1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * mm/page-writeback.c
4  *
5  * Copyright (C) 2002, Linus Torvalds.
6  * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
7  *
8  * Contains functions related to writing back dirty pages at the
9  * address_space level.
10  *
11  * 10Apr2002	Andrew Morton
12  *		Initial version
13  */
14 
15 #include <linux/kernel.h>
16 #include <linux/export.h>
17 #include <linux/spinlock.h>
18 #include <linux/fs.h>
19 #include <linux/mm.h>
20 #include <linux/swap.h>
21 #include <linux/slab.h>
22 #include <linux/pagemap.h>
23 #include <linux/writeback.h>
24 #include <linux/init.h>
25 #include <linux/backing-dev.h>
26 #include <linux/task_io_accounting_ops.h>
27 #include <linux/blkdev.h>
28 #include <linux/mpage.h>
29 #include <linux/rmap.h>
30 #include <linux/percpu.h>
31 #include <linux/smp.h>
32 #include <linux/sysctl.h>
33 #include <linux/cpu.h>
34 #include <linux/syscalls.h>
35 #include <linux/buffer_head.h> /* __set_page_dirty_buffers */
36 #include <linux/pagevec.h>
37 #include <linux/timer.h>
38 #include <linux/sched/rt.h>
39 #include <linux/sched/signal.h>
40 #include <linux/mm_inline.h>
41 #include <trace/events/writeback.h>
42 
43 #include "internal.h"
44 
45 /*
46  * Sleep at most 200ms at a time in balance_dirty_pages().
47  */
48 #define MAX_PAUSE		max(HZ/5, 1)
49 
50 /*
51  * Try to keep balance_dirty_pages() call intervals higher than this many pages
52  * by raising pause time to max_pause when falls below it.
53  */
54 #define DIRTY_POLL_THRESH	(128 >> (PAGE_SHIFT - 10))
55 
56 /*
57  * Estimate write bandwidth at 200ms intervals.
58  */
59 #define BANDWIDTH_INTERVAL	max(HZ/5, 1)
60 
61 #define RATELIMIT_CALC_SHIFT	10
62 
63 /*
64  * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited
65  * will look to see if it needs to force writeback or throttling.
66  */
67 static long ratelimit_pages = 32;
68 
69 /* The following parameters are exported via /proc/sys/vm */
70 
71 /*
72  * Start background writeback (via writeback threads) at this percentage
73  */
74 int dirty_background_ratio = 10;
75 
76 /*
77  * dirty_background_bytes starts at 0 (disabled) so that it is a function of
78  * dirty_background_ratio * the amount of dirtyable memory
79  */
80 unsigned long dirty_background_bytes;
81 
82 /*
83  * free highmem will not be subtracted from the total free memory
84  * for calculating free ratios if vm_highmem_is_dirtyable is true
85  */
86 int vm_highmem_is_dirtyable;
87 
88 /*
89  * The generator of dirty data starts writeback at this percentage
90  */
91 int vm_dirty_ratio = 20;
92 
93 /*
94  * vm_dirty_bytes starts at 0 (disabled) so that it is a function of
95  * vm_dirty_ratio * the amount of dirtyable memory
96  */
97 unsigned long vm_dirty_bytes;
98 
99 /*
100  * The interval between `kupdate'-style writebacks
101  */
102 unsigned int dirty_writeback_interval = 5 * 100; /* centiseconds */
103 
104 EXPORT_SYMBOL_GPL(dirty_writeback_interval);
105 
106 /*
107  * The longest time for which data is allowed to remain dirty
108  */
109 unsigned int dirty_expire_interval = 30 * 100; /* centiseconds */
110 
111 /*
112  * Flag that puts the machine in "laptop mode". Doubles as a timeout in jiffies:
113  * a full sync is triggered after this time elapses without any disk activity.
114  */
115 int laptop_mode;
116 
117 EXPORT_SYMBOL(laptop_mode);
118 
119 /* End of sysctl-exported parameters */
120 
121 struct wb_domain global_wb_domain;
122 
123 /* consolidated parameters for balance_dirty_pages() and its subroutines */
124 struct dirty_throttle_control {
125 #ifdef CONFIG_CGROUP_WRITEBACK
126 	struct wb_domain	*dom;
127 	struct dirty_throttle_control *gdtc;	/* only set in memcg dtc's */
128 #endif
129 	struct bdi_writeback	*wb;
130 	struct fprop_local_percpu *wb_completions;
131 
132 	unsigned long		avail;		/* dirtyable */
133 	unsigned long		dirty;		/* file_dirty + write + nfs */
134 	unsigned long		thresh;		/* dirty threshold */
135 	unsigned long		bg_thresh;	/* dirty background threshold */
136 
137 	unsigned long		wb_dirty;	/* per-wb counterparts */
138 	unsigned long		wb_thresh;
139 	unsigned long		wb_bg_thresh;
140 
141 	unsigned long		pos_ratio;
142 };
143 
144 /*
145  * Length of period for aging writeout fractions of bdis. This is an
146  * arbitrarily chosen number. The longer the period, the slower fractions will
147  * reflect changes in current writeout rate.
148  */
149 #define VM_COMPLETIONS_PERIOD_LEN (3*HZ)
150 
151 #ifdef CONFIG_CGROUP_WRITEBACK
152 
153 #define GDTC_INIT(__wb)		.wb = (__wb),				\
154 				.dom = &global_wb_domain,		\
155 				.wb_completions = &(__wb)->completions
156 
157 #define GDTC_INIT_NO_WB		.dom = &global_wb_domain
158 
159 #define MDTC_INIT(__wb, __gdtc)	.wb = (__wb),				\
160 				.dom = mem_cgroup_wb_domain(__wb),	\
161 				.wb_completions = &(__wb)->memcg_completions, \
162 				.gdtc = __gdtc
163 
mdtc_valid(struct dirty_throttle_control *dtc)164 static bool mdtc_valid(struct dirty_throttle_control *dtc)
165 {
166 	return dtc->dom;
167 }
168 
dtc_dom(struct dirty_throttle_control *dtc)169 static struct wb_domain *dtc_dom(struct dirty_throttle_control *dtc)
170 {
171 	return dtc->dom;
172 }
173 
mdtc_gdtc(struct dirty_throttle_control *mdtc)174 static struct dirty_throttle_control *mdtc_gdtc(struct dirty_throttle_control *mdtc)
175 {
176 	return mdtc->gdtc;
177 }
178 
wb_memcg_completions(struct bdi_writeback *wb)179 static struct fprop_local_percpu *wb_memcg_completions(struct bdi_writeback *wb)
180 {
181 	return &wb->memcg_completions;
182 }
183 
wb_min_max_ratio(struct bdi_writeback *wb, unsigned long *minp, unsigned long *maxp)184 static void wb_min_max_ratio(struct bdi_writeback *wb,
185 			     unsigned long *minp, unsigned long *maxp)
186 {
187 	unsigned long this_bw = wb->avg_write_bandwidth;
188 	unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth);
189 	unsigned long long min = wb->bdi->min_ratio;
190 	unsigned long long max = wb->bdi->max_ratio;
191 
192 	/*
193 	 * @wb may already be clean by the time control reaches here and
194 	 * the total may not include its bw.
195 	 */
196 	if (this_bw < tot_bw) {
197 		if (min) {
198 			min *= this_bw;
199 			min = div64_ul(min, tot_bw);
200 		}
201 		if (max < 100) {
202 			max *= this_bw;
203 			max = div64_ul(max, tot_bw);
204 		}
205 	}
206 
207 	*minp = min;
208 	*maxp = max;
209 }
210 
211 #else	/* CONFIG_CGROUP_WRITEBACK */
212 
213 #define GDTC_INIT(__wb)		.wb = (__wb),                           \
214 				.wb_completions = &(__wb)->completions
215 #define GDTC_INIT_NO_WB
216 #define MDTC_INIT(__wb, __gdtc)
217 
mdtc_valid(struct dirty_throttle_control *dtc)218 static bool mdtc_valid(struct dirty_throttle_control *dtc)
219 {
220 	return false;
221 }
222 
dtc_dom(struct dirty_throttle_control *dtc)223 static struct wb_domain *dtc_dom(struct dirty_throttle_control *dtc)
224 {
225 	return &global_wb_domain;
226 }
227 
mdtc_gdtc(struct dirty_throttle_control *mdtc)228 static struct dirty_throttle_control *mdtc_gdtc(struct dirty_throttle_control *mdtc)
229 {
230 	return NULL;
231 }
232 
wb_memcg_completions(struct bdi_writeback *wb)233 static struct fprop_local_percpu *wb_memcg_completions(struct bdi_writeback *wb)
234 {
235 	return NULL;
236 }
237 
wb_min_max_ratio(struct bdi_writeback *wb, unsigned long *minp, unsigned long *maxp)238 static void wb_min_max_ratio(struct bdi_writeback *wb,
239 			     unsigned long *minp, unsigned long *maxp)
240 {
241 	*minp = wb->bdi->min_ratio;
242 	*maxp = wb->bdi->max_ratio;
243 }
244 
245 #endif	/* CONFIG_CGROUP_WRITEBACK */
246 
247 /*
248  * In a memory zone, there is a certain amount of pages we consider
249  * available for the page cache, which is essentially the number of
250  * free and reclaimable pages, minus some zone reserves to protect
251  * lowmem and the ability to uphold the zone's watermarks without
252  * requiring writeback.
253  *
254  * This number of dirtyable pages is the base value of which the
255  * user-configurable dirty ratio is the effective number of pages that
256  * are allowed to be actually dirtied.  Per individual zone, or
257  * globally by using the sum of dirtyable pages over all zones.
258  *
259  * Because the user is allowed to specify the dirty limit globally as
260  * absolute number of bytes, calculating the per-zone dirty limit can
261  * require translating the configured limit into a percentage of
262  * global dirtyable memory first.
263  */
264 
265 /**
266  * node_dirtyable_memory - number of dirtyable pages in a node
267  * @pgdat: the node
268  *
269  * Return: the node's number of pages potentially available for dirty
270  * page cache.  This is the base value for the per-node dirty limits.
271  */
node_dirtyable_memory(struct pglist_data *pgdat)272 static unsigned long node_dirtyable_memory(struct pglist_data *pgdat)
273 {
274 	unsigned long nr_pages = 0;
275 	int z;
276 
277 	for (z = 0; z < MAX_NR_ZONES; z++) {
278 		struct zone *zone = pgdat->node_zones + z;
279 
280 		if (!populated_zone(zone))
281 			continue;
282 
283 		nr_pages += zone_page_state(zone, NR_FREE_PAGES);
284 	}
285 
286 	/*
287 	 * Pages reserved for the kernel should not be considered
288 	 * dirtyable, to prevent a situation where reclaim has to
289 	 * clean pages in order to balance the zones.
290 	 */
291 	nr_pages -= min(nr_pages, pgdat->totalreserve_pages);
292 
293 	nr_pages += node_page_state(pgdat, NR_INACTIVE_FILE);
294 	nr_pages += node_page_state(pgdat, NR_ACTIVE_FILE);
295 
296 	return nr_pages;
297 }
298 
highmem_dirtyable_memory(unsigned long total)299 static unsigned long highmem_dirtyable_memory(unsigned long total)
300 {
301 #ifdef CONFIG_HIGHMEM
302 	int node;
303 	unsigned long x = 0;
304 	int i;
305 
306 	for_each_node_state(node, N_HIGH_MEMORY) {
307 		for (i = ZONE_NORMAL + 1; i < MAX_NR_ZONES; i++) {
308 			struct zone *z;
309 			unsigned long nr_pages;
310 
311 			if (!is_highmem_idx(i))
312 				continue;
313 
314 			z = &NODE_DATA(node)->node_zones[i];
315 			if (!populated_zone(z))
316 				continue;
317 
318 			nr_pages = zone_page_state(z, NR_FREE_PAGES);
319 			/* watch for underflows */
320 			nr_pages -= min(nr_pages, high_wmark_pages(z));
321 			nr_pages += zone_page_state(z, NR_ZONE_INACTIVE_FILE);
322 			nr_pages += zone_page_state(z, NR_ZONE_ACTIVE_FILE);
323 			x += nr_pages;
324 		}
325 	}
326 
327 	/*
328 	 * Unreclaimable memory (kernel memory or anonymous memory
329 	 * without swap) can bring down the dirtyable pages below
330 	 * the zone's dirty balance reserve and the above calculation
331 	 * will underflow.  However we still want to add in nodes
332 	 * which are below threshold (negative values) to get a more
333 	 * accurate calculation but make sure that the total never
334 	 * underflows.
335 	 */
336 	if ((long)x < 0)
337 		x = 0;
338 
339 	/*
340 	 * Make sure that the number of highmem pages is never larger
341 	 * than the number of the total dirtyable memory. This can only
342 	 * occur in very strange VM situations but we want to make sure
343 	 * that this does not occur.
344 	 */
345 	return min(x, total);
346 #else
347 	return 0;
348 #endif
349 }
350 
351 /**
352  * global_dirtyable_memory - number of globally dirtyable pages
353  *
354  * Return: the global number of pages potentially available for dirty
355  * page cache.  This is the base value for the global dirty limits.
356  */
global_dirtyable_memory(void)357 static unsigned long global_dirtyable_memory(void)
358 {
359 	unsigned long x;
360 
361 	x = global_zone_page_state(NR_FREE_PAGES);
362 	/*
363 	 * Pages reserved for the kernel should not be considered
364 	 * dirtyable, to prevent a situation where reclaim has to
365 	 * clean pages in order to balance the zones.
366 	 */
367 	x -= min(x, totalreserve_pages);
368 
369 	x += global_node_page_state(NR_INACTIVE_FILE);
370 	x += global_node_page_state(NR_ACTIVE_FILE);
371 
372 	if (!vm_highmem_is_dirtyable)
373 		x -= highmem_dirtyable_memory(x);
374 
375 	return x + 1;	/* Ensure that we never return 0 */
376 }
377 
378 /**
379  * domain_dirty_limits - calculate thresh and bg_thresh for a wb_domain
380  * @dtc: dirty_throttle_control of interest
381  *
382  * Calculate @dtc->thresh and ->bg_thresh considering
383  * vm_dirty_{bytes|ratio} and dirty_background_{bytes|ratio}.  The caller
384  * must ensure that @dtc->avail is set before calling this function.  The
385  * dirty limits will be lifted by 1/4 for real-time tasks.
386  */
domain_dirty_limits(struct dirty_throttle_control *dtc)387 static void domain_dirty_limits(struct dirty_throttle_control *dtc)
388 {
389 	const unsigned long available_memory = dtc->avail;
390 	struct dirty_throttle_control *gdtc = mdtc_gdtc(dtc);
391 	unsigned long bytes = vm_dirty_bytes;
392 	unsigned long bg_bytes = dirty_background_bytes;
393 	/* convert ratios to per-PAGE_SIZE for higher precision */
394 	unsigned long ratio = (vm_dirty_ratio * PAGE_SIZE) / 100;
395 	unsigned long bg_ratio = (dirty_background_ratio * PAGE_SIZE) / 100;
396 	unsigned long thresh;
397 	unsigned long bg_thresh;
398 	struct task_struct *tsk;
399 
400 	/* gdtc is !NULL iff @dtc is for memcg domain */
401 	if (gdtc) {
402 		unsigned long global_avail = gdtc->avail;
403 
404 		/*
405 		 * The byte settings can't be applied directly to memcg
406 		 * domains.  Convert them to ratios by scaling against
407 		 * globally available memory.  As the ratios are in
408 		 * per-PAGE_SIZE, they can be obtained by dividing bytes by
409 		 * number of pages.
