1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Functions to manage eBPF programs attached to cgroups
4  *
5  * Copyright (c) 2016 Daniel Mack
6  */
7 
8 #include <linux/kernel.h>
9 #include <linux/atomic.h>
10 #include <linux/cgroup.h>
11 #include <linux/filter.h>
12 #include <linux/slab.h>
13 #include <linux/sysctl.h>
14 #include <linux/string.h>
15 #include <linux/bpf.h>
16 #include <linux/bpf-cgroup.h>
17 #include <net/sock.h>
18 #include <net/bpf_sk_storage.h>
19 
20 #include "../cgroup/cgroup-internal.h"
21 
22 DEFINE_STATIC_KEY_FALSE(cgroup_bpf_enabled_key);
23 EXPORT_SYMBOL(cgroup_bpf_enabled_key);
24 
cgroup_bpf_offline(struct cgroup *cgrp)25 void cgroup_bpf_offline(struct cgroup *cgrp)
26 {
27 	cgroup_get(cgrp);
28 	percpu_ref_kill(&cgrp->bpf.refcnt);
29 }
30 
bpf_cgroup_storages_free(struct bpf_cgroup_storage *storages[])31 static void bpf_cgroup_storages_free(struct bpf_cgroup_storage *storages[])
32 {
33 	enum bpf_cgroup_storage_type stype;
34 
35 	for_each_cgroup_storage_type(stype)
36 		bpf_cgroup_storage_free(storages[stype]);
37 }
38 
bpf_cgroup_storages_alloc(struct bpf_cgroup_storage *storages[], struct bpf_cgroup_storage *new_storages[], enum bpf_attach_type type, struct bpf_prog *prog, struct cgroup *cgrp)39 static int bpf_cgroup_storages_alloc(struct bpf_cgroup_storage *storages[],
40 				     struct bpf_cgroup_storage *new_storages[],
41 				     enum bpf_attach_type type,
42 				     struct bpf_prog *prog,
43 				     struct cgroup *cgrp)
44 {
45 	enum bpf_cgroup_storage_type stype;
46 	struct bpf_cgroup_storage_key key;
47 	struct bpf_map *map;
48 
49 	key.cgroup_inode_id = cgroup_id(cgrp);
50 	key.attach_type = type;
51 
52 	for_each_cgroup_storage_type(stype) {
53 		map = prog->aux->cgroup_storage[stype];
54 		if (!map)
55 			continue;
56 
57 		storages[stype] = cgroup_storage_lookup((void *)map, &key, false);
58 		if (storages[stype])
59 			continue;
60 
61 		storages[stype] = bpf_cgroup_storage_alloc(prog, stype);
62 		if (IS_ERR(storages[stype])) {
63 			bpf_cgroup_storages_free(new_storages);
64 			return -ENOMEM;
65 		}
66 
67 		new_storages[stype] = storages[stype];
68 	}
69 
70 	return 0;
71 }
72 
bpf_cgroup_storages_assign(struct bpf_cgroup_storage *dst[], struct bpf_cgroup_storage *src[])73 static void bpf_cgroup_storages_assign(struct bpf_cgroup_storage *dst[],
74 				       struct bpf_cgroup_storage *src[])
75 {
76 	enum bpf_cgroup_storage_type stype;
77 
78 	for_each_cgroup_storage_type(stype)
79 		dst[stype] = src[stype];
80 }
81 
bpf_cgroup_storages_link(struct bpf_cgroup_storage *storages[], struct cgroup *cgrp, enum bpf_attach_type attach_type)82 static void bpf_cgroup_storages_link(struct bpf_cgroup_storage *storages[],
83 				     struct cgroup *cgrp,
84 				     enum bpf_attach_type attach_type)
85 {
86 	enum bpf_cgroup_storage_type stype;
87 
88 	for_each_cgroup_storage_type(stype)
89 		bpf_cgroup_storage_link(storages[stype], cgrp, attach_type);
90 }
91 
92 /* Called when bpf_cgroup_link is auto-detached from dying cgroup.
93  * It drops cgroup and bpf_prog refcounts, and marks bpf_link as defunct. It
94  * doesn't free link memory, which will eventually be done by bpf_link's
95  * release() callback, when its last FD is closed.
96  */
bpf_cgroup_link_auto_detach(struct bpf_cgroup_link *link)97 static void bpf_cgroup_link_auto_detach(struct bpf_cgroup_link *link)
98 {
99 	cgroup_put(link->cgroup);
100 	link->cgroup = NULL;
101 }
102 
103 /**
104  * cgroup_bpf_release() - put references of all bpf programs and
105  *                        release all cgroup bpf data
106  * @work: work structure embedded into the cgroup to modify
107  */
cgroup_bpf_release(struct work_struct *work)108 static void cgroup_bpf_release(struct work_struct *work)
109 {
110 	struct cgroup *p, *cgrp = container_of(work, struct cgroup,
111 					       bpf.release_work);
112 	struct bpf_prog_array *old_array;
113 	struct list_head *storages = &cgrp->bpf.storages;
114 	struct bpf_cgroup_storage *storage, *stmp;
115 
116 	unsigned int type;
117 
118 	mutex_lock(&cgroup_mutex);
119 
120 	for (type = 0; type < ARRAY_SIZE(cgrp->bpf.progs); type++) {
121 		struct list_head *progs = &cgrp->bpf.progs[type];
122 		struct bpf_prog_list *pl, *pltmp;
123 
124 		list_for_each_entry_safe(pl, pltmp, progs, node) {
125 			list_del(&pl->node);
126 			if (pl->prog)
127 				bpf_prog_put(pl->prog);
128 			if (pl->link)
129 				bpf_cgroup_link_auto_detach(pl->link);
130 			kfree(pl);
131 			static_branch_dec(&cgroup_bpf_enabled_key);
132 		}
133 		old_array = rcu_dereference_protected(
134 				cgrp->bpf.effective[type],
135 				lockdep_is_held(&cgroup_mutex));
136 		bpf_prog_array_free(old_array);
137 	}
138 
139 	list_for_each_entry_safe(storage, stmp, storages, list_cg) {
140 		bpf_cgroup_storage_unlink(storage);
141 		bpf_cgroup_storage_free(storage);
142 	}
143 
144 	mutex_unlock(&cgroup_mutex);
145 
146 	for (p = cgroup_parent(cgrp); p; p = cgroup_parent(p))
147 		cgroup_bpf_put(p);
148 
149 	percpu_ref_exit(&cgrp->bpf.refcnt);
150 	cgroup_put(cgrp);
151 }
152 
153 /**
154  * cgroup_bpf_release_fn() - callback used to schedule releasing
155  *                           of bpf cgroup data
156  * @ref: percpu ref counter structure
157  */
cgroup_bpf_release_fn(struct percpu_ref *ref)158 static void cgroup_bpf_release_fn(struct percpu_ref *ref)
159 {
160 	struct cgroup *cgrp = container_of(ref, struct cgroup, bpf.refcnt);
161 
162 	INIT_WORK(&cgrp->bpf.release_work, cgroup_bpf_release);
163 	queue_work(system_wq, &cgrp->bpf.release_work);
164 }
165 
166 /* Get underlying bpf_prog of bpf_prog_list entry, regardless if it's through
167  * link or direct prog.
168  */
prog_list_prog(struct bpf_prog_list *pl)169 static struct bpf_prog *prog_list_prog(struct bpf_prog_list *pl)
170 {
171 	if (pl->prog)
172 		return pl->prog;
173 	if (pl->link)
174 		return pl->link->link.prog;
175 	return NULL;
176 }
177 
178 /* count number of elements in the list.
179  * it's slow but the list cannot be long
180  */
prog_list_length(struct list_head *head)181 static u32 prog_list_length(struct list_head *head)
182 {
183 	struct bpf_prog_list *pl;
184 	u32 cnt = 0;
185 
186 	list_for_each_entry(pl, head, node) {
187 		if (!prog_list_prog(pl))
188 			continue;
189 		cnt++;
190 	}
191 	return cnt;
192 }
193 
194 /* if parent has non-overridable prog attached,
195  * disallow attaching new programs to the descendent cgroup.
