1 /*
2 * zsmalloc memory allocator
3 *
4 * Copyright (C) 2011 Nitin Gupta
5 * Copyright (C) 2012, 2013 Minchan Kim
6 *
7 * This code is released using a dual license strategy: BSD/GPL
8 * You can choose the license that better fits your requirements.
9 *
10 * Released under the terms of 3-clause BSD License
11 * Released under the terms of GNU General Public License Version 2.0
12 */
13
14 /*
15 * Following is how we use various fields and flags of underlying
16 * struct page(s) to form a zspage.
17 *
18 * Usage of struct page fields:
19 * page->private: points to zspage
20 * page->freelist(index): links together all component pages of a zspage
21 * For the huge page, this is always 0, so we use this field
22 * to store handle.
23 * page->units: first object offset in a subpage of zspage
24 *
25 * Usage of struct page flags:
26 * PG_private: identifies the first component page
27 * PG_owner_priv_1: identifies the huge component page
28 *
29 */
30
31 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
32
33 #include <linux/module.h>
34 #include <linux/kernel.h>
35 #include <linux/sched.h>
36 #include <linux/magic.h>
37 #include <linux/bitops.h>
38 #include <linux/errno.h>
39 #include <linux/highmem.h>
40 #include <linux/string.h>
41 #include <linux/slab.h>
42 #include <linux/pgtable.h>
43 #include <asm/tlbflush.h>
44 #include <linux/cpumask.h>
45 #include <linux/cpu.h>
46 #include <linux/vmalloc.h>
47 #include <linux/preempt.h>
48 #include <linux/spinlock.h>
49 #include <linux/shrinker.h>
50 #include <linux/types.h>
51 #include <linux/debugfs.h>
52 #include <linux/zsmalloc.h>
53 #include <linux/zpool.h>
54 #include <linux/mount.h>
55 #include <linux/pseudo_fs.h>
56 #include <linux/migrate.h>
57 #include <linux/wait.h>
58 #include <linux/pagemap.h>
59 #include <linux/fs.h>
60
61 #define ZSPAGE_MAGIC 0x58
62
63 /*
64 * This must be power of 2 and greater than of equal to sizeof(link_free).
65 * These two conditions ensure that any 'struct link_free' itself doesn't
66 * span more than 1 page which avoids complex case of mapping 2 pages simply
67 * to restore link_free pointer values.
68 */
69 #define ZS_ALIGN 8
70
71 /*
72 * A single 'zspage' is composed of up to 2^N discontiguous 0-order (single)
73 * pages. ZS_MAX_ZSPAGE_ORDER defines upper limit on N.
74 */
75 #define ZS_MAX_ZSPAGE_ORDER 2
76 #define ZS_MAX_PAGES_PER_ZSPAGE (_AC(1, UL) << ZS_MAX_ZSPAGE_ORDER)
77
78 #define ZS_HANDLE_SIZE (sizeof(unsigned long))
79
80 /*
81 * Object location (<PFN>, <obj_idx>) is encoded as
82 * a single (unsigned long) handle value.
83 *
84 * Note that object index <obj_idx> starts from 0.
85 *
86 * This is made more complicated by various memory models and PAE.
87 */
88
89 #ifndef MAX_POSSIBLE_PHYSMEM_BITS
90 #ifdef MAX_PHYSMEM_BITS
91 #define MAX_POSSIBLE_PHYSMEM_BITS MAX_PHYSMEM_BITS
92 #else
93 /*
94 * If this definition of MAX_PHYSMEM_BITS is used, OBJ_INDEX_BITS will just
95 * be PAGE_SHIFT
96 */
97 #define MAX_POSSIBLE_PHYSMEM_BITS BITS_PER_LONG
98 #endif
99 #endif
100
101 #define _PFN_BITS (MAX_POSSIBLE_PHYSMEM_BITS - PAGE_SHIFT)
102
103 /*
104 * Memory for allocating for handle keeps object position by
105 * encoding <page, obj_idx> and the encoded value has a room
106 * in least bit(ie, look at obj_to_location).
107 * We use the bit to synchronize between object access by
108 * user and migration.
109 */
110 #define HANDLE_PIN_BIT 0
111
112 /*
113 * Head in allocated object should have OBJ_ALLOCATED_TAG
114 * to identify the object was allocated or not.
115 * It's okay to add the status bit in the least bit because
116 * header keeps handle which is 4byte-aligned address so we
117 * have room for two bit at least.
118 */
119 #define OBJ_ALLOCATED_TAG 1
120 #define OBJ_TAG_BITS 1
121 #define OBJ_INDEX_BITS (BITS_PER_LONG - _PFN_BITS - OBJ_TAG_BITS)
122 #define OBJ_INDEX_MASK ((_AC(1, UL) << OBJ_INDEX_BITS) - 1)
123
124 #define FULLNESS_BITS 2
125 #define CLASS_BITS 8
126 #define ISOLATED_BITS 3
127 #define MAGIC_VAL_BITS 8
128
129 #define MAX(a, b) ((a) >= (b) ? (a) : (b))
130 /* ZS_MIN_ALLOC_SIZE must be multiple of ZS_ALIGN */
131 #define ZS_MIN_ALLOC_SIZE \
132 MAX(32, (ZS_MAX_PAGES_PER_ZSPAGE << PAGE_SHIFT >> OBJ_INDEX_BITS))
133 /* each chunk includes extra space to keep handle */
134 #define ZS_MAX_ALLOC_SIZE PAGE_SIZE
135
136 /*
137 * On systems with 4K page size, this gives 255 size classes! There is a
138 * trader-off here:
139 * - Large number of size classes is potentially wasteful as free page are
140 * spread across these classes
141 * - Small number of size classes causes large internal fragmentation
142 * - Probably its better to use specific size classes (empirically
143 * determined). NOTE: all those class sizes must be set as multiple of
144 * ZS_ALIGN to make sure link_free itself never has to span 2 pages.
145 *
146 * ZS_MIN_ALLOC_SIZE and ZS_SIZE_CLASS_DELTA must be multiple of ZS_ALIGN
147 * (reason above)
148 */
149 #define ZS_SIZE_CLASS_DELTA (PAGE_SIZE >> CLASS_BITS)
150 #define ZS_SIZE_CLASSES (DIV_ROUND_UP(ZS_MAX_ALLOC_SIZE - ZS_MIN_ALLOC_SIZE, \
151 ZS_SIZE_CLASS_DELTA) + 1)
152
153 enum fullness_group {
154 ZS_EMPTY,
155 ZS_ALMOST_EMPTY,
156 ZS_ALMOST_FULL,
157 ZS_FULL,
158 NR_ZS_FULLNESS,
159 };
160
161 enum zs_stat_type {
162 CLASS_EMPTY,
163 CLASS_ALMOST_EMPTY,
164 CLASS_ALMOST_FULL,
165 CLASS_FULL,
166 OBJ_ALLOCATED,
167 OBJ_USED,
168 NR_ZS_STAT_TYPE,
169 };
170
171 struct zs_size_stat {
172 unsigned long objs[NR_ZS_STAT_TYPE];
173 };
174
175 #ifdef CONFIG_ZSMALLOC_STAT
176 static struct dentry *zs_stat_root;
177 #endif
178
179 #ifdef CONFIG_COMPACTION
180 static struct vfsmount *zsmalloc_mnt;
181 #endif
182
183 /*
184 * We assign a page to ZS_ALMOST_EMPTY fullness group when:
185 * n <= N / f, where
186 * n = number of allocated objects
187 * N = total number of objects zspage can store
188 * f = fullness_threshold_frac
189 *
190 * Similarly, we assign zspage to:
191 * ZS_ALMOST_FULL when n > N / f
192 * ZS_EMPTY when n == 0
193 * ZS_FULL when n == N
194 *
195 * (see: fix_fullness_group())
196 */
197 static const int fullness_threshold_frac = 4;
198 static size_t huge_class_size;
199
200 struct size_class {
201 spinlock_t lock;
202 struct list_head fullness_list[NR_ZS_FULLNESS];
203 /*
204 * Size of objects stored in this class. Must be multiple
205 * of ZS_ALIGN.
206 */
207 int size;
208 int objs_per_zspage;
209 /* Number of PAGE_SIZE sized pages to combine to form a 'zspage' */
210 int pages_per_zspage;
211
212 unsigned int index;
213 struct zs_size_stat stats;
214 };
215
216 /* huge object: pages_per_zspage == 1 && maxobj_per_zspage == 1 */
SetPageHugeObject(struct page *page)217 static void SetPageHugeObject(struct page *page)
218 {
219 SetPageOwnerPriv1(page);
220 }
221
ClearPageHugeObject(struct page *page)222 static void ClearPageHugeObject(struct page *page)
223 {
224 ClearPageOwnerPriv1(page);
225 }
226
PageHugeObject(struct page *page)227 static int PageHugeObject(struct page *page)
228 {
229 return PageOwnerPriv1(page);
230 }
231
232 /*
233 * Placed within free objects to form a singly linked list.
234 * For every zspage, zspage->freeobj gives head of this list.
235 *
236 * This must be power of 2 and less than or equal to ZS_ALIGN
237 */
238 struct link_free {
239 union {
240 /*
241 * Free object index;
242 * It's valid for non-allocated object
243 */
244 unsigned long next;
245 /*
246 * Handle of allocated object.