410 		 */
411 		if (bytes)
412 			ratio = min(DIV_ROUND_UP(bytes, global_avail),
413 				    PAGE_SIZE);
414 		if (bg_bytes)
415 			bg_ratio = min(DIV_ROUND_UP(bg_bytes, global_avail),
416 				       PAGE_SIZE);
417 		bytes = bg_bytes = 0;
418 	}
419 
420 	if (bytes)
421 		thresh = DIV_ROUND_UP(bytes, PAGE_SIZE);
422 	else
423 		thresh = (ratio * available_memory) / PAGE_SIZE;
424 
425 	if (bg_bytes)
426 		bg_thresh = DIV_ROUND_UP(bg_bytes, PAGE_SIZE);
427 	else
428 		bg_thresh = (bg_ratio * available_memory) / PAGE_SIZE;
429 
430 	tsk = current;
431 	if (rt_task(tsk)) {
432 		bg_thresh += bg_thresh / 4 + global_wb_domain.dirty_limit / 32;
433 		thresh += thresh / 4 + global_wb_domain.dirty_limit / 32;
434 	}
435 	/*
436 	 * Dirty throttling logic assumes the limits in page units fit into
437 	 * 32-bits. This gives 16TB dirty limits max which is hopefully enough.
438 	 */
439 	if (thresh > UINT_MAX)
440 		thresh = UINT_MAX;
441 	/* This makes sure bg_thresh is within 32-bits as well */
442 	if (bg_thresh >= thresh)
443 		bg_thresh = thresh / 2;
444 	dtc->thresh = thresh;
445 	dtc->bg_thresh = bg_thresh;
446 
447 	/* we should eventually report the domain in the TP */
448 	if (!gdtc)
449 		trace_global_dirty_state(bg_thresh, thresh);
450 }
451 
452 /**
453  * global_dirty_limits - background-writeback and dirty-throttling thresholds
454  * @pbackground: out parameter for bg_thresh
455  * @pdirty: out parameter for thresh
456  *
457  * Calculate bg_thresh and thresh for global_wb_domain.  See
458  * domain_dirty_limits() for details.
459  */
global_dirty_limits(unsigned long *pbackground, unsigned long *pdirty)460 void global_dirty_limits(unsigned long *pbackground, unsigned long *pdirty)
461 {
462 	struct dirty_throttle_control gdtc = { GDTC_INIT_NO_WB };
463 
464 	gdtc.avail = global_dirtyable_memory();
465 	domain_dirty_limits(&gdtc);
466 
467 	*pbackground = gdtc.bg_thresh;
468 	*pdirty = gdtc.thresh;
469 }
470 
471 /**
472  * node_dirty_limit - maximum number of dirty pages allowed in a node
473  * @pgdat: the node
474  *
475  * Return: the maximum number of dirty pages allowed in a node, based
476  * on the node's dirtyable memory.
477  */
node_dirty_limit(struct pglist_data *pgdat)478 static unsigned long node_dirty_limit(struct pglist_data *pgdat)
479 {
480 	unsigned long node_memory = node_dirtyable_memory(pgdat);
481 	struct task_struct *tsk = current;
482 	unsigned long dirty;
483 
484 	if (vm_dirty_bytes)
485 		dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE) *
486 			node_memory / global_dirtyable_memory();
487 	else
488 		dirty = vm_dirty_ratio * node_memory / 100;
489 
490 	if (rt_task(tsk))
491 		dirty += dirty / 4;
492 
493 	/*
494 	 * Dirty throttling logic assumes the limits in page units fit into
495 	 * 32-bits. This gives 16TB dirty limits max which is hopefully enough.
496 	 */
497 	return min_t(unsigned long, dirty, UINT_MAX);
498 }
499 
500 /**
501  * node_dirty_ok - tells whether a node is within its dirty limits
502  * @pgdat: the node to check
503  *
504  * Return: %true when the dirty pages in @pgdat are within the node's
505  * dirty limit, %false if the limit is exceeded.
506  */
node_dirty_ok(struct pglist_data *pgdat)507 bool node_dirty_ok(struct pglist_data *pgdat)
508 {
509 	unsigned long limit = node_dirty_limit(pgdat);
510 	unsigned long nr_pages = 0;
511 
512 	nr_pages += node_page_state(pgdat, NR_FILE_DIRTY);
513 	nr_pages += node_page_state(pgdat, NR_WRITEBACK);
514 
515 	return nr_pages <= limit;
516 }
517 
dirty_background_ratio_handler(struct ctl_table *table, int write, void *buffer, size_t *lenp, loff_t *ppos)518 int dirty_background_ratio_handler(struct ctl_table *table, int write,
519 		void *buffer, size_t *lenp, loff_t *ppos)
520 {
521 	int ret;
522 
523 	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
524 	if (ret == 0 && write)
525 		dirty_background_bytes = 0;
526 	return ret;
527 }
528 
dirty_background_bytes_handler(struct ctl_table *table, int write, void *buffer, size_t *lenp, loff_t *ppos)529 int dirty_background_bytes_handler(struct ctl_table *table, int write,
530 		void *buffer, size_t *lenp, loff_t *ppos)
531 {
532 	int ret;
533 	unsigned long old_bytes = dirty_background_bytes;
534 
535 	ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
536 	if (ret == 0 && write) {
537 		if (DIV_ROUND_UP(dirty_background_bytes, PAGE_SIZE) >
538 								UINT_MAX) {
539 			dirty_background_bytes = old_bytes;
540 			return -ERANGE;
541 		}
542 		dirty_background_ratio = 0;
543 	}
544 	return ret;
545 }
546 
dirty_ratio_handler(struct ctl_table *table, int write, void *buffer, size_t *lenp, loff_t *ppos)547 int dirty_ratio_handler(struct ctl_table *table, int write, void *buffer,
548 		size_t *lenp, loff_t *ppos)
549 {
550 	int old_ratio = vm_dirty_ratio;
551 	int ret;
552 
553 	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
554 	if (ret == 0 && write && vm_dirty_ratio != old_ratio) {
555 		writeback_set_ratelimit();
556 		vm_dirty_bytes = 0;
557 	}
558 	return ret;
559 }
560 
dirty_bytes_handler(struct ctl_table *table, int write, void *buffer, size_t *lenp, loff_t *ppos)561 int dirty_bytes_handler(struct ctl_table *table, int write,
562 		void *buffer, size_t *lenp, loff_t *ppos)
563 {
564 	unsigned long old_bytes = vm_dirty_bytes;
565 	int ret;
566 
567 	ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
568 	if (ret == 0 && write && vm_dirty_bytes != old_bytes) {
569 		if (DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE) > UINT_MAX) {
570 			vm_dirty_bytes = old_bytes;
571 			return -ERANGE;
572 		}
573 		writeback_set_ratelimit();
574 		vm_dirty_ratio = 0;
575 	}
576 	return ret;
577 }
578 
wp_next_time(unsigned long cur_time)579 static unsigned long wp_next_time(unsigned long cur_time)
580 {
581 	cur_time += VM_COMPLETIONS_PERIOD_LEN;
582 	/* 0 has a special meaning... */
583 	if (!cur_time)
584 		return 1;
585 	return cur_time;
586 }
587 
wb_domain_writeout_inc(struct wb_domain *dom, struct fprop_local_percpu *completions, unsigned int max_prop_frac)588 static void wb_domain_writeout_inc(struct wb_domain *dom,
589 				   struct fprop_local_percpu *completions,
590 				   unsigned int max_prop_frac)
591 {
592 	__fprop_inc_percpu_max(&dom->completions, completions,
593 			       max_prop_frac);
594 	/* First event after period switching was turned off? */
595 	if (unlikely(!dom->period_time)) {
596 		/*
597 		 * We can race with other __bdi_writeout_inc calls here but
598 		 * it does not cause any harm since the resulting time when
599 		 * timer will fire and what is in writeout_period_time will be
600 		 * roughly the same.
601 		 */
602 		dom->period_time = wp_next_time(jiffies);
603 		mod_timer(&dom->period_timer, dom->period_time);
604 	}
605 }
606 
607 /*
608  * Increment @wb's writeout completion count and the global writeout
609  * completion count. Called from test_clear_page_writeback().
610  */
__wb_writeout_inc(struct bdi_writeback *wb)611 static inline void __wb_writeout_inc(struct bdi_writeback *wb)
612 {
613 	struct wb_domain *cgdom;
614 
615 	inc_wb_stat(wb, WB_WRITTEN);
616 	wb_domain_writeout_inc(&global_wb_domain, &wb->completions,
617 			       wb->bdi->max_prop_frac);
618 
619 	cgdom = mem_cgroup_wb_domain(wb);
620 	if (cgdom)
621 		wb_domain_writeout_inc(cgdom, wb_memcg_completions(wb),
622 				       wb->bdi->max_prop_frac);
623 }
624 
wb_writeout_inc(struct bdi_writeback *wb)625 void wb_writeout_inc(struct bdi_writeback *wb)
626 {
627 	unsigned long flags;
628 
629 	local_irq_save(flags);
630 	__wb_writeout_inc(wb);
631 	local_irq_restore(flags);
632 }
633 EXPORT_SYMBOL_GPL(wb_writeout_inc);
634 
635 /*
636  * On idle system, we can be called long after we scheduled because we use
637  * deferred timers so count with missed periods.
638  */
writeout_period(struct timer_list *t)639 static void writeout_period(struct timer_list *t)
640 {
641 	struct wb_domain *dom = from_timer(dom, t, period_timer);
642 	int miss_periods = (jiffies - dom->period_time) /
643 						 VM_COMPLETIONS_PERIOD_LEN;
644 
645 	if (fprop_new_period(&dom->completions, miss_periods + 1)) {
646 		dom->period_time = wp_next_time(dom->period_time +
647 				miss_periods * VM_COMPLETIONS_PERIOD_LEN);
648 		mod_timer(&dom->period_timer, dom->period_time);
649 	} else {
650 		/*
651 		 * Aging has zeroed all fractions. Stop wasting CPU on period
652 		 * updates.
653 		 */
654 		dom->period_time = 0;
655 	}
656 }
657 
wb_domain_init(struct wb_domain *dom, gfp_t gfp)658 int wb_domain_init(struct wb_domain *dom, gfp_t gfp)
659 {
660 	memset(dom, 0, sizeof(*dom));
661 
662 	spin_lock_init(&dom->lock);
663 
664 	timer_setup(&dom->period_timer, writeout_period, TIMER_DEFERRABLE);
665 
666 	dom->dirty_limit_tstamp = jiffies;
667 
668 	return fprop_global_init(&dom->completions, gfp);
669 }
670 
671 #ifdef CONFIG_CGROUP_WRITEBACK
wb_domain_exit(struct wb_domain *dom)672 void wb_domain_exit(struct wb_domain *dom)
673 {
674 	del_timer_sync(&dom->period_timer);
675 	fprop_global_destroy(&dom->completions);
676 }
677 #endif
678 
679 /*
680  * bdi_min_ratio keeps the sum of the minimum dirty shares of all
681  * registered backing devices, which, for obvious reasons, can not
682  * exceed 100%.
683  */
684 static unsigned int bdi_min_ratio;
685 
bdi_set_min_ratio(struct backing_dev_info *bdi, unsigned int min_ratio)686 int bdi_set_min_ratio(struct backing_dev_info *bdi, unsigned int min_ratio)
687 {
688 	int ret = 0;
689 
690 	spin_lock_bh(&bdi_lock);
691 	if (min_ratio > bdi->max_ratio) {
692 		ret = -EINVAL;
693 	} else {
694 		min_ratio -= bdi->min_ratio;
695 		if (bdi_min_ratio + min_ratio < 100) {
696 			bdi_min_ratio += min_ratio;
697 			bdi->min_ratio += min_ratio;
698 		} else {
699 			ret = -EINVAL;
700 		}
701 	}
702 	spin_unlock_bh(&bdi_lock);
703 
704 	return ret;
705 }
706 
bdi_set_max_ratio(struct backing_dev_info *bdi, unsigned max_ratio)707 int bdi_set_max_ratio(struct backing_dev_info *bdi, unsigned max_ratio)
708 {
709 	int ret = 0;
710 
711 	if (max_ratio > 100)
712 		return -EINVAL;
713 
714 	spin_lock_bh(&bdi_lock);
715 	if (bdi->min_ratio > max_ratio) {
716 		ret = -EINVAL;
717 	} else {
718 		bdi->max_ratio = max_ratio;
719 		bdi->max_prop_frac = (FPROP_FRAC_BASE * max_ratio) / 100;
720 	}
721 	spin_unlock_bh(&bdi_lock);
722 
723 	return ret;
724 }
725 EXPORT_SYMBOL(bdi_set_max_ratio);
726 
dirty_freerun_ceiling(unsigned long thresh, unsigned long bg_thresh)727 static unsigned long dirty_freerun_ceiling(unsigned long thresh,
728 					   unsigned long bg_thresh)
729 {
730 	return (thresh + bg_thresh) / 2;
731 }
732 
hard_dirty_limit(struct wb_domain *dom, unsigned long thresh)733 static unsigned long hard_dirty_limit(struct wb_domain *dom,
734 				      unsigned long thresh)
735 {
736 	return max(thresh, dom->dirty_limit);
737 }
738 
739 /*
740  * Memory which can be further allocated to a memcg domain is capped by
741  * system-wide clean memory excluding the amount being used in the domain.
742  */
mdtc_calc_avail(struct dirty_throttle_control *mdtc, unsigned long filepages, unsigned long headroom)743 static void mdtc_calc_avail(struct dirty_throttle_control *mdtc,
744 			    unsigned long filepages, unsigned long headroom)
745 {
746 	struct dirty_throttle_control *gdtc = mdtc_gdtc(mdtc);
747 	unsigned long clean = filepages - min(filepages, mdtc->dirty);
748 	unsigned long global_clean = gdtc->avail - min(gdtc->avail, gdtc->dirty);
749 	unsigned long other_clean = global_clean - min(global_clean, clean);
750 
751 	mdtc->avail = filepages + min(headroom, other_clean);
752 }
753 
754 /**
755  * __wb_calc_thresh - @wb's share of dirty throttling threshold
756  * @dtc: dirty_throttle_context of interest
757  *
758  * Note that balance_dirty_pages() will only seriously take it as a hard limit
759  * when sleeping max_pause per page is not enough to keep the dirty pages under
760  * control. For example, when the device is completely stalled due to some error
761  * conditions, or when there are 1000 dd tasks writing to a slow 10MB/s USB key.
762  * In the other normal situations, it acts more gently by throttling the tasks
763  * more (rather than completely block them) when the wb dirty pages go high.
764  *
765  * It allocates high/low dirty limits to fast/slow devices, in order to prevent
766  * - starving fast devices
767  * - piling up dirty pages (that will take long time to sync) on slow devices
768  *
769  * The wb's share of dirty limit will be adapting to its throughput and
770  * bounded by the bdi->min_ratio and/or bdi->max_ratio parameters, if set.
771  *
772  * Return: @wb's dirty limit in pages. The term "dirty" in the context of
773  * dirty balancing includes all PG_dirty and PG_writeback pages.