196  * if parent has overridable or multi-prog, allow attaching
197  */
hierarchy_allows_attach(struct cgroup *cgrp, enum bpf_attach_type type)198 static bool hierarchy_allows_attach(struct cgroup *cgrp,
199 				    enum bpf_attach_type type)
200 {
201 	struct cgroup *p;
202 
203 	p = cgroup_parent(cgrp);
204 	if (!p)
205 		return true;
206 	do {
207 		u32 flags = p->bpf.flags[type];
208 		u32 cnt;
209 
210 		if (flags & BPF_F_ALLOW_MULTI)
211 			return true;
212 		cnt = prog_list_length(&p->bpf.progs[type]);
213 		WARN_ON_ONCE(cnt > 1);
214 		if (cnt == 1)
215 			return !!(flags & BPF_F_ALLOW_OVERRIDE);
216 		p = cgroup_parent(p);
217 	} while (p);
218 	return true;
219 }
220 
221 /* compute a chain of effective programs for a given cgroup:
222  * start from the list of programs in this cgroup and add
223  * all parent programs.
224  * Note that parent's F_ALLOW_OVERRIDE-type program is yielding
225  * to programs in this cgroup
226  */
compute_effective_progs(struct cgroup *cgrp, enum bpf_attach_type type, struct bpf_prog_array **array)227 static int compute_effective_progs(struct cgroup *cgrp,
228 				   enum bpf_attach_type type,
229 				   struct bpf_prog_array **array)
230 {
231 	struct bpf_prog_array_item *item;
232 	struct bpf_prog_array *progs;
233 	struct bpf_prog_list *pl;
234 	struct cgroup *p = cgrp;
235 	int cnt = 0;
236 
237 	/* count number of effective programs by walking parents */
238 	do {
239 		if (cnt == 0 || (p->bpf.flags[type] & BPF_F_ALLOW_MULTI))
240 			cnt += prog_list_length(&p->bpf.progs[type]);
241 		p = cgroup_parent(p);
242 	} while (p);
243 
244 	progs = bpf_prog_array_alloc(cnt, GFP_KERNEL);
245 	if (!progs)
246 		return -ENOMEM;
247 
248 	/* populate the array with effective progs */
249 	cnt = 0;
250 	p = cgrp;
251 	do {
252 		if (cnt > 0 && !(p->bpf.flags[type] & BPF_F_ALLOW_MULTI))
253 			continue;
254 
255 		list_for_each_entry(pl, &p->bpf.progs[type], node) {
256 			if (!prog_list_prog(pl))
257 				continue;
258 
259 			item = &progs->items[cnt];
260 			item->prog = prog_list_prog(pl);
261 			bpf_cgroup_storages_assign(item->cgroup_storage,
262 						   pl->storage);
263 			cnt++;
264 		}
265 	} while ((p = cgroup_parent(p)));
266 
267 	*array = progs;
268 	return 0;
269 }
270 
activate_effective_progs(struct cgroup *cgrp, enum bpf_attach_type type, struct bpf_prog_array *old_array)271 static void activate_effective_progs(struct cgroup *cgrp,
272 				     enum bpf_attach_type type,
273 				     struct bpf_prog_array *old_array)
274 {
275 	old_array = rcu_replace_pointer(cgrp->bpf.effective[type], old_array,
276 					lockdep_is_held(&cgroup_mutex));
277 	/* free prog array after grace period, since __cgroup_bpf_run_*()
278 	 * might be still walking the array
279 	 */
280 	bpf_prog_array_free(old_array);
281 }
282 
283 /**
284  * cgroup_bpf_inherit() - inherit effective programs from parent
285  * @cgrp: the cgroup to modify
286  */
cgroup_bpf_inherit(struct cgroup *cgrp)287 int cgroup_bpf_inherit(struct cgroup *cgrp)
288 {
289 /* has to use marco instead of const int, since compiler thinks
290  * that array below is variable length
291  */
292 #define	NR ARRAY_SIZE(cgrp->bpf.effective)
293 	struct bpf_prog_array *arrays[NR] = {};
294 	struct cgroup *p;
295 	int ret, i;
296 
297 	ret = percpu_ref_init(&cgrp->bpf.refcnt, cgroup_bpf_release_fn, 0,
298 			      GFP_KERNEL);
299 	if (ret)
300 		return ret;
301 
302 	for (p = cgroup_parent(cgrp); p; p = cgroup_parent(p))
303 		cgroup_bpf_get(p);
304 
305 	for (i = 0; i < NR; i++)
306 		INIT_LIST_HEAD(&cgrp->bpf.progs[i]);
307 
308 	INIT_LIST_HEAD(&cgrp->bpf.storages);
309 
310 	for (i = 0; i < NR; i++)
311 		if (compute_effective_progs(cgrp, i, &arrays[i]))
312 			goto cleanup;
313 
314 	for (i = 0; i < NR; i++)
315 		activate_effective_progs(cgrp, i, arrays[i]);
316 
317 	return 0;
318 cleanup:
319 	for (i = 0; i < NR; i++)
320 		bpf_prog_array_free(arrays[i]);
321 
322 	for (p = cgroup_parent(cgrp); p; p = cgroup_parent(p))
323 		cgroup_bpf_put(p);
324 
325 	percpu_ref_exit(&cgrp->bpf.refcnt);
326 
327 	return -ENOMEM;
328 }
329 
update_effective_progs(struct cgroup *cgrp, enum bpf_attach_type type)330 static int update_effective_progs(struct cgroup *cgrp,
331 				  enum bpf_attach_type type)
332 {
333 	struct cgroup_subsys_state *css;
334 	int err;
335 
336 	/* allocate and recompute effective prog arrays */
337 	css_for_each_descendant_pre(css, &cgrp->self) {
338 		struct cgroup *desc = container_of(css, struct cgroup, self);
339 
340 		if (percpu_ref_is_zero(&desc->bpf.refcnt))
341 			continue;
342 
343 		err = compute_effective_progs(desc, type, &desc->bpf.inactive);
344 		if (err)
345 			goto cleanup;
346 	}
347 
348 	/* all allocations were successful. Activate all prog arrays */
349 	css_for_each_descendant_pre(css, &cgrp->self) {
350 		struct cgroup *desc = container_of(css, struct cgroup, self);
351 
352 		if (percpu_ref_is_zero(&desc->bpf.refcnt)) {
353 			if (unlikely(desc->bpf.inactive)) {
354 				bpf_prog_array_free(desc->bpf.inactive);
355 				desc->bpf.inactive = NULL;
356 			}
357 			continue;
358 		}
359 
360 		activate_effective_progs(desc, type, desc->bpf.inactive);
361 		desc->bpf.inactive = NULL;
362 	}
363 
364 	return 0;
365 
366 cleanup:
367 	/* oom while computing effective. Free all computed effective arrays
368 	 * since they were not activated
369 	 */
370 	css_for_each_descendant_pre(css, &cgrp->self) {
371 		struct cgroup *desc = container_of(css, struct cgroup, self);
372 
373 		bpf_prog_array_free(desc->bpf.inactive);
374 		desc->bpf.inactive = NULL;
375 	}
376 
377 	return err;
378 }
379 
380 #define BPF_CGROUP_MAX_PROGS 64
381 
find_attach_entry(struct list_head *progs, struct bpf_prog *prog, struct bpf_cgroup_link *link, struct bpf_prog *replace_prog, bool allow_multi)382 static struct bpf_prog_list *find_attach_entry(struct list_head *progs,
383 					       struct bpf_prog *prog,
384 					       struct bpf_cgroup_link *link,
385 					       struct bpf_prog *replace_prog,
386 					       bool allow_multi)
387 {
388 	struct bpf_prog_list *pl;
389 
390 	/* single-attach case */
391 	if (!allow_multi) {
392 		if (list_empty(progs))
393 			return NULL;
394 		return list_first_entry(progs, typeof(*pl), node);
395 	}
396 
397 	list_for_each_entry(pl, progs, node) {
398 		if (prog && pl->prog == prog && prog != replace_prog)
399 			/* disallow attaching the same prog twice */
400 			return ERR_PTR(-EINVAL);
401 		if (link && pl->link == link)
402 			/* disallow attaching the same link twice */
403 			return ERR_PTR(-EINVAL);
404 	}
405 
406 	/* direct prog multi-attach w/ replacement case */
407 	if (replace_prog) {
408 		list_for_each_entry(pl, progs, node) {
409 			if (pl->prog == replace_prog)
410 				/* a match found */
411 				return pl;
412 		}
413 		/* prog to replace not found for cgroup */
414 		return ERR_PTR(-ENOENT);
415 	}
416 
417 	return NULL;
418 }
419 
420 /**
421  * __cgroup_bpf_attach() - Attach the program or the link to a cgroup, and
422  *                         propagate the change to descendants
423  * @cgrp: The cgroup which descendants to traverse
424  * @prog: A program to attach
425  * @link: A link to attach
426  * @replace_prog: Previously attached program to replace if BPF_F_REPLACE is set
427  * @type: Type of attach operation
428  * @flags: Option flags
429  *
430  * Exactly one of @prog or @link can be non-null.
