1 /*
2  * zsmalloc memory allocator
3  *
4  * Copyright (C) 2011  Nitin Gupta
5  * Copyright (C) 2012, 2013 Minchan Kim
6  *
7  * This code is released using a dual license strategy: BSD/GPL
8  * You can choose the license that better fits your requirements.
9  *
10  * Released under the terms of 3-clause BSD License
11  * Released under the terms of GNU General Public License Version 2.0
12  */
13 
14 /*
15  * Following is how we use various fields and flags of underlying
16  * struct page(s) to form a zspage.
17  *
18  * Usage of struct page fields:
19  *	page->private: points to zspage
20  *	page->freelist(index): links together all component pages of a zspage
21  *		For the huge page, this is always 0, so we use this field
22  *		to store handle.
23  *	page->units: first object offset in a subpage of zspage
24  *
25  * Usage of struct page flags:
26  *	PG_private: identifies the first component page
27  *	PG_owner_priv_1: identifies the huge component page
28  *
29  */
30 
31 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
32 
33 #include <linux/module.h>
34 #include <linux/kernel.h>
35 #include <linux/sched.h>
36 #include <linux/magic.h>
37 #include <linux/bitops.h>
38 #include <linux/errno.h>
39 #include <linux/highmem.h>
40 #include <linux/string.h>
41 #include <linux/slab.h>
42 #include <linux/pgtable.h>
43 #include <asm/tlbflush.h>
44 #include <linux/cpumask.h>
45 #include <linux/cpu.h>
46 #include <linux/vmalloc.h>
47 #include <linux/preempt.h>
48 #include <linux/spinlock.h>
49 #include <linux/shrinker.h>
50 #include <linux/types.h>
51 #include <linux/debugfs.h>
52 #include <linux/zsmalloc.h>
53 #include <linux/zpool.h>
54 #include <linux/mount.h>
55 #include <linux/pseudo_fs.h>
56 #include <linux/migrate.h>
57 #include <linux/wait.h>
58 #include <linux/pagemap.h>
59 #include <linux/fs.h>
60 
61 #define ZSPAGE_MAGIC	0x58
62 
63 /*
64  * This must be power of 2 and greater than of equal to sizeof(link_free).
65  * These two conditions ensure that any 'struct link_free' itself doesn't
66  * span more than 1 page which avoids complex case of mapping 2 pages simply
67  * to restore link_free pointer values.
68  */
69 #define ZS_ALIGN		8
70 
71 /*
72  * A single 'zspage' is composed of up to 2^N discontiguous 0-order (single)
73  * pages. ZS_MAX_ZSPAGE_ORDER defines upper limit on N.
74  */
75 #define ZS_MAX_ZSPAGE_ORDER 2
76 #define ZS_MAX_PAGES_PER_ZSPAGE (_AC(1, UL) << ZS_MAX_ZSPAGE_ORDER)
77 
78 #define ZS_HANDLE_SIZE (sizeof(unsigned long))
79 
80 /*
81  * Object location (<PFN>, <obj_idx>) is encoded as
82  * a single (unsigned long) handle value.
83  *
84  * Note that object index <obj_idx> starts from 0.
85  *
86  * This is made more complicated by various memory models and PAE.
87  */
88 
89 #ifndef MAX_POSSIBLE_PHYSMEM_BITS
90 #ifdef MAX_PHYSMEM_BITS
91 #define MAX_POSSIBLE_PHYSMEM_BITS MAX_PHYSMEM_BITS
92 #else
93 /*
94  * If this definition of MAX_PHYSMEM_BITS is used, OBJ_INDEX_BITS will just
95  * be PAGE_SHIFT
96  */
97 #define MAX_POSSIBLE_PHYSMEM_BITS BITS_PER_LONG
98 #endif
99 #endif
100 
101 #define _PFN_BITS		(MAX_POSSIBLE_PHYSMEM_BITS - PAGE_SHIFT)
102 
103 /*
104  * Memory for allocating for handle keeps object position by
105  * encoding <page, obj_idx> and the encoded value has a room
106  * in least bit(ie, look at obj_to_location).
107  * We use the bit to synchronize between object access by
108  * user and migration.
109  */
110 #define HANDLE_PIN_BIT	0
111 
112 /*
113  * Head in allocated object should have OBJ_ALLOCATED_TAG
114  * to identify the object was allocated or not.
115  * It's okay to add the status bit in the least bit because
116  * header keeps handle which is 4byte-aligned address so we
117  * have room for two bit at least.
118  */
119 #define OBJ_ALLOCATED_TAG 1
120 #define OBJ_TAG_BITS 1
121 #define OBJ_INDEX_BITS	(BITS_PER_LONG - _PFN_BITS - OBJ_TAG_BITS)
122 #define OBJ_INDEX_MASK	((_AC(1, UL) << OBJ_INDEX_BITS) - 1)
123 
124 #define FULLNESS_BITS	2
125 #define CLASS_BITS	8
126 #define ISOLATED_BITS	3
127 #define MAGIC_VAL_BITS	8
128 
129 #define MAX(a, b) ((a) >= (b) ? (a) : (b))
130 /* ZS_MIN_ALLOC_SIZE must be multiple of ZS_ALIGN */
131 #define ZS_MIN_ALLOC_SIZE \
132 	MAX(32, (ZS_MAX_PAGES_PER_ZSPAGE << PAGE_SHIFT >> OBJ_INDEX_BITS))
133 /* each chunk includes extra space to keep handle */
134 #define ZS_MAX_ALLOC_SIZE	PAGE_SIZE
135 
136 /*
137  * On systems with 4K page size, this gives 255 size classes! There is a
138  * trader-off here:
139  *  - Large number of size classes is potentially wasteful as free page are
140  *    spread across these classes
141  *  - Small number of size classes causes large internal fragmentation
142  *  - Probably its better to use specific size classes (empirically
143  *    determined). NOTE: all those class sizes must be set as multiple of
144  *    ZS_ALIGN to make sure link_free itself never has to span 2 pages.
145  *
146  *  ZS_MIN_ALLOC_SIZE and ZS_SIZE_CLASS_DELTA must be multiple of ZS_ALIGN
147  *  (reason above)
148  */
149 #define ZS_SIZE_CLASS_DELTA	(PAGE_SIZE >> CLASS_BITS)
150 #define ZS_SIZE_CLASSES	(DIV_ROUND_UP(ZS_MAX_ALLOC_SIZE - ZS_MIN_ALLOC_SIZE, \
151 				      ZS_SIZE_CLASS_DELTA) + 1)
152 
153 enum fullness_group {
154 	ZS_EMPTY,
155 	ZS_ALMOST_EMPTY,
156 	ZS_ALMOST_FULL,
157 	ZS_FULL,
158 	NR_ZS_FULLNESS,
159 };
160 
161 enum zs_stat_type {
162 	CLASS_EMPTY,
163 	CLASS_ALMOST_EMPTY,
164 	CLASS_ALMOST_FULL,
165 	CLASS_FULL,
166 	OBJ_ALLOCATED,
167 	OBJ_USED,
168 	NR_ZS_STAT_TYPE,
169 };
170 
171 struct zs_size_stat {
172 	unsigned long objs[NR_ZS_STAT_TYPE];
173 };
174 
175 #ifdef CONFIG_ZSMALLOC_STAT
176 static struct dentry *zs_stat_root;
177 #endif
178 
179 #ifdef CONFIG_COMPACTION
180 static struct vfsmount *zsmalloc_mnt;
181 #endif
182 
183 /*
184  * We assign a page to ZS_ALMOST_EMPTY fullness group when:
185  *	n <= N / f, where
186  * n = number of allocated objects
187  * N = total number of objects zspage can store
188  * f = fullness_threshold_frac
189  *
190  * Similarly, we assign zspage to:
191  *	ZS_ALMOST_FULL	when n > N / f
192  *	ZS_EMPTY	when n == 0
193  *	ZS_FULL		when n == N
194  *
195  * (see: fix_fullness_group())
196  */
197 static const int fullness_threshold_frac = 4;
198 static size_t huge_class_size;
199 
200 struct size_class {
201 	spinlock_t lock;
202 	struct list_head fullness_list[NR_ZS_FULLNESS];
203 	/*
204 	 * Size of objects stored in this class. Must be multiple
205 	 * of ZS_ALIGN.
206 	 */
207 	int size;
208 	int objs_per_zspage;
209 	/* Number of PAGE_SIZE sized pages to combine to form a 'zspage' */
210 	int pages_per_zspage;
211 
212 	unsigned int index;
213 	struct zs_size_stat stats;
214 };
215 
216 /* huge object: pages_per_zspage == 1 && maxobj_per_zspage == 1 */
SetPageHugeObject(struct page *page)217 static void SetPageHugeObject(struct page *page)
218 {
219 	SetPageOwnerPriv1(page);
220 }
221 
ClearPageHugeObject(struct page *page)222 static void ClearPageHugeObject(struct page *page)
223 {
224 	ClearPageOwnerPriv1(page);
225 }
226 
PageHugeObject(struct page *page)227 static int PageHugeObject(struct page *page)
228 {
229 	return PageOwnerPriv1(page);
230 }
231 
232 /*
233  * Placed within free objects to form a singly linked list.
234  * For every zspage, zspage->freeobj gives head of this list.
235  *
236  * This must be power of 2 and less than or equal to ZS_ALIGN
237  */
238 struct link_free {
239 	union {
240 		/*
241 		 * Free object index;
242 		 * It's valid for non-allocated object
243 		 */
244 		unsigned long next;
245 		/*
246 		 * Handle of allocated object.
247 		 */
248 		unsigned long handle;
249 	};
250 };
251 
252 struct zs_pool {
253 	const char *name;
254 
255 	struct size_class *size_class[ZS_SIZE_CLASSES];
256 	struct kmem_cache *handle_cachep;
257 	struct kmem_cache *zspage_cachep;
258 
259 	atomic_long_t pages_allocated;
260 
261 	struct zs_pool_stats stats;
262 
263 	/* Compact classes */
264 	struct shrinker shrinker;
265 
266 #ifdef CONFIG_ZSMALLOC_STAT
267 	struct dentry *stat_dentry;
268 #endif
269 #ifdef CONFIG_COMPACTION
270 	struct inode *inode;
271 	struct work_struct free_work;
272 	/* A wait queue for when migration races with async_free_zspage() */
273 	struct wait_queue_head migration_wait;
274 	atomic_long_t isolated_pages;
275 	bool destroying;
276 #endif
277 };
278 
279 struct zspage {
280 	struct {
281 		unsigned int fullness:FULLNESS_BITS;
282 		unsigned int class:CLASS_BITS + 1;
283 		unsigned int isolated:ISOLATED_BITS;
284 		unsigned int magic:MAGIC_VAL_BITS;
285 	};
286 	unsigned int inuse;
287 	unsigned int freeobj;
288 	struct page *first_page;
289 	struct list_head list; /* fullness list */
290 #ifdef CONFIG_COMPACTION
291 	rwlock_t lock;
292 #endif
293 };
294 
295 struct mapping_area {
296 	char *vm_buf; /* copy buffer for objects that span pages */
297 	char *vm_addr; /* address of kmap_atomic()'ed pages */
298 	enum zs_mapmode vm_mm; /* mapping mode */
299 };
300 
301 #ifdef CONFIG_COMPACTION
302 static int zs_register_migration(struct zs_pool *pool);
303 static void zs_unregister_migration(struct zs_pool *pool);
304 static void migrate_lock_init(struct zspage *zspage);
305 static void migrate_read_lock(struct zspage *zspage);
306 static void migrate_read_unlock(struct zspage *zspage);
307 static void kick_deferred_free(struct zs_pool *pool);
308 static void init_deferred_free(struct zs_pool *pool);
309 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage);
310 #else
zsmalloc_mount(void)311 static int zsmalloc_mount(void) { return 0; }
zsmalloc_unmount(void)312 static void zsmalloc_unmount(void) {}
zs_register_migration(struct zs_pool *pool)313 static int zs_register_migration(struct zs_pool *pool) { return 0; }
zs_unregister_migration(struct zs_pool *pool)314 static void zs_unregister_migration(struct zs_pool *pool) {}
migrate_lock_init(struct zspage *zspage)315 static void migrate_lock_init(struct zspage *zspage) {}
migrate_read_lock(struct zspage *zspage)316 static void migrate_read_lock(struct zspage *zspage) {}
migrate_read_unlock(struct zspage *zspage)317 static void migrate_read_unlock(struct zspage *zspage) {}
kick_deferred_free(struct zs_pool *pool)318 static void kick_deferred_free(struct zs_pool *pool) {}
init_deferred_free(struct zs_pool *pool)319 static void init_deferred_free(struct zs_pool *pool) {}
SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage)320 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage) {}
321 #endif
322 
create_cache(struct zs_pool *pool)323 static int create_cache(struct zs_pool *pool)
324 {
325 	pool->handle_cachep = kmem_cache_create("zs_handle", ZS_HANDLE_SIZE,
326 					0, 0, NULL);
327 	if (!pool->handle_cachep)
328 		return 1;
329 
330 	pool->zspage_cachep = kmem_cache_create("zspage", sizeof(struct zspage),
331 					0, 0, NULL);
332 	if (!pool->zspage_cachep) {
333 		kmem_cache_destroy(pool->handle_cachep);
334 		pool->handle_cachep = NULL;
335 		return 1;
336 	}
337 
338 	return 0;
339 }
340 
destroy_cache(struct zs_pool *pool)341 static void destroy_cache(struct zs_pool *pool)
342 {
343 	kmem_cache_destroy(pool->handle_cachep);
344 	kmem_cache_destroy(pool->zspage_cachep);
345 }
346 
cache_alloc_handle(struct zs_pool *pool, gfp_t gfp)347 static unsigned long cache_alloc_handle(struct zs_pool *pool, gfp_t gfp)
348 {
349 	return (unsigned long)kmem_cache_alloc(pool->handle_cachep,
350 			gfp & ~(__GFP_HIGHMEM|__GFP_MOVABLE));
351 }
352 
cache_free_handle(struct zs_pool *pool, unsigned long handle)353 static void cache_free_handle(struct zs_pool *pool, unsigned long handle)
354 {
355 	kmem_cache_free(pool->handle_cachep, (void *)handle);
356 }
357 
cache_alloc_zspage(struct zs_pool *pool, gfp_t flags)358 static struct zspage *cache_alloc_zspage(struct zs_pool *pool, gfp_t flags)
359 {
360 	return kmem_cache_alloc(pool->zspage_cachep,
361 			flags & ~(__GFP_HIGHMEM|__GFP_MOVABLE));
362 }
363 
cache_free_zspage(struct zs_pool *pool, struct zspage *zspage)364 static void cache_free_zspage(struct zs_pool *pool, struct zspage *zspage)
365 {
366 	kmem_cache_free(pool->zspage_cachep, zspage);
367 }
368 
record_obj(unsigned long handle, unsigned long obj)369 static void record_obj(unsigned long handle, unsigned long obj)
370 {
371 	/*
372 	 * lsb of @obj represents handle lock while other bits
373 	 * represent object value the handle is pointing so
374 	 * updating shouldn't do store tearing.