774  */
__wb_calc_thresh(struct dirty_throttle_control *dtc)775 static unsigned long __wb_calc_thresh(struct dirty_throttle_control *dtc)
776 {
777 	struct wb_domain *dom = dtc_dom(dtc);
778 	unsigned long thresh = dtc->thresh;
779 	u64 wb_thresh;
780 	unsigned long numerator, denominator;
781 	unsigned long wb_min_ratio, wb_max_ratio;
782 
783 	/*
784 	 * Calculate this BDI's share of the thresh ratio.
785 	 */
786 	fprop_fraction_percpu(&dom->completions, dtc->wb_completions,
787 			      &numerator, &denominator);
788 
789 	wb_thresh = (thresh * (100 - bdi_min_ratio)) / 100;
790 	wb_thresh *= numerator;
791 	wb_thresh = div64_ul(wb_thresh, denominator);
792 
793 	wb_min_max_ratio(dtc->wb, &wb_min_ratio, &wb_max_ratio);
794 
795 	wb_thresh += (thresh * wb_min_ratio) / 100;
796 	if (wb_thresh > (thresh * wb_max_ratio) / 100)
797 		wb_thresh = thresh * wb_max_ratio / 100;
798 
799 	return wb_thresh;
800 }
801 
wb_calc_thresh(struct bdi_writeback *wb, unsigned long thresh)802 unsigned long wb_calc_thresh(struct bdi_writeback *wb, unsigned long thresh)
803 {
804 	struct dirty_throttle_control gdtc = { GDTC_INIT(wb),
805 					       .thresh = thresh };
806 	return __wb_calc_thresh(&gdtc);
807 }
808 
809 /*
810  *                           setpoint - dirty 3
811  *        f(dirty) := 1.0 + (----------------)
812  *                           limit - setpoint
813  *
814  * it's a 3rd order polynomial that subjects to
815  *
816  * (1) f(freerun)  = 2.0 => rampup dirty_ratelimit reasonably fast
817  * (2) f(setpoint) = 1.0 => the balance point
818  * (3) f(limit)    = 0   => the hard limit
819  * (4) df/dx      <= 0	 => negative feedback control
820  * (5) the closer to setpoint, the smaller |df/dx| (and the reverse)
821  *     => fast response on large errors; small oscillation near setpoint
822  */
pos_ratio_polynom(unsigned long setpoint, unsigned long dirty, unsigned long limit)823 static long long pos_ratio_polynom(unsigned long setpoint,
824 					  unsigned long dirty,
825 					  unsigned long limit)
826 {
827 	long long pos_ratio;
828 	long x;
829 
830 	x = div64_s64(((s64)setpoint - (s64)dirty) << RATELIMIT_CALC_SHIFT,
831 		      (limit - setpoint) | 1);
832 	pos_ratio = x;
833 	pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
834 	pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
835 	pos_ratio += 1 << RATELIMIT_CALC_SHIFT;
836 
837 	return clamp(pos_ratio, 0LL, 2LL << RATELIMIT_CALC_SHIFT);
838 }
839 
840 /*
841  * Dirty position control.
842  *
843  * (o) global/bdi setpoints
844  *
845  * We want the dirty pages be balanced around the global/wb setpoints.
846  * When the number of dirty pages is higher/lower than the setpoint, the
847  * dirty position control ratio (and hence task dirty ratelimit) will be
848  * decreased/increased to bring the dirty pages back to the setpoint.
849  *
850  *     pos_ratio = 1 << RATELIMIT_CALC_SHIFT
851  *
852  *     if (dirty < setpoint) scale up   pos_ratio
853  *     if (dirty > setpoint) scale down pos_ratio
854  *
855  *     if (wb_dirty < wb_setpoint) scale up   pos_ratio
856  *     if (wb_dirty > wb_setpoint) scale down pos_ratio
857  *
858  *     task_ratelimit = dirty_ratelimit * pos_ratio >> RATELIMIT_CALC_SHIFT
859  *
860  * (o) global control line
861  *
862  *     ^ pos_ratio
863  *     |
864  *     |            |<===== global dirty control scope ======>|
865  * 2.0 .............*
866  *     |            .*
867  *     |            . *
868  *     |            .   *
869  *     |            .     *
870  *     |            .        *
871  *     |            .            *
872  * 1.0 ................................*
873  *     |            .                  .     *
874  *     |            .                  .          *
875  *     |            .                  .              *
876  *     |            .                  .                 *
877  *     |            .                  .                    *
878  *   0 +------------.------------------.----------------------*------------->
879  *           freerun^          setpoint^                 limit^   dirty pages
880  *
881  * (o) wb control line
882  *
883  *     ^ pos_ratio
884  *     |
885  *     |            *
886  *     |              *
887  *     |                *
888  *     |                  *
889  *     |                    * |<=========== span ============>|
890  * 1.0 .......................*
891  *     |                      . *
892  *     |                      .   *
893  *     |                      .     *
894  *     |                      .       *
895  *     |                      .         *
896  *     |                      .           *
897  *     |                      .             *
898  *     |                      .               *
899  *     |                      .                 *
900  *     |                      .                   *
901  *     |                      .                     *
902  * 1/4 ...............................................* * * * * * * * * * * *
903  *     |                      .                         .
904  *     |                      .                           .
905  *     |                      .                             .
906  *   0 +----------------------.-------------------------------.------------->
907  *                wb_setpoint^                    x_intercept^
908  *
909  * The wb control line won't drop below pos_ratio=1/4, so that wb_dirty can
910  * be smoothly throttled down to normal if it starts high in situations like
911  * - start writing to a slow SD card and a fast disk at the same time. The SD
912  *   card's wb_dirty may rush to many times higher than wb_setpoint.
913  * - the wb dirty thresh drops quickly due to change of JBOD workload
914  */
wb_position_ratio(struct dirty_throttle_control *dtc)915 static void wb_position_ratio(struct dirty_throttle_control *dtc)
916 {
917 	struct bdi_writeback *wb = dtc->wb;
918 	unsigned long write_bw = wb->avg_write_bandwidth;
919 	unsigned long freerun = dirty_freerun_ceiling(dtc->thresh, dtc->bg_thresh);
920 	unsigned long limit = hard_dirty_limit(dtc_dom(dtc), dtc->thresh);
921 	unsigned long wb_thresh = dtc->wb_thresh;
922 	unsigned long x_intercept;
923 	unsigned long setpoint;		/* dirty pages' target balance point */
924 	unsigned long wb_setpoint;
925 	unsigned long span;
926 	long long pos_ratio;		/* for scaling up/down the rate limit */
927 	long x;
928 
929 	dtc->pos_ratio = 0;
930 
931 	if (unlikely(dtc->dirty >= limit))
932 		return;
933 
934 	/*
935 	 * global setpoint
936 	 *
937 	 * See comment for pos_ratio_polynom().
938 	 */
939 	setpoint = (freerun + limit) / 2;
940 	pos_ratio = pos_ratio_polynom(setpoint, dtc->dirty, limit);
941 
942 	/*
943 	 * The strictlimit feature is a tool preventing mistrusted filesystems
944 	 * from growing a large number of dirty pages before throttling. For
945 	 * such filesystems balance_dirty_pages always checks wb counters
946 	 * against wb limits. Even if global "nr_dirty" is under "freerun".
947 	 * This is especially important for fuse which sets bdi->max_ratio to
948 	 * 1% by default. Without strictlimit feature, fuse writeback may
949 	 * consume arbitrary amount of RAM because it is accounted in
950 	 * NR_WRITEBACK_TEMP which is not involved in calculating "nr_dirty".
951 	 *
952 	 * Here, in wb_position_ratio(), we calculate pos_ratio based on
953 	 * two values: wb_dirty and wb_thresh. Let's consider an example:
954 	 * total amount of RAM is 16GB, bdi->max_ratio is equal to 1%, global
955 	 * limits are set by default to 10% and 20% (background and throttle).
956 	 * Then wb_thresh is 1% of 20% of 16GB. This amounts to ~8K pages.
957 	 * wb_calc_thresh(wb, bg_thresh) is about ~4K pages. wb_setpoint is
958 	 * about ~6K pages (as the average of background and throttle wb
959 	 * limits). The 3rd order polynomial will provide positive feedback if
960 	 * wb_dirty is under wb_setpoint and vice versa.
961 	 *
962 	 * Note, that we cannot use global counters in these calculations
963 	 * because we want to throttle process writing to a strictlimit wb
964 	 * much earlier than global "freerun" is reached (~23MB vs. ~2.3GB
965 	 * in the example above).
966 	 */
967 	if (unlikely(wb->bdi->capabilities & BDI_CAP_STRICTLIMIT)) {
968 		long long wb_pos_ratio;
969 
970 		if (dtc->wb_dirty < 8) {
971 			dtc->pos_ratio = min_t(long long, pos_ratio * 2,
972 					   2 << RATELIMIT_CALC_SHIFT);
973 			return;
974 		}
975 
976 		if (dtc->wb_dirty >= wb_thresh)
977 			return;
978 
979 		wb_setpoint = dirty_freerun_ceiling(wb_thresh,
980 						    dtc->wb_bg_thresh);
981 
982 		if (wb_setpoint == 0 || wb_setpoint == wb_thresh)
983 			return;
984 
985 		wb_pos_ratio = pos_ratio_polynom(wb_setpoint, dtc->wb_dirty,
986 						 wb_thresh);
987 
988 		/*
989 		 * Typically, for strictlimit case, wb_setpoint << setpoint
990 		 * and pos_ratio >> wb_pos_ratio. In the other words global
991 		 * state ("dirty") is not limiting factor and we have to
992 		 * make decision based on wb counters. But there is an
993 		 * important case when global pos_ratio should get precedence:
994 		 * global limits are exceeded (e.g. due to activities on other
995 		 * wb's) while given strictlimit wb is below limit.
996 		 *
997 		 * "pos_ratio * wb_pos_ratio" would work for the case above,
998 		 * but it would look too non-natural for the case of all
999 		 * activity in the system coming from a single strictlimit wb
1000 		 * with bdi->max_ratio == 100%.
1001 		 *
1002 		 * Note that min() below somewhat changes the dynamics of the
1003 		 * control system. Normally, pos_ratio value can be well over 3
1004 		 * (when globally we are at freerun and wb is well below wb
1005 		 * setpoint). Now the maximum pos_ratio in the same situation
1006 		 * is 2. We might want to tweak this if we observe the control
1007 		 * system is too slow to adapt.
1008 		 */
1009 		dtc->pos_ratio = min(pos_ratio, wb_pos_ratio);
1010 		return;
1011 	}
1012 
1013 	/*
1014 	 * We have computed basic pos_ratio above based on global situation. If
1015 	 * the wb is over/under its share of dirty pages, we want to scale
1016 	 * pos_ratio further down/up. That is done by the following mechanism.
1017 	 */
1018 
1019 	/*
1020 	 * wb setpoint
1021 	 *
1022 	 *        f(wb_dirty) := 1.0 + k * (wb_dirty - wb_setpoint)
1023 	 *
1024 	 *                        x_intercept - wb_dirty
1025 	 *                     := --------------------------
1026 	 *                        x_intercept - wb_setpoint
1027 	 *
1028 	 * The main wb control line is a linear function that subjects to
1029 	 *
1030 	 * (1) f(wb_setpoint) = 1.0
1031 	 * (2) k = - 1 / (8 * write_bw)  (in single wb case)
1032 	 *     or equally: x_intercept = wb_setpoint + 8 * write_bw
1033 	 *
1034 	 * For single wb case, the dirty pages are observed to fluctuate
1035 	 * regularly within range
1036 	 *        [wb_setpoint - write_bw/2, wb_setpoint + write_bw/2]
1037 	 * for various filesystems, where (2) can yield in a reasonable 12.5%
1038 	 * fluctuation range for pos_ratio.
1039 	 *
1040 	 * For JBOD case, wb_thresh (not wb_dirty!) could fluctuate up to its
1041 	 * own size, so move the slope over accordingly and choose a slope that
1042 	 * yields 100% pos_ratio fluctuation on suddenly doubled wb_thresh.
1043 	 */
1044 	if (unlikely(wb_thresh > dtc->thresh))
1045 		wb_thresh = dtc->thresh;
1046 	/*
1047 	 * It's very possible that wb_thresh is close to 0 not because the
1048 	 * device is slow, but that it has remained inactive for long time.
1049 	 * Honour such devices a reasonable good (hopefully IO efficient)
1050 	 * threshold, so that the occasional writes won't be blocked and active
1051 	 * writes can rampup the threshold quickly.
1052 	 */
1053 	wb_thresh = max(wb_thresh, (limit - dtc->dirty) / 8);
1054 	/*
1055 	 * scale global setpoint to wb's:
1056 	 *	wb_setpoint = setpoint * wb_thresh / thresh
1057 	 */
1058 	x = div_u64((u64)wb_thresh << 16, dtc->thresh | 1);
1059 	wb_setpoint = setpoint * (u64)x >> 16;
1060 	/*
1061 	 * Use span=(8*write_bw) in single wb case as indicated by
1062 	 * (thresh - wb_thresh ~= 0) and transit to wb_thresh in JBOD case.
1063 	 *
1064 	 *        wb_thresh                    thresh - wb_thresh
1065 	 * span = --------- * (8 * write_bw) + ------------------ * wb_thresh
1066 	 *         thresh                           thresh
1067 	 */
1068 	span = (dtc->thresh - wb_thresh + 8 * write_bw) * (u64)x >> 16;
1069 	x_intercept = wb_setpoint + span;
1070 
1071 	if (dtc->wb_dirty < x_intercept - span / 4) {
1072 		pos_ratio = div64_u64(pos_ratio * (x_intercept - dtc->wb_dirty),
1073 				      (x_intercept - wb_setpoint) | 1);
1074 	} else
1075 		pos_ratio /= 4;
1076 
1077 	/*
1078 	 * wb reserve area, safeguard against dirty pool underrun and disk idle
1079 	 * It may push the desired control point of global dirty pages higher
1080 	 * than setpoint.
1081 	 */
1082 	x_intercept = wb_thresh / 2;
1083 	if (dtc->wb_dirty < x_intercept) {
1084 		if (dtc->wb_dirty > x_intercept / 8)
1085 			pos_ratio = div_u64(pos_ratio * x_intercept,
1086 					    dtc->wb_dirty);
1087 		else
1088 			pos_ratio *= 8;
1089 	}
1090 
1091 	dtc->pos_ratio = pos_ratio;
1092 }
1093 
wb_update_write_bandwidth(struct bdi_writeback *wb, unsigned long elapsed, unsigned long written)1094 static void wb_update_write_bandwidth(struct bdi_writeback *wb,
1095 				      unsigned long elapsed,
1096 				      unsigned long written)
1097 {
1098 	const unsigned long period = roundup_pow_of_two(3 * HZ);
1099 	unsigned long avg = wb->avg_write_bandwidth;
1100 	unsigned long old = wb->write_bandwidth;
1101 	u64 bw;
1102 
1103 	/*
1104 	 * bw = written * HZ / elapsed
1105 	 *
1106 	 *                   bw * elapsed + write_bandwidth * (period - elapsed)
1107 	 * write_bandwidth = ---------------------------------------------------
1108 	 *                                          period
1109 	 *
1110 	 * @written may have decreased due to account_page_redirty().
1111 	 * Avoid underflowing @bw calculation.
