1 // SPDX-License-Identifier: GPL-2.0-only
2 #include <linux/mm.h>
3 #include <linux/slab.h>
4 #include <linux/string.h>
5 #include <linux/compiler.h>
6 #include <linux/export.h>
7 #include <linux/err.h>
8 #include <linux/sched.h>
9 #include <linux/sched/mm.h>
10 #include <linux/sched/signal.h>
11 #include <linux/sched/task_stack.h>
12 #include <linux/security.h>
13 #include <linux/swap.h>
14 #include <linux/swapops.h>
15 #include <linux/mman.h>
16 #include <linux/hugetlb.h>
17 #include <linux/vmalloc.h>
18 #include <linux/userfaultfd_k.h>
19 #include <linux/elf.h>
20 #include <linux/elf-randomize.h>
21 #include <linux/personality.h>
22 #include <linux/random.h>
23 #include <linux/processor.h>
24 #include <linux/sizes.h>
25 #include <linux/compat.h>
26
27 #include <linux/uaccess.h>
28
29 #include "internal.h"
30
31 /**
32 * kfree_const - conditionally free memory
33 * @x: pointer to the memory
34 *
35 * Function calls kfree only if @x is not in .rodata section.
36 */
kfree_const(const void *x)37 void kfree_const(const void *x)
38 {
39 if (!is_kernel_rodata((unsigned long)x))
40 kfree(x);
41 }
42 EXPORT_SYMBOL(kfree_const);
43
44 /**
45 * kstrdup - allocate space for and copy an existing string
46 * @s: the string to duplicate
47 * @gfp: the GFP mask used in the kmalloc() call when allocating memory
48 *
49 * Return: newly allocated copy of @s or %NULL in case of error
50 */
kstrdup(const char *s, gfp_t gfp)51 char *kstrdup(const char *s, gfp_t gfp)
52 {
53 size_t len;
54 char *buf;
55
56 if (!s)
57 return NULL;
58
59 len = strlen(s) + 1;
60 buf = kmalloc_track_caller(len, gfp);
61 if (buf)
62 memcpy(buf, s, len);
63 return buf;
64 }
65 EXPORT_SYMBOL(kstrdup);
66
67 /**
68 * kstrdup_const - conditionally duplicate an existing const string
69 * @s: the string to duplicate
70 * @gfp: the GFP mask used in the kmalloc() call when allocating memory
71 *
72 * Note: Strings allocated by kstrdup_const should be freed by kfree_const and
73 * must not be passed to krealloc().
74 *
75 * Return: source string if it is in .rodata section otherwise
76 * fallback to kstrdup.
77 */
kstrdup_const(const char *s, gfp_t gfp)78 const char *kstrdup_const(const char *s, gfp_t gfp)
79 {
80 if (is_kernel_rodata((unsigned long)s))
81 return s;
82
83 return kstrdup(s, gfp);
84 }
85 EXPORT_SYMBOL(kstrdup_const);
86
87 /**
88 * kstrndup - allocate space for and copy an existing string
89 * @s: the string to duplicate
90 * @max: read at most @max chars from @s
91 * @gfp: the GFP mask used in the kmalloc() call when allocating memory
92 *
93 * Note: Use kmemdup_nul() instead if the size is known exactly.
94 *
95 * Return: newly allocated copy of @s or %NULL in case of error
96 */
kstrndup(const char *s, size_t max, gfp_t gfp)97 char *kstrndup(const char *s, size_t max, gfp_t gfp)
98 {
99 size_t len;
100 char *buf;
101
102 if (!s)
103 return NULL;
104
105 len = strnlen(s, max);
106 buf = kmalloc_track_caller(len+1, gfp);
107 if (buf) {
108 memcpy(buf, s, len);
109 buf[len] = '\0';
110 }
111 return buf;
112 }
113 EXPORT_SYMBOL(kstrndup);
114
115 /**
116 * kmemdup - duplicate region of memory
117 *
118 * @src: memory region to duplicate
119 * @len: memory region length
120 * @gfp: GFP mask to use
121 *
122 * Return: newly allocated copy of @src or %NULL in case of error
123 */
kmemdup(const void *src, size_t len, gfp_t gfp)124 void *kmemdup(const void *src, size_t len, gfp_t gfp)
125 {
126 void *p;
127
128 p = kmalloc_track_caller(len, gfp);
129 if (p)
130 memcpy(p, src, len);
131 return p;
132 }
133 EXPORT_SYMBOL(kmemdup);
134
135 /**
136 * kmemdup_nul - Create a NUL-terminated string from unterminated data
137 * @s: The data to stringify
138 * @len: The size of the data
139 * @gfp: the GFP mask used in the kmalloc() call when allocating memory
140 *
141 * Return: newly allocated copy of @s with NUL-termination or %NULL in
142 * case of error
143 */
kmemdup_nul(const char *s, size_t len, gfp_t gfp)144 char *kmemdup_nul(const char *s, size_t len, gfp_t gfp)
145 {
146 char *buf;
147
148 if (!s)
149 return NULL;
150
151 buf = kmalloc_track_caller(len + 1, gfp);
152 if (buf) {
153 memcpy(buf, s, len);
154 buf[len] = '\0';
155 }
156 return buf;
157 }
158 EXPORT_SYMBOL(kmemdup_nul);
159
160 /**
161 * memdup_user - duplicate memory region from user space
162 *
163 * @src: source address in user space
164 * @len: number of bytes to copy
165 *
166 * Return: an ERR_PTR() on failure. Result is physically
167 * contiguous, to be freed by kfree().
