1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/mm/swapfile.c
4 *
5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
6 * Swap reorganised 29.12.95, Stephen Tweedie
7 */
8
9 #include <linux/mm.h>
10 #include <linux/sched/mm.h>
11 #include <linux/sched/task.h>
12 #include <linux/hugetlb.h>
13 #include <linux/mman.h>
14 #include <linux/slab.h>
15 #include <linux/kernel_stat.h>
16 #include <linux/swap.h>
17 #include <linux/vmalloc.h>
18 #include <linux/pagemap.h>
19 #include <linux/namei.h>
20 #include <linux/shmem_fs.h>
21 #include <linux/blkdev.h>
22 #include <linux/random.h>
23 #include <linux/writeback.h>
24 #include <linux/proc_fs.h>
25 #include <linux/seq_file.h>
26 #include <linux/init.h>
27 #include <linux/ksm.h>
28 #include <linux/rmap.h>
29 #include <linux/security.h>
30 #include <linux/backing-dev.h>
31 #include <linux/mutex.h>
32 #include <linux/capability.h>
33 #include <linux/syscalls.h>
34 #include <linux/memcontrol.h>
35 #include <linux/poll.h>
36 #include <linux/oom.h>
37 #include <linux/frontswap.h>
38 #include <linux/swapfile.h>
39 #include <linux/export.h>
40 #include <linux/swap_slots.h>
41 #include <linux/sort.h>
42
43 #include <asm/tlbflush.h>
44 #include <linux/swapops.h>
45 #include <linux/swap_cgroup.h>
46 #include <linux/zswapd.h>
47
48 static bool swap_count_continued(struct swap_info_struct *, pgoff_t,
49 unsigned char);
50 static void free_swap_count_continuations(struct swap_info_struct *);
51 static sector_t map_swap_entry(swp_entry_t, struct block_device**);
52
53 DEFINE_SPINLOCK(swap_lock);
54 static unsigned int nr_swapfiles;
55 atomic_long_t nr_swap_pages;
56 /*
57 * Some modules use swappable objects and may try to swap them out under
58 * memory pressure (via the shrinker). Before doing so, they may wish to
59 * check to see if any swap space is available.
60 */
61 EXPORT_SYMBOL_GPL(nr_swap_pages);
62 /* protected with swap_lock. reading in vm_swap_full() doesn't need lock */
63 long total_swap_pages;
64 static int least_priority = -1;
65
66 static const char Bad_file[] = "Bad swap file entry ";
67 static const char Unused_file[] = "Unused swap file entry ";
68 static const char Bad_offset[] = "Bad swap offset entry ";
69 static const char Unused_offset[] = "Unused swap offset entry ";
70
71 /*
72 * all active swap_info_structs
73 * protected with swap_lock, and ordered by priority.
74 */
75 PLIST_HEAD(swap_active_head);
76
77 /*
78 * all available (active, not full) swap_info_structs
79 * protected with swap_avail_lock, ordered by priority.
80 * This is used by get_swap_page() instead of swap_active_head
81 * because swap_active_head includes all swap_info_structs,
82 * but get_swap_page() doesn't need to look at full ones.
83 * This uses its own lock instead of swap_lock because when a
84 * swap_info_struct changes between not-full/full, it needs to
85 * add/remove itself to/from this list, but the swap_info_struct->lock
86 * is held and the locking order requires swap_lock to be taken
87 * before any swap_info_struct->lock.
88 */
89 static struct plist_head *swap_avail_heads;
90 static DEFINE_SPINLOCK(swap_avail_lock);
91
92 struct swap_info_struct *swap_info[MAX_SWAPFILES];
93
94 static DEFINE_MUTEX(swapon_mutex);
95
96 static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait);
97 /* Activity counter to indicate that a swapon or swapoff has occurred */
98 static atomic_t proc_poll_event = ATOMIC_INIT(0);
99
100 atomic_t nr_rotate_swap = ATOMIC_INIT(0);
101
swap_type_to_swap_info(int type)102 static struct swap_info_struct *swap_type_to_swap_info(int type)
103 {
104 if (type >= READ_ONCE(nr_swapfiles))
105 return NULL;
106
107 smp_rmb(); /* Pairs with smp_wmb in alloc_swap_info. */
108 return READ_ONCE(swap_info[type]);
109 }
110
swap_count(unsigned char ent)111 static inline unsigned char swap_count(unsigned char ent)
112 {
113 return ent & ~SWAP_HAS_CACHE; /* may include COUNT_CONTINUED flag */
114 }
115
116 /* Reclaim the swap entry anyway if possible */
117 #define TTRS_ANYWAY 0x1
118 /*
119 * Reclaim the swap entry if there are no more mappings of the
120 * corresponding page
121 */
122 #define TTRS_UNMAPPED 0x2
123 /* Reclaim the swap entry if swap is getting full*/
124 #define TTRS_FULL 0x4
125
126 /* returns 1 if swap entry is freed */
__try_to_reclaim_swap(struct swap_info_struct *si, unsigned long offset, unsigned long flags)127 static int __try_to_reclaim_swap(struct swap_info_struct *si,
128 unsigned long offset, unsigned long flags)
129 {
130 swp_entry_t entry = swp_entry(si->type, offset);
131 struct page *page;
132 int ret = 0;
133
134 page = find_get_page(swap_address_space(entry), offset);
135 if (!page)
136 return 0;
137 /*
138 * When this function is called from scan_swap_map_slots() and it's
139 * called by vmscan.c at reclaiming pages. So, we hold a lock on a page,
140 * here. We have to use trylock for avoiding deadlock. This is a special
141 * case and you should use try_to_free_swap() with explicit lock_page()
142 * in usual operations.
143 */
144 if (trylock_page(page)) {
145 if ((flags & TTRS_ANYWAY) ||
146 ((flags & TTRS_UNMAPPED) && !page_mapped(page)) ||
147 ((flags & TTRS_FULL) && mem_cgroup_swap_full(page)))
148 ret = try_to_free_swap(page);
149 unlock_page(page);
150 }
151 put_page(page);
152 return ret;
153 }
154
first_se(struct swap_info_struct *sis)155 static inline struct swap_extent *first_se(struct swap_info_struct *sis)
156 {
157 struct rb_node *rb = rb_first(&sis->swap_extent_root);
158 return rb_entry(rb, struct swap_extent, rb_node);
159 }
160
next_se(struct swap_extent *se)161 static inline struct swap_extent *next_se(struct swap_extent *se)
162 {
163 struct rb_node *rb = rb_next(&se->rb_node);
164 return rb ? rb_entry(rb, struct swap_extent, rb_node) : NULL;
165 }
166
167 /*
168 * swapon tell device that all the old swap contents can be discarded,
169 * to allow the swap device to optimize its wear-levelling.
170 */
discard_swap(struct swap_info_struct *si)171 static int discard_swap(struct swap_info_struct *si)
172 {
173 struct swap_extent *se;
174 sector_t start_block;
175 sector_t nr_blocks;
176 int err = 0;
177
178 /* Do not discard the swap header page! */
179 se = first_se(si);
180 start_block = (se->start_block + 1) << (PAGE_SHIFT - 9);
181 nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9);
182 if (nr_blocks) {
183 err = blkdev_issue_discard(si->bdev, start_block,
184 nr_blocks, GFP_KERNEL, 0);
185 if (err)
186 return err;
187 cond_resched();
188 }
189
190 for (se = next_se(se); se; se = next_se(se)) {
191 start_block = se->start_block << (PAGE_SHIFT - 9);
192 nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9);
193
194 err = blkdev_issue_discard(si->bdev, start_block,
195 nr_blocks, GFP_KERNEL, 0);
196 if (err)
197 break;
198
199 cond_resched();
200 }
201 return err; /* That will often be -EOPNOTSUPP */
202 }
203
204 static struct swap_extent *
offset_to_swap_extent(struct swap_info_struct *sis, unsigned long offset)205 offset_to_swap_extent(struct swap_info_struct *sis, unsigned long offset)
206 {
207 struct swap_extent *se;
208 struct rb_node *rb;
209
210 rb = sis->swap_extent_root.rb_node;
211 while (rb) {
212 se = rb_entry(rb, struct swap_extent, rb_node);
213 if (offset < se->start_page)
214 rb = rb->rb_left;
215 else if (offset >= se->start_page + se->nr_pages)
216 rb = rb->rb_right;
217 else
218 return se;
219 }
220 /* It *must* be present */
221 BUG();
222 }
223
swap_page_sector(struct page *page)224 sector_t swap_page_sector(struct page *page)
225 {
226 struct swap_info_struct *sis = page_swap_info(page);
227 struct swap_extent *se;
228 sector_t sector;
229 pgoff_t offset;
230
231 offset = __page_file_index(page);
232 se = offset_to_swap_extent(sis, offset);
233 sector = se->start_block + (offset - se->start_page);
234 return sector << (PAGE_SHIFT - 9);
235 }
236
237 /*
238 * swap allocation tell device that a cluster of swap can now be discarded,
239 * to allow the swap device to optimize its wear-levelling.
240 */
discard_swap_cluster(struct swap_info_struct *si, pgoff_t start_page, pgoff_t nr_pages)241 static void discard_swap_cluster(struct swap_info_struct *si,
242 pgoff_t start_page, pgoff_t nr_pages)
243 {
244 struct swap_extent *se = offset_to_swap_extent(si, start_page);
245
246 while (nr_pages) {
247 pgoff_t offset = start_page - se->start_page;
248 sector_t start_block = se->start_block + offset;
249 sector_t nr_blocks = se->nr_pages - offset;
250
251 if (nr_blocks > nr_pages)
252 nr_blocks = nr_pages;
253 start_page += nr_blocks;
254 nr_pages -= nr_blocks;
255
256 start_block <<= PAGE_SHIFT - 9;
257 nr_blocks <<= PAGE_SHIFT - 9;
258 if (blkdev_issue_discard(si->bdev, start_block,
259 nr_blocks, GFP_NOIO, 0))
260 break;
261
262 se = next_se(se);
263 }
264 }
265
266 #ifdef CONFIG_THP_SWAP
267 #define SWAPFILE_CLUSTER HPAGE_PMD_NR
268
269 #define swap_entry_size(size) (size)
270 #else
271 #define SWAPFILE_CLUSTER 256
272
273 /*
274 * Define swap_entry_size() as constant to let compiler to optimize
275 * out some code if !CONFIG_THP_SWAP
276 */
277 #define swap_entry_size(size) 1
278 #endif
279 #define LATENCY_LIMIT 256
280
cluster_set_flag(struct swap_cluster_info *info, unsigned int flag)281 static inline void cluster_set_flag(struct swap_cluster_info *info,
282 unsigned int flag)
283 {
284 info->flags = flag;
285 }
286
cluster_count(struct swap_cluster_info *info)287 static inline unsigned int cluster_count(struct swap_cluster_info *info)
288 {
289 return info->data;
290 }
291
cluster_set_count(struct swap_cluster_info *info, unsigned int c)292 static inline void cluster_set_count(struct swap_cluster_info *info,
293 unsigned int c)
294 {
295 info->data = c;
296 }
297
cluster_set_count_flag(struct swap_cluster_info *info, unsigned int c, unsigned int f)298 static inline void cluster_set_count_flag(struct swap_cluster_info *info,
299 unsigned int c, unsigned int f)
300 {
301 info->flags = f;
302 info->data = c;
303 }
304
cluster_next(struct swap_cluster_info *info)305 static inline unsigned int cluster_next(struct swap_cluster_info *info)
306 {
307 return info->data;
308 }
309
cluster_set_next(struct swap_cluster_info *info, unsigned int n)310 static inline void cluster_set_next(struct swap_cluster_info *info,
311 unsigned int n)
312 {
313 info->data = n;
314 }
315
cluster_set_next_flag(struct swap_cluster_info *info, unsigned int n, unsigned int f)316 static inline void cluster_set_next_flag(struct swap_cluster_info *info,
317 unsigned int n, unsigned int f)
318 {
319 info->flags = f;
320 info->data = n;
321 }
322
cluster_is_free(struct swap_cluster_info *info)323 static inline bool cluster_is_free(struct swap_cluster_info *info)
324 {
325 return info->flags & CLUSTER_FLAG_FREE;
326 }
327
cluster_is_null(struct swap_cluster_info *info)328 static inline bool cluster_is_null(struct swap_cluster_info *info)
329 {
330 return info->flags & CLUSTER_FLAG_NEXT_NULL;
331 }
332
cluster_set_null(struct swap_cluster_info *info)333 static inline void cluster_set_null(struct swap_cluster_info *info)
334 {
335 info->flags = CLUSTER_FLAG_NEXT_NULL;
336 info->data = 0;
337 }
338
cluster_is_huge(struct swap_cluster_info *info)339 static inline bool cluster_is_huge(struct swap_cluster_info *info)
340 {
341 if (IS_ENABLED(CONFIG_THP_SWAP))
342 return info->flags & CLUSTER_FLAG_HUGE;
343 return false;
344 }
345
cluster_clear_huge(struct swap_cluster_info *info)346 static inline void cluster_clear_huge(struct swap_cluster_info *info)
347 {
348 info->flags &= ~CLUSTER_FLAG_HUGE;
349 }
350
lock_cluster(struct swap_info_struct *si, unsigned long offset)351 static inline struct swap_cluster_info *lock_cluster(struct swap_info_struct *si,
352 unsigned long offset)
353 {
354 struct swap_cluster_info *ci;
355
356 ci = si->cluster_info;
357 if (ci) {
358 ci += offset / SWAPFILE_CLUSTER;
359 spin_lock(&ci->lock);
360 }
361 return ci;
362 }
363
unlock_cluster(struct swap_cluster_info *ci)364 static inline void unlock_cluster(struct swap_cluster_info *ci)
365 {
366 if (ci)
367 spin_unlock(&ci->lock);
368 }
369
370 /*
371 * Determine the locking method in use for this device. Return
372 * swap_cluster_info if SSD-style cluster-based locking is in place.
373 */
lock_cluster_or_swap_info( struct swap_info_struct *si, unsigned long offset)374 static inline struct swap_cluster_info *lock_cluster_or_swap_info(
375 struct swap_info_struct *si, unsigned long offset)
376 {
377 struct swap_cluster_info *ci;
378
379 /* Try to use fine-grained SSD-style locking if available: */
380 ci = lock_cluster(si, offset);
381 /* Otherwise, fall back to traditional, coarse locking: */
382 if (!ci)
383 spin_lock(&si->lock);
384
385 return ci;
386 }
387
unlock_cluster_or_swap_info(struct swap_info_struct *si, struct swap_cluster_info *ci)388 static inline void unlock_cluster_or_swap_info(struct swap_info_struct *si,
389 struct swap_cluster_info *ci)
390 {
391 if (ci)
392 unlock_cluster(ci);
393 else
394 spin_unlock(&si->lock);
395 }
396
cluster_list_empty(struct swap_cluster_list *list)397 static inline bool cluster_list_empty(struct swap_cluster_list *list)
398 {
399 return cluster_is_null(&list->head);
400 }
401
cluster_list_first(struct swap_cluster_list *list)402 static inline unsigned int cluster_list_first(struct swap_cluster_list *list)
403 {
404 return cluster_next(&list->head);
405 }
406
cluster_list_init(struct swap_cluster_list *list)407 static void cluster_list_init(struct swap_cluster_list *list)
408 {
409 cluster_set_null(&list->head);
410 cluster_set_null(&list->tail);
411 }
412
cluster_list_add_tail(struct swap_cluster_list *list, struct swap_cluster_info *ci, unsigned int idx)413 static void cluster_list_add_tail(struct swap_cluster_list *list,
414 struct swap_cluster_info *ci,
415 unsigned int idx)
416 {
417 if (cluster_list_empty(list)) {
418 cluster_set_next_flag(&list->head, idx, 0);
419 cluster_set_next_flag(&list->tail, idx, 0);
420 } else {
421 struct swap_cluster_info *ci_tail;
422 unsigned int tail = cluster_next(&list->tail);
423
424 /*
425 * Nested cluster lock, but both cluster locks are
426 * only acquired when we held swap_info_struct->lock
427 */
428 ci_tail = ci + tail;
429 spin_lock_nested(&ci_tail->lock, SINGLE_DEPTH_NESTING);
430 cluster_set_next(ci_tail, idx);
431 spin_unlock(&ci_tail->lock);
432 cluster_set_next_flag(&list->tail, idx, 0);
433 }
434 }
435
cluster_list_del_first(struct swap_cluster_list *list, struct swap_cluster_info *ci)436 static unsigned int cluster_list_del_first(struct swap_cluster_list *list,
437 struct swap_cluster_info *ci)
438 {
439 unsigned int idx;
440
441 idx = cluster_next(&list->head);
442 if (cluster_next(&list->tail) == idx) {
443 cluster_set_null(&list->head);
444 cluster_set_null(&list->tail);
445 } else
446 cluster_set_next_flag(&list->head,
447 cluster_next(&ci[idx]), 0);
448
449 return idx;
450 }
451
452 /* Add a cluster to discard list and schedule it to do discard */
swap_cluster_schedule_discard(struct swap_info_struct *si, unsigned int idx)453 static void swap_cluster_schedule_discard(struct swap_info_struct *si,
454 unsigned int idx)
455 {
456 /*
457 * If scan_swap_map() can't find a free cluster, it will check
458 * si->swap_map directly. To make sure the discarding cluster isn't
459 * taken by scan_swap_map(), mark the swap entries bad (occupied). It
460 * will be cleared after discard
461 */
462 memset(si->swap_map + idx * SWAPFILE_CLUSTER,
463 SWAP_MAP_BAD, SWAPFILE_CLUSTER);
464
465 cluster_list_add_tail(&si->discard_clusters, si->cluster_info, idx);
466
467 schedule_work(&si->discard_work);
468 }
469
__free_cluster(struct swap_info_struct *si, unsigned long idx)470 static void __free_cluster(struct swap_info_struct *si, unsigned long idx)
471 {
472 struct swap_cluster_info *ci = si->cluster_info;
473
474 cluster_set_flag(ci + idx, CLUSTER_FLAG_FREE);
475 cluster_list_add_tail(&si->free_clusters, ci, idx);
476 }
477
478 /*
479 * Doing discard actually. After a cluster discard is finished, the cluster
480 * will be added to free cluster list. caller should hold si->lock.