247 */
248 unsigned long handle;
249 };
250 };
251
252 struct zs_pool {
253 const char *name;
254
255 struct size_class *size_class[ZS_SIZE_CLASSES];
256 struct kmem_cache *handle_cachep;
257 struct kmem_cache *zspage_cachep;
258
259 atomic_long_t pages_allocated;
260
261 struct zs_pool_stats stats;
262
263 /* Compact classes */
264 struct shrinker shrinker;
265
266 #ifdef CONFIG_ZSMALLOC_STAT
267 struct dentry *stat_dentry;
268 #endif
269 #ifdef CONFIG_COMPACTION
270 struct inode *inode;
271 struct work_struct free_work;
272 /* A wait queue for when migration races with async_free_zspage() */
273 struct wait_queue_head migration_wait;
274 atomic_long_t isolated_pages;
275 bool destroying;
276 #endif
277 };
278
279 struct zspage {
280 struct {
281 unsigned int fullness:FULLNESS_BITS;
282 unsigned int class:CLASS_BITS + 1;
283 unsigned int isolated:ISOLATED_BITS;
284 unsigned int magic:MAGIC_VAL_BITS;
285 };
286 unsigned int inuse;
287 unsigned int freeobj;
288 struct page *first_page;
289 struct list_head list; /* fullness list */
290 #ifdef CONFIG_COMPACTION
291 rwlock_t lock;
292 #endif
293 };
294
295 struct mapping_area {
296 char *vm_buf; /* copy buffer for objects that span pages */
297 char *vm_addr; /* address of kmap_atomic()'ed pages */
298 enum zs_mapmode vm_mm; /* mapping mode */
299 };
300
301 #ifdef CONFIG_COMPACTION
302 static int zs_register_migration(struct zs_pool *pool);
303 static void zs_unregister_migration(struct zs_pool *pool);
304 static void migrate_lock_init(struct zspage *zspage);
305 static void migrate_read_lock(struct zspage *zspage);
306 static void migrate_read_unlock(struct zspage *zspage);
307 static void kick_deferred_free(struct zs_pool *pool);
308 static void init_deferred_free(struct zs_pool *pool);
309 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage);
310 #else
zsmalloc_mount(void)311 static int zsmalloc_mount(void) { return 0; }
zsmalloc_unmount(void)312 static void zsmalloc_unmount(void) {}
zs_register_migration(struct zs_pool *pool)313 static int zs_register_migration(struct zs_pool *pool) { return 0; }
zs_unregister_migration(struct zs_pool *pool)314 static void zs_unregister_migration(struct zs_pool *pool) {}
migrate_lock_init(struct zspage *zspage)315 static void migrate_lock_init(struct zspage *zspage) {}
migrate_read_lock(struct zspage *zspage)316 static void migrate_read_lock(struct zspage *zspage) {}
migrate_read_unlock(struct zspage *zspage)317 static void migrate_read_unlock(struct zspage *zspage) {}
kick_deferred_free(struct zs_pool *pool)318 static void kick_deferred_free(struct zs_pool *pool) {}
init_deferred_free(struct zs_pool *pool)319 static void init_deferred_free(struct zs_pool *pool) {}
SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage)320 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage) {}
321 #endif
322
create_cache(struct zs_pool *pool)323 static int create_cache(struct zs_pool *pool)
324 {
325 pool->handle_cachep = kmem_cache_create("zs_handle", ZS_HANDLE_SIZE,
326 0, 0, NULL);
327 if (!pool->handle_cachep)
328 return 1;
329
330 pool->zspage_cachep = kmem_cache_create("zspage", sizeof(struct zspage),
331 0, 0, NULL);
332 if (!pool->zspage_cachep) {
333 kmem_cache_destroy(pool->handle_cachep);
334 pool->handle_cachep = NULL;
335 return 1;
336 }
337
338 return 0;
339 }
340
destroy_cache(struct zs_pool *pool)341 static void destroy_cache(struct zs_pool *pool)
342 {
343 kmem_cache_destroy(pool->handle_cachep);
344 kmem_cache_destroy(pool->zspage_cachep);
345 }
346
cache_alloc_handle(struct zs_pool *pool, gfp_t gfp)347 static unsigned long cache_alloc_handle(struct zs_pool *pool, gfp_t gfp)
348 {
349 return (unsigned long)kmem_cache_alloc(pool->handle_cachep,
350 gfp & ~(__GFP_HIGHMEM|__GFP_MOVABLE));
351 }
352
cache_free_handle(struct zs_pool *pool, unsigned long handle)353 static void cache_free_handle(struct zs_pool *pool, unsigned long handle)
354 {
355 kmem_cache_free(pool->handle_cachep, (void *)handle);
356 }
357
cache_alloc_zspage(struct zs_pool *pool, gfp_t flags)358 static struct zspage *cache_alloc_zspage(struct zs_pool *pool, gfp_t flags)
359 {
360 return kmem_cache_alloc(pool->zspage_cachep,
361 flags & ~(__GFP_HIGHMEM|__GFP_MOVABLE));
362 }
363
cache_free_zspage(struct zs_pool *pool, struct zspage *zspage)364 static void cache_free_zspage(struct zs_pool *pool, struct zspage *zspage)
365 {
366 kmem_cache_free(pool->zspage_cachep, zspage);
367 }
368
record_obj(unsigned long handle, unsigned long obj)369 static void record_obj(unsigned long handle, unsigned long obj)
370 {
371 /*
372 * lsb of @obj represents handle lock while other bits
373 * represent object value the handle is pointing so
374 * updating shouldn't do store tearing.
375 */
376 WRITE_ONCE(*(unsigned long *)handle, obj);
377 }
378
379 /* zpool driver */
380
381 #ifdef CONFIG_ZPOOL
382
zs_zpool_create(const char *name, gfp_t gfp, const struct zpool_ops *zpool_ops, struct zpool *zpool)383 static void *zs_zpool_create(const char *name, gfp_t gfp,
384 const struct zpool_ops *zpool_ops,
385 struct zpool *zpool)
386 {
387 /*
388 * Ignore global gfp flags: zs_malloc() may be invoked from
389 * different contexts and its caller must provide a valid
390 * gfp mask.
391 */
392 return zs_create_pool(name);
393 }
394
zs_zpool_destroy(void *pool)395 static void zs_zpool_destroy(void *pool)
396 {
397 zs_destroy_pool(pool);
398 }
399
zs_zpool_malloc(void *pool, size_t size, gfp_t gfp, unsigned long *handle)400 static int zs_zpool_malloc(void *pool, size_t size, gfp_t gfp,
401 unsigned long *handle)
402 {
403 *handle = zs_malloc(pool, size, gfp);
404 return *handle ? 0 : -1;
405 }
zs_zpool_free(void *pool, unsigned long handle)406 static void zs_zpool_free(void *pool, unsigned long handle)
407 {
408 zs_free(pool, handle);
409 }
410
zs_zpool_map(void *pool, unsigned long handle, enum zpool_mapmode mm)411 static void *zs_zpool_map(void *pool, unsigned long handle,
412 enum zpool_mapmode mm)
413 {
414 enum zs_mapmode zs_mm;
415
416 switch (mm) {
417 case ZPOOL_MM_RO:
418 zs_mm = ZS_MM_RO;
419 break;
420 case ZPOOL_MM_WO:
421 zs_mm = ZS_MM_WO;
422 break;
423 case ZPOOL_MM_RW:
424 default:
425 zs_mm = ZS_MM_RW;
426 break;
427 }
428
429 return zs_map_object(pool, handle, zs_mm);
430 }
zs_zpool_unmap(void *pool, unsigned long handle)431 static void zs_zpool_unmap(void *pool, unsigned long handle)
432 {
433 zs_unmap_object(pool, handle);
434 }
435
zs_zpool_total_size(void *pool)436 static u64 zs_zpool_total_size(void *pool)
437 {
438 return zs_get_total_pages(pool) << PAGE_SHIFT;
439 }
440
441 static struct zpool_driver zs_zpool_driver = {
442 .type = "zsmalloc",
443 .owner = THIS_MODULE,
444 .create = zs_zpool_create,
445 .destroy = zs_zpool_destroy,
446 .malloc_support_movable = true,
447 .malloc = zs_zpool_malloc,
448 .free = zs_zpool_free,
449 .map = zs_zpool_map,
450 .unmap = zs_zpool_unmap,
451 .total_size = zs_zpool_total_size,
452 };
453
454 MODULE_ALIAS("zpool-zsmalloc");
455 #endif /* CONFIG_ZPOOL */
456
457 /* per-cpu VM mapping areas for zspage accesses that cross page boundaries */
458 static DEFINE_PER_CPU(struct mapping_area, zs_map_area);
459
is_zspage_isolated(struct zspage *zspage)460 static bool is_zspage_isolated(struct zspage *zspage)
461 {
462 return zspage->isolated;
463 }
464
is_first_page(struct page *page)465 static __maybe_unused int is_first_page(struct page *page)
466 {
467 return PagePrivate(page);
468 }
469
470 /* Protected by class->lock */
get_zspage_inuse(struct zspage *zspage)471 static inline int get_zspage_inuse(struct zspage *zspage)
472 {
473 return zspage->inuse;
474 }
475
476
mod_zspage_inuse(struct zspage *zspage, int val)477 static inline void mod_zspage_inuse(struct zspage *zspage, int val)
478 {
479 zspage->inuse += val;
480 }
481
get_first_page(struct zspage *zspage)482 static inline struct page *get_first_page(struct zspage *zspage)
483 {
484 struct page *first_page = zspage->first_page;
485
486 VM_BUG_ON_PAGE(!is_first_page(first_page), first_page);
487 return first_page;
488 }
489
get_first_obj_offset(struct page *page)490 static inline int get_first_obj_offset(struct page *page)
491 {
492 return page->units;
493 }
494
set_first_obj_offset(struct page *page, int offset)495 static inline void set_first_obj_offset(struct page *page, int offset)
496 {
497 page->units = offset;
498 }
499
get_freeobj(struct zspage *zspage)500 static inline unsigned int get_freeobj(struct zspage *zspage)
501 {
502 return zspage->freeobj;
503 }
504
set_freeobj(struct zspage *zspage, unsigned int obj)505 static inline void set_freeobj(struct zspage *zspage, unsigned int obj)
506 {
507 zspage->freeobj = obj;
508 }
509
get_zspage_mapping(struct zspage *zspage, unsigned int *class_idx, enum fullness_group *fullness)510 static void get_zspage_mapping(struct zspage *zspage,
511 unsigned int *class_idx,
512 enum fullness_group *fullness)
513 {
514 BUG_ON(zspage->magic != ZSPAGE_MAGIC);
515
516 *fullness = zspage->fullness;
517 *class_idx = zspage->class;
518 }
519
set_zspage_mapping(struct zspage *zspage, unsigned int class_idx, enum fullness_group fullness)520 static void set_zspage_mapping(struct zspage *zspage,
521 unsigned int class_idx,
522 enum fullness_group fullness)
523 {
524 zspage->class = class_idx;
525 zspage->fullness = fullness;
526 }
527
528 /*
529 * zsmalloc divides the pool into various size classes where each
530 * class maintains a list of zspages where each zspage is divided
531 * into equal sized chunks. Each allocation falls into one of these
532 * classes depending on its size. This function returns index of the
533 * size class which has chunk size big enough to hold the give size.
534 */
get_size_class_index(int size)535 static int get_size_class_index(int size)
536 {
537 int idx = 0;
538
539 if (likely(size > ZS_MIN_ALLOC_SIZE))
540 idx = DIV_ROUND_UP(size - ZS_MIN_ALLOC_SIZE,
541 ZS_SIZE_CLASS_DELTA);
542
543 return min_t(int, ZS_SIZE_CLASSES - 1, idx);
544 }
545
546 /* type can be of enum type zs_stat_type or fullness_group */
zs_stat_inc(struct size_class *class, int type, unsigned long cnt)547 static inline void zs_stat_inc(struct size_class *class,
548 int type, unsigned long cnt)
549 {
550 class->stats.objs[type] += cnt;
551 }
552
553 /* type can be of enum type zs_stat_type or fullness_group */
zs_stat_dec(struct size_class *class, int type, unsigned long cnt)554 static inline void zs_stat_dec(struct size_class *class,
555 int type, unsigned long cnt)
556 {
557 class->stats.objs[type] -= cnt;
558 }
559
560 /* type can be of enum type zs_stat_type or fullness_group */
zs_stat_get(struct size_class *class, int type)561 static inline unsigned long zs_stat_get(struct size_class *class,
562 int type)
563 {
564 return class->stats.objs[type];
565 }
566
567 #ifdef CONFIG_ZSMALLOC_STAT
568
zs_stat_init(void)569 static void __init zs_stat_init(void)
570 {
571 if (!debugfs_initialized()) {
572 pr_warn("debugfs not available, stat dir not created\n");
573 return;
574 }
575
576 zs_stat_root = debugfs_create_dir("zsmalloc", NULL);
577 }
578
zs_stat_exit(void)579 static void __exit zs_stat_exit(void)
580 {
581 debugfs_remove_recursive(zs_stat_root);
582 }
583
584 static unsigned long zs_can_compact(struct size_class *class);
585
zs_stats_size_show(struct seq_file *s, void *v)586 static int zs_stats_size_show(struct seq_file *s, void *v)
587 {
588 int i;
589 struct zs_pool *pool = s->private;
590 struct size_class *class;
591 int objs_per_zspage;
592 unsigned long class_almost_full, class_almost_empty;
593 unsigned long obj_allocated, obj_used, pages_used, freeable;
594 unsigned long total_class_almost_full = 0, total_class_almost_empty = 0;
595 unsigned long total_objs = 0, total_used_objs = 0, total_pages = 0;
596 unsigned long total_freeable = 0;
597
598 seq_printf(s, " %5s %5s %11s %12s %13s %10s %10s %16s %8s\n",
599 "class", "size", "almost_full", "almost_empty",
600 "obj_allocated", "obj_used", "pages_used",
601 "pages_per_zspage", "freeable");
602
603 for (i = 0; i < ZS_SIZE_CLASSES; i++) {
604 class = pool->size_class[i];
605
606 if (class->index != i)
607 continue;
608
609 spin_lock(&class->lock);
610 class_almost_full = zs_stat_get(class, CLASS_ALMOST_FULL);
611 class_almost_empty = zs_stat_get(class, CLASS_ALMOST_EMPTY);
612 obj_allocated = zs_stat_get(class, OBJ_ALLOCATED);
613 obj_used = zs_stat_get(class, OBJ_USED);
614 freeable = zs_can_compact(class);
615 spin_unlock(&class->lock);
616
617 objs_per_zspage = class->objs_per_zspage;
618 pages_used = obj_allocated / objs_per_zspage *
619 class->pages_per_zspage;
620
621 seq_printf(s, " %5u %5u %11lu %12lu %13lu"
622 " %10lu %10lu %16d %8lu\n",
623 i, class->size, class_almost_full, class_almost_empty,
624 obj_allocated, obj_used, pages_used,
625 class->pages_per_zspage, freeable);
626
627 total_class_almost_full += class_almost_full;
628 total_class_almost_empty += class_almost_empty;
629 total_objs += obj_allocated;
630 total_used_objs += obj_used;
631 total_pages += pages_used;
632 total_freeable += freeable;
633 }
634
635 seq_puts(s, "\n");
636 seq_printf(s, " %5s %5s %11lu %12lu %13lu %10lu %10lu %16s %8lu\n",
637 "Total", "", total_class_almost_full,
638 total_class_almost_empty, total_objs,
639 total_used_objs, total_pages, "", total_freeable);
640
641 return 0;
642 }
643 DEFINE_SHOW_ATTRIBUTE(zs_stats_size);
644
zs_pool_stat_create(struct zs_pool *pool, const char *name)645 static void zs_pool_stat_create(struct zs_pool *pool, const char *name)
646 {
647 if (!zs_stat_root) {
648 pr_warn("no root stat dir, not creating <%s> stat dir\n", name);
649 return;
650 }
651
652 pool->stat_dentry = debugfs_create_dir(name, zs_stat_root);
653
654 debugfs_create_file("classes", S_IFREG | 0444, pool->stat_dentry, pool,
655 &zs_stats_size_fops);
656 }
657
zs_pool_stat_destroy(struct zs_pool *pool)658 static void zs_pool_stat_destroy(struct zs_pool *pool)
659 {
660 debugfs_remove_recursive(pool->stat_dentry);
661 }
662
663 #else /* CONFIG_ZSMALLOC_STAT */
zs_stat_init(void)664 static void __init zs_stat_init(void)
665 {
666 }
667
zs_stat_exit(void)668 static void __exit zs_stat_exit(void)
669 {
670 }
671
zs_pool_stat_create(struct zs_pool *pool, const char *name)672 static inline void zs_pool_stat_create(struct zs_pool *pool, const char *name)
673 {
674 }
675
zs_pool_stat_destroy(struct zs_pool *pool)676 static inline void zs_pool_stat_destroy(struct zs_pool *pool)
677 {
678 }
679 #endif
680
681
682 /*
683 * For each size class, zspages are divided into different groups
684 * depending on how "full" they are. This was done so that we could
685 * easily find empty or nearly empty zspages when we try to shrink
686 * the pool (not yet implemented). This function returns fullness
687 * status of the given page.