168 */
memdup_user(const void __user *src, size_t len)169 void *memdup_user(const void __user *src, size_t len)
170 {
171 void *p;
172
173 p = kmalloc_track_caller(len, GFP_USER | __GFP_NOWARN);
174 if (!p)
175 return ERR_PTR(-ENOMEM);
176
177 if (copy_from_user(p, src, len)) {
178 kfree(p);
179 return ERR_PTR(-EFAULT);
180 }
181
182 return p;
183 }
184 EXPORT_SYMBOL(memdup_user);
185
186 /**
187 * vmemdup_user - duplicate memory region from user space
188 *
189 * @src: source address in user space
190 * @len: number of bytes to copy
191 *
192 * Return: an ERR_PTR() on failure. Result may be not
193 * physically contiguous. Use kvfree() to free.
194 */
vmemdup_user(const void __user *src, size_t len)195 void *vmemdup_user(const void __user *src, size_t len)
196 {
197 void *p;
198
199 p = kvmalloc(len, GFP_USER);
200 if (!p)
201 return ERR_PTR(-ENOMEM);
202
203 if (copy_from_user(p, src, len)) {
204 kvfree(p);
205 return ERR_PTR(-EFAULT);
206 }
207
208 return p;
209 }
210 EXPORT_SYMBOL(vmemdup_user);
211
212 /**
213 * strndup_user - duplicate an existing string from user space
214 * @s: The string to duplicate
215 * @n: Maximum number of bytes to copy, including the trailing NUL.
216 *
217 * Return: newly allocated copy of @s or an ERR_PTR() in case of error
218 */
strndup_user(const char __user *s, long n)219 char *strndup_user(const char __user *s, long n)
220 {
221 char *p;
222 long length;
223
224 length = strnlen_user(s, n);
225
226 if (!length)
227 return ERR_PTR(-EFAULT);
228
229 if (length > n)
230 return ERR_PTR(-EINVAL);
231
232 p = memdup_user(s, length);
233
234 if (IS_ERR(p))
235 return p;
236
237 p[length - 1] = '\0';
238
239 return p;
240 }
241 EXPORT_SYMBOL(strndup_user);
242
243 /**
244 * memdup_user_nul - duplicate memory region from user space and NUL-terminate
245 *
246 * @src: source address in user space
247 * @len: number of bytes to copy
248 *
249 * Return: an ERR_PTR() on failure.
250 */
memdup_user_nul(const void __user *src, size_t len)251 void *memdup_user_nul(const void __user *src, size_t len)
252 {
253 char *p;
254
255 /*
256 * Always use GFP_KERNEL, since copy_from_user() can sleep and
257 * cause pagefault, which makes it pointless to use GFP_NOFS
258 * or GFP_ATOMIC.
259 */
260 p = kmalloc_track_caller(len + 1, GFP_KERNEL);
261 if (!p)
262 return ERR_PTR(-ENOMEM);
263
264 if (copy_from_user(p, src, len)) {
265 kfree(p);
266 return ERR_PTR(-EFAULT);
267 }
268 p[len] = '\0';
269
270 return p;
271 }
272 EXPORT_SYMBOL(memdup_user_nul);
273
__vma_link_list(struct mm_struct *mm, struct vm_area_struct *vma, struct vm_area_struct *prev)274 void __vma_link_list(struct mm_struct *mm, struct vm_area_struct *vma,
275 struct vm_area_struct *prev)
276 {
277 struct vm_area_struct *next;
278
279 vma->vm_prev = prev;
280 if (prev) {
281 next = prev->vm_next;
282 prev->vm_next = vma;
283 } else {
284 next = mm->mmap;
285 mm->mmap = vma;
286 }
287 vma->vm_next = next;
288 if (next)
289 next->vm_prev = vma;
290 }
291
__vma_unlink_list(struct mm_struct *mm, struct vm_area_struct *vma)292 void __vma_unlink_list(struct mm_struct *mm, struct vm_area_struct *vma)
293 {
294 struct vm_area_struct *prev, *next;
295
296 next = vma->vm_next;
297 prev = vma->vm_prev;
298 if (prev)
299 prev->vm_next = next;
300 else
301 mm->mmap = next;
302 if (next)
303 next->vm_prev = prev;
304 }
305
306 /* Check if the vma is being used as a stack by this task */
vma_is_stack_for_current(struct vm_area_struct *vma)307 int vma_is_stack_for_current(struct vm_area_struct *vma)
308 {
309 struct task_struct * __maybe_unused t = current;
310
311 return (vma->vm_start <= KSTK_ESP(t) && vma->vm_end >= KSTK_ESP(t));
312 }
313
314 #ifndef STACK_RND_MASK
315 #define STACK_RND_MASK (0x7ff >> (PAGE_SHIFT - 12)) /* 8MB of VA */
316 #endif
317
randomize_stack_top(unsigned long stack_top)318 unsigned long randomize_stack_top(unsigned long stack_top)
319 {
320 unsigned long random_variable = 0;
321
322 if (current->flags & PF_RANDOMIZE) {
323 random_variable = get_random_long();
324 random_variable &= STACK_RND_MASK;
325 random_variable <<= PAGE_SHIFT;
326 }
327 #ifdef CONFIG_STACK_GROWSUP
328 return PAGE_ALIGN(stack_top) + random_variable;
329 #else
330 return PAGE_ALIGN(stack_top) - random_variable;
331 #endif
332 }
333
334 /**
335 * randomize_page - Generate a random, page aligned address
336 * @start: The smallest acceptable address the caller will take.