481 */
swap_do_scheduled_discard(struct swap_info_struct *si)482 static void swap_do_scheduled_discard(struct swap_info_struct *si)
483 {
484 struct swap_cluster_info *info, *ci;
485 unsigned int idx;
486
487 info = si->cluster_info;
488
489 while (!cluster_list_empty(&si->discard_clusters)) {
490 idx = cluster_list_del_first(&si->discard_clusters, info);
491 spin_unlock(&si->lock);
492
493 discard_swap_cluster(si, idx * SWAPFILE_CLUSTER,
494 SWAPFILE_CLUSTER);
495
496 spin_lock(&si->lock);
497 ci = lock_cluster(si, idx * SWAPFILE_CLUSTER);
498 __free_cluster(si, idx);
499 memset(si->swap_map + idx * SWAPFILE_CLUSTER,
500 0, SWAPFILE_CLUSTER);
501 unlock_cluster(ci);
502 }
503 }
504
swap_discard_work(struct work_struct *work)505 static void swap_discard_work(struct work_struct *work)
506 {
507 struct swap_info_struct *si;
508
509 si = container_of(work, struct swap_info_struct, discard_work);
510
511 spin_lock(&si->lock);
512 swap_do_scheduled_discard(si);
513 spin_unlock(&si->lock);
514 }
515
alloc_cluster(struct swap_info_struct *si, unsigned long idx)516 static void alloc_cluster(struct swap_info_struct *si, unsigned long idx)
517 {
518 struct swap_cluster_info *ci = si->cluster_info;
519
520 VM_BUG_ON(cluster_list_first(&si->free_clusters) != idx);
521 cluster_list_del_first(&si->free_clusters, ci);
522 cluster_set_count_flag(ci + idx, 0, 0);
523 }
524
free_cluster(struct swap_info_struct *si, unsigned long idx)525 static void free_cluster(struct swap_info_struct *si, unsigned long idx)
526 {
527 struct swap_cluster_info *ci = si->cluster_info + idx;
528
529 VM_BUG_ON(cluster_count(ci) != 0);
530 /*
531 * If the swap is discardable, prepare discard the cluster
532 * instead of free it immediately. The cluster will be freed
533 * after discard.
534 */
535 if ((si->flags & (SWP_WRITEOK | SWP_PAGE_DISCARD)) ==
536 (SWP_WRITEOK | SWP_PAGE_DISCARD)) {
537 swap_cluster_schedule_discard(si, idx);
538 return;
539 }
540
541 __free_cluster(si, idx);
542 }
543
544 /*
545 * The cluster corresponding to page_nr will be used. The cluster will be
546 * removed from free cluster list and its usage counter will be increased.
547 */
inc_cluster_info_page(struct swap_info_struct *p, struct swap_cluster_info *cluster_info, unsigned long page_nr)548 static void inc_cluster_info_page(struct swap_info_struct *p,
549 struct swap_cluster_info *cluster_info, unsigned long page_nr)
550 {
551 unsigned long idx = page_nr / SWAPFILE_CLUSTER;
552
553 if (!cluster_info)
554 return;
555 if (cluster_is_free(&cluster_info[idx]))
556 alloc_cluster(p, idx);
557
558 VM_BUG_ON(cluster_count(&cluster_info[idx]) >= SWAPFILE_CLUSTER);
559 cluster_set_count(&cluster_info[idx],
560 cluster_count(&cluster_info[idx]) + 1);
561 }
562
563 /*
564 * The cluster corresponding to page_nr decreases one usage. If the usage
565 * counter becomes 0, which means no page in the cluster is in using, we can
566 * optionally discard the cluster and add it to free cluster list.
567 */
dec_cluster_info_page(struct swap_info_struct *p, struct swap_cluster_info *cluster_info, unsigned long page_nr)568 static void dec_cluster_info_page(struct swap_info_struct *p,
569 struct swap_cluster_info *cluster_info, unsigned long page_nr)
570 {
571 unsigned long idx = page_nr / SWAPFILE_CLUSTER;
572
573 if (!cluster_info)
574 return;
575
576 VM_BUG_ON(cluster_count(&cluster_info[idx]) == 0);
577 cluster_set_count(&cluster_info[idx],
578 cluster_count(&cluster_info[idx]) - 1);
579
580 if (cluster_count(&cluster_info[idx]) == 0)
581 free_cluster(p, idx);
582 }
583
584 /*
585 * It's possible scan_swap_map() uses a free cluster in the middle of free
586 * cluster list. Avoiding such abuse to avoid list corruption.
587 */
588 static bool
scan_swap_map_ssd_cluster_conflict(struct swap_info_struct *si, unsigned long offset)589 scan_swap_map_ssd_cluster_conflict(struct swap_info_struct *si,
590 unsigned long offset)
591 {
592 struct percpu_cluster *percpu_cluster;
593 bool conflict;
594
595 offset /= SWAPFILE_CLUSTER;
596 conflict = !cluster_list_empty(&si->free_clusters) &&
597 offset != cluster_list_first(&si->free_clusters) &&
598 cluster_is_free(&si->cluster_info[offset]);
599
600 if (!conflict)
601 return false;
602
603 percpu_cluster = this_cpu_ptr(si->percpu_cluster);
604 cluster_set_null(&percpu_cluster->index);
605 return true;
606 }
607
608 /*
609 * Try to get a swap entry from current cpu's swap entry pool (a cluster). This
610 * might involve allocating a new cluster for current CPU too.
611 */
scan_swap_map_try_ssd_cluster(struct swap_info_struct *si, unsigned long *offset, unsigned long *scan_base)612 static bool scan_swap_map_try_ssd_cluster(struct swap_info_struct *si,
613 unsigned long *offset, unsigned long *scan_base)
614 {
615 struct percpu_cluster *cluster;
616 struct swap_cluster_info *ci;
617 unsigned long tmp, max;
618
619 new_cluster:
620 cluster = this_cpu_ptr(si->percpu_cluster);
621 if (cluster_is_null(&cluster->index)) {
622 if (!cluster_list_empty(&si->free_clusters)) {
623 cluster->index = si->free_clusters.head;
624 cluster->next = cluster_next(&cluster->index) *
625 SWAPFILE_CLUSTER;
626 } else if (!cluster_list_empty(&si->discard_clusters)) {
627 /*
628 * we don't have free cluster but have some clusters in
629 * discarding, do discard now and reclaim them, then
630 * reread cluster_next_cpu since we dropped si->lock
631 */
632 swap_do_scheduled_discard(si);
633 *scan_base = this_cpu_read(*si->cluster_next_cpu);
634 *offset = *scan_base;
635 goto new_cluster;
636 } else
637 return false;
638 }
639
640 /*
641 * Other CPUs can use our cluster if they can't find a free cluster,
642 * check if there is still free entry in the cluster
643 */
644 tmp = cluster->next;
645 max = min_t(unsigned long, si->max,
646 (cluster_next(&cluster->index) + 1) * SWAPFILE_CLUSTER);
647 if (tmp < max) {
648 ci = lock_cluster(si, tmp);
649 while (tmp < max) {
650 if (!si->swap_map[tmp])
651 break;
652 tmp++;
653 }
654 unlock_cluster(ci);
655 }
656 if (tmp >= max) {
657 cluster_set_null(&cluster->index);
658 goto new_cluster;
659 }
660 cluster->next = tmp + 1;
661 *offset = tmp;
662 *scan_base = tmp;
663 return true;
664 }
665
__del_from_avail_list(struct swap_info_struct *p)666 static void __del_from_avail_list(struct swap_info_struct *p)
667 {
668 int nid;
669
670 assert_spin_locked(&p->lock);
671 for_each_node(nid)
672 plist_del(&p->avail_lists[nid], &swap_avail_heads[nid]);
673 }
674
del_from_avail_list(struct swap_info_struct *p)675 static void del_from_avail_list(struct swap_info_struct *p)
676 {
677 spin_lock(&swap_avail_lock);
678 __del_from_avail_list(p);
679 spin_unlock(&swap_avail_lock);
680 }
681
swap_range_alloc(struct swap_info_struct *si, unsigned long offset, unsigned int nr_entries)682 static void swap_range_alloc(struct swap_info_struct *si, unsigned long offset,
683 unsigned int nr_entries)
684 {
685 unsigned int end = offset + nr_entries - 1;
686
687 if (offset == si->lowest_bit)
688 si->lowest_bit += nr_entries;
689 if (end == si->highest_bit)
690 WRITE_ONCE(si->highest_bit, si->highest_bit - nr_entries);
691 si->inuse_pages += nr_entries;
692 if (si->inuse_pages == si->pages) {
693 si->lowest_bit = si->max;
694 si->highest_bit = 0;
695 del_from_avail_list(si);
696 }
697 }
698
add_to_avail_list(struct swap_info_struct *p)699 static void add_to_avail_list(struct swap_info_struct *p)
700 {
701 int nid;
702
703 spin_lock(&swap_avail_lock);
704 for_each_node(nid) {
705 WARN_ON(!plist_node_empty(&p->avail_lists[nid]));
706 plist_add(&p->avail_lists[nid], &swap_avail_heads[nid]);
707 }
708 spin_unlock(&swap_avail_lock);
709 }
710
swap_range_free(struct swap_info_struct *si, unsigned long offset, unsigned int nr_entries)711 static void swap_range_free(struct swap_info_struct *si, unsigned long offset,
712 unsigned int nr_entries)
713 {
714 unsigned long begin = offset;
715 unsigned long end = offset + nr_entries - 1;
716 void (*swap_slot_free_notify)(struct block_device *, unsigned long);
717
718 if (offset < si->lowest_bit)
719 si->lowest_bit = offset;
720 if (end > si->highest_bit) {
721 bool was_full = !si->highest_bit;
722
723 WRITE_ONCE(si->highest_bit, end);
724 if (was_full && (si->flags & SWP_WRITEOK))
725 add_to_avail_list(si);
726 }
727 atomic_long_add(nr_entries, &nr_swap_pages);
728 si->inuse_pages -= nr_entries;
729 if (si->flags & SWP_BLKDEV)
730 swap_slot_free_notify =
731 si->bdev->bd_disk->fops->swap_slot_free_notify;
732 else
733 swap_slot_free_notify = NULL;
734 while (offset <= end) {
735 arch_swap_invalidate_page(si->type, offset);
736 frontswap_invalidate_page(si->type, offset);
737 if (swap_slot_free_notify)
738 swap_slot_free_notify(si->bdev, offset);
739 offset++;
740 }
741 clear_shadow_from_swap_cache(si->type, begin, end);
742 }
743
set_cluster_next(struct swap_info_struct *si, unsigned long next)744 static void set_cluster_next(struct swap_info_struct *si, unsigned long next)
745 {
746 unsigned long prev;
747
748 if (!(si->flags & SWP_SOLIDSTATE)) {
749 si->cluster_next = next;
750 return;
751 }
752
753 prev = this_cpu_read(*si->cluster_next_cpu);
754 /*
755 * Cross the swap address space size aligned trunk, choose
756 * another trunk randomly to avoid lock contention on swap
757 * address space if possible.
758 */
759 if ((prev >> SWAP_ADDRESS_SPACE_SHIFT) !=
760 (next >> SWAP_ADDRESS_SPACE_SHIFT)) {
761 /* No free swap slots available */
762 if (si->highest_bit <= si->lowest_bit)
763 return;
764 next = si->lowest_bit +
765 prandom_u32_max(si->highest_bit - si->lowest_bit + 1);
766 next = ALIGN_DOWN(next, SWAP_ADDRESS_SPACE_PAGES);
767 next = max_t(unsigned int, next, si->lowest_bit);
768 }
769 this_cpu_write(*si->cluster_next_cpu, next);
770 }
771
scan_swap_map_slots(struct swap_info_struct *si, unsigned char usage, int nr, swp_entry_t slots[])772 static int scan_swap_map_slots(struct swap_info_struct *si,
773 unsigned char usage, int nr,
774 swp_entry_t slots[])
775 {
776 struct swap_cluster_info *ci;
777 unsigned long offset;
778 unsigned long scan_base;
779 unsigned long last_in_cluster = 0;
780 int latency_ration = LATENCY_LIMIT;
781 int n_ret = 0;
782 bool scanned_many = false;
783
784 /*
785 * We try to cluster swap pages by allocating them sequentially
786 * in swap. Once we've allocated SWAPFILE_CLUSTER pages this
787 * way, however, we resort to first-free allocation, starting
788 * a new cluster. This prevents us from scattering swap pages
789 * all over the entire swap partition, so that we reduce
790 * overall disk seek times between swap pages. -- sct
791 * But we do now try to find an empty cluster. -Andrea
792 * And we let swap pages go all over an SSD partition. Hugh
793 */
794
795 si->flags += SWP_SCANNING;
796 /*
797 * Use percpu scan base for SSD to reduce lock contention on
798 * cluster and swap cache. For HDD, sequential access is more
799 * important.
800 */
801 if (si->flags & SWP_SOLIDSTATE)
802 scan_base = this_cpu_read(*si->cluster_next_cpu);
803 else
804 scan_base = si->cluster_next;
805 offset = scan_base;
806
807 /* SSD algorithm */
808 if (si->cluster_info) {
809 if (!scan_swap_map_try_ssd_cluster(si, &offset, &scan_base))
810 goto scan;
811 } else if (unlikely(!si->cluster_nr--)) {
812 if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) {
813 si->cluster_nr = SWAPFILE_CLUSTER - 1;
814 goto checks;
815 }
816
817 spin_unlock(&si->lock);
818
819 /*
820 * If seek is expensive, start searching for new cluster from
821 * start of partition, to minimize the span of allocated swap.
822 * If seek is cheap, that is the SWP_SOLIDSTATE si->cluster_info
823 * case, just handled by scan_swap_map_try_ssd_cluster() above.
824 */
825 scan_base = offset = si->lowest_bit;
826 last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
827
828 /* Locate the first empty (unaligned) cluster */
829 for (; last_in_cluster <= si->highest_bit; offset++) {
830 if (si->swap_map[offset])
831 last_in_cluster = offset + SWAPFILE_CLUSTER;
832 else if (offset == last_in_cluster) {
833 spin_lock(&si->lock);
834 offset -= SWAPFILE_CLUSTER - 1;
835 si->cluster_next = offset;
836 si->cluster_nr = SWAPFILE_CLUSTER - 1;
837 goto checks;
838 }
839 if (unlikely(--latency_ration < 0)) {
840 cond_resched();
841 latency_ration = LATENCY_LIMIT;
842 }
843 }
844
845 offset = scan_base;
846 spin_lock(&si->lock);
847 si->cluster_nr = SWAPFILE_CLUSTER - 1;
848 }
849
850 checks:
851 if (si->cluster_info) {
852 while (scan_swap_map_ssd_cluster_conflict(si, offset)) {
853 /* take a break if we already got some slots */
854 if (n_ret)
855 goto done;
856 if (!scan_swap_map_try_ssd_cluster(si, &offset,
857 &scan_base))
858 goto scan;
859 }
860 }
861 if (!(si->flags & SWP_WRITEOK))
862 goto no_page;
863 if (!si->highest_bit)
864 goto no_page;
865 if (offset > si->highest_bit)
866 scan_base = offset = si->lowest_bit;
867
868 ci = lock_cluster(si, offset);
869 /* reuse swap entry of cache-only swap if not busy. */
870 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
871 int swap_was_freed;
872 unlock_cluster(ci);
873 spin_unlock(&si->lock);
874 swap_was_freed = __try_to_reclaim_swap(si, offset, TTRS_ANYWAY);
875 spin_lock(&si->lock);
876 /* entry was freed successfully, try to use this again */
877 if (swap_was_freed)
878 goto checks;
879 goto scan; /* check next one */
880 }
881
882 if (si->swap_map[offset]) {
883 unlock_cluster(ci);
884 if (!n_ret)
885 goto scan;
886 else
887 goto done;
888 }
889 WRITE_ONCE(si->swap_map[offset], usage);
890 inc_cluster_info_page(si, si->cluster_info, offset);
891 unlock_cluster(ci);
892
893 swap_range_alloc(si, offset, 1);
894 slots[n_ret++] = swp_entry(si->type, offset);
895
896 /* got enough slots or reach max slots? */
897 if ((n_ret == nr) || (offset >= si->highest_bit))
898 goto done;
899
900 /* search for next available slot */
901
902 /* time to take a break? */
903 if (unlikely(--latency_ration < 0)) {
904 if (n_ret)
905 goto done;
906 spin_unlock(&si->lock);
907 cond_resched();
908 spin_lock(&si->lock);
909 latency_ration = LATENCY_LIMIT;
910 }
911
912 /* try to get more slots in cluster */
913 if (si->cluster_info) {
914 if (scan_swap_map_try_ssd_cluster(si, &offset, &scan_base))
915 goto checks;
916 } else if (si->cluster_nr && !si->swap_map[++offset]) {
917 /* non-ssd case, still more slots in cluster? */
918 --si->cluster_nr;
919 goto checks;
920 }
921
922 /*
923 * Even if there's no free clusters available (fragmented),
924 * try to scan a little more quickly with lock held unless we
925 * have scanned too many slots already.