431  * Must be called with cgroup_mutex held.
432  */
__cgroup_bpf_attach(struct cgroup *cgrp, struct bpf_prog *prog, struct bpf_prog *replace_prog, struct bpf_cgroup_link *link, enum bpf_attach_type type, u32 flags)433 int __cgroup_bpf_attach(struct cgroup *cgrp,
434 			struct bpf_prog *prog, struct bpf_prog *replace_prog,
435 			struct bpf_cgroup_link *link,
436 			enum bpf_attach_type type, u32 flags)
437 {
438 	u32 saved_flags = (flags & (BPF_F_ALLOW_OVERRIDE | BPF_F_ALLOW_MULTI));
439 	struct list_head *progs = &cgrp->bpf.progs[type];
440 	struct bpf_prog *old_prog = NULL;
441 	struct bpf_cgroup_storage *storage[MAX_BPF_CGROUP_STORAGE_TYPE] = {};
442 	struct bpf_cgroup_storage *new_storage[MAX_BPF_CGROUP_STORAGE_TYPE] = {};
443 	struct bpf_prog_list *pl;
444 	int err;
445 
446 	if (((flags & BPF_F_ALLOW_OVERRIDE) && (flags & BPF_F_ALLOW_MULTI)) ||
447 	    ((flags & BPF_F_REPLACE) && !(flags & BPF_F_ALLOW_MULTI)))
448 		/* invalid combination */
449 		return -EINVAL;
450 	if (link && (prog || replace_prog))
451 		/* only either link or prog/replace_prog can be specified */
452 		return -EINVAL;
453 	if (!!replace_prog != !!(flags & BPF_F_REPLACE))
454 		/* replace_prog implies BPF_F_REPLACE, and vice versa */
455 		return -EINVAL;
456 
457 	if (!hierarchy_allows_attach(cgrp, type))
458 		return -EPERM;
459 
460 	if (!list_empty(progs) && cgrp->bpf.flags[type] != saved_flags)
461 		/* Disallow attaching non-overridable on top
462 		 * of existing overridable in this cgroup.
463 		 * Disallow attaching multi-prog if overridable or none
464 		 */
465 		return -EPERM;
466 
467 	if (prog_list_length(progs) >= BPF_CGROUP_MAX_PROGS)
468 		return -E2BIG;
469 
470 	pl = find_attach_entry(progs, prog, link, replace_prog,
471 			       flags & BPF_F_ALLOW_MULTI);
472 	if (IS_ERR(pl))
473 		return PTR_ERR(pl);
474 
475 	if (bpf_cgroup_storages_alloc(storage, new_storage, type,
476 				      prog ? : link->link.prog, cgrp))
477 		return -ENOMEM;
478 
479 	if (pl) {
480 		old_prog = pl->prog;
481 	} else {
482 		pl = kmalloc(sizeof(*pl), GFP_KERNEL);
483 		if (!pl) {
484 			bpf_cgroup_storages_free(new_storage);
485 			return -ENOMEM;
486 		}
487 		list_add_tail(&pl->node, progs);
488 	}
489 
490 	pl->prog = prog;
491 	pl->link = link;
492 	bpf_cgroup_storages_assign(pl->storage, storage);
493 	cgrp->bpf.flags[type] = saved_flags;
494 
495 	err = update_effective_progs(cgrp, type);
496 	if (err)
497 		goto cleanup;
498 
499 	if (old_prog)
500 		bpf_prog_put(old_prog);
501 	else
502 		static_branch_inc(&cgroup_bpf_enabled_key);
503 	bpf_cgroup_storages_link(new_storage, cgrp, type);
504 	return 0;
505 
506 cleanup:
507 	if (old_prog) {
508 		pl->prog = old_prog;
509 		pl->link = NULL;
510 	}
511 	bpf_cgroup_storages_free(new_storage);
512 	if (!old_prog) {
513 		list_del(&pl->node);
514 		kfree(pl);
515 	}
516 	return err;
517 }
518 
519 /* Swap updated BPF program for given link in effective program arrays across
520  * all descendant cgroups. This function is guaranteed to succeed.
521  */
replace_effective_prog(struct cgroup *cgrp, enum bpf_attach_type type, struct bpf_cgroup_link *link)522 static void replace_effective_prog(struct cgroup *cgrp,
523 				   enum bpf_attach_type type,
524 				   struct bpf_cgroup_link *link)
525 {
526 	struct bpf_prog_array_item *item;
527 	struct cgroup_subsys_state *css;
528 	struct bpf_prog_array *progs;
529 	struct bpf_prog_list *pl;
530 	struct list_head *head;
531 	struct cgroup *cg;
532 	int pos;
533 
534 	css_for_each_descendant_pre(css, &cgrp->self) {
535 		struct cgroup *desc = container_of(css, struct cgroup, self);
536 
537 		if (percpu_ref_is_zero(&desc->bpf.refcnt))
538 			continue;
539 
540 		/* find position of link in effective progs array */
541 		for (pos = 0, cg = desc; cg; cg = cgroup_parent(cg)) {
542 			if (pos && !(cg->bpf.flags[type] & BPF_F_ALLOW_MULTI))
543 				continue;
544 
545 			head = &cg->bpf.progs[type];
546 			list_for_each_entry(pl, head, node) {
547 				if (!prog_list_prog(pl))
548 					continue;
549 				if (pl->link == link)
550 					goto found;
551 				pos++;
552 			}
553 		}
554 found:
555 		BUG_ON(!cg);
556 		progs = rcu_dereference_protected(
557 				desc->bpf.effective[type],
558 				lockdep_is_held(&cgroup_mutex));
559 		item = &progs->items[pos];
560 		WRITE_ONCE(item->prog, link->link.prog);
561 	}
562 }
563 
564 /**
565  * __cgroup_bpf_replace() - Replace link's program and propagate the change
566  *                          to descendants
567  * @cgrp: The cgroup which descendants to traverse
568  * @link: A link for which to replace BPF program
569  * @type: Type of attach operation
570  *
571  * Must be called with cgroup_mutex held.