337 * @range: The size of the area, starting at @start, within which the
338 * random address must fall.
339 *
340 * If @start + @range would overflow, @range is capped.
341 *
342 * NOTE: Historical use of randomize_range, which this replaces, presumed that
343 * @start was already page aligned. We now align it regardless.
344 *
345 * Return: A page aligned address within [start, start + range). On error,
346 * @start is returned.
347 */
randomize_page(unsigned long start, unsigned long range)348 unsigned long randomize_page(unsigned long start, unsigned long range)
349 {
350 if (!PAGE_ALIGNED(start)) {
351 range -= PAGE_ALIGN(start) - start;
352 start = PAGE_ALIGN(start);
353 }
354
355 if (start > ULONG_MAX - range)
356 range = ULONG_MAX - start;
357
358 range >>= PAGE_SHIFT;
359
360 if (range == 0)
361 return start;
362
363 return start + (get_random_long() % range << PAGE_SHIFT);
364 }
365
366 #ifdef CONFIG_ARCH_WANT_DEFAULT_TOPDOWN_MMAP_LAYOUT
arch_randomize_brk(struct mm_struct *mm)367 unsigned long arch_randomize_brk(struct mm_struct *mm)
368 {
369 /* Is the current task 32bit ? */
370 if (!IS_ENABLED(CONFIG_64BIT) || is_compat_task())
371 return randomize_page(mm->brk, SZ_32M);
372
373 return randomize_page(mm->brk, SZ_1G);
374 }
375
arch_mmap_rnd(void)376 unsigned long arch_mmap_rnd(void)
377 {
378 unsigned long rnd;
379
380 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
381 if (is_compat_task())
382 rnd = get_random_long() & ((1UL << mmap_rnd_compat_bits) - 1);
383 else
384 #endif /* CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS */
385 rnd = get_random_long() & ((1UL << mmap_rnd_bits) - 1);
386
387 return rnd << PAGE_SHIFT;
388 }
389
mmap_is_legacy(struct rlimit *rlim_stack)390 static int mmap_is_legacy(struct rlimit *rlim_stack)
391 {
392 if (current->personality & ADDR_COMPAT_LAYOUT)
393 return 1;
394
395 if (rlim_stack->rlim_cur == RLIM_INFINITY)
396 return 1;
397
398 return sysctl_legacy_va_layout;
399 }
400
401 /*
402 * Leave enough space between the mmap area and the stack to honour ulimit in
403 * the face of randomisation.