1112 	 */
1113 	bw = written - min(written, wb->written_stamp);
1114 	bw *= HZ;
1115 	if (unlikely(elapsed > period)) {
1116 		bw = div64_ul(bw, elapsed);
1117 		avg = bw;
1118 		goto out;
1119 	}
1120 	bw += (u64)wb->write_bandwidth * (period - elapsed);
1121 	bw >>= ilog2(period);
1122 
1123 	/*
1124 	 * one more level of smoothing, for filtering out sudden spikes
1125 	 */
1126 	if (avg > old && old >= (unsigned long)bw)
1127 		avg -= (avg - old) >> 3;
1128 
1129 	if (avg < old && old <= (unsigned long)bw)
1130 		avg += (old - avg) >> 3;
1131 
1132 out:
1133 	/* keep avg > 0 to guarantee that tot > 0 if there are dirty wbs */
1134 	avg = max(avg, 1LU);
1135 	if (wb_has_dirty_io(wb)) {
1136 		long delta = avg - wb->avg_write_bandwidth;
1137 		WARN_ON_ONCE(atomic_long_add_return(delta,
1138 					&wb->bdi->tot_write_bandwidth) <= 0);
1139 	}
1140 	wb->write_bandwidth = bw;
1141 	wb->avg_write_bandwidth = avg;
1142 }
1143 
update_dirty_limit(struct dirty_throttle_control *dtc)1144 static void update_dirty_limit(struct dirty_throttle_control *dtc)
1145 {
1146 	struct wb_domain *dom = dtc_dom(dtc);
1147 	unsigned long thresh = dtc->thresh;
1148 	unsigned long limit = dom->dirty_limit;
1149 
1150 	/*
1151 	 * Follow up in one step.
1152 	 */
1153 	if (limit < thresh) {
1154 		limit = thresh;
1155 		goto update;
1156 	}
1157 
1158 	/*
1159 	 * Follow down slowly. Use the higher one as the target, because thresh
1160 	 * may drop below dirty. This is exactly the reason to introduce
1161 	 * dom->dirty_limit which is guaranteed to lie above the dirty pages.
1162 	 */
1163 	thresh = max(thresh, dtc->dirty);
1164 	if (limit > thresh) {
1165 		limit -= (limit - thresh) >> 5;
1166 		goto update;
1167 	}
1168 	return;
1169 update:
1170 	dom->dirty_limit = limit;
1171 }
1172 
domain_update_bandwidth(struct dirty_throttle_control *dtc, unsigned long now)1173 static void domain_update_bandwidth(struct dirty_throttle_control *dtc,
1174 				    unsigned long now)
1175 {
1176 	struct wb_domain *dom = dtc_dom(dtc);
1177 
1178 	/*
1179 	 * check locklessly first to optimize away locking for the most time
1180 	 */
1181 	if (time_before(now, dom->dirty_limit_tstamp + BANDWIDTH_INTERVAL))
1182 		return;
1183 
1184 	spin_lock(&dom->lock);
1185 	if (time_after_eq(now, dom->dirty_limit_tstamp + BANDWIDTH_INTERVAL)) {
1186 		update_dirty_limit(dtc);
1187 		dom->dirty_limit_tstamp = now;
1188 	}
1189 	spin_unlock(&dom->lock);
1190 }
1191 
1192 /*
1193  * Maintain wb->dirty_ratelimit, the base dirty throttle rate.
1194  *
1195  * Normal wb tasks will be curbed at or below it in long term.
1196  * Obviously it should be around (write_bw / N) when there are N dd tasks.
1197  */
wb_update_dirty_ratelimit(struct dirty_throttle_control *dtc, unsigned long dirtied, unsigned long elapsed)1198 static void wb_update_dirty_ratelimit(struct dirty_throttle_control *dtc,
1199 				      unsigned long dirtied,
1200 				      unsigned long elapsed)
1201 {
1202 	struct bdi_writeback *wb = dtc->wb;
1203 	unsigned long dirty = dtc->dirty;
1204 	unsigned long freerun = dirty_freerun_ceiling(dtc->thresh, dtc->bg_thresh);
1205 	unsigned long limit = hard_dirty_limit(dtc_dom(dtc), dtc->thresh);
1206 	unsigned long setpoint = (freerun + limit) / 2;
1207 	unsigned long write_bw = wb->avg_write_bandwidth;
1208 	unsigned long dirty_ratelimit = wb->dirty_ratelimit;
1209 	unsigned long dirty_rate;
1210 	unsigned long task_ratelimit;
1211 	unsigned long balanced_dirty_ratelimit;
1212 	unsigned long step;
1213 	unsigned long x;
1214 	unsigned long shift;
1215 
1216 	/*
1217 	 * The dirty rate will match the writeout rate in long term, except
1218 	 * when dirty pages are truncated by userspace or re-dirtied by FS.
1219 	 */
1220 	dirty_rate = (dirtied - wb->dirtied_stamp) * HZ / elapsed;
1221 
1222 	/*
1223 	 * task_ratelimit reflects each dd's dirty rate for the past 200ms.
1224 	 */
1225 	task_ratelimit = (u64)dirty_ratelimit *
1226 					dtc->pos_ratio >> RATELIMIT_CALC_SHIFT;
1227 	task_ratelimit++; /* it helps rampup dirty_ratelimit from tiny values */
1228 
1229 	/*
1230 	 * A linear estimation of the "balanced" throttle rate. The theory is,
1231 	 * if there are N dd tasks, each throttled at task_ratelimit, the wb's
1232 	 * dirty_rate will be measured to be (N * task_ratelimit). So the below
1233 	 * formula will yield the balanced rate limit (write_bw / N).
1234 	 *
1235 	 * Note that the expanded form is not a pure rate feedback:
1236 	 *	rate_(i+1) = rate_(i) * (write_bw / dirty_rate)		     (1)
1237 	 * but also takes pos_ratio into account:
1238 	 *	rate_(i+1) = rate_(i) * (write_bw / dirty_rate) * pos_ratio  (2)
1239 	 *
1240 	 * (1) is not realistic because pos_ratio also takes part in balancing
1241 	 * the dirty rate.  Consider the state
1242 	 *	pos_ratio = 0.5						     (3)
1243 	 *	rate = 2 * (write_bw / N)				     (4)
1244 	 * If (1) is used, it will stuck in that state! Because each dd will
1245 	 * be throttled at
1246 	 *	task_ratelimit = pos_ratio * rate = (write_bw / N)	     (5)
1247 	 * yielding
1248 	 *	dirty_rate = N * task_ratelimit = write_bw		     (6)
1249 	 * put (6) into (1) we get
1250 	 *	rate_(i+1) = rate_(i)					     (7)
1251 	 *
1252 	 * So we end up using (2) to always keep
1253 	 *	rate_(i+1) ~= (write_bw / N)				     (8)
1254 	 * regardless of the value of pos_ratio. As long as (8) is satisfied,
1255 	 * pos_ratio is able to drive itself to 1.0, which is not only where
1256 	 * the dirty count meet the setpoint, but also where the slope of
1257 	 * pos_ratio is most flat and hence task_ratelimit is least fluctuated.
1258 	 */
1259 	balanced_dirty_ratelimit = div_u64((u64)task_ratelimit * write_bw,
1260 					   dirty_rate | 1);
1261 	/*
1262 	 * balanced_dirty_ratelimit ~= (write_bw / N) <= write_bw
1263 	 */
1264 	if (unlikely(balanced_dirty_ratelimit > write_bw))
1265 		balanced_dirty_ratelimit = write_bw;
1266 
1267 	/*
1268 	 * We could safely do this and return immediately:
1269 	 *
1270 	 *	wb->dirty_ratelimit = balanced_dirty_ratelimit;
1271 	 *
1272 	 * However to get a more stable dirty_ratelimit, the below elaborated
1273 	 * code makes use of task_ratelimit to filter out singular points and
1274 	 * limit the step size.
1275 	 *
1276 	 * The below code essentially only uses the relative value of
1277 	 *
1278 	 *	task_ratelimit - dirty_ratelimit
1279 	 *	= (pos_ratio - 1) * dirty_ratelimit
1280 	 *
1281 	 * which reflects the direction and size of dirty position error.
1282 	 */
1283 
1284 	/*
1285 	 * dirty_ratelimit will follow balanced_dirty_ratelimit iff
1286 	 * task_ratelimit is on the same side of dirty_ratelimit, too.
1287 	 * For example, when
1288 	 * - dirty_ratelimit > balanced_dirty_ratelimit
1289 	 * - dirty_ratelimit > task_ratelimit (dirty pages are above setpoint)
1290 	 * lowering dirty_ratelimit will help meet both the position and rate
1291 	 * control targets. Otherwise, don't update dirty_ratelimit if it will
1292 	 * only help meet the rate target. After all, what the users ultimately
1293 	 * feel and care are stable dirty rate and small position error.
1294 	 *
1295 	 * |task_ratelimit - dirty_ratelimit| is used to limit the step size
1296 	 * and filter out the singular points of balanced_dirty_ratelimit. Which
1297 	 * keeps jumping around randomly and can even leap far away at times
1298 	 * due to the small 200ms estimation period of dirty_rate (we want to
1299 	 * keep that period small to reduce time lags).
1300 	 */
1301 	step = 0;
1302 
1303 	/*
1304 	 * For strictlimit case, calculations above were based on wb counters
1305 	 * and limits (starting from pos_ratio = wb_position_ratio() and up to
1306 	 * balanced_dirty_ratelimit = task_ratelimit * write_bw / dirty_rate).
1307 	 * Hence, to calculate "step" properly, we have to use wb_dirty as
1308 	 * "dirty" and wb_setpoint as "setpoint".
1309 	 *
1310 	 * We rampup dirty_ratelimit forcibly if wb_dirty is low because
1311 	 * it's possible that wb_thresh is close to zero due to inactivity
1312 	 * of backing device.
1313 	 */
1314 	if (unlikely(wb->bdi->capabilities & BDI_CAP_STRICTLIMIT)) {
1315 		dirty = dtc->wb_dirty;
1316 		if (dtc->wb_dirty < 8)
1317 			setpoint = dtc->wb_dirty + 1;
1318 		else
1319 			setpoint = (dtc->wb_thresh + dtc->wb_bg_thresh) / 2;
1320 	}
1321 
1322 	if (dirty < setpoint) {
1323 		x = min3(wb->balanced_dirty_ratelimit,
1324 			 balanced_dirty_ratelimit, task_ratelimit);
1325 		if (dirty_ratelimit < x)
1326 			step = x - dirty_ratelimit;
1327 	} else {
1328 		x = max3(wb->balanced_dirty_ratelimit,
1329 			 balanced_dirty_ratelimit, task_ratelimit);
1330 		if (dirty_ratelimit > x)
1331 			step = dirty_ratelimit - x;
1332 	}
1333 
1334 	/*
1335 	 * Don't pursue 100% rate matching. It's impossible since the balanced
1336 	 * rate itself is constantly fluctuating. So decrease the track speed
1337 	 * when it gets close to the target. Helps eliminate pointless tremors.
1338 	 */
1339 	shift = dirty_ratelimit / (2 * step + 1);
1340 	if (shift < BITS_PER_LONG)
1341 		step = DIV_ROUND_UP(step >> shift, 8);
1342 	else
1343 		step = 0;
1344 
1345 	if (dirty_ratelimit < balanced_dirty_ratelimit)
1346 		dirty_ratelimit += step;
1347 	else
1348 		dirty_ratelimit -= step;
1349 
1350 	wb->dirty_ratelimit = max(dirty_ratelimit, 1UL);
1351 	wb->balanced_dirty_ratelimit = balanced_dirty_ratelimit;
1352 
1353 	trace_bdi_dirty_ratelimit(wb, dirty_rate, task_ratelimit);
1354 }
1355 
__wb_update_bandwidth(struct dirty_throttle_control *gdtc, struct dirty_throttle_control *mdtc, unsigned long start_time, bool update_ratelimit)1356 static void __wb_update_bandwidth(struct dirty_throttle_control *gdtc,
1357 				  struct dirty_throttle_control *mdtc,
1358 				  unsigned long start_time,
1359 				  bool update_ratelimit)
1360 {
1361 	struct bdi_writeback *wb = gdtc->wb;
1362 	unsigned long now = jiffies;
1363 	unsigned long elapsed = now - wb->bw_time_stamp;
1364 	unsigned long dirtied;
1365 	unsigned long written;
1366 
1367 	lockdep_assert_held(&wb->list_lock);
1368 
1369 	/*
1370 	 * rate-limit, only update once every 200ms.
1371 	 */
1372 	if (elapsed < BANDWIDTH_INTERVAL)
1373 		return;
1374 
1375 	dirtied = percpu_counter_read(&wb->stat[WB_DIRTIED]);
1376 	written = percpu_counter_read(&wb->stat[WB_WRITTEN]);
1377 
1378 	/*
1379 	 * Skip quiet periods when disk bandwidth is under-utilized.
1380 	 * (at least 1s idle time between two flusher runs)
1381 	 */
1382 	if (elapsed > HZ && time_before(wb->bw_time_stamp, start_time))
1383 		goto snapshot;
1384 
1385 	if (update_ratelimit) {
1386 		domain_update_bandwidth(gdtc, now);
1387 		wb_update_dirty_ratelimit(gdtc, dirtied, elapsed);
1388 
1389 		/*
1390 		 * @mdtc is always NULL if !CGROUP_WRITEBACK but the
1391 		 * compiler has no way to figure that out.  Help it.
1392 		 */
1393 		if (IS_ENABLED(CONFIG_CGROUP_WRITEBACK) && mdtc) {
1394 			domain_update_bandwidth(mdtc, now);
1395 			wb_update_dirty_ratelimit(mdtc, dirtied, elapsed);
1396 		}
1397 	}
1398 	wb_update_write_bandwidth(wb, elapsed, written);
1399 
1400 snapshot:
1401 	wb->dirtied_stamp = dirtied;
1402 	wb->written_stamp = written;
1403 	wb->bw_time_stamp = now;
1404 }
1405 
wb_update_bandwidth(struct bdi_writeback *wb, unsigned long start_time)1406 void wb_update_bandwidth(struct bdi_writeback *wb, unsigned long start_time)
1407 {
1408 	struct dirty_throttle_control gdtc = { GDTC_INIT(wb) };
1409 
1410 	__wb_update_bandwidth(&gdtc, NULL, start_time, false);
1411 }
1412 
1413 /*
1414  * After a task dirtied this many pages, balance_dirty_pages_ratelimited()
1415  * will look to see if it needs to start dirty throttling.
1416  *
1417  * If dirty_poll_interval is too low, big NUMA machines will call the expensive
1418  * global_zone_page_state() too often. So scale it near-sqrt to the safety margin
1419  * (the number of pages we may dirty without exceeding the dirty limits).
1420  */
dirty_poll_interval(unsigned long dirty, unsigned long thresh)1421 static unsigned long dirty_poll_interval(unsigned long dirty,
1422 					 unsigned long thresh)
1423 {
1424 	if (thresh > dirty)
1425 		return 1UL << (ilog2(thresh - dirty) >> 1);
1426 
1427 	return 1;
1428 }
1429 
wb_max_pause(struct bdi_writeback *wb, unsigned long wb_dirty)1430 static unsigned long wb_max_pause(struct bdi_writeback *wb,
1431 				  unsigned long wb_dirty)
1432 {
1433 	unsigned long bw = wb->avg_write_bandwidth;
1434 	unsigned long t;
1435 
1436 	/*
1437 	 * Limit pause time for small memory systems. If sleeping for too long
1438 	 * time, a small pool of dirty/writeback pages may go empty and disk go
1439 	 * idle.