926 */
927 if (!scanned_many) {
928 unsigned long scan_limit;
929
930 if (offset < scan_base)
931 scan_limit = scan_base;
932 else
933 scan_limit = si->highest_bit;
934 for (; offset <= scan_limit && --latency_ration > 0;
935 offset++) {
936 if (!si->swap_map[offset])
937 goto checks;
938 }
939 }
940
941 done:
942 set_cluster_next(si, offset + 1);
943 si->flags -= SWP_SCANNING;
944 return n_ret;
945
946 scan:
947 spin_unlock(&si->lock);
948 while (++offset <= READ_ONCE(si->highest_bit)) {
949 if (data_race(!si->swap_map[offset])) {
950 spin_lock(&si->lock);
951 goto checks;
952 }
953 if (vm_swap_full() &&
954 READ_ONCE(si->swap_map[offset]) == SWAP_HAS_CACHE) {
955 spin_lock(&si->lock);
956 goto checks;
957 }
958 if (unlikely(--latency_ration < 0)) {
959 cond_resched();
960 latency_ration = LATENCY_LIMIT;
961 scanned_many = true;
962 }
963 }
964 offset = si->lowest_bit;
965 while (offset < scan_base) {
966 if (data_race(!si->swap_map[offset])) {
967 spin_lock(&si->lock);
968 goto checks;
969 }
970 if (vm_swap_full() &&
971 READ_ONCE(si->swap_map[offset]) == SWAP_HAS_CACHE) {
972 spin_lock(&si->lock);
973 goto checks;
974 }
975 if (unlikely(--latency_ration < 0)) {
976 cond_resched();
977 latency_ration = LATENCY_LIMIT;
978 scanned_many = true;
979 }
980 offset++;
981 }
982 spin_lock(&si->lock);
983
984 no_page:
985 si->flags -= SWP_SCANNING;
986 return n_ret;
987 }
988
swap_alloc_cluster(struct swap_info_struct *si, swp_entry_t *slot)989 static int swap_alloc_cluster(struct swap_info_struct *si, swp_entry_t *slot)
990 {
991 unsigned long idx;
992 struct swap_cluster_info *ci;
993 unsigned long offset, i;
994 unsigned char *map;
995
996 /*
997 * Should not even be attempting cluster allocations when huge
998 * page swap is disabled. Warn and fail the allocation.
999 */
1000 if (!IS_ENABLED(CONFIG_THP_SWAP)) {
1001 VM_WARN_ON_ONCE(1);
1002 return 0;
1003 }
1004
1005 if (cluster_list_empty(&si->free_clusters))
1006 return 0;
1007
1008 idx = cluster_list_first(&si->free_clusters);
1009 offset = idx * SWAPFILE_CLUSTER;
1010 ci = lock_cluster(si, offset);
1011 alloc_cluster(si, idx);
1012 cluster_set_count_flag(ci, SWAPFILE_CLUSTER, CLUSTER_FLAG_HUGE);
1013
1014 map = si->swap_map + offset;
1015 for (i = 0; i < SWAPFILE_CLUSTER; i++)
1016 map[i] = SWAP_HAS_CACHE;
1017 unlock_cluster(ci);
1018 swap_range_alloc(si, offset, SWAPFILE_CLUSTER);
1019 *slot = swp_entry(si->type, offset);
1020
1021 return 1;
1022 }
1023
swap_free_cluster(struct swap_info_struct *si, unsigned long idx)1024 static void swap_free_cluster(struct swap_info_struct *si, unsigned long idx)
1025 {
1026 unsigned long offset = idx * SWAPFILE_CLUSTER;
1027 struct swap_cluster_info *ci;
1028
1029 ci = lock_cluster(si, offset);
1030 memset(si->swap_map + offset, 0, SWAPFILE_CLUSTER);
1031 cluster_set_count_flag(ci, 0, 0);
1032 free_cluster(si, idx);
1033 unlock_cluster(ci);
1034 swap_range_free(si, offset, SWAPFILE_CLUSTER);
1035 }
1036
scan_swap_map(struct swap_info_struct *si, unsigned char usage)1037 static unsigned long scan_swap_map(struct swap_info_struct *si,
1038 unsigned char usage)
1039 {
1040 swp_entry_t entry;
1041 int n_ret;
1042
1043 n_ret = scan_swap_map_slots(si, usage, 1, &entry);
1044
1045 if (n_ret)
1046 return swp_offset(entry);
1047 else
1048 return 0;
1049
1050 }
1051
get_swap_pages(int n_goal, swp_entry_t swp_entries[], int entry_size)1052 int get_swap_pages(int n_goal, swp_entry_t swp_entries[], int entry_size)
1053 {
1054 unsigned long size = swap_entry_size(entry_size);
1055 struct swap_info_struct *si, *next;
1056 long avail_pgs;
1057 int n_ret = 0;
1058 int node;
1059
1060 /* Only single cluster request supported */
1061 WARN_ON_ONCE(n_goal > 1 && size == SWAPFILE_CLUSTER);
1062
1063 spin_lock(&swap_avail_lock);
1064
1065 avail_pgs = atomic_long_read(&nr_swap_pages) / size;
1066 if (avail_pgs <= 0) {
1067 spin_unlock(&swap_avail_lock);
1068 goto noswap;
1069 }
1070
1071 n_goal = min3((long)n_goal, (long)SWAP_BATCH, avail_pgs);
1072
1073 atomic_long_sub(n_goal * size, &nr_swap_pages);
1074
1075 start_over:
1076 node = numa_node_id();
1077 plist_for_each_entry_safe(si, next, &swap_avail_heads[node], avail_lists[node]) {
1078 /* requeue si to after same-priority siblings */
1079 plist_requeue(&si->avail_lists[node], &swap_avail_heads[node]);
1080 spin_unlock(&swap_avail_lock);
1081 spin_lock(&si->lock);
1082 if (!si->highest_bit || !(si->flags & SWP_WRITEOK)) {
1083 spin_lock(&swap_avail_lock);
1084 if (plist_node_empty(&si->avail_lists[node])) {
1085 spin_unlock(&si->lock);
1086 goto nextsi;
1087 }
1088 WARN(!si->highest_bit,
1089 "swap_info %d in list but !highest_bit\n",
1090 si->type);
1091 WARN(!(si->flags & SWP_WRITEOK),
1092 "swap_info %d in list but !SWP_WRITEOK\n",
1093 si->type);
1094 __del_from_avail_list(si);
1095 spin_unlock(&si->lock);
1096 goto nextsi;
1097 }
1098 if (size == SWAPFILE_CLUSTER) {
1099 if (si->flags & SWP_BLKDEV)
1100 n_ret = swap_alloc_cluster(si, swp_entries);
1101 } else
1102 n_ret = scan_swap_map_slots(si, SWAP_HAS_CACHE,
1103 n_goal, swp_entries);
1104 spin_unlock(&si->lock);
1105 if (n_ret || size == SWAPFILE_CLUSTER)
1106 goto check_out;
1107 pr_debug("scan_swap_map of si %d failed to find offset\n",
1108 si->type);
1109 cond_resched();
1110
1111 spin_lock(&swap_avail_lock);
1112 nextsi:
1113 /*
1114 * if we got here, it's likely that si was almost full before,
1115 * and since scan_swap_map() can drop the si->lock, multiple
1116 * callers probably all tried to get a page from the same si
1117 * and it filled up before we could get one; or, the si filled
1118 * up between us dropping swap_avail_lock and taking si->lock.
1119 * Since we dropped the swap_avail_lock, the swap_avail_head
1120 * list may have been modified; so if next is still in the
1121 * swap_avail_head list then try it, otherwise start over
1122 * if we have not gotten any slots.
1123 */
1124 if (plist_node_empty(&next->avail_lists[node]))
1125 goto start_over;
1126 }
1127
1128 spin_unlock(&swap_avail_lock);
1129
1130 check_out:
1131 if (n_ret < n_goal)
1132 atomic_long_add((long)(n_goal - n_ret) * size,
1133 &nr_swap_pages);
1134 noswap:
1135 return n_ret;
1136 }
1137
1138 /* The only caller of this function is now suspend routine */
get_swap_page_of_type(int type)1139 swp_entry_t get_swap_page_of_type(int type)
1140 {
1141 struct swap_info_struct *si = swap_type_to_swap_info(type);
1142 pgoff_t offset;
1143
1144 if (!si)
1145 goto fail;
1146
1147 spin_lock(&si->lock);
1148 if (si->flags & SWP_WRITEOK) {
1149 /* This is called for allocating swap entry, not cache */
1150 offset = scan_swap_map(si, 1);
1151 if (offset) {
1152 atomic_long_dec(&nr_swap_pages);
1153 spin_unlock(&si->lock);
1154 return swp_entry(type, offset);
1155 }
1156 }
1157 spin_unlock(&si->lock);
1158 fail:
1159 return (swp_entry_t) {0};
1160 }
1161
__swap_info_get(swp_entry_t entry)1162 static struct swap_info_struct *__swap_info_get(swp_entry_t entry)
1163 {
1164 struct swap_info_struct *p;
1165 unsigned long offset;
1166
1167 if (!entry.val)
1168 goto out;
1169 p = swp_swap_info(entry);
1170 if (!p)
1171 goto bad_nofile;
1172 if (data_race(!(p->flags & SWP_USED)))
1173 goto bad_device;
1174 offset = swp_offset(entry);
1175 if (offset >= p->max)
1176 goto bad_offset;
1177 return p;
1178
1179 bad_offset:
1180 pr_err("swap_info_get: %s%08lx\n", Bad_offset, entry.val);
1181 goto out;
1182 bad_device:
1183 pr_err("swap_info_get: %s%08lx\n", Unused_file, entry.val);
1184 goto out;
1185 bad_nofile:
1186 pr_err("swap_info_get: %s%08lx\n", Bad_file, entry.val);
1187 out:
1188 return NULL;
1189 }
1190
_swap_info_get(swp_entry_t entry)1191 static struct swap_info_struct *_swap_info_get(swp_entry_t entry)
1192 {
1193 struct swap_info_struct *p;
1194
1195 p = __swap_info_get(entry);
1196 if (!p)
1197 goto out;
1198 if (data_race(!p->swap_map[swp_offset(entry)]))
1199 goto bad_free;
1200 return p;
1201
1202 bad_free:
1203 pr_err("swap_info_get: %s%08lx\n", Unused_offset, entry.val);
1204 out:
1205 return NULL;
1206 }
1207
swap_info_get(swp_entry_t entry)1208 static struct swap_info_struct *swap_info_get(swp_entry_t entry)
1209 {
1210 struct swap_info_struct *p;
1211
1212 p = _swap_info_get(entry);
1213 if (p)
1214 spin_lock(&p->lock);
1215 return p;
1216 }
1217
swap_info_get_cont(swp_entry_t entry, struct swap_info_struct *q)1218 static struct swap_info_struct *swap_info_get_cont(swp_entry_t entry,
1219 struct swap_info_struct *q)
1220 {
1221 struct swap_info_struct *p;
1222
1223 p = _swap_info_get(entry);
1224
1225 if (p != q) {
1226 if (q != NULL)
1227 spin_unlock(&q->lock);
1228 if (p != NULL)
1229 spin_lock(&p->lock);
1230 }
1231 return p;
1232 }
1233
__swap_entry_free_locked(struct swap_info_struct *p, unsigned long offset, unsigned char usage)1234 static unsigned char __swap_entry_free_locked(struct swap_info_struct *p,
1235 unsigned long offset,
1236 unsigned char usage)
1237 {
1238 unsigned char count;
1239 unsigned char has_cache;
1240
1241 count = p->swap_map[offset];
1242
1243 has_cache = count & SWAP_HAS_CACHE;
1244 count &= ~SWAP_HAS_CACHE;
1245
1246 if (usage == SWAP_HAS_CACHE) {
1247 VM_BUG_ON(!has_cache);
1248 has_cache = 0;
1249 } else if (count == SWAP_MAP_SHMEM) {
1250 /*
1251 * Or we could insist on shmem.c using a special
1252 * swap_shmem_free() and free_shmem_swap_and_cache()...
1253 */
1254 count = 0;
1255 } else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) {
1256 if (count == COUNT_CONTINUED) {
1257 if (swap_count_continued(p, offset, count))
1258 count = SWAP_MAP_MAX | COUNT_CONTINUED;
1259 else
1260 count = SWAP_MAP_MAX;
1261 } else
1262 count--;
1263 }
1264
1265 usage = count | has_cache;
1266 if (usage)
1267 WRITE_ONCE(p->swap_map[offset], usage);
1268 else
1269 WRITE_ONCE(p->swap_map[offset], SWAP_HAS_CACHE);
1270
1271 return usage;
1272 }
1273
1274 /*
1275 * Note that when only holding the PTL, swapoff might succeed immediately
1276 * after freeing a swap entry. Therefore, immediately after
1277 * __swap_entry_free(), the swap info might become stale and should not
1278 * be touched without a prior get_swap_device().
1279 *
1280 * Check whether swap entry is valid in the swap device. If so,
1281 * return pointer to swap_info_struct, and keep the swap entry valid
1282 * via preventing the swap device from being swapoff, until
1283 * put_swap_device() is called. Otherwise return NULL.
1284 *
1285 * The entirety of the RCU read critical section must come before the
1286 * return from or after the call to synchronize_rcu() in
1287 * enable_swap_info() or swapoff(). So if "si->flags & SWP_VALID" is
1288 * true, the si->map, si->cluster_info, etc. must be valid in the
1289 * critical section.
1290 *
1291 * Notice that swapoff or swapoff+swapon can still happen before the
1292 * rcu_read_lock() in get_swap_device() or after the rcu_read_unlock()
1293 * in put_swap_device() if there isn't any other way to prevent
1294 * swapoff, such as page lock, page table lock, etc. The caller must
1295 * be prepared for that. For example, the following situation is
1296 * possible.
1297 *
1298 * CPU1 CPU2
1299 * do_swap_page()
1300 * ... swapoff+swapon
1301 * __read_swap_cache_async()
1302 * swapcache_prepare()
1303 * __swap_duplicate()
1304 * // check swap_map
1305 * // verify PTE not changed
1306 *
1307 * In __swap_duplicate(), the swap_map need to be checked before
1308 * changing partly because the specified swap entry may be for another
1309 * swap device which has been swapoff. And in do_swap_page(), after
1310 * the page is read from the swap device, the PTE is verified not
1311 * changed with the page table locked to check whether the swap device
1312 * has been swapoff or swapoff+swapon.
1313 */
get_swap_device(swp_entry_t entry)1314 struct swap_info_struct *get_swap_device(swp_entry_t entry)
1315 {
1316 struct swap_info_struct *si;
1317 unsigned long offset;
1318
1319 if (!entry.val)
1320 goto out;
1321 si = swp_swap_info(entry);
1322 if (!si)
1323 goto bad_nofile;
1324
1325 rcu_read_lock();
1326 if (data_race(!(si->flags & SWP_VALID)))
1327 goto unlock_out;
1328 offset = swp_offset(entry);
1329 if (offset >= si->max)
1330 goto unlock_out;
1331
1332 return si;
1333 bad_nofile:
1334 pr_err("%s: %s%08lx\n", __func__, Bad_file, entry.val);
1335 out:
1336 return NULL;
1337 unlock_out:
1338 rcu_read_unlock();
1339 return NULL;
1340 }
1341
__swap_entry_free(struct swap_info_struct *p, swp_entry_t entry)1342 static unsigned char __swap_entry_free(struct swap_info_struct *p,
1343 swp_entry_t entry)
1344 {
1345 struct swap_cluster_info *ci;
1346 unsigned long offset = swp_offset(entry);
1347 unsigned char usage;
1348
1349 ci = lock_cluster_or_swap_info(p, offset);
1350 usage = __swap_entry_free_locked(p, offset, 1);
1351 unlock_cluster_or_swap_info(p, ci);
1352 if (!usage)
1353 free_swap_slot(entry);
1354
1355 return usage;
1356 }
1357
swap_entry_free(struct swap_info_struct *p, swp_entry_t entry)1358 static void swap_entry_free(struct swap_info_struct *p, swp_entry_t entry)
1359 {
1360 struct swap_cluster_info *ci;
1361 unsigned long offset = swp_offset(entry);
1362 unsigned char count;
1363
1364 ci = lock_cluster(p, offset);
1365 count = p->swap_map[offset];
1366 VM_BUG_ON(count != SWAP_HAS_CACHE);
1367 p->swap_map[offset] = 0;
1368 dec_cluster_info_page(p, p->cluster_info, offset);
1369 unlock_cluster(ci);
1370
1371 mem_cgroup_uncharge_swap(entry, 1);
1372 swap_range_free(p, offset, 1);
1373 }
1374
1375 /*
1376 * Caller has made sure that the swap device corresponding to entry
1377 * is still around or has not been recycled.
1378 */
swap_free(swp_entry_t entry)1379 void swap_free(swp_entry_t entry)
1380 {
1381 struct swap_info_struct *p;
1382
1383 p = _swap_info_get(entry);
1384 if (p)
1385 __swap_entry_free(p, entry);
1386 }
1387
1388 /*
1389 * Called after dropping swapcache to decrease refcnt to swap entries.
1390 */
put_swap_page(struct page *page, swp_entry_t entry)1391 void put_swap_page(struct page *page, swp_entry_t entry)
1392 {
1393 unsigned long offset = swp_offset(entry);
1394 unsigned long idx = offset / SWAPFILE_CLUSTER;
1395 struct swap_cluster_info *ci;
1396 struct swap_info_struct *si;
1397 unsigned char *map;
1398 unsigned int i, free_entries = 0;
1399 unsigned char val;
1400 int size = swap_entry_size(thp_nr_pages(page));
1401
1402 si = _swap_info_get(entry);
1403 if (!si)
1404 return;
1405
1406 ci = lock_cluster_or_swap_info(si, offset);
1407 if (size == SWAPFILE_CLUSTER) {
1408 VM_BUG_ON(!cluster_is_huge(ci));
1409 map = si->swap_map + offset;
1410 for (i = 0; i < SWAPFILE_CLUSTER; i++) {
1411 val = map[i];
1412 VM_BUG_ON(!(val & SWAP_HAS_CACHE));
1413 if (val == SWAP_HAS_CACHE)
1414 free_entries++;
1415 }
1416 cluster_clear_huge(ci);
1417 if (free_entries == SWAPFILE_CLUSTER) {
1418 unlock_cluster_or_swap_info(si, ci);
1419 spin_lock(&si->lock);
1420 mem_cgroup_uncharge_swap(entry, SWAPFILE_CLUSTER);
1421 swap_free_cluster(si, idx);
1422 spin_unlock(&si->lock);
1423 return;
1424 }
1425 }
1426 for (i = 0; i < size; i++, entry.val++) {
1427 if (!__swap_entry_free_locked(si, offset + i, SWAP_HAS_CACHE)) {
1428 unlock_cluster_or_swap_info(si, ci);
1429 free_swap_slot(entry);
1430 if (i == size - 1)
1431 return;
1432 lock_cluster_or_swap_info(si, offset);
1433 }
1434 }
1435 unlock_cluster_or_swap_info(si, ci);
1436 }
1437
1438 #ifdef CONFIG_THP_SWAP
split_swap_cluster(swp_entry_t entry)1439 int split_swap_cluster(swp_entry_t entry)
1440 {
1441 struct swap_info_struct *si;
1442 struct swap_cluster_info *ci;
1443 unsigned long offset = swp_offset(entry);
1444
1445 si = _swap_info_get(entry);
1446 if (!si)
1447 return -EBUSY;
1448 ci = lock_cluster(si, offset);
1449 cluster_clear_huge(ci);
1450 unlock_cluster(ci);
1451 return 0;
1452 }
1453 #endif
1454
swp_entry_cmp(const void *ent1, const void *ent2)1455 static int swp_entry_cmp(const void *ent1, const void *ent2)
1456 {
1457 const swp_entry_t *e1 = ent1, *e2 = ent2;
1458
1459 return (int)swp_type(*e1) - (int)swp_type(*e2);
1460 }
1461
swapcache_free_entries(swp_entry_t *entries, int n)1462 void swapcache_free_entries(swp_entry_t *entries, int n)
1463 {
1464 struct swap_info_struct *p, *prev;
1465 int i;
1466
1467 if (n <= 0)
1468 return;
1469
1470 prev = NULL;
1471 p = NULL;
1472
1473 /*
1474 * Sort swap entries by swap device, so each lock is only taken once.