404 */
405 #define MIN_GAP (SZ_128M)
406 #define MAX_GAP (STACK_TOP / 6 * 5)
407
mmap_base(unsigned long rnd, struct rlimit *rlim_stack)408 static unsigned long mmap_base(unsigned long rnd, struct rlimit *rlim_stack)
409 {
410 unsigned long gap = rlim_stack->rlim_cur;
411 unsigned long pad = stack_guard_gap;
412
413 /* Account for stack randomization if necessary */
414 if (current->flags & PF_RANDOMIZE)
415 pad += (STACK_RND_MASK << PAGE_SHIFT);
416
417 /* Values close to RLIM_INFINITY can overflow. */
418 if (gap + pad > gap)
419 gap += pad;
420
421 if (gap < MIN_GAP)
422 gap = MIN_GAP;
423 else if (gap > MAX_GAP)
424 gap = MAX_GAP;
425
426 return PAGE_ALIGN(STACK_TOP - gap - rnd);
427 }
428
arch_pick_mmap_layout(struct mm_struct *mm, struct rlimit *rlim_stack)429 void arch_pick_mmap_layout(struct mm_struct *mm, struct rlimit *rlim_stack)
430 {
431 unsigned long random_factor = 0UL;
432
433 if (current->flags & PF_RANDOMIZE)
434 random_factor = arch_mmap_rnd();
435
436 if (mmap_is_legacy(rlim_stack)) {
437 mm->mmap_base = TASK_UNMAPPED_BASE + random_factor;
438 mm->get_unmapped_area = arch_get_unmapped_area;
439 } else {
440 mm->mmap_base = mmap_base(random_factor, rlim_stack);
441 mm->get_unmapped_area = arch_get_unmapped_area_topdown;
442 }
443 }
444 #elif defined(CONFIG_MMU) && !defined(HAVE_ARCH_PICK_MMAP_LAYOUT)
arch_pick_mmap_layout(struct mm_struct *mm, struct rlimit *rlim_stack)445 void arch_pick_mmap_layout(struct mm_struct *mm, struct rlimit *rlim_stack)
446 {
447 mm->mmap_base = TASK_UNMAPPED_BASE;
448 mm->get_unmapped_area = arch_get_unmapped_area;
449 }
450 #endif
451
452 /**
453 * __account_locked_vm - account locked pages to an mm's locked_vm
454 * @mm: mm to account against
455 * @pages: number of pages to account
456 * @inc: %true if @pages should be considered positive, %false if not
457 * @task: task used to check RLIMIT_MEMLOCK
458 * @bypass_rlim: %true if checking RLIMIT_MEMLOCK should be skipped
459 *
460 * Assumes @task and @mm are valid (i.e. at least one reference on each), and
461 * that mmap_lock is held as writer.
462 *
463 * Return:
464 * * 0 on success
465 * * -ENOMEM if RLIMIT_MEMLOCK would be exceeded.
466 */
__account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc, struct task_struct *task, bool bypass_rlim)467 int __account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc,
468 struct task_struct *task, bool bypass_rlim)
469 {
470 unsigned long locked_vm, limit;
471 int ret = 0;
472
473 mmap_assert_write_locked(mm);
474
475 locked_vm = mm->locked_vm;
476 if (inc) {
477 if (!bypass_rlim) {
478 limit = task_rlimit(task, RLIMIT_MEMLOCK) >> PAGE_SHIFT;
479 if (locked_vm + pages > limit)
480 ret = -ENOMEM;
481 }
482 if (!ret)
483 mm->locked_vm = locked_vm + pages;
484 } else {
485 WARN_ON_ONCE(pages > locked_vm);
486 mm->locked_vm = locked_vm - pages;
487 }
488
489 pr_debug("%s: [%d] caller %ps %c%lu %lu/%lu%s\n", __func__, task->pid,
490 (void *)_RET_IP_, (inc) ? '+' : '-', pages << PAGE_SHIFT,
491 locked_vm << PAGE_SHIFT, task_rlimit(task, RLIMIT_MEMLOCK),
492 ret ? " - exceeded" : "");
493
494 return ret;
495 }
496 EXPORT_SYMBOL_GPL(__account_locked_vm);
497
498 /**
499 * account_locked_vm - account locked pages to an mm's locked_vm
500 * @mm: mm to account against, may be NULL
501 * @pages: number of pages to account
502 * @inc: %true if @pages should be considered positive, %false if not
503 *
504 * Assumes a non-NULL @mm is valid (i.e. at least one reference on it).
505 *
506 * Return:
507 * * 0 on success, or if mm is NULL
508 * * -ENOMEM if RLIMIT_MEMLOCK would be exceeded.
509 */
account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc)510 int account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc)
511 {
512 int ret;
513
514 if (pages == 0 || !mm)
515 return 0;
516
517 mmap_write_lock(mm);
518 ret = __account_locked_vm(mm, pages, inc, current,
519 capable(CAP_IPC_LOCK));
520 mmap_write_unlock(mm);
521
522 return ret;
523 }
524 EXPORT_SYMBOL_GPL(account_locked_vm);
525
vm_mmap_pgoff(struct file *file, unsigned long addr, unsigned long len, unsigned long prot, unsigned long flag, unsigned long pgoff)526 unsigned long vm_mmap_pgoff(struct file *file, unsigned long addr,
527 unsigned long len, unsigned long prot,
528 unsigned long flag, unsigned long pgoff)
529 {
530 unsigned long ret;
531 struct mm_struct *mm = current->mm;
532 unsigned long populate;
533 LIST_HEAD(uf);
534
535 ret = security_mmap_file(file, prot, flag);
536 if (!ret) {
537 if (mmap_write_lock_killable(mm))
538 return -EINTR;
539 ret = do_mmap(file, addr, len, prot, flag, pgoff, &populate,
540 &uf);
541 mmap_write_unlock(mm);
542 userfaultfd_unmap_complete(mm, &uf);
543 if (populate)
544 mm_populate(ret, populate);
545 }
546 return ret;
547 }
548
vm_mmap(struct file *file, unsigned long addr, unsigned long len, unsigned long prot, unsigned long flag, unsigned long offset)549 unsigned long vm_mmap(struct file *file, unsigned long addr,
550 unsigned long len, unsigned long prot,
551 unsigned long flag, unsigned long offset)
552 {
553 if (unlikely(offset + PAGE_ALIGN(len) < offset))
554 return -EINVAL;
555 if (unlikely(offset_in_page(offset)))
556 return -EINVAL;
557
558 return vm_mmap_pgoff(file, addr, len, prot, flag, offset >> PAGE_SHIFT);
559 }
560 EXPORT_SYMBOL(vm_mmap);
561
562 /**
563 * kvmalloc_node - attempt to allocate physically contiguous memory, but upon
564 * failure, fall back to non-contiguous (vmalloc) allocation.