1440 	 *
1441 	 * 8 serves as the safety ratio.
1442 	 */
1443 	t = wb_dirty / (1 + bw / roundup_pow_of_two(1 + HZ / 8));
1444 	t++;
1445 
1446 	return min_t(unsigned long, t, MAX_PAUSE);
1447 }
1448 
wb_min_pause(struct bdi_writeback *wb, long max_pause, unsigned long task_ratelimit, unsigned long dirty_ratelimit, int *nr_dirtied_pause)1449 static long wb_min_pause(struct bdi_writeback *wb,
1450 			 long max_pause,
1451 			 unsigned long task_ratelimit,
1452 			 unsigned long dirty_ratelimit,
1453 			 int *nr_dirtied_pause)
1454 {
1455 	long hi = ilog2(wb->avg_write_bandwidth);
1456 	long lo = ilog2(wb->dirty_ratelimit);
1457 	long t;		/* target pause */
1458 	long pause;	/* estimated next pause */
1459 	int pages;	/* target nr_dirtied_pause */
1460 
1461 	/* target for 10ms pause on 1-dd case */
1462 	t = max(1, HZ / 100);
1463 
1464 	/*
1465 	 * Scale up pause time for concurrent dirtiers in order to reduce CPU
1466 	 * overheads.
1467 	 *
1468 	 * (N * 10ms) on 2^N concurrent tasks.
1469 	 */
1470 	if (hi > lo)
1471 		t += (hi - lo) * (10 * HZ) / 1024;
1472 
1473 	/*
1474 	 * This is a bit convoluted. We try to base the next nr_dirtied_pause
1475 	 * on the much more stable dirty_ratelimit. However the next pause time
1476 	 * will be computed based on task_ratelimit and the two rate limits may
1477 	 * depart considerably at some time. Especially if task_ratelimit goes
1478 	 * below dirty_ratelimit/2 and the target pause is max_pause, the next
1479 	 * pause time will be max_pause*2 _trimmed down_ to max_pause.  As a
1480 	 * result task_ratelimit won't be executed faithfully, which could
1481 	 * eventually bring down dirty_ratelimit.
1482 	 *
1483 	 * We apply two rules to fix it up:
1484 	 * 1) try to estimate the next pause time and if necessary, use a lower
1485 	 *    nr_dirtied_pause so as not to exceed max_pause. When this happens,
1486 	 *    nr_dirtied_pause will be "dancing" with task_ratelimit.
1487 	 * 2) limit the target pause time to max_pause/2, so that the normal
1488 	 *    small fluctuations of task_ratelimit won't trigger rule (1) and
1489 	 *    nr_dirtied_pause will remain as stable as dirty_ratelimit.
1490 	 */
1491 	t = min(t, 1 + max_pause / 2);
1492 	pages = dirty_ratelimit * t / roundup_pow_of_two(HZ);
1493 
1494 	/*
1495 	 * Tiny nr_dirtied_pause is found to hurt I/O performance in the test
1496 	 * case fio-mmap-randwrite-64k, which does 16*{sync read, async write}.
1497 	 * When the 16 consecutive reads are often interrupted by some dirty
1498 	 * throttling pause during the async writes, cfq will go into idles
1499 	 * (deadline is fine). So push nr_dirtied_pause as high as possible
1500 	 * until reaches DIRTY_POLL_THRESH=32 pages.
1501 	 */
1502 	if (pages < DIRTY_POLL_THRESH) {
1503 		t = max_pause;
1504 		pages = dirty_ratelimit * t / roundup_pow_of_two(HZ);
1505 		if (pages > DIRTY_POLL_THRESH) {
1506 			pages = DIRTY_POLL_THRESH;
1507 			t = HZ * DIRTY_POLL_THRESH / dirty_ratelimit;
1508 		}
1509 	}
1510 
1511 	pause = HZ * pages / (task_ratelimit + 1);
1512 	if (pause > max_pause) {
1513 		t = max_pause;
1514 		pages = task_ratelimit * t / roundup_pow_of_two(HZ);
1515 	}
1516 
1517 	*nr_dirtied_pause = pages;
1518 	/*
1519 	 * The minimal pause time will normally be half the target pause time.
1520 	 */
1521 	return pages >= DIRTY_POLL_THRESH ? 1 + t / 2 : t;
1522 }
1523 
wb_dirty_limits(struct dirty_throttle_control *dtc)1524 static inline void wb_dirty_limits(struct dirty_throttle_control *dtc)
1525 {
1526 	struct bdi_writeback *wb = dtc->wb;
1527 	unsigned long wb_reclaimable;
1528 
1529 	/*
1530 	 * wb_thresh is not treated as some limiting factor as
1531 	 * dirty_thresh, due to reasons
1532 	 * - in JBOD setup, wb_thresh can fluctuate a lot
1533 	 * - in a system with HDD and USB key, the USB key may somehow
1534 	 *   go into state (wb_dirty >> wb_thresh) either because
1535 	 *   wb_dirty starts high, or because wb_thresh drops low.
1536 	 *   In this case we don't want to hard throttle the USB key
1537 	 *   dirtiers for 100 seconds until wb_dirty drops under
1538 	 *   wb_thresh. Instead the auxiliary wb control line in
1539 	 *   wb_position_ratio() will let the dirtier task progress
1540 	 *   at some rate <= (write_bw / 2) for bringing down wb_dirty.
1541 	 */
1542 	dtc->wb_thresh = __wb_calc_thresh(dtc);
1543 	dtc->wb_bg_thresh = dtc->thresh ?
1544 		div64_u64(dtc->wb_thresh * dtc->bg_thresh, dtc->thresh) : 0;
1545 
1546 	/*
1547 	 * In order to avoid the stacked BDI deadlock we need
1548 	 * to ensure we accurately count the 'dirty' pages when
1549 	 * the threshold is low.
1550 	 *
1551 	 * Otherwise it would be possible to get thresh+n pages
1552 	 * reported dirty, even though there are thresh-m pages
1553 	 * actually dirty; with m+n sitting in the percpu
1554 	 * deltas.
1555 	 */
1556 	if (dtc->wb_thresh < 2 * wb_stat_error()) {
1557 		wb_reclaimable = wb_stat_sum(wb, WB_RECLAIMABLE);
1558 		dtc->wb_dirty = wb_reclaimable + wb_stat_sum(wb, WB_WRITEBACK);
1559 	} else {
1560 		wb_reclaimable = wb_stat(wb, WB_RECLAIMABLE);
1561 		dtc->wb_dirty = wb_reclaimable + wb_stat(wb, WB_WRITEBACK);
1562 	}
1563 }
1564 
1565 /*
1566  * balance_dirty_pages() must be called by processes which are generating dirty
1567  * data.  It looks at the number of dirty pages in the machine and will force
1568  * the caller to wait once crossing the (background_thresh + dirty_thresh) / 2.
1569  * If we're over `background_thresh' then the writeback threads are woken to
1570  * perform some writeout.
1571  */
balance_dirty_pages(struct bdi_writeback *wb, unsigned long pages_dirtied)1572 static void balance_dirty_pages(struct bdi_writeback *wb,
1573 				unsigned long pages_dirtied)
1574 {
1575 	struct dirty_throttle_control gdtc_stor = { GDTC_INIT(wb) };
1576 	struct dirty_throttle_control mdtc_stor = { MDTC_INIT(wb, &gdtc_stor) };
1577 	struct dirty_throttle_control * const gdtc = &gdtc_stor;
1578 	struct dirty_throttle_control * const mdtc = mdtc_valid(&mdtc_stor) ?
1579 						     &mdtc_stor : NULL;
1580 	struct dirty_throttle_control *sdtc;
1581 	unsigned long nr_reclaimable;	/* = file_dirty */
1582 	long period;
1583 	long pause;
1584 	long max_pause;
1585 	long min_pause;
1586 	int nr_dirtied_pause;
1587 	bool dirty_exceeded = false;
1588 	unsigned long task_ratelimit;
1589 	unsigned long dirty_ratelimit;
1590 	struct backing_dev_info *bdi = wb->bdi;
1591 	bool strictlimit = bdi->capabilities & BDI_CAP_STRICTLIMIT;
1592 	unsigned long start_time = jiffies;
1593 
1594 	for (;;) {
1595 		unsigned long now = jiffies;
1596 		unsigned long dirty, thresh, bg_thresh;
1597 		unsigned long m_dirty = 0;	/* stop bogus uninit warnings */
1598 		unsigned long m_thresh = 0;
1599 		unsigned long m_bg_thresh = 0;
1600 
1601 		nr_reclaimable = global_node_page_state(NR_FILE_DIRTY);
1602 		gdtc->avail = global_dirtyable_memory();
1603 		gdtc->dirty = nr_reclaimable + global_node_page_state(NR_WRITEBACK);
1604 
1605 		domain_dirty_limits(gdtc);
1606 
1607 		if (unlikely(strictlimit)) {
1608 			wb_dirty_limits(gdtc);
1609 
1610 			dirty = gdtc->wb_dirty;
1611 			thresh = gdtc->wb_thresh;
1612 			bg_thresh = gdtc->wb_bg_thresh;
1613 		} else {
1614 			dirty = gdtc->dirty;
1615 			thresh = gdtc->thresh;
1616 			bg_thresh = gdtc->bg_thresh;
1617 		}
1618 
1619 		if (mdtc) {
1620 			unsigned long filepages, headroom, writeback;
1621 
1622 			/*
1623 			 * If @wb belongs to !root memcg, repeat the same
1624 			 * basic calculations for the memcg domain.
1625 			 */
1626 			mem_cgroup_wb_stats(wb, &filepages, &headroom,
1627 					    &mdtc->dirty, &writeback);
1628 			mdtc->dirty += writeback;
1629 			mdtc_calc_avail(mdtc, filepages, headroom);
1630 
1631 			domain_dirty_limits(mdtc);
1632 
1633 			if (unlikely(strictlimit)) {
1634 				wb_dirty_limits(mdtc);
1635 				m_dirty = mdtc->wb_dirty;
1636 				m_thresh = mdtc->wb_thresh;
1637 				m_bg_thresh = mdtc->wb_bg_thresh;
1638 			} else {
1639 				m_dirty = mdtc->dirty;
1640 				m_thresh = mdtc->thresh;
1641 				m_bg_thresh = mdtc->bg_thresh;
1642 			}
1643 		}
1644 
1645 		/*
1646 		 * Throttle it only when the background writeback cannot
1647 		 * catch-up. This avoids (excessively) small writeouts
1648 		 * when the wb limits are ramping up in case of !strictlimit.
1649 		 *
1650 		 * In strictlimit case make decision based on the wb counters
1651 		 * and limits. Small writeouts when the wb limits are ramping
1652 		 * up are the price we consciously pay for strictlimit-ing.
1653 		 *
1654 		 * If memcg domain is in effect, @dirty should be under
1655 		 * both global and memcg freerun ceilings.
1656 		 */
1657 		if (dirty <= dirty_freerun_ceiling(thresh, bg_thresh) &&
1658 		    (!mdtc ||
1659 		     m_dirty <= dirty_freerun_ceiling(m_thresh, m_bg_thresh))) {
1660 			unsigned long intv;
1661 			unsigned long m_intv;
1662 
1663 free_running:
1664 			intv = dirty_poll_interval(dirty, thresh);
1665 			m_intv = ULONG_MAX;
1666 
1667 			current->dirty_paused_when = now;
1668 			current->nr_dirtied = 0;
1669 			if (mdtc)
1670 				m_intv = dirty_poll_interval(m_dirty, m_thresh);
1671 			current->nr_dirtied_pause = min(intv, m_intv);
1672 			break;
1673 		}
1674 
1675 		if (unlikely(!writeback_in_progress(wb)))
1676 			wb_start_background_writeback(wb);
1677 
1678 		mem_cgroup_flush_foreign(wb);
1679 
1680 		/*
1681 		 * Calculate global domain's pos_ratio and select the
1682 		 * global dtc by default.
1683 		 */
1684 		if (!strictlimit) {
1685 			wb_dirty_limits(gdtc);
1686 
1687 			if ((current->flags & PF_LOCAL_THROTTLE) &&
1688 			    gdtc->wb_dirty <
1689 			    dirty_freerun_ceiling(gdtc->wb_thresh,
1690 						  gdtc->wb_bg_thresh))
1691 				/*
1692 				 * LOCAL_THROTTLE tasks must not be throttled
1693 				 * when below the per-wb freerun ceiling.
1694 				 */
1695 				goto free_running;
1696 		}
1697 
1698 		dirty_exceeded = (gdtc->wb_dirty > gdtc->wb_thresh) &&
1699 			((gdtc->dirty > gdtc->thresh) || strictlimit);
1700 
1701 		wb_position_ratio(gdtc);
1702 		sdtc = gdtc;
1703 
1704 		if (mdtc) {
1705 			/*
1706 			 * If memcg domain is in effect, calculate its
1707 			 * pos_ratio.  @wb should satisfy constraints from
1708 			 * both global and memcg domains.  Choose the one
1709 			 * w/ lower pos_ratio.
1710 			 */
1711 			if (!strictlimit) {
1712 				wb_dirty_limits(mdtc);
1713 
1714 				if ((current->flags & PF_LOCAL_THROTTLE) &&
1715 				    mdtc->wb_dirty <
1716 				    dirty_freerun_ceiling(mdtc->wb_thresh,
1717 							  mdtc->wb_bg_thresh))
1718 					/*
1719 					 * LOCAL_THROTTLE tasks must not be
1720 					 * throttled when below the per-wb
1721 					 * freerun ceiling.
1722 					 */
1723 					goto free_running;
1724 			}
1725 			dirty_exceeded |= (mdtc->wb_dirty > mdtc->wb_thresh) &&
1726 				((mdtc->dirty > mdtc->thresh) || strictlimit);
1727 
1728 			wb_position_ratio(mdtc);
1729 			if (mdtc->pos_ratio < gdtc->pos_ratio)
1730 				sdtc = mdtc;
1731 		}
1732 
1733 		if (dirty_exceeded && !wb->dirty_exceeded)
1734 			wb->dirty_exceeded = 1;
1735 
1736 		if (time_is_before_jiffies(wb->bw_time_stamp +
1737 					   BANDWIDTH_INTERVAL)) {
1738 			spin_lock(&wb->list_lock);
1739 			__wb_update_bandwidth(gdtc, mdtc, start_time, true);
1740 			spin_unlock(&wb->list_lock);
1741 		}
1742 
1743 		/* throttle according to the chosen dtc */
1744 		dirty_ratelimit = wb->dirty_ratelimit;
1745 		task_ratelimit = ((u64)dirty_ratelimit * sdtc->pos_ratio) >>
1746 							RATELIMIT_CALC_SHIFT;
1747 		max_pause = wb_max_pause(wb, sdtc->wb_dirty);
1748 		min_pause = wb_min_pause(wb, max_pause,
1749 					 task_ratelimit, dirty_ratelimit,
1750 					 &nr_dirtied_pause);
1751 
1752 		if (unlikely(task_ratelimit == 0)) {
1753 			period = max_pause;
1754 			pause = max_pause;
1755 			goto pause;
1756 		}
1757 		period = HZ * pages_dirtied / task_ratelimit;
1758 		pause = period;
1759 		if (current->dirty_paused_when)
1760 			pause -= now - current->dirty_paused_when;
1761 		/*
1762 		 * For less than 1s think time (ext3/4 may block the dirtier
1763 		 * for up to 800ms from time to time on 1-HDD; so does xfs,
1764 		 * however at much less frequency), try to compensate it in
1765 		 * future periods by updating the virtual time; otherwise just
1766 		 * do a reset, as it may be a light dirtier.