1475 * nr_swapfiles isn't absolutely correct, but the overhead of sort() is
1476 * so low that it isn't necessary to optimize further.
1477 */
1478 if (nr_swapfiles > 1)
1479 sort(entries, n, sizeof(entries[0]), swp_entry_cmp, NULL);
1480 for (i = 0; i < n; ++i) {
1481 p = swap_info_get_cont(entries[i], prev);
1482 if (p)
1483 swap_entry_free(p, entries[i]);
1484 prev = p;
1485 }
1486 if (p)
1487 spin_unlock(&p->lock);
1488 }
1489
1490 /*
1491 * How many references to page are currently swapped out?
1492 * This does not give an exact answer when swap count is continued,
1493 * but does include the high COUNT_CONTINUED flag to allow for that.
1494 */
page_swapcount(struct page *page)1495 int page_swapcount(struct page *page)
1496 {
1497 int count = 0;
1498 struct swap_info_struct *p;
1499 struct swap_cluster_info *ci;
1500 swp_entry_t entry;
1501 unsigned long offset;
1502
1503 entry.val = page_private(page);
1504 p = _swap_info_get(entry);
1505 if (p) {
1506 offset = swp_offset(entry);
1507 ci = lock_cluster_or_swap_info(p, offset);
1508 count = swap_count(p->swap_map[offset]);
1509 unlock_cluster_or_swap_info(p, ci);
1510 }
1511 return count;
1512 }
1513
__swap_count(swp_entry_t entry)1514 int __swap_count(swp_entry_t entry)
1515 {
1516 struct swap_info_struct *si;
1517 pgoff_t offset = swp_offset(entry);
1518 int count = 0;
1519
1520 si = get_swap_device(entry);
1521 if (si) {
1522 count = swap_count(si->swap_map[offset]);
1523 put_swap_device(si);
1524 }
1525 return count;
1526 }
1527
swap_swapcount(struct swap_info_struct *si, swp_entry_t entry)1528 static int swap_swapcount(struct swap_info_struct *si, swp_entry_t entry)
1529 {
1530 int count = 0;
1531 pgoff_t offset = swp_offset(entry);
1532 struct swap_cluster_info *ci;
1533
1534 ci = lock_cluster_or_swap_info(si, offset);
1535 count = swap_count(si->swap_map[offset]);
1536 unlock_cluster_or_swap_info(si, ci);
1537 return count;
1538 }
1539
1540 /*
1541 * How many references to @entry are currently swapped out?
1542 * This does not give an exact answer when swap count is continued,
1543 * but does include the high COUNT_CONTINUED flag to allow for that.
1544 */
__swp_swapcount(swp_entry_t entry)1545 int __swp_swapcount(swp_entry_t entry)
1546 {
1547 int count = 0;
1548 struct swap_info_struct *si;
1549
1550 si = get_swap_device(entry);
1551 if (si) {
1552 count = swap_swapcount(si, entry);
1553 put_swap_device(si);
1554 }
1555 return count;
1556 }
1557
1558 /*
1559 * How many references to @entry are currently swapped out?
1560 * This considers COUNT_CONTINUED so it returns exact answer.
1561 */
swp_swapcount(swp_entry_t entry)1562 int swp_swapcount(swp_entry_t entry)
1563 {
1564 int count, tmp_count, n;
1565 struct swap_info_struct *p;
1566 struct swap_cluster_info *ci;
1567 struct page *page;
1568 pgoff_t offset;
1569 unsigned char *map;
1570
1571 p = _swap_info_get(entry);
1572 if (!p)
1573 return 0;
1574
1575 offset = swp_offset(entry);
1576
1577 ci = lock_cluster_or_swap_info(p, offset);
1578
1579 count = swap_count(p->swap_map[offset]);
1580 if (!(count & COUNT_CONTINUED))
1581 goto out;
1582
1583 count &= ~COUNT_CONTINUED;
1584 n = SWAP_MAP_MAX + 1;
1585
1586 page = vmalloc_to_page(p->swap_map + offset);
1587 offset &= ~PAGE_MASK;
1588 VM_BUG_ON(page_private(page) != SWP_CONTINUED);
1589
1590 do {
1591 page = list_next_entry(page, lru);
1592 map = kmap_atomic(page);
1593 tmp_count = map[offset];
1594 kunmap_atomic(map);
1595
1596 count += (tmp_count & ~COUNT_CONTINUED) * n;
1597 n *= (SWAP_CONT_MAX + 1);
1598 } while (tmp_count & COUNT_CONTINUED);
1599 out:
1600 unlock_cluster_or_swap_info(p, ci);
1601 return count;
1602 }
1603
swap_page_trans_huge_swapped(struct swap_info_struct *si, swp_entry_t entry)1604 static bool swap_page_trans_huge_swapped(struct swap_info_struct *si,
1605 swp_entry_t entry)
1606 {
1607 struct swap_cluster_info *ci;
1608 unsigned char *map = si->swap_map;
1609 unsigned long roffset = swp_offset(entry);
1610 unsigned long offset = round_down(roffset, SWAPFILE_CLUSTER);
1611 int i;
1612 bool ret = false;
1613
1614 ci = lock_cluster_or_swap_info(si, offset);
1615 if (!ci || !cluster_is_huge(ci)) {
1616 if (swap_count(map[roffset]))
1617 ret = true;
1618 goto unlock_out;
1619 }
1620 for (i = 0; i < SWAPFILE_CLUSTER; i++) {
1621 if (swap_count(map[offset + i])) {
1622 ret = true;
1623 break;
1624 }
1625 }
1626 unlock_out:
1627 unlock_cluster_or_swap_info(si, ci);
1628 return ret;
1629 }
1630
page_swapped(struct page *page)1631 static bool page_swapped(struct page *page)
1632 {
1633 swp_entry_t entry;
1634 struct swap_info_struct *si;
1635
1636 if (!IS_ENABLED(CONFIG_THP_SWAP) || likely(!PageTransCompound(page)))
1637 return page_swapcount(page) != 0;
1638
1639 page = compound_head(page);
1640 entry.val = page_private(page);
1641 si = _swap_info_get(entry);
1642 if (si)
1643 return swap_page_trans_huge_swapped(si, entry);
1644 return false;
1645 }
1646
page_trans_huge_map_swapcount(struct page *page, int *total_mapcount, int *total_swapcount)1647 static int page_trans_huge_map_swapcount(struct page *page, int *total_mapcount,
1648 int *total_swapcount)
1649 {
1650 int i, map_swapcount, _total_mapcount, _total_swapcount;
1651 unsigned long offset = 0;
1652 struct swap_info_struct *si;
1653 struct swap_cluster_info *ci = NULL;
1654 unsigned char *map = NULL;
1655 int mapcount, swapcount = 0;
1656
1657 /* hugetlbfs shouldn't call it */
1658 VM_BUG_ON_PAGE(PageHuge(page), page);
1659
1660 if (!IS_ENABLED(CONFIG_THP_SWAP) || likely(!PageTransCompound(page))) {
1661 mapcount = page_trans_huge_mapcount(page, total_mapcount);
1662 if (PageSwapCache(page))
1663 swapcount = page_swapcount(page);
1664 if (total_swapcount)
1665 *total_swapcount = swapcount;
1666 return mapcount + swapcount;
1667 }
1668
1669 page = compound_head(page);
1670
1671 _total_mapcount = _total_swapcount = map_swapcount = 0;
1672 if (PageSwapCache(page)) {
1673 swp_entry_t entry;
1674
1675 entry.val = page_private(page);
1676 si = _swap_info_get(entry);
1677 if (si) {
1678 map = si->swap_map;
1679 offset = swp_offset(entry);
1680 }
1681 }
1682 if (map)
1683 ci = lock_cluster(si, offset);
1684 for (i = 0; i < HPAGE_PMD_NR; i++) {
1685 mapcount = atomic_read(&page[i]._mapcount) + 1;
1686 _total_mapcount += mapcount;
1687 if (map) {
1688 swapcount = swap_count(map[offset + i]);
1689 _total_swapcount += swapcount;
1690 }
1691 map_swapcount = max(map_swapcount, mapcount + swapcount);
1692 }
1693 unlock_cluster(ci);
1694 if (PageDoubleMap(page)) {
1695 map_swapcount -= 1;
1696 _total_mapcount -= HPAGE_PMD_NR;
1697 }
1698 mapcount = compound_mapcount(page);
1699 map_swapcount += mapcount;
1700 _total_mapcount += mapcount;
1701 if (total_mapcount)
1702 *total_mapcount = _total_mapcount;
1703 if (total_swapcount)
1704 *total_swapcount = _total_swapcount;
1705
1706 return map_swapcount;
1707 }
1708
1709 /*
1710 * We can write to an anon page without COW if there are no other references
1711 * to it. And as a side-effect, free up its swap: because the old content
1712 * on disk will never be read, and seeking back there to write new content
1713 * later would only waste time away from clustering.
1714 *
1715 * NOTE: total_map_swapcount should not be relied upon by the caller if
1716 * reuse_swap_page() returns false, but it may be always overwritten
1717 * (see the other implementation for CONFIG_SWAP=n).
1718 */
reuse_swap_page(struct page *page, int *total_map_swapcount)1719 bool reuse_swap_page(struct page *page, int *total_map_swapcount)
1720 {
1721 int count, total_mapcount, total_swapcount;
1722
1723 VM_BUG_ON_PAGE(!PageLocked(page), page);
1724 if (unlikely(PageKsm(page)))
1725 return false;
1726 count = page_trans_huge_map_swapcount(page, &total_mapcount,
1727 &total_swapcount);
1728 if (total_map_swapcount)
1729 *total_map_swapcount = total_mapcount + total_swapcount;
1730 if (count == 1 && PageSwapCache(page) &&
1731 (likely(!PageTransCompound(page)) ||
1732 /* The remaining swap count will be freed soon */
1733 total_swapcount == page_swapcount(page))) {
1734 if (!PageWriteback(page)) {
1735 page = compound_head(page);
1736 delete_from_swap_cache(page);
1737 SetPageDirty(page);
1738 } else {
1739 swp_entry_t entry;
1740 struct swap_info_struct *p;
1741
1742 entry.val = page_private(page);
1743 p = swap_info_get(entry);
1744 if (p->flags & SWP_STABLE_WRITES) {
1745 spin_unlock(&p->lock);
1746 return false;
1747 }
1748 spin_unlock(&p->lock);
1749 }
1750 }
1751
1752 return count <= 1;
1753 }
1754
1755 /*
1756 * If swap is getting full, or if there are no more mappings of this page,
1757 * then try_to_free_swap is called to free its swap space.
1758 */
try_to_free_swap(struct page *page)1759 int try_to_free_swap(struct page *page)
1760 {
1761 VM_BUG_ON_PAGE(!PageLocked(page), page);
1762
1763 if (!PageSwapCache(page))
1764 return 0;
1765 if (PageWriteback(page))
1766 return 0;
1767 if (page_swapped(page))
1768 return 0;
1769
1770 /*
1771 * Once hibernation has begun to create its image of memory,
1772 * there's a danger that one of the calls to try_to_free_swap()
1773 * - most probably a call from __try_to_reclaim_swap() while
1774 * hibernation is allocating its own swap pages for the image,
1775 * but conceivably even a call from memory reclaim - will free
1776 * the swap from a page which has already been recorded in the
1777 * image as a clean swapcache page, and then reuse its swap for
1778 * another page of the image. On waking from hibernation, the
1779 * original page might be freed under memory pressure, then
1780 * later read back in from swap, now with the wrong data.
1781 *
1782 * Hibernation suspends storage while it is writing the image
1783 * to disk so check that here.
1784 */
1785 if (pm_suspended_storage())
1786 return 0;
1787
1788 page = compound_head(page);
1789 delete_from_swap_cache(page);
1790 SetPageDirty(page);
1791 return 1;
1792 }
1793
1794 /*
1795 * Free the swap entry like above, but also try to
1796 * free the page cache entry if it is the last user.
1797 */
free_swap_and_cache(swp_entry_t entry)1798 int free_swap_and_cache(swp_entry_t entry)
1799 {
1800 struct swap_info_struct *p;
1801 unsigned char count;
1802
1803 if (non_swap_entry(entry))
1804 return 1;
1805
1806 p = get_swap_device(entry);
1807 if (p) {
1808 if (WARN_ON(data_race(!p->swap_map[swp_offset(entry)]))) {
1809 put_swap_device(p);
1810 return 0;
1811 }
1812
1813 count = __swap_entry_free(p, entry);
1814 if (count == SWAP_HAS_CACHE &&
1815 !swap_page_trans_huge_swapped(p, entry))
1816 __try_to_reclaim_swap(p, swp_offset(entry),
1817 TTRS_UNMAPPED | TTRS_FULL);
1818 put_swap_device(p);
1819 }
1820 return p != NULL;
1821 }
1822
1823 #ifdef CONFIG_HIBERNATION
1824 /*
1825 * Find the swap type that corresponds to given device (if any).
1826 *
1827 * @offset - number of the PAGE_SIZE-sized block of the device, starting
1828 * from 0, in which the swap header is expected to be located.
1829 *
1830 * This is needed for the suspend to disk (aka swsusp).
1831 */
swap_type_of(dev_t device, sector_t offset)1832 int swap_type_of(dev_t device, sector_t offset)
1833 {
1834 int type;
1835
1836 if (!device)
1837 return -1;
1838
1839 spin_lock(&swap_lock);
1840 for (type = 0; type < nr_swapfiles; type++) {
1841 struct swap_info_struct *sis = swap_info[type];
1842
1843 if (!(sis->flags & SWP_WRITEOK))
1844 continue;
1845
1846 if (device == sis->bdev->bd_dev) {
1847 struct swap_extent *se = first_se(sis);
1848
1849 if (se->start_block == offset) {
1850 spin_unlock(&swap_lock);
1851 return type;
1852 }
1853 }
1854 }
1855 spin_unlock(&swap_lock);
1856 return -ENODEV;
1857 }
1858
find_first_swap(dev_t *device)1859 int find_first_swap(dev_t *device)
1860 {
1861 int type;
1862
1863 spin_lock(&swap_lock);
1864 for (type = 0; type < nr_swapfiles; type++) {
1865 struct swap_info_struct *sis = swap_info[type];
1866
1867 if (!(sis->flags & SWP_WRITEOK))
1868 continue;
1869 *device = sis->bdev->bd_dev;
1870 spin_unlock(&swap_lock);
1871 return type;
1872 }
1873 spin_unlock(&swap_lock);
1874 return -ENODEV;
1875 }
1876
1877 /*
1878 * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
1879 * corresponding to given index in swap_info (swap type).
1880 */
swapdev_block(int type, pgoff_t offset)1881 sector_t swapdev_block(int type, pgoff_t offset)
1882 {
1883 struct block_device *bdev;
1884 struct swap_info_struct *si = swap_type_to_swap_info(type);
1885
1886 if (!si || !(si->flags & SWP_WRITEOK))
1887 return 0;
1888 return map_swap_entry(swp_entry(type, offset), &bdev);
1889 }
1890
1891 /*
1892 * Return either the total number of swap pages of given type, or the number
1893 * of free pages of that type (depending on @free)
1894 *
1895 * This is needed for software suspend
1896 */
count_swap_pages(int type, int free)1897 unsigned int count_swap_pages(int type, int free)
1898 {
1899 unsigned int n = 0;
1900
1901 spin_lock(&swap_lock);
1902 if ((unsigned int)type < nr_swapfiles) {
1903 struct swap_info_struct *sis = swap_info[type];
1904
1905 spin_lock(&sis->lock);
1906 if (sis->flags & SWP_WRITEOK) {
1907 n = sis->pages;
1908 if (free)
1909 n -= sis->inuse_pages;
1910 }
1911 spin_unlock(&sis->lock);
1912 }
1913 spin_unlock(&swap_lock);
1914 return n;
1915 }
1916 #endif /* CONFIG_HIBERNATION */
1917
pte_same_as_swp(pte_t pte, pte_t swp_pte)1918 static inline int pte_same_as_swp(pte_t pte, pte_t swp_pte)
1919 {
1920 return pte_same(pte_swp_clear_flags(pte), swp_pte);
1921 }
1922
1923 /*
1924 * No need to decide whether this PTE shares the swap entry with others,
1925 * just let do_wp_page work it out if a write is requested later - to
1926 * force COW, vm_page_prot omits write permission from any private vma.