688 */
get_fullness_group(struct size_class *class, struct zspage *zspage)689 static enum fullness_group get_fullness_group(struct size_class *class,
690 struct zspage *zspage)
691 {
692 int inuse, objs_per_zspage;
693 enum fullness_group fg;
694
695 inuse = get_zspage_inuse(zspage);
696 objs_per_zspage = class->objs_per_zspage;
697
698 if (inuse == 0)
699 fg = ZS_EMPTY;
700 else if (inuse == objs_per_zspage)
701 fg = ZS_FULL;
702 else if (inuse <= 3 * objs_per_zspage / fullness_threshold_frac)
703 fg = ZS_ALMOST_EMPTY;
704 else
705 fg = ZS_ALMOST_FULL;
706
707 return fg;
708 }
709
710 /*
711 * Each size class maintains various freelists and zspages are assigned
712 * to one of these freelists based on the number of live objects they
713 * have. This functions inserts the given zspage into the freelist
714 * identified by <class, fullness_group>.
715 */
insert_zspage(struct size_class *class, struct zspage *zspage, enum fullness_group fullness)716 static void insert_zspage(struct size_class *class,
717 struct zspage *zspage,
718 enum fullness_group fullness)
719 {
720 struct zspage *head;
721
722 zs_stat_inc(class, fullness, 1);
723 head = list_first_entry_or_null(&class->fullness_list[fullness],
724 struct zspage, list);
725 /*
726 * We want to see more ZS_FULL pages and less almost empty/full.
727 * Put pages with higher ->inuse first.
728 */
729 if (head) {
730 if (get_zspage_inuse(zspage) < get_zspage_inuse(head)) {
731 list_add(&zspage->list, &head->list);
732 return;
733 }
734 }
735 list_add(&zspage->list, &class->fullness_list[fullness]);
736 }
737
738 /*
739 * This function removes the given zspage from the freelist identified
740 * by <class, fullness_group>.
741 */
remove_zspage(struct size_class *class, struct zspage *zspage, enum fullness_group fullness)742 static void remove_zspage(struct size_class *class,
743 struct zspage *zspage,
744 enum fullness_group fullness)
745 {
746 VM_BUG_ON(list_empty(&class->fullness_list[fullness]));
747 VM_BUG_ON(is_zspage_isolated(zspage));
748
749 list_del_init(&zspage->list);
750 zs_stat_dec(class, fullness, 1);
751 }
752
753 /*
754 * Each size class maintains zspages in different fullness groups depending
755 * on the number of live objects they contain. When allocating or freeing
756 * objects, the fullness status of the page can change, say, from ALMOST_FULL
757 * to ALMOST_EMPTY when freeing an object. This function checks if such
758 * a status change has occurred for the given page and accordingly moves the
759 * page from the freelist of the old fullness group to that of the new
760 * fullness group.
761 */
fix_fullness_group(struct size_class *class, struct zspage *zspage)762 static enum fullness_group fix_fullness_group(struct size_class *class,
763 struct zspage *zspage)
764 {
765 int class_idx;
766 enum fullness_group currfg, newfg;
767
768 get_zspage_mapping(zspage, &class_idx, &currfg);
769 newfg = get_fullness_group(class, zspage);
770 if (newfg == currfg)
771 goto out;
772
773 if (!is_zspage_isolated(zspage)) {
774 remove_zspage(class, zspage, currfg);
775 insert_zspage(class, zspage, newfg);
776 }
777
778 set_zspage_mapping(zspage, class_idx, newfg);
779
780 out:
781 return newfg;
782 }
783
784 /*
785 * We have to decide on how many pages to link together
786 * to form a zspage for each size class. This is important
787 * to reduce wastage due to unusable space left at end of
788 * each zspage which is given as:
789 * wastage = Zp % class_size
790 * usage = Zp - wastage
791 * where Zp = zspage size = k * PAGE_SIZE where k = 1, 2, ...
792 *
793 * For example, for size class of 3/8 * PAGE_SIZE, we should
794 * link together 3 PAGE_SIZE sized pages to form a zspage
795 * since then we can perfectly fit in 8 such objects.
796 */
get_pages_per_zspage(int class_size)797 static int get_pages_per_zspage(int class_size)
798 {
799 int i, max_usedpc = 0;
800 /* zspage order which gives maximum used size per KB */
801 int max_usedpc_order = 1;
802
803 for (i = 1; i <= ZS_MAX_PAGES_PER_ZSPAGE; i++) {
804 int zspage_size;
805 int waste, usedpc;
806
807 zspage_size = i * PAGE_SIZE;
808 waste = zspage_size % class_size;
809 usedpc = (zspage_size - waste) * 100 / zspage_size;
810
811 if (usedpc > max_usedpc) {
812 max_usedpc = usedpc;
813 max_usedpc_order = i;
814 }
815 }
816
817 return max_usedpc_order;
818 }
819
get_zspage(struct page *page)820 static struct zspage *get_zspage(struct page *page)
821 {
822 struct zspage *zspage = (struct zspage *)page->private;
823
824 BUG_ON(zspage->magic != ZSPAGE_MAGIC);
825 return zspage;
826 }
827
get_next_page(struct page *page)828 static struct page *get_next_page(struct page *page)
829 {
830 if (unlikely(PageHugeObject(page)))
831 return NULL;
832
833 return page->freelist;
834 }
835
836 /**
837 * obj_to_location - get (<page>, <obj_idx>) from encoded object value
838 * @obj: the encoded object value
839 * @page: page object resides in zspage
840 * @obj_idx: object index
841 */
obj_to_location(unsigned long obj, struct page **page, unsigned int *obj_idx)842 static void obj_to_location(unsigned long obj, struct page **page,
843 unsigned int *obj_idx)
844 {
845 obj >>= OBJ_TAG_BITS;
846 *page = pfn_to_page(obj >> OBJ_INDEX_BITS);
847 *obj_idx = (obj & OBJ_INDEX_MASK);
848 }
849
850 /**
851 * location_to_obj - get obj value encoded from (<page>, <obj_idx>)
852 * @page: page object resides in zspage
853 * @obj_idx: object index
854 */
location_to_obj(struct page *page, unsigned int obj_idx)855 static unsigned long location_to_obj(struct page *page, unsigned int obj_idx)
856 {
857 unsigned long obj;
858
859 obj = page_to_pfn(page) << OBJ_INDEX_BITS;
860 obj |= obj_idx & OBJ_INDEX_MASK;
861 obj <<= OBJ_TAG_BITS;
862
863 return obj;
864 }
865
handle_to_obj(unsigned long handle)866 static unsigned long handle_to_obj(unsigned long handle)
867 {
868 return *(unsigned long *)handle;
869 }
870
obj_to_head(struct page *page, void *obj)871 static unsigned long obj_to_head(struct page *page, void *obj)
872 {
873 if (unlikely(PageHugeObject(page))) {
874 VM_BUG_ON_PAGE(!is_first_page(page), page);
875 return page->index;
876 } else
877 return *(unsigned long *)obj;
878 }
879
testpin_tag(unsigned long handle)880 static inline int testpin_tag(unsigned long handle)
881 {
882 return bit_spin_is_locked(HANDLE_PIN_BIT, (unsigned long *)handle);
883 }
884
trypin_tag(unsigned long handle)885 static inline int trypin_tag(unsigned long handle)
886 {
887 return bit_spin_trylock(HANDLE_PIN_BIT, (unsigned long *)handle);
888 }
889
__acquiresnull890 static void pin_tag(unsigned long handle) __acquires(bitlock)
891 {
892 bit_spin_lock(HANDLE_PIN_BIT, (unsigned long *)handle);
893 }
894
__releasesnull895 static void unpin_tag(unsigned long handle) __releases(bitlock)
896 {
897 bit_spin_unlock(HANDLE_PIN_BIT, (unsigned long *)handle);
898 }
899
reset_page(struct page *page)900 static void reset_page(struct page *page)
901 {
902 __ClearPageMovable(page);
903 ClearPagePrivate(page);
904 set_page_private(page, 0);
905 page_mapcount_reset(page);
906 ClearPageHugeObject(page);
907 page->freelist = NULL;
908 }
909
trylock_zspage(struct zspage *zspage)910 static int trylock_zspage(struct zspage *zspage)
911 {
912 struct page *cursor, *fail;
913
914 for (cursor = get_first_page(zspage); cursor != NULL; cursor =
915 get_next_page(cursor)) {
916 if (!trylock_page(cursor)) {
917 fail = cursor;
918 goto unlock;
919 }
920 }
921
922 return 1;
923 unlock:
924 for (cursor = get_first_page(zspage); cursor != fail; cursor =
925 get_next_page(cursor))
926 unlock_page(cursor);
927
928 return 0;
929 }
930
__free_zspage(struct zs_pool *pool, struct size_class *class, struct zspage *zspage)931 static void __free_zspage(struct zs_pool *pool, struct size_class *class,
932 struct zspage *zspage)
933 {
934 struct page *page, *next;
935 enum fullness_group fg;
936 unsigned int class_idx;
937
938 get_zspage_mapping(zspage, &class_idx, &fg);
939
940 assert_spin_locked(&class->lock);
941
942 VM_BUG_ON(get_zspage_inuse(zspage));
943 VM_BUG_ON(fg != ZS_EMPTY);
944
945 next = page = get_first_page(zspage);
946 do {
947 VM_BUG_ON_PAGE(!PageLocked(page), page);
948 next = get_next_page(page);
949 reset_page(page);
950 unlock_page(page);
951 dec_zone_page_state(page, NR_ZSPAGES);
952 put_page(page);
953 page = next;
954 } while (page != NULL);
955
956 cache_free_zspage(pool, zspage);
957
958 zs_stat_dec(class, OBJ_ALLOCATED, class->objs_per_zspage);
959 atomic_long_sub(class->pages_per_zspage,
960 &pool->pages_allocated);
961 }
962
free_zspage(struct zs_pool *pool, struct size_class *class, struct zspage *zspage)963 static void free_zspage(struct zs_pool *pool, struct size_class *class,
964 struct zspage *zspage)
965 {
966 VM_BUG_ON(get_zspage_inuse(zspage));
967 VM_BUG_ON(list_empty(&zspage->list));
968
969 if (!trylock_zspage(zspage)) {
970 kick_deferred_free(pool);
971 return;
972 }
973
974 remove_zspage(class, zspage, ZS_EMPTY);
975 __free_zspage(pool, class, zspage);
976 }
977
978 /* Initialize a newly allocated zspage */
init_zspage(struct size_class *class, struct zspage *zspage)979 static void init_zspage(struct size_class *class, struct zspage *zspage)
980 {
981 unsigned int freeobj = 1;
982 unsigned long off = 0;
983 struct page *page = get_first_page(zspage);
984
985 while (page) {
986 struct page *next_page;
987 struct link_free *link;
988 void *vaddr;
989
990 set_first_obj_offset(page, off);
991
992 vaddr = kmap_atomic(page);
993 link = (struct link_free *)vaddr + off / sizeof(*link);
994
995 while ((off += class->size) < PAGE_SIZE) {
996 link->next = freeobj++ << OBJ_TAG_BITS;
997 link += class->size / sizeof(*link);
998 }
999
1000 /*
1001 * We now come to the last (full or partial) object on this
1002 * page, which must point to the first object on the next
1003 * page (if present)
1004 */
1005 next_page = get_next_page(page);
1006 if (next_page) {
1007 link->next = freeobj++ << OBJ_TAG_BITS;
1008 } else {
1009 /*
1010 * Reset OBJ_TAG_BITS bit to last link to tell
1011 * whether it's allocated object or not.