1767 		 */
1768 		if (pause < min_pause) {
1769 			trace_balance_dirty_pages(wb,
1770 						  sdtc->thresh,
1771 						  sdtc->bg_thresh,
1772 						  sdtc->dirty,
1773 						  sdtc->wb_thresh,
1774 						  sdtc->wb_dirty,
1775 						  dirty_ratelimit,
1776 						  task_ratelimit,
1777 						  pages_dirtied,
1778 						  period,
1779 						  min(pause, 0L),
1780 						  start_time);
1781 			if (pause < -HZ) {
1782 				current->dirty_paused_when = now;
1783 				current->nr_dirtied = 0;
1784 			} else if (period) {
1785 				current->dirty_paused_when += period;
1786 				current->nr_dirtied = 0;
1787 			} else if (current->nr_dirtied_pause <= pages_dirtied)
1788 				current->nr_dirtied_pause += pages_dirtied;
1789 			break;
1790 		}
1791 		if (unlikely(pause > max_pause)) {
1792 			/* for occasional dropped task_ratelimit */
1793 			now += min(pause - max_pause, max_pause);
1794 			pause = max_pause;
1795 		}
1796 
1797 pause:
1798 		trace_balance_dirty_pages(wb,
1799 					  sdtc->thresh,
1800 					  sdtc->bg_thresh,
1801 					  sdtc->dirty,
1802 					  sdtc->wb_thresh,
1803 					  sdtc->wb_dirty,
1804 					  dirty_ratelimit,
1805 					  task_ratelimit,
1806 					  pages_dirtied,
1807 					  period,
1808 					  pause,
1809 					  start_time);
1810 		__set_current_state(TASK_KILLABLE);
1811 		wb->dirty_sleep = now;
1812 		io_schedule_timeout(pause);
1813 
1814 		current->dirty_paused_when = now + pause;
1815 		current->nr_dirtied = 0;
1816 		current->nr_dirtied_pause = nr_dirtied_pause;
1817 
1818 		/*
1819 		 * This is typically equal to (dirty < thresh) and can also
1820 		 * keep "1000+ dd on a slow USB stick" under control.
1821 		 */
1822 		if (task_ratelimit)
1823 			break;
1824 
1825 		/*
1826 		 * In the case of an unresponding NFS server and the NFS dirty
1827 		 * pages exceeds dirty_thresh, give the other good wb's a pipe
1828 		 * to go through, so that tasks on them still remain responsive.
1829 		 *
1830 		 * In theory 1 page is enough to keep the consumer-producer
1831 		 * pipe going: the flusher cleans 1 page => the task dirties 1
1832 		 * more page. However wb_dirty has accounting errors.  So use
1833 		 * the larger and more IO friendly wb_stat_error.
1834 		 */
1835 		if (sdtc->wb_dirty <= wb_stat_error())
1836 			break;
1837 
1838 		if (fatal_signal_pending(current))
1839 			break;
1840 	}
1841 
1842 	if (!dirty_exceeded && wb->dirty_exceeded)
1843 		wb->dirty_exceeded = 0;
1844 
1845 	if (writeback_in_progress(wb))
1846 		return;
1847 
1848 	/*
1849 	 * In laptop mode, we wait until hitting the higher threshold before
1850 	 * starting background writeout, and then write out all the way down
1851 	 * to the lower threshold.  So slow writers cause minimal disk activity.
1852 	 *
1853 	 * In normal mode, we start background writeout at the lower
1854 	 * background_thresh, to keep the amount of dirty memory low.
1855 	 */
1856 	if (laptop_mode)
1857 		return;
1858 
1859 	if (nr_reclaimable > gdtc->bg_thresh)
1860 		wb_start_background_writeback(wb);
1861 }
1862 
1863 static DEFINE_PER_CPU(int, bdp_ratelimits);
1864 
1865 /*
1866  * Normal tasks are throttled by
1867  *	loop {
1868  *		dirty tsk->nr_dirtied_pause pages;
1869  *		take a snap in balance_dirty_pages();
1870  *	}
1871  * However there is a worst case. If every task exit immediately when dirtied
1872  * (tsk->nr_dirtied_pause - 1) pages, balance_dirty_pages() will never be
1873  * called to throttle the page dirties. The solution is to save the not yet
1874  * throttled page dirties in dirty_throttle_leaks on task exit and charge them
1875  * randomly into the running tasks. This works well for the above worst case,
1876  * as the new task will pick up and accumulate the old task's leaked dirty
1877  * count and eventually get throttled.
1878  */
1879 DEFINE_PER_CPU(int, dirty_throttle_leaks) = 0;
1880 
1881 /**
1882  * balance_dirty_pages_ratelimited - balance dirty memory state
1883  * @mapping: address_space which was dirtied
1884  *
1885  * Processes which are dirtying memory should call in here once for each page
1886  * which was newly dirtied.  The function will periodically check the system's
1887  * dirty state and will initiate writeback if needed.
1888  *
1889  * On really big machines, get_writeback_state is expensive, so try to avoid
1890  * calling it too often (ratelimiting).  But once we're over the dirty memory
1891  * limit we decrease the ratelimiting by a lot, to prevent individual processes
1892  * from overshooting the limit by (ratelimit_pages) each.
1893  */
balance_dirty_pages_ratelimited(struct address_space *mapping)1894 void balance_dirty_pages_ratelimited(struct address_space *mapping)
1895 {
1896 	struct inode *inode = mapping->host;
1897 	struct backing_dev_info *bdi = inode_to_bdi(inode);
1898 	struct bdi_writeback *wb = NULL;
1899 	int ratelimit;
1900 	int *p;
1901 
1902 	if (!(bdi->capabilities & BDI_CAP_WRITEBACK))
1903 		return;
1904 
1905 	if (inode_cgwb_enabled(inode))
1906 		wb = wb_get_create_current(bdi, GFP_KERNEL);
1907 	if (!wb)
1908 		wb = &bdi->wb;
1909 
1910 	ratelimit = current->nr_dirtied_pause;
1911 	if (wb->dirty_exceeded)
1912 		ratelimit = min(ratelimit, 32 >> (PAGE_SHIFT - 10));
1913 
1914 	preempt_disable();
1915 	/*
1916 	 * This prevents one CPU to accumulate too many dirtied pages without
1917 	 * calling into balance_dirty_pages(), which can happen when there are
1918 	 * 1000+ tasks, all of them start dirtying pages at exactly the same
1919 	 * time, hence all honoured too large initial task->nr_dirtied_pause.
1920 	 */
1921 	p =  this_cpu_ptr(&bdp_ratelimits);
1922 	if (unlikely(current->nr_dirtied >= ratelimit))
1923 		*p = 0;
1924 	else if (unlikely(*p >= ratelimit_pages)) {
1925 		*p = 0;
1926 		ratelimit = 0;
1927 	}
1928 	/*
1929 	 * Pick up the dirtied pages by the exited tasks. This avoids lots of
1930 	 * short-lived tasks (eg. gcc invocations in a kernel build) escaping
1931 	 * the dirty throttling and livelock other long-run dirtiers.
1932 	 */
1933 	p = this_cpu_ptr(&dirty_throttle_leaks);
1934 	if (*p > 0 && current->nr_dirtied < ratelimit) {
1935 		unsigned long nr_pages_dirtied;
1936 		nr_pages_dirtied = min(*p, ratelimit - current->nr_dirtied);
1937 		*p -= nr_pages_dirtied;
1938 		current->nr_dirtied += nr_pages_dirtied;
1939 	}
1940 	preempt_enable();
1941 
1942 	if (unlikely(current->nr_dirtied >= ratelimit))
1943 		balance_dirty_pages(wb, current->nr_dirtied);
1944 
1945 	wb_put(wb);
1946 }
1947 EXPORT_SYMBOL(balance_dirty_pages_ratelimited);
1948 
1949 /**
1950  * wb_over_bg_thresh - does @wb need to be written back?
1951  * @wb: bdi_writeback of interest
1952  *
1953  * Determines whether background writeback should keep writing @wb or it's
1954  * clean enough.
1955  *
1956  * Return: %true if writeback should continue.
1957  */
wb_over_bg_thresh(struct bdi_writeback *wb)1958 bool wb_over_bg_thresh(struct bdi_writeback *wb)
1959 {
1960 	struct dirty_throttle_control gdtc_stor = { GDTC_INIT(wb) };
1961 	struct dirty_throttle_control mdtc_stor = { MDTC_INIT(wb, &gdtc_stor) };
1962 	struct dirty_throttle_control * const gdtc = &gdtc_stor;
1963 	struct dirty_throttle_control * const mdtc = mdtc_valid(&mdtc_stor) ?
1964 						     &mdtc_stor : NULL;
1965 
1966 	/*
1967 	 * Similar to balance_dirty_pages() but ignores pages being written
1968 	 * as we're trying to decide whether to put more under writeback.
1969 	 */
1970 	gdtc->avail = global_dirtyable_memory();
1971 	gdtc->dirty = global_node_page_state(NR_FILE_DIRTY);
1972 	domain_dirty_limits(gdtc);
1973 
1974 	if (gdtc->dirty > gdtc->bg_thresh)
1975 		return true;
1976 
1977 	if (wb_stat(wb, WB_RECLAIMABLE) >
1978 	    wb_calc_thresh(gdtc->wb, gdtc->bg_thresh))
1979 		return true;
1980 
1981 	if (mdtc) {
1982 		unsigned long filepages, headroom, writeback;
1983 
1984 		mem_cgroup_wb_stats(wb, &filepages, &headroom, &mdtc->dirty,
1985 				    &writeback);
1986 		mdtc_calc_avail(mdtc, filepages, headroom);
1987 		domain_dirty_limits(mdtc);	/* ditto, ignore writeback */
1988 
1989 		if (mdtc->dirty > mdtc->bg_thresh)
1990 			return true;
1991 
1992 		if (wb_stat(wb, WB_RECLAIMABLE) >
1993 		    wb_calc_thresh(mdtc->wb, mdtc->bg_thresh))
1994 			return true;
1995 	}
1996 
1997 	return false;
1998 }
1999 
2000 /*
2001  * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs
2002  */
dirty_writeback_centisecs_handler(struct ctl_table *table, int write, void *buffer, size_t *length, loff_t *ppos)2003 int dirty_writeback_centisecs_handler(struct ctl_table *table, int write,
2004 		void *buffer, size_t *length, loff_t *ppos)
2005 {
2006 	unsigned int old_interval = dirty_writeback_interval;
2007 	int ret;
2008 
2009 	ret = proc_dointvec(table, write, buffer, length, ppos);
2010 
2011 	/*
2012 	 * Writing 0 to dirty_writeback_interval will disable periodic writeback
2013 	 * and a different non-zero value will wakeup the writeback threads.
2014 	 * wb_wakeup_delayed() would be more appropriate, but it's a pain to
2015 	 * iterate over all bdis and wbs.
2016 	 * The reason we do this is to make the change take effect immediately.
2017 	 */
2018 	if (!ret && write && dirty_writeback_interval &&
2019 		dirty_writeback_interval != old_interval)
2020 		wakeup_flusher_threads(WB_REASON_PERIODIC);
2021 
2022 	return ret;
2023 }
2024 
2025 #ifdef CONFIG_BLOCK
laptop_mode_timer_fn(struct timer_list *t)2026 void laptop_mode_timer_fn(struct timer_list *t)
2027 {
2028 	struct backing_dev_info *backing_dev_info =
2029 		from_timer(backing_dev_info, t, laptop_mode_wb_timer);
2030 
2031 	wakeup_flusher_threads_bdi(backing_dev_info, WB_REASON_LAPTOP_TIMER);
2032 }
2033 
2034 /*
2035  * We've spun up the disk and we're in laptop mode: schedule writeback
2036  * of all dirty data a few seconds from now.  If the flush is already scheduled
2037  * then push it back - the user is still using the disk.
2038  */
laptop_io_completion(struct backing_dev_info *info)2039 void laptop_io_completion(struct backing_dev_info *info)
2040 {
2041 	mod_timer(&info->laptop_mode_wb_timer, jiffies + laptop_mode);
2042 }
2043 
2044 /*
2045  * We're in laptop mode and we've just synced. The sync's writes will have
2046  * caused another writeback to be scheduled by laptop_io_completion.
2047  * Nothing needs to be written back anymore, so we unschedule the writeback.
2048  */
laptop_sync_completion(void)2049 void laptop_sync_completion(void)
2050 {
2051 	struct backing_dev_info *bdi;
2052 
2053 	rcu_read_lock();
2054 
2055 	list_for_each_entry_rcu(bdi, &bdi_list, bdi_list)
2056 		del_timer(&bdi->laptop_mode_wb_timer);
2057 
2058 	rcu_read_unlock();
2059 }
2060 #endif
2061 
2062 /*
2063  * If ratelimit_pages is too high then we can get into dirty-data overload
2064  * if a large number of processes all perform writes at the same time.
2065  * If it is too low then SMP machines will call the (expensive)
2066  * get_writeback_state too often.
2067  *
2068  * Here we set ratelimit_pages to a level which ensures that when all CPUs are
2069  * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory
2070  * thresholds.
2071  */
2072 
writeback_set_ratelimit(void)2073 void writeback_set_ratelimit(void)
2074 {
2075 	struct wb_domain *dom = &global_wb_domain;
2076 	unsigned long background_thresh;
2077 	unsigned long dirty_thresh;
2078 
2079 	global_dirty_limits(&background_thresh, &dirty_thresh);
2080 	dom->dirty_limit = dirty_thresh;
2081 	ratelimit_pages = dirty_thresh / (num_online_cpus() * 32);
2082 	if (ratelimit_pages < 16)
2083 		ratelimit_pages = 16;
2084 }
2085 
page_writeback_cpu_online(unsigned int cpu)2086 static int page_writeback_cpu_online(unsigned int cpu)
2087 {
2088 	writeback_set_ratelimit();
2089 	return 0;
2090 }
2091 
2092 /*
2093  * Called early on to tune the page writeback dirty limits.
2094  *
2095  * We used to scale dirty pages according to how total memory
2096  * related to pages that could be allocated for buffers.
2097  *
2098  * However, that was when we used "dirty_ratio" to scale with
2099  * all memory, and we don't do that any more. "dirty_ratio"
2100  * is now applied to total non-HIGHPAGE memory, and as such we can't
2101  * get into the old insane situation any more where we had
2102  * large amounts of dirty pages compared to a small amount of
2103  * non-HIGHMEM memory.
2104  *
2105  * But we might still want to scale the dirty_ratio by how
2106  * much memory the box has..
2107  */
page_writeback_init(void)2108 void __init page_writeback_init(void)
2109 {
2110 	BUG_ON(wb_domain_init(&global_wb_domain, GFP_KERNEL));
2111 
2112 	cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "mm/writeback:online",
2113 			  page_writeback_cpu_online, NULL);
2114 	cpuhp_setup_state(CPUHP_MM_WRITEBACK_DEAD, "mm/writeback:dead", NULL,
2115 			  page_writeback_cpu_online);
2116 }
2117 
2118 /**
2119  * tag_pages_for_writeback - tag pages to be written by write_cache_pages
2120  * @mapping: address space structure to write
2121  * @start: starting page index
2122  * @end: ending page index (inclusive)
2123  *
2124  * This function scans the page range from @start to @end (inclusive) and tags
2125  * all pages that have DIRTY tag set with a special TOWRITE tag. The idea is
2126  * that write_cache_pages (or whoever calls this function) will then use
2127  * TOWRITE tag to identify pages eligible for writeback.  This mechanism is
2128  * used to avoid livelocking of writeback by a process steadily creating new
2129  * dirty pages in the file (thus it is important for this function to be quick
2130  * so that it can tag pages faster than a dirtying process can create them).