1927 */
unuse_pte(struct vm_area_struct *vma, pmd_t *pmd, unsigned long addr, swp_entry_t entry, struct page *page)1928 static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd,
1929 unsigned long addr, swp_entry_t entry, struct page *page)
1930 {
1931 struct page *swapcache;
1932 spinlock_t *ptl;
1933 pte_t *pte;
1934 int ret = 1;
1935
1936 swapcache = page;
1937 page = ksm_might_need_to_copy(page, vma, addr);
1938 if (unlikely(!page))
1939 return -ENOMEM;
1940
1941 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
1942 if (unlikely(!pte_same_as_swp(*pte, swp_entry_to_pte(entry)))) {
1943 ret = 0;
1944 goto out;
1945 }
1946
1947 dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
1948 inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
1949 get_page(page);
1950 set_pte_at(vma->vm_mm, addr, pte,
1951 pte_mkold(mk_pte(page, vma->vm_page_prot)));
1952 if (page == swapcache) {
1953 page_add_anon_rmap(page, vma, addr, false);
1954 } else { /* ksm created a completely new copy */
1955 page_add_new_anon_rmap(page, vma, addr, false);
1956 lru_cache_add_inactive_or_unevictable(page, vma);
1957 }
1958 swap_free(entry);
1959 out:
1960 pte_unmap_unlock(pte, ptl);
1961 if (page != swapcache) {
1962 unlock_page(page);
1963 put_page(page);
1964 }
1965 return ret;
1966 }
1967
unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd, unsigned long addr, unsigned long end, unsigned int type, bool frontswap, unsigned long *fs_pages_to_unuse)1968 static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
1969 unsigned long addr, unsigned long end,
1970 unsigned int type, bool frontswap,
1971 unsigned long *fs_pages_to_unuse)
1972 {
1973 struct page *page;
1974 swp_entry_t entry;
1975 pte_t *pte;
1976 struct swap_info_struct *si;
1977 unsigned long offset;
1978 int ret = 0;
1979 volatile unsigned char *swap_map;
1980
1981 si = swap_info[type];
1982 pte = pte_offset_map(pmd, addr);
1983 do {
1984 struct vm_fault vmf;
1985
1986 if (!is_swap_pte(*pte))
1987 continue;
1988
1989 entry = pte_to_swp_entry(*pte);
1990 if (swp_type(entry) != type)
1991 continue;
1992
1993 offset = swp_offset(entry);
1994 if (frontswap && !frontswap_test(si, offset))
1995 continue;
1996
1997 pte_unmap(pte);
1998 swap_map = &si->swap_map[offset];
1999 page = lookup_swap_cache(entry, vma, addr);
2000 if (!page) {
2001 vmf.vma = vma;
2002 vmf.address = addr;
2003 vmf.pmd = pmd;
2004 page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
2005 &vmf);
2006 }
2007 if (!page) {
2008 if (*swap_map == 0 || *swap_map == SWAP_MAP_BAD)
2009 goto try_next;
2010 return -ENOMEM;
2011 }
2012
2013 lock_page(page);
2014 wait_on_page_writeback(page);
2015 ret = unuse_pte(vma, pmd, addr, entry, page);
2016 if (ret < 0) {
2017 unlock_page(page);
2018 put_page(page);
2019 goto out;
2020 }
2021
2022 try_to_free_swap(page);
2023 unlock_page(page);
2024 put_page(page);
2025
2026 if (*fs_pages_to_unuse && !--(*fs_pages_to_unuse)) {
2027 ret = FRONTSWAP_PAGES_UNUSED;
2028 goto out;
2029 }
2030 try_next:
2031 pte = pte_offset_map(pmd, addr);
2032 } while (pte++, addr += PAGE_SIZE, addr != end);
2033 pte_unmap(pte - 1);
2034
2035 ret = 0;
2036 out:
2037 return ret;
2038 }
2039
unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud, unsigned long addr, unsigned long end, unsigned int type, bool frontswap, unsigned long *fs_pages_to_unuse)2040 static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
2041 unsigned long addr, unsigned long end,
2042 unsigned int type, bool frontswap,
2043 unsigned long *fs_pages_to_unuse)
2044 {
2045 pmd_t *pmd;
2046 unsigned long next;
2047 int ret;
2048
2049 pmd = pmd_offset(pud, addr);
2050 do {
2051 cond_resched();
2052 next = pmd_addr_end(addr, end);
2053 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
2054 continue;
2055 ret = unuse_pte_range(vma, pmd, addr, next, type,
2056 frontswap, fs_pages_to_unuse);
2057 if (ret)
2058 return ret;
2059 } while (pmd++, addr = next, addr != end);
2060 return 0;
2061 }
2062
unuse_pud_range(struct vm_area_struct *vma, p4d_t *p4d, unsigned long addr, unsigned long end, unsigned int type, bool frontswap, unsigned long *fs_pages_to_unuse)2063 static inline int unuse_pud_range(struct vm_area_struct *vma, p4d_t *p4d,
2064 unsigned long addr, unsigned long end,
2065 unsigned int type, bool frontswap,
2066 unsigned long *fs_pages_to_unuse)
2067 {
2068 pud_t *pud;
2069 unsigned long next;
2070 int ret;
2071
2072 pud = pud_offset(p4d, addr);
2073 do {
2074 next = pud_addr_end(addr, end);
2075 if (pud_none_or_clear_bad(pud))
2076 continue;
2077 ret = unuse_pmd_range(vma, pud, addr, next, type,
2078 frontswap, fs_pages_to_unuse);
2079 if (ret)
2080 return ret;
2081 } while (pud++, addr = next, addr != end);
2082 return 0;
2083 }
2084
unuse_p4d_range(struct vm_area_struct *vma, pgd_t *pgd, unsigned long addr, unsigned long end, unsigned int type, bool frontswap, unsigned long *fs_pages_to_unuse)2085 static inline int unuse_p4d_range(struct vm_area_struct *vma, pgd_t *pgd,
2086 unsigned long addr, unsigned long end,
2087 unsigned int type, bool frontswap,
2088 unsigned long *fs_pages_to_unuse)
2089 {
2090 p4d_t *p4d;
2091 unsigned long next;
2092 int ret;
2093
2094 p4d = p4d_offset(pgd, addr);
2095 do {
2096 next = p4d_addr_end(addr, end);
2097 if (p4d_none_or_clear_bad(p4d))
2098 continue;
2099 ret = unuse_pud_range(vma, p4d, addr, next, type,
2100 frontswap, fs_pages_to_unuse);
2101 if (ret)
2102 return ret;
2103 } while (p4d++, addr = next, addr != end);
2104 return 0;
2105 }
2106
unuse_vma(struct vm_area_struct *vma, unsigned int type, bool frontswap, unsigned long *fs_pages_to_unuse)2107 static int unuse_vma(struct vm_area_struct *vma, unsigned int type,
2108 bool frontswap, unsigned long *fs_pages_to_unuse)
2109 {
2110 pgd_t *pgd;
2111 unsigned long addr, end, next;
2112 int ret;
2113
2114 addr = vma->vm_start;
2115 end = vma->vm_end;
2116
2117 pgd = pgd_offset(vma->vm_mm, addr);
2118 do {
2119 next = pgd_addr_end(addr, end);
2120 if (pgd_none_or_clear_bad(pgd))
2121 continue;
2122 ret = unuse_p4d_range(vma, pgd, addr, next, type,
2123 frontswap, fs_pages_to_unuse);
2124 if (ret)
2125 return ret;
2126 } while (pgd++, addr = next, addr != end);
2127 return 0;
2128 }
2129
unuse_mm(struct mm_struct *mm, unsigned int type, bool frontswap, unsigned long *fs_pages_to_unuse)2130 static int unuse_mm(struct mm_struct *mm, unsigned int type,
2131 bool frontswap, unsigned long *fs_pages_to_unuse)
2132 {
2133 struct vm_area_struct *vma;
2134 int ret = 0;
2135
2136 mmap_read_lock(mm);
2137 for (vma = mm->mmap; vma; vma = vma->vm_next) {
2138 if (vma->anon_vma) {
2139 ret = unuse_vma(vma, type, frontswap,
2140 fs_pages_to_unuse);
2141 if (ret)
2142 break;
2143 }
2144 cond_resched();
2145 }
2146 mmap_read_unlock(mm);
2147 return ret;
2148 }
2149
2150 /*
2151 * Scan swap_map (or frontswap_map if frontswap parameter is true)
2152 * from current position to next entry still in use. Return 0
2153 * if there are no inuse entries after prev till end of the map.
2154 */
find_next_to_unuse(struct swap_info_struct *si, unsigned int prev, bool frontswap)2155 static unsigned int find_next_to_unuse(struct swap_info_struct *si,
2156 unsigned int prev, bool frontswap)
2157 {
2158 unsigned int i;
2159 unsigned char count;
2160
2161 /*
2162 * No need for swap_lock here: we're just looking
2163 * for whether an entry is in use, not modifying it; false
2164 * hits are okay, and sys_swapoff() has already prevented new
2165 * allocations from this area (while holding swap_lock).
2166 */
2167 for (i = prev + 1; i < si->max; i++) {
2168 count = READ_ONCE(si->swap_map[i]);
2169 if (count && swap_count(count) != SWAP_MAP_BAD)
2170 if (!frontswap || frontswap_test(si, i))
2171 break;
2172 if ((i % LATENCY_LIMIT) == 0)
2173 cond_resched();
2174 }
2175
2176 if (i == si->max)
2177 i = 0;
2178
2179 return i;
2180 }
2181
2182 /*
2183 * If the boolean frontswap is true, only unuse pages_to_unuse pages;
2184 * pages_to_unuse==0 means all pages; ignored if frontswap is false
2185 */
try_to_unuse(unsigned int type, bool frontswap, unsigned long pages_to_unuse)2186 int try_to_unuse(unsigned int type, bool frontswap,
2187 unsigned long pages_to_unuse)
2188 {
2189 struct mm_struct *prev_mm;
2190 struct mm_struct *mm;
2191 struct list_head *p;
2192 int retval = 0;
2193 struct swap_info_struct *si = swap_info[type];
2194 struct page *page;
2195 swp_entry_t entry;
2196 unsigned int i;
2197
2198 if (!READ_ONCE(si->inuse_pages))
2199 return 0;
2200
2201 if (!frontswap)
2202 pages_to_unuse = 0;
2203
2204 retry:
2205 retval = shmem_unuse(type, frontswap, &pages_to_unuse);
2206 if (retval)
2207 goto out;
2208
2209 prev_mm = &init_mm;
2210 mmget(prev_mm);
2211
2212 spin_lock(&mmlist_lock);
2213 p = &init_mm.mmlist;
2214 while (READ_ONCE(si->inuse_pages) &&
2215 !signal_pending(current) &&
2216 (p = p->next) != &init_mm.mmlist) {
2217
2218 mm = list_entry(p, struct mm_struct, mmlist);
2219 if (!mmget_not_zero(mm))
2220 continue;
2221 spin_unlock(&mmlist_lock);
2222 mmput(prev_mm);
2223 prev_mm = mm;
2224 retval = unuse_mm(mm, type, frontswap, &pages_to_unuse);
2225
2226 if (retval) {
2227 mmput(prev_mm);
2228 goto out;
2229 }
2230
2231 /*
2232 * Make sure that we aren't completely killing
2233 * interactive performance.
2234 */
2235 cond_resched();
2236 spin_lock(&mmlist_lock);
2237 }
2238 spin_unlock(&mmlist_lock);
2239
2240 mmput(prev_mm);
2241
2242 i = 0;
2243 while (READ_ONCE(si->inuse_pages) &&
2244 !signal_pending(current) &&
2245 (i = find_next_to_unuse(si, i, frontswap)) != 0) {
2246
2247 entry = swp_entry(type, i);
2248 page = find_get_page(swap_address_space(entry), i);
2249 if (!page)
2250 continue;
2251
2252 /*
2253 * It is conceivable that a racing task removed this page from
2254 * swap cache just before we acquired the page lock. The page
2255 * might even be back in swap cache on another swap area. But
2256 * that is okay, try_to_free_swap() only removes stale pages.
2257 */
2258 lock_page(page);
2259 wait_on_page_writeback(page);
2260 try_to_free_swap(page);
2261 unlock_page(page);
2262 put_page(page);
2263
2264 /*
2265 * For frontswap, we just need to unuse pages_to_unuse, if
2266 * it was specified. Need not check frontswap again here as
2267 * we already zeroed out pages_to_unuse if not frontswap.
2268 */
2269 if (pages_to_unuse && --pages_to_unuse == 0)
2270 goto out;
2271 }
2272
2273 /*
2274 * Lets check again to see if there are still swap entries in the map.
2275 * If yes, we would need to do retry the unuse logic again.
2276 * Under global memory pressure, swap entries can be reinserted back
2277 * into process space after the mmlist loop above passes over them.
2278 *
2279 * Limit the number of retries? No: when mmget_not_zero() above fails,
2280 * that mm is likely to be freeing swap from exit_mmap(), which proceeds
2281 * at its own independent pace; and even shmem_writepage() could have
2282 * been preempted after get_swap_page(), temporarily hiding that swap.
2283 * It's easy and robust (though cpu-intensive) just to keep retrying.
2284 */
2285 if (READ_ONCE(si->inuse_pages)) {
2286 if (!signal_pending(current))
2287 goto retry;
2288 retval = -EINTR;
2289 }
2290 out:
2291 return (retval == FRONTSWAP_PAGES_UNUSED) ? 0 : retval;
2292 }
2293
2294 /*
2295 * After a successful try_to_unuse, if no swap is now in use, we know
2296 * we can empty the mmlist. swap_lock must be held on entry and exit.
2297 * Note that mmlist_lock nests inside swap_lock, and an mm must be
2298 * added to the mmlist just after page_duplicate - before would be racy.
2299 */
drain_mmlist(void)2300 static void drain_mmlist(void)
2301 {
2302 struct list_head *p, *next;
2303 unsigned int type;
2304
2305 for (type = 0; type < nr_swapfiles; type++)
2306 if (swap_info[type]->inuse_pages)
2307 return;
2308 spin_lock(&mmlist_lock);
2309 list_for_each_safe(p, next, &init_mm.mmlist)
2310 list_del_init(p);
2311 spin_unlock(&mmlist_lock);
2312 }
2313
2314 /*
2315 * Use this swapdev's extent info to locate the (PAGE_SIZE) block which
2316 * corresponds to page offset for the specified swap entry.
2317 * Note that the type of this function is sector_t, but it returns page offset
2318 * into the bdev, not sector offset.
2319 */
map_swap_entry(swp_entry_t entry, struct block_device **bdev)2320 static sector_t map_swap_entry(swp_entry_t entry, struct block_device **bdev)
2321 {
2322 struct swap_info_struct *sis;
2323 struct swap_extent *se;
2324 pgoff_t offset;
2325
2326 sis = swp_swap_info(entry);
2327 *bdev = sis->bdev;
2328
2329 offset = swp_offset(entry);
2330 se = offset_to_swap_extent(sis, offset);
2331 return se->start_block + (offset - se->start_page);
2332 }
2333
2334 /*
2335 * Returns the page offset into bdev for the specified page's swap entry.
2336 */
map_swap_page(struct page *page, struct block_device **bdev)2337 sector_t map_swap_page(struct page *page, struct block_device **bdev)
2338 {
2339 swp_entry_t entry;
2340 entry.val = page_private(page);
2341 return map_swap_entry(entry, bdev);
2342 }
2343
2344 /*
2345 * Free all of a swapdev's extent information
2346 */
destroy_swap_extents(struct swap_info_struct *sis)2347 static void destroy_swap_extents(struct swap_info_struct *sis)
2348 {
2349 while (!RB_EMPTY_ROOT(&sis->swap_extent_root)) {
2350 struct rb_node *rb = sis->swap_extent_root.rb_node;
2351 struct swap_extent *se = rb_entry(rb, struct swap_extent, rb_node);
2352
2353 rb_erase(rb, &sis->swap_extent_root);
2354 kfree(se);
2355 }
2356
2357 if (sis->flags & SWP_ACTIVATED) {
2358 struct file *swap_file = sis->swap_file;
2359 struct address_space *mapping = swap_file->f_mapping;
2360
2361 sis->flags &= ~SWP_ACTIVATED;
2362 if (mapping->a_ops->swap_deactivate)
2363 mapping->a_ops->swap_deactivate(swap_file);
2364 }
2365 }
2366
2367 /*
2368 * Add a block range (and the corresponding page range) into this swapdev's
2369 * extent tree.
2370 *
2371 * This function rather assumes that it is called in ascending page order.
2372 */
2373 int
add_swap_extent(struct swap_info_struct *sis, unsigned long start_page, unsigned long nr_pages, sector_t start_block)2374 add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
2375 unsigned long nr_pages, sector_t start_block)
2376 {
2377 struct rb_node **link = &sis->swap_extent_root.rb_node, *parent = NULL;
2378 struct swap_extent *se;
2379 struct swap_extent *new_se;
2380
2381 /*
2382 * place the new node at the right most since the
2383 * function is called in ascending page order.
2384 */
2385 while (*link) {
2386 parent = *link;
2387 link = &parent->rb_right;
2388 }
2389
2390 if (parent) {
2391 se = rb_entry(parent, struct swap_extent, rb_node);
2392 BUG_ON(se->start_page + se->nr_pages != start_page);
2393 if (se->start_block + se->nr_pages == start_block) {
2394 /* Merge it */
2395 se->nr_pages += nr_pages;
2396 return 0;
2397 }
2398 }
2399
2400 /* No merge, insert a new extent. */
2401 new_se = kmalloc(sizeof(*se), GFP_KERNEL);
2402 if (new_se == NULL)
2403 return -ENOMEM;
2404 new_se->start_page = start_page;
2405 new_se->nr_pages = nr_pages;
2406 new_se->start_block = start_block;
2407
2408 rb_link_node(&new_se->rb_node, parent, link);
2409 rb_insert_color(&new_se->rb_node, &sis->swap_extent_root);
2410 return 1;
2411 }
2412 EXPORT_SYMBOL_GPL(add_swap_extent);
2413
2414 /*
2415 * A `swap extent' is a simple thing which maps a contiguous range of pages
2416 * onto a contiguous range of disk blocks. An ordered list of swap extents
2417 * is built at swapon time and is then used at swap_writepage/swap_readpage
2418 * time for locating where on disk a page belongs.
2419 *
2420 * If the swapfile is an S_ISBLK block device, a single extent is installed.
2421 * This is done so that the main operating code can treat S_ISBLK and S_ISREG
2422 * swap files identically.
2423 *
2424 * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
2425 * extent list operates in PAGE_SIZE disk blocks. Both S_ISREG and S_ISBLK
2426 * swapfiles are handled *identically* after swapon time.