1012 */
1013 link->next = -1UL << OBJ_TAG_BITS;
1014 }
1015 kunmap_atomic(vaddr);
1016 page = next_page;
1017 off %= PAGE_SIZE;
1018 }
1019
1020 set_freeobj(zspage, 0);
1021 }
1022
create_page_chain(struct size_class *class, struct zspage *zspage, struct page *pages[])1023 static void create_page_chain(struct size_class *class, struct zspage *zspage,
1024 struct page *pages[])
1025 {
1026 int i;
1027 struct page *page;
1028 struct page *prev_page = NULL;
1029 int nr_pages = class->pages_per_zspage;
1030
1031 /*
1032 * Allocate individual pages and link them together as:
1033 * 1. all pages are linked together using page->freelist
1034 * 2. each sub-page point to zspage using page->private
1035 *
1036 * we set PG_private to identify the first page (i.e. no other sub-page
1037 * has this flag set).
1038 */
1039 for (i = 0; i < nr_pages; i++) {
1040 page = pages[i];
1041 set_page_private(page, (unsigned long)zspage);
1042 page->freelist = NULL;
1043 if (i == 0) {
1044 zspage->first_page = page;
1045 SetPagePrivate(page);
1046 if (unlikely(class->objs_per_zspage == 1 &&
1047 class->pages_per_zspage == 1))
1048 SetPageHugeObject(page);
1049 } else {
1050 prev_page->freelist = page;
1051 }
1052 prev_page = page;
1053 }
1054 }
1055
1056 /*
1057 * Allocate a zspage for the given size class
1058 */
alloc_zspage(struct zs_pool *pool, struct size_class *class, gfp_t gfp)1059 static struct zspage *alloc_zspage(struct zs_pool *pool,
1060 struct size_class *class,
1061 gfp_t gfp)
1062 {
1063 int i;
1064 struct page *pages[ZS_MAX_PAGES_PER_ZSPAGE];
1065 struct zspage *zspage = cache_alloc_zspage(pool, gfp);
1066
1067 if (!zspage)
1068 return NULL;
1069
1070 memset(zspage, 0, sizeof(struct zspage));
1071 zspage->magic = ZSPAGE_MAGIC;
1072 migrate_lock_init(zspage);
1073
1074 for (i = 0; i < class->pages_per_zspage; i++) {
1075 struct page *page;
1076
1077 page = alloc_page(gfp);
1078 if (!page) {
1079 while (--i >= 0) {
1080 dec_zone_page_state(pages[i], NR_ZSPAGES);
1081 __free_page(pages[i]);
1082 }
1083 cache_free_zspage(pool, zspage);
1084 return NULL;
1085 }
1086
1087 inc_zone_page_state(page, NR_ZSPAGES);
1088 #ifdef CONFIG_PAGE_TRACING
1089 SetPageZspage(page);
1090 #endif
1091 pages[i] = page;
1092 }
1093
1094 create_page_chain(class, zspage, pages);
1095 init_zspage(class, zspage);
1096
1097 return zspage;
1098 }
1099
find_get_zspage(struct size_class *class)1100 static struct zspage *find_get_zspage(struct size_class *class)
1101 {
1102 int i;
1103 struct zspage *zspage;
1104
1105 for (i = ZS_ALMOST_FULL; i >= ZS_EMPTY; i--) {
1106 zspage = list_first_entry_or_null(&class->fullness_list[i],
1107 struct zspage, list);
1108 if (zspage)
1109 break;
1110 }
1111
1112 return zspage;
1113 }
1114
__zs_cpu_up(struct mapping_area *area)1115 static inline int __zs_cpu_up(struct mapping_area *area)
1116 {
1117 /*
1118 * Make sure we don't leak memory if a cpu UP notification
1119 * and zs_init() race and both call zs_cpu_up() on the same cpu
1120 */
1121 if (area->vm_buf)
1122 return 0;
1123 area->vm_buf = kmalloc(ZS_MAX_ALLOC_SIZE, GFP_KERNEL);
1124 if (!area->vm_buf)
1125 return -ENOMEM;
1126 return 0;
1127 }
1128
__zs_cpu_down(struct mapping_area *area)1129 static inline void __zs_cpu_down(struct mapping_area *area)
1130 {
1131 kfree(area->vm_buf);
1132 area->vm_buf = NULL;
1133 }
1134
__zs_map_object(struct mapping_area *area, struct page *pages[2], int off, int size)1135 static void *__zs_map_object(struct mapping_area *area,
1136 struct page *pages[2], int off, int size)
1137 {
1138 int sizes[2];
1139 void *addr;
1140 char *buf = area->vm_buf;
1141
1142 /* disable page faults to match kmap_atomic() return conditions */
1143 pagefault_disable();
1144
1145 /* no read fastpath */
1146 if (area->vm_mm == ZS_MM_WO)
1147 goto out;
1148
1149 sizes[0] = PAGE_SIZE - off;
1150 sizes[1] = size - sizes[0];
1151
1152 /* copy object to per-cpu buffer */
1153 addr = kmap_atomic(pages[0]);
1154 memcpy(buf, addr + off, sizes[0]);
1155 kunmap_atomic(addr);
1156 addr = kmap_atomic(pages[1]);
1157 memcpy(buf + sizes[0], addr, sizes[1]);
1158 kunmap_atomic(addr);
1159 out:
1160 return area->vm_buf;
1161 }
1162
__zs_unmap_object(struct mapping_area *area, struct page *pages[2], int off, int size)1163 static void __zs_unmap_object(struct mapping_area *area,
1164 struct page *pages[2], int off, int size)
1165 {
1166 int sizes[2];
1167 void *addr;
1168 char *buf;
1169
1170 /* no write fastpath */
1171 if (area->vm_mm == ZS_MM_RO)
1172 goto out;
1173
1174 buf = area->vm_buf;
1175 buf = buf + ZS_HANDLE_SIZE;
1176 size -= ZS_HANDLE_SIZE;
1177 off += ZS_HANDLE_SIZE;
1178
1179 sizes[0] = PAGE_SIZE - off;
1180 sizes[1] = size - sizes[0];
1181
1182 /* copy per-cpu buffer to object */
1183 addr = kmap_atomic(pages[0]);
1184 memcpy(addr + off, buf, sizes[0]);
1185 kunmap_atomic(addr);
1186 addr = kmap_atomic(pages[1]);
1187 memcpy(addr, buf + sizes[0], sizes[1]);
1188 kunmap_atomic(addr);
1189
1190 out:
1191 /* enable page faults to match kunmap_atomic() return conditions */
1192 pagefault_enable();
1193 }
1194
zs_cpu_prepare(unsigned int cpu)1195 static int zs_cpu_prepare(unsigned int cpu)
1196 {
1197 struct mapping_area *area;
1198
1199 area = &per_cpu(zs_map_area, cpu);
1200 return __zs_cpu_up(area);
1201 }
1202
zs_cpu_dead(unsigned int cpu)1203 static int zs_cpu_dead(unsigned int cpu)
1204 {
1205 struct mapping_area *area;
1206
1207 area = &per_cpu(zs_map_area, cpu);
1208 __zs_cpu_down(area);
1209 return 0;
1210 }
1211
can_merge(struct size_class *prev, int pages_per_zspage, int objs_per_zspage)1212 static bool can_merge(struct size_class *prev, int pages_per_zspage,
1213 int objs_per_zspage)
1214 {
1215 if (prev->pages_per_zspage == pages_per_zspage &&
1216 prev->objs_per_zspage == objs_per_zspage)
1217 return true;
1218
1219 return false;
1220 }
1221
zspage_full(struct size_class *class, struct zspage *zspage)1222 static bool zspage_full(struct size_class *class, struct zspage *zspage)
1223 {
1224 return get_zspage_inuse(zspage) == class->objs_per_zspage;
1225 }
1226
zs_get_total_pages(struct zs_pool *pool)1227 unsigned long zs_get_total_pages(struct zs_pool *pool)
1228 {
1229 return atomic_long_read(&pool->pages_allocated);
1230 }
1231 EXPORT_SYMBOL_GPL(zs_get_total_pages);
1232
1233 /**
1234 * zs_map_object - get address of allocated object from handle.
1235 * @pool: pool from which the object was allocated
1236 * @handle: handle returned from zs_malloc
1237 * @mm: maping mode to use
1238 *
1239 * Before using an object allocated from zs_malloc, it must be mapped using
1240 * this function. When done with the object, it must be unmapped using
1241 * zs_unmap_object.
1242 *
1243 * Only one object can be mapped per cpu at a time. There is no protection
1244 * against nested mappings.
1245 *
1246 * This function returns with preemption and page faults disabled.
1247 */
zs_map_object(struct zs_pool *pool, unsigned long handle, enum zs_mapmode mm)1248 void *zs_map_object(struct zs_pool *pool, unsigned long handle,
1249 enum zs_mapmode mm)
1250 {
1251 struct zspage *zspage;
1252 struct page *page;
1253 unsigned long obj, off;
1254 unsigned int obj_idx;
1255
1256 unsigned int class_idx;
1257 enum fullness_group fg;
1258 struct size_class *class;
1259 struct mapping_area *area;
1260 struct page *pages[2];
1261 void *ret;
1262
1263 /*
1264 * Because we use per-cpu mapping areas shared among the
1265 * pools/users, we can't allow mapping in interrupt context
1266 * because it can corrupt another users mappings.