2131  */
tag_pages_for_writeback(struct address_space *mapping, pgoff_t start, pgoff_t end)2132 void tag_pages_for_writeback(struct address_space *mapping,
2133 			     pgoff_t start, pgoff_t end)
2134 {
2135 	XA_STATE(xas, &mapping->i_pages, start);
2136 	unsigned int tagged = 0;
2137 	void *page;
2138 
2139 	xas_lock_irq(&xas);
2140 	xas_for_each_marked(&xas, page, end, PAGECACHE_TAG_DIRTY) {
2141 		xas_set_mark(&xas, PAGECACHE_TAG_TOWRITE);
2142 		if (++tagged % XA_CHECK_SCHED)
2143 			continue;
2144 
2145 		xas_pause(&xas);
2146 		xas_unlock_irq(&xas);
2147 		cond_resched();
2148 		xas_lock_irq(&xas);
2149 	}
2150 	xas_unlock_irq(&xas);
2151 }
2152 EXPORT_SYMBOL(tag_pages_for_writeback);
2153 
2154 /**
2155  * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
2156  * @mapping: address space structure to write
2157  * @wbc: subtract the number of written pages from *@wbc->nr_to_write
2158  * @writepage: function called for each page
2159  * @data: data passed to writepage function
2160  *
2161  * If a page is already under I/O, write_cache_pages() skips it, even
2162  * if it's dirty.  This is desirable behaviour for memory-cleaning writeback,
2163  * but it is INCORRECT for data-integrity system calls such as fsync().  fsync()
2164  * and msync() need to guarantee that all the data which was dirty at the time
2165  * the call was made get new I/O started against them.  If wbc->sync_mode is
2166  * WB_SYNC_ALL then we were called for data integrity and we must wait for
2167  * existing IO to complete.
2168  *
2169  * To avoid livelocks (when other process dirties new pages), we first tag
2170  * pages which should be written back with TOWRITE tag and only then start
2171  * writing them. For data-integrity sync we have to be careful so that we do
2172  * not miss some pages (e.g., because some other process has cleared TOWRITE
2173  * tag we set). The rule we follow is that TOWRITE tag can be cleared only
2174  * by the process clearing the DIRTY tag (and submitting the page for IO).
2175  *
2176  * To avoid deadlocks between range_cyclic writeback and callers that hold
2177  * pages in PageWriteback to aggregate IO until write_cache_pages() returns,
2178  * we do not loop back to the start of the file. Doing so causes a page
2179  * lock/page writeback access order inversion - we should only ever lock
2180  * multiple pages in ascending page->index order, and looping back to the start
2181  * of the file violates that rule and causes deadlocks.
2182  *
2183  * Return: %0 on success, negative error code otherwise
2184  */
write_cache_pages(struct address_space *mapping, struct writeback_control *wbc, writepage_t writepage, void *data)2185 int write_cache_pages(struct address_space *mapping,
2186 		      struct writeback_control *wbc, writepage_t writepage,
2187 		      void *data)
2188 {
2189 	int ret = 0;
2190 	int done = 0;
2191 	int error;
2192 	struct pagevec pvec;
2193 	int nr_pages;
2194 	pgoff_t index;
2195 	pgoff_t end;		/* Inclusive */
2196 	pgoff_t done_index;
2197 	int range_whole = 0;
2198 	xa_mark_t tag;
2199 
2200 	pagevec_init(&pvec);
2201 	if (wbc->range_cyclic) {
2202 		index = mapping->writeback_index; /* prev offset */
2203 		end = -1;
2204 	} else {
2205 		index = wbc->range_start >> PAGE_SHIFT;
2206 		end = wbc->range_end >> PAGE_SHIFT;
2207 		if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2208 			range_whole = 1;
2209 	}
2210 	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) {
2211 		tag_pages_for_writeback(mapping, index, end);
2212 		tag = PAGECACHE_TAG_TOWRITE;
2213 	} else {
2214 		tag = PAGECACHE_TAG_DIRTY;
2215 	}
2216 	done_index = index;
2217 	while (!done && (index <= end)) {
2218 		int i;
2219 
2220 		nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
2221 				tag);
2222 		if (nr_pages == 0)
2223 			break;
2224 
2225 		for (i = 0; i < nr_pages; i++) {
2226 			struct page *page = pvec.pages[i];
2227 
2228 			done_index = page->index;
2229 
2230 			lock_page(page);
2231 
2232 			/*
2233 			 * Page truncated or invalidated. We can freely skip it
2234 			 * then, even for data integrity operations: the page
2235 			 * has disappeared concurrently, so there could be no
2236 			 * real expectation of this data interity operation
2237 			 * even if there is now a new, dirty page at the same
2238 			 * pagecache address.
2239 			 */
2240 			if (unlikely(page->mapping != mapping)) {
2241 continue_unlock:
2242 				unlock_page(page);
2243 				continue;
2244 			}
2245 
2246 			if (!PageDirty(page)) {
2247 				/* someone wrote it for us */
2248 				goto continue_unlock;
2249 			}
2250 
2251 			if (PageWriteback(page)) {
2252 				if (wbc->sync_mode != WB_SYNC_NONE)
2253 					wait_on_page_writeback(page);
2254 				else
2255 					goto continue_unlock;
2256 			}
2257 
2258 			BUG_ON(PageWriteback(page));
2259 			if (!clear_page_dirty_for_io(page))
2260 				goto continue_unlock;
2261 
2262 			trace_wbc_writepage(wbc, inode_to_bdi(mapping->host));
2263 			error = (*writepage)(page, wbc, data);
2264 			if (unlikely(error)) {
2265 				/*
2266 				 * Handle errors according to the type of
2267 				 * writeback. There's no need to continue for
2268 				 * background writeback. Just push done_index
2269 				 * past this page so media errors won't choke
2270 				 * writeout for the entire file. For integrity
2271 				 * writeback, we must process the entire dirty
2272 				 * set regardless of errors because the fs may
2273 				 * still have state to clear for each page. In
2274 				 * that case we continue processing and return
2275 				 * the first error.
2276 				 */
2277 				if (error == AOP_WRITEPAGE_ACTIVATE) {
2278 					unlock_page(page);
2279 					error = 0;
2280 				} else if (wbc->sync_mode != WB_SYNC_ALL) {
2281 					ret = error;
2282 					done_index = page->index + 1;
2283 					done = 1;
2284 					break;
2285 				}
2286 				if (!ret)
2287 					ret = error;
2288 			}
2289 
2290 			/*
2291 			 * We stop writing back only if we are not doing
2292 			 * integrity sync. In case of integrity sync we have to
2293 			 * keep going until we have written all the pages
2294 			 * we tagged for writeback prior to entering this loop.
2295 			 */
2296 			if (--wbc->nr_to_write <= 0 &&
2297 			    wbc->sync_mode == WB_SYNC_NONE) {
2298 				done = 1;
2299 				break;
2300 			}
2301 		}
2302 		pagevec_release(&pvec);
2303 		cond_resched();
2304 	}
2305 
2306 	/*
2307 	 * If we hit the last page and there is more work to be done: wrap
2308 	 * back the index back to the start of the file for the next
2309 	 * time we are called.
2310 	 */
2311 	if (wbc->range_cyclic && !done)
2312 		done_index = 0;
2313 	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2314 		mapping->writeback_index = done_index;
2315 
2316 	return ret;
2317 }
2318 EXPORT_SYMBOL(write_cache_pages);
2319 
2320 /*
2321  * Function used by generic_writepages to call the real writepage
2322  * function and set the mapping flags on error
2323  */
__writepage(struct page *page, struct writeback_control *wbc, void *data)2324 static int __writepage(struct page *page, struct writeback_control *wbc,
2325 		       void *data)
2326 {
2327 	struct address_space *mapping = data;
2328 	int ret = mapping->a_ops->writepage(page, wbc);
2329 	mapping_set_error(mapping, ret);
2330 	return ret;
2331 }
2332 
2333 /**
2334  * generic_writepages - walk the list of dirty pages of the given address space and writepage() all of them.
2335  * @mapping: address space structure to write
2336  * @wbc: subtract the number of written pages from *@wbc->nr_to_write
2337  *
2338  * This is a library function, which implements the writepages()
2339  * address_space_operation.
2340  *
2341  * Return: %0 on success, negative error code otherwise
2342  */
generic_writepages(struct address_space *mapping, struct writeback_control *wbc)2343 int generic_writepages(struct address_space *mapping,
2344 		       struct writeback_control *wbc)
2345 {
2346 	struct blk_plug plug;
2347 	int ret;
2348 
2349 	/* deal with chardevs and other special file */
2350 	if (!mapping->a_ops->writepage)
2351 		return 0;
2352 
2353 	blk_start_plug(&plug);
2354 	ret = write_cache_pages(mapping, wbc, __writepage, mapping);
2355 	blk_finish_plug(&plug);
2356 	return ret;
2357 }
2358 
2359 EXPORT_SYMBOL(generic_writepages);
2360 
do_writepages(struct address_space *mapping, struct writeback_control *wbc)2361 int do_writepages(struct address_space *mapping, struct writeback_control *wbc)
2362 {
2363 	int ret;
2364 
2365 	if (wbc->nr_to_write <= 0)
2366 		return 0;
2367 	while (1) {
2368 		if (mapping->a_ops->writepages)
2369 			ret = mapping->a_ops->writepages(mapping, wbc);
2370 		else
2371 			ret = generic_writepages(mapping, wbc);
2372 		if ((ret != -ENOMEM) || (wbc->sync_mode != WB_SYNC_ALL))
2373 			break;
2374 		cond_resched();
2375 		congestion_wait(BLK_RW_ASYNC, HZ/50);
2376 	}
2377 	return ret;
2378 }
2379 
2380 /**
2381  * write_one_page - write out a single page and wait on I/O
2382  * @page: the page to write
2383  *
2384  * The page must be locked by the caller and will be unlocked upon return.
2385  *
2386  * Note that the mapping's AS_EIO/AS_ENOSPC flags will be cleared when this
2387  * function returns.
2388  *
2389  * Return: %0 on success, negative error code otherwise
2390  */
write_one_page(struct page *page)2391 int write_one_page(struct page *page)
2392 {
2393 	struct address_space *mapping = page->mapping;
2394 	int ret = 0;
2395 	struct writeback_control wbc = {
2396 		.sync_mode = WB_SYNC_ALL,
2397 		.nr_to_write = 1,
2398 	};
2399 
2400 	BUG_ON(!PageLocked(page));
2401 
2402 	wait_on_page_writeback(page);
2403 
2404 	if (clear_page_dirty_for_io(page)) {
2405 		get_page(page);
2406 		ret = mapping->a_ops->writepage(page, &wbc);
2407 		if (ret == 0)
2408 			wait_on_page_writeback(page);
2409 		put_page(page);
2410 	} else {
2411 		unlock_page(page);
2412 	}
2413 
2414 	if (!ret)
2415 		ret = filemap_check_errors(mapping);
2416 	return ret;
2417 }
2418 EXPORT_SYMBOL(write_one_page);
2419 
2420 /*
2421  * For address_spaces which do not use buffers nor write back.
2422  */
__set_page_dirty_no_writeback(struct page *page)2423 int __set_page_dirty_no_writeback(struct page *page)
2424 {
2425 	if (!PageDirty(page))
2426 		return !TestSetPageDirty(page);
2427 	return 0;
2428 }
2429 
2430 /*
2431  * Helper function for set_page_dirty family.
2432  *
2433  * Caller must hold lock_page_memcg().
2434  *
2435  * NOTE: This relies on being atomic wrt interrupts.
2436  */
account_page_dirtied(struct page *page, struct address_space *mapping)2437 void account_page_dirtied(struct page *page, struct address_space *mapping)
2438 {
2439 	struct inode *inode = mapping->host;
2440 
2441 	trace_writeback_dirty_page(page, mapping);
2442 
2443 	if (mapping_can_writeback(mapping)) {
2444 		struct bdi_writeback *wb;
2445 
2446 		inode_attach_wb(inode, page);
2447 		wb = inode_to_wb(inode);
2448 
2449 		__inc_lruvec_page_state(page, NR_FILE_DIRTY);
2450 		__inc_zone_page_state(page, NR_ZONE_WRITE_PENDING);
2451 		__inc_node_page_state(page, NR_DIRTIED);
2452 		inc_wb_stat(wb, WB_RECLAIMABLE);
2453 		inc_wb_stat(wb, WB_DIRTIED);
2454 		task_io_account_write(PAGE_SIZE);
2455 		current->nr_dirtied++;
2456 		this_cpu_inc(bdp_ratelimits);
2457 
2458 		mem_cgroup_track_foreign_dirty(page, wb);
2459 	}
2460 }
2461 
2462 /*
2463  * Helper function for deaccounting dirty page without writeback.
2464  *
2465  * Caller must hold lock_page_memcg().
2466  */
account_page_cleaned(struct page *page, struct address_space *mapping, struct bdi_writeback *wb)2467 void account_page_cleaned(struct page *page, struct address_space *mapping,
2468 			  struct bdi_writeback *wb)
2469 {
2470 	if (mapping_can_writeback(mapping)) {
2471 		dec_lruvec_page_state(page, NR_FILE_DIRTY);
2472 		dec_zone_page_state(page, NR_ZONE_WRITE_PENDING);
2473 		dec_wb_stat(wb, WB_RECLAIMABLE);
2474 		task_io_account_cancelled_write(PAGE_SIZE);
2475 	}
2476 }
2477 
2478 /*
2479  * For address_spaces which do not use buffers.  Just tag the page as dirty in
2480  * the xarray.
2481  *
2482  * This is also used when a single buffer is being dirtied: we want to set the
2483  * page dirty in that case, but not all the buffers.  This is a "bottom-up"
2484  * dirtying, whereas __set_page_dirty_buffers() is a "top-down" dirtying.
2485  *
2486  * The caller must ensure this doesn't race with truncation.  Most will simply
2487  * hold the page lock, but e.g. zap_pte_range() calls with the page mapped and
2488  * the pte lock held, which also locks out truncation.