572  */
__cgroup_bpf_replace(struct cgroup *cgrp, struct bpf_cgroup_link *link, struct bpf_prog *new_prog)573 static int __cgroup_bpf_replace(struct cgroup *cgrp,
574 				struct bpf_cgroup_link *link,
575 				struct bpf_prog *new_prog)
576 {
577 	struct list_head *progs = &cgrp->bpf.progs[link->type];
578 	struct bpf_prog *old_prog;
579 	struct bpf_prog_list *pl;
580 	bool found = false;
581 
582 	if (link->link.prog->type != new_prog->type)
583 		return -EINVAL;
584 
585 	list_for_each_entry(pl, progs, node) {
586 		if (pl->link == link) {
587 			found = true;
588 			break;
589 		}
590 	}
591 	if (!found)
592 		return -ENOENT;
593 
594 	old_prog = xchg(&link->link.prog, new_prog);
595 	replace_effective_prog(cgrp, link->type, link);
596 	bpf_prog_put(old_prog);
597 	return 0;
598 }
599 
cgroup_bpf_replace(struct bpf_link *link, struct bpf_prog *new_prog, struct bpf_prog *old_prog)600 static int cgroup_bpf_replace(struct bpf_link *link, struct bpf_prog *new_prog,
601 			      struct bpf_prog *old_prog)
602 {
603 	struct bpf_cgroup_link *cg_link;
604 	int ret;
605 
606 	cg_link = container_of(link, struct bpf_cgroup_link, link);
607 
608 	mutex_lock(&cgroup_mutex);
609 	/* link might have been auto-released by dying cgroup, so fail */
610 	if (!cg_link->cgroup) {
611 		ret = -ENOLINK;
612 		goto out_unlock;
613 	}
614 	if (old_prog && link->prog != old_prog) {
615 		ret = -EPERM;
616 		goto out_unlock;
617 	}
618 	ret = __cgroup_bpf_replace(cg_link->cgroup, cg_link, new_prog);
619 out_unlock:
620 	mutex_unlock(&cgroup_mutex);
621 	return ret;
622 }
623 
find_detach_entry(struct list_head *progs, struct bpf_prog *prog, struct bpf_cgroup_link *link, bool allow_multi)624 static struct bpf_prog_list *find_detach_entry(struct list_head *progs,
625 					       struct bpf_prog *prog,
626 					       struct bpf_cgroup_link *link,
627 					       bool allow_multi)
628 {
629 	struct bpf_prog_list *pl;
630 
631 	if (!allow_multi) {
632 		if (list_empty(progs))
633 			/* report error when trying to detach and nothing is attached */
634 			return ERR_PTR(-ENOENT);
635 
636 		/* to maintain backward compatibility NONE and OVERRIDE cgroups
637 		 * allow detaching with invalid FD (prog==NULL) in legacy mode
638 		 */
639 		return list_first_entry(progs, typeof(*pl), node);
640 	}
641 
642 	if (!prog && !link)
643 		/* to detach MULTI prog the user has to specify valid FD
644 		 * of the program or link to be detached
645 		 */
646 		return ERR_PTR(-EINVAL);
647 
648 	/* find the prog or link and detach it */
649 	list_for_each_entry(pl, progs, node) {
650 		if (pl->prog == prog && pl->link == link)
651 			return pl;
652 	}
653 	return ERR_PTR(-ENOENT);
654 }
655 
656 /**
657  * purge_effective_progs() - After compute_effective_progs fails to alloc new
658  *			     cgrp->bpf.inactive table we can recover by
659  *			     recomputing the array in place.
660  *
661  * @cgrp: The cgroup which descendants to travers
662  * @prog: A program to detach or NULL
663  * @link: A link to detach or NULL
664  * @type: Type of detach operation
665  */
purge_effective_progs(struct cgroup *cgrp, struct bpf_prog *prog, struct bpf_cgroup_link *link, enum bpf_attach_type type)666 static void purge_effective_progs(struct cgroup *cgrp, struct bpf_prog *prog,
667 				  struct bpf_cgroup_link *link,
668 				  enum bpf_attach_type type)
669 {
670 	struct cgroup_subsys_state *css;
671 	struct bpf_prog_array *progs;
672 	struct bpf_prog_list *pl;
673 	struct list_head *head;
674 	struct cgroup *cg;
675 	int pos;
676 
677 	/* recompute effective prog array in place */
678 	css_for_each_descendant_pre(css, &cgrp->self) {
679 		struct cgroup *desc = container_of(css, struct cgroup, self);
680 
681 		if (percpu_ref_is_zero(&desc->bpf.refcnt))
682 			continue;
683 
684 		/* find position of link or prog in effective progs array */
685 		for (pos = 0, cg = desc; cg; cg = cgroup_parent(cg)) {
686 			if (pos && !(cg->bpf.flags[type] & BPF_F_ALLOW_MULTI))
687 				continue;
688 
689 			head = &cg->bpf.progs[type];
690 			list_for_each_entry(pl, head, node) {
691 				if (!prog_list_prog(pl))
692 					continue;
693 				if (pl->prog == prog && pl->link == link)
694 					goto found;
695 				pos++;
696 			}
697 		}
698 
699 		/* no link or prog match, skip the cgroup of this layer */
700 		continue;
701 found:
702 		progs = rcu_dereference_protected(
703 				desc->bpf.effective[type],
704 				lockdep_is_held(&cgroup_mutex));
705 
706 		/* Remove the program from the array */
707 		WARN_ONCE(bpf_prog_array_delete_safe_at(progs, pos),
708 			  "Failed to purge a prog from array at index %d", pos);
709 	}
710 }
711 
712 /**
713  * __cgroup_bpf_detach() - Detach the program or link from a cgroup, and
714  *                         propagate the change to descendants
715  * @cgrp: The cgroup which descendants to traverse
716  * @prog: A program to detach or NULL
717  * @prog: A link to detach or NULL
718  * @type: Type of detach operation
719  *
720  * At most one of @prog or @link can be non-NULL.
721  * Must be called with cgroup_mutex held.
722  */
__cgroup_bpf_detach(struct cgroup *cgrp, struct bpf_prog *prog, struct bpf_cgroup_link *link, enum bpf_attach_type type)723 int __cgroup_bpf_detach(struct cgroup *cgrp, struct bpf_prog *prog,
724 			struct bpf_cgroup_link *link, enum bpf_attach_type type)
725 {
726 	struct list_head *progs = &cgrp->bpf.progs[type];
727 	u32 flags = cgrp->bpf.flags[type];
728 	struct bpf_prog_list *pl;
729 	struct bpf_prog *old_prog;
730 
731 	if (prog && link)
732 		/* only one of prog or link can be specified */
733 		return -EINVAL;
734 
735 	pl = find_detach_entry(progs, prog, link, flags & BPF_F_ALLOW_MULTI);
736 	if (IS_ERR(pl))
737 		return PTR_ERR(pl);
738 
739 	/* mark it deleted, so it's ignored while recomputing effective */
740 	old_prog = pl->prog;
741 	pl->prog = NULL;
742 	pl->link = NULL;
743 
744 	if (update_effective_progs(cgrp, type)) {
745 		/* if update effective array failed replace the prog with a dummy prog*/
746 		pl->prog = old_prog;
747 		pl->link = link;
748 		purge_effective_progs(cgrp, old_prog, link, type);
749 	}
750 
751 	/* now can actually delete it from this cgroup list */
752 	list_del(&pl->node);
753 	kfree(pl);
754 	if (list_empty(progs))
755 		/* last program was detached, reset flags to zero */
756 		cgrp->bpf.flags[type] = 0;
757 	if (old_prog)
758 		bpf_prog_put(old_prog);
759 	static_branch_dec(&cgroup_bpf_enabled_key);
760 	return 0;
761 }
762 
763 /* Must be called with cgroup_mutex held to avoid races. */
__cgroup_bpf_query(struct cgroup *cgrp, const union bpf_attr *attr, union bpf_attr __user *uattr)764 int __cgroup_bpf_query(struct cgroup *cgrp, const union bpf_attr *attr,
765 		       union bpf_attr __user *uattr)
766 {
767 	__u32 __user *prog_ids = u64_to_user_ptr(attr->query.prog_ids);
768 	enum bpf_attach_type type = attr->query.attach_type;
769 	struct list_head *progs = &cgrp->bpf.progs[type];
770 	u32 flags = cgrp->bpf.flags[type];
771 	struct bpf_prog_array *effective;
772 	struct bpf_prog *prog;
773 	int cnt, ret = 0, i;
774 
775 	effective = rcu_dereference_protected(cgrp->bpf.effective[type],
776 					      lockdep_is_held(&cgroup_mutex));
777 
778 	if (attr->query.query_flags & BPF_F_QUERY_EFFECTIVE)