375 	 */
376 	WRITE_ONCE(*(unsigned long *)handle, obj);
377 }
378 
379 /* zpool driver */
380 
381 #ifdef CONFIG_ZPOOL
382 
zs_zpool_create(const char *name, gfp_t gfp, const struct zpool_ops *zpool_ops, struct zpool *zpool)383 static void *zs_zpool_create(const char *name, gfp_t gfp,
384 			     const struct zpool_ops *zpool_ops,
385 			     struct zpool *zpool)
386 {
387 	/*
388 	 * Ignore global gfp flags: zs_malloc() may be invoked from
389 	 * different contexts and its caller must provide a valid
390 	 * gfp mask.
391 	 */
392 	return zs_create_pool(name);
393 }
394 
zs_zpool_destroy(void *pool)395 static void zs_zpool_destroy(void *pool)
396 {
397 	zs_destroy_pool(pool);
398 }
399 
zs_zpool_malloc(void *pool, size_t size, gfp_t gfp, unsigned long *handle)400 static int zs_zpool_malloc(void *pool, size_t size, gfp_t gfp,
401 			unsigned long *handle)
402 {
403 	*handle = zs_malloc(pool, size, gfp);
404 	return *handle ? 0 : -1;
405 }
zs_zpool_free(void *pool, unsigned long handle)406 static void zs_zpool_free(void *pool, unsigned long handle)
407 {
408 	zs_free(pool, handle);
409 }
410 
zs_zpool_map(void *pool, unsigned long handle, enum zpool_mapmode mm)411 static void *zs_zpool_map(void *pool, unsigned long handle,
412 			enum zpool_mapmode mm)
413 {
414 	enum zs_mapmode zs_mm;
415 
416 	switch (mm) {
417 	case ZPOOL_MM_RO:
418 		zs_mm = ZS_MM_RO;
419 		break;
420 	case ZPOOL_MM_WO:
421 		zs_mm = ZS_MM_WO;
422 		break;
423 	case ZPOOL_MM_RW:
424 	default:
425 		zs_mm = ZS_MM_RW;
426 		break;
427 	}
428 
429 	return zs_map_object(pool, handle, zs_mm);
430 }
zs_zpool_unmap(void *pool, unsigned long handle)431 static void zs_zpool_unmap(void *pool, unsigned long handle)
432 {
433 	zs_unmap_object(pool, handle);
434 }
435 
zs_zpool_total_size(void *pool)436 static u64 zs_zpool_total_size(void *pool)
437 {
438 	return zs_get_total_pages(pool) << PAGE_SHIFT;
439 }
440 
441 static struct zpool_driver zs_zpool_driver = {
442 	.type =			  "zsmalloc",
443 	.owner =		  THIS_MODULE,
444 	.create =		  zs_zpool_create,
445 	.destroy =		  zs_zpool_destroy,
446 	.malloc_support_movable = true,
447 	.malloc =		  zs_zpool_malloc,
448 	.free =			  zs_zpool_free,
449 	.map =			  zs_zpool_map,
450 	.unmap =		  zs_zpool_unmap,
451 	.total_size =		  zs_zpool_total_size,
452 };
453 
454 MODULE_ALIAS("zpool-zsmalloc");
455 #endif /* CONFIG_ZPOOL */
456 
457 /* per-cpu VM mapping areas for zspage accesses that cross page boundaries */
458 static DEFINE_PER_CPU(struct mapping_area, zs_map_area);
459 
is_zspage_isolated(struct zspage *zspage)460 static bool is_zspage_isolated(struct zspage *zspage)
461 {
462 	return zspage->isolated;
463 }
464 
is_first_page(struct page *page)465 static __maybe_unused int is_first_page(struct page *page)
466 {
467 	return PagePrivate(page);
468 }
469 
470 /* Protected by class->lock */
get_zspage_inuse(struct zspage *zspage)471 static inline int get_zspage_inuse(struct zspage *zspage)
472 {
473 	return zspage->inuse;
474 }
475 
476 
mod_zspage_inuse(struct zspage *zspage, int val)477 static inline void mod_zspage_inuse(struct zspage *zspage, int val)
478 {
479 	zspage->inuse += val;
480 }
481 
get_first_page(struct zspage *zspage)482 static inline struct page *get_first_page(struct zspage *zspage)
483 {
484 	struct page *first_page = zspage->first_page;
485 
486 	VM_BUG_ON_PAGE(!is_first_page(first_page), first_page);
487 	return first_page;
488 }
489 
get_first_obj_offset(struct page *page)490 static inline int get_first_obj_offset(struct page *page)
491 {
492 	return page->units;
493 }
494 
set_first_obj_offset(struct page *page, int offset)495 static inline void set_first_obj_offset(struct page *page, int offset)
496 {
497 	page->units = offset;
498 }
499 
get_freeobj(struct zspage *zspage)500 static inline unsigned int get_freeobj(struct zspage *zspage)
501 {
502 	return zspage->freeobj;
503 }
504 
set_freeobj(struct zspage *zspage, unsigned int obj)505 static inline void set_freeobj(struct zspage *zspage, unsigned int obj)
506 {
507 	zspage->freeobj = obj;
508 }
509 
get_zspage_mapping(struct zspage *zspage, unsigned int *class_idx, enum fullness_group *fullness)510 static void get_zspage_mapping(struct zspage *zspage,
511 				unsigned int *class_idx,
512 				enum fullness_group *fullness)
513 {
514 	BUG_ON(zspage->magic != ZSPAGE_MAGIC);
515 
516 	*fullness = zspage->fullness;
517 	*class_idx = zspage->class;
518 }
519 
set_zspage_mapping(struct zspage *zspage, unsigned int class_idx, enum fullness_group fullness)520 static void set_zspage_mapping(struct zspage *zspage,
521 				unsigned int class_idx,
522 				enum fullness_group fullness)
523 {
524 	zspage->class = class_idx;
525 	zspage->fullness = fullness;
526 }
527 
528 /*
529  * zsmalloc divides the pool into various size classes where each
530  * class maintains a list of zspages where each zspage is divided
531  * into equal sized chunks. Each allocation falls into one of these
532  * classes depending on its size. This function returns index of the
533  * size class which has chunk size big enough to hold the give size.
534  */
get_size_class_index(int size)535 static int get_size_class_index(int size)
536 {
537 	int idx = 0;
538 
539 	if (likely(size > ZS_MIN_ALLOC_SIZE))
540 		idx = DIV_ROUND_UP(size - ZS_MIN_ALLOC_SIZE,
541 				ZS_SIZE_CLASS_DELTA);
542 
543 	return min_t(int, ZS_SIZE_CLASSES - 1, idx);
544 }
545 
546 /* type can be of enum type zs_stat_type or fullness_group */
zs_stat_inc(struct size_class *class, int type, unsigned long cnt)547 static inline void zs_stat_inc(struct size_class *class,
548 				int type, unsigned long cnt)
549 {
550 	class->stats.objs[type] += cnt;
551 }
552 
553 /* type can be of enum type zs_stat_type or fullness_group */
zs_stat_dec(struct size_class *class, int type, unsigned long cnt)554 static inline void zs_stat_dec(struct size_class *class,
555 				int type, unsigned long cnt)
556 {
557 	class->stats.objs[type] -= cnt;
558 }
559 
560 /* type can be of enum type zs_stat_type or fullness_group */
zs_stat_get(struct size_class *class, int type)561 static inline unsigned long zs_stat_get(struct size_class *class,
562 				int type)
563 {
564 	return class->stats.objs[type];
565 }
566 
567 #ifdef CONFIG_ZSMALLOC_STAT
568 
zs_stat_init(void)569 static void __init zs_stat_init(void)
570 {
571 	if (!debugfs_initialized()) {
572 		pr_warn("debugfs not available, stat dir not created\n");
573 		return;
574 	}
575 
576 	zs_stat_root = debugfs_create_dir("zsmalloc", NULL);
577 }
578 
zs_stat_exit(void)579 static void __exit zs_stat_exit(void)
580 {
581 	debugfs_remove_recursive(zs_stat_root);
582 }
583 
584 static unsigned long zs_can_compact(struct size_class *class);
585 
zs_stats_size_show(struct seq_file *s, void *v)586 static int zs_stats_size_show(struct seq_file *s, void *v)
587 {
588 	int i;
589 	struct zs_pool *pool = s->private;
590 	struct size_class *class;
591 	int objs_per_zspage;
592 	unsigned long class_almost_full, class_almost_empty;
593 	unsigned long obj_allocated, obj_used, pages_used, freeable;
594 	unsigned long total_class_almost_full = 0, total_class_almost_empty = 0;
595 	unsigned long total_objs = 0, total_used_objs = 0, total_pages = 0;
596 	unsigned long total_freeable = 0;
597 
598 	seq_printf(s, " %5s %5s %11s %12s %13s %10s %10s %16s %8s\n",
599 			"class", "size", "almost_full", "almost_empty",
600 			"obj_allocated", "obj_used", "pages_used",
601 			"pages_per_zspage", "freeable");
602 
603 	for (i = 0; i < ZS_SIZE_CLASSES; i++) {
604 		class = pool->size_class[i];
605 
606 		if (class->index != i)
607 			continue;
608 
609 		spin_lock(&class->lock);
610 		class_almost_full = zs_stat_get(class, CLASS_ALMOST_FULL);
611 		class_almost_empty = zs_stat_get(class, CLASS_ALMOST_EMPTY);
612 		obj_allocated = zs_stat_get(class, OBJ_ALLOCATED);
613 		obj_used = zs_stat_get(class, OBJ_USED);
614 		freeable = zs_can_compact(class);
615 		spin_unlock(&class->lock);
616 
617 		objs_per_zspage = class->objs_per_zspage;
618 		pages_used = obj_allocated / objs_per_zspage *
619 				class->pages_per_zspage;
620 
621 		seq_printf(s, " %5u %5u %11lu %12lu %13lu"
622 				" %10lu %10lu %16d %8lu\n",
623 			i, class->size, class_almost_full, class_almost_empty,
624 			obj_allocated, obj_used, pages_used,
625 			class->pages_per_zspage, freeable);
626 
627 		total_class_almost_full += class_almost_full;
628 		total_class_almost_empty += class_almost_empty;
629 		total_objs += obj_allocated;
630 		total_used_objs += obj_used;
631 		total_pages += pages_used;
632 		total_freeable += freeable;
633 	}
634 
635 	seq_puts(s, "\n");
636 	seq_printf(s, " %5s %5s %11lu %12lu %13lu %10lu %10lu %16s %8lu\n",
637 			"Total", "", total_class_almost_full,
638 			total_class_almost_empty, total_objs,
639 			total_used_objs, total_pages, "", total_freeable);
640 
641 	return 0;
642 }
643 DEFINE_SHOW_ATTRIBUTE(zs_stats_size);
644 
zs_pool_stat_create(struct zs_pool *pool, const char *name)645 static void zs_pool_stat_create(struct zs_pool *pool, const char *name)
646 {
647 	if (!zs_stat_root) {
648 		pr_warn("no root stat dir, not creating <%s> stat dir\n", name);
649 		return;
650 	}
651 
652 	pool->stat_dentry = debugfs_create_dir(name, zs_stat_root);
653 
654 	debugfs_create_file("classes", S_IFREG | 0444, pool->stat_dentry, pool,
655 			    &zs_stats_size_fops);
656 }
657 
zs_pool_stat_destroy(struct zs_pool *pool)658 static void zs_pool_stat_destroy(struct zs_pool *pool)
659 {
660 	debugfs_remove_recursive(pool->stat_dentry);
661 }
662 
663 #else /* CONFIG_ZSMALLOC_STAT */
zs_stat_init(void)664 static void __init zs_stat_init(void)
665 {
666 }
667 
zs_stat_exit(void)668 static void __exit zs_stat_exit(void)
669 {
670 }
671 
zs_pool_stat_create(struct zs_pool *pool, const char *name)672 static inline void zs_pool_stat_create(struct zs_pool *pool, const char *name)
673 {
674 }
675 
zs_pool_stat_destroy(struct zs_pool *pool)676 static inline void zs_pool_stat_destroy(struct zs_pool *pool)
677 {
678 }
679 #endif
680 
681 
682 /*
683  * For each size class, zspages are divided into different groups
684  * depending on how "full" they are. This was done so that we could
685  * easily find empty or nearly empty zspages when we try to shrink
686  * the pool (not yet implemented). This function returns fullness
687  * status of the given page.
