) BSD violating of the RFC. There is a
2667 * problem with TCP as specified in that the other end could
2668 * keep a socket open forever with no application left this end.
2669 * We use a 1 minute timeout (about the same as BSD) then kill
2670 * our end. If they send after that then tough - BUT: long enough
2671 * that we won't make the old 4*rto = almost no time - whoops
2672 * reset mistake.
2673 *
2674 * Nope, it was not mistake. It is really desired behaviour
2675 * f.e. on http servers, when such sockets are useless, but
2676 * consume significant resources. Let's do it with special
2677 * linger2 option. --ANK
2678 */
2679
2680 if (sk->sk_state == TCP_FIN_WAIT2) {
2681 struct tcp_sock *tp = tcp_sk(sk);
2682 if (tp->linger2 < 0) {
2683 tcp_set_state(sk, TCP_CLOSE);
2684 tcp_send_active_reset(sk, GFP_ATOMIC);
2685 __NET_INC_STATS(sock_net(sk),
2686 LINUX_MIB_TCPABORTONLINGER);
2687 } else {
2688 const int tmo = tcp_fin_time(sk);
2689
2690 if (tmo > TCP_TIMEWAIT_LEN) {
2691 inet_csk_reset_keepalive_timer(sk,
2692 tmo - TCP_TIMEWAIT_LEN);
2693 } else {
2694 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
2695 goto out;
2696 }
2697 }
2698 }
2699 if (sk->sk_state != TCP_CLOSE) {
2700 sk_mem_reclaim(sk);
2701 if (tcp_check_oom(sk, 0)) {
2702 tcp_set_state(sk, TCP_CLOSE);
2703 tcp_send_active_reset(sk, GFP_ATOMIC);
2704 __NET_INC_STATS(sock_net(sk),
2705 LINUX_MIB_TCPABORTONMEMORY);
2706 } else if (!check_net(sock_net(sk))) {
2707 /* Not possible to send reset; just close */
2708 tcp_set_state(sk, TCP_CLOSE);
2709 }
2710 }
2711
2712 if (sk->sk_state == TCP_CLOSE) {
2713 struct request_sock *req;
2714
2715 req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk,
2716 lockdep_sock_is_held(sk));
2717 /* We could get here with a non-NULL req if the socket is
2718 * aborted (e.g., closed with unread data) before 3WHS
2719 * finishes.
2720 */
2721 if (req)
2722 reqsk_fastopen_remove(sk, req, false);
2723 inet_csk_destroy_sock(sk);
2724 }
2725 /* Otherwise, socket is reprieved until protocol close. */
2726
2727 out:
2728 bh_unlock_sock(sk);
2729 local_bh_enable();
2730 }
2731
tcp_close(struct sock *sk, long timeout)2732 void tcp_close(struct sock *sk, long timeout)
2733 {
2734 lock_sock(sk);
2735 __tcp_close(sk, timeout);
2736 release_sock(sk);
2737 if (!sk->sk_net_refcnt)
2738 inet_csk_clear_xmit_timers_sync(sk);
2739 sock_put(sk);
2740 }
2741 EXPORT_SYMBOL(tcp_close);
2742
2743 /* These states need RST on ABORT according to RFC793 */
2744
tcp_need_reset(int state)2745 static inline bool tcp_need_reset(int state)
2746 {
2747 return (1 << state) &
2748 (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT | TCPF_FIN_WAIT1 |
2749 TCPF_FIN_WAIT2 | TCPF_SYN_RECV);
2750 }
2751
tcp_rtx_queue_purge(struct sock *sk)2752 static void tcp_rtx_queue_purge(struct sock *sk)
2753 {
2754 struct rb_node *p = rb_first(&sk->tcp_rtx_queue);
2755
2756 tcp_sk(sk)->highest_sack = NULL;
2757 while (p) {
2758 struct sk_buff *skb = rb_to_skb(p);
2759
2760 p = rb_next(p);
2761 /* Since we are deleting whole queue, no need to
2762 * list_del(&skb->tcp_tsorted_anchor)
2763 */
2764 tcp_rtx_queue_unlink(skb, sk);
2765 sk_wmem_free_skb(sk, skb);
2766 }
2767 }
2768
tcp_write_queue_purge(struct sock *sk)2769 void tcp_write_queue_purge(struct sock *sk)
2770 {
2771 struct sk_buff *skb;
2772
2773 tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
2774 while ((skb = __skb_dequeue(&sk->sk_write_queue)) != NULL) {
2775 tcp_skb_tsorted_anchor_cleanup(skb);
2776 sk_wmem_free_skb(sk, skb);
2777 }
2778 tcp_rtx_queue_purge(sk);
2779 skb = sk->sk_tx_skb_cache;
2780 if (skb) {
2781 __kfree_skb(skb);
2782 sk->sk_tx_skb_cache = NULL;
2783 }
2784 INIT_LIST_HEAD(&tcp_sk(sk)->tsorted_sent_queue);
2785 sk_mem_reclaim(sk);
2786 tcp_clear_all_retrans_hints(tcp_sk(sk));
2787 tcp_sk(sk)->packets_out = 0;
2788 inet_csk(sk)->icsk_backoff = 0;
2789 }
2790
tcp_disconnect(struct sock *sk, int flags)2791 int tcp_disconnect(struct sock *sk, int flags)
2792 {
2793 struct inet_sock *inet = inet_sk(sk);
2794 struct inet_connection_sock *icsk = inet_csk(sk);
2795 struct tcp_sock *tp = tcp_sk(sk);
2796 int old_state = sk->sk_state;
2797 u32 seq;
2798
2799 /* Deny disconnect if other threads are blocked in sk_wait_event()
2800 * or inet_wait_for_connect().
2801 */
2802 if (sk->sk_wait_pending)
2803 return -EBUSY;
2804
2805 if (old_state != TCP_CLOSE)
2806 tcp_set_state(sk, TCP_CLOSE);
2807
2808 /* ABORT function of RFC793 */
2809 if (old_state == TCP_LISTEN) {
2810 inet_csk_listen_stop(sk);
2811 } else if (unlikely(tp->repair)) {
2812 sk->sk_err = ECONNABORTED;
2813 } else if (tcp_need_reset(old_state) ||
2814 (tp->snd_nxt != tp->write_seq &&
2815 (1 << old_state) & (TCPF_CLOSING | TCPF_LAST_ACK))) {
2816 /* The last check adjusts for discrepancy of Linux wrt. RFC
2817 * states
2818 */
2819 tcp_send_active_reset(sk, gfp_any());
2820 sk->sk_err = ECONNRESET;
2821 } else if (old_state == TCP_SYN_SENT)
2822 sk->sk_err = ECONNRESET;
2823
2824 tcp_clear_xmit_timers(sk);
2825 __skb_queue_purge(&sk->sk_receive_queue);
2826 if (sk->sk_rx_skb_cache) {
2827 __kfree_skb(sk->sk_rx_skb_cache);
2828 sk->sk_rx_skb_cache = NULL;
2829 }
2830 WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
2831 tp->urg_data = 0;
2832 tcp_write_queue_purge(sk);
2833 tcp_fastopen_active_disable_ofo_check(sk);
2834 skb_rbtree_purge(&tp->out_of_order_queue);
2835
2836 inet->inet_dport = 0;
2837
2838 if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK))
2839 inet_reset_saddr(sk);
2840
2841 WRITE_ONCE(sk->sk_shutdown, 0);
2842 sock_reset_flag(sk, SOCK_DONE);
2843 tp->srtt_us = 0;
2844 tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT);
2845 tp->rcv_rtt_last_tsecr = 0;
2846
2847 seq = tp->write_seq + tp->max_window + 2;
2848 if (!seq)
2849 seq = 1;
2850 WRITE_ONCE(tp->write_seq, seq);
2851
2852 icsk->icsk_backoff = 0;
2853 icsk->icsk_probes_out = 0;
2854 icsk->icsk_probes_tstamp = 0;
2855 icsk->icsk_rto = TCP_TIMEOUT_INIT;
2856 icsk->icsk_rto_min = TCP_RTO_MIN;
2857 icsk->icsk_delack_max = TCP_DELACK_MAX;
2858 #if defined(CONFIG_TCP_NATA_URC) || defined(CONFIG_TCP_NATA_STL)
2859 icsk->nata_retries_enabled = 0;
2860 icsk->nata_retries_type = NATA_NA;
2861 icsk->nata_syn_rto = TCP_TIMEOUT_INIT;
2862 icsk->nata_data_rto = TCP_TIMEOUT_INIT;
2863 icsk->nata_data_retries = 0;
2864 #endif
2865 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