779 		cnt = bpf_prog_array_length(effective);
780 	else
781 		cnt = prog_list_length(progs);
782 
783 	if (copy_to_user(&uattr->query.attach_flags, &flags, sizeof(flags)))
784 		return -EFAULT;
785 	if (copy_to_user(&uattr->query.prog_cnt, &cnt, sizeof(cnt)))
786 		return -EFAULT;
787 	if (attr->query.prog_cnt == 0 || !prog_ids || !cnt)
788 		/* return early if user requested only program count + flags */
789 		return 0;
790 	if (attr->query.prog_cnt < cnt) {
791 		cnt = attr->query.prog_cnt;
792 		ret = -ENOSPC;
793 	}
794 
795 	if (attr->query.query_flags & BPF_F_QUERY_EFFECTIVE) {
796 		return bpf_prog_array_copy_to_user(effective, prog_ids, cnt);
797 	} else {
798 		struct bpf_prog_list *pl;
799 		u32 id;
800 
801 		i = 0;
802 		list_for_each_entry(pl, progs, node) {
803 			prog = prog_list_prog(pl);
804 			id = prog->aux->id;
805 			if (copy_to_user(prog_ids + i, &id, sizeof(id)))
806 				return -EFAULT;
807 			if (++i == cnt)
808 				break;
809 		}
810 	}
811 	return ret;
812 }
813 
cgroup_bpf_prog_attach(const union bpf_attr *attr, enum bpf_prog_type ptype, struct bpf_prog *prog)814 int cgroup_bpf_prog_attach(const union bpf_attr *attr,
815 			   enum bpf_prog_type ptype, struct bpf_prog *prog)
816 {
817 	struct bpf_prog *replace_prog = NULL;
818 	struct cgroup *cgrp;
819 	int ret;
820 
821 	cgrp = cgroup_get_from_fd(attr->target_fd);
822 	if (IS_ERR(cgrp))
823 		return PTR_ERR(cgrp);
824 
825 	if ((attr->attach_flags & BPF_F_ALLOW_MULTI) &&
826 	    (attr->attach_flags & BPF_F_REPLACE)) {
827 		replace_prog = bpf_prog_get_type(attr->replace_bpf_fd, ptype);
828 		if (IS_ERR(replace_prog)) {
829 			cgroup_put(cgrp);
830 			return PTR_ERR(replace_prog);
831 		}
832 	}
833 
834 	ret = cgroup_bpf_attach(cgrp, prog, replace_prog, NULL,
835 				attr->attach_type, attr->attach_flags);
836 
837 	if (replace_prog)
838 		bpf_prog_put(replace_prog);
839 	cgroup_put(cgrp);
840 	return ret;
841 }
842 
cgroup_bpf_prog_detach(const union bpf_attr *attr, enum bpf_prog_type ptype)843 int cgroup_bpf_prog_detach(const union bpf_attr *attr, enum bpf_prog_type ptype)
844 {
845 	struct bpf_prog *prog;
846 	struct cgroup *cgrp;
847 	int ret;
848 
849 	cgrp = cgroup_get_from_fd(attr->target_fd);
850 	if (IS_ERR(cgrp))
851 		return PTR_ERR(cgrp);
852 
853 	prog = bpf_prog_get_type(attr->attach_bpf_fd, ptype);
854 	if (IS_ERR(prog))
855 		prog = NULL;
856 
857 	ret = cgroup_bpf_detach(cgrp, prog, attr->attach_type);
858 	if (prog)
859 		bpf_prog_put(prog);
860 
861 	cgroup_put(cgrp);
862 	return ret;
863 }
864 
bpf_cgroup_link_release(struct bpf_link *link)865 static void bpf_cgroup_link_release(struct bpf_link *link)
866 {
867 	struct bpf_cgroup_link *cg_link =
868 		container_of(link, struct bpf_cgroup_link, link);
869 	struct cgroup *cg;
870 
871 	/* link might have been auto-detached by dying cgroup already,
872 	 * in that case our work is done here
873 	 */
874 	if (!cg_link->cgroup)
875 		return;
876 
877 	mutex_lock(&cgroup_mutex);
878 
879 	/* re-check cgroup under lock again */
880 	if (!cg_link->cgroup) {
881 		mutex_unlock(&cgroup_mutex);
882 		return;
883 	}
884 
885 	WARN_ON(__cgroup_bpf_detach(cg_link->cgroup, NULL, cg_link,
886 				    cg_link->type));
887 
888 	cg = cg_link->cgroup;
889 	cg_link->cgroup = NULL;
890 
891 	mutex_unlock(&cgroup_mutex);
892 
893 	cgroup_put(cg);
894 }
895 
bpf_cgroup_link_dealloc(struct bpf_link *link)896 static void bpf_cgroup_link_dealloc(struct bpf_link *link)
897 {
898 	struct bpf_cgroup_link *cg_link =
899 		container_of(link, struct bpf_cgroup_link, link);
900 
901 	kfree(cg_link);
902 }
903 
bpf_cgroup_link_detach(struct bpf_link *link)904 static int bpf_cgroup_link_detach(struct bpf_link *link)
905 {
906 	bpf_cgroup_link_release(link);
907 
908 	return 0;
909 }
910 
bpf_cgroup_link_show_fdinfo(const struct bpf_link *link, struct seq_file *seq)911 static void bpf_cgroup_link_show_fdinfo(const struct bpf_link *link,
912 					struct seq_file *seq)
913 {
914 	struct bpf_cgroup_link *cg_link =
915 		container_of(link, struct bpf_cgroup_link, link);
916 	u64 cg_id = 0;
917 
918 	mutex_lock(&cgroup_mutex);
919 	if (cg_link->cgroup)
920 		cg_id = cgroup_id(cg_link->cgroup);
921 	mutex_unlock(&cgroup_mutex);
922 
923 	seq_printf(seq,
924 		   "cgroup_id:\t%llu\n"
925 		   "attach_type:\t%d\n",
926 		   cg_id,
927 		   cg_link->type);
928 }
929 
bpf_cgroup_link_fill_link_info(const struct bpf_link *link, struct bpf_link_info *info)930 static int bpf_cgroup_link_fill_link_info(const struct bpf_link *link,
931 					  struct bpf_link_info *info)
932 {
933 	struct bpf_cgroup_link *cg_link =
934 		container_of(link, struct bpf_cgroup_link, link);
935 	u64 cg_id = 0;
936 
937 	mutex_lock(&cgroup_mutex);
938 	if (cg_link->cgroup)
939 		cg_id = cgroup_id(cg_link->cgroup);
940 	mutex_unlock(&cgroup_mutex);
941 
942 	info->cgroup.cgroup_id = cg_id;
943 	info->cgroup.attach_type = cg_link->type;
944 	return 0;
945 }
946 
947 static const struct bpf_link_ops bpf_cgroup_link_lops = {
948 	.release = bpf_cgroup_link_release,
949 	.dealloc = bpf_cgroup_link_dealloc,
950 	.detach = bpf_cgroup_link_detach,
951 	.update_prog = cgroup_bpf_replace,
952 	.show_fdinfo = bpf_cgroup_link_show_fdinfo,
953 	.fill_link_info = bpf_cgroup_link_fill_link_info,
954 };
955 
cgroup_bpf_link_attach(const union bpf_attr *attr, struct bpf_prog *prog)956 int cgroup_bpf_link_attach(const union bpf_attr *attr, struct bpf_prog *prog)
957 {
958 	struct bpf_link_primer link_primer;
959 	struct bpf_cgroup_link *link;
960 	struct cgroup *cgrp;
961 	int err;
962 
963 	if (attr->link_create.flags)
964 		return -EINVAL;
965 
966 	cgrp = cgroup_get_from_fd(attr->link_create.target_fd);
967 	if (IS_ERR(cgrp))
968 		return PTR_ERR(cgrp);
969 
970 	link = kzalloc(sizeof(*link), GFP_USER);
971 	if (!link) {
972 		err = -ENOMEM;
973 		goto out_put_cgroup;
974 	}
975 	bpf_link_init(&link->link, BPF_LINK_TYPE_CGROUP, &bpf_cgroup_link_lops,
976 		      prog);
977 	link->cgroup = cgrp;
978 	link->type = attr->link_create.attach_type;
979 
980 	err  = bpf_link_prime(&link->link, &link_primer);
981 	if (err) {
982 		kfree(link);
983 		goto out_put_cgroup;
984 	}
985 
986 	err = cgroup_bpf_attach(cgrp, NULL, NULL, link, link->type,
987 				BPF_F_ALLOW_MULTI);
988 	if (err) {
989 		bpf_link_cleanup(&link_primer);
990 		goto out_put_cgroup;
991 	}
992 
993 	return bpf_link_settle(&link_primer);
994 
995 out_put_cgroup:
996 	cgroup_put(cgrp);
997 	return err;
998 }
999 
cgroup_bpf_prog_query(const union bpf_attr *attr, union bpf_attr __user *uattr)1000 int cgroup_bpf_prog_query(const union bpf_attr *attr,
1001 			  union bpf_attr __user *uattr)
1002 {
1003 	struct cgroup *cgrp;
1004 	int ret;
1005 
1006 	cgrp = cgroup_get_from_fd(attr->query.target_fd);
1007 	if (IS_ERR(cgrp))
1008 		return PTR_ERR(cgrp);
1009 
1010 	ret = cgroup_bpf_query(cgrp, attr, uattr);
1011 
1012 	cgroup_put(cgrp);
1013 	return ret;
1014 }
1015 
1016 /**
1017  * __cgroup_bpf_run_filter_skb() - Run a program for packet filtering
1018  * @sk: The socket sending or receiving traffic
1019  * @skb: The skb that is being sent or received
1020  * @type: The type of program to be exectuted
1021  *
1022  * If no socket is passed, or the socket is not of type INET or INET6,
1023  * this function does nothing and returns 0.