2427 *
2428 * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
2429 * and will parse them into an ordered extent list, in PAGE_SIZE chunks. If
2430 * some stray blocks are found which do not fall within the PAGE_SIZE alignment
2431 * requirements, they are simply tossed out - we will never use those blocks
2432 * for swapping.
2433 *
2434 * For all swap devices we set S_SWAPFILE across the life of the swapon. This
2435 * prevents users from writing to the swap device, which will corrupt memory.
2436 *
2437 * The amount of disk space which a single swap extent represents varies.
2438 * Typically it is in the 1-4 megabyte range. So we can have hundreds of
2439 * extents in the list. To avoid much list walking, we cache the previous
2440 * search location in `curr_swap_extent', and start new searches from there.
2441 * This is extremely effective. The average number of iterations in
2442 * map_swap_page() has been measured at about 0.3 per page. - akpm.
2443 */
setup_swap_extents(struct swap_info_struct *sis, sector_t *span)2444 static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
2445 {
2446 struct file *swap_file = sis->swap_file;
2447 struct address_space *mapping = swap_file->f_mapping;
2448 struct inode *inode = mapping->host;
2449 int ret;
2450
2451 if (S_ISBLK(inode->i_mode)) {
2452 ret = add_swap_extent(sis, 0, sis->max, 0);
2453 *span = sis->pages;
2454 return ret;
2455 }
2456
2457 if (mapping->a_ops->swap_activate) {
2458 ret = mapping->a_ops->swap_activate(sis, swap_file, span);
2459 if (ret >= 0)
2460 sis->flags |= SWP_ACTIVATED;
2461 if (!ret) {
2462 sis->flags |= SWP_FS_OPS;
2463 ret = add_swap_extent(sis, 0, sis->max, 0);
2464 *span = sis->pages;
2465 }
2466 return ret;
2467 }
2468
2469 return generic_swapfile_activate(sis, swap_file, span);
2470 }
2471
swap_node(struct swap_info_struct *p)2472 static int swap_node(struct swap_info_struct *p)
2473 {
2474 struct block_device *bdev;
2475
2476 if (p->bdev)
2477 bdev = p->bdev;
2478 else
2479 bdev = p->swap_file->f_inode->i_sb->s_bdev;
2480
2481 return bdev ? bdev->bd_disk->node_id : NUMA_NO_NODE;
2482 }
2483
setup_swap_info(struct swap_info_struct *p, int prio, unsigned char *swap_map, struct swap_cluster_info *cluster_info)2484 static void setup_swap_info(struct swap_info_struct *p, int prio,
2485 unsigned char *swap_map,
2486 struct swap_cluster_info *cluster_info)
2487 {
2488 int i;
2489
2490 if (prio >= 0)
2491 p->prio = prio;
2492 else
2493 p->prio = --least_priority;
2494 /*
2495 * the plist prio is negated because plist ordering is
2496 * low-to-high, while swap ordering is high-to-low
2497 */
2498 p->list.prio = -p->prio;
2499 for_each_node(i) {
2500 if (p->prio >= 0)
2501 p->avail_lists[i].prio = -p->prio;
2502 else {
2503 if (swap_node(p) == i)
2504 p->avail_lists[i].prio = 1;
2505 else
2506 p->avail_lists[i].prio = -p->prio;
2507 }
2508 }
2509 p->swap_map = swap_map;
2510 p->cluster_info = cluster_info;
2511 }
2512
_enable_swap_info(struct swap_info_struct *p)2513 static void _enable_swap_info(struct swap_info_struct *p)
2514 {
2515 p->flags |= SWP_WRITEOK | SWP_VALID;
2516 atomic_long_add(p->pages, &nr_swap_pages);
2517 total_swap_pages += p->pages;
2518
2519 assert_spin_locked(&swap_lock);
2520 /*
2521 * both lists are plists, and thus priority ordered.
2522 * swap_active_head needs to be priority ordered for swapoff(),
2523 * which on removal of any swap_info_struct with an auto-assigned
2524 * (i.e. negative) priority increments the auto-assigned priority
2525 * of any lower-priority swap_info_structs.
2526 * swap_avail_head needs to be priority ordered for get_swap_page(),
2527 * which allocates swap pages from the highest available priority
2528 * swap_info_struct.
2529 */
2530 plist_add(&p->list, &swap_active_head);
2531 add_to_avail_list(p);
2532 }
2533
enable_swap_info(struct swap_info_struct *p, int prio, unsigned char *swap_map, struct swap_cluster_info *cluster_info, unsigned long *frontswap_map)2534 static void enable_swap_info(struct swap_info_struct *p, int prio,
2535 unsigned char *swap_map,
2536 struct swap_cluster_info *cluster_info,
2537 unsigned long *frontswap_map)
2538 {
2539 frontswap_init(p->type, frontswap_map);
2540 spin_lock(&swap_lock);
2541 spin_lock(&p->lock);
2542 setup_swap_info(p, prio, swap_map, cluster_info);
2543 spin_unlock(&p->lock);
2544 spin_unlock(&swap_lock);
2545 /*
2546 * Guarantee swap_map, cluster_info, etc. fields are valid
2547 * between get/put_swap_device() if SWP_VALID bit is set
2548 */
2549 synchronize_rcu();
2550 spin_lock(&swap_lock);
2551 spin_lock(&p->lock);
2552 _enable_swap_info(p);
2553 spin_unlock(&p->lock);
2554 spin_unlock(&swap_lock);
2555 }
2556
reinsert_swap_info(struct swap_info_struct *p)2557 static void reinsert_swap_info(struct swap_info_struct *p)
2558 {
2559 spin_lock(&swap_lock);
2560 spin_lock(&p->lock);
2561 setup_swap_info(p, p->prio, p->swap_map, p->cluster_info);
2562 _enable_swap_info(p);
2563 spin_unlock(&p->lock);
2564 spin_unlock(&swap_lock);
2565 }
2566
has_usable_swap(void)2567 bool has_usable_swap(void)
2568 {
2569 bool ret = true;
2570
2571 spin_lock(&swap_lock);
2572 if (plist_head_empty(&swap_active_head))
2573 ret = false;
2574 spin_unlock(&swap_lock);
2575 return ret;
2576 }
2577
SYSCALL_DEFINE1(swapoff, const char __user *, specialfile)2578 SYSCALL_DEFINE1(swapoff, const char __user *, specialfile)
2579 {
2580 struct swap_info_struct *p = NULL;
2581 unsigned char *swap_map;
2582 struct swap_cluster_info *cluster_info;
2583 unsigned long *frontswap_map;
2584 struct file *swap_file, *victim;
2585 struct address_space *mapping;
2586 struct inode *inode;
2587 struct filename *pathname;
2588 int err, found = 0;
2589 unsigned int old_block_size;
2590
2591 if (!capable(CAP_SYS_ADMIN))
2592 return -EPERM;
2593
2594 BUG_ON(!current->mm);
2595
2596 pathname = getname(specialfile);
2597 if (IS_ERR(pathname))
2598 return PTR_ERR(pathname);
2599
2600 victim = file_open_name(pathname, O_RDWR|O_LARGEFILE, 0);
2601 err = PTR_ERR(victim);
2602 if (IS_ERR(victim))
2603 goto out;
2604
2605 mapping = victim->f_mapping;
2606 spin_lock(&swap_lock);
2607 plist_for_each_entry(p, &swap_active_head, list) {
2608 if (p->flags & SWP_WRITEOK) {
2609 if (p->swap_file->f_mapping == mapping) {
2610 found = 1;
2611 break;
2612 }
2613 }
2614 }
2615 if (!found) {
2616 err = -EINVAL;
2617 spin_unlock(&swap_lock);
2618 goto out_dput;
2619 }
2620 if (!security_vm_enough_memory_mm(current->mm, p->pages))
2621 vm_unacct_memory(p->pages);
2622 else {
2623 err = -ENOMEM;
2624 spin_unlock(&swap_lock);
2625 goto out_dput;
2626 }
2627 spin_lock(&p->lock);
2628 del_from_avail_list(p);
2629 if (p->prio < 0) {
2630 struct swap_info_struct *si = p;
2631 int nid;
2632
2633 plist_for_each_entry_continue(si, &swap_active_head, list) {
2634 si->prio++;
2635 si->list.prio--;
2636 for_each_node(nid) {
2637 if (si->avail_lists[nid].prio != 1)
2638 si->avail_lists[nid].prio--;
2639 }
2640 }
2641 least_priority++;
2642 }
2643 plist_del(&p->list, &swap_active_head);
2644 atomic_long_sub(p->pages, &nr_swap_pages);
2645 total_swap_pages -= p->pages;
2646 p->flags &= ~SWP_WRITEOK;
2647 spin_unlock(&p->lock);
2648 spin_unlock(&swap_lock);
2649
2650 disable_swap_slots_cache_lock();
2651
2652 set_current_oom_origin();
2653 err = try_to_unuse(p->type, false, 0); /* force unuse all pages */
2654 clear_current_oom_origin();
2655
2656 if (err) {
2657 /* re-insert swap space back into swap_list */
2658 reinsert_swap_info(p);
2659 reenable_swap_slots_cache_unlock();
2660 goto out_dput;
2661 }
2662
2663 reenable_swap_slots_cache_unlock();
2664
2665 spin_lock(&swap_lock);
2666 spin_lock(&p->lock);
2667 p->flags &= ~SWP_VALID; /* mark swap device as invalid */
2668 spin_unlock(&p->lock);
2669 spin_unlock(&swap_lock);
2670 /*
2671 * wait for swap operations protected by get/put_swap_device()
2672 * to complete
2673 */
2674 synchronize_rcu();
2675
2676 flush_work(&p->discard_work);
2677
2678 destroy_swap_extents(p);
2679 if (p->flags & SWP_CONTINUED)
2680 free_swap_count_continuations(p);
2681
2682 if (!p->bdev || !blk_queue_nonrot(bdev_get_queue(p->bdev)))
2683 atomic_dec(&nr_rotate_swap);
2684
2685 mutex_lock(&swapon_mutex);
2686 spin_lock(&swap_lock);
2687 spin_lock(&p->lock);
2688 drain_mmlist();
2689
2690 /* wait for anyone still in scan_swap_map */
2691 p->highest_bit = 0; /* cuts scans short */
2692 while (p->flags >= SWP_SCANNING) {
2693 spin_unlock(&p->lock);
2694 spin_unlock(&swap_lock);
2695 schedule_timeout_uninterruptible(1);
2696 spin_lock(&swap_lock);
2697 spin_lock(&p->lock);
2698 }
2699
2700 swap_file = p->swap_file;
2701 old_block_size = p->old_block_size;
2702 p->swap_file = NULL;
2703 p->max = 0;
2704 swap_map = p->swap_map;
2705 p->swap_map = NULL;
2706 cluster_info = p->cluster_info;
2707 p->cluster_info = NULL;
2708 frontswap_map = frontswap_map_get(p);
2709 spin_unlock(&p->lock);
2710 spin_unlock(&swap_lock);
2711 arch_swap_invalidate_area(p->type);
2712 frontswap_invalidate_area(p->type);
2713 frontswap_map_set(p, NULL);
2714 mutex_unlock(&swapon_mutex);
2715 free_percpu(p->percpu_cluster);
2716 p->percpu_cluster = NULL;
2717 free_percpu(p->cluster_next_cpu);
2718 p->cluster_next_cpu = NULL;
2719 vfree(swap_map);
2720 kvfree(cluster_info);
2721 kvfree(frontswap_map);
2722 /* Destroy swap account information */
2723 swap_cgroup_swapoff(p->type);
2724 exit_swap_address_space(p->type);
2725
2726 inode = mapping->host;
2727 if (S_ISBLK(inode->i_mode)) {
2728 struct block_device *bdev = I_BDEV(inode);
2729
2730 set_blocksize(bdev, old_block_size);
2731 blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
2732 }
2733
2734 inode_lock(inode);
2735 inode->i_flags &= ~S_SWAPFILE;
2736 inode_unlock(inode);
2737 filp_close(swap_file, NULL);
2738
2739 /*
2740 * Clear the SWP_USED flag after all resources are freed so that swapon
2741 * can reuse this swap_info in alloc_swap_info() safely. It is ok to
2742 * not hold p->lock after we cleared its SWP_WRITEOK.
2743 */
2744 spin_lock(&swap_lock);
2745 p->flags = 0;
2746 spin_unlock(&swap_lock);
2747
2748 err = 0;
2749 atomic_inc(&proc_poll_event);
2750 wake_up_interruptible(&proc_poll_wait);
2751
2752 out_dput:
2753 filp_close(victim, NULL);
2754 out:
2755 putname(pathname);
2756 return err;
2757 }
2758
2759 #ifdef CONFIG_PROC_FS
swaps_poll(struct file *file, poll_table *wait)2760 static __poll_t swaps_poll(struct file *file, poll_table *wait)
2761 {
2762 struct seq_file *seq = file->private_data;
2763
2764 poll_wait(file, &proc_poll_wait, wait);
2765
2766 if (seq->poll_event != atomic_read(&proc_poll_event)) {
2767 seq->poll_event = atomic_read(&proc_poll_event);
2768 return EPOLLIN | EPOLLRDNORM | EPOLLERR | EPOLLPRI;
2769 }
2770
2771 return EPOLLIN | EPOLLRDNORM;
2772 }
2773
2774 /* iterator */
swap_start(struct seq_file *swap, loff_t *pos)2775 static void *swap_start(struct seq_file *swap, loff_t *pos)
2776 {
2777 struct swap_info_struct *si;
2778 int type;
2779 loff_t l = *pos;
2780
2781 mutex_lock(&swapon_mutex);
2782
2783 if (!l)
2784 return SEQ_START_TOKEN;
2785
2786 for (type = 0; (si = swap_type_to_swap_info(type)); type++) {
2787 if (!(si->flags & SWP_USED) || !si->swap_map)
2788 continue;
2789 if (!--l)
2790 return si;
2791 }
2792
2793 return NULL;
2794 }
2795
swap_next(struct seq_file *swap, void *v, loff_t *pos)2796 static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
2797 {
2798 struct swap_info_struct *si = v;
2799 int type;
2800
2801 if (v == SEQ_START_TOKEN)
2802 type = 0;
2803 else
2804 type = si->type + 1;
2805
2806 ++(*pos);
2807 for (; (si = swap_type_to_swap_info(type)); type++) {
2808 if (!(si->flags & SWP_USED) || !si->swap_map)
2809 continue;
2810 return si;
2811 }
2812
2813 return NULL;
2814 }
2815
swap_stop(struct seq_file *swap, void *v)2816 static void swap_stop(struct seq_file *swap, void *v)
2817 {
2818 mutex_unlock(&swapon_mutex);
2819 }
2820
swap_show(struct seq_file *swap, void *v)2821 static int swap_show(struct seq_file *swap, void *v)
2822 {
2823 struct swap_info_struct *si = v;
2824 struct file *file;
2825 int len;
2826 unsigned int bytes, inuse;
2827
2828 if (si == SEQ_START_TOKEN) {
2829 seq_puts(swap,"Filename\t\t\t\tType\t\tSize\t\tUsed\t\tPriority\n");
2830 return 0;
2831 }
2832
2833 bytes = si->pages << (PAGE_SHIFT - 10);
2834 inuse = si->inuse_pages << (PAGE_SHIFT - 10);
2835
2836 file = si->swap_file;
2837 len = seq_file_path(swap, file, " \t\n\\");
2838 seq_printf(swap, "%*s%s\t%u\t%s%u\t%s%d\n",
2839 len < 40 ? 40 - len : 1, " ",
2840 S_ISBLK(file_inode(file)->i_mode) ?
2841 "partition" : "file\t",
2842 bytes, bytes < 10000000 ? "\t" : "",
2843 inuse, inuse < 10000000 ? "\t" : "",
2844 si->prio);
2845 return 0;
2846 }
2847
2848 static const struct seq_operations swaps_op = {
2849 .start = swap_start,
2850 .next = swap_next,
2851 .stop = swap_stop,
2852 .show = swap_show
2853 };
2854
swaps_open(struct inode *inode, struct file *file)2855 static int swaps_open(struct inode *inode, struct file *file)
2856 {
2857 struct seq_file *seq;
2858 int ret;
2859
2860 ret = seq_open(file, &swaps_op);
2861 if (ret)
2862 return ret;
2863
2864 seq = file->private_data;
2865 seq->poll_event = atomic_read(&proc_poll_event);
2866 return 0;
2867 }
2868
2869 static const struct proc_ops swaps_proc_ops = {
2870 .proc_flags = PROC_ENTRY_PERMANENT,
2871 .proc_open = swaps_open,
2872 .proc_read = seq_read,
2873 .proc_lseek = seq_lseek,
2874 .proc_release = seq_release,
2875 .proc_poll = swaps_poll,
2876 };
2877
procswaps_init(void)2878 static int __init procswaps_init(void)
2879 {
2880 proc_create("swaps", 0, NULL, &swaps_proc_ops);
2881 return 0;
2882 }
2883 __initcall(procswaps_init);
2884 #endif /* CONFIG_PROC_FS */
2885
2886 #ifdef MAX_SWAPFILES_CHECK
max_swapfiles_check(void)2887 static int __init max_swapfiles_check(void)
2888 {
2889 MAX_SWAPFILES_CHECK();
2890 return 0;
2891 }
2892 late_initcall(max_swapfiles_check);
2893 #endif
2894
alloc_swap_info(void)2895 static struct swap_info_struct *alloc_swap_info(void)
2896 {
2897 struct swap_info_struct *p;
2898 struct swap_info_struct *defer = NULL;
2899 unsigned int type;
2900 int i;
2901
2902 p = kvzalloc(struct_size(p, avail_lists, nr_node_ids), GFP_KERNEL);
2903 if (!p)
2904 return ERR_PTR(-ENOMEM);
2905
2906 spin_lock(&swap_lock);
2907 for (type = 0; type < nr_swapfiles; type++) {
2908 if (!(swap_info[type]->flags & SWP_USED))
2909 break;
2910 }
2911 if (type >= MAX_SWAPFILES) {
2912 spin_unlock(&swap_lock);
2913 kvfree(p);
2914 return ERR_PTR(-EPERM);
2915 }
2916 if (type >= nr_swapfiles) {
2917 p->type = type;
2918 WRITE_ONCE(swap_info[type], p);
2919 /*
2920 * Write swap_info[type] before nr_swapfiles, in case a
2921 * racing procfs swap_start() or swap_next() is reading them.