1267 */
1268 BUG_ON(in_interrupt());
1269
1270 /* From now on, migration cannot move the object */
1271 pin_tag(handle);
1272
1273 obj = handle_to_obj(handle);
1274 obj_to_location(obj, &page, &obj_idx);
1275 zspage = get_zspage(page);
1276
1277 /* migration cannot move any subpage in this zspage */
1278 migrate_read_lock(zspage);
1279
1280 get_zspage_mapping(zspage, &class_idx, &fg);
1281 class = pool->size_class[class_idx];
1282 off = (class->size * obj_idx) & ~PAGE_MASK;
1283
1284 area = &get_cpu_var(zs_map_area);
1285 area->vm_mm = mm;
1286 if (off + class->size <= PAGE_SIZE) {
1287 /* this object is contained entirely within a page */
1288 area->vm_addr = kmap_atomic(page);
1289 ret = area->vm_addr + off;
1290 goto out;
1291 }
1292
1293 /* this object spans two pages */
1294 pages[0] = page;
1295 pages[1] = get_next_page(page);
1296 BUG_ON(!pages[1]);
1297
1298 ret = __zs_map_object(area, pages, off, class->size);
1299 out:
1300 if (likely(!PageHugeObject(page)))
1301 ret += ZS_HANDLE_SIZE;
1302
1303 return ret;
1304 }
1305 EXPORT_SYMBOL_GPL(zs_map_object);
1306
zs_unmap_object(struct zs_pool *pool, unsigned long handle)1307 void zs_unmap_object(struct zs_pool *pool, unsigned long handle)
1308 {
1309 struct zspage *zspage;
1310 struct page *page;
1311 unsigned long obj, off;
1312 unsigned int obj_idx;
1313
1314 unsigned int class_idx;
1315 enum fullness_group fg;
1316 struct size_class *class;
1317 struct mapping_area *area;
1318
1319 obj = handle_to_obj(handle);
1320 obj_to_location(obj, &page, &obj_idx);
1321 zspage = get_zspage(page);
1322 get_zspage_mapping(zspage, &class_idx, &fg);
1323 class = pool->size_class[class_idx];
1324 off = (class->size * obj_idx) & ~PAGE_MASK;
1325
1326 area = this_cpu_ptr(&zs_map_area);
1327 if (off + class->size <= PAGE_SIZE)
1328 kunmap_atomic(area->vm_addr);
1329 else {
1330 struct page *pages[2];
1331
1332 pages[0] = page;
1333 pages[1] = get_next_page(page);
1334 BUG_ON(!pages[1]);
1335
1336 __zs_unmap_object(area, pages, off, class->size);
1337 }
1338 put_cpu_var(zs_map_area);
1339
1340 migrate_read_unlock(zspage);
1341 unpin_tag(handle);
1342 }
1343 EXPORT_SYMBOL_GPL(zs_unmap_object);
1344
1345 /**
1346 * zs_huge_class_size() - Returns the size (in bytes) of the first huge
1347 * zsmalloc &size_class.
1348 * @pool: zsmalloc pool to use
1349 *
1350 * The function returns the size of the first huge class - any object of equal
1351 * or bigger size will be stored in zspage consisting of a single physical
1352 * page.
1353 *
1354 * Context: Any context.
1355 *
1356 * Return: the size (in bytes) of the first huge zsmalloc &size_class.
1357 */
zs_huge_class_size(struct zs_pool *pool)1358 size_t zs_huge_class_size(struct zs_pool *pool)
1359 {
1360 return huge_class_size;
1361 }
1362 EXPORT_SYMBOL_GPL(zs_huge_class_size);
1363
obj_malloc(struct size_class *class, struct zspage *zspage, unsigned long handle)1364 static unsigned long obj_malloc(struct size_class *class,
1365 struct zspage *zspage, unsigned long handle)
1366 {
1367 int i, nr_page, offset;
1368 unsigned long obj;
1369 struct link_free *link;
1370
1371 struct page *m_page;
1372 unsigned long m_offset;
1373 void *vaddr;
1374
1375 handle |= OBJ_ALLOCATED_TAG;
1376 obj = get_freeobj(zspage);
1377
1378 offset = obj * class->size;
1379 nr_page = offset >> PAGE_SHIFT;
1380 m_offset = offset & ~PAGE_MASK;
1381 m_page = get_first_page(zspage);
1382
1383 for (i = 0; i < nr_page; i++)
1384 m_page = get_next_page(m_page);
1385
1386 vaddr = kmap_atomic(m_page);
1387 link = (struct link_free *)vaddr + m_offset / sizeof(*link);
1388 set_freeobj(zspage, link->next >> OBJ_TAG_BITS);
1389 if (likely(!PageHugeObject(m_page)))
1390 /* record handle in the header of allocated chunk */
1391 link->handle = handle;
1392 else
1393 /* record handle to page->index */
1394 zspage->first_page->index = handle;
1395
1396 kunmap_atomic(vaddr);
1397 mod_zspage_inuse(zspage, 1);
1398 zs_stat_inc(class, OBJ_USED, 1);
1399
1400 obj = location_to_obj(m_page, obj);
1401
1402 return obj;
1403 }
1404
1405
1406 /**
1407 * zs_malloc - Allocate block of given size from pool.
1408 * @pool: pool to allocate from
1409 * @size: size of block to allocate
1410 * @gfp: gfp flags when allocating object
1411 *
1412 * On success, handle to the allocated object is returned,
1413 * otherwise 0.
1414 * Allocation requests with size > ZS_MAX_ALLOC_SIZE will fail.
1415 */
zs_malloc(struct zs_pool *pool, size_t size, gfp_t gfp)1416 unsigned long zs_malloc(struct zs_pool *pool, size_t size, gfp_t gfp)
1417 {
1418 unsigned long handle, obj;
1419 struct size_class *class;
1420 enum fullness_group newfg;
1421 struct zspage *zspage;
1422
1423 if (unlikely(!size || size > ZS_MAX_ALLOC_SIZE))
1424 return 0;
1425
1426 handle = cache_alloc_handle(pool, gfp);
1427 if (!handle)
1428 return 0;
1429
1430 /* extra space in chunk to keep the handle */
1431 size += ZS_HANDLE_SIZE;
1432 class = pool->size_class[get_size_class_index(size)];
1433
1434 spin_lock(&class->lock);
1435 zspage = find_get_zspage(class);
1436 if (likely(zspage)) {
1437 obj = obj_malloc(class, zspage, handle);
1438 /* Now move the zspage to another fullness group, if required */
1439 fix_fullness_group(class, zspage);
1440 record_obj(handle, obj);
1441 spin_unlock(&class->lock);
1442
1443 return handle;
1444 }
1445
1446 spin_unlock(&class->lock);
1447
1448 zspage = alloc_zspage(pool, class, gfp);
1449 if (!zspage) {
1450 cache_free_handle(pool, handle);
1451 return 0;
1452 }
1453
1454 spin_lock(&class->lock);
1455 obj = obj_malloc(class, zspage, handle);
1456 newfg = get_fullness_group(class, zspage);
1457 insert_zspage(class, zspage, newfg);
1458 set_zspage_mapping(zspage, class->index, newfg);
1459 record_obj(handle, obj);
1460 atomic_long_add(class->pages_per_zspage,
1461 &pool->pages_allocated);
1462 zs_stat_inc(class, OBJ_ALLOCATED, class->objs_per_zspage);
1463
1464 /* We completely set up zspage so mark them as movable */
1465 SetZsPageMovable(pool, zspage);
1466 spin_unlock(&class->lock);
1467
1468 return handle;
1469 }
1470 EXPORT_SYMBOL_GPL(zs_malloc);
1471
obj_free(struct size_class *class, unsigned long obj)1472 static void obj_free(struct size_class *class, unsigned long obj)
1473 {
1474 struct link_free *link;
1475 struct zspage *zspage;
1476 struct page *f_page;
1477 unsigned long f_offset;
1478 unsigned int f_objidx;
1479 void *vaddr;
1480
1481 obj &= ~OBJ_ALLOCATED_TAG;
1482 obj_to_location(obj, &f_page, &f_objidx);
1483 f_offset = (class->size * f_objidx) & ~PAGE_MASK;
1484 zspage = get_zspage(f_page);
1485
1486 vaddr = kmap_atomic(f_page);
1487
1488 /* Insert this object in containing zspage's freelist */
1489 link = (struct link_free *)(vaddr + f_offset);
1490 link->next = get_freeobj(zspage) << OBJ_TAG_BITS;
1491 kunmap_atomic(vaddr);
1492 set_freeobj(zspage, f_objidx);
1493 mod_zspage_inuse(zspage, -1);
1494 zs_stat_dec(class, OBJ_USED, 1);
1495 }
1496
zs_free(struct zs_pool *pool, unsigned long handle)1497 void zs_free(struct zs_pool *pool, unsigned long handle)
1498 {
1499 struct zspage *zspage;
1500 struct page *f_page;
1501 unsigned long obj;
1502 unsigned int f_objidx;
1503 int class_idx;
1504 struct size_class *class;
1505 enum fullness_group fullness;
1506 bool isolated;
1507
1508 if (unlikely(!handle))
1509 return;
1510
1511 pin_tag(handle);
1512 obj = handle_to_obj(handle);
1513 obj_to_location(obj, &f_page, &f_objidx);
1514 zspage = get_zspage(f_page);
1515
1516 migrate_read_lock(zspage);
1517
1518 get_zspage_mapping(zspage, &class_idx, &fullness);
1519 class = pool->size_class[class_idx];
1520
1521 spin_lock(&class->lock);
1522 obj_free(class, obj);
1523 fullness = fix_fullness_group(class, zspage);
1524 if (fullness != ZS_EMPTY) {
1525 migrate_read_unlock(zspage);
1526 goto out;
1527 }
1528
1529 isolated = is_zspage_isolated(zspage);
1530 migrate_read_unlock(zspage);
1531 /* If zspage is isolated, zs_page_putback will free the zspage */
1532 if (likely(!isolated))
1533 free_zspage(pool, class, zspage);
1534 out:
1535
1536 spin_unlock(&class->lock);
1537 unpin_tag(handle);
1538 cache_free_handle(pool, handle);
1539 }
1540 EXPORT_SYMBOL_GPL(zs_free);
1541
zs_object_copy(struct size_class *class, unsigned long dst, unsigned long src)1542 static void zs_object_copy(struct size_class *class, unsigned long dst,
1543 unsigned long src)
1544 {
1545 struct page *s_page, *d_page;
1546 unsigned int s_objidx, d_objidx;
1547 unsigned long s_off, d_off;
1548 void *s_addr, *d_addr;
1549 int s_size, d_size, size;
1550 int written = 0;
1551
1552 s_size = d_size = class->size;
1553
1554 obj_to_location(src, &s_page, &s_objidx);
1555 obj_to_location(dst, &d_page, &d_objidx);
1556
1557 s_off = (class->size * s_objidx) & ~PAGE_MASK;
1558 d_off = (class->size * d_objidx) & ~PAGE_MASK;
1559
1560 if (s_off + class->size > PAGE_SIZE)
1561 s_size = PAGE_SIZE - s_off;
1562
1563 if (d_off + class->size > PAGE_SIZE)
1564 d_size = PAGE_SIZE - d_off;
1565
1566 s_addr = kmap_atomic(s_page);
1567 d_addr = kmap_atomic(d_page);
1568
1569 while (1) {
1570 size = min(s_size, d_size);
1571 memcpy(d_addr + d_off, s_addr + s_off, size);
1572 written += size;
1573
1574 if (written == class->size)
1575 break;
1576
1577 s_off += size;
1578 s_size -= size;
1579 d_off += size;
1580 d_size -= size;
1581
1582 if (s_off >= PAGE_SIZE) {
1583 kunmap_atomic(d_addr);
1584 kunmap_atomic(s_addr);
1585 s_page = get_next_page(s_page);
1586 s_addr = kmap_atomic(s_page);
1587 d_addr = kmap_atomic(d_page);
1588 s_size = class->size - written;
1589 s_off = 0;
1590 }
1591
1592 if (d_off >= PAGE_SIZE) {
1593 kunmap_atomic(d_addr);
1594 d_page = get_next_page(d_page);
1595 d_addr = kmap_atomic(d_page);
1596 d_size = class->size - written;
1597 d_off = 0;
1598 }
1599 }
1600
1601 kunmap_atomic(d_addr);
1602 kunmap_atomic(s_addr);
1603 }
1604
1605 /*
1606 * Find alloced object in zspage from index object and
1607 * return handle.