1024  *
1025  * The program type passed in via @type must be suitable for network
1026  * filtering. No further check is performed to assert that.
1027  *
1028  * For egress packets, this function can return:
1029  *   NET_XMIT_SUCCESS    (0)	- continue with packet output
1030  *   NET_XMIT_DROP       (1)	- drop packet and notify TCP to call cwr
1031  *   NET_XMIT_CN         (2)	- continue with packet output and notify TCP
1032  *				  to call cwr
1033  *   -EPERM			- drop packet
1034  *
1035  * For ingress packets, this function will return -EPERM if any
1036  * attached program was found and if it returned != 1 during execution.
1037  * Otherwise 0 is returned.
1038  */
__cgroup_bpf_run_filter_skb(struct sock *sk, struct sk_buff *skb, enum bpf_attach_type type)1039 int __cgroup_bpf_run_filter_skb(struct sock *sk,
1040 				struct sk_buff *skb,
1041 				enum bpf_attach_type type)
1042 {
1043 	unsigned int offset = skb->data - skb_network_header(skb);
1044 	struct sock *save_sk;
1045 	void *saved_data_end;
1046 	struct cgroup *cgrp;
1047 	int ret;
1048 
1049 	if (!sk || !sk_fullsock(sk))
1050 		return 0;
1051 
1052 	if (sk->sk_family != AF_INET && sk->sk_family != AF_INET6)
1053 		return 0;
1054 
1055 	cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data);
1056 	save_sk = skb->sk;
1057 	skb->sk = sk;
1058 	__skb_push(skb, offset);
1059 
1060 	/* compute pointers for the bpf prog */
1061 	bpf_compute_and_save_data_end(skb, &saved_data_end);
1062 
1063 	if (type == BPF_CGROUP_INET_EGRESS) {
1064 		ret = BPF_PROG_CGROUP_INET_EGRESS_RUN_ARRAY(
1065 			cgrp->bpf.effective[type], skb, __bpf_prog_run_save_cb);
1066 	} else {
1067 		ret = BPF_PROG_RUN_ARRAY(cgrp->bpf.effective[type], skb,
1068 					  __bpf_prog_run_save_cb);
1069 		ret = (ret == 1 ? 0 : -EPERM);
1070 	}
1071 	bpf_restore_data_end(skb, saved_data_end);
1072 	__skb_pull(skb, offset);
1073 	skb->sk = save_sk;
1074 
1075 	return ret;
1076 }
1077 EXPORT_SYMBOL(__cgroup_bpf_run_filter_skb);
1078 
1079 /**
1080  * __cgroup_bpf_run_filter_sk() - Run a program on a sock
1081  * @sk: sock structure to manipulate
1082  * @type: The type of program to be exectuted
1083  *
1084  * socket is passed is expected to be of type INET or INET6.
1085  *
1086  * The program type passed in via @type must be suitable for sock
1087  * filtering. No further check is performed to assert that.
1088  *
1089  * This function will return %-EPERM if any if an attached program was found
1090  * and if it returned != 1 during execution. In all other cases, 0 is returned.
1091  */
__cgroup_bpf_run_filter_sk(struct sock *sk, enum bpf_attach_type type)1092 int __cgroup_bpf_run_filter_sk(struct sock *sk,
1093 			       enum bpf_attach_type type)
1094 {
1095 	struct cgroup *cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data);
1096 	int ret;
1097 
1098 	ret = BPF_PROG_RUN_ARRAY(cgrp->bpf.effective[type], sk, BPF_PROG_RUN);
1099 	return ret == 1 ? 0 : -EPERM;
1100 }
1101 EXPORT_SYMBOL(__cgroup_bpf_run_filter_sk);
1102 
1103 /**
1104  * __cgroup_bpf_run_filter_sock_addr() - Run a program on a sock and
1105  *                                       provided by user sockaddr
1106  * @sk: sock struct that will use sockaddr
1107  * @uaddr: sockaddr struct provided by user
1108  * @type: The type of program to be exectuted
1109  * @t_ctx: Pointer to attach type specific context
1110  *
1111  * socket is expected to be of type INET or INET6.
1112  *
1113  * This function will return %-EPERM if an attached program is found and
1114  * returned value != 1 during execution. In all other cases, 0 is returned.
1115  */
__cgroup_bpf_run_filter_sock_addr(struct sock *sk, struct sockaddr *uaddr, enum bpf_attach_type type, void *t_ctx)1116 int __cgroup_bpf_run_filter_sock_addr(struct sock *sk,
1117 				      struct sockaddr *uaddr,
1118 				      enum bpf_attach_type type,
1119 				      void *t_ctx)
1120 {
1121 	struct bpf_sock_addr_kern ctx = {
1122 		.sk = sk,
1123 		.uaddr = uaddr,
1124 		.t_ctx = t_ctx,
1125 	};
1126 	struct sockaddr_storage unspec;
1127 	struct cgroup *cgrp;
1128 	int ret;
1129 
1130 	/* Check socket family since not all sockets represent network
1131 	 * endpoint (e.g. AF_UNIX).
1132 	 */
1133 	if (sk->sk_family != AF_INET && sk->sk_family != AF_INET6)
1134 		return 0;
1135 
1136 	if (!ctx.uaddr) {
1137 		memset(&unspec, 0, sizeof(unspec));
1138 		ctx.uaddr = (struct sockaddr *)&unspec;
1139 	}
1140 
1141 	cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data);
1142 	ret = BPF_PROG_RUN_ARRAY(cgrp->bpf.effective[type], &ctx, BPF_PROG_RUN);
1143 
1144 	return ret == 1 ? 0 : -EPERM;
1145 }
1146 EXPORT_SYMBOL(__cgroup_bpf_run_filter_sock_addr);
1147 
1148 /**
1149  * __cgroup_bpf_run_filter_sock_ops() - Run a program on a sock
1150  * @sk: socket to get cgroup from
1151  * @sock_ops: bpf_sock_ops_kern struct to pass to program. Contains
1152  * sk with connection information (IP addresses, etc.) May not contain
1153  * cgroup info if it is a req sock.