2866 tp->snd_cwnd = TCP_INIT_CWND;
2867 tp->snd_cwnd_cnt = 0;
2868 tp->is_cwnd_limited = 0;
2869 tp->max_packets_out = 0;
2870 tp->window_clamp = 0;
2871 tp->delivered = 0;
2872 tp->delivered_ce = 0;
2873 if (icsk->icsk_ca_ops->release)
2874 icsk->icsk_ca_ops->release(sk);
2875 memset(icsk->icsk_ca_priv, 0, sizeof(icsk->icsk_ca_priv));
2876 icsk->icsk_ca_initialized = 0;
2877 tcp_set_ca_state(sk, TCP_CA_Open);
2878 tp->is_sack_reneg = 0;
2879 tcp_clear_retrans(tp);
2880 tp->total_retrans = 0;
2881 inet_csk_delack_init(sk);
2882 /* Initialize rcv_mss to TCP_MIN_MSS to avoid division by 0
2883 * issue in __tcp_select_window()
2884 */
2885 icsk->icsk_ack.rcv_mss = TCP_MIN_MSS;
2886 memset(&tp->rx_opt, 0, sizeof(tp->rx_opt));
2887 __sk_dst_reset(sk);
2888 dst_release(xchg((__force struct dst_entry **)&sk->sk_rx_dst, NULL));
2889 tcp_saved_syn_free(tp);
2890 tp->compressed_ack = 0;
2891 tp->segs_in = 0;
2892 tp->segs_out = 0;
2893 tp->bytes_sent = 0;
2894 tp->bytes_acked = 0;
2895 tp->bytes_received = 0;
2896 tp->bytes_retrans = 0;
2897 tp->data_segs_in = 0;
2898 tp->data_segs_out = 0;
2899 tp->duplicate_sack[0].start_seq = 0;
2900 tp->duplicate_sack[0].end_seq = 0;
2901 tp->dsack_dups = 0;
2902 tp->reord_seen = 0;
2903 tp->retrans_out = 0;
2904 tp->sacked_out = 0;
2905 tp->tlp_high_seq = 0;
2906 tp->last_oow_ack_time = 0;
2907 /* There's a bubble in the pipe until at least the first ACK. */
2908 tp->app_limited = ~0U;
2909 tp->rate_app_limited = 1;
2910 tp->rack.mstamp = 0;
2911 tp->rack.advanced = 0;
2912 tp->rack.reo_wnd_steps = 1;
2913 tp->rack.last_delivered = 0;
2914 tp->rack.reo_wnd_persist = 0;
2915 tp->rack.dsack_seen = 0;
2916 tp->syn_data_acked = 0;
2917 tp->rx_opt.saw_tstamp = 0;
2918 tp->rx_opt.dsack = 0;
2919 tp->rx_opt.num_sacks = 0;
2920 tp->rcv_ooopack = 0;
2921
2922
2923 /* Clean up fastopen related fields */
2924 tcp_free_fastopen_req(tp);
2925 inet->defer_connect = 0;
2926 tp->fastopen_client_fail = 0;
2927
2928 WARN_ON(inet->inet_num && !icsk->icsk_bind_hash);
2929
2930 if (sk->sk_frag.page) {
2931 put_page(sk->sk_frag.page);
2932 sk->sk_frag.page = NULL;
2933 sk->sk_frag.offset = 0;
2934 }
2935
2936 sk->sk_error_report(sk);
2937 return 0;
2938 }
2939 EXPORT_SYMBOL(tcp_disconnect);
2940
tcp_can_repair_sock(const struct sock *sk)2941 static inline bool tcp_can_repair_sock(const struct sock *sk)
2942 {
2943 return ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN) &&
2944 (sk->sk_state != TCP_LISTEN);
2945 }
2946
tcp_repair_set_window(struct tcp_sock *tp, sockptr_t optbuf, int len)2947 static int tcp_repair_set_window(struct tcp_sock *tp, sockptr_t optbuf, int len)
2948 {
2949 struct tcp_repair_window opt;
2950
2951 if (!tp->repair)
2952 return -EPERM;
2953
2954 if (len != sizeof(opt))
2955 return -EINVAL;
2956
2957 if (copy_from_sockptr(&opt, optbuf, sizeof(opt)))
2958 return -EFAULT;
2959
2960 if (opt.max_window < opt.snd_wnd)
2961 return -EINVAL;
2962
2963 if (after(opt.snd_wl1, tp->rcv_nxt + opt.rcv_wnd))
2964 return -EINVAL;
2965
2966 if (after(opt.rcv_wup, tp->rcv_nxt))
2967 return -EINVAL;
2968
2969 tp->snd_wl1 = opt.snd_wl1;
2970 tp->snd_wnd = opt.snd_wnd;
2971 tp->max_window = opt.max_window;
2972
2973 tp->rcv_wnd = opt.rcv_wnd;
2974 tp->rcv_wup = opt.rcv_wup;
2975
2976 return 0;
2977 }
2978
tcp_repair_options_est(struct sock *sk, sockptr_t optbuf, unsigned int len)2979 static int tcp_repair_options_est(struct sock *sk, sockptr_t optbuf,
2980 unsigned int len)
2981 {
2982 struct tcp_sock *tp = tcp_sk(sk);
2983 struct tcp_repair_opt opt;
2984 size_t offset = 0;
2985
2986 while (len >= sizeof(opt)) {
2987 if (copy_from_sockptr_offset(&opt, optbuf, offset, sizeof(opt)))
2988 return -EFAULT;
2989
2990 offset += sizeof(opt);
2991 len -= sizeof(opt);
2992
2993 switch (opt.opt_code) {
2994 case TCPOPT_MSS:
2995 tp->rx_opt.mss_clamp = opt.opt_val;
2996 tcp_mtup_init(sk);
2997 break;
2998 case TCPOPT_WINDOW:
2999 {
3000 u16 snd_wscale = opt.opt_val & 0xFFFF;
3001 u16 rcv_wscale = opt.opt_val >> 16;
3002
3003 if (snd_wscale > TCP_MAX_WSCALE || rcv_wscale > TCP_MAX_WSCALE)
3004 return -EFBIG;
3005
3006 tp->rx_opt.snd_wscale = snd_wscale;
3007 tp->rx_opt.rcv_wscale = rcv_wscale;
3008 tp->rx_opt.wscale_ok = 1;
3009 }
3010 break;
3011 case TCPOPT_SACK_PERM:
3012 if (opt.opt_val != 0)
3013 return -EINVAL;
3014
3015 tp->rx_opt.sack_ok |= TCP_SACK_SEEN;
3016 break;
3017 case TCPOPT_TIMESTAMP:
3018 if (opt.opt_val != 0)
3019 return -EINVAL;
3020
3021 tp->rx_opt.tstamp_ok = 1;
3022 break;
3023 }
3024 }
3025
3026 return 0;
3027 }
3028
3029 DEFINE_STATIC_KEY_FALSE(tcp_tx_delay_enabled);
3030 EXPORT_SYMBOL(tcp_tx_delay_enabled);
3031
tcp_enable_tx_delay(void)3032 static void tcp_enable_tx_delay(void)
3033 {
3034 if (!static_branch_unlikely(&tcp_tx_delay_enabled)) {
3035 static int __tcp_tx_delay_enabled = 0;
3036
3037 if (cmpxchg(&__tcp_tx_delay_enabled, 0, 1) == 0) {
3038 static_branch_enable(&tcp_tx_delay_enabled);
3039 pr_info("TCP_TX_DELAY enabled\n");
3040 }
3041 }
3042 }
3043
3044 /* When set indicates to always queue non-full frames. Later the user clears
3045 * this option and we transmit any pending partial frames in the queue. This is
3046 * meant to be used alongside sendfile() to get properly filled frames when the
3047 * user (for example) must write out headers with a write() call first and then
3048 * use sendfile to send out the data parts.
3049 *
3050 * TCP_CORK can be set together with TCP_NODELAY and it is stronger than
3051 * TCP_NODELAY.
3052 */
__tcp_sock_set_cork(struct sock *sk, bool on)3053 static void __tcp_sock_set_cork(struct sock *sk, bool on)
3054 {
3055 struct tcp_sock *tp = tcp_sk(sk);
3056
3057 if (on) {
3058 tp->nonagle |= TCP_NAGLE_CORK;
3059 } else {
3060 tp->nonagle &= ~TCP_NAGLE_CORK;
3061 if (tp->nonagle & TCP_NAGLE_OFF)
3062 tp->nonagle |= TCP_NAGLE_PUSH;
3063 tcp_push_pending_frames(sk);
3064 }
3065 }
3066
tcp_sock_set_cork(struct sock *sk, bool on)3067 void tcp_sock_set_cork(struct sock *sk, bool on)
3068 {
3069 lock_sock(sk);
3070 __tcp_sock_set_cork(sk, on);
3071 release_sock(sk);
3072 }
3073 EXPORT_SYMBOL(tcp_sock_set_cork);
3074
3075 /* TCP_NODELAY is weaker than TCP_CORK, so that this option on corked socket is
3076 * remembered, but it is not activated until cork is cleared.
3077 *
3078 * However, when TCP_NODELAY is set we make an explicit push, which overrides
3079 * even TCP_CORK for currently queued segments.