565 * @size: size of the request.
566 * @flags: gfp mask for the allocation - must be compatible (superset) with GFP_KERNEL.
567 * @node: numa node to allocate from
568 *
569 * Uses kmalloc to get the memory but if the allocation fails then falls back
570 * to the vmalloc allocator. Use kvfree for freeing the memory.
571 *
572 * Reclaim modifiers - __GFP_NORETRY and __GFP_NOFAIL are not supported.
573 * __GFP_RETRY_MAYFAIL is supported, and it should be used only if kmalloc is
574 * preferable to the vmalloc fallback, due to visible performance drawbacks.
575 *
576 * Please note that any use of gfp flags outside of GFP_KERNEL is careful to not
577 * fall back to vmalloc.
578 *
579 * Return: pointer to the allocated memory of %NULL in case of failure
580 */
kvmalloc_node(size_t size, gfp_t flags, int node)581 void *kvmalloc_node(size_t size, gfp_t flags, int node)
582 {
583 gfp_t kmalloc_flags = flags;
584 void *ret;
585
586 /*
587 * vmalloc uses GFP_KERNEL for some internal allocations (e.g page tables)
588 * so the given set of flags has to be compatible.
589 */
590 if ((flags & GFP_KERNEL) != GFP_KERNEL)
591 return kmalloc_node(size, flags, node);
592
593 /*
594 * We want to attempt a large physically contiguous block first because
595 * it is less likely to fragment multiple larger blocks and therefore
596 * contribute to a long term fragmentation less than vmalloc fallback.
597 * However make sure that larger requests are not too disruptive - no
598 * OOM killer and no allocation failure warnings as we have a fallback.
599 */
600 if (size > PAGE_SIZE) {
601 kmalloc_flags |= __GFP_NOWARN;
602
603 if (!(kmalloc_flags & __GFP_RETRY_MAYFAIL))
604 kmalloc_flags |= __GFP_NORETRY;
605 }
606
607 ret = kmalloc_node(size, kmalloc_flags, node);
608
609 /*
610 * It doesn't really make sense to fallback to vmalloc for sub page
611 * requests
612 */
613 if (ret || size <= PAGE_SIZE)
614 return ret;
615
616 /* Don't even allow crazy sizes */
617 if (unlikely(size > INT_MAX)) {
618 WARN_ON_ONCE(!(flags & __GFP_NOWARN));
619 return NULL;
620 }
621
622 return __vmalloc_node(size, 1, flags, node,
623 __builtin_return_address(0));
624 }
625 EXPORT_SYMBOL(kvmalloc_node);
626
627 /**
628 * kvfree() - Free memory.
629 * @addr: Pointer to allocated memory.
630 *
631 * kvfree frees memory allocated by any of vmalloc(), kmalloc() or kvmalloc().
632 * It is slightly more efficient to use kfree() or vfree() if you are certain
633 * that you know which one to use.
634 *
635 * Context: Either preemptible task context or not-NMI interrupt.
636 */
kvfree(const void *addr)637 void kvfree(const void *addr)
638 {
639 if (is_vmalloc_addr(addr))
640 vfree(addr);
641 else
642 kfree(addr);
643 }
644 EXPORT_SYMBOL(kvfree);
645
646 /**
647 * kvfree_sensitive - Free a data object containing sensitive information.
648 * @addr: address of the data object to be freed.
649 * @len: length of the data object.
650 *
651 * Use the special memzero_explicit() function to clear the content of a
652 * kvmalloc'ed object containing sensitive data to make sure that the
653 * compiler won't optimize out the data clearing.