1154  * @type: The type of program to be exectuted
1155  *
1156  * socket passed is expected to be of type INET or INET6.
1157  *
1158  * The program type passed in via @type must be suitable for sock_ops
1159  * filtering. No further check is performed to assert that.
1160  *
1161  * This function will return %-EPERM if any if an attached program was found
1162  * and if it returned != 1 during execution. In all other cases, 0 is returned.
1163  */
__cgroup_bpf_run_filter_sock_ops(struct sock *sk, struct bpf_sock_ops_kern *sock_ops, enum bpf_attach_type type)1164 int __cgroup_bpf_run_filter_sock_ops(struct sock *sk,
1165 				     struct bpf_sock_ops_kern *sock_ops,
1166 				     enum bpf_attach_type type)
1167 {
1168 	struct cgroup *cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data);
1169 	int ret;
1170 
1171 	ret = BPF_PROG_RUN_ARRAY(cgrp->bpf.effective[type], sock_ops,
1172 				 BPF_PROG_RUN);
1173 	return ret == 1 ? 0 : -EPERM;
1174 }
1175 EXPORT_SYMBOL(__cgroup_bpf_run_filter_sock_ops);
1176 
__cgroup_bpf_check_dev_permission(short dev_type, u32 major, u32 minor, short access, enum bpf_attach_type type)1177 int __cgroup_bpf_check_dev_permission(short dev_type, u32 major, u32 minor,
1178 				      short access, enum bpf_attach_type type)
1179 {
1180 	struct cgroup *cgrp;
1181 	struct bpf_cgroup_dev_ctx ctx = {
1182 		.access_type = (access << 16) | dev_type,
1183 		.major = major,
1184 		.minor = minor,
1185 	};
1186 	int allow = 1;
1187 
1188 	rcu_read_lock();
1189 	cgrp = task_dfl_cgroup(current);
1190 	allow = BPF_PROG_RUN_ARRAY(cgrp->bpf.effective[type], &ctx,
1191 				   BPF_PROG_RUN);
1192 	rcu_read_unlock();
1193 
1194 	return !allow;
1195 }
1196 
1197 static const struct bpf_func_proto *
cgroup_base_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)1198 cgroup_base_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
1199 {
1200 	switch (func_id) {
1201 	case BPF_FUNC_get_current_uid_gid:
1202 		return &bpf_get_current_uid_gid_proto;
1203 	case BPF_FUNC_get_local_storage:
1204 		return &bpf_get_local_storage_proto;
1205 	case BPF_FUNC_get_current_cgroup_id:
1206 		return &bpf_get_current_cgroup_id_proto;
1207 	case BPF_FUNC_perf_event_output:
1208 		return &bpf_event_output_data_proto;
1209 	default:
1210 		return bpf_base_func_proto(func_id);
1211 	}
1212 }
1213 
1214 static const struct bpf_func_proto *
cgroup_dev_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)1215 cgroup_dev_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
1216 {
1217 	return cgroup_base_func_proto(func_id, prog);
1218 }
1219 
cgroup_dev_is_valid_access(int off, int size, enum bpf_access_type type, const struct bpf_prog *prog, struct bpf_insn_access_aux *info)1220 static bool cgroup_dev_is_valid_access(int off, int size,
1221 				       enum bpf_access_type type,
1222 				       const struct bpf_prog *prog,
1223 				       struct bpf_insn_access_aux *info)
1224 {
1225 	const int size_default = sizeof(__u32);
1226 
1227 	if (type == BPF_WRITE)
1228 		return false;
1229 
1230 	if (off < 0 || off + size > sizeof(struct bpf_cgroup_dev_ctx))
1231 		return false;
1232 	/* The verifier guarantees that size > 0. */
1233 	if (off % size != 0)
1234 		return false;
1235 
1236 	switch (off) {
1237 	case bpf_ctx_range(struct bpf_cgroup_dev_ctx, access_type):
1238 		bpf_ctx_record_field_size(info, size_default);
1239 		if (!bpf_ctx_narrow_access_ok(off, size, size_default))
1240 			return false;
1241 		break;
1242 	default:
1243 		if (size != size_default)
1244 			return false;
1245 	}
1246 
1247 	return true;
1248 }
1249 
1250 const struct bpf_prog_ops cg_dev_prog_ops = {
1251 };
1252 
1253 const struct bpf_verifier_ops cg_dev_verifier_ops = {
1254 	.get_func_proto		= cgroup_dev_func_proto,
1255 	.is_valid_access	= cgroup_dev_is_valid_access,
1256 };
1257 
1258 /**
1259  * __cgroup_bpf_run_filter_sysctl - Run a program on sysctl
1260  *
1261  * @head: sysctl table header
1262  * @table: sysctl table
1263  * @write: sysctl is being read (= 0) or written (= 1)
1264  * @buf: pointer to buffer (in and out)
1265  * @pcount: value-result argument: value is size of buffer pointed to by @buf,
1266  *	result is size of @new_buf if program set new value, initial value
1267  *	otherwise
1268  * @ppos: value-result argument: value is position at which read from or write
1269  *	to sysctl is happening, result is new position if program overrode it,
1270  *	initial value otherwise
1271  * @type: type of program to be executed
1272  *
1273  * Program is run when sysctl is being accessed, either read or written, and
1274  * can allow or deny such access.
1275  *
1276  * This function will return %-EPERM if an attached program is found and
1277  * returned value != 1 during execution. In all other cases 0 is returned.
1278  */
__cgroup_bpf_run_filter_sysctl(struct ctl_table_header *head, struct ctl_table *table, int write, char **buf, size_t *pcount, loff_t *ppos, enum bpf_attach_type type)1279 int __cgroup_bpf_run_filter_sysctl(struct ctl_table_header *head,
1280 				   struct ctl_table *table, int write,
1281 				   char **buf, size_t *pcount, loff_t *ppos,
1282 				   enum bpf_attach_type type)
1283 {
1284 	struct bpf_sysctl_kern ctx = {
1285 		.head = head,
1286 		.table = table,
1287 		.write = write,
1288 		.ppos = ppos,
1289 		.cur_val = NULL,
1290 		.cur_len = PAGE_SIZE,
1291 		.new_val = NULL,
1292 		.new_len = 0,
1293 		.new_updated = 0,
1294 	};
1295 	struct cgroup *cgrp;
1296 	loff_t pos = 0;
1297 	int ret;
1298 
1299 	ctx.cur_val = kmalloc_track_caller(ctx.cur_len, GFP_KERNEL);
1300 	if (!ctx.cur_val ||
1301 	    table->proc_handler(table, 0, ctx.cur_val, &ctx.cur_len, &pos)) {
1302 		/* Let BPF program decide how to proceed. */
1303 		ctx.cur_len = 0;
1304 	}
1305 
1306 	if (write && *buf && *pcount) {
1307 		/* BPF program should be able to override new value with a
1308 		 * buffer bigger than provided by user.