3080 */
__tcp_sock_set_nodelay(struct sock *sk, bool on)3081 static void __tcp_sock_set_nodelay(struct sock *sk, bool on)
3082 {
3083 if (on) {
3084 tcp_sk(sk)->nonagle |= TCP_NAGLE_OFF|TCP_NAGLE_PUSH;
3085 tcp_push_pending_frames(sk);
3086 } else {
3087 tcp_sk(sk)->nonagle &= ~TCP_NAGLE_OFF;
3088 }
3089 }
3090
tcp_sock_set_nodelay(struct sock *sk)3091 void tcp_sock_set_nodelay(struct sock *sk)
3092 {
3093 lock_sock(sk);
3094 __tcp_sock_set_nodelay(sk, true);
3095 release_sock(sk);
3096 }
3097 EXPORT_SYMBOL(tcp_sock_set_nodelay);
3098
__tcp_sock_set_quickack(struct sock *sk, int val)3099 static void __tcp_sock_set_quickack(struct sock *sk, int val)
3100 {
3101 if (!val) {
3102 inet_csk_enter_pingpong_mode(sk);
3103 return;
3104 }
3105
3106 inet_csk_exit_pingpong_mode(sk);
3107 if ((1 << sk->sk_state) & (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT) &&
3108 inet_csk_ack_scheduled(sk)) {
3109 inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_PUSHED;
3110 tcp_cleanup_rbuf(sk, 1);
3111 if (!(val & 1))
3112 inet_csk_enter_pingpong_mode(sk);
3113 }
3114 }
3115
tcp_sock_set_quickack(struct sock *sk, int val)3116 void tcp_sock_set_quickack(struct sock *sk, int val)
3117 {
3118 lock_sock(sk);
3119 __tcp_sock_set_quickack(sk, val);
3120 release_sock(sk);
3121 }
3122 EXPORT_SYMBOL(tcp_sock_set_quickack);
3123
tcp_sock_set_syncnt(struct sock *sk, int val)3124 int tcp_sock_set_syncnt(struct sock *sk, int val)
3125 {
3126 if (val < 1 || val > MAX_TCP_SYNCNT)
3127 return -EINVAL;
3128
3129 lock_sock(sk);
3130 WRITE_ONCE(inet_csk(sk)->icsk_syn_retries, val);
3131 release_sock(sk);
3132 return 0;
3133 }
3134 EXPORT_SYMBOL(tcp_sock_set_syncnt);
3135
tcp_sock_set_user_timeout(struct sock *sk, u32 val)3136 void tcp_sock_set_user_timeout(struct sock *sk, u32 val)
3137 {
3138 lock_sock(sk);
3139 WRITE_ONCE(inet_csk(sk)->icsk_user_timeout, val);
3140 release_sock(sk);
3141 }
3142 EXPORT_SYMBOL(tcp_sock_set_user_timeout);
3143
tcp_sock_set_keepidle_locked(struct sock *sk, int val)3144 int tcp_sock_set_keepidle_locked(struct sock *sk, int val)
3145 {
3146 struct tcp_sock *tp = tcp_sk(sk);
3147
3148 if (val < 1 || val > MAX_TCP_KEEPIDLE)
3149 return -EINVAL;
3150
3151 /* Paired with WRITE_ONCE() in keepalive_time_when() */
3152 WRITE_ONCE(tp->keepalive_time, val * HZ);
3153 if (sock_flag(sk, SOCK_KEEPOPEN) &&
3154 !((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) {
3155 u32 elapsed = keepalive_time_elapsed(tp);
3156
3157 if (tp->keepalive_time > elapsed)
3158 elapsed = tp->keepalive_time - elapsed;
3159 else
3160 elapsed = 0;
3161 inet_csk_reset_keepalive_timer(sk, elapsed);
3162 }
3163
3164 return 0;
3165 }
3166
tcp_sock_set_keepidle(struct sock *sk, int val)3167 int tcp_sock_set_keepidle(struct sock *sk, int val)
3168 {
3169 int err;
3170
3171 lock_sock(sk);
3172 err = tcp_sock_set_keepidle_locked(sk, val);
3173 release_sock(sk);
3174 return err;
3175 }
3176 EXPORT_SYMBOL(tcp_sock_set_keepidle);
3177
tcp_sock_set_keepintvl(struct sock *sk, int val)3178 int tcp_sock_set_keepintvl(struct sock *sk, int val)
3179 {
3180 if (val < 1 || val > MAX_TCP_KEEPINTVL)
3181 return -EINVAL;
3182
3183 lock_sock(sk);
3184 WRITE_ONCE(tcp_sk(sk)->keepalive_intvl, val * HZ);
3185 release_sock(sk);
3186 return 0;
3187 }
3188 EXPORT_SYMBOL(tcp_sock_set_keepintvl);
3189
tcp_sock_set_keepcnt(struct sock *sk, int val)3190 int tcp_sock_set_keepcnt(struct sock *sk, int val)
3191 {
3192 if (val < 1 || val > MAX_TCP_KEEPCNT)
3193 return -EINVAL;
3194
3195 lock_sock(sk);
3196 /* Paired with READ_ONCE() in keepalive_probes() */
3197 WRITE_ONCE(tcp_sk(sk)->keepalive_probes, val);
3198 release_sock(sk);
3199 return 0;
3200 }
3201 EXPORT_SYMBOL(tcp_sock_set_keepcnt);
3202
3203 /*
3204 * Socket option code for TCP.
3205 */
do_tcp_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval, unsigned int optlen)3206 static int do_tcp_setsockopt(struct sock *sk, int level, int optname,
3207 sockptr_t optval, unsigned int optlen)
3208 {
3209 struct tcp_sock *tp = tcp_sk(sk);
3210 struct inet_connection_sock *icsk = inet_csk(sk);
3211 struct net *net = sock_net(sk);
3212 int val;
3213 int err = 0;
3214
3215 /* These are data/string values, all the others are ints */
3216 switch (optname) {
3217 case TCP_CONGESTION: {
3218 char name[TCP_CA_NAME_MAX];
3219
3220 if (optlen < 1)
3221 return -EINVAL;
3222
3223 val = strncpy_from_sockptr(name, optval,
3224 min_t(long, TCP_CA_NAME_MAX-1, optlen));
3225 if (val < 0)
3226 return -EFAULT;
3227 name[val] = 0;
3228
3229 lock_sock(sk);
3230 err = tcp_set_congestion_control(sk, name, true,
3231 ns_capable(sock_net(sk)->user_ns,
3232 CAP_NET_ADMIN));
3233 release_sock(sk);
3234 return err;
3235 }
3236 case TCP_ULP: {
3237 char name[TCP_ULP_NAME_MAX];
3238
3239 if (optlen < 1)
3240 return -EINVAL;
3241
3242 val = strncpy_from_sockptr(name, optval,
3243 min_t(long, TCP_ULP_NAME_MAX - 1,
3244 optlen));
3245 if (val < 0)
3246 return -EFAULT;
3247 name[val] = 0;
3248
3249 lock_sock(sk);
3250 err = tcp_set_ulp(sk, name);
3251 release_sock(sk);
3252 return err;
3253 }
3254 case TCP_FASTOPEN_KEY: {
3255 __u8 key[TCP_FASTOPEN_KEY_BUF_LENGTH];
3256 __u8 *backup_key = NULL;
3257
3258 /* Allow a backup key as well to facilitate key rotation
3259 * First key is the active one.
3260 */
3261 if (optlen != TCP_FASTOPEN_KEY_LENGTH &&
3262 optlen != TCP_FASTOPEN_KEY_BUF_LENGTH)
3263 return -EINVAL;
3264
3265 if (copy_from_sockptr(key, optval, optlen))
3266 return -EFAULT;
3267
3268 if (optlen == TCP_FASTOPEN_KEY_BUF_LENGTH)
3269 backup_key = key + TCP_FASTOPEN_KEY_LENGTH;
3270
3271 return tcp_fastopen_reset_cipher(net, sk, key, backup_key);
3272 }
3273 default:
3274 /* fallthru */
3275 break;
3276 }
3277
3278 if (optlen < sizeof(int))
3279 return -EINVAL;
3280
3281 if (copy_from_sockptr(&val, optval, sizeof(val)))
3282 return -EFAULT;
3283
3284 lock_sock(sk);
3285
3286 switch (optname) {
3287 case TCP_MAXSEG:
3288 /* Values greater than interface MTU won't take effect. However
3289 * at the point when this call is done we typically don't yet
3290 * know which interface is going to be used
3291 */
3292 if (val && (val < TCP_MIN_MSS || val > MAX_TCP_WINDOW)) {
3293 err = -EINVAL;
3294 break;
3295 }
3296 tp->rx_opt.user_mss = val;
3297 break;
3298
3299 case TCP_NODELAY:
3300 __tcp_sock_set_nodelay(sk, val);
3301 break;
3302
3303 case TCP_THIN_LINEAR_TIMEOUTS:
3304 if (val < 0 || val > 1)
3305 err = -EINVAL;
3306 else
3307 tp->thin_lto = val;
3308 break;
3309
3310 case TCP_THIN_DUPACK:
3311 if (val < 0 || val > 1)
3312 err = -EINVAL;
3313 break;
3314
3315 case TCP_REPAIR:
3316 if (!tcp_can_repair_sock(sk))
3317 err = -EPERM;
3318 else if (val == TCP_REPAIR_ON) {
3319 tp->repair = 1;
3320 sk->sk_reuse = SK_FORCE_REUSE;
3321 tp->repair_queue = TCP_NO_QUEUE;
3322 } else if (val == TCP_REPAIR_OFF) {
3323 tp->repair = 0;
3324 sk->sk_reuse = SK_NO_REUSE;
3325 tcp_send_window_probe(sk);
3326 } else if (val == TCP_REPAIR_OFF_NO_WP) {
3327 tp->repair = 0;
3328 sk->sk_reuse = SK_NO_REUSE;
3329 } else
3330 err = -EINVAL;
3331
3332 break;
3333
3334 case TCP_REPAIR_QUEUE:
3335 if (!tp->repair)
3336 err = -EPERM;
3337 else if ((unsigned int)val < TCP_QUEUES_NR)
3338 tp->repair_queue = val;
3339 else
3340 err = -EINVAL;
3341 break;
3342
3343 case TCP_QUEUE_SEQ:
3344 if (sk->sk_state != TCP_CLOSE) {
3345 err = -EPERM;
3346 } else if (tp->repair_queue == TCP_SEND_QUEUE) {
3347 if (!tcp_rtx_queue_empty(sk))
3348 err = -EPERM;
3349 else
3350 WRITE_ONCE(tp->write_seq, val);
3351 } else if (tp->repair_queue == TCP_RECV_QUEUE) {
3352 if (tp->rcv_nxt != tp->copied_seq) {
3353 err = -EPERM;
3354 } else {
3355 WRITE_ONCE(tp->rcv_nxt, val);
3356 WRITE_ONCE(tp->copied_seq, val);
3357 }
3358 } else {
3359 err = -EINVAL;
3360 }
3361 break;
3362
3363 case TCP_REPAIR_OPTIONS:
3364 if (!tp->repair)
3365 err = -EINVAL;
3366 else if (sk->sk_state == TCP_ESTABLISHED && !tp->bytes_sent)
3367 err = tcp_repair_options_est(sk, optval, optlen);
3368 else
3369 err = -EPERM;
3370 break;
3371
3372 case TCP_CORK:
3373 __tcp_sock_set_cork(sk, val);
3374 break;
3375
3376 case TCP_KEEPIDLE:
3377 err = tcp_sock_set_keepidle_locked(sk, val);
3378 break;
3379 case TCP_KEEPINTVL:
3380 if (val < 1 || val > MAX_TCP_KEEPINTVL)
3381 err = -EINVAL;
3382 else
3383 WRITE_ONCE(tp->keepalive_intvl, val * HZ);
3384 break;
3385 case TCP_KEEPCNT:
3386 if (val < 1 || val > MAX_TCP_KEEPCNT)
3387 err = -EINVAL;
3388 else
3389 WRITE_ONCE(tp->keepalive_probes, val);
3390 break;
3391 case TCP_SYNCNT:
3392 if (val < 1 || val > MAX_TCP_SYNCNT)
3393 err = -EINVAL;
3394 else
3395 WRITE_ONCE(icsk->icsk_syn_retries, val);
3396 break;
3397
3398 case TCP_SAVE_SYN:
3399 /* 0: disable, 1: enable, 2: start from ether_header */
3400 if (val < 0 || val > 2)
3401 err = -EINVAL;
3402 else
3403 tp->save_syn = val;
3404 break;
3405
3406 case TCP_LINGER2:
3407 if (val < 0)
3408 WRITE_ONCE(tp->linger2, -1);
3409 else if (val > TCP_FIN_TIMEOUT_MAX / HZ)
3410 WRITE_ONCE(tp->linger2, TCP_FIN_TIMEOUT_MAX);
3411 else
3412 WRITE_ONCE(tp->linger2, val * HZ);
3413 break;
3414
3415 case TCP_DEFER_ACCEPT:
3416 /* Translate value in seconds to number of retransmits */
3417 WRITE_ONCE(icsk->icsk_accept_queue.rskq_defer_accept,
3418 secs_to_retrans(val, TCP_TIMEOUT_INIT / HZ,
3419 TCP_RTO_MAX / HZ));
3420 break;
3421
3422 case TCP_WINDOW_CLAMP:
3423 if (!val) {
3424 if (sk->sk_state != TCP_CLOSE) {
3425 err = -EINVAL;
3426 break;
3427 }
3428 tp->window_clamp = 0;
3429 } else
3430 tp->window_clamp = val < SOCK_MIN_RCVBUF / 2 ?