688  */
get_fullness_group(struct size_class *class, struct zspage *zspage)689 static enum fullness_group get_fullness_group(struct size_class *class,
690 						struct zspage *zspage)
691 {
692 	int inuse, objs_per_zspage;
693 	enum fullness_group fg;
694 
695 	inuse = get_zspage_inuse(zspage);
696 	objs_per_zspage = class->objs_per_zspage;
697 
698 	if (inuse == 0)
699 		fg = ZS_EMPTY;
700 	else if (inuse == objs_per_zspage)
701 		fg = ZS_FULL;
702 	else if (inuse <= 3 * objs_per_zspage / fullness_threshold_frac)
703 		fg = ZS_ALMOST_EMPTY;
704 	else
705 		fg = ZS_ALMOST_FULL;
706 
707 	return fg;
708 }
709 
710 /*
711  * Each size class maintains various freelists and zspages are assigned
712  * to one of these freelists based on the number of live objects they
713  * have. This functions inserts the given zspage into the freelist
714  * identified by <class, fullness_group>.
715  */
insert_zspage(struct size_class *class, struct zspage *zspage, enum fullness_group fullness)716 static void insert_zspage(struct size_class *class,
717 				struct zspage *zspage,
718 				enum fullness_group fullness)
719 {
720 	struct zspage *head;
721 
722 	zs_stat_inc(class, fullness, 1);
723 	head = list_first_entry_or_null(&class->fullness_list[fullness],
724 					struct zspage, list);
725 	/*
726 	 * We want to see more ZS_FULL pages and less almost empty/full.
727 	 * Put pages with higher ->inuse first.
728 	 */
729 	if (head) {
730 		if (get_zspage_inuse(zspage) < get_zspage_inuse(head)) {
731 			list_add(&zspage->list, &head->list);
732 			return;
733 		}
734 	}
735 	list_add(&zspage->list, &class->fullness_list[fullness]);
736 }
737 
738 /*
739  * This function removes the given zspage from the freelist identified
740  * by <class, fullness_group>.
741  */
remove_zspage(struct size_class *class, struct zspage *zspage, enum fullness_group fullness)742 static void remove_zspage(struct size_class *class,
743 				struct zspage *zspage,
744 				enum fullness_group fullness)
745 {
746 	VM_BUG_ON(list_empty(&class->fullness_list[fullness]));
747 	VM_BUG_ON(is_zspage_isolated(zspage));
748 
749 	list_del_init(&zspage->list);
750 	zs_stat_dec(class, fullness, 1);
751 }
752 
753 /*
754  * Each size class maintains zspages in different fullness groups depending
755  * on the number of live objects they contain. When allocating or freeing
756  * objects, the fullness status of the page can change, say, from ALMOST_FULL
757  * to ALMOST_EMPTY when freeing an object. This function checks if such
758  * a status change has occurred for the given page and accordingly moves the
759  * page from the freelist of the old fullness group to that of the new
760  * fullness group.
761  */
fix_fullness_group(struct size_class *class, struct zspage *zspage)762 static enum fullness_group fix_fullness_group(struct size_class *class,
763 						struct zspage *zspage)
764 {
765 	int class_idx;
766 	enum fullness_group currfg, newfg;
767 
768 	get_zspage_mapping(zspage, &class_idx, &currfg);
769 	newfg = get_fullness_group(class, zspage);
770 	if (newfg == currfg)
771 		goto out;
772 
773 	if (!is_zspage_isolated(zspage)) {
774 		remove_zspage(class, zspage, currfg);
775 		insert_zspage(class, zspage, newfg);
776 	}
777 
778 	set_zspage_mapping(zspage, class_idx, newfg);
779 
780 out:
781 	return newfg;
782 }
783 
784 /*
785  * We have to decide on how many pages to link together
786  * to form a zspage for each size class. This is important
787  * to reduce wastage due to unusable space left at end of
788  * each zspage which is given as:
789  *     wastage = Zp % class_size
790  *     usage = Zp - wastage
791  * where Zp = zspage size = k * PAGE_SIZE where k = 1, 2, ...
792  *
793  * For example, for size class of 3/8 * PAGE_SIZE, we should
794  * link together 3 PAGE_SIZE sized pages to form a zspage
795  * since then we can perfectly fit in 8 such objects.
796  */
get_pages_per_zspage(int class_size)797 static int get_pages_per_zspage(int class_size)
798 {
799 	int i, max_usedpc = 0;
800 	/* zspage order which gives maximum used size per KB */
801 	int max_usedpc_order = 1;
802 
803 	for (i = 1; i <= ZS_MAX_PAGES_PER_ZSPAGE; i++) {
804 		int zspage_size;
805 		int waste, usedpc;
806 
807 		zspage_size = i * PAGE_SIZE;
808 		waste = zspage_size % class_size;
809 		usedpc = (zspage_size - waste) * 100 / zspage_size;
810 
811 		if (usedpc > max_usedpc) {
812 			max_usedpc = usedpc;
813 			max_usedpc_order = i;
814 		}
815 	}
816 
817 	return max_usedpc_order;
818 }
819 
get_zspage(struct page *page)820 static struct zspage *get_zspage(struct page *page)
821 {
822 	struct zspage *zspage = (struct zspage *)page->private;
823 
824 	BUG_ON(zspage->magic != ZSPAGE_MAGIC);
825 	return zspage;
826 }
827 
get_next_page(struct page *page)828 static struct page *get_next_page(struct page *page)
829 {
830 	if (unlikely(PageHugeObject(page)))
831 		return NULL;
832 
833 	return page->freelist;
834 }
835 
836 /**
837  * obj_to_location - get (<page>, <obj_idx>) from encoded object value
838  * @obj: the encoded object value
839  * @page: page object resides in zspage
840  * @obj_idx: object index
841  */
obj_to_location(unsigned long obj, struct page **page, unsigned int *obj_idx)842 static void obj_to_location(unsigned long obj, struct page **page,
843 				unsigned int *obj_idx)
844 {
845 	obj >>= OBJ_TAG_BITS;
846 	*page = pfn_to_page(obj >> OBJ_INDEX_BITS);
847 	*obj_idx = (obj & OBJ_INDEX_MASK);
848 }
849 
850 /**
851  * location_to_obj - get obj value encoded from (<page>, <obj_idx>)
852  * @page: page object resides in zspage
853  * @obj_idx: object index
854  */
location_to_obj(struct page *page, unsigned int obj_idx)855 static unsigned long location_to_obj(struct page *page, unsigned int obj_idx)
856 {
857 	unsigned long obj;
858 
859 	obj = page_to_pfn(page) << OBJ_INDEX_BITS;
860 	obj |= obj_idx & OBJ_INDEX_MASK;
861 	obj <<= OBJ_TAG_BITS;
862 
863 	return obj;
864 }
865 
handle_to_obj(unsigned long handle)866 static unsigned long handle_to_obj(unsigned long handle)
867 {
868 	return *(unsigned long *)handle;
869 }
870 
obj_to_head(struct page *page, void *obj)871 static unsigned long obj_to_head(struct page *page, void *obj)
872 {
873 	if (unlikely(PageHugeObject(page))) {
874 		VM_BUG_ON_PAGE(!is_first_page(page), page);
875 		return page->index;
876 	} else
877 		return *(unsigned long *)obj;
878 }
879 
testpin_tag(unsigned long handle)880 static inline int testpin_tag(unsigned long handle)
881 {
882 	return bit_spin_is_locked(HANDLE_PIN_BIT, (unsigned long *)handle);
883 }
884 
trypin_tag(unsigned long handle)885 static inline int trypin_tag(unsigned long handle)
886 {
887 	return bit_spin_trylock(HANDLE_PIN_BIT, (unsigned long *)handle);
888 }
889 
__acquiresnull890 static void pin_tag(unsigned long handle) __acquires(bitlock)
891 {
892 	bit_spin_lock(HANDLE_PIN_BIT, (unsigned long *)handle);
893 }
894 
__releasesnull895 static void unpin_tag(unsigned long handle) __releases(bitlock)
896 {
897 	bit_spin_unlock(HANDLE_PIN_BIT, (unsigned long *)handle);
898 }
899 
reset_page(struct page *page)900 static void reset_page(struct page *page)
901 {
902 	__ClearPageMovable(page);
903 	ClearPagePrivate(page);
904 	set_page_private(page, 0);
905 	page_mapcount_reset(page);
906 	ClearPageHugeObject(page);
907 	page->freelist = NULL;
908 }
909 
trylock_zspage(struct zspage *zspage)910 static int trylock_zspage(struct zspage *zspage)
911 {
912 	struct page *cursor, *fail;
913 
914 	for (cursor = get_first_page(zspage); cursor != NULL; cursor =
915 					get_next_page(cursor)) {
916 		if (!trylock_page(cursor)) {
917 			fail = cursor;
918 			goto unlock;
919 		}
920 	}
921 
922 	return 1;
923 unlock:
924 	for (cursor = get_first_page(zspage); cursor != fail; cursor =
925 					get_next_page(cursor))
926 		unlock_page(cursor);
927 
928 	return 0;
929 }
930 
__free_zspage(struct zs_pool *pool, struct size_class *class, struct zspage *zspage)931 static void __free_zspage(struct zs_pool *pool, struct size_class *class,
932 				struct zspage *zspage)
933 {
934 	struct page *page, *next;
935 	enum fullness_group fg;
936 	unsigned int class_idx;
937 
938 	get_zspage_mapping(zspage, &class_idx, &fg);
939 
940 	assert_spin_locked(&class->lock);
941 
942 	VM_BUG_ON(get_zspage_inuse(zspage));
943 	VM_BUG_ON(fg != ZS_EMPTY);
944 
945 	next = page = get_first_page(zspage);
946 	do {
947 		VM_BUG_ON_PAGE(!PageLocked(page), page);
948 		next = get_next_page(page);
949 		reset_page(page);
950 		unlock_page(page);
951 		dec_zone_page_state(page, NR_ZSPAGES);
952 		put_page(page);
953 		page = next;
954 	} while (page != NULL);
955 
956 	cache_free_zspage(pool, zspage);
957 
958 	zs_stat_dec(class, OBJ_ALLOCATED, class->objs_per_zspage);
959 	atomic_long_sub(class->pages_per_zspage,
960 					&pool->pages_allocated);
961 }
962 
free_zspage(struct zs_pool *pool, struct size_class *class, struct zspage *zspage)963 static void free_zspage(struct zs_pool *pool, struct size_class *class,
964 				struct zspage *zspage)
965 {
966 	VM_BUG_ON(get_zspage_inuse(zspage));
967 	VM_BUG_ON(list_empty(&zspage->list));
968 
969 	if (!trylock_zspage(zspage)) {
970 		kick_deferred_free(pool);
971 		return;
972 	}
973 
974 	remove_zspage(class, zspage, ZS_EMPTY);
975 	__free_zspage(pool, class, zspage);
976 }
977 
978 /* Initialize a newly allocated zspage */
init_zspage(struct size_class *class, struct zspage *zspage)979 static void init_zspage(struct size_class *class, struct zspage *zspage)
980 {
981 	unsigned int freeobj = 1;
982 	unsigned long off = 0;
983 	struct page *page = get_first_page(zspage);
984 
985 	while (page) {
986 		struct page *next_page;
987 		struct link_free *link;
988 		void *vaddr;
989 
990 		set_first_obj_offset(page, off);
991 
992 		vaddr = kmap_atomic(page);
993 		link = (struct link_free *)vaddr + off / sizeof(*link);
994 
995 		while ((off += class->size) < PAGE_SIZE) {
996 			link->next = freeobj++ << OBJ_TAG_BITS;
997 			link += class->size / sizeof(*link);
998 		}
999 
1000 		/*
1001 		 * We now come to the last (full or partial) object on this
1002 		 * page, which must point to the first object on the next
1003 		 * page (if present)
1004 		 */
1005 		next_page = get_next_page(page);
1006 		if (next_page) {
1007 			link->next = freeobj++ << OBJ_TAG_BITS;
1008 		} else {
1009 			/*
1010 			 * Reset OBJ_TAG_BITS bit to last link to tell
1011 			 * whether it's allocated object or not.