1608 */
find_alloced_obj(struct size_class *class, struct page *page, int *obj_idx)1609 static unsigned long find_alloced_obj(struct size_class *class,
1610 struct page *page, int *obj_idx)
1611 {
1612 unsigned long head;
1613 int offset = 0;
1614 int index = *obj_idx;
1615 unsigned long handle = 0;
1616 void *addr = kmap_atomic(page);
1617
1618 offset = get_first_obj_offset(page);
1619 offset += class->size * index;
1620
1621 while (offset < PAGE_SIZE) {
1622 head = obj_to_head(page, addr + offset);
1623 if (head & OBJ_ALLOCATED_TAG) {
1624 handle = head & ~OBJ_ALLOCATED_TAG;
1625 if (trypin_tag(handle))
1626 break;
1627 handle = 0;
1628 }
1629
1630 offset += class->size;
1631 index++;
1632 }
1633
1634 kunmap_atomic(addr);
1635
1636 *obj_idx = index;
1637
1638 return handle;
1639 }
1640
1641 struct zs_compact_control {
1642 /* Source spage for migration which could be a subpage of zspage */
1643 struct page *s_page;
1644 /* Destination page for migration which should be a first page
1645 * of zspage. */
1646 struct page *d_page;
1647 /* Starting object index within @s_page which used for live object
1648 * in the subpage. */
1649 int obj_idx;
1650 };
1651
migrate_zspage(struct zs_pool *pool, struct size_class *class, struct zs_compact_control *cc)1652 static int migrate_zspage(struct zs_pool *pool, struct size_class *class,
1653 struct zs_compact_control *cc)
1654 {
1655 unsigned long used_obj, free_obj;
1656 unsigned long handle;
1657 struct page *s_page = cc->s_page;
1658 struct page *d_page = cc->d_page;
1659 int obj_idx = cc->obj_idx;
1660 int ret = 0;
1661
1662 while (1) {
1663 handle = find_alloced_obj(class, s_page, &obj_idx);
1664 if (!handle) {
1665 s_page = get_next_page(s_page);
1666 if (!s_page)
1667 break;
1668 obj_idx = 0;
1669 continue;
1670 }
1671
1672 /* Stop if there is no more space */
1673 if (zspage_full(class, get_zspage(d_page))) {
1674 unpin_tag(handle);
1675 ret = -ENOMEM;
1676 break;
1677 }
1678
1679 used_obj = handle_to_obj(handle);
1680 free_obj = obj_malloc(class, get_zspage(d_page), handle);
1681 zs_object_copy(class, free_obj, used_obj);
1682 obj_idx++;
1683 /*
1684 * record_obj updates handle's value to free_obj and it will
1685 * invalidate lock bit(ie, HANDLE_PIN_BIT) of handle, which
1686 * breaks synchronization using pin_tag(e,g, zs_free) so
1687 * let's keep the lock bit.
1688 */
1689 free_obj |= BIT(HANDLE_PIN_BIT);
1690 record_obj(handle, free_obj);
1691 unpin_tag(handle);
1692 obj_free(class, used_obj);
1693 }
1694
1695 /* Remember last position in this iteration */
1696 cc->s_page = s_page;
1697 cc->obj_idx = obj_idx;
1698
1699 return ret;
1700 }
1701
isolate_zspage(struct size_class *class, bool source)1702 static struct zspage *isolate_zspage(struct size_class *class, bool source)
1703 {
1704 int i;
1705 struct zspage *zspage;
1706 enum fullness_group fg[2] = {ZS_ALMOST_EMPTY, ZS_ALMOST_FULL};
1707
1708 if (!source) {
1709 fg[0] = ZS_ALMOST_FULL;
1710 fg[1] = ZS_ALMOST_EMPTY;
1711 }
1712
1713 for (i = 0; i < 2; i++) {
1714 zspage = list_first_entry_or_null(&class->fullness_list[fg[i]],
1715 struct zspage, list);
1716 if (zspage) {
1717 VM_BUG_ON(is_zspage_isolated(zspage));
1718 remove_zspage(class, zspage, fg[i]);
1719 return zspage;
1720 }
1721 }
1722
1723 return zspage;
1724 }
1725
1726 /*
1727 * putback_zspage - add @zspage into right class's fullness list
1728 * @class: destination class
1729 * @zspage: target page
1730 *
1731 * Return @zspage's fullness_group
1732 */
putback_zspage(struct size_class *class, struct zspage *zspage)1733 static enum fullness_group putback_zspage(struct size_class *class,
1734 struct zspage *zspage)
1735 {
1736 enum fullness_group fullness;
1737
1738 VM_BUG_ON(is_zspage_isolated(zspage));
1739
1740 fullness = get_fullness_group(class, zspage);
1741 insert_zspage(class, zspage, fullness);
1742 set_zspage_mapping(zspage, class->index, fullness);
1743
1744 return fullness;
1745 }
1746
1747 #ifdef CONFIG_COMPACTION
1748 /*
1749 * To prevent zspage destroy during migration, zspage freeing should
1750 * hold locks of all pages in the zspage.
1751 */
lock_zspage(struct zspage *zspage)1752 static void lock_zspage(struct zspage *zspage)
1753 {
1754 struct page *curr_page, *page;
1755
1756 /*
1757 * Pages we haven't locked yet can be migrated off the list while we're
1758 * trying to lock them, so we need to be careful and only attempt to
1759 * lock each page under migrate_read_lock(). Otherwise, the page we lock
1760 * may no longer belong to the zspage. This means that we may wait for
1761 * the wrong page to unlock, so we must take a reference to the page
1762 * prior to waiting for it to unlock outside migrate_read_lock().
1763 */
1764 while (1) {
1765 migrate_read_lock(zspage);
1766 page = get_first_page(zspage);
1767 if (trylock_page(page))
1768 break;
1769 get_page(page);
1770 migrate_read_unlock(zspage);
1771 wait_on_page_locked(page);
1772 put_page(page);
1773 }
1774
1775 curr_page = page;
1776 while ((page = get_next_page(curr_page))) {
1777 if (trylock_page(page)) {
1778 curr_page = page;
1779 } else {
1780 get_page(page);
1781 migrate_read_unlock(zspage);
1782 wait_on_page_locked(page);
1783 put_page(page);
1784 migrate_read_lock(zspage);
1785 }
1786 }
1787 migrate_read_unlock(zspage);
1788 }
1789
zs_init_fs_context(struct fs_context *fc)1790 static int zs_init_fs_context(struct fs_context *fc)
1791 {
1792 return init_pseudo(fc, ZSMALLOC_MAGIC) ? 0 : -ENOMEM;
1793 }
1794
1795 static struct file_system_type zsmalloc_fs = {
1796 .name = "zsmalloc",
1797 .init_fs_context = zs_init_fs_context,
1798 .kill_sb = kill_anon_super,
1799 };
1800
zsmalloc_mount(void)1801 static int zsmalloc_mount(void)
1802 {
1803 int ret = 0;
1804
1805 zsmalloc_mnt = kern_mount(&zsmalloc_fs);
1806 if (IS_ERR(zsmalloc_mnt))
1807 ret = PTR_ERR(zsmalloc_mnt);
1808
1809 return ret;
1810 }
1811
zsmalloc_unmount(void)1812 static void zsmalloc_unmount(void)
1813 {
1814 kern_unmount(zsmalloc_mnt);
1815 }
1816
migrate_lock_init(struct zspage *zspage)1817 static void migrate_lock_init(struct zspage *zspage)
1818 {
1819 rwlock_init(&zspage->lock);
1820 }
1821
1822 static void migrate_read_lock(struct zspage *zspage) __acquires(&zspage->lock)
1823 {
1824 read_lock(&zspage->lock);
1825 }
1826
1827 static void migrate_read_unlock(struct zspage *zspage) __releases(&zspage->lock)
1828 {
1829 read_unlock(&zspage->lock);
1830 }
1831
migrate_write_lock(struct zspage *zspage)1832 static void migrate_write_lock(struct zspage *zspage)
1833 {
1834 write_lock(&zspage->lock);
1835 }
1836
migrate_write_unlock(struct zspage *zspage)1837 static void migrate_write_unlock(struct zspage *zspage)
1838 {
1839 write_unlock(&zspage->lock);
1840 }
1841
1842 /* Number of isolated subpage for *page migration* in this zspage */
inc_zspage_isolation(struct zspage *zspage)1843 static void inc_zspage_isolation(struct zspage *zspage)
1844 {
1845 zspage->isolated++;
1846 }
1847
dec_zspage_isolation(struct zspage *zspage)1848 static void dec_zspage_isolation(struct zspage *zspage)
1849 {
1850 zspage->isolated--;
1851 }
1852
putback_zspage_deferred(struct zs_pool *pool, struct size_class *class, struct zspage *zspage)1853 static void putback_zspage_deferred(struct zs_pool *pool,
1854 struct size_class *class,
1855 struct zspage *zspage)
1856 {
1857 enum fullness_group fg;
1858
1859 fg = putback_zspage(class, zspage);
1860 if (fg == ZS_EMPTY)
1861 schedule_work(&pool->free_work);
1862
1863 }
1864
zs_pool_dec_isolated(struct zs_pool *pool)1865 static inline void zs_pool_dec_isolated(struct zs_pool *pool)
1866 {
1867 VM_BUG_ON(atomic_long_read(&pool->isolated_pages) <= 0);
1868 atomic_long_dec(&pool->isolated_pages);
1869 /*
1870 * Checking pool->destroying must happen after atomic_long_dec()
1871 * for pool->isolated_pages above. Paired with the smp_mb() in
1872 * zs_unregister_migration().
1873 */
1874 smp_mb__after_atomic();
1875 if (atomic_long_read(&pool->isolated_pages) == 0 && pool->destroying)
1876 wake_up_all(&pool->migration_wait);
1877 }
1878
replace_sub_page(struct size_class *class, struct zspage *zspage, struct page *newpage, struct page *oldpage)1879 static void replace_sub_page(struct size_class *class, struct zspage *zspage,
1880 struct page *newpage, struct page *oldpage)
1881 {
1882 struct page *page;
1883 struct page *pages[ZS_MAX_PAGES_PER_ZSPAGE] = {NULL, };
1884 int idx = 0;
1885
1886 page = get_first_page(zspage);
1887 do {
1888 if (page == oldpage)
1889 pages[idx] = newpage;
1890 else
1891 pages[idx] = page;
1892 idx++;
1893 } while ((page = get_next_page(page)) != NULL);
1894
1895 create_page_chain(class, zspage, pages);
1896 set_first_obj_offset(newpage, get_first_obj_offset(oldpage));
1897 if (unlikely(PageHugeObject(oldpage)))
1898 newpage->index = oldpage->index;
1899 __SetPageMovable(newpage, page_mapping(oldpage));
1900 }
1901
zs_page_isolate(struct page *page, isolate_mode_t mode)1902 static bool zs_page_isolate(struct page *page, isolate_mode_t mode)
1903 {
1904 struct zs_pool *pool;
1905 struct size_class *class;
1906 int class_idx;
1907 enum fullness_group fullness;
1908 struct zspage *zspage;
1909 struct address_space *mapping;
1910
1911 /*
1912 * Page is locked so zspage couldn't be destroyed. For detail, look at
1913 * lock_zspage in free_zspage.
1914 */
1915 VM_BUG_ON_PAGE(!PageMovable(page), page);
1916 VM_BUG_ON_PAGE(PageIsolated(page), page);
1917
1918 zspage = get_zspage(page);
1919
1920 /*
1921 * Without class lock, fullness could be stale while class_idx is okay
1922 * because class_idx is constant unless page is freed so we should get
1923 * fullness again under class lock.