1309 		 */
1310 		ctx.new_val = kmalloc_track_caller(PAGE_SIZE, GFP_KERNEL);
1311 		ctx.new_len = min_t(size_t, PAGE_SIZE, *pcount);
1312 		if (ctx.new_val) {
1313 			memcpy(ctx.new_val, *buf, ctx.new_len);
1314 		} else {
1315 			/* Let BPF program decide how to proceed. */
1316 			ctx.new_len = 0;
1317 		}
1318 	}
1319 
1320 	rcu_read_lock();
1321 	cgrp = task_dfl_cgroup(current);
1322 	ret = BPF_PROG_RUN_ARRAY(cgrp->bpf.effective[type], &ctx, BPF_PROG_RUN);
1323 	rcu_read_unlock();
1324 
1325 	kfree(ctx.cur_val);
1326 
1327 	if (ret == 1 && ctx.new_updated) {
1328 		kfree(*buf);
1329 		*buf = ctx.new_val;
1330 		*pcount = ctx.new_len;
1331 	} else {
1332 		kfree(ctx.new_val);
1333 	}
1334 
1335 	return ret == 1 ? 0 : -EPERM;
1336 }
1337 
1338 #ifdef CONFIG_NET
__cgroup_bpf_prog_array_is_empty(struct cgroup *cgrp, enum bpf_attach_type attach_type)1339 static bool __cgroup_bpf_prog_array_is_empty(struct cgroup *cgrp,
1340 					     enum bpf_attach_type attach_type)
1341 {
1342 	struct bpf_prog_array *prog_array;
1343 	bool empty;
1344 
1345 	rcu_read_lock();
1346 	prog_array = rcu_dereference(cgrp->bpf.effective[attach_type]);
1347 	empty = bpf_prog_array_is_empty(prog_array);
1348 	rcu_read_unlock();
1349 
1350 	return empty;
1351 }
1352 
sockopt_alloc_buf(struct bpf_sockopt_kern *ctx, int max_optlen)1353 static int sockopt_alloc_buf(struct bpf_sockopt_kern *ctx, int max_optlen)
1354 {
1355 	if (unlikely(max_optlen < 0))
1356 		return -EINVAL;
1357 
1358 	if (unlikely(max_optlen > PAGE_SIZE)) {
1359 		/* We don't expose optvals that are greater than PAGE_SIZE
1360 		 * to the BPF program.
1361 		 */
1362 		max_optlen = PAGE_SIZE;
1363 	}
1364 
1365 	ctx->optval = kzalloc(max_optlen, GFP_USER);
1366 	if (!ctx->optval)
1367 		return -ENOMEM;
1368 
1369 	ctx->optval_end = ctx->optval + max_optlen;
1370 
1371 	return max_optlen;
1372 }
1373 
sockopt_free_buf(struct bpf_sockopt_kern *ctx)1374 static void sockopt_free_buf(struct bpf_sockopt_kern *ctx)
1375 {
1376 	kfree(ctx->optval);
1377 }
1378 
__cgroup_bpf_run_filter_setsockopt(struct sock *sk, int *level, int *optname, char __user *optval, int *optlen, char **kernel_optval)1379 int __cgroup_bpf_run_filter_setsockopt(struct sock *sk, int *level,
1380 				       int *optname, char __user *optval,
1381 				       int *optlen, char **kernel_optval)
1382 {
1383 	struct cgroup *cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data);
1384 	struct bpf_sockopt_kern ctx = {
1385 		.sk = sk,
1386 		.level = *level,
1387 		.optname = *optname,
1388 	};
1389 	int ret, max_optlen;
1390 
1391 	/* Opportunistic check to see whether we have any BPF program
1392 	 * attached to the hook so we don't waste time allocating
1393 	 * memory and locking the socket.
1394 	 */
1395 	if (!cgroup_bpf_enabled ||
1396 	    __cgroup_bpf_prog_array_is_empty(cgrp, BPF_CGROUP_SETSOCKOPT))
1397 		return 0;
1398 
1399 	/* Allocate a bit more than the initial user buffer for
1400 	 * BPF program. The canonical use case is overriding
1401 	 * TCP_CONGESTION(nv) to TCP_CONGESTION(cubic).
1402 	 */
1403 	max_optlen = max_t(int, 16, *optlen);
1404 
1405 	max_optlen = sockopt_alloc_buf(&ctx, max_optlen);
1406 	if (max_optlen < 0)
1407 		return max_optlen;
1408 
1409 	ctx.optlen = *optlen;
1410 
1411 	if (copy_from_user(ctx.optval, optval, min(*optlen, max_optlen)) != 0) {
1412 		ret = -EFAULT;
1413 		goto out;
1414 	}
1415 
1416 	lock_sock(sk);
1417 	ret = BPF_PROG_RUN_ARRAY(cgrp->bpf.effective[BPF_CGROUP_SETSOCKOPT],
1418 				 &ctx, BPF_PROG_RUN);
1419 	release_sock(sk);
1420 
1421 	if (!ret) {
1422 		ret = -EPERM;
1423 		goto out;
1424 	}
1425 
1426 	if (ctx.optlen == -1) {
1427 		/* optlen set to -1, bypass kernel */
1428 		ret = 1;
1429 	} else if (ctx.optlen > max_optlen || ctx.optlen < -1) {
1430 		/* optlen is out of bounds */
1431 		ret = -EFAULT;
1432 	} else {
1433 		/* optlen within bounds, run kernel handler */
1434 		ret = 0;
1435 
1436 		/* export any potential modifications */
1437 		*level = ctx.level;
1438 		*optname = ctx.optname;
1439 
1440 		/* optlen == 0 from BPF indicates that we should
1441 		 * use original userspace data.
1442 		 */
1443 		if (ctx.optlen != 0) {
1444 			*optlen = ctx.optlen;
1445 			*kernel_optval = ctx.optval;
1446 			/* export and don't free sockopt buf */
1447 			return 0;
1448 		}
1449 	}
1450 
1451 out:
1452 	sockopt_free_buf(&ctx);
1453 	return ret;
1454 }
1455 
__cgroup_bpf_run_filter_getsockopt(struct sock *sk, int level, int optname, char __user *optval, int __user *optlen, int max_optlen, int retval)1456 int __cgroup_bpf_run_filter_getsockopt(struct sock *sk, int level,
1457 				       int optname, char __user *optval,
1458 				       int __user *optlen, int max_optlen,
1459 				       int retval)
1460 {
1461 	struct cgroup *cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data);
1462 	struct bpf_sockopt_kern ctx = {
1463 		.sk = sk,
1464 		.level = level,
1465 		.optname = optname,
1466 		.retval = retval,
1467 	};
1468 	int ret;
1469 
1470 	/* Opportunistic check to see whether we have any BPF program
1471 	 * attached to the hook so we don't waste time allocating
1472 	 * memory and locking the socket.
1473 	 */
1474 	if (!cgroup_bpf_enabled ||
1475 	    __cgroup_bpf_prog_array_is_empty(cgrp, BPF_CGROUP_GETSOCKOPT))
1476 		return retval;
1477 
1478 	ctx.optlen = max_optlen;
1479 
1480 	max_optlen = sockopt_alloc_buf(&ctx, max_optlen);
1481 	if (max_optlen < 0)
1482 		return max_optlen;
1483 
1484 	if (!retval) {
1485 		/* If kernel getsockopt finished successfully,
1486 		 * copy whatever was returned to the user back
1487 		 * into our temporary buffer. Set optlen to the
1488 		 * one that kernel returned as well to let
1489 		 * BPF programs inspect the value.
1490 		 */
1491 
1492 		if (get_user(ctx.optlen, optlen)) {
1493 			ret = -EFAULT;
1494 			goto out;
1495 		}
1496 
1497 		if (ctx.optlen < 0) {
1498 			ret = -EFAULT;
1499 			goto out;
1500 		}
1501 
1502 		if (copy_from_user(ctx.optval, optval,
1503 				   min(ctx.optlen, max_optlen)) != 0) {
1504 			ret = -EFAULT;
1505 			goto out;
1506 		}
1507 	}
1508 
1509 	lock_sock(sk);
1510 	ret = BPF_PROG_RUN_ARRAY(cgrp->bpf.effective[BPF_CGROUP_GETSOCKOPT],
1511 				 &ctx, BPF_PROG_RUN);
1512 	release_sock(sk);
1513 
1514 	if (!ret) {
1515 		ret = -EPERM;
1516 		goto out;
1517 	}
1518 
1519 	if (optval && (ctx.optlen > max_optlen || ctx.optlen < 0)) {
1520 		ret = -EFAULT;
1521 		goto out;
1522 	}
1523 
1524 	/* BPF programs only allowed to set retval to 0, not some
1525 	 * arbitrary value.
1