1012 			 */
1013 			link->next = -1UL << OBJ_TAG_BITS;
1014 		}
1015 		kunmap_atomic(vaddr);
1016 		page = next_page;
1017 		off %= PAGE_SIZE;
1018 	}
1019 
1020 	set_freeobj(zspage, 0);
1021 }
1022 
create_page_chain(struct size_class *class, struct zspage *zspage, struct page *pages[])1023 static void create_page_chain(struct size_class *class, struct zspage *zspage,
1024 				struct page *pages[])
1025 {
1026 	int i;
1027 	struct page *page;
1028 	struct page *prev_page = NULL;
1029 	int nr_pages = class->pages_per_zspage;
1030 
1031 	/*
1032 	 * Allocate individual pages and link them together as:
1033 	 * 1. all pages are linked together using page->freelist
1034 	 * 2. each sub-page point to zspage using page->private
1035 	 *
1036 	 * we set PG_private to identify the first page (i.e. no other sub-page
1037 	 * has this flag set).
1038 	 */
1039 	for (i = 0; i < nr_pages; i++) {
1040 		page = pages[i];
1041 		set_page_private(page, (unsigned long)zspage);
1042 		page->freelist = NULL;
1043 		if (i == 0) {
1044 			zspage->first_page = page;
1045 			SetPagePrivate(page);
1046 			if (unlikely(class->objs_per_zspage == 1 &&
1047 					class->pages_per_zspage == 1))
1048 				SetPageHugeObject(page);
1049 		} else {
1050 			prev_page->freelist = page;
1051 		}
1052 		prev_page = page;
1053 	}
1054 }
1055 
1056 /*
1057  * Allocate a zspage for the given size class
1058  */
alloc_zspage(struct zs_pool *pool, struct size_class *class, gfp_t gfp)1059 static struct zspage *alloc_zspage(struct zs_pool *pool,
1060 					struct size_class *class,
1061 					gfp_t gfp)
1062 {
1063 	int i;
1064 	struct page *pages[ZS_MAX_PAGES_PER_ZSPAGE];
1065 	struct zspage *zspage = cache_alloc_zspage(pool, gfp);
1066 
1067 	if (!zspage)
1068 		return NULL;
1069 
1070 	memset(zspage, 0, sizeof(struct zspage));
1071 	zspage->magic = ZSPAGE_MAGIC;
1072 	migrate_lock_init(zspage);
1073 
1074 	for (i = 0; i < class->pages_per_zspage; i++) {
1075 		struct page *page;
1076 
1077 		page = alloc_page(gfp);
1078 		if (!page) {
1079 			while (--i >= 0) {
1080 				dec_zone_page_state(pages[i], NR_ZSPAGES);
1081 				__free_page(pages[i]);
1082 			}
1083 			cache_free_zspage(pool, zspage);
1084 			return NULL;
1085 		}
1086 
1087 		inc_zone_page_state(page, NR_ZSPAGES);
1088 #ifdef CONFIG_PAGE_TRACING
1089 		SetPageZspage(page);
1090 #endif
1091 		pages[i] = page;
1092 	}
1093 
1094 	create_page_chain(class, zspage, pages);
1095 	init_zspage(class, zspage);
1096 
1097 	return zspage;
1098 }
1099 
find_get_zspage(struct size_class *class)1100 static struct zspage *find_get_zspage(struct size_class *class)
1101 {
1102 	int i;
1103 	struct zspage *zspage;
1104 
1105 	for (i = ZS_ALMOST_FULL; i >= ZS_EMPTY; i--) {
1106 		zspage = list_first_entry_or_null(&class->fullness_list[i],
1107 				struct zspage, list);
1108 		if (zspage)
1109 			break;
1110 	}
1111 
1112 	return zspage;
1113 }
1114 
__zs_cpu_up(struct mapping_area *area)1115 static inline int __zs_cpu_up(struct mapping_area *area)
1116 {
1117 	/*
1118 	 * Make sure we don't leak memory if a cpu UP notification
1119 	 * and zs_init() race and both call zs_cpu_up() on the same cpu
1120 	 */
1121 	if (area->vm_buf)
1122 		return 0;
1123 	area->vm_buf = kmalloc(ZS_MAX_ALLOC_SIZE, GFP_KERNEL);
1124 	if (!area->vm_buf)
1125 		return -ENOMEM;
1126 	return 0;
1127 }
1128 
__zs_cpu_down(struct mapping_area *area)1129 static inline void __zs_cpu_down(struct mapping_area *area)
1130 {
1131 	kfree(area->vm_buf);
1132 	area->vm_buf = NULL;
1133 }
1134 
__zs_map_object(struct mapping_area *area, struct page *pages[2], int off, int size)1135 static void *__zs_map_object(struct mapping_area *area,
1136 			struct page *pages[2], int off, int size)
1137 {
1138 	int sizes[2];
1139 	void *addr;
1140 	char *buf = area->vm_buf;
1141 
1142 	/* disable page faults to match kmap_atomic() return conditions */
1143 	pagefault_disable();
1144 
1145 	/* no read fastpath */
1146 	if (area->vm_mm == ZS_MM_WO)
1147 		goto out;
1148 
1149 	sizes[0] = PAGE_SIZE - off;
1150 	sizes[1] = size - sizes[0];
1151 
1152 	/* copy object to per-cpu buffer */
1153 	addr = kmap_atomic(pages[0]);
1154 	memcpy(buf, addr + off, sizes[0]);
1155 	kunmap_atomic(addr);
1156 	addr = kmap_atomic(pages[1]);
1157 	memcpy(buf + sizes[0], addr, sizes[1]);
1158 	kunmap_atomic(addr);
1159 out:
1160 	return area->vm_buf;
1161 }
1162 
__zs_unmap_object(struct mapping_area *area, struct page *pages[2], int off, int size)1163 static void __zs_unmap_object(struct mapping_area *area,
1164 			struct page *pages[2], int off, int size)
1165 {
1166 	int sizes[2];
1167 	void *addr;
1168 	char *buf;
1169 
1170 	/* no write fastpath */
1171 	if (area->vm_mm == ZS_MM_RO)
1172 		goto out;
1173 
1174 	buf = area->vm_buf;
1175 	buf = buf + ZS_HANDLE_SIZE;
1176 	size -= ZS_HANDLE_SIZE;
1177 	off += ZS_HANDLE_SIZE;
1178 
1179 	sizes[0] = PAGE_SIZE - off;
1180 	sizes[1] = size - sizes[0];
1181 
1182 	/* copy per-cpu buffer to object */
1183 	addr = kmap_atomic(pages[0]);
1184 	memcpy(addr + off, buf, sizes[0]);
1185 	kunmap_atomic(addr);
1186 	addr = kmap_atomic(pages[1]);
1187 	memcpy(addr, buf + sizes[0], sizes[1]);
1188 	kunmap_atomic(addr);
1189 
1190 out:
1191 	/* enable page faults to match kunmap_atomic() return conditions */
1192 	pagefault_enable();
1193 }
1194 
zs_cpu_prepare(unsigned int cpu)1195 static int zs_cpu_prepare(unsigned int cpu)
1196 {
1197 	struct mapping_area *area;
1198 
1199 	area = &per_cpu(zs_map_area, cpu);
1200 	return __zs_cpu_up(area);
1201 }
1202 
zs_cpu_dead(unsigned int cpu)1203 static int zs_cpu_dead(unsigned int cpu)
1204 {
1205 	struct mapping_area *area;
1206 
1207 	area = &per_cpu(zs_map_area, cpu);
1208 	__zs_cpu_down(area);
1209 	return 0;
1210 }
1211 
can_merge(struct size_class *prev, int pages_per_zspage, int objs_per_zspage)1212 static bool can_merge(struct size_class *prev, int pages_per_zspage,
1213 					int objs_per_zspage)
1214 {
1215 	if (prev->pages_per_zspage == pages_per_zspage &&
1216 		prev->objs_per_zspage == objs_per_zspage)
1217 		return true;
1218 
1219 	return false;
1220 }
1221 
zspage_full(struct size_class *class, struct zspage *zspage)1222 static bool zspage_full(struct size_class *class, struct zspage *zspage)
1223 {
1224 	return get_zspage_inuse(zspage) == class->objs_per_zspage;
1225 }
1226 
zs_get_total_pages(struct zs_pool *pool)1227 unsigned long zs_get_total_pages(struct zs_pool *pool)
1228 {
1229 	return atomic_long_read(&pool->pages_allocated);
1230 }
1231 EXPORT_SYMBOL_GPL(zs_get_total_pages);
1232 
1233 /**
1234  * zs_map_object - get address of allocated object from handle.
1235  * @pool: pool from which the object was allocated
1236  * @handle: handle returned from zs_malloc
1237  * @mm: maping mode to use
1238  *
1239  * Before using an object allocated from zs_malloc, it must be mapped using
1240  * this function. When done with the object, it must be unmapped using
1241  * zs_unmap_object.
1242  *
1243  * Only one object can be mapped per cpu at a time. There is no protection
1244  * against nested mappings.
1245  *
1246  * This function returns with preemption and page faults disabled.
1247  */
zs_map_object(struct zs_pool *pool, unsigned long handle, enum zs_mapmode mm)1248 void *zs_map_object(struct zs_pool *pool, unsigned long handle,
1249 			enum zs_mapmode mm)
1250 {
1251 	struct zspage *zspage;
1252 	struct page *page;
1253 	unsigned long obj, off;
1254 	unsigned int obj_idx;
1255 
1256 	unsigned int class_idx;
1257 	enum fullness_group fg;
1258 	struct size_class *class;
1259 	struct mapping_area *area;
1260 	struct page *pages[2];
1261 	void *ret;
1262 
1263 	/*
1264 	 * Because we use per-cpu mapping areas shared among the
1265 	 * pools/users, we can't allow mapping in interrupt context
1266 	 * because it can corrupt another users mappings.