1924 */
1925 get_zspage_mapping(zspage, &class_idx, &fullness);
1926 mapping = page_mapping(page);
1927 pool = mapping->private_data;
1928 class = pool->size_class[class_idx];
1929
1930 spin_lock(&class->lock);
1931 if (get_zspage_inuse(zspage) == 0) {
1932 spin_unlock(&class->lock);
1933 return false;
1934 }
1935
1936 /* zspage is isolated for object migration */
1937 if (list_empty(&zspage->list) && !is_zspage_isolated(zspage)) {
1938 spin_unlock(&class->lock);
1939 return false;
1940 }
1941
1942 /*
1943 * If this is first time isolation for the zspage, isolate zspage from
1944 * size_class to prevent further object allocation from the zspage.
1945 */
1946 if (!list_empty(&zspage->list) && !is_zspage_isolated(zspage)) {
1947 get_zspage_mapping(zspage, &class_idx, &fullness);
1948 atomic_long_inc(&pool->isolated_pages);
1949 remove_zspage(class, zspage, fullness);
1950 }
1951
1952 inc_zspage_isolation(zspage);
1953 spin_unlock(&class->lock);
1954
1955 return true;
1956 }
1957
zs_page_migrate(struct address_space *mapping, struct page *newpage, struct page *page, enum migrate_mode mode)1958 static int zs_page_migrate(struct address_space *mapping, struct page *newpage,
1959 struct page *page, enum migrate_mode mode)
1960 {
1961 struct zs_pool *pool;
1962 struct size_class *class;
1963 int class_idx;
1964 enum fullness_group fullness;
1965 struct zspage *zspage;
1966 struct page *dummy;
1967 void *s_addr, *d_addr, *addr;
1968 int offset, pos;
1969 unsigned long handle, head;
1970 unsigned long old_obj, new_obj;
1971 unsigned int obj_idx;
1972 int ret = -EAGAIN;
1973
1974 /*
1975 * We cannot support the _NO_COPY case here, because copy needs to
1976 * happen under the zs lock, which does not work with
1977 * MIGRATE_SYNC_NO_COPY workflow.
1978 */
1979 if (mode == MIGRATE_SYNC_NO_COPY)
1980 return -EINVAL;
1981
1982 VM_BUG_ON_PAGE(!PageMovable(page), page);
1983 VM_BUG_ON_PAGE(!PageIsolated(page), page);
1984
1985 zspage = get_zspage(page);
1986
1987 /* Concurrent compactor cannot migrate any subpage in zspage */
1988 migrate_write_lock(zspage);
1989 get_zspage_mapping(zspage, &class_idx, &fullness);
1990 pool = mapping->private_data;
1991 class = pool->size_class[class_idx];
1992 offset = get_first_obj_offset(page);
1993
1994 spin_lock(&class->lock);
1995 if (!get_zspage_inuse(zspage)) {
1996 /*
1997 * Set "offset" to end of the page so that every loops
1998 * skips unnecessary object scanning.
1999 */
2000 offset = PAGE_SIZE;
2001 }
2002
2003 pos = offset;
2004 s_addr = kmap_atomic(page);
2005 while (pos < PAGE_SIZE) {
2006 head = obj_to_head(page, s_addr + pos);
2007 if (head & OBJ_ALLOCATED_TAG) {
2008 handle = head & ~OBJ_ALLOCATED_TAG;
2009 if (!trypin_tag(handle))
2010 goto unpin_objects;
2011 }
2012 pos += class->size;
2013 }
2014
2015 /*
2016 * Here, any user cannot access all objects in the zspage so let's move.
2017 */
2018 d_addr = kmap_atomic(newpage);
2019 memcpy(d_addr, s_addr, PAGE_SIZE);
2020 kunmap_atomic(d_addr);
2021
2022 for (addr = s_addr + offset; addr < s_addr + pos;
2023 addr += class->size) {
2024 head = obj_to_head(page, addr);
2025 if (head & OBJ_ALLOCATED_TAG) {
2026 handle = head & ~OBJ_ALLOCATED_TAG;
2027 if (!testpin_tag(handle))
2028 BUG();
2029
2030 old_obj = handle_to_obj(handle);
2031 obj_to_location(old_obj, &dummy, &obj_idx);
2032 new_obj = (unsigned long)location_to_obj(newpage,
2033 obj_idx);
2034 new_obj |= BIT(HANDLE_PIN_BIT);
2035 record_obj(handle, new_obj);
2036 }
2037 }
2038
2039 replace_sub_page(class, zspage, newpage, page);
2040 get_page(newpage);
2041
2042 dec_zspage_isolation(zspage);
2043
2044 /*
2045 * Page migration is done so let's putback isolated zspage to
2046 * the list if @page is final isolated subpage in the zspage.
2047 */
2048 if (!is_zspage_isolated(zspage)) {
2049 /*
2050 * We cannot race with zs_destroy_pool() here because we wait
2051 * for isolation to hit zero before we start destroying.
2052 * Also, we ensure that everyone can see pool->destroying before
2053 * we start waiting.
2054 */
2055 putback_zspage_deferred(pool, class, zspage);
2056 zs_pool_dec_isolated(pool);
2057 }
2058
2059 if (page_zone(newpage) != page_zone(page)) {
2060 dec_zone_page_state(page, NR_ZSPAGES);
2061 inc_zone_page_state(newpage, NR_ZSPAGES);
2062 }
2063
2064 reset_page(page);
2065 put_page(page);
2066 page = newpage;
2067
2068 ret = MIGRATEPAGE_SUCCESS;
2069 unpin_objects:
2070 for (addr = s_addr + offset; addr < s_addr + pos;
2071 addr += class->size) {
2072 head = obj_to_head(page, addr);
2073 if (head & OBJ_ALLOCATED_TAG) {
2074 handle = head & ~OBJ_ALLOCATED_TAG;
2075 if (!testpin_tag(handle))
2076 BUG();
2077 unpin_tag(handle);
2078 }
2079 }
2080 kunmap_atomic(s_addr);
2081 spin_unlock(&class->lock);
2082 migrate_write_unlock(zspage);
2083
2084 return ret;
2085 }
2086
zs_page_putback(struct page *page)2087 static void zs_page_putback(struct page *page)
2088 {
2089 struct zs_pool *pool;
2090 struct size_class *class;
2091 int class_idx;
2092 enum fullness_group fg;
2093 struct address_space *mapping;
2094 struct zspage *zspage;
2095
2096 VM_BUG_ON_PAGE(!PageMovable(page), page);
2097 VM_BUG_ON_PAGE(!PageIsolated(page), page);
2098
2099 zspage = get_zspage(page);
2100 get_zspage_mapping(zspage, &class_idx, &fg);
2101 mapping = page_mapping(page);
2102 pool = mapping->private_data;
2103 class = pool->size_class[class_idx];
2104
2105 spin_lock(&class->lock);
2106 dec_zspage_isolation(zspage);
2107 if (!is_zspage_isolated(zspage)) {
2108 /*
2109 * Due to page_lock, we cannot free zspage immediately
2110 * so let's defer.
2111 */
2112 putback_zspage_deferred(pool, class, zspage);
2113 zs_pool_dec_isolated(pool);
2114 }
2115 spin_unlock(&class->lock);
2116 }
2117
2118 static const struct address_space_operations zsmalloc_aops = {
2119 .isolate_page = zs_page_isolate,
2120 .migratepage = zs_page_migrate,
2121 .putback_page = zs_page_putback,
2122 };
2123
zs_register_migration(struct zs_pool *pool)2124 static int zs_register_migration(struct zs_pool *pool)
2125 {
2126 pool->inode = alloc_anon_inode(zsmalloc_mnt->mnt_sb);
2127 if (IS_ERR(pool->inode)) {
2128 pool->inode = NULL;
2129 return 1;
2130 }
2131
2132 pool->inode->i_mapping->private_data = pool;
2133 pool->inode->i_mapping->a_ops = &zsmalloc_aops;
2134 return 0;
2135 }
2136
pool_isolated_are_drained(struct zs_pool *pool)2137 static bool pool_isolated_are_drained(struct zs_pool *pool)
2138 {
2139 return atomic_long_read(&pool->isolated_pages) == 0;
2140 }
2141
2142 /* Function for resolving migration */
wait_for_isolated_drain(struct zs_pool *pool)2143 static void wait_for_isolated_drain(struct zs_pool *pool)
2144 {
2145
2146 /*
2147 * We're in the process of destroying the pool, so there are no
2148 * active allocations. zs_page_isolate() fails for completely free
2149 * zspages, so we need only wait for the zs_pool's isolated
2150 * count to hit zero.
2151 */
2152 wait_event(pool->migration_wait,
2153 pool_isolated_are_drained(pool));
2154 }
2155
zs_unregister_migration(struct zs_pool *pool)2156 static void zs_unregister_migration(struct zs_pool *pool)
2157 {
2158 pool->destroying = true;
2159 /*
2160 * We need a memory barrier here to ensure global visibility of
2161 * pool->destroying. Thus pool->isolated pages will either be 0 in which
2162 * case we don't care, or it will be > 0 and pool->destroying will
2163 * ensure that we wake up once isolation hits 0.
2164 */
2165 smp_mb();
2166 wait_for_isolated_drain(pool); /* This can block */
2167 flush_work(&pool->free_work);
2168 iput(pool->inode);
2169 }
2170
2171 /*
2172 * Caller should hold page_lock of all pages in the zspage
2173 * In here, we cannot use zspage meta data.
2174 */
async_free_zspage(struct work_struct *work)2175 static void async_free_zspage(struct work_struct *work)
2176 {
2177 int i;
2178 struct size_class *class;
2179 unsigned int class_idx;
2180 enum fullness_group fullness;
2181 struct zspage *zspage, *tmp;
2182 LIST_HEAD(free_pages);
2183 struct zs_pool *pool = container_of(work, struct zs_pool,
2184 free_work);
2185
2186 for (i = 0; i < ZS_SIZE_CLASSES; i++) {
2187 class = pool->size_class[i];
2188 if (class->index != i)
2189 continue;
2190
2191 spin_lock(&class->lock);
2192 list_splice_init(&class->fullness_list[ZS_EMPTY], &free_pages);
2193 spin_unlock(&class->lock);
2194 }
2195
2196
2197 list_for_each_entry_safe(zspage, tmp, &free_pages, list) {
2198 list_del(&zspage->list);
2199 lock_zspage(zspage);
2200
2201 get_zspage_mapping(zspage, &class_idx, &fullness);
2202 VM_BUG_ON(fullness != ZS_EMPTY);
2203 class = pool->size_class[class_idx];
2204 spin_lock(&class->lock);
2205 __free_zspage(pool, pool->size_class[class_idx], zspage);
2206 spin_unlock(&class->lock);
2207 }
2208 };
2209
kick_deferred_free(struct zs_pool *pool)2210 static void kick_deferred_free(struct zs_pool *pool)
2211 {
2212 schedule_work(&pool->free_work);
2213 }
2214
init_deferred_free(struct zs_pool *pool)2215 static void init_deferred_free(struct zs_pool *pool)
2216 {
2217 INIT_WORK(&pool->free_work, async_free_zspage);
2218 }
2219
SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage)2220 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage)
2221 {
2222 struct page *page = get_first_page(zspage);
2223
2224 do {
2225 WARN_ON(!trylock_page(page));
2226 __SetPageMovable(page, pool->inode->i_mapping);
2227 unlock_page(page);
2228 } while ((page = get_next_page(page)) != NULL);
2229 }
2230 #endif
2231
2232 /*
2233 *
2234 * Based on the number of unused allocated objects calculate
2235 * and return the number of pages that we can free.