2922 * (We never shrink nr_swapfiles, we never free this entry.)
2923 */
2924 smp_wmb();
2925 WRITE_ONCE(nr_swapfiles, nr_swapfiles + 1);
2926 } else {
2927 defer = p;
2928 p = swap_info[type];
2929 /*
2930 * Do not memset this entry: a racing procfs swap_next()
2931 * would be relying on p->type to remain valid.
2932 */
2933 }
2934 p->swap_extent_root = RB_ROOT;
2935 plist_node_init(&p->list, 0);
2936 for_each_node(i)
2937 plist_node_init(&p->avail_lists[i], 0);
2938 p->flags = SWP_USED;
2939 spin_unlock(&swap_lock);
2940 kvfree(defer);
2941 spin_lock_init(&p->lock);
2942 spin_lock_init(&p->cont_lock);
2943
2944 return p;
2945 }
2946
claim_swapfile(struct swap_info_struct *p, struct inode *inode)2947 static int claim_swapfile(struct swap_info_struct *p, struct inode *inode)
2948 {
2949 int error;
2950
2951 if (S_ISBLK(inode->i_mode)) {
2952 p->bdev = blkdev_get_by_dev(inode->i_rdev,
2953 FMODE_READ | FMODE_WRITE | FMODE_EXCL, p);
2954 if (IS_ERR(p->bdev)) {
2955 error = PTR_ERR(p->bdev);
2956 p->bdev = NULL;
2957 return error;
2958 }
2959 p->old_block_size = block_size(p->bdev);
2960 error = set_blocksize(p->bdev, PAGE_SIZE);
2961 if (error < 0)
2962 return error;
2963 /*
2964 * Zoned block devices contain zones that have a sequential
2965 * write only restriction. Hence zoned block devices are not
2966 * suitable for swapping. Disallow them here.
2967 */
2968 if (blk_queue_is_zoned(p->bdev->bd_disk->queue))
2969 return -EINVAL;
2970 p->flags |= SWP_BLKDEV;
2971 } else if (S_ISREG(inode->i_mode)) {
2972 p->bdev = inode->i_sb->s_bdev;
2973 }
2974
2975 return 0;
2976 }
2977
2978
2979 /*
2980 * Find out how many pages are allowed for a single swap device. There
2981 * are two limiting factors:
2982 * 1) the number of bits for the swap offset in the swp_entry_t type, and
2983 * 2) the number of bits in the swap pte, as defined by the different
2984 * architectures.
2985 *
2986 * In order to find the largest possible bit mask, a swap entry with
2987 * swap type 0 and swap offset ~0UL is created, encoded to a swap pte,
2988 * decoded to a swp_entry_t again, and finally the swap offset is
2989 * extracted.
2990 *
2991 * This will mask all the bits from the initial ~0UL mask that can't
2992 * be encoded in either the swp_entry_t or the architecture definition
2993 * of a swap pte.
2994 */
generic_max_swapfile_size(void)2995 unsigned long generic_max_swapfile_size(void)
2996 {
2997 return swp_offset(pte_to_swp_entry(
2998 swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1;
2999 }
3000
3001 /* Can be overridden by an architecture for additional checks. */
max_swapfile_size(void)3002 __weak unsigned long max_swapfile_size(void)
3003 {
3004 return generic_max_swapfile_size();
3005 }
3006
read_swap_header(struct swap_info_struct *p, union swap_header *swap_header, struct inode *inode)3007 static unsigned long read_swap_header(struct swap_info_struct *p,
3008 union swap_header *swap_header,
3009 struct inode *inode)
3010 {
3011 int i;
3012 unsigned long maxpages;
3013 unsigned long swapfilepages;
3014 unsigned long last_page;
3015
3016 if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) {
3017 pr_err("Unable to find swap-space signature\n");
3018 return 0;
3019 }
3020
3021 /* swap partition endianess hack... */
3022 if (swab32(swap_header->info.version) == 1) {
3023 swab32s(&swap_header->info.version);
3024 swab32s(&swap_header->info.last_page);
3025 swab32s(&swap_header->info.nr_badpages);
3026 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
3027 return 0;
3028 for (i = 0; i < swap_header->info.nr_badpages; i++)
3029 swab32s(&swap_header->info.badpages[i]);
3030 }
3031 /* Check the swap header's sub-version */
3032 if (swap_header->info.version != 1) {
3033 pr_warn("Unable to handle swap header version %d\n",
3034 swap_header->info.version);
3035 return 0;
3036 }
3037
3038 p->lowest_bit = 1;
3039 p->cluster_next = 1;
3040 p->cluster_nr = 0;
3041
3042 maxpages = max_swapfile_size();
3043 last_page = swap_header->info.last_page;
3044 if (!last_page) {
3045 pr_warn("Empty swap-file\n");
3046 return 0;
3047 }
3048 if (last_page > maxpages) {
3049 pr_warn("Truncating oversized swap area, only using %luk out of %luk\n",
3050 maxpages << (PAGE_SHIFT - 10),
3051 last_page << (PAGE_SHIFT - 10));
3052 }
3053 if (maxpages > last_page) {
3054 maxpages = last_page + 1;
3055 /* p->max is an unsigned int: don't overflow it */
3056 if ((unsigned int)maxpages == 0)
3057 maxpages = UINT_MAX;
3058 }
3059 p->highest_bit = maxpages - 1;
3060
3061 if (!maxpages)
3062 return 0;
3063 swapfilepages = i_size_read(inode) >> PAGE_SHIFT;
3064 if (swapfilepages && maxpages > swapfilepages) {
3065 pr_warn("Swap area shorter than signature indicates\n");
3066 return 0;
3067 }
3068 if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
3069 return 0;
3070 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
3071 return 0;
3072
3073 return maxpages;
3074 }
3075
3076 #define SWAP_CLUSTER_INFO_COLS \
3077 DIV_ROUND_UP(L1_CACHE_BYTES, sizeof(struct swap_cluster_info))
3078 #define SWAP_CLUSTER_SPACE_COLS \
3079 DIV_ROUND_UP(SWAP_ADDRESS_SPACE_PAGES, SWAPFILE_CLUSTER)
3080 #define SWAP_CLUSTER_COLS \
3081 max_t(unsigned int, SWAP_CLUSTER_INFO_COLS, SWAP_CLUSTER_SPACE_COLS)
3082
setup_swap_map_and_extents(struct swap_info_struct *p, union swap_header *swap_header, unsigned char *swap_map, struct swap_cluster_info *cluster_info, unsigned long maxpages, sector_t *span)3083 static int setup_swap_map_and_extents(struct swap_info_struct *p,
3084 union swap_header *swap_header,
3085 unsigned char *swap_map,
3086 struct swap_cluster_info *cluster_info,
3087 unsigned long maxpages,
3088 sector_t *span)
3089 {
3090 unsigned int j, k;
3091 unsigned int nr_good_pages;
3092 int nr_extents;
3093 unsigned long nr_clusters = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
3094 unsigned long col = p->cluster_next / SWAPFILE_CLUSTER % SWAP_CLUSTER_COLS;
3095 unsigned long i, idx;
3096
3097 nr_good_pages = maxpages - 1; /* omit header page */
3098
3099 cluster_list_init(&p->free_clusters);
3100 cluster_list_init(&p->discard_clusters);
3101
3102 for (i = 0; i < swap_header->info.nr_badpages; i++) {
3103 unsigned int page_nr = swap_header->info.badpages[i];
3104 if (page_nr == 0 || page_nr > swap_header->info.last_page)
3105 return -EINVAL;
3106 if (page_nr < maxpages) {
3107 swap_map[page_nr] = SWAP_MAP_BAD;
3108 nr_good_pages--;
3109 /*
3110 * Haven't marked the cluster free yet, no list
3111 * operation involved
3112 */
3113 inc_cluster_info_page(p, cluster_info, page_nr);
3114 }
3115 }
3116
3117 /* Haven't marked the cluster free yet, no list operation involved */
3118 for (i = maxpages; i < round_up(maxpages, SWAPFILE_CLUSTER); i++)
3119 inc_cluster_info_page(p, cluster_info, i);
3120
3121 if (nr_good_pages) {
3122 swap_map[0] = SWAP_MAP_BAD;
3123 /*
3124 * Not mark the cluster free yet, no list
3125 * operation involved
3126 */
3127 inc_cluster_info_page(p, cluster_info, 0);
3128 p->max = maxpages;
3129 p->pages = nr_good_pages;
3130 nr_extents = setup_swap_extents(p, span);
3131 if (nr_extents < 0)
3132 return nr_extents;
3133 nr_good_pages = p->pages;
3134 }
3135 if (!nr_good_pages) {
3136 pr_warn("Empty swap-file\n");
3137 return -EINVAL;
3138 }
3139
3140 if (!cluster_info)
3141 return nr_extents;
3142
3143
3144 /*
3145 * Reduce false cache line sharing between cluster_info and
3146 * sharing same address space.
3147 */
3148 for (k = 0; k < SWAP_CLUSTER_COLS; k++) {
3149 j = (k + col) % SWAP_CLUSTER_COLS;
3150 for (i = 0; i < DIV_ROUND_UP(nr_clusters, SWAP_CLUSTER_COLS); i++) {
3151 idx = i * SWAP_CLUSTER_COLS + j;
3152 if (idx >= nr_clusters)
3153 continue;
3154 if (cluster_count(&cluster_info[idx]))
3155 continue;
3156 cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE);
3157 cluster_list_add_tail(&p->free_clusters, cluster_info,
3158 idx);
3159 }
3160 }
3161 return nr_extents;
3162 }
3163
3164 /*
3165 * Helper to sys_swapon determining if a given swap
3166 * backing device queue supports DISCARD operations.
3167 */
swap_discardable(struct swap_info_struct *si)3168 static bool swap_discardable(struct swap_info_struct *si)
3169 {
3170 struct request_queue *q = bdev_get_queue(si->bdev);
3171
3172 if (!q || !blk_queue_discard(q))
3173 return false;
3174
3175 return true;
3176 }
3177
SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags)3178 SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags)
3179 {
3180 struct swap_info_struct *p;
3181 struct filename *name;
3182 struct file *swap_file = NULL;
3183 struct address_space *mapping;
3184 int prio;
3185 int error;
3186 union swap_header *swap_header;
3187 int nr_extents;
3188 sector_t span;
3189 unsigned long maxpages;
3190 unsigned char *swap_map = NULL;
3191 struct swap_cluster_info *cluster_info = NULL;
3192 unsigned long *frontswap_map = NULL;
3193 struct page *page = NULL;
3194 struct inode *inode = NULL;
3195 bool inced_nr_rotate_swap = false;
3196
3197 if (swap_flags & ~SWAP_FLAGS_VALID)
3198 return -EINVAL;
3199
3200 if (!capable(CAP_SYS_ADMIN))
3201 return -EPERM;
3202
3203 if (!swap_avail_heads)
3204 return -ENOMEM;
3205
3206 p = alloc_swap_info();
3207 if (IS_ERR(p))
3208 return PTR_ERR(p);
3209
3210 INIT_WORK(&p->discard_work, swap_discard_work);
3211
3212 name = getname(specialfile);
3213 if (IS_ERR(name)) {
3214 error = PTR_ERR(name);
3215 name = NULL;
3216 goto bad_swap;
3217 }
3218 swap_file = file_open_name(name, O_RDWR|O_LARGEFILE, 0);
3219 if (IS_ERR(swap_file)) {
3220 error = PTR_ERR(swap_file);
3221 swap_file = NULL;
3222 goto bad_swap;
3223 }
3224
3225 p->swap_file = swap_file;
3226 mapping = swap_file->f_mapping;
3227 inode = mapping->host;
3228
3229 error = claim_swapfile(p, inode);
3230 if (unlikely(error))
3231 goto bad_swap;
3232
3233 inode_lock(inode);
3234 if (IS_SWAPFILE(inode)) {
3235 error = -EBUSY;
3236 goto bad_swap_unlock_inode;
3237 }
3238
3239 /*
3240 * Read the swap header.
3241 */
3242 if (!mapping->a_ops->readpage) {
3243 error = -EINVAL;
3244 goto bad_swap_unlock_inode;
3245 }
3246 page = read_mapping_page(mapping, 0, swap_file);
3247 if (IS_ERR(page)) {
3248 error = PTR_ERR(page);
3249 goto bad_swap_unlock_inode;
3250 }
3251 swap_header = kmap(page);
3252
3253 maxpages = read_swap_header(p, swap_header, inode);
3254 if (unlikely(!maxpages)) {
3255 error = -EINVAL;
3256 goto bad_swap_unlock_inode;
3257 }
3258
3259 /* OK, set up the swap map and apply the bad block list */
3260 swap_map = vzalloc(maxpages);
3261 if (!swap_map) {
3262 error = -ENOMEM;
3263 goto bad_swap_unlock_inode;
3264 }
3265
3266 if (p->bdev && blk_queue_stable_writes(p->bdev->bd_disk->queue))
3267 p->flags |= SWP_STABLE_WRITES;
3268
3269 if (p->bdev && p->bdev->bd_disk->fops->rw_page)
3270 p->flags |= SWP_SYNCHRONOUS_IO;
3271
3272 if (p->bdev && blk_queue_nonrot(bdev_get_queue(p->bdev))) {
3273 int cpu;
3274 unsigned long ci, nr_cluster;
3275
3276 p->flags |= SWP_SOLIDSTATE;
3277 p->cluster_next_cpu = alloc_percpu(unsigned int);
3278 if (!p->cluster_next_cpu) {
3279 error = -ENOMEM;
3280 goto bad_swap_unlock_inode;
3281 }
3282 /*
3283 * select a random position to start with to help wear leveling
3284 * SSD
3285 */
3286 for_each_possible_cpu(cpu) {
3287 per_cpu(*p->cluster_next_cpu, cpu) =
3288 1 + prandom_u32_max(p->highest_bit);
3289 }
3290 nr_cluster = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
3291
3292 cluster_info = kvcalloc(nr_cluster, sizeof(*cluster_info),
3293 GFP_KERNEL);
3294 if (!cluster_info) {
3295 error = -ENOMEM;
3296 goto bad_swap_unlock_inode;
3297 }
3298
3299 for (ci = 0; ci < nr_cluster; ci++)
3300 spin_lock_init(&((cluster_info + ci)->lock));
3301
3302 p->percpu_cluster = alloc_percpu(struct percpu_cluster);
3303 if (!p->percpu_cluster) {
3304 error = -ENOMEM;
3305 goto bad_swap_unlock_inode;
3306 }
3307 for_each_possible_cpu(cpu) {
3308 struct percpu_cluster *cluster;
3309 cluster = per_cpu_ptr(p->percpu_cluster, cpu);
3310 cluster_set_null(&cluster->index);
3311 }
3312 } else {
3313 atomic_inc(&nr_rotate_swap);
3314 inced_nr_rotate_swap = true;
3315 }
3316
3317 error = swap_cgroup_swapon(p->type, maxpages);
3318 if (error)
3319 goto bad_swap_unlock_inode;
3320
3321 nr_extents = setup_swap_map_and_extents(p, swap_header, swap_map,
3322 cluster_info, maxpages, &span);
3323 if (unlikely(nr_extents < 0)) {
3324 error = nr_extents;
3325 goto bad_swap_unlock_inode;
3326 }
3327 /* frontswap enabled? set up bit-per-page map for frontswap */
3328 if (IS_ENABLED(CONFIG_FRONTSWAP))
3329 frontswap_map = kvcalloc(BITS_TO_LONGS(maxpages),
3330 sizeof(long),
3331 GFP_KERNEL);
3332
3333 if (p->bdev &&(swap_flags & SWAP_FLAG_DISCARD) && swap_discardable(p)) {
3334 /*
3335 * When discard is enabled for swap with no particular
3336 * policy flagged, we set all swap discard flags here in
3337 * order to sustain backward compatibility with older
3338 * swapon(8) releases.
3339 */
3340 p->flags |= (SWP_DISCARDABLE | SWP_AREA_DISCARD |
3341 SWP_PAGE_DISCARD);
3342
3343 /*
3344 * By flagging sys_swapon, a sysadmin can tell us to
3345 * either do single-time area discards only, or to just
3346 * perform discards for released swap page-clusters.
3347 * Now it's time to adjust the p->flags accordingly.
3348 */
3349 if (swap_flags & SWAP_FLAG_DISCARD_ONCE)
3350 p->flags &= ~SWP_PAGE_DISCARD;
3351 else if (swap_flags & SWAP_FLAG_DISCARD_PAGES)
3352 p->flags &= ~SWP_AREA_DISCARD;
3353
3354 /* issue a swapon-time discard if it's still required */
3355 if (p->flags & SWP_AREA_DISCARD) {
3356 int err = discard_swap(p);
3357 if (unlikely(err))
3358 pr_err("swapon: discard_swap(%p): %d\n",
3359 p, err);
3360 }
3361 }
3362
3363 error = init_swap_address_space(p->type, maxpages);
3364 if (error)
3365 goto bad_swap_unlock_inode;
3366
3367 /*
3368 * Flush any pending IO and dirty mappings before we start using this
3369 * swap device.