654 */
kvfree_sensitive(const void *addr, size_t len)655 void kvfree_sensitive(const void *addr, size_t len)
656 {
657 if (likely(!ZERO_OR_NULL_PTR(addr))) {
658 memzero_explicit((void *)addr, len);
659 kvfree(addr);
660 }
661 }
662 EXPORT_SYMBOL(kvfree_sensitive);
663
kvrealloc(const void *p, size_t oldsize, size_t newsize, gfp_t flags)664 void *kvrealloc(const void *p, size_t oldsize, size_t newsize, gfp_t flags)
665 {
666 void *newp;
667
668 if (oldsize >= newsize)
669 return (void *)p;
670 newp = kvmalloc(newsize, flags);
671 if (!newp)
672 return NULL;
673 memcpy(newp, p, oldsize);
674 kvfree(p);
675 return newp;
676 }
677 EXPORT_SYMBOL(kvrealloc);
678
__page_rmapping(struct page *page)679 static inline void *__page_rmapping(struct page *page)
680 {
681 unsigned long mapping;
682
683 mapping = (unsigned long)page->mapping;
684 mapping &= ~PAGE_MAPPING_FLAGS;
685
686 return (void *)mapping;
687 }
688
689 /**
690 * __vmalloc_array - allocate memory for a virtually contiguous array.
691 * @n: number of elements.
692 * @size: element size.
693 * @flags: the type of memory to allocate (see kmalloc).
694 */
__vmalloc_array(size_t n, size_t size, gfp_t flags)695 void *__vmalloc_array(size_t n, size_t size, gfp_t flags)
696 {
697 size_t bytes;
698
699 if (unlikely(check_mul_overflow(n, size, &bytes)))
700 return NULL;
701 return __vmalloc(bytes, flags);
702 }
703 EXPORT_SYMBOL(__vmalloc_array);
704
705 /**
706 * vmalloc_array - allocate memory for a virtually contiguous array.
707 * @n: number of elements.
708 * @size: element size.
709 */
vmalloc_array(size_t n, size_t size)710 void *vmalloc_array(size_t n, size_t size)
711 {
712 return __vmalloc_array(n, size, GFP_KERNEL);
713 }
714 EXPORT_SYMBOL(vmalloc_array);
715
716 /**
717 * __vcalloc - allocate and zero memory for a virtually contiguous array.
718 * @n: number of elements.
719 * @size: element size.
720 * @flags: the type of memory to allocate (see kmalloc).
721 */
__vcalloc(size_t n, size_t size, gfp_t flags)722 void *__vcalloc(size_t n, size_t size, gfp_t flags)
723 {
724 return __vmalloc_array(n, size, flags | __GFP_ZERO);
725 }
726 EXPORT_SYMBOL(__vcalloc);
727
728 /**
729 * vcalloc - allocate and zero memory for a virtually contiguous array.
730 * @n: number of elements.
731 * @size: element size.
732 */
vcalloc(size_t n, size_t size)733 void *vcalloc(size_t n, size_t size)
734 {
735 return __vmalloc_array(n, size, GFP_KERNEL | __GFP_ZERO);
736 }
737 EXPORT_SYMBOL(vcalloc);
738
739 /* Neutral page->mapping pointer to address_space or anon_vma or other */
page_rmapping(struct page *page)740 void *page_rmapping(struct page *page)
741 {
742 page = compound_head(page);
743 return __page_rmapping(page);
744 }
745
746 /*
747 * Return true if this page is mapped into pagetables.
748 * For compound page it returns true if any subpage of compound page is mapped.
749 */
page_mapped(struct page *page)750 bool page_mapped(struct page *page)
751 {
752 int i;
753
754 if (likely(!PageCompound(page)))
755 return atomic_read(&page->_mapcount) >= 0;
756 page = compound_head(page);
757 if (atomic_read(compound_mapcount_ptr(page)) >= 0)
758 return true;
759 if (PageHuge(page))
760 return false;
761 for (i = 0; i < compound_nr(page); i++) {
762 if (atomic_read(&page[i]._mapcount) >= 0)
763 return true;
764 }
765 return false;
766 }
767 EXPORT_SYMBOL(page_mapped);
768
page_anon_vma(struct page *page)769 struct anon_vma *page_anon_vma(struct page *page)
770 {
771 unsigned long mapping;
772
773 page = compound_head(page);
774 mapping = (unsigned long)page->mapping;
775 if ((mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
776 return NULL;
777 return __page_rmapping(page);
778 }
779
page_mapping(struct page *page)780 struct address_space *page_mapping(struct page *page)
781 {
782 struct address_space *mapping;
783
784 page = compound_head(page);
785
786 /* This happens if someone calls flush_dcache_page on slab page */
787 if (unlikely(PageSlab(page)))
788 return NULL;
789
790 if (unlikely(PageSwapCache(page))) {
791 swp_entry_t entry;
792
793 entry.val = page_private(page);
794 return swap_address_space(entry);
795 }
796
797 mapping = page->mapping;
798 if ((unsigned long)mapping & PAGE_MAPPING_ANON)
799 return NULL;
800
801 return (void *)((unsigned long)mapping & ~PAGE_MAPPING_FLAGS);
802 }
803 EXPORT_SYMBOL(page_mapping);
804
805 /*
806 * For file cache pages, return the address_space, otherwise return NULL
807 */
page_mapping_file(struct page *page)808 struct address_space *page_mapping_file(struct page *page)
809 {
810 if (unlikely(PageSwapCache(page)))
811 return NULL;
812 return page_mapping(page);
813 }
814
815 /* Slow path of page_mapcount() for compound pages */
__page_mapcount(struct page *page)816 int __page_mapcount(struct page *page)
817 {
818 int ret;
819
820 ret = atomic_read(&page->_mapcount) + 1;
821 /*
822 * For file THP page->_mapcount contains total number of mapping
823 * of the page: no need to look into compound_mapcount.