3431 SOCK_MIN_RCVBUF / 2 : val;
3432 break;
3433
3434 case TCP_QUICKACK:
3435 __tcp_sock_set_quickack(sk, val);
3436 break;
3437
3438 #ifdef CONFIG_TCP_MD5SIG
3439 case TCP_MD5SIG:
3440 case TCP_MD5SIG_EXT:
3441 err = tp->af_specific->md5_parse(sk, optname, optval, optlen);
3442 break;
3443 #endif
3444 case TCP_USER_TIMEOUT:
3445 /* Cap the max time in ms TCP will retry or probe the window
3446 * before giving up and aborting (ETIMEDOUT) a connection.
3447 */
3448 if (val < 0)
3449 err = -EINVAL;
3450 else
3451 WRITE_ONCE(icsk->icsk_user_timeout, val);
3452 break;
3453
3454 case TCP_FASTOPEN:
3455 if (val >= 0 && ((1 << sk->sk_state) & (TCPF_CLOSE |
3456 TCPF_LISTEN))) {
3457 tcp_fastopen_init_key_once(net);
3458
3459 fastopen_queue_tune(sk, val);
3460 } else {
3461 err = -EINVAL;
3462 }
3463 break;
3464 case TCP_FASTOPEN_CONNECT:
3465 if (val > 1 || val < 0) {
3466 err = -EINVAL;
3467 } else if (READ_ONCE(net->ipv4.sysctl_tcp_fastopen) &
3468 TFO_CLIENT_ENABLE) {
3469 if (sk->sk_state == TCP_CLOSE)
3470 tp->fastopen_connect = val;
3471 else
3472 err = -EINVAL;
3473 } else {
3474 err = -EOPNOTSUPP;
3475 }
3476 break;
3477 case TCP_FASTOPEN_NO_COOKIE:
3478 if (val > 1 || val < 0)
3479 err = -EINVAL;
3480 else if (!((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
3481 err = -EINVAL;
3482 else
3483 tp->fastopen_no_cookie = val;
3484 break;
3485 case TCP_TIMESTAMP:
3486 if (!tp->repair)
3487 err = -EPERM;
3488 else
3489 tp->tsoffset = val - tcp_time_stamp_raw();
3490 break;
3491 case TCP_REPAIR_WINDOW:
3492 err = tcp_repair_set_window(tp, optval, optlen);
3493 break;
3494 case TCP_NOTSENT_LOWAT:
3495 WRITE_ONCE(tp->notsent_lowat, val);
3496 sk->sk_write_space(sk);
3497 break;
3498 case TCP_INQ:
3499 if (val > 1 || val < 0)
3500 err = -EINVAL;
3501 else
3502 tp->recvmsg_inq = val;
3503 break;
3504 case TCP_TX_DELAY:
3505 if (val)
3506 tcp_enable_tx_delay();
3507 WRITE_ONCE(tp->tcp_tx_delay, val);
3508 break;
3509 #ifdef CONFIG_TCP_NATA_URC
3510 case TCP_NATA_URC:
3511 err = tcp_set_nata_urc(sk, optval, optlen);
3512 break;
3513 #endif
3514 #ifdef CONFIG_TCP_NATA_STL
3515 case TCP_NATA_STL:
3516 err = tcp_set_nata_stl(sk, optval, optlen);
3517 break;
3518 #endif
3519 default:
3520 err = -ENOPROTOOPT;
3521 break;
3522 }
3523
3524 release_sock(sk);
3525 return err;
3526 }
3527
tcp_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval, unsigned int optlen)3528 int tcp_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval,
3529 unsigned int optlen)
3530 {
3531 const struct inet_connection_sock *icsk = inet_csk(sk);
3532
3533 if (level != SOL_TCP)
3534 /* Paired with WRITE_ONCE() in do_ipv6_setsockopt() and tcp_v6_connect() */
3535 return READ_ONCE(icsk->icsk_af_ops)->setsockopt(sk, level, optname,
3536 optval, optlen);
3537 return do_tcp_setsockopt(sk, level, optname, optval, optlen);
3538 }
3539 EXPORT_SYMBOL(tcp_setsockopt);
3540
tcp_get_info_chrono_stats(const struct tcp_sock *tp, struct tcp_info *info)3541 static void tcp_get_info_chrono_stats(const struct tcp_sock *tp,
3542 struct tcp_info *info)
3543 {
3544 u64 stats[__TCP_CHRONO_MAX], total = 0;
3545 enum tcp_chrono i;
3546
3547 for (i = TCP_CHRONO_BUSY; i < __TCP_CHRONO_MAX; ++i) {
3548 stats[i] = tp->chrono_stat[i - 1];
3549 if (i == tp->chrono_type)
3550 stats[i] += tcp_jiffies32 - tp->chrono_start;
3551 stats[i] *= USEC_PER_SEC / HZ;
3552 total += stats[i];
3553 }
3554
3555 info->tcpi_busy_time = total;
3556 info->tcpi_rwnd_limited = stats[TCP_CHRONO_RWND_LIMITED];
3557 info->tcpi_sndbuf_limited = stats[TCP_CHRONO_SNDBUF_LIMITED];
3558 }
3559
3560 /* Return information about state of tcp endpoint in API format. */
tcp_get_info(struct sock *sk, struct tcp_info *info)3561 void tcp_get_info(struct sock *sk, struct tcp_info *info)
3562 {
3563 const struct tcp_sock *tp = tcp_sk(sk); /* iff sk_type == SOCK_STREAM */
3564 const struct inet_connection_sock *icsk = inet_csk(sk);
3565 unsigned long rate;
3566 u32 now;
3567 u64 rate64;
3568 bool slow;
3569
3570 memset(info, 0, sizeof(*info));
3571 if (sk->sk_type != SOCK_STREAM)
3572 return;
3573
3574 info->tcpi_state = inet_sk_state_load(sk);
3575
3576 /* Report meaningful fields for all TCP states, including listeners */
3577 rate = READ_ONCE(sk->sk_pacing_rate);
3578 rate64 = (rate != ~0UL) ? rate : ~0ULL;
3579 info->tcpi_pacing_rate = rate64;
3580
3581 rate = READ_ONCE(sk->sk_max_pacing_rate);
3582 rate64 = (rate != ~0UL) ? rate : ~0ULL;
3583 info->tcpi_max_pacing_rate = rate64;
3584
3585 info->tcpi_reordering = tp->reordering;
3586 info->tcpi_snd_cwnd = tp->snd_cwnd;
3587
3588 if (info->tcpi_state == TCP_LISTEN) {
3589 /* listeners aliased fields :
3590 * tcpi_unacked -> Number of children ready for accept()
3591 * tcpi_sacked -> max backlog
3592 */
3593 info->tcpi_unacked = READ_ONCE(sk->sk_ack_backlog);
3594 info->tcpi_sacked = READ_ONCE(sk->sk_max_ack_backlog);
3595 return;
3596 }
3597
3598 slow = lock_sock_fast(sk);
3599
3600 info->tcpi_ca_state = icsk->icsk_ca_state;
3601 info->tcpi_retransmits = icsk->icsk_retransmits;
3602 info->tcpi_probes = icsk->icsk_probes_out;
3603 info->tcpi_backoff = icsk->icsk_backoff;
3604
3605 if (tp->rx_opt.tstamp_ok)
3606 info->tcpi_options |= TCPI_OPT_TIMESTAMPS;
3607 if (tcp_is_sack(tp))
3608 info->tcpi_options |= TCPI_OPT_SACK;
3609 if (tp->rx_opt.wscale_ok) {
3610 info->tcpi_options |= TCPI_OPT_WSCALE;
3611 info->tcpi_snd_wscale = tp->rx_opt.snd_wscale;
3612 info->tcpi_rcv_wscale = tp->rx_opt.rcv_wscale;
3613 }
3614
3615 if (tp->ecn_flags & TCP_ECN_OK)
3616 info->tcpi_options |= TCPI_OPT_ECN;
3617 if (tp->ecn_flags & TCP_ECN_SEEN)
3618 info->tcpi_options |= TCPI_OPT_ECN_SEEN;
3619 if (tp->syn_data_acked)
3620 info->tcpi_options |= TCPI_OPT_SYN_DATA;
3621
3622 info->tcpi_rto = jiffies_to_usecs(icsk->icsk_rto);
3623 info->tcpi_ato = jiffies_to_usecs(icsk->icsk_ack.ato);
3624 info->tcpi_snd_mss = tp->mss_cache;
3625 info->tcpi_rcv_mss = icsk->icsk_ack.rcv_mss;
3626
3627 info->tcpi_unacked = tp->packets_out;
3628 info->tcpi_sacked = tp->sacked_out;
3629
3630 info->tcpi_lost = tp->lost_out;