1267 	 */
1268 	BUG_ON(in_interrupt());
1269 
1270 	/* From now on, migration cannot move the object */
1271 	pin_tag(handle);
1272 
1273 	obj = handle_to_obj(handle);
1274 	obj_to_location(obj, &page, &obj_idx);
1275 	zspage = get_zspage(page);
1276 
1277 	/* migration cannot move any subpage in this zspage */
1278 	migrate_read_lock(zspage);
1279 
1280 	get_zspage_mapping(zspage, &class_idx, &fg);
1281 	class = pool->size_class[class_idx];
1282 	off = (class->size * obj_idx) & ~PAGE_MASK;
1283 
1284 	area = &get_cpu_var(zs_map_area);
1285 	area->vm_mm = mm;
1286 	if (off + class->size <= PAGE_SIZE) {
1287 		/* this object is contained entirely within a page */
1288 		area->vm_addr = kmap_atomic(page);
1289 		ret = area->vm_addr + off;
1290 		goto out;
1291 	}
1292 
1293 	/* this object spans two pages */
1294 	pages[0] = page;
1295 	pages[1] = get_next_page(page);
1296 	BUG_ON(!pages[1]);
1297 
1298 	ret = __zs_map_object(area, pages, off, class->size);
1299 out:
1300 	if (likely(!PageHugeObject(page)))
1301 		ret += ZS_HANDLE_SIZE;
1302 
1303 	return ret;
1304 }
1305 EXPORT_SYMBOL_GPL(zs_map_object);
1306 
zs_unmap_object(struct zs_pool *pool, unsigned long handle)1307 void zs_unmap_object(struct zs_pool *pool, unsigned long handle)
1308 {
1309 	struct zspage *zspage;
1310 	struct page *page;
1311 	unsigned long obj, off;
1312 	unsigned int obj_idx;
1313 
1314 	unsigned int class_idx;
1315 	enum fullness_group fg;
1316 	struct size_class *class;
1317 	struct mapping_area *area;
1318 
1319 	obj = handle_to_obj(handle);
1320 	obj_to_location(obj, &page, &obj_idx);
1321 	zspage = get_zspage(page);
1322 	get_zspage_mapping(zspage, &class_idx, &fg);
1323 	class = pool->size_class[class_idx];
1324 	off = (class->size * obj_idx) & ~PAGE_MASK;
1325 
1326 	area = this_cpu_ptr(&zs_map_area);
1327 	if (off + class->size <= PAGE_SIZE)
1328 		kunmap_atomic(area->vm_addr);
1329 	else {
1330 		struct page *pages[2];
1331 
1332 		pages[0] = page;
1333 		pages[1] = get_next_page(page);
1334 		BUG_ON(!pages[1]);
1335 
1336 		__zs_unmap_object(area, pages, off, class->size);
1337 	}
1338 	put_cpu_var(zs_map_area);
1339 
1340 	migrate_read_unlock(zspage);
1341 	unpin_tag(handle);
1342 }
1343 EXPORT_SYMBOL_GPL(zs_unmap_object);
1344 
1345 /**
1346  * zs_huge_class_size() - Returns the size (in bytes) of the first huge
1347  *                        zsmalloc &size_class.
1348  * @pool: zsmalloc pool to use
1349  *
1350  * The function returns the size of the first huge class - any object of equal
1351  * or bigger size will be stored in zspage consisting of a single physical
1352  * page.
1353  *
1354  * Context: Any context.
1355  *
1356  * Return: the size (in bytes) of the first huge zsmalloc &size_class.
1357  */
zs_huge_class_size(struct zs_pool *pool)1358 size_t zs_huge_class_size(struct zs_pool *pool)
1359 {
1360 	return huge_class_size;
1361 }
1362 EXPORT_SYMBOL_GPL(zs_huge_class_size);
1363 
obj_malloc(struct size_class *class, struct zspage *zspage, unsigned long handle)1364 static unsigned long obj_malloc(struct size_class *class,
1365 				struct zspage *zspage, unsigned long handle)
1366 {
1367 	int i, nr_page, offset;
1368 	unsigned long obj;
1369 	struct link_free *link;
1370 
1371 	struct page *m_page;
1372 	unsigned long m_offset;
1373 	void *vaddr;
1374 
1375 	handle |= OBJ_ALLOCATED_TAG;
1376 	obj = get_freeobj(zspage);
1377 
1378 	offset = obj * class->size;
1379 	nr_page = offset >> PAGE_SHIFT;
1380 	m_offset = offset & ~PAGE_MASK;
1381 	m_page = get_first_page(zspage);
1382 
1383 	for (i = 0; i < nr_page; i++)
1384 		m_page = get_next_page(m_page);
1385 
1386 	vaddr = kmap_atomic(m_page);
1387 	link = (struct link_free *)vaddr + m_offset / sizeof(*link);
1388 	set_freeobj(zspage, link->next >> OBJ_TAG_BITS);
1389 	if (likely(!PageHugeObject(m_page)))
1390 		/* record handle in the header of allocated chunk */
1391 		link->handle = handle;
1392 	else
1393 		/* record handle to page->index */
1394 		zspage->first_page->index = handle;
1395 
1396 	kunmap_atomic(vaddr);
1397 	mod_zspage_inuse(zspage, 1);
1398 	zs_stat_inc(class, OBJ_USED, 1);
1399 
1400 	obj = location_to_obj(m_page, obj);
1401 
1402 	return obj;
1403 }
1404 
1405 
1406 /**
1407  * zs_malloc - Allocate block of given size from pool.
1408  * @pool: pool to allocate from
1409  * @size: size of block to allocate
1410  * @gfp: gfp flags when allocating object
1411  *
1412  * On success, handle to the allocated object is returned,
1413  * otherwise 0.
1414  * Allocation requests with size > ZS_MAX_ALLOC_SIZE will fail.
1415  */
zs_malloc(struct zs_pool *pool, size_t size, gfp_t gfp)1416 unsigned long zs_malloc(struct zs_pool *pool, size_t size, gfp_t gfp)
1417 {
1418 	unsigned long handle, obj;
1419 	struct size_class *class;
1420 	enum fullness_group newfg;
1421 	struct zspage *zspage;
1422 
1423 	if (unlikely(!size || size > ZS_MAX_ALLOC_SIZE))
1424 		return 0;
1425 
1426 	handle = cache_alloc_handle(pool, gfp);
1427 	if (!handle)
1428 		return 0;
1429 
1430 	/* extra space in chunk to keep the handle */
1431 	size += ZS_HANDLE_SIZE;
1432 	class = pool->size_class[get_size_class_index(size)];
1433 
1434 	spin_lock(&class->lock);
1435 	zspage = find_get_zspage(class);
1436 	if (likely(zspage)) {
1437 		obj = obj_malloc(class, zspage, handle);
1438 		/* Now move the zspage to another fullness group, if required */
1439 		fix_fullness_group(class, zspage);
1440 		record_obj(handle, obj);
1441 		spin_unlock(&class->lock);
1442 
1443 		return handle;
1444 	}
1445 
1446 	spin_unlock(&class->lock);
1447 
1448 	zspage = alloc_zspage(pool, class, gfp);
1449 	if (!zspage) {
1450 		cache_free_handle(pool, handle);
1451 		return 0;
1452 	}
1453 
1454 	spin_lock(&class->lock);
1455 	obj = obj_malloc(class, zspage, handle);
1456 	newfg = get_fullness_group(class, zspage);
1457 	insert_zspage(class, zspage, newfg);
1458 	set_zspage_mapping(zspage, class->index, newfg);
1459 	record_obj(handle, obj);
1460 	atomic_long_add(class->pages_per_zspage,
1461 				&pool->pages_allocated);
1462 	zs_stat_inc(class, OBJ_ALLOCATED, class->objs_per_zspage);
1463 
1464 	/* We completely set up zspage so mark them as movable */
1465 	SetZsPageMovable(pool, zspage);
1466 	spin_unlock(&class->lock);
1467 
1468 	return handle;
1469 }
1470 EXPORT_SYMBOL_GPL(zs_malloc);
1471 
obj_free(struct size_class *class, unsigned long obj)1472 static void obj_free(struct size_class *class, unsigned long obj)
1473 {
1474 	struct link_free *link;
1475 	struct zspage *zspage;
1476 	struct page *f_page;
1477 	unsigned long f_offset;
1478 	unsigned int f_objidx;
1479 	void *vaddr;
1480 
1481 	obj &= ~OBJ_ALLOCATED_TAG;
1482 	obj_to_location(obj, &f_page, &f_objidx);
1483 	f_offset = (class->size * f_objidx) & ~PAGE_MASK;
1484 	zspage = get_zspage(f_page);
1485 
1486 	vaddr = kmap_atomic(f_page);
1487 
1488 	/* Insert this object in containing zspage's freelist */
1489 	link = (struct link_free *)(vaddr + f_offset);
1490 	link->next = get_freeobj(zspage) << OBJ_TAG_BITS;
1491 	kunmap_atomic(vaddr);
1492 	set_freeobj(zspage, f_objidx);
1493 	mod_zspage_inuse(zspage, -1);
1494 	zs_stat_dec(class, OBJ_USED, 1);
1495 }
1496 
zs_free(struct zs_pool *pool, unsigned long handle)1497 void zs_free(struct zs_pool *pool, unsigned long handle)
1498 {
1499 	struct zspage *zspage;
1500 	struct page *f_page;
1501 	unsigned long obj;
1502 	unsigned int f_objidx;
1503 	int class_idx;
1504 	struct size_class *class;
1505 	enum fullness_group fullness;
1506 	bool isolated;
1507 
1508 	if (unlikely(!handle))
1509 		return;
1510 
1511 	pin_tag(handle);
1512 	obj = handle_to_obj(handle);
1513 	obj_to_location(obj, &f_page, &f_objidx);
1514 	zspage = get_zspage(f_page);
1515 
1516 	migrate_read_lock(zspage);
1517 
1518 	get_zspage_mapping(zspage, &class_idx, &fullness);
1519 	class = pool->size_class[class_idx];
1520 
1521 	spin_lock(&class->lock);
1522 	obj_free(class, obj);
1523 	fullness = fix_fullness_group(class, zspage);
1524 	if (fullness != ZS_EMPTY) {
1525 		migrate_read_unlock(zspage);
1526 		goto out;
1527 	}
1528 
1529 	isolated = is_zspage_isolated(zspage);
1530 	migrate_read_unlock(zspage);
1531 	/* If zspage is isolated, zs_page_putback will free the zspage */
1532 	if (likely(!isolated))
1533 		free_zspage(pool, class, zspage);
1534 out:
1535 
1536 	spin_unlock(&class->lock);
1537 	unpin_tag(handle);
1538 	cache_free_handle(pool, handle);
1539 }
1540 EXPORT_SYMBOL_GPL(zs_free);
1541 
zs_object_copy(struct size_class *class, unsigned long dst, unsigned long src)1542 static void zs_object_copy(struct size_class *class, unsigned long dst,
1543 				unsigned long src)
1544 {
1545 	struct page *s_page, *d_page;
1546 	unsigned int s_objidx, d_objidx;
1547 	unsigned long s_off, d_off;
1548 	void *s_addr, *d_addr;
1549 	int s_size, d_size, size;
1550 	int written = 0;
1551 
1552 	s_size = d_size = class->size;
1553 
1554 	obj_to_location(src, &s_page, &s_objidx);
1555 	obj_to_location(dst, &d_page, &d_objidx);
1556 
1557 	s_off = (class->size * s_objidx) & ~PAGE_MASK;
1558 	d_off = (class->size * d_objidx) & ~PAGE_MASK;
1559 
1560 	if (s_off + class->size > PAGE_SIZE)
1561 		s_size = PAGE_SIZE - s_off;
1562 
1563 	if (d_off + class->size > PAGE_SIZE)
1564 		d_size = PAGE_SIZE - d_off;
1565 
1566 	s_addr = kmap_atomic(s_page);
1567 	d_addr = kmap_atomic(d_page);
1568 
1569 	while (1) {
1570 		size = min(s_size, d_size);
1571 		memcpy(d_addr + d_off, s_addr + s_off, size);
1572 		written += size;
1573 
1574 		if (written == class->size)
1575 			break;
1576 
1577 		s_off += size;
1578 		s_size -= size;
1579 		d_off += size;
1580 		d_size -= size;
1581 
1582 		if (s_off >= PAGE_SIZE) {
1583 			kunmap_atomic(d_addr);
1584 			kunmap_atomic(s_addr);
1585 			s_page = get_next_page(s_page);
1586 			s_addr = kmap_atomic(s_page);
1587 			d_addr = kmap_atomic(d_page);
1588 			s_size = class->size - written;
1589 			s_off = 0;
1590 		}
1591 
1592 		if (d_off >= PAGE_SIZE) {
1593 			kunmap_atomic(d_addr);
1594 			d_page = get_next_page(d_page);
1595 			d_addr = kmap_atomic(d_page);
1596 			d_size = class->size - written;
1597 			d_off = 0;
1598 		}
1599 	}
1600 
1601 	kunmap_atomic(d_addr);
1602 	kunmap_atomic(s_addr);
1603 }
1604 
1605 /*
1606  * Find alloced object in zspage from index object and
1607  * return handle.