2489  */
__set_page_dirty_nobuffers(struct page *page)2490 int __set_page_dirty_nobuffers(struct page *page)
2491 {
2492 	lock_page_memcg(page);
2493 	if (!TestSetPageDirty(page)) {
2494 		struct address_space *mapping = page_mapping(page);
2495 		unsigned long flags;
2496 
2497 		if (!mapping) {
2498 			unlock_page_memcg(page);
2499 			return 1;
2500 		}
2501 
2502 		xa_lock_irqsave(&mapping->i_pages, flags);
2503 		BUG_ON(page_mapping(page) != mapping);
2504 		WARN_ON_ONCE(!PagePrivate(page) && !PageUptodate(page));
2505 		account_page_dirtied(page, mapping);
2506 		__xa_set_mark(&mapping->i_pages, page_index(page),
2507 				   PAGECACHE_TAG_DIRTY);
2508 		xa_unlock_irqrestore(&mapping->i_pages, flags);
2509 		unlock_page_memcg(page);
2510 
2511 		if (mapping->host) {
2512 			/* !PageAnon && !swapper_space */
2513 			__mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
2514 		}
2515 		return 1;
2516 	}
2517 	unlock_page_memcg(page);
2518 	return 0;
2519 }
2520 EXPORT_SYMBOL(__set_page_dirty_nobuffers);
2521 
2522 /*
2523  * Call this whenever redirtying a page, to de-account the dirty counters
2524  * (NR_DIRTIED, WB_DIRTIED, tsk->nr_dirtied), so that they match the written
2525  * counters (NR_WRITTEN, WB_WRITTEN) in long term. The mismatches will lead to
2526  * systematic errors in balanced_dirty_ratelimit and the dirty pages position
2527  * control.
2528  */
account_page_redirty(struct page *page)2529 void account_page_redirty(struct page *page)
2530 {
2531 	struct address_space *mapping = page->mapping;
2532 
2533 	if (mapping && mapping_can_writeback(mapping)) {
2534 		struct inode *inode = mapping->host;
2535 		struct bdi_writeback *wb;
2536 		struct wb_lock_cookie cookie = {};
2537 
2538 		wb = unlocked_inode_to_wb_begin(inode, &cookie);
2539 		current->nr_dirtied--;
2540 		dec_node_page_state(page, NR_DIRTIED);
2541 		dec_wb_stat(wb, WB_DIRTIED);
2542 		unlocked_inode_to_wb_end(inode, &cookie);
2543 	}
2544 }
2545 EXPORT_SYMBOL(account_page_redirty);
2546 
2547 /*
2548  * When a writepage implementation decides that it doesn't want to write this
2549  * page for some reason, it should redirty the locked page via
2550  * redirty_page_for_writepage() and it should then unlock the page and return 0
2551  */
redirty_page_for_writepage(struct writeback_control *wbc, struct page *page)2552 int redirty_page_for_writepage(struct writeback_control *wbc, struct page *page)
2553 {
2554 	int ret;
2555 
2556 	wbc->pages_skipped++;
2557 	ret = __set_page_dirty_nobuffers(page);
2558 	account_page_redirty(page);
2559 	return ret;
2560 }
2561 EXPORT_SYMBOL(redirty_page_for_writepage);
2562 
2563 /*
2564  * Dirty a page.
2565  *
2566  * For pages with a mapping this should be done under the page lock
2567  * for the benefit of asynchronous memory errors who prefer a consistent
2568  * dirty state. This rule can be broken in some special cases,
2569  * but should be better not to.
2570  *
2571  * If the mapping doesn't provide a set_page_dirty a_op, then
2572  * just fall through and assume that it wants buffer_heads.
2573  */
set_page_dirty(struct page *page)2574 int set_page_dirty(struct page *page)
2575 {
2576 	struct address_space *mapping = page_mapping(page);
2577 
2578 	page = compound_head(page);
2579 	if (likely(mapping)) {
2580 		int (*spd)(struct page *) = mapping->a_ops->set_page_dirty;
2581 		/*
2582 		 * readahead/lru_deactivate_page could remain
2583 		 * PG_readahead/PG_reclaim due to race with end_page_writeback
2584 		 * About readahead, if the page is written, the flags would be
2585 		 * reset. So no problem.
2586 		 * About lru_deactivate_page, if the page is redirty, the flag
2587 		 * will be reset. So no problem. but if the page is used by readahead
2588 		 * it will confuse readahead and make it restart the size rampup
2589 		 * process. But it's a trivial problem.
2590 		 */
2591 		if (PageReclaim(page))
2592 			ClearPageReclaim(page);
2593 #ifdef CONFIG_BLOCK
2594 		if (!spd)
2595 			spd = __set_page_dirty_buffers;
2596 #endif
2597 		return (*spd)(page);
2598 	}
2599 	if (!PageDirty(page)) {
2600 		if (!TestSetPageDirty(page))
2601 			return 1;
2602 	}
2603 	return 0;
2604 }
2605 EXPORT_SYMBOL(set_page_dirty);
2606 
2607 /*
2608  * set_page_dirty() is racy if the caller has no reference against
2609  * page->mapping->host, and if the page is unlocked.  This is because another
2610  * CPU could truncate the page off the mapping and then free the mapping.
2611  *
2612  * Usually, the page _is_ locked, or the caller is a user-space process which
2613  * holds a reference on the inode by having an open file.
2614  *
2615  * In other cases, the page should be locked before running set_page_dirty().
2616  */
set_page_dirty_lock(struct page *page)2617 int set_page_dirty_lock(struct page *page)
2618 {
2619 	int ret;
2620 
2621 	lock_page(page);
2622 	ret = set_page_dirty(page);
2623 	unlock_page(page);
2624 	return ret;
2625 }
2626 EXPORT_SYMBOL(set_page_dirty_lock);
2627 
2628 /*
2629  * This cancels just the dirty bit on the kernel page itself, it does NOT
2630  * actually remove dirty bits on any mmap's that may be around. It also
2631  * leaves the page tagged dirty, so any sync activity will still find it on
2632  * the dirty lists, and in particular, clear_page_dirty_for_io() will still
2633  * look at the dirty bits in the VM.
2634  *
2635  * Doing this should *normally* only ever be done when a page is truncated,
2636  * and is not actually mapped anywhere at all. However, fs/buffer.c does
2637  * this when it notices that somebody has cleaned out all the buffers on a
2638  * page without actually doing it through the VM. Can you say "ext3 is
2639  * horribly ugly"? Thought you could.
2640  */
__cancel_dirty_page(struct page *page)2641 void __cancel_dirty_page(struct page *page)
2642 {
2643 	struct address_space *mapping = page_mapping(page);
2644 
2645 	if (mapping_can_writeback(mapping)) {
2646 		struct inode *inode = mapping->host;
2647 		struct bdi_writeback *wb;
2648 		struct wb_lock_cookie cookie = {};
2649 
2650 		lock_page_memcg(page);
2651 		wb = unlocked_inode_to_wb_begin(inode, &cookie);
2652 
2653 		if (TestClearPageDirty(page))
2654 			account_page_cleaned(page, mapping, wb);
2655 
2656 		unlocked_inode_to_wb_end(inode, &cookie);
2657 		unlock_page_memcg(page);
2658 	} else {
2659 		ClearPageDirty(page);
2660 	}
2661 }
2662 EXPORT_SYMBOL(__cancel_dirty_page);
2663 
2664 /*
2665  * Clear a page's dirty flag, while caring for dirty memory accounting.
2666  * Returns true if the page was previously dirty.
2667  *
2668  * This is for preparing to put the page under writeout.  We leave the page
2669  * tagged as dirty in the xarray so that a concurrent write-for-sync
2670  * can discover it via a PAGECACHE_TAG_DIRTY walk.  The ->writepage
2671  * implementation will run either set_page_writeback() or set_page_dirty(),
2672  * at which stage we bring the page's dirty flag and xarray dirty tag
2673  * back into sync.
2674  *
2675  * This incoherency between the page's dirty flag and xarray tag is
2676  * unfortunate, but it only exists while the page is locked.
2677  */
clear_page_dirty_for_io(struct page *page)2678 int clear_page_dirty_for_io(struct page *page)
2679 {
2680 	struct address_space *mapping = page_mapping(page);
2681 	int ret = 0;
2682 
2683 	VM_BUG_ON_PAGE(!PageLocked(page), page);
2684 
2685 	if (mapping && mapping_can_writeback(mapping)) {
2686 		struct inode *inode = mapping->host;
2687 		struct bdi_writeback *wb;
2688 		struct wb_lock_cookie cookie = {};
2689 
2690 		/*
2691 		 * Yes, Virginia, this is indeed insane.
2692 		 *
2693 		 * We use this sequence to make sure that
2694 		 *  (a) we account for dirty stats properly
2695 		 *  (b) we tell the low-level filesystem to
2696 		 *      mark the whole page dirty if it was
2697 		 *      dirty in a pagetable. Only to then
2698 		 *  (c) clean the page again and return 1 to
2699 		 *      cause the writeback.
2700 		 *
2701 		 * This way we avoid all nasty races with the
2702 		 * dirty bit in multiple places and clearing
2703 		 * them concurrently from different threads.
2704 		 *
2705 		 * Note! Normally the "set_page_dirty(page)"
2706 		 * has no effect on the actual dirty bit - since
2707 		 * that will already usually be set. But we
2708 		 * need the side effects, and it can help us
2709 		 * avoid races.
2710 		 *
2711 		 * We basically use the page "master dirty bit"
2712 		 * as a serialization point for all the different
2713 		 * threads doing their things.
2714 		 */
2715 		if (page_mkclean(page))
2716 			set_page_dirty(page);
2717 		/*
2718 		 * We carefully synchronise fault handlers against
2719 		 * installing a dirty pte and marking the page dirty
2720 		 * at this point.  We do this by having them hold the
2721 		 * page lock while dirtying the page, and pages are
2722 		 * always locked coming in here, so we get the desired
2723 		 * exclusion.
2724 		 */
2725 		wb = unlocked_inode_to_wb_begin(inode, &cookie);
2726 		if (TestClearPageDirty(page)) {
2727 			dec_lruvec_page_state(page, NR_FILE_DIRTY);
2728 			dec_zone_page_state(page, NR_ZONE_WRITE_PENDING);
2729 			dec_wb_stat(wb, WB_RECLAIMABLE);
2730 			ret = 1;
2731 		}
2732 		unlocked_inode_to_wb_end(inode, &cookie);
2733 		return ret;
2734 	}
2735 	return TestClearPageDirty(page);
2736 }
2737 EXPORT_SYMBOL(clear_page_dirty_for_io);
2738 
test_clear_page_writeback(struct page *page)2739 int test_clear_page_writeback(struct page *page)
2740 {
2741 	struct address_space *mapping = page_mapping(page);
2742 	struct mem_cgroup *memcg;
2743 	struct lruvec *lruvec;
2744 	int ret;
2745 
2746 	memcg = lock_page_memcg(page);
2747 	lruvec = mem_cgroup_page_lruvec(page, page_pgdat(page));
2748 	if (mapping && mapping_use_writeback_tags(mapping)) {
2749 		struct inode *inode = mapping->host;
2750 		struct backing_dev_info *bdi = inode_to_bdi(inode);
2751 		unsigned long flags;
2752 
2753 		xa_lock_irqsave(&mapping->i_pages, flags);
2754 		ret = TestClearPageWriteback(page);
2755 		if (ret) {
2756 			__xa_clear_mark(&mapping->i_pages, page_index(page),
2757 						PAGECACHE_TAG_WRITEBACK);
2758 			if (bdi->capabilities & BDI_CAP_WRITEBACK_ACCT) {
2759 				struct bdi_writeback *wb = inode_to_wb(inode);
2760 
2761 				dec_wb_stat(wb, WB_WRITEBACK);
2762 				__wb_writeout_inc(wb);
2763 			}
2764 		}
2765 
2766 		if (mapping->host && !mapping_tagged(mapping,
2767 						     PAGECACHE_TAG_WRITEBACK))
2768 			sb_clear_inode_writeback(mapping->host);
2769 
2770 		xa_unlock_irqrestore(&mapping->i_pages, flags);
2771 	} else {
2772 		ret = TestClearPageWriteback(page);
2773 	}
2774 	if (ret) {
2775 		dec_lruvec_state(lruvec, NR_WRITEBACK);
2776 		dec_zone_page_state(page, NR_ZONE_WRITE_PENDING);
2777 		inc_node_page_state(page, NR_WRITTEN);
2778 	}
2779 	__unlock_page_memcg(memcg);
2780 	return ret;
2781 }
2782 
__test_set_page_writeback(struct page *page, bool keep_write)2783 int __test_set_page_writeback(struct page *page, bool keep_write)
2784 {
2785 	struct address_space *mapping = page_mapping(page);
2786 	int ret, access_ret;
2787 
2788 	lock_page_memcg(page);
2789 	if (mapping && mapping_use_writeback_tags(mapping)) {
2790 		XA_STATE(xas, &mapping->i_pages, page_index(page));
2791 		struct inode *inode = mapping->host;
2792 		struct backing_dev_info *bdi = inode_to_bdi(inode);
2793 		unsigned long flags;
2794 
2795 		xas_lock_irqsave(&xas, flags);
2796 		xas_load(&xas);
2797 		ret = TestSetPageWriteback(page);
2798 		if (!ret) {
2799 			bool on_wblist;
2800 
2801 			on_wblist = mapping_tagged(mapping,
2802 						   PAGECACHE_TAG_WRITEBACK);
2803 
2804 			xas_set_mark(&xas, PAGECACHE_TAG_WRITEBACK);
2805 			if (bdi->capabilities & BDI_CAP_WRITEBACK_ACCT)
2806 				inc_wb_stat(inode_to_wb(inode), WB_WRITEBACK);
2807 
2808 			/*
2809 			 * We can come through here when swapping anonymous
2810 			 * pages, so we don't necessarily have an inode to track
2811 			 * for sync.
2812 			 */
2813 			if (mapping->host && !on_wblist)
2814 				sb_mark_inode_writeback(mapping->host);
2815 		}
2816 		if (!PageDirty(page))
2817 			xas_clear_mark(&xas, PAGECACHE_TAG_DIRTY);
2818 		if (!keep_write)
2819 			xas_clear_mark(&xas, PAGECACHE_TAG_TOWRITE);
2820 		xas_unlock_irqrestore(&xas, flags);
2821 	} else {
2822 		ret = TestSetPageWriteback(page);
2823 	}
2824 	if (!ret) {
2825 		inc_lruvec_page_state(page, NR_WRITEBACK);
2826 		inc_zone_page_state(page, NR_ZONE_WRITE_PENDING);
2827 	}
2828 	unlock_page_memcg(page);
2829 	access_ret = arch_make_page_accessible(page);
2830 	/*
2831 	 * If writeback has been triggered on a page that cannot be made
2832 	 * accessible, it is too late to recover here.
2833 	 */
2834 	VM_BUG_ON_PAGE(access_ret != 0, page);
2835 
2836 	return ret;
2837 
2838 }
2839 EXPORT_SYMBOL(__test_set_page_writeback);
2840 
2841 /*
2842  * Wait for a page to complete writeback
2843  */
wait_on_page_writeback(struct page *page)2844 void wait_on_page_writeback(struct page *page)
2845 {
2846 	while (PageWriteback(page)) {
2847 		trace_wait_on_page_writeback(page, page_mapping(page));
2848 		wait_on_page_bit(page, PG_writeback);
2849 	}
2850 }
2851 EXPORT_SYMBOL_GPL(wait_on_page_writeback);
2852 
2853 /**
2854  * wait_for_stable_page() - wait for writeback to finish, if necessary.
2855  * @page:	The page to wait on.
2856  *
2857  * This function determines if the given page is related to a backing device
2858  * that requires page contents to be held stable during writeback.  If so, then
2859  * it will wait for any pending writeback to complete.
2860  */
wait_for_stable_page(struct page *page)2861 void wait_for_stable_page(struct page *page)
2862 {
2863 	page = thp_head(page);
2864 	if (page->mapping->host->i_sb->s_iflags & SB_I_STABLE_WRITES)
2865 		wait_on_page_writeback(page);
2866 }
2867 EXPORT_SYMBOL_GPL(wait_for_stable_page);
2868