3631 info->tcpi_retrans = tp->retrans_out;
3632
3633 now = tcp_jiffies32;
3634 info->tcpi_last_data_sent = jiffies_to_msecs(now - tp->lsndtime);
3635 info->tcpi_last_data_recv = jiffies_to_msecs(now - icsk->icsk_ack.lrcvtime);
3636 info->tcpi_last_ack_recv = jiffies_to_msecs(now - tp->rcv_tstamp);
3637
3638 info->tcpi_pmtu = icsk->icsk_pmtu_cookie;
3639 info->tcpi_rcv_ssthresh = tp->rcv_ssthresh;
3640 info->tcpi_rtt = tp->srtt_us >> 3;
3641 info->tcpi_rttvar = tp->mdev_us >> 2;
3642 info->tcpi_snd_ssthresh = tp->snd_ssthresh;
3643 info->tcpi_advmss = tp->advmss;
3644
3645 info->tcpi_rcv_rtt = tp->rcv_rtt_est.rtt_us >> 3;
3646 info->tcpi_rcv_space = tp->rcvq_space.space;
3647
3648 info->tcpi_total_retrans = tp->total_retrans;
3649
3650 info->tcpi_bytes_acked = tp->bytes_acked;
3651 info->tcpi_bytes_received = tp->bytes_received;
3652 info->tcpi_notsent_bytes = max_t(int, 0, tp->write_seq - tp->snd_nxt);
3653 tcp_get_info_chrono_stats(tp, info);
3654
3655 info->tcpi_segs_out = tp->segs_out;
3656 info->tcpi_segs_in = tp->segs_in;
3657
3658 info->tcpi_min_rtt = tcp_min_rtt(tp);
3659 info->tcpi_data_segs_in = tp->data_segs_in;
3660 info->tcpi_data_segs_out = tp->data_segs_out;
3661
3662 info->tcpi_delivery_rate_app_limited = tp->rate_app_limited ? 1 : 0;
3663 rate64 = tcp_compute_delivery_rate(tp);
3664 if (rate64)
3665 info->tcpi_delivery_rate = rate64;
3666 info->tcpi_delivered = tp->delivered;
3667 info->tcpi_delivered_ce = tp->delivered_ce;
3668 info->tcpi_bytes_sent = tp->bytes_sent;
3669 info->tcpi_bytes_retrans = tp->bytes_retrans;
3670 info->tcpi_dsack_dups = tp->dsack_dups;
3671 info->tcpi_reord_seen = tp->reord_seen;
3672 info->tcpi_rcv_ooopack = tp->rcv_ooopack;
3673 info->tcpi_snd_wnd = tp->snd_wnd;
3674 info->tcpi_fastopen_client_fail = tp->fastopen_client_fail;
3675 unlock_sock_fast(sk, slow);
3676 }
3677 EXPORT_SYMBOL_GPL(tcp_get_info);
3678
tcp_opt_stats_get_size(void)3679 static size_t tcp_opt_stats_get_size(void)
3680 {
3681 return
3682 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BUSY */
3683 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_RWND_LIMITED */
3684 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_SNDBUF_LIMITED */
3685 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_DATA_SEGS_OUT */
3686 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_TOTAL_RETRANS */
3687 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_PACING_RATE */
3688 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_DELIVERY_RATE */
3689 nla_total_size(sizeof(u32)) + /* TCP_NLA_SND_CWND */
3690 nla_total_size(sizeof(u32)) + /* TCP_NLA_REORDERING */
3691 nla_total_size(sizeof(u32)) + /* TCP_NLA_MIN_RTT */
3692 nla_total_size(sizeof(u8)) + /* TCP_NLA_RECUR_RETRANS */
3693 nla_total_size(sizeof(u8)) + /* TCP_NLA_DELIVERY_RATE_APP_LMT */
3694 nla_total_size(sizeof(u32)) + /* TCP_NLA_SNDQ_SIZE */
3695 nla_total_size(sizeof(u8)) + /* TCP_NLA_CA_STATE */
3696 nla_total_size(sizeof(u32)) + /* TCP_NLA_SND_SSTHRESH */
3697 nla_total_size(sizeof(u32)) + /* TCP_NLA_DELIVERED */
3698 nla_total_size(sizeof(u32)) + /* TCP_NLA_DELIVERED_CE */
3699 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BYTES_SENT */
3700 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BYTES_RETRANS */
3701 nla_total_size(sizeof(u32)) + /* TCP_NLA_DSACK_DUPS */
3702 nla_total_size(sizeof(u32)) + /* TCP_NLA_REORD_SEEN */
3703 nla_total_size(sizeof(u32)) + /* TCP_NLA_SRTT */
3704 nla_total_size(sizeof(u16)) + /* TCP_NLA_TIMEOUT_REHASH */
3705 nla_total_size(sizeof(u32)) + /* TCP_NLA_BYTES_NOTSENT */
3706 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_EDT */
3707 0;
3708 }
3709
tcp_get_timestamping_opt_stats(const struct sock *sk, const struct sk_buff *orig_skb)3710 struct sk_buff *tcp_get_timestamping_opt_stats(const struct sock *sk,
3711 const struct sk_buff *orig_skb)
3712 {
3713 const struct tcp_sock *tp = tcp_sk(sk);
3714 struct sk_buff *stats;
3715 struct tcp_info info;
3716 unsigned long rate;
3717 u64 rate64;
3718
3719 stats = alloc_skb(tcp_opt_stats_get_size(), GFP_ATOMIC);
3720 if (!stats)
3721 return NULL;
3722
3723 tcp_get_info_chrono_stats(tp, &info);
3724 nla_put_u64_64bit(stats, TCP_NLA_BUSY,
3725 info.tcpi_busy_time, TCP_NLA_PAD);
3726 nla_put_u64_64bit(stats, TCP_NLA_RWND_LIMITED,
3727 info.tcpi_rwnd_limited, TCP_NLA_PAD);
3728 nla_put_u64_64bit(stats, TCP_NLA_SNDBUF_LIMITED,
3729 info.tcpi_sndbuf_limited, TCP_NLA_PAD);
3730 nla_put_u64_64bit(stats, TCP_NLA_DATA_SEGS_OUT,
3731 tp->data_segs_out, TCP_NLA_PAD);
3732 nla_put_u64_64bit(stats, TCP_NLA_TOTAL_RETRANS,
3733 tp->total_retrans, TCP_NLA_PAD);
3734
3735 rate = READ_ONCE(sk->sk_pacing_rate);
3736 rate64 = (rate != ~0UL) ? rate : ~0ULL;
3737 nla_put_u64_64bit(stats, TCP_NLA_PACING_RATE, rate64, TCP_NLA_PAD);
3738
3739 rate64 = tcp_compute_delivery_rate(tp);
3740 nla_put_u64_64bit(stats, TCP_NLA_DELIVERY_RATE, rate64, TCP_NLA_PAD);
3741
3742 nla_put_u32(stats, TCP_NLA_SND_CWND, tp->snd_cwnd);
3743 nla_put_u32(stats, TCP_NLA_REORDERING, tp->reordering);
3744 nla_put_u32(stats, TCP_NLA_MIN_RTT, tcp_min_rtt(tp));
3745
3746 nla_put_u8(stats, TCP_NLA_RECUR_RETRANS, inet_csk(sk)->icsk_retransmits);
3747 nla_put_u8(stats, TCP_NLA_DELIVERY_RATE_APP_LMT, !!tp->rate_app_limited);
3748 nla_put_u32(stats, TCP_NLA_SND_SSTHRESH, tp->snd_ssthresh);
3749 nla_put_u32(stats, TCP_NLA_DELIVERED, tp->delivered);
3750 nla_put_u32(stats, TCP_NLA_DELIVERED_CE, tp->delivered_ce);
3751
3752 nla_put_u32(stats, TCP_NLA_SNDQ_SIZE, tp->write_seq - tp->snd_una);
3753 nla_put_u8(stats, TCP_NLA_CA_STATE, inet_csk(sk)->icsk_ca_state);
3754
3755 nla_put_u64_64bit(stats, TCP_NLA_BYTES_SENT, tp->bytes_sent,
3756 TCP_NLA_PAD);
3757 nla_put_u64_64bit(stats, TCP_NLA_BYTES_RETRANS, tp->bytes_retrans,
3758 TCP_NLA_PAD);
3759 nla_put_u32(stats, TCP_NLA_DSACK_DUPS, tp->dsack_dups);
3760 nla_put_u32(stats, TCP_NLA_REORD_SEEN, tp->reord_seen);
3761 nla_put_u32(stats, TCP_NLA_SRTT, tp->srtt_us >> 3);
3762 nla_put_u16(stats, TCP_NLA_TIMEOUT_REHASH, tp->timeout_rehash);
3763 nla_put_u32(stats, TCP_NLA_BYTES_NOTSENT,