3370 */
3371 inode->i_flags |= S_SWAPFILE;
3372 error = inode_drain_writes(inode);
3373 if (error) {
3374 inode->i_flags &= ~S_SWAPFILE;
3375 goto free_swap_address_space;
3376 }
3377
3378 mutex_lock(&swapon_mutex);
3379 prio = -1;
3380 if (swap_flags & SWAP_FLAG_PREFER)
3381 prio =
3382 (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT;
3383 enable_swap_info(p, prio, swap_map, cluster_info, frontswap_map);
3384
3385 pr_info("Adding %uk swap on %s. Priority:%d extents:%d across:%lluk %s%s%s%s%s\n",
3386 p->pages<<(PAGE_SHIFT-10), name->name, p->prio,
3387 nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10),
3388 (p->flags & SWP_SOLIDSTATE) ? "SS" : "",
3389 (p->flags & SWP_DISCARDABLE) ? "D" : "",
3390 (p->flags & SWP_AREA_DISCARD) ? "s" : "",
3391 (p->flags & SWP_PAGE_DISCARD) ? "c" : "",
3392 (frontswap_map) ? "FS" : "");
3393
3394 mutex_unlock(&swapon_mutex);
3395 atomic_inc(&proc_poll_event);
3396 wake_up_interruptible(&proc_poll_wait);
3397
3398 error = 0;
3399 goto out;
3400 free_swap_address_space:
3401 exit_swap_address_space(p->type);
3402 bad_swap_unlock_inode:
3403 inode_unlock(inode);
3404 bad_swap:
3405 free_percpu(p->percpu_cluster);
3406 p->percpu_cluster = NULL;
3407 free_percpu(p->cluster_next_cpu);
3408 p->cluster_next_cpu = NULL;
3409 if (inode && S_ISBLK(inode->i_mode) && p->bdev) {
3410 set_blocksize(p->bdev, p->old_block_size);
3411 blkdev_put(p->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
3412 }
3413 inode = NULL;
3414 destroy_swap_extents(p);
3415 swap_cgroup_swapoff(p->type);
3416 spin_lock(&swap_lock);
3417 p->swap_file = NULL;
3418 p->flags = 0;
3419 spin_unlock(&swap_lock);
3420 vfree(swap_map);
3421 kvfree(cluster_info);
3422 kvfree(frontswap_map);
3423 if (inced_nr_rotate_swap)
3424 atomic_dec(&nr_rotate_swap);
3425 if (swap_file)
3426 filp_close(swap_file, NULL);
3427 out:
3428 if (page && !IS_ERR(page)) {
3429 kunmap(page);
3430 put_page(page);
3431 }
3432 if (name)
3433 putname(name);
3434 if (inode)
3435 inode_unlock(inode);
3436 if (!error)
3437 enable_swap_slots_cache();
3438 return error;
3439 }
3440
si_swapinfo(struct sysinfo *val)3441 void si_swapinfo(struct sysinfo *val)
3442 {
3443 unsigned int type;
3444 unsigned long nr_to_be_unused = 0;
3445
3446 spin_lock(&swap_lock);
3447 for (type = 0; type < nr_swapfiles; type++) {
3448 struct swap_info_struct *si = swap_info[type];
3449
3450 if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK))
3451 nr_to_be_unused += si->inuse_pages;
3452 }
3453 val->freeswap = atomic_long_read(&nr_swap_pages) + nr_to_be_unused;
3454 val->totalswap = total_swap_pages + nr_to_be_unused;
3455 spin_unlock(&swap_lock);
3456 }
3457
3458 #ifdef CONFIG_HYPERHOLD_ZSWAPD
free_swap_is_low(void)3459 bool free_swap_is_low(void)
3460 {
3461 unsigned int type;
3462 unsigned long long freeswap = 0;
3463 unsigned long nr_to_be_unused = 0;
3464
3465 spin_lock(&swap_lock);
3466 for (type = 0; type < nr_swapfiles; type++) {
3467 struct swap_info_struct *si = swap_info[type];
3468
3469 if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK))
3470 nr_to_be_unused += si->inuse_pages;
3471 }
3472 freeswap = atomic_long_read(&nr_swap_pages) + nr_to_be_unused;
3473 spin_unlock(&swap_lock);
3474
3475 return (freeswap < get_free_swap_threshold());
3476 }
3477 EXPORT_SYMBOL(free_swap_is_low);
3478 #endif
3479
3480 /*
3481 * Verify that a swap entry is valid and increment its swap map count.
3482 *
3483 * Returns error code in following case.
3484 * - success -> 0
3485 * - swp_entry is invalid -> EINVAL
3486 * - swp_entry is migration entry -> EINVAL
3487 * - swap-cache reference is requested but there is already one. -> EEXIST
3488 * - swap-cache reference is requested but the entry is not used. -> ENOENT
3489 * - swap-mapped reference requested but needs continued swap count. -> ENOMEM
3490 */
__swap_duplicate(swp_entry_t entry, unsigned char usage)3491 static int __swap_duplicate(swp_entry_t entry, unsigned char usage)
3492 {
3493 struct swap_info_struct *p;
3494 struct swap_cluster_info *ci;
3495 unsigned long offset;
3496 unsigned char count;
3497 unsigned char has_cache;
3498 int err = -EINVAL;
3499
3500 p = get_swap_device(entry);
3501 if (!p)
3502 goto out;
3503
3504 offset = swp_offset(entry);
3505 ci = lock_cluster_or_swap_info(p, offset);
3506
3507 count = p->swap_map[offset];
3508
3509 /*
3510 * swapin_readahead() doesn't check if a swap entry is valid, so the
3511 * swap entry could be SWAP_MAP_BAD. Check here with lock held.
3512 */
3513 if (unlikely(swap_count(count) == SWAP_MAP_BAD)) {
3514 err = -ENOENT;
3515 goto unlock_out;
3516 }
3517
3518 has_cache = count & SWAP_HAS_CACHE;
3519 count &= ~SWAP_HAS_CACHE;
3520 err = 0;
3521
3522 if (usage == SWAP_HAS_CACHE) {
3523
3524 /* set SWAP_HAS_CACHE if there is no cache and entry is used */
3525 if (!has_cache && count)
3526 has_cache = SWAP_HAS_CACHE;
3527 else if (has_cache) /* someone else added cache */
3528 err = -EEXIST;
3529 else /* no users remaining */
3530 err = -ENOENT;
3531
3532 } else if (count || has_cache) {
3533
3534 if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX)
3535 count += usage;
3536 else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX)
3537 err = -EINVAL;
3538 else if (swap_count_continued(p, offset, count))
3539 count = COUNT_CONTINUED;
3540 else
3541 err = -ENOMEM;
3542 } else
3543 err = -ENOENT; /* unused swap entry */
3544
3545 WRITE_ONCE(p->swap_map[offset], count | has_cache);
3546
3547 unlock_out:
3548 unlock_cluster_or_swap_info(p, ci);
3549 out:
3550 if (p)
3551 put_swap_device(p);
3552 return err;
3553 }
3554
3555 /*
3556 * Help swapoff by noting that swap entry belongs to shmem/tmpfs
3557 * (in which case its reference count is never incremented).
3558 */
swap_shmem_alloc(swp_entry_t entry)3559 void swap_shmem_alloc(swp_entry_t entry)
3560 {
3561 __swap_duplicate(entry, SWAP_MAP_SHMEM);
3562 }
3563
3564 /*
3565 * Increase reference count of swap entry by 1.
3566 * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required
3567 * but could not be atomically allocated. Returns 0, just as if it succeeded,
3568 * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which
3569 * might occur if a page table entry has got corrupted.
3570 */
swap_duplicate(swp_entry_t entry)3571 int swap_duplicate(swp_entry_t entry)
3572 {
3573 int err = 0;
3574
3575 while (!err && __swap_duplicate(entry, 1) == -ENOMEM)
3576 err = add_swap_count_continuation(entry, GFP_ATOMIC);
3577 return err;
3578 }
3579
3580 /*
3581 * @entry: swap entry for which we allocate swap cache.
3582 *
3583 * Called when allocating swap cache for existing swap entry,
3584 * This can return error codes. Returns 0 at success.
3585 * -EEXIST means there is a swap cache.
3586 * Note: return code is different from swap_duplicate().
3587 */
swapcache_prepare(swp_entry_t entry)3588 int swapcache_prepare(swp_entry_t entry)
3589 {
3590 return __swap_duplicate(entry, SWAP_HAS_CACHE);
3591 }
3592
swp_swap_info(swp_entry_t entry)3593 struct swap_info_struct *swp_swap_info(swp_entry_t entry)
3594 {
3595 return swap_type_to_swap_info(swp_type(entry));
3596 }
3597
page_swap_info(struct page *page)3598 struct swap_info_struct *page_swap_info(struct page *page)
3599 {
3600 swp_entry_t entry = { .val = page_private(page) };
3601 return swp_swap_info(entry);
3602 }
3603
3604 /*
3605 * out-of-line __page_file_ methods to avoid include hell.
3606 */
__page_file_mapping(struct page *page)3607 struct address_space *__page_file_mapping(struct page *page)
3608 {
3609 return page_swap_info(page)->swap_file->f_mapping;
3610 }
3611 EXPORT_SYMBOL_GPL(__page_file_mapping);
3612
__page_file_index(struct page *page)3613 pgoff_t __page_file_index(struct page *page)
3614 {
3615 swp_entry_t swap = { .val = page_private(page) };
3616 return swp_offset(swap);
3617 }
3618 EXPORT_SYMBOL_GPL(__page_file_index);
3619
3620 /*
3621 * add_swap_count_continuation - called when a swap count is duplicated
3622 * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's
3623 * page of the original vmalloc'ed swap_map, to hold the continuation count
3624 * (for that entry and for its neighbouring PAGE_SIZE swap entries). Called
3625 * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc.
3626 *
3627 * These continuation pages are seldom referenced: the common paths all work
3628 * on the original swap_map, only referring to a continuation page when the
3629 * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX.
3630 *
3631 * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding
3632 * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL)
3633 * can be called after dropping locks.
3634 */
add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask)3635 int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask)
3636 {
3637 struct swap_info_struct *si;
3638 struct swap_cluster_info *ci;
3639 struct page *head;
3640 struct page *page;
3641 struct page *list_page;
3642 pgoff_t offset;
3643 unsigned char count;
3644 int ret = 0;
3645
3646 /*
3647 * When debugging, it's easier to use __GFP_ZERO here; but it's better
3648 * for latency not to zero a page while GFP_ATOMIC and holding locks.
3649 */
3650 page = alloc_page(gfp_mask | __GFP_HIGHMEM);
3651
3652 si = get_swap_device(entry);
3653 if (!si) {
3654 /*
3655 * An acceptable race has occurred since the failing
3656 * __swap_duplicate(): the swap device may be swapoff
3657 */
3658 goto outer;
3659 }
3660 spin_lock(&si->lock);
3661
3662 offset = swp_offset(entry);
3663
3664 ci = lock_cluster(si, offset);
3665
3666 count = si->swap_map[offset] & ~SWAP_HAS_CACHE;
3667
3668 if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) {
3669 /*
3670 * The higher the swap count, the more likely it is that tasks
3671 * will race to add swap count continuation: we need to avoid
3672 * over-provisioning.
3673 */
3674 goto out;
3675 }
3676
3677 if (!page) {
3678 ret = -ENOMEM;
3679 goto out;
3680 }
3681
3682 /*
3683 * We are fortunate that although vmalloc_to_page uses pte_offset_map,
3684 * no architecture is using highmem pages for kernel page tables: so it
3685 * will not corrupt the GFP_ATOMIC caller's atomic page table kmaps.
3686 */
3687 head = vmalloc_to_page(si->swap_map + offset);
3688 offset &= ~PAGE_MASK;
3689
3690 spin_lock(&si->cont_lock);
3691 /*
3692 * Page allocation does not initialize the page's lru field,
3693 * but it does always reset its private field.
3694 */
3695 if (!page_private(head)) {
3696 BUG_ON(count & COUNT_CONTINUED);
3697 INIT_LIST_HEAD(&head->lru);
3698 set_page_private(head, SWP_CONTINUED);
3699 si->flags |= SWP_CONTINUED;
3700 }
3701
3702 list_for_each_entry(list_page, &head->lru, lru) {
3703 unsigned char *map;
3704
3705 /*
3706 * If the previous map said no continuation, but we've found
3707 * a continuation page, free our allocation and use this one.
3708 */
3709 if (!(count & COUNT_CONTINUED))
3710 goto out_unlock_cont;
3711
3712 map = kmap_atomic(list_page) + offset;
3713 count = *map;
3714 kunmap_atomic(map);
3715
3716 /*
3717 * If this continuation count now has some space in it,
3718 * free our allocation and use this one.
3719 */
3720 if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX)
3721 goto out_unlock_cont;
3722 }
3723
3724 list_add_tail(&page->lru, &head->lru);
3725 page = NULL; /* now it's attached, don't free it */
3726 out_unlock_cont:
3727 spin_unlock(&si->cont_lock);
3728 out:
3729 unlock_cluster(ci);
3730 spin_unlock(&si->lock);
3731 put_swap_device(si);
3732 outer:
3733 if (page)
3734 __free_page(page);
3735 return ret;
3736 }
3737
3738 /*
3739 * swap_count_continued - when the original swap_map count is incremented
3740 * from SWAP_MAP_MAX, check if there is already a continuation page to carry
3741 * into, carry if so, or else fail until a new continuation page is allocated;
3742 * when the original swap_map count is decremented from 0 with continuation,
3743 * borrow from the continuation and report whether it still holds more.
3744 * Called while __swap_duplicate() or swap_entry_free() holds swap or cluster
3745 * lock.
3746 */
swap_count_continued(struct swap_info_struct *si, pgoff_t offset, unsigned char count)3747 static bool swap_count_continued(struct swap_info_struct *si,
3748 pgoff_t offset, unsigned char count)
3749 {
3750 struct page *head;
3751 struct page *page;
3752 unsigned char *map;
3753 bool ret;
3754
3755 head = vmalloc_to_page(si->swap_map + offset);
3756 if (page_private(head) != SWP_CONTINUED) {
3757 BUG_ON(count & COUNT_CONTINUED);
3758 return false; /* need to add count continuation */
3759 }
3760
3761 spin_lock(&si->cont_lock);
3762 offset &= ~PAGE_MASK;
3763 page = list_next_entry(head, lru);
3764 map = kmap_atomic(page) + offset;
3765
3766 if (count == SWAP_MAP_MAX) /* initial increment from swap_map */
3767 goto init_map; /* jump over SWAP_CONT_MAX checks */
3768
3769 if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */
3770 /*
3771 * Think of how you add 1 to 999
3772 */
3773 while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) {
3774 kunmap_atomic(map);
3775 page = list_next_entry(page, lru);
3776 BUG_ON(page == head);
3777 map = kmap_atomic(page) + offset;
3778 }
3779 if (*map == SWAP_CONT_MAX) {
3780 kunmap_atomic(map);
3781 page = list_next_entry(page, lru);
3782 if (page == head) {
3783 ret = false; /* add count continuation */
3784 goto out;
3785 }
3786 map = kmap_atomic(page) + offset;
3787 init_map: *map = 0; /* we didn't zero the page */
3788 }
3789 *map += 1;
3790 kunmap_atomic(map);
3791 while ((page = list_prev_entry(page, lru)) != head) {
3792 map = kmap_atomic(page) + offset;
3793 *map = COUNT_CONTINUED;
3794 kunmap_atomic(map);
3795 }
3796 ret = true; /* incremented */
3797
3798 } else { /* decrementing */
3799 /*
3800 * Think of how you subtract 1 from 1000
3801 */
3802 BUG_ON(count != COUNT_CONTINUED);
3803 while (*map == COUNT_CONTINUED) {
3804 kunmap_atomic(map);
3805 page = list_next_entry(page, lru);
3806 BUG_ON(page == head);
3807 map = kmap_atomic(page) + offset;
3808 }
3809 BUG_ON(*map == 0);
3810 *map -= 1;
3811 if (*map == 0)
3812 count = 0;
3813 kunmap_atomic(map);
3814 while ((page = list_prev_entry(page, lru)) != head) {
3815 map = kmap_atomic(page) + offset;
3816 *map = SWAP_CONT_MAX | count;
3817 count = COUNT_CONTINUED;
3818 kunmap_atomic(map);
3819 }
3820 ret = count == COUNT_CONTINUED;
3821 }
3822 out:
3823 spin_unlock(&si->cont_lock);
3824 return ret;
3825 }
3826
3827 /*
3828 * free_swap_count_continuations - swapoff free all the continuation pages
3829 * appended to the swap_map, after swap_map is quiesced, before vfree'ing it.
3830 */
free_swap_count_continuations(struct swap_info_struct *si)3831 static void free_swap_count_continuations(struct swap_info_struct *si)
3832 {
3833 pgoff_t offset;
3834
3835 for (offset = 0; offset < si->max; offset += PAGE_SIZE) {
3836 struct page *head;
3837 head = vmalloc_to_page(si->swap_map + offset);
3838 if (page_private(head)) {
3839 struct page *page, *next;
3840
3841 list_for_each_entry_safe(page, next, &head->lru, lru) {
3842 list_del(&page->lru);
3843 __free_page(page);
3844 }
3845 }
3846 }
3847 }
3848
3849 #if defined(CONFIG_MEMCG) && defined(CONFIG_BLK_CGROUP)
cgroup_throttle_swaprate(struct page *page, gfp_t gfp_mask)3850 void cgroup_throttle_swaprate(struct page *page, gfp_t gfp_mask)
3851 {
3852 struct swap_info_struct *si, *next;
3853 int nid = page_to_nid(page);
3854
3855 if (!(gfp_mask & __GFP_IO))
3856 return;
3857
3858 if (!blk_cgroup_congested())
3859 return;
3860
3861 /*
3862 * We've already scheduled a throttle, avoid taking the global swap
3863 * lock.
3864 */
3865 if (current->throttle_queue)
3866 return;
3867
3868 spin_lock(&swap_avail_lock);
3869 plist_for_each_entry_safe(si, next, &swap_avail_heads[nid],
3870 avail_lists[nid]) {
3871 if (si->bdev) {
3872 blkcg_schedule_throttle(bdev_get_queue(si->bdev), true);
3873 break;
3874 }
3875 }
3876 spin_unlock(&swap_avail_lock);
3877 }
3878 #endif
3879
swapfile_init(void)3880 static int __init swapfile_init(void)
3881 {
3882 int nid;
3883
3884 swap_avail_heads = kmalloc_array(nr_node_ids, sizeof(struct plist_head),
3885 GFP_KERNEL);
3886 if (!swap_avail_heads) {
3887 pr_emerg("Not enough memory for swap heads, swap is disabled\n");
3888 return -ENOMEM;
3889 }
3890
3891 for_each_node(nid)
3892 plist_head_init(&swap_avail_heads[nid]);
3893
3894 return 0;
3895 }
3896 subsys_initcall(swapfile_init);
3897