1608  */
find_alloced_obj(struct size_class *class, struct page *page, int *obj_idx)1609 static unsigned long find_alloced_obj(struct size_class *class,
1610 					struct page *page, int *obj_idx)
1611 {
1612 	unsigned long head;
1613 	int offset = 0;
1614 	int index = *obj_idx;
1615 	unsigned long handle = 0;
1616 	void *addr = kmap_atomic(page);
1617 
1618 	offset = get_first_obj_offset(page);
1619 	offset += class->size * index;
1620 
1621 	while (offset < PAGE_SIZE) {
1622 		head = obj_to_head(page, addr + offset);
1623 		if (head & OBJ_ALLOCATED_TAG) {
1624 			handle = head & ~OBJ_ALLOCATED_TAG;
1625 			if (trypin_tag(handle))
1626 				break;
1627 			handle = 0;
1628 		}
1629 
1630 		offset += class->size;
1631 		index++;
1632 	}
1633 
1634 	kunmap_atomic(addr);
1635 
1636 	*obj_idx = index;
1637 
1638 	return handle;
1639 }
1640 
1641 struct zs_compact_control {
1642 	/* Source spage for migration which could be a subpage of zspage */
1643 	struct page *s_page;
1644 	/* Destination page for migration which should be a first page
1645 	 * of zspage. */
1646 	struct page *d_page;
1647 	 /* Starting object index within @s_page which used for live object
1648 	  * in the subpage. */
1649 	int obj_idx;
1650 };
1651 
migrate_zspage(struct zs_pool *pool, struct size_class *class, struct zs_compact_control *cc)1652 static int migrate_zspage(struct zs_pool *pool, struct size_class *class,
1653 				struct zs_compact_control *cc)
1654 {
1655 	unsigned long used_obj, free_obj;
1656 	unsigned long handle;
1657 	struct page *s_page = cc->s_page;
1658 	struct page *d_page = cc->d_page;
1659 	int obj_idx = cc->obj_idx;
1660 	int ret = 0;
1661 
1662 	while (1) {
1663 		handle = find_alloced_obj(class, s_page, &obj_idx);
1664 		if (!handle) {
1665 			s_page = get_next_page(s_page);
1666 			if (!s_page)
1667 				break;
1668 			obj_idx = 0;
1669 			continue;
1670 		}
1671 
1672 		/* Stop if there is no more space */
1673 		if (zspage_full(class, get_zspage(d_page))) {
1674 			unpin_tag(handle);
1675 			ret = -ENOMEM;
1676 			break;
1677 		}
1678 
1679 		used_obj = handle_to_obj(handle);
1680 		free_obj = obj_malloc(class, get_zspage(d_page), handle);
1681 		zs_object_copy(class, free_obj, used_obj);
1682 		obj_idx++;
1683 		/*
1684 		 * record_obj updates handle's value to free_obj and it will
1685 		 * invalidate lock bit(ie, HANDLE_PIN_BIT) of handle, which
1686 		 * breaks synchronization using pin_tag(e,g, zs_free) so
1687 		 * let's keep the lock bit.
1688 		 */
1689 		free_obj |= BIT(HANDLE_PIN_BIT);
1690 		record_obj(handle, free_obj);
1691 		unpin_tag(handle);
1692 		obj_free(class, used_obj);
1693 	}
1694 
1695 	/* Remember last position in this iteration */
1696 	cc->s_page = s_page;
1697 	cc->obj_idx = obj_idx;
1698 
1699 	return ret;
1700 }
1701 
isolate_zspage(struct size_class *class, bool source)1702 static struct zspage *isolate_zspage(struct size_class *class, bool source)
1703 {
1704 	int i;
1705 	struct zspage *zspage;
1706 	enum fullness_group fg[2] = {ZS_ALMOST_EMPTY, ZS_ALMOST_FULL};
1707 
1708 	if (!source) {
1709 		fg[0] = ZS_ALMOST_FULL;
1710 		fg[1] = ZS_ALMOST_EMPTY;
1711 	}
1712 
1713 	for (i = 0; i < 2; i++) {
1714 		zspage = list_first_entry_or_null(&class->fullness_list[fg[i]],
1715 							struct zspage, list);
1716 		if (zspage) {
1717 			VM_BUG_ON(is_zspage_isolated(zspage));
1718 			remove_zspage(class, zspage, fg[i]);
1719 			return zspage;
1720 		}
1721 	}
1722 
1723 	return zspage;
1724 }
1725 
1726 /*
1727  * putback_zspage - add @zspage into right class's fullness list
1728  * @class: destination class
1729  * @zspage: target page
1730  *
1731  * Return @zspage's fullness_group
1732  */
putback_zspage(struct size_class *class, struct zspage *zspage)1733 static enum fullness_group putback_zspage(struct size_class *class,
1734 			struct zspage *zspage)
1735 {
1736 	enum fullness_group fullness;
1737 
1738 	VM_BUG_ON(is_zspage_isolated(zspage));
1739 
1740 	fullness = get_fullness_group(class, zspage);
1741 	insert_zspage(class, zspage, fullness);
1742 	set_zspage_mapping(zspage, class->index, fullness);
1743 
1744 	return fullness;
1745 }
1746 
1747 #ifdef CONFIG_COMPACTION
1748 /*
1749  * To prevent zspage destroy during migration, zspage freeing should
1750  * hold locks of all pages in the zspage.
1751  */
lock_zspage(struct zspage *zspage)1752 static void lock_zspage(struct zspage *zspage)
1753 {
1754 	struct page *curr_page, *page;
1755 
1756 	/*
1757 	 * Pages we haven't locked yet can be migrated off the list while we're
1758 	 * trying to lock them, so we need to be careful and only attempt to
1759 	 * lock each page under migrate_read_lock(). Otherwise, the page we lock
1760 	 * may no longer belong to the zspage. This means that we may wait for
1761 	 * the wrong page to unlock, so we must take a reference to the page
1762 	 * prior to waiting for it to unlock outside migrate_read_lock().
1763 	 */
1764 	while (1) {
1765 		migrate_read_lock(zspage);
1766 		page = get_first_page(zspage);
1767 		if (trylock_page(page))
1768 			break;
1769 		get_page(page);
1770 		migrate_read_unlock(zspage);
1771 		wait_on_page_locked(page);
1772 		put_page(page);
1773 	}
1774 
1775 	curr_page = page;
1776 	while ((page = get_next_page(curr_page))) {
1777 		if (trylock_page(page)) {
1778 			curr_page = page;
1779 		} else {
1780 			get_page(page);
1781 			migrate_read_unlock(zspage);
1782 			wait_on_page_locked(page);
1783 			put_page(page);
1784 			migrate_read_lock(zspage);
1785 		}
1786 	}
1787 	migrate_read_unlock(zspage);
1788 }
1789 
zs_init_fs_context(struct fs_context *fc)1790 static int zs_init_fs_context(struct fs_context *fc)
1791 {
1792 	return init_pseudo(fc, ZSMALLOC_MAGIC) ? 0 : -ENOMEM;
1793 }
1794 
1795 static struct file_system_type zsmalloc_fs = {
1796 	.name		= "zsmalloc",
1797 	.init_fs_context = zs_init_fs_context,
1798 	.kill_sb	= kill_anon_super,
1799 };
1800 
zsmalloc_mount(void)1801 static int zsmalloc_mount(void)
1802 {
1803 	int ret = 0;
1804 
1805 	zsmalloc_mnt = kern_mount(&zsmalloc_fs);
1806 	if (IS_ERR(zsmalloc_mnt))
1807 		ret = PTR_ERR(zsmalloc_mnt);
1808 
1809 	return ret;
1810 }
1811 
zsmalloc_unmount(void)1812 static void zsmalloc_unmount(void)
1813 {
1814 	kern_unmount(zsmalloc_mnt);
1815 }
1816 
migrate_lock_init(struct zspage *zspage)1817 static void migrate_lock_init(struct zspage *zspage)
1818 {
1819 	rwlock_init(&zspage->lock);
1820 }
1821 
1822 static void migrate_read_lock(struct zspage *zspage) __acquires(&zspage->lock)
1823 {
1824 	read_lock(&zspage->lock);
1825 }
1826 
1827 static void migrate_read_unlock(struct zspage *zspage) __releases(&zspage->lock)
1828 {
1829 	read_unlock(&zspage->lock);
1830 }
1831 
migrate_write_lock(struct zspage *zspage)1832 static void migrate_write_lock(struct zspage *zspage)
1833 {
1834 	write_lock(&zspage->lock);
1835 }
1836 
migrate_write_unlock(struct zspage *zspage)1837 static void migrate_write_unlock(struct zspage *zspage)
1838 {
1839 	write_unlock(&zspage->lock);
1840 }
1841 
1842 /* Number of isolated subpage for *page migration* in this zspage */
inc_zspage_isolation(struct zspage *zspage)1843 static void inc_zspage_isolation(struct zspage *zspage)
1844 {
1845 	zspage->isolated++;
1846 }
1847 
dec_zspage_isolation(struct zspage *zspage)1848 static void dec_zspage_isolation(struct zspage *zspage)
1849 {
1850 	zspage->isolated--;
1851 }
1852 
putback_zspage_deferred(struct zs_pool *pool, struct size_class *class, struct zspage *zspage)1853 static void putback_zspage_deferred(struct zs_pool *pool,
1854 				    struct size_class *class,
1855 				    struct zspage *zspage)
1856 {
1857 	enum fullness_group fg;
1858 
1859 	fg = putback_zspage(class, zspage);
1860 	if (fg == ZS_EMPTY)
1861 		schedule_work(&pool->free_work);
1862 
1863 }
1864 
zs_pool_dec_isolated(struct zs_pool *pool)1865 static inline void zs_pool_dec_isolated(struct zs_pool *pool)
1866 {
1867 	VM_BUG_ON(atomic_long_read(&pool->isolated_pages) <= 0);
1868 	atomic_long_dec(&pool->isolated_pages);
1869 	/*
1870 	 * Checking pool->destroying must happen after atomic_long_dec()
1871 	 * for pool->isolated_pages above. Paired with the smp_mb() in
1872 	 * zs_unregister_migration().
1873 	 */
1874 	smp_mb__after_atomic();
1875 	if (atomic_long_read(&pool->isolated_pages) == 0 && pool->destroying)
1876 		wake_up_all(&pool->migration_wait);
1877 }
1878 
replace_sub_page(struct size_class *class, struct zspage *zspage, struct page *newpage, struct page *oldpage)1879 static void replace_sub_page(struct size_class *class, struct zspage *zspage,
1880 				struct page *newpage, struct page *oldpage)
1881 {
1882 	struct page *page;
1883 	struct page *pages[ZS_MAX_PAGES_PER_ZSPAGE] = {NULL, };
1884 	int idx = 0;
1885 
1886 	page = get_first_page(zspage);
1887 	do {
1888 		if (page == oldpage)
1889 			pages[idx] = newpage;
1890 		else
1891 			pages[idx] = page;
1892 		idx++;
1893 	} while ((page = get_next_page(page)) != NULL);
1894 
1895 	create_page_chain(class, zspage, pages);
1896 	set_first_obj_offset(newpage, get_first_obj_offset(oldpage));
1897 	if (unlikely(PageHugeObject(oldpage)))
1898 		newpage->index = oldpage->index;
1899 	__SetPageMovable(newpage, page_mapping(oldpage));
1900 }
1901 
zs_page_isolate(struct page *page, isolate_mode_t mode)1902 static bool zs_page_isolate(struct page *page, isolate_mode_t mode)
1903 {
1904 	struct zs_pool *pool;
1905 	struct size_class *class;
1906 	int class_idx;
1907 	enum fullness_group fullness;
1908 	struct zspage *zspage;
1909 	struct address_space *mapping;
1910 
1911 	/*
1912 	 * Page is locked so zspage couldn't be destroyed. For detail, look at
1913 	 * lock_zspage in free_zspage.
1914 	 */
1915 	VM_BUG_ON_PAGE(!PageMovable(page), page);
1916 	VM_BUG_ON_PAGE(PageIsolated(page), page);
1917 
1918 	zspage = get_zspage(page);
1919 
1920 	/*
1921 	 * Without class lock, fullness could be stale while class_idx is okay
1922 	 * because class_idx is constant unless page is freed so we should get
1923 	 * fullness again under class lock.