3764 max_t(int, 0, tp->write_seq - tp->snd_nxt));
3765 nla_put_u64_64bit(stats, TCP_NLA_EDT, orig_skb->skb_mstamp_ns,
3766 TCP_NLA_PAD);
3767
3768 return stats;
3769 }
3770
do_tcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval, int __user *optlen)3771 static int do_tcp_getsockopt(struct sock *sk, int level,
3772 int optname, char __user *optval, int __user *optlen)
3773 {
3774 struct inet_connection_sock *icsk = inet_csk(sk);
3775 struct tcp_sock *tp = tcp_sk(sk);
3776 struct net *net = sock_net(sk);
3777 int val, len;
3778
3779 if (get_user(len, optlen))
3780 return -EFAULT;
3781
3782 len = min_t(unsigned int, len, sizeof(int));
3783
3784 if (len < 0)
3785 return -EINVAL;
3786
3787 switch (optname) {
3788 case TCP_MAXSEG:
3789 val = tp->mss_cache;
3790 if (tp->rx_opt.user_mss &&
3791 ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
3792 val = tp->rx_opt.user_mss;
3793 if (tp->repair)
3794 val = tp->rx_opt.mss_clamp;
3795 break;
3796 case TCP_NODELAY:
3797 val = !!(tp->nonagle&TCP_NAGLE_OFF);
3798 break;
3799 case TCP_CORK:
3800 val = !!(tp->nonagle&TCP_NAGLE_CORK);
3801 break;
3802 case TCP_KEEPIDLE:
3803 val = keepalive_time_when(tp) / HZ;
3804 break;
3805 case TCP_KEEPINTVL:
3806 val = keepalive_intvl_when(tp) / HZ;
3807 break;
3808 case TCP_KEEPCNT:
3809 val = keepalive_probes(tp);
3810 break;
3811 case TCP_SYNCNT:
3812 val = READ_ONCE(icsk->icsk_syn_retries) ? :
3813 READ_ONCE(net->ipv4.sysctl_tcp_syn_retries);
3814 break;
3815 case TCP_LINGER2:
3816 val = READ_ONCE(tp->linger2);
3817 if (val >= 0)
3818 val = (val ? : READ_ONCE(net->ipv4.sysctl_tcp_fin_timeout)) / HZ;
3819 break;
3820 case TCP_DEFER_ACCEPT:
3821 val = READ_ONCE(icsk->icsk_accept_queue.rskq_defer_accept);
3822 val = retrans_to_secs(val, TCP_TIMEOUT_INIT / HZ,
3823 TCP_RTO_MAX / HZ);
3824 break;
3825 case TCP_WINDOW_CLAMP:
3826 val = tp->window_clamp;
3827 break;
3828 case TCP_INFO: {
3829 struct tcp_info info;
3830
3831 if (get_user(len, optlen))
3832 return -EFAULT;
3833
3834 tcp_get_info(sk, &info);
3835
3836 len = min_t(unsigned int, len, sizeof(info));
3837 if (put_user(len, optlen))
3838 return -EFAULT;
3839 if (copy_to_user(optval, &info, len))
3840 return -EFAULT;
3841 return 0;
3842 }
3843 case TCP_CC_INFO: {
3844 const struct tcp_congestion_ops *ca_ops;
3845 union tcp_cc_info info;
3846 size_t sz = 0;
3847 int attr;
3848
3849 if (get_user(len, optlen))
3850 return -EFAULT;
3851
3852 ca_ops = icsk->icsk_ca_ops;
3853 if (ca_ops && ca_ops->get_info)
3854 sz = ca_ops->get_info(sk, ~0U, &attr, &info);
3855
3856 len = min_t(unsigned int, len, sz);
3857 if (put_user(len, optlen))
3858 return -EFAULT;
3859 if (copy_to_user(optval, &info, len))
3860 return -EFAULT;
3861 return 0;
3862 }
3863 case TCP_QUICKACK:
3864 val = !inet_csk_in_pingpong_mode(sk);
3865 break;
3866
3867 case TCP_CONGESTION:
3868 if (get_user(len, optlen))
3869 return -EFAULT;
3870 len = min_t(unsigned int, len, TCP_CA_NAME_MAX);
3871 if (put_user(len, optlen))
3872 return -EFAULT;
3873 if (copy_to_user(optval, icsk->icsk_ca_ops->name, len))
3874 return -EFAULT;
3875 return 0;
3876
3877 case TCP_ULP:
3878 if (get_user(len, optlen))
3879 return -EFAULT;
3880 len = min_t(unsigned int, len, TCP_ULP_NAME_MAX);
3881 if (!icsk->icsk_ulp_ops) {
3882 if (put_user(0, optlen))
3883 return -EFAULT;
3884 return 0;
3885 }
3886 if (put_user(len, optlen))
3887 return -EFAULT;
3888 if (copy_to_user(optval, icsk->icsk_ulp_ops->name, len))
3889 return -EFAULT;
3890 return 0;
3891
3892 case TCP_FASTOPEN_KEY: {
3893 u64 key[TCP_FASTOPEN_KEY_BUF_LENGTH / sizeof(u64)];
3894 unsigned int key_len;
3895
3896 if (get_user(len, optlen))
3897 return -EFAULT;
3898
3899 key_len = tcp_fastopen_get_cipher(net, icsk, key) *
3900 TCP_FASTOPEN_KEY_LENGTH;
3901 len = min_t(unsigned int, len, key_len);
3902 if (put_user(len, optlen))
3903 return -EFAULT;
3904 if (copy_to_user(optval, key, len))
3905 return -EFAULT;
3906 return 0;
3907 }
3908 case TCP_THIN_LINEAR_TIMEOUTS:
3909 val = tp->thin_lto;
3910 break;
3911
3912 case TCP_THIN_DUPACK:
3913 val = 0;
3914 break;
3915
3916 case TCP_REPAIR:
3917 val = tp->repair;
3918 break;
3919
3920 case TCP_REPAIR_QUEUE:
3921 if (tp->repair)
3922 val = tp->repair_queue;
3923 else
3924 return -EINVAL;
3925 break;
3926
3927 case TCP_REPAIR_WINDOW: {
3928 struct tcp_repair_window opt;
3929
3930 if (get_user(len, optlen))
3931 return -EFAULT;
3932
3933 if (len != sizeof(opt))
3934 return -EINVAL;
3935
3936 if (!tp->repair)
3937 return -EPERM;
3938
3939 opt.snd_wl1 = tp->snd_wl1;
3940 opt.snd_wnd = tp->snd_wnd;
3941 opt.max_window = tp->max_window;
3942 opt.rcv_wnd = tp->rcv_wnd;
3943 opt.rcv_wup = tp->rcv_wup;
3944
3945 if (copy_to_user(optval, &opt, len))
3946 return -EFAULT;
3947 return 0;
3948 }
3949 case TCP_QUEUE_SEQ:
3950 if (tp->repair_queue == TCP_SEND_QUEUE)
3951 val = tp->write_seq;
3952 else if (tp->repair_queue == TCP_RECV_QUEUE)
3953 val = tp->rcv_nxt;
3954 else
3955 return -EINVAL;
3956 break;
3957
3958 case TCP_USER_TIMEOUT:
3959 val = READ_ONCE(icsk->icsk_user_timeout);
3960 break;
3961
3962 case TCP_FASTOPEN:
3963 val = READ_ONCE(icsk->icsk_accept_queue.fastopenq.max_qlen);
3964 break;
3965
3966 case TCP_FASTOPEN_CONNECT:
3967 val = tp->fastopen_connect;
3968 break;
3969
3970 case TCP_FASTOPEN_NO_COOKIE:
3971 val = tp->fastopen_no_cookie;
3972 break;
3973
3974 case TCP_TX_DELAY:
3975 val = READ_ONCE(tp->tcp_tx_delay);
3976 break;
3977
3978 case TCP_TIMESTAMP:
3979 val = tcp_time_stamp_raw() + tp->tsoffset;
3980 break;
3981 case TCP_NOTSENT_LOWAT:
3982 val = READ_ONCE(tp->notsent_lowat);
3983 break;
3984 case TCP_INQ:
3985 val = tp->recvmsg_inq;
3986 break;
3987 case TCP_SAVE_SYN:
3988 val = tp->save_syn;
3989 break;
3990 case TCP_SAVED_SYN: {
3991 if (get_user(len, optlen))
3992 return -EFAULT;
3993
3994 lock_sock(sk);
3995 if (tp->saved_syn) {
3996 if (len < tcp_saved_syn_len(tp->saved_syn)) {
3997 if (put_user(tcp_saved_syn_len(tp->saved_syn),
3998 optlen)) {
3999 release_sock(sk);
4000 return -EFAULT;
4001 }
4002 release_sock(sk);
4003 return -EINVAL;
4004 }