2236 */
zs_can_compact(struct size_class *class)2237 static unsigned long zs_can_compact(struct size_class *class)
2238 {
2239 unsigned long obj_wasted;
2240 unsigned long obj_allocated = zs_stat_get(class, OBJ_ALLOCATED);
2241 unsigned long obj_used = zs_stat_get(class, OBJ_USED);
2242
2243 if (obj_allocated <= obj_used)
2244 return 0;
2245
2246 obj_wasted = obj_allocated - obj_used;
2247 obj_wasted /= class->objs_per_zspage;
2248
2249 return obj_wasted * class->pages_per_zspage;
2250 }
2251
__zs_compact(struct zs_pool *pool, struct size_class *class)2252 static unsigned long __zs_compact(struct zs_pool *pool,
2253 struct size_class *class)
2254 {
2255 struct zs_compact_control cc;
2256 struct zspage *src_zspage;
2257 struct zspage *dst_zspage = NULL;
2258 unsigned long pages_freed = 0;
2259
2260 spin_lock(&class->lock);
2261 while ((src_zspage = isolate_zspage(class, true))) {
2262
2263 if (!zs_can_compact(class))
2264 break;
2265
2266 cc.obj_idx = 0;
2267 cc.s_page = get_first_page(src_zspage);
2268
2269 while ((dst_zspage = isolate_zspage(class, false))) {
2270 cc.d_page = get_first_page(dst_zspage);
2271 /*
2272 * If there is no more space in dst_page, resched
2273 * and see if anyone had allocated another zspage.
2274 */
2275 if (!migrate_zspage(pool, class, &cc))
2276 break;
2277
2278 putback_zspage(class, dst_zspage);
2279 }
2280
2281 /* Stop if we couldn't find slot */
2282 if (dst_zspage == NULL)
2283 break;
2284
2285 putback_zspage(class, dst_zspage);
2286 if (putback_zspage(class, src_zspage) == ZS_EMPTY) {
2287 free_zspage(pool, class, src_zspage);
2288 pages_freed += class->pages_per_zspage;
2289 }
2290 spin_unlock(&class->lock);
2291 cond_resched();
2292 spin_lock(&class->lock);
2293 }
2294
2295 if (src_zspage)
2296 putback_zspage(class, src_zspage);
2297
2298 spin_unlock(&class->lock);
2299
2300 return pages_freed;
2301 }
2302
zs_compact(struct zs_pool *pool)2303 unsigned long zs_compact(struct zs_pool *pool)
2304 {
2305 int i;
2306 struct size_class *class;
2307 unsigned long pages_freed = 0;
2308
2309 for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
2310 class = pool->size_class[i];
2311 if (!class)
2312 continue;
2313 if (class->index != i)
2314 continue;
2315 pages_freed += __zs_compact(pool, class);
2316 }
2317 atomic_long_add(pages_freed, &pool->stats.pages_compacted);
2318
2319 return pages_freed;
2320 }
2321 EXPORT_SYMBOL_GPL(zs_compact);
2322
zs_pool_stats(struct zs_pool *pool, struct zs_pool_stats *stats)2323 void zs_pool_stats(struct zs_pool *pool, struct zs_pool_stats *stats)
2324 {
2325 memcpy(stats, &pool->stats, sizeof(struct zs_pool_stats));
2326 }
2327 EXPORT_SYMBOL_GPL(zs_pool_stats);
2328
zs_shrinker_scan(struct shrinker *shrinker, struct shrink_control *sc)2329 static unsigned long zs_shrinker_scan(struct shrinker *shrinker,
2330 struct shrink_control *sc)
2331 {
2332 unsigned long pages_freed;
2333 struct zs_pool *pool = container_of(shrinker, struct zs_pool,
2334 shrinker);
2335
2336 /*
2337 * Compact classes and calculate compaction delta.
2338 * Can run concurrently with a manually triggered
2339 * (by user) compaction.
2340 */
2341 pages_freed = zs_compact(pool);
2342
2343 return pages_freed ? pages_freed : SHRINK_STOP;
2344 }
2345
zs_shrinker_count(struct shrinker *shrinker, struct shrink_control *sc)2346 static unsigned long zs_shrinker_count(struct shrinker *shrinker,
2347 struct shrink_control *sc)
2348 {
2349 int i;
2350 struct size_class *class;
2351 unsigned long pages_to_free = 0;
2352 struct zs_pool *pool = container_of(shrinker, struct zs_pool,
2353 shrinker);
2354
2355 for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
2356 class = pool->size_class[i];
2357 if (!class)
2358 continue;
2359 if (class->index != i)
2360 continue;
2361
2362 pages_to_free += zs_can_compact(class);
2363 }
2364
2365 return pages_to_free;
2366 }
2367
zs_unregister_shrinker(struct zs_pool *pool)2368 static void zs_unregister_shrinker(struct zs_pool *pool)
2369 {
2370 unregister_shrinker(&pool->shrinker);
2371 }
2372
zs_register_shrinker(struct zs_pool *pool)2373 static int zs_register_shrinker(struct zs_pool *pool)
2374 {
2375 pool->shrinker.scan_objects = zs_shrinker_scan;
2376 pool->shrinker.count_objects = zs_shrinker_count;
2377 pool->shrinker.batch = 0;
2378 pool->shrinker.seeks = DEFAULT_SEEKS;
2379
2380 return register_shrinker(&pool->shrinker);
2381 }
2382
2383 /**
2384 * zs_create_pool - Creates an allocation pool to work from.
2385 * @name: pool name to be created
2386 *
2387 * This function must be called before anything when using
2388 * the zsmalloc allocator.
2389 *
2390 * On success, a pointer to the newly created pool is returned,
2391 * otherwise NULL.
2392 */
zs_create_pool(const char *name)2393 struct zs_pool *zs_create_pool(const char *name)
2394 {
2395 int i;
2396 struct zs_pool *pool;
2397 struct size_class *prev_class = NULL;
2398
2399 pool = kzalloc(sizeof(*pool), GFP_KERNEL);
2400 if (!pool)
2401 return NULL;
2402
2403 init_deferred_free(pool);
2404
2405 pool->name = kstrdup(name, GFP_KERNEL);
2406 if (!pool->name)
2407 goto err;
2408
2409 #ifdef CONFIG_COMPACTION
2410 init_waitqueue_head(&pool->migration_wait);
2411 #endif
2412
2413 if (create_cache(pool))
2414 goto err;
2415
2416 /*
2417 * Iterate reversely, because, size of size_class that we want to use
2418 * for merging should be larger or equal to current size.
2419 */
2420 for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
2421 int size;
2422 int pages_per_zspage;
2423 int objs_per_zspage;
2424 struct size_class *class;
2425 int fullness = 0;
2426
2427 size = ZS_MIN_ALLOC_SIZE + i * ZS_SIZE_CLASS_DELTA;
2428 if (size > ZS_MAX_ALLOC_SIZE)
2429 size = ZS_MAX_ALLOC_SIZE;
2430 pages_per_zspage = get_pages_per_zspage(size);
2431 objs_per_zspage = pages_per_zspage * PAGE_SIZE / size;
2432
2433 /*
2434 * We iterate from biggest down to smallest classes,
2435 * so huge_class_size holds the size of the first huge
2436 * class. Any object bigger than or equal to that will
2437 * endup in the huge class.
2438 */
2439 if (pages_per_zspage != 1 && objs_per_zspage != 1 &&
2440 !huge_class_size) {
2441 huge_class_size = size;
2442 /*
2443 * The object uses ZS_HANDLE_SIZE bytes to store the
2444 * handle. We need to subtract it, because zs_malloc()
2445 * unconditionally adds handle size before it performs
2446 * size class search - so object may be smaller than
2447 * huge class size, yet it still can end up in the huge
2448 * class because it grows by ZS_HANDLE_SIZE extra bytes
2449 * right before class lookup.
2450 */
2451 huge_class_size -= (ZS_HANDLE_SIZE - 1);
2452 }
2453
2454 /*
2455 * size_class is used for normal zsmalloc operation such
2456 * as alloc/free for that size. Although it is natural that we
2457 * have one size_class for each size, there is a chance that we
2458 * can get more memory utilization if we use one size_class for
2459 * many different sizes whose size_class have same
2460 * characteristics. So, we makes size_class point to
2461 * previous size_class if possible.
2462 */
2463 if (prev_class) {
2464 if (can_merge(prev_class, pages_per_zspage, objs_per_zspage)) {
2465 pool->size_class[i] = prev_class;
2466 continue;
2467 }
2468 }
2469
2470 class = kzalloc(sizeof(struct size_class), GFP_KERNEL);
2471 if (!class)
2472 goto err;
2473
2474 class->size = size;
2475 class->index = i;
2476 class->pages_per_zspage = pages_per_zspage;
2477 class->objs_per_zspage = objs_per_zspage;
2478 spin_lock_init(&class->lock);
2479 pool->size_class[i] = class;
2480 for (fullness = ZS_EMPTY; fullness < NR_ZS_FULLNESS;
2481 fullness++)
2482 INIT_LIST_HEAD(&class->fullness_list[fullness]);
2483
2484 prev_class = class;
2485 }
2486
2487 /* debug only, don't abort if it fails */
2488 zs_pool_stat_create(pool, name);
2489
2490 if (zs_register_migration(pool))
2491 goto err;
2492
2493 /*
2494 * Not critical since shrinker is only used to trigger internal
2495 * defragmentation of the pool which is pretty optional thing. If
2496 * registration fails we still can use the pool normally and user can
2497 * trigger compaction manually. Thus, ignore return code.
2498 */
2499 zs_register_shrinker(pool);
2500
2501 return pool;
2502
2503 err:
2504 zs_destroy_pool(pool);
2505 return NULL;
2506 }
2507 EXPORT_SYMBOL_GPL(zs_create_pool);
2508
zs_destroy_pool(struct zs_pool *pool)2509 void zs_destroy_pool(struct zs_pool *pool)
2510 {
2511 int i;
2512
2513 zs_unregister_shrinker(pool);
2514 zs_unregister_migration(pool);
2515 zs_pool_stat_destroy(pool);
2516
2517 for (i = 0; i < ZS_SIZE_CLASSES; i++) {
2518 int fg;
2519 struct size_class *class = pool->size_class[i];
2520
2521 if (!class)
2522 continue;
2523
2524 if (class->index != i)
2525 continue;
2526
2527 for (fg = ZS_EMPTY; fg < NR_ZS_FULLNESS; fg++) {
2528 if (!list_empty(&class->fullness_list[fg])) {
2529 pr_info("Freeing non-empty class with size %db, fullness group %d\n",
2530 class->size, fg);
2531 }
2532 }
2533 kfree(class);
2534 }
2535
2536 destroy_cache(pool);
2537 kfree(pool->name);
2538 kfree(pool);
2539 }
2540 EXPORT_SYMBOL_GPL(zs_destroy_pool);
2541
zs_init(void)2542 static int __init zs_init(void)
2543 {
2544 int ret;
2545
2546 ret = zsmalloc_mount();
2547 if (ret)
2548 goto out;
2549
2550 ret = cpuhp_setup_state(CPUHP_MM_ZS_PREPARE, "mm/zsmalloc:prepare",
2551 zs_cpu_prepare, zs_cpu_dead);
2552 if (ret)
2553 goto hp_setup_fail;
2554
2555 #ifdef CONFIG_ZPOOL
2556 zpool_register_driver(&zs_zpool_driver);
2557 #endif
2558
2559 zs_stat_init();
2560
2561 return 0;
2562
2563 hp_setup_fail:
2564 zsmalloc_unmount();
2565 out:
2566 return ret;
2567 }
2568
zs_exit(void)2569 static void __exit zs_exit(void)
2570 {
2571 #ifdef CONFIG_ZPOOL
2572 zpool_unregister_driver(&zs_zpool_driver);
2573 #endif
2574 zsmalloc_unmount();
2575 cpuhp_remove_state(CPUHP_MM_ZS_PREPARE);
2576
2577 zs_stat_exit();
2578 }
2579
2580 module_init(zs_init);
2581 module_exit(zs_exit);
2582
2583 MODULE_LICENSE("Dual BSD/GPL");
2584 MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>");
2585