1924 	 */
1925 	get_zspage_mapping(zspage, &class_idx, &fullness);
1926 	mapping = page_mapping(page);
1927 	pool = mapping->private_data;
1928 	class = pool->size_class[class_idx];
1929 
1930 	spin_lock(&class->lock);
1931 	if (get_zspage_inuse(zspage) == 0) {
1932 		spin_unlock(&class->lock);
1933 		return false;
1934 	}
1935 
1936 	/* zspage is isolated for object migration */
1937 	if (list_empty(&zspage->list) && !is_zspage_isolated(zspage)) {
1938 		spin_unlock(&class->lock);
1939 		return false;
1940 	}
1941 
1942 	/*
1943 	 * If this is first time isolation for the zspage, isolate zspage from
1944 	 * size_class to prevent further object allocation from the zspage.
1945 	 */
1946 	if (!list_empty(&zspage->list) && !is_zspage_isolated(zspage)) {
1947 		get_zspage_mapping(zspage, &class_idx, &fullness);
1948 		atomic_long_inc(&pool->isolated_pages);
1949 		remove_zspage(class, zspage, fullness);
1950 	}
1951 
1952 	inc_zspage_isolation(zspage);
1953 	spin_unlock(&class->lock);
1954 
1955 	return true;
1956 }
1957 
zs_page_migrate(struct address_space *mapping, struct page *newpage, struct page *page, enum migrate_mode mode)1958 static int zs_page_migrate(struct address_space *mapping, struct page *newpage,
1959 		struct page *page, enum migrate_mode mode)
1960 {
1961 	struct zs_pool *pool;
1962 	struct size_class *class;
1963 	int class_idx;
1964 	enum fullness_group fullness;
1965 	struct zspage *zspage;
1966 	struct page *dummy;
1967 	void *s_addr, *d_addr, *addr;
1968 	int offset, pos;
1969 	unsigned long handle, head;
1970 	unsigned long old_obj, new_obj;
1971 	unsigned int obj_idx;
1972 	int ret = -EAGAIN;
1973 
1974 	/*
1975 	 * We cannot support the _NO_COPY case here, because copy needs to
1976 	 * happen under the zs lock, which does not work with
1977 	 * MIGRATE_SYNC_NO_COPY workflow.
1978 	 */
1979 	if (mode == MIGRATE_SYNC_NO_COPY)
1980 		return -EINVAL;
1981 
1982 	VM_BUG_ON_PAGE(!PageMovable(page), page);
1983 	VM_BUG_ON_PAGE(!PageIsolated(page), page);
1984 
1985 	zspage = get_zspage(page);
1986 
1987 	/* Concurrent compactor cannot migrate any subpage in zspage */
1988 	migrate_write_lock(zspage);
1989 	get_zspage_mapping(zspage, &class_idx, &fullness);
1990 	pool = mapping->private_data;
1991 	class = pool->size_class[class_idx];
1992 	offset = get_first_obj_offset(page);
1993 
1994 	spin_lock(&class->lock);
1995 	if (!get_zspage_inuse(zspage)) {
1996 		/*
1997 		 * Set "offset" to end of the page so that every loops
1998 		 * skips unnecessary object scanning.
1999 		 */
2000 		offset = PAGE_SIZE;
2001 	}
2002 
2003 	pos = offset;
2004 	s_addr = kmap_atomic(page);
2005 	while (pos < PAGE_SIZE) {
2006 		head = obj_to_head(page, s_addr + pos);
2007 		if (head & OBJ_ALLOCATED_TAG) {
2008 			handle = head & ~OBJ_ALLOCATED_TAG;
2009 			if (!trypin_tag(handle))
2010 				goto unpin_objects;
2011 		}
2012 		pos += class->size;
2013 	}
2014 
2015 	/*
2016 	 * Here, any user cannot access all objects in the zspage so let's move.
2017 	 */
2018 	d_addr = kmap_atomic(newpage);
2019 	memcpy(d_addr, s_addr, PAGE_SIZE);
2020 	kunmap_atomic(d_addr);
2021 
2022 	for (addr = s_addr + offset; addr < s_addr + pos;
2023 					addr += class->size) {
2024 		head = obj_to_head(page, addr);
2025 		if (head & OBJ_ALLOCATED_TAG) {
2026 			handle = head & ~OBJ_ALLOCATED_TAG;
2027 			if (!testpin_tag(handle))
2028 				BUG();
2029 
2030 			old_obj = handle_to_obj(handle);
2031 			obj_to_location(old_obj, &dummy, &obj_idx);
2032 			new_obj = (unsigned long)location_to_obj(newpage,
2033 								obj_idx);
2034 			new_obj |= BIT(HANDLE_PIN_BIT);
2035 			record_obj(handle, new_obj);
2036 		}
2037 	}
2038 
2039 	replace_sub_page(class, zspage, newpage, page);
2040 	get_page(newpage);
2041 
2042 	dec_zspage_isolation(zspage);
2043 
2044 	/*
2045 	 * Page migration is done so let's putback isolated zspage to
2046 	 * the list if @page is final isolated subpage in the zspage.
2047 	 */
2048 	if (!is_zspage_isolated(zspage)) {
2049 		/*
2050 		 * We cannot race with zs_destroy_pool() here because we wait
2051 		 * for isolation to hit zero before we start destroying.
2052 		 * Also, we ensure that everyone can see pool->destroying before
2053 		 * we start waiting.
2054 		 */
2055 		putback_zspage_deferred(pool, class, zspage);
2056 		zs_pool_dec_isolated(pool);
2057 	}
2058 
2059 	if (page_zone(newpage) != page_zone(page)) {
2060 		dec_zone_page_state(page, NR_ZSPAGES);
2061 		inc_zone_page_state(newpage, NR_ZSPAGES);
2062 	}
2063 
2064 	reset_page(page);
2065 	put_page(page);
2066 	page = newpage;
2067 
2068 	ret = MIGRATEPAGE_SUCCESS;
2069 unpin_objects:
2070 	for (addr = s_addr + offset; addr < s_addr + pos;
2071 						addr += class->size) {
2072 		head = obj_to_head(page, addr);
2073 		if (head & OBJ_ALLOCATED_TAG) {
2074 			handle = head & ~OBJ_ALLOCATED_TAG;
2075 			if (!testpin_tag(handle))
2076 				BUG();
2077 			unpin_tag(handle);
2078 		}
2079 	}
2080 	kunmap_atomic(s_addr);
2081 	spin_unlock(&class->lock);
2082 	migrate_write_unlock(zspage);
2083 
2084 	return ret;
2085 }
2086 
zs_page_putback(struct page *page)2087 static void zs_page_putback(struct page *page)
2088 {
2089 	struct zs_pool *pool;
2090 	struct size_class *class;
2091 	int class_idx;
2092 	enum fullness_group fg;
2093 	struct address_space *mapping;
2094 	struct zspage *zspage;
2095 
2096 	VM_BUG_ON_PAGE(!PageMovable(page), page);
2097 	VM_BUG_ON_PAGE(!PageIsolated(page), page);
2098 
2099 	zspage = get_zspage(page);
2100 	get_zspage_mapping(zspage, &class_idx, &fg);
2101 	mapping = page_mapping(page);
2102 	pool = mapping->private_data;
2103 	class = pool->size_class[class_idx];
2104 
2105 	spin_lock(&class->lock);
2106 	dec_zspage_isolation(zspage);
2107 	if (!is_zspage_isolated(zspage)) {
2108 		/*
2109 		 * Due to page_lock, we cannot free zspage immediately
2110 		 * so let's defer.
2111 		 */
2112 		putback_zspage_deferred(pool, class, zspage);
2113 		zs_pool_dec_isolated(pool);
2114 	}
2115 	spin_unlock(&class->lock);
2116 }
2117 
2118 static const struct address_space_operations zsmalloc_aops = {
2119 	.isolate_page = zs_page_isolate,
2120 	.migratepage = zs_page_migrate,
2121 	.putback_page = zs_page_putback,
2122 };
2123 
zs_register_migration(struct zs_pool *pool)2124 static int zs_register_migration(struct zs_pool *pool)
2125 {
2126 	pool->inode = alloc_anon_inode(zsmalloc_mnt->mnt_sb);
2127 	if (IS_ERR(pool->inode)) {
2128 		pool->inode = NULL;
2129 		return 1;
2130 	}
2131 
2132 	pool->inode->i_mapping->private_data = pool;
2133 	pool->inode->i_mapping->a_ops = &zsmalloc_aops;
2134 	return 0;
2135 }
2136 
pool_isolated_are_drained(struct zs_pool *pool)2137 static bool pool_isolated_are_drained(struct zs_pool *pool)
2138 {
2139 	return atomic_long_read(&pool->isolated_pages) == 0;
2140 }
2141 
2142 /* Function for resolving migration */
wait_for_isolated_drain(struct zs_pool *pool)2143 static void wait_for_isolated_drain(struct zs_pool *pool)
2144 {
2145 
2146 	/*
2147 	 * We're in the process of destroying the pool, so there are no
2148 	 * active allocations. zs_page_isolate() fails for completely free
2149 	 * zspages, so we need only wait for the zs_pool's isolated
2150 	 * count to hit zero.
2151 	 */
2152 	wait_event(pool->migration_wait,
2153 		   pool_isolated_are_drained(pool));
2154 }
2155 
zs_unregister_migration(struct zs_pool *pool)2156 static void zs_unregister_migration(struct zs_pool *pool)
2157 {
2158 	pool->destroying = true;
2159 	/*
2160 	 * We need a memory barrier here to ensure global visibility of
2161 	 * pool->destroying. Thus pool->isolated pages will either be 0 in which
2162 	 * case we don't care, or it will be > 0 and pool->destroying will
2163 	 * ensure that we wake up once isolation hits 0.
2164 	 */
2165 	smp_mb();
2166 	wait_for_isolated_drain(pool); /* This can block */
2167 	flush_work(&pool->free_work);
2168 	iput(pool->inode);
2169 }
2170 
2171 /*
2172  * Caller should hold page_lock of all pages in the zspage
2173  * In here, we cannot use zspage meta data.
2174  */
async_free_zspage(struct work_struct *work)2175 static void async_free_zspage(struct work_struct *work)
2176 {
2177 	int i;
2178 	struct size_class *class;
2179 	unsigned int class_idx;
2180 	enum fullness_group fullness;
2181 	struct zspage *zspage, *tmp;
2182 	LIST_HEAD(free_pages);
2183 	struct zs_pool *pool = container_of(work, struct zs_pool,
2184 					free_work);
2185 
2186 	for (i = 0; i < ZS_SIZE_CLASSES; i++) {
2187 		class = pool->size_class[i];
2188 		if (class->index != i)
2189 			continue;
2190 
2191 		spin_lock(&class->lock);
2192 		list_splice_init(&class->fullness_list[ZS_EMPTY], &free_pages);
2193 		spin_unlock(&class->lock);
2194 	}
2195 
2196 
2197 	list_for_each_entry_safe(zspage, tmp, &free_pages, list) {
2198 		list_del(&zspage->list);
2199 		lock_zspage(zspage);
2200 
2201 		get_zspage_mapping(zspage, &class_idx, &fullness);
2202 		VM_BUG_ON(fullness != ZS_EMPTY);
2203 		class = pool->size_class[class_idx];
2204 		spin_lock(&class->lock);
2205 		__free_zspage(pool, pool->size_class[class_idx], zspage);
2206 		spin_unlock(&class->lock);
2207 	}
2208 };
2209 
kick_deferred_free(struct zs_pool *pool)2210 static void kick_deferred_free(struct zs_pool *pool)
2211 {
2212 	schedule_work(&pool->free_work);
2213 }
2214 
init_deferred_free(struct zs_pool *pool)2215 static void init_deferred_free(struct zs_pool *pool)
2216 {
2217 	INIT_WORK(&pool->free_work, async_free_zspage);
2218 }
2219 
SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage)2220 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage)
2221 {
2222 	struct page *page = get_first_page(zspage);
2223 
2224 	do {
2225 		WARN_ON(!trylock_page(page));
2226 		__SetPageMovable(page, pool->inode->i_mapping);
2227 		unlock_page(page);
2228 	} while ((page = get_next_page(page)) != NULL);
2229 }
2230 #endif
2231 
2232 /*
2233  *
2234  * Based on the number of unused allocated objects calculate
2235  * and return the number of pages that we can free.