4005 len = tcp_saved_syn_len(tp->saved_syn);
4006 if (put_user(len, optlen)) {
4007 release_sock(sk);
4008 return -EFAULT;
4009 }
4010 if (copy_to_user(optval, tp->saved_syn->data, len)) {
4011 release_sock(sk);
4012 return -EFAULT;
4013 }
4014 tcp_saved_syn_free(tp);
4015 release_sock(sk);
4016 } else {
4017 release_sock(sk);
4018 len = 0;
4019 if (put_user(len, optlen))
4020 return -EFAULT;
4021 }
4022 return 0;
4023 }
4024 #ifdef CONFIG_MMU
4025 case TCP_ZEROCOPY_RECEIVE: {
4026 struct tcp_zerocopy_receive zc = {};
4027 int err;
4028
4029 if (get_user(len, optlen))
4030 return -EFAULT;
4031 if (len < 0 ||
4032 len < offsetofend(struct tcp_zerocopy_receive, length))
4033 return -EINVAL;
4034 if (len > sizeof(zc)) {
4035 len = sizeof(zc);
4036 if (put_user(len, optlen))
4037 return -EFAULT;
4038 }
4039 if (copy_from_user(&zc, optval, len))
4040 return -EFAULT;
4041 lock_sock(sk);
4042 err = tcp_zerocopy_receive(sk, &zc);
4043 err = BPF_CGROUP_RUN_PROG_GETSOCKOPT_KERN(sk, level, optname,
4044 &zc, &len, err);
4045 release_sock(sk);
4046 if (len >= offsetofend(struct tcp_zerocopy_receive, err))
4047 goto zerocopy_rcv_sk_err;
4048 switch (len) {
4049 case offsetofend(struct tcp_zerocopy_receive, err):
4050 goto zerocopy_rcv_sk_err;
4051 case offsetofend(struct tcp_zerocopy_receive, inq):
4052 goto zerocopy_rcv_inq;
4053 case offsetofend(struct tcp_zerocopy_receive, length):
4054 default:
4055 goto zerocopy_rcv_out;
4056 }
4057 zerocopy_rcv_sk_err:
4058 if (!err)
4059 zc.err = sock_error(sk);
4060 zerocopy_rcv_inq:
4061 zc.inq = tcp_inq_hint(sk);
4062 zerocopy_rcv_out:
4063 if (!err && copy_to_user(optval, &zc, len))
4064 err = -EFAULT;
4065 return err;
4066 }
4067 #endif
4068 default:
4069 return -ENOPROTOOPT;
4070 }
4071
4072 if (put_user(len, optlen))
4073 return -EFAULT;
4074 if (copy_to_user(optval, &val, len))
4075 return -EFAULT;
4076 return 0;
4077 }
4078
tcp_bpf_bypass_getsockopt(int level, int optname)4079 bool tcp_bpf_bypass_getsockopt(int level, int optname)
4080 {
4081 /* TCP do_tcp_getsockopt has optimized getsockopt implementation
4082 * to avoid extra socket lock for TCP_ZEROCOPY_RECEIVE.
4083 */
4084 if (level == SOL_TCP && optname == TCP_ZEROCOPY_RECEIVE)
4085 return true;
4086
4087 return false;
4088 }
4089 EXPORT_SYMBOL(tcp_bpf_bypass_getsockopt);
4090
tcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval, int __user *optlen)4091 int tcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval,
4092 int __user *optlen)
4093 {
4094 struct inet_connection_sock *icsk = inet_csk(sk);
4095
4096 if (level != SOL_TCP)
4097 /* Paired with WRITE_ONCE() in do_ipv6_setsockopt() and tcp_v6_connect() */
4098 return READ_ONCE(icsk->icsk_af_ops)->getsockopt(sk, level, optname,
4099 optval, optlen);
4100 return do_tcp_getsockopt(sk, level, optname, optval, optlen);
4101 }
4102 EXPORT_SYMBOL(tcp_getsockopt);
4103
4104 #ifdef CONFIG_TCP_MD5SIG
4105 static DEFINE_PER_CPU(struct tcp_md5sig_pool, tcp_md5sig_pool);
4106 static DEFINE_MUTEX(tcp_md5sig_mutex);
4107 static bool tcp_md5sig_pool_populated = false;
4108
__tcp_alloc_md5sig_pool(void)4109 static void __tcp_alloc_md5sig_pool(void)
4110 {
4111 struct crypto_ahash *hash;
4112 int cpu;
4113
4114 hash = crypto_alloc_ahash("md5", 0, CRYPTO_ALG_ASYNC);
4115 if (IS_ERR(hash))
4116 return;
4117
4118 for_each_possible_cpu(cpu) {
4119 void *scratch = per_cpu(tcp_md5sig_pool, cpu).scratch;
4120 struct ahash_request *req;
4121
4122 if (!scratch) {
4123 scratch = kmalloc_node(sizeof(union tcp_md5sum_block) +
4124 sizeof(struct tcphdr),
4125 GFP_KERNEL,
4126 cpu_to_node(cpu));
4127 if (!scratch)
4128 return;
4129 per_cpu(tcp_md5sig_pool, cpu).scratch = scratch;
4130 }
4131 if (per_cpu(tcp_md5sig_pool, cpu).md5_req)
4132 continue;
4133
4134 req = ahash_request_alloc(hash, GFP_KERNEL);
4135 if (!req)
4136 return;
4137
4138 ahash_request_set_callback(req, 0, NULL, NULL);
4139
4140 per_cpu(tcp_md5sig_pool, cpu).md5_req = req;
4141 }
4142 /* before setting tcp_md5sig_pool_populated, we must commit all writes
4143 * to memory. See smp_rmb() in tcp_get_md5sig_pool()
4144 */
4145 smp_wmb();
4146 /* Paired with READ_ONCE() from tcp_alloc_md5sig_pool()
4147 * and tcp_get_md5sig_pool().
4148 */
4149 WRITE_ONCE(tcp_md5sig_pool_populated, true);
4150 }
4151
tcp_alloc_md5sig_pool(void)4152 bool tcp_alloc_md5sig_pool(void)
4153 {
4154 /* Paired with WRITE_ONCE() from __tcp_alloc_md5sig_pool() */
4155 if (unlikely(!READ_ONCE(tcp_md5sig_pool_populated))) {
4156 mutex_lock(&tcp_md5sig_mutex);
4157
4158 if (!tcp_md5sig_pool_populated) {
4159 __tcp_alloc_md5sig_pool();
4160 if (tcp_md5sig_pool_populated)
4161 static_branch_inc(&tcp_md5_needed);
4162 }
4163
4164 mutex_unlock(&tcp_md5sig_mutex);
4165 }
4166 /* Paired with WRITE_ONCE() from __tcp_alloc_md5sig_pool() */
4167 return READ_ONCE(tcp_md5sig_pool_populated);
4168 }
4169 EXPORT_SYMBOL(tcp_alloc_md5sig_pool);
4170
4171
4172 /**
4173 * tcp_get_md5sig_pool - get md5sig_pool for this user
4174 *
4175 * We use percpu structure, so if we succeed, we exit with preemption
4176 * and BH disabled, to make sure another thread or softirq handling
4177 * wont try to get same context.
4178 */
tcp_get_md5sig_pool(void)4179 struct tcp_md5sig_pool *tcp_get_md5sig_pool(void)
4180 {
4181 local_bh_disable();
4182
4183 /* Paired with WRITE_ONCE() from __tcp_alloc_md5sig_pool() */
4184 if (READ_ONCE(tcp_md5sig_pool_populated)) {
4185 /* coupled with smp_wmb() in __tcp_alloc_md5sig_pool() */
4186 smp_rmb();
4187 return this_cpu_ptr(&tcp_md5sig_pool);
4188 }
4189 local_bh_enable();
4190 return NULL;
4191 }
4192 EXPORT_SYMBOL(tcp_get_md5sig_pool);
4193
tcp_md5_hash_skb_data(struct tcp_md5sig_pool *hp, const struct sk_buff *skb, unsigned int header_len)4194 int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *hp,
4195 const struct sk_buff *skb, unsigned int header_len)
4196 {
4197 struct scatterlist sg;
4198 const struct tcphdr *tp = tcp_hdr(skb);
4199 struct ahash_request *req = hp->md5_req;
4200 unsigned int i;
4201 const unsigned int head_data_len = skb_headlen(skb) > header_len ?