824 */
825 if (!PageAnon(page) && !PageHuge(page))
826 return ret;
827 page = compound_head(page);
828 ret += atomic_read(compound_mapcount_ptr(page)) + 1;
829 if (PageDoubleMap(page))
830 ret--;
831 return ret;
832 }
833 EXPORT_SYMBOL_GPL(__page_mapcount);
834
835 int sysctl_overcommit_memory __read_mostly = OVERCOMMIT_GUESS;
836 int sysctl_overcommit_ratio __read_mostly = 50;
837 unsigned long sysctl_overcommit_kbytes __read_mostly;
838 int sysctl_max_map_count __read_mostly = DEFAULT_MAX_MAP_COUNT;
839 unsigned long sysctl_user_reserve_kbytes __read_mostly = 1UL << 17; /* 128MB */
840 unsigned long sysctl_admin_reserve_kbytes __read_mostly = 1UL << 13; /* 8MB */
841
overcommit_ratio_handler(struct ctl_table *table, int write, void *buffer, size_t *lenp, loff_t *ppos)842 int overcommit_ratio_handler(struct ctl_table *table, int write, void *buffer,
843 size_t *lenp, loff_t *ppos)
844 {
845 int ret;
846
847 ret = proc_dointvec(table, write, buffer, lenp, ppos);
848 if (ret == 0 && write)
849 sysctl_overcommit_kbytes = 0;
850 return ret;
851 }
852
sync_overcommit_as(struct work_struct *dummy)853 static void sync_overcommit_as(struct work_struct *dummy)
854 {
855 percpu_counter_sync(&vm_committed_as);
856 }
857
overcommit_policy_handler(struct ctl_table *table, int write, void *buffer, size_t *lenp, loff_t *ppos)858 int overcommit_policy_handler(struct ctl_table *table, int write, void *buffer,
859 size_t *lenp, loff_t *ppos)
860 {
861 struct ctl_table t;
862 int new_policy = -1;
863 int ret;
864
865 /*
866 * The deviation of sync_overcommit_as could be big with loose policy
867 * like OVERCOMMIT_ALWAYS/OVERCOMMIT_GUESS. When changing policy to
868 * strict OVERCOMMIT_NEVER, we need to reduce the deviation to comply
869 * with the strict "NEVER", and to avoid possible race condtion (even
870 * though user usually won't too frequently do the switching to policy
871 * OVERCOMMIT_NEVER), the switch is done in the following order:
872 * 1. changing the batch
873 * 2. sync percpu count on each CPU
874 * 3. switch the policy
875 */
876 if (write) {
877 t = *table;
878 t.data = &new_policy;
879 ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
880 if (ret || new_policy == -1)
881 return ret;
882
883 mm_compute_batch(new_policy);
884 if (new_policy == OVERCOMMIT_NEVER)
885 schedule_on_each_cpu(sync_overcommit_as);
886 sysctl_overcommit_memory = new_policy;
887 } else {
888 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
889 }
890
891 return ret;
892 }
893
overcommit_kbytes_handler(struct ctl_table *table, int write, void *buffer, size_t *lenp, loff_t *ppos)894 int overcommit_kbytes_handler(struct ctl_table *table, int write, void *buffer,
895 size_t *lenp, loff_t *ppos)
896 {
897 int ret;
898
899 ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
900 if (ret == 0 && write)
901 sysctl_overcommit_ratio = 0;
902 return ret;
903 }
904
905 /*
906 * Committed memory limit enforced when OVERCOMMIT_NEVER policy is used
907 */
vm_commit_limit(void)908 unsigned long vm_commit_limit(void)
909 {
910 unsigned long allowed;
911
912 if (sysctl_overcommit_kbytes)
913 allowed = sysctl_overcommit_kbytes >> (PAGE_SHIFT - 10);
914 else
915 allowed = ((totalram_pages() - hugetlb_total_pages())
916 * sysctl_overcommit_ratio / 100);
917 allowed += total_swap_pages;
918
919 return allowed;
920 }
921
922 /*
923 * Make sure vm_committed_as in one cacheline and not cacheline shared with
924 * other variables. It can be updated by several CPUs frequently.
925 */
926 struct percpu_counter vm_committed_as ____cacheline_aligned_in_smp;
927
928 /*
929 * The global memory commitment made in the system can be a metric
930 * that can be used to drive ballooning decisions when Linux is hosted
931 * as a guest. On Hyper-V, the host implements a policy engine for dynamically
932 * balancing memory across competing virtual machines that are hosted.