2236  */
zs_can_compact(struct size_class *class)2237 static unsigned long zs_can_compact(struct size_class *class)
2238 {
2239 	unsigned long obj_wasted;
2240 	unsigned long obj_allocated = zs_stat_get(class, OBJ_ALLOCATED);
2241 	unsigned long obj_used = zs_stat_get(class, OBJ_USED);
2242 
2243 	if (obj_allocated <= obj_used)
2244 		return 0;
2245 
2246 	obj_wasted = obj_allocated - obj_used;
2247 	obj_wasted /= class->objs_per_zspage;
2248 
2249 	return obj_wasted * class->pages_per_zspage;
2250 }
2251 
__zs_compact(struct zs_pool *pool, struct size_class *class)2252 static unsigned long __zs_compact(struct zs_pool *pool,
2253 				  struct size_class *class)
2254 {
2255 	struct zs_compact_control cc;
2256 	struct zspage *src_zspage;
2257 	struct zspage *dst_zspage = NULL;
2258 	unsigned long pages_freed = 0;
2259 
2260 	spin_lock(&class->lock);
2261 	while ((src_zspage = isolate_zspage(class, true))) {
2262 
2263 		if (!zs_can_compact(class))
2264 			break;
2265 
2266 		cc.obj_idx = 0;
2267 		cc.s_page = get_first_page(src_zspage);
2268 
2269 		while ((dst_zspage = isolate_zspage(class, false))) {
2270 			cc.d_page = get_first_page(dst_zspage);
2271 			/*
2272 			 * If there is no more space in dst_page, resched
2273 			 * and see if anyone had allocated another zspage.
2274 			 */
2275 			if (!migrate_zspage(pool, class, &cc))
2276 				break;
2277 
2278 			putback_zspage(class, dst_zspage);
2279 		}
2280 
2281 		/* Stop if we couldn't find slot */
2282 		if (dst_zspage == NULL)
2283 			break;
2284 
2285 		putback_zspage(class, dst_zspage);
2286 		if (putback_zspage(class, src_zspage) == ZS_EMPTY) {
2287 			free_zspage(pool, class, src_zspage);
2288 			pages_freed += class->pages_per_zspage;
2289 		}
2290 		spin_unlock(&class->lock);
2291 		cond_resched();
2292 		spin_lock(&class->lock);
2293 	}
2294 
2295 	if (src_zspage)
2296 		putback_zspage(class, src_zspage);
2297 
2298 	spin_unlock(&class->lock);
2299 
2300 	return pages_freed;
2301 }
2302 
zs_compact(struct zs_pool *pool)2303 unsigned long zs_compact(struct zs_pool *pool)
2304 {
2305 	int i;
2306 	struct size_class *class;
2307 	unsigned long pages_freed = 0;
2308 
2309 	for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
2310 		class = pool->size_class[i];
2311 		if (!class)
2312 			continue;
2313 		if (class->index != i)
2314 			continue;
2315 		pages_freed += __zs_compact(pool, class);
2316 	}
2317 	atomic_long_add(pages_freed, &pool->stats.pages_compacted);
2318 
2319 	return pages_freed;
2320 }
2321 EXPORT_SYMBOL_GPL(zs_compact);
2322 
zs_pool_stats(struct zs_pool *pool, struct zs_pool_stats *stats)2323 void zs_pool_stats(struct zs_pool *pool, struct zs_pool_stats *stats)
2324 {
2325 	memcpy(stats, &pool->stats, sizeof(struct zs_pool_stats));
2326 }
2327 EXPORT_SYMBOL_GPL(zs_pool_stats);
2328 
zs_shrinker_scan(struct shrinker *shrinker, struct shrink_control *sc)2329 static unsigned long zs_shrinker_scan(struct shrinker *shrinker,
2330 		struct shrink_control *sc)
2331 {
2332 	unsigned long pages_freed;
2333 	struct zs_pool *pool = container_of(shrinker, struct zs_pool,
2334 			shrinker);
2335 
2336 	/*
2337 	 * Compact classes and calculate compaction delta.
2338 	 * Can run concurrently with a manually triggered
2339 	 * (by user) compaction.
2340 	 */
2341 	pages_freed = zs_compact(pool);
2342 
2343 	return pages_freed ? pages_freed : SHRINK_STOP;
2344 }
2345 
zs_shrinker_count(struct shrinker *shrinker, struct shrink_control *sc)2346 static unsigned long zs_shrinker_count(struct shrinker *shrinker,
2347 		struct shrink_control *sc)
2348 {
2349 	int i;
2350 	struct size_class *class;
2351 	unsigned long pages_to_free = 0;
2352 	struct zs_pool *pool = container_of(shrinker, struct zs_pool,
2353 			shrinker);
2354 
2355 	for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
2356 		class = pool->size_class[i];
2357 		if (!class)
2358 			continue;
2359 		if (class->index != i)
2360 			continue;
2361 
2362 		pages_to_free += zs_can_compact(class);
2363 	}
2364 
2365 	return pages_to_free;
2366 }
2367 
zs_unregister_shrinker(struct zs_pool *pool)2368 static void zs_unregister_shrinker(struct zs_pool *pool)
2369 {
2370 	unregister_shrinker(&pool->shrinker);
2371 }
2372 
zs_register_shrinker(struct zs_pool *pool)2373 static int zs_register_shrinker(struct zs_pool *pool)
2374 {
2375 	pool->shrinker.scan_objects = zs_shrinker_scan;
2376 	pool->shrinker.count_objects = zs_shrinker_count;
2377 	pool->shrinker.batch = 0;
2378 	pool->shrinker.seeks = DEFAULT_SEEKS;
2379 
2380 	return register_shrinker(&pool->shrinker);
2381 }
2382 
2383 /**
2384  * zs_create_pool - Creates an allocation pool to work from.
2385  * @name: pool name to be created
2386  *
2387  * This function must be called before anything when using
2388  * the zsmalloc allocator.
2389  *
2390  * On success, a pointer to the newly created pool is returned,
2391  * otherwise NULL.
2392  */
zs_create_pool(const char *name)2393 struct zs_pool *zs_create_pool(const char *name)
2394 {
2395 	int i;
2396 	struct zs_pool *pool;
2397 	struct size_class *prev_class = NULL;
2398 
2399 	pool = kzalloc(sizeof(*pool), GFP_KERNEL);
2400 	if (!pool)
2401 		return NULL;
2402 
2403 	init_deferred_free(pool);
2404 
2405 	pool->name = kstrdup(name, GFP_KERNEL);
2406 	if (!pool->name)
2407 		goto err;
2408 
2409 #ifdef CONFIG_COMPACTION
2410 	init_waitqueue_head(&pool->migration_wait);
2411 #endif
2412 
2413 	if (create_cache(pool))
2414 		goto err;
2415 
2416 	/*
2417 	 * Iterate reversely, because, size of size_class that we want to use
2418 	 * for merging should be larger or equal to current size.
2419 	 */
2420 	for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
2421 		int size;
2422 		int pages_per_zspage;
2423 		int objs_per_zspage;
2424 		struct size_class *class;
2425 		int fullness = 0;
2426 
2427 		size = ZS_MIN_ALLOC_SIZE + i * ZS_SIZE_CLASS_DELTA;
2428 		if (size > ZS_MAX_ALLOC_SIZE)
2429 			size = ZS_MAX_ALLOC_SIZE;
2430 		pages_per_zspage = get_pages_per_zspage(size);
2431 		objs_per_zspage = pages_per_zspage * PAGE_SIZE / size;
2432 
2433 		/*
2434 		 * We iterate from biggest down to smallest classes,
2435 		 * so huge_class_size holds the size of the first huge
2436 		 * class. Any object bigger than or equal to that will
2437 		 * endup in the huge class.
2438 		 */
2439 		if (pages_per_zspage != 1 && objs_per_zspage != 1 &&
2440 				!huge_class_size) {
2441 			huge_class_size = size;
2442 			/*
2443 			 * The object uses ZS_HANDLE_SIZE bytes to store the
2444 			 * handle. We need to subtract it, because zs_malloc()
2445 			 * unconditionally adds handle size before it performs
2446 			 * size class search - so object may be smaller than
2447 			 * huge class size, yet it still can end up in the huge
2448 			 * class because it grows by ZS_HANDLE_SIZE extra bytes
2449 			 * right before class lookup.
2450 			 */
2451 			huge_class_size -= (ZS_HANDLE_SIZE - 1);
2452 		}
2453 
2454 		/*
2455 		 * size_class is used for normal zsmalloc operation such
2456 		 * as alloc/free for that size. Although it is natural that we
2457 		 * have one size_class for each size, there is a chance that we
2458 		 * can get more memory utilization if we use one size_class for
2459 		 * many different sizes whose size_class have same
2460 		 * characteristics. So, we makes size_class point to
2461 		 * previous size_class if possible.
2462 		 */
2463 		if (prev_class) {
2464 			if (can_merge(prev_class, pages_per_zspage, objs_per_zspage)) {
2465 				pool->size_class[i] = prev_class;
2466 				continue;
2467 			}
2468 		}
2469 
2470 		class = kzalloc(sizeof(struct size_class), GFP_KERNEL);
2471 		if (!class)
2472 			goto err;
2473 
2474 		class->size = size;
2475 		class->index = i;
2476 		class->pages_per_zspage = pages_per_zspage;
2477 		class->objs_per_zspage = objs_per_zspage;
2478 		spin_lock_init(&class->lock);
2479 		pool->size_class[i] = class;
2480 		for (fullness = ZS_EMPTY; fullness < NR_ZS_FULLNESS;
2481 							fullness++)
2482 			INIT_LIST_HEAD(&class->fullness_list[fullness]);
2483 
2484 		prev_class = class;
2485 	}
2486 
2487 	/* debug only, don't abort if it fails */
2488 	zs_pool_stat_create(pool, name);
2489 
2490 	if (zs_register_migration(pool))
2491 		goto err;
2492 
2493 	/*
2494 	 * Not critical since shrinker is only used to trigger internal
2495 	 * defragmentation of the pool which is pretty optional thing.  If
2496 	 * registration fails we still can use the pool normally and user can
2497 	 * trigger compaction manually. Thus, ignore return code.
2498 	 */
2499 	zs_register_shrinker(pool);
2500 
2501 	return pool;
2502 
2503 err:
2504 	zs_destroy_pool(pool);
2505 	return NULL;
2506 }
2507 EXPORT_SYMBOL_GPL(zs_create_pool);
2508 
zs_destroy_pool(struct zs_pool *pool)2509 void zs_destroy_pool(struct zs_pool *pool)
2510 {
2511 	int i;
2512 
2513 	zs_unregister_shrinker(pool);
2514 	zs_unregister_migration(pool);
2515 	zs_pool_stat_destroy(pool);
2516 
2517 	for (i = 0; i < ZS_SIZE_CLASSES; i++) {
2518 		int fg;
2519 		struct size_class *class = pool->size_class[i];
2520 
2521 		if (!class)
2522 			continue;
2523 
2524 		if (class->index != i)
2525 			continue;
2526 
2527 		for (fg = ZS_EMPTY; fg < NR_ZS_FULLNESS; fg++) {
2528 			if (!list_empty(&class->fullness_list[fg])) {
2529 				pr_info("Freeing non-empty class with size %db, fullness group %d\n",
2530 					class->size, fg);
2531 			}
2532 		}
2533 		kfree(class);
2534 	}
2535 
2536 	destroy_cache(pool);
2537 	kfree(pool->name);
2538 	kfree(pool);
2539 }
2540 EXPORT_SYMBOL_GPL(zs_destroy_pool);
2541 
zs_init(void)2542 static int __init zs_init(void)
2543 {
2544 	int ret;
2545 
2546 	ret = zsmalloc_mount();
2547 	if (ret)
2548 		goto out;
2549 
2550 	ret = cpuhp_setup_state(CPUHP_MM_ZS_PREPARE, "mm/zsmalloc:prepare",
2551 				zs_cpu_prepare, zs_cpu_dead);
2552 	if (ret)
2553 		goto hp_setup_fail;
2554 
2555 #ifdef CONFIG_ZPOOL
2556 	zpool_register_driver(&zs_zpool_driver);
2557 #endif
2558 
2559 	zs_stat_init();
2560 
2561 	return 0;
2562 
2563 hp_setup_fail:
2564 	zsmalloc_unmount();
2565 out:
2566 	return ret;
2567 }
2568 
zs_exit(void)2569 static void __exit zs_exit(void)
2570 {
2571 #ifdef CONFIG_ZPOOL
2572 	zpool_unregister_driver(&zs_zpool_driver);
2573 #endif
2574 	zsmalloc_unmount();
2575 	cpuhp_remove_state(CPUHP_MM_ZS_PREPARE);
2576 
2577 	zs_stat_exit();
2578 }
2579 
2580 module_init(zs_init);
2581 module_exit(zs_exit);
2582 
2583 MODULE_LICENSE("Dual BSD/GPL");
2584 MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>");
2585