4202 skb_headlen(skb) - header_len : 0;
4203 const struct skb_shared_info *shi = skb_shinfo(skb);
4204 struct sk_buff *frag_iter;
4205
4206 sg_init_table(&sg, 1);
4207
4208 sg_set_buf(&sg, ((u8 *) tp) + header_len, head_data_len);
4209 ahash_request_set_crypt(req, &sg, NULL, head_data_len);
4210 if (crypto_ahash_update(req))
4211 return 1;
4212
4213 for (i = 0; i < shi->nr_frags; ++i) {
4214 const skb_frag_t *f = &shi->frags[i];
4215 unsigned int offset = skb_frag_off(f);
4216 struct page *page = skb_frag_page(f) + (offset >> PAGE_SHIFT);
4217
4218 sg_set_page(&sg, page, skb_frag_size(f),
4219 offset_in_page(offset));
4220 ahash_request_set_crypt(req, &sg, NULL, skb_frag_size(f));
4221 if (crypto_ahash_update(req))
4222 return 1;
4223 }
4224
4225 skb_walk_frags(skb, frag_iter)
4226 if (tcp_md5_hash_skb_data(hp, frag_iter, 0))
4227 return 1;
4228
4229 return 0;
4230 }
4231 EXPORT_SYMBOL(tcp_md5_hash_skb_data);
4232
tcp_md5_hash_key(struct tcp_md5sig_pool *hp, const struct tcp_md5sig_key *key)4233 int tcp_md5_hash_key(struct tcp_md5sig_pool *hp, const struct tcp_md5sig_key *key)
4234 {
4235 u8 keylen = READ_ONCE(key->keylen); /* paired with WRITE_ONCE() in tcp_md5_do_add */
4236 struct scatterlist sg;
4237
4238 sg_init_one(&sg, key->key, keylen);
4239 ahash_request_set_crypt(hp->md5_req, &sg, NULL, keylen);
4240
4241 /* We use data_race() because tcp_md5_do_add() might change key->key under us */
4242 return data_race(crypto_ahash_update(hp->md5_req));
4243 }
4244 EXPORT_SYMBOL(tcp_md5_hash_key);
4245
4246 #endif
4247
tcp_done(struct sock *sk)4248 void tcp_done(struct sock *sk)
4249 {
4250 struct request_sock *req;
4251
4252 /* We might be called with a new socket, after
4253 * inet_csk_prepare_forced_close() has been called
4254 * so we can not use lockdep_sock_is_held(sk)
4255 */
4256 req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk, 1);
4257
4258 if (sk->sk_state == TCP_SYN_SENT || sk->sk_state == TCP_SYN_RECV)
4259 TCP_INC_STATS(sock_net(sk), TCP_MIB_ATTEMPTFAILS);
4260
4261 tcp_set_state(sk, TCP_CLOSE);
4262 tcp_clear_xmit_timers(sk);
4263 if (req)
4264 reqsk_fastopen_remove(sk, req, false);
4265
4266 WRITE_ONCE(sk->sk_shutdown, SHUTDOWN_MASK);
4267
4268 if (!sock_flag(sk, SOCK_DEAD))
4269 sk->sk_state_change(sk);
4270 else
4271 inet_csk_destroy_sock(sk);
4272 }
4273 EXPORT_SYMBOL_GPL(tcp_done);
4274
tcp_abort(struct sock *sk, int err)4275 int tcp_abort(struct sock *sk, int err)
4276 {
4277 if (!sk_fullsock(sk)) {
4278 if (sk->sk_state == TCP_NEW_SYN_RECV) {
4279 struct request_sock *req = inet_reqsk(sk);
4280
4281 local_bh_disable();
4282 inet_csk_reqsk_queue_drop(req->rsk_listener, req);
4283 local_bh_enable();
4284 return 0;
4285 }
4286 return -EOPNOTSUPP;
4287 }
4288
4289 /* Don't race with userspace socket closes such as tcp_close. */
4290 #ifdef CONFIG_TCP_SOCK_DESTROY
4291 /* BPF context ensures sock locking. */
4292 if (!has_current_bpf_ctx())
4293 #endif /* CONFIG_TCP_SOCK_DESTROY */
4294 lock_sock(sk);
4295
4296 if (sk->sk_state == TCP_LISTEN) {
4297 tcp_set_state(sk, TCP_CLOSE);
4298 inet_csk_listen_stop(sk);
4299 }
4300
4301 /* Don't race with BH socket closes such as inet_csk_listen_stop. */
4302 local_bh_disable();
4303 bh_lock_sock(sk);
4304
4305 if (!sock_flag(sk, SOCK_DEAD)) {
4306 sk->sk_err = err;
4307 /* This barrier is coupled with smp_rmb() in tcp_poll() */
4308 smp_wmb();
4309 sk->sk_error_report(sk);
4310 if (tcp_need_reset(sk->sk_state))
4311 tcp_send_active_reset(sk, GFP_ATOMIC);
4312 tcp_done(sk);
4313 }
4314
4315 bh_unlock_sock(sk);
4316 local_bh_enable();
4317 tcp_write_queue_purge(sk);
4318 #ifdef CONFIG_TCP_SOCK_DESTROY
4319 if (!has_current_bpf_ctx())
4320 #endif /* CONFIG_TCP_SOCK_DESTROY */
4321 release_sock(sk);
4322 return 0;
4323 }
4324 EXPORT_SYMBOL_GPL(tcp_abort);
4325
4326 extern struct tcp_congestion_ops tcp_reno;
4327
4328 static __initdata unsigned long thash_entries;
set_thash_entries(char *str)4329 static int __init set_thash_entries(char *str)
4330 {
4331 ssize_t ret;
4332
4333 if (!str)
4334 return 0;
4335
4336 ret = kstrtoul(str, 0, &thash_entries);
4337 if (ret)
4338 return 0;
4339
4340 return 1;
4341 }
4342 __setup("thash_entries=", set_thash_entries);
4343
tcp_init_mem(void)4344 static void __init tcp_init_mem(void)
4345 {
4346 unsigned long limit = nr_free_buffer_pages() / 16;
4347
4348 limit = max(limit, 128UL);
4349 sysctl_tcp_mem[0] = limit / 4 * 3; /* 4.68 % */
4350 sysctl_tcp_mem[1] = limit; /* 6.25 % */
4351 sysctl_tcp_mem[2] = sysctl_tcp_mem[0] * 2; /* 9.37 % */
4352 }
4353
tcp_init(void)4354 void __init tcp_init(void)
4355 {
4356 int max_rshare, max_wshare, cnt;
4357 unsigned long limit;
4358 unsigned int i;
4359
4360 BUILD_BUG_ON(TCP_MIN_SND_MSS <= MAX_TCP_OPTION_SPACE);
4361 BUILD_BUG_ON(sizeof(struct tcp_skb_cb) >
4362 sizeof_field(struct sk_buff, cb));
4363
4364 percpu_counter_init(&tcp_sockets_allocated, 0, GFP_KERNEL);
4365
4366 timer_setup(&tcp_orphan_timer, tcp_orphan_update, TIMER_DEFERRABLE);
4367 mod_timer(&tcp_orphan_timer, jiffies + TCP_ORPHAN_TIMER_PERIOD);
4368
4369 inet_hashinfo_init(&tcp_hashinfo);
4370 inet_hashinfo2_init(&tcp_hashinfo, "tcp_listen_portaddr_hash",
4371 thash_entries, 21, /* one slot per 2 MB*/
4372 0, 64 * 1024);
4373 tcp_hashinfo.bind_bucket_cachep =
4374 kmem_cache_create("tcp_bind_bucket",
4375 sizeof(struct inet_bind_bucket), 0,
4376 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
4377
4378 /* Size and allocate the main established and bind bucket
4379 * hash tables.
4380 *
4381 * The methodology is similar to that of the buffer cache.
4382 */
4383 tcp_hashinfo.ehash =
4384 alloc_large_system_hash("TCP established",
4385 sizeof(struct inet_ehash_bucket),
4386 thash_entries,
4387 17, /* one slot per 128 KB of memory */
4388 0,
4389 NULL,
4390 &tcp_hashinfo.ehash_mask,
4391 0,
4392 thash_entries ? 0 : 512 * 1024);
4393 for (i = 0; i <= tcp_hashinfo.ehash_mask; i++)
4394 INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].chain, i);
4395
4396 if (inet_ehash_locks_alloc(&tcp_hashinfo))
4397 panic("TCP: failed to alloc ehash_locks");
4398 tcp_hashinfo.bhash =
4399 alloc_large_system_hash("TCP bind",
4400 sizeof(struct inet_bind_hashbucket),
4401 tcp_hashinfo.ehash_mask + 1,
4402 17, /* one slot per 128 KB of memory */
4403 0,
4404 &tcp_hashinfo.bhash_size,
4405 NULL,
4406 0,
4407 64 * 1024);
4408 tcp_hashinfo.bhash_size = 1U << tcp_hashinfo.bhash_size;
4409 for (i = 0; i < tcp_hashinfo.bhash_size; i++) {
4410 spin_lock_init(&tcp_hashinfo.bhash[i].lock);
4411 INIT_HLIST_HEAD(&tcp_hashinfo.bhash[i].chain);
4412 }
4413
4414
4415 cnt = tcp_hashinfo.ehash_mask + 1;
4416 sysctl_tcp_max_orphans = cnt / 2;
4417
4418 tcp_init_mem();
4419 /* Set per-socket limits to no more than 1/128 the pressure threshold */
4420 limit = nr_free_buffer_pages() << (PAGE_SHIFT - 7);
4421 max_wshare = min(4UL*1024*1024, limit);
4422 max_rshare = min(6UL*1024*1024, limit);
4423
4424 init_net.ipv4.sysctl_tcp_wmem[0] = SK_MEM_QUANTUM;
4425 init_net.ipv4.sysctl_tcp_wmem[1] = 16*1024;
4426 init_net.ipv4.sysctl_tcp_wmem[2] = max(64*1024, max_wshare);
4427
4428 init_net.ipv4.sysctl_tcp_rmem[0] = SK_MEM_QUANTUM;
4429 init_net.ipv4.sysctl_tcp_rmem[1] = 131072;
4430 init_net.ipv4.sysctl_tcp_rmem[2] = max(131072, max_rshare);
4431
4432 pr_info("Hash tables configured (established %u bind %u)\n",
4433 tcp_hashinfo.ehash_mask + 1, tcp_hashinfo.bhash_size);
4434
4435 tcp_v4_init();
4436 tcp_metrics_init();
4437 BUG_ON(tcp_register_congestion_control(&tcp_reno) != 0);
4438 tcp_tasklet_init();
4439 mptcp_init();
4440 }
4441