933 * Several metrics drive this policy engine including the guest reported
934 * memory commitment.
935 *
936 * The time cost of this is very low for small platforms, and for big
937 * platform like a 2S/36C/72T Skylake server, in worst case where
938 * vm_committed_as's spinlock is under severe contention, the time cost
939 * could be about 30~40 microseconds.
940 */
vm_memory_committed(void)941 unsigned long vm_memory_committed(void)
942 {
943 return percpu_counter_sum_positive(&vm_committed_as);
944 }
945 EXPORT_SYMBOL_GPL(vm_memory_committed);
946
947 /*
948 * Check that a process has enough memory to allocate a new virtual
949 * mapping. 0 means there is enough memory for the allocation to
950 * succeed and -ENOMEM implies there is not.
951 *
952 * We currently support three overcommit policies, which are set via the
953 * vm.overcommit_memory sysctl. See Documentation/vm/overcommit-accounting.rst
954 *
955 * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
956 * Additional code 2002 Jul 20 by Robert Love.
957 *
958 * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
959 *
960 * Note this is a helper function intended to be used by LSMs which
961 * wish to use this logic.
962 */
__vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin)963 int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin)
964 {
965 long allowed;
966
967 vm_acct_memory(pages);
968
969 /*
970 * Sometimes we want to use more memory than we have
971 */
972 if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS)
973 return 0;
974
975 if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) {
976 if (pages > totalram_pages() + total_swap_pages)
977 goto error;
978 return 0;
979 }
980
981 allowed = vm_commit_limit();
982 /*
983 * Reserve some for root
984 */
985 if (!cap_sys_admin)
986 allowed -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10);
987
988 /*
989 * Don't let a single process grow so big a user can't recover
990 */
991 if (mm) {
992 long reserve = sysctl_user_reserve_kbytes >> (PAGE_SHIFT - 10);
993
994 allowed -= min_t(long, mm->total_vm / 32, reserve);
995 }
996
997 if (percpu_counter_read_positive(&vm_committed_as) < allowed)
998 return 0;
999 error:
1000 vm_unacct_memory(pages);
1001
1002 return -ENOMEM;
1003 }
1004
1005 /**
1006 * get_cmdline() - copy the cmdline value to a buffer.
1007 * @task: the task whose cmdline value to copy.
1008 * @buffer: the buffer to copy to.
1009 * @buflen: the length of the buffer. Larger cmdline values are truncated
1010 * to this length.
1011 *
1012 * Return: the size of the cmdline field copied. Note that the copy does
1013 * not guarantee an ending NULL byte.
1014 */
get_cmdline(struct task_struct *task, char *buffer, int buflen)1015 int get_cmdline(struct task_struct *task, char *buffer, int buflen)
1016 {
1017 int res = 0;
1018 unsigned int len;
1019 struct mm_struct *mm = get_task_mm(task);
1020 unsigned long arg_start, arg_end, env_start, env_end;
1021 if (!mm)
1022 goto out;
1023 if (!mm->arg_end)
1024 goto out_mm; /* Shh! No looking before we're done */
1025
1026 spin_lock(&mm->arg_lock);
1027 arg_start = mm->arg_start;
1028 arg_end = mm->arg_end;
1029 env_start = mm->env_start;
1030 env_end = mm->env_end;
1031 spin_unlock(&mm->arg_lock);
1032
1033 len = arg_end - arg_start;
1034
1035 if (len > buflen)
1036 len = buflen;
1037
1038 res = access_process_vm(task, arg_start, buffer, len, FOLL_FORCE);
1039
1040 /*
1041 * If the nul at the end of args has been overwritten, then
1042 * assume application is using setproctitle(3).
1043 */
1044 if (res > 0 && buffer[res-1] != '\0' && len < buflen) {
1045 len = strnlen(buffer, res);
1046 if (len < res) {
1047 res = len;
1048 } else {
1049 len = env_end - env_start;
1050 if (len > buflen - res)
1051 len = buflen - res;
1052 res += access_process_vm(task, env_start,
1053 buffer+res, len,
1054 FOLL_FORCE);
1055 res = strnlen(buffer, res);
1056 }
1057 }
1058 out_mm:
1059 mmput(mm);
1060 out:
1061 return res;
1062 }
1063
memcmp_pages(struct page *page1, struct page *page2)1064 int __weak memcmp_pages(struct page *page1, struct page *page2)
1065 {
1066 char *addr1, *addr2;
1067 int ret;
1068
1069 addr1 = kmap_atomic(page1);
1070 addr2 = kmap_atomic(page2);
1071 ret = memcmp(addr1, addr2, PAGE_SIZE);
1072 kunmap_atomic(addr2);
1073 kunmap_atomic(addr1);
1074 return ret;
1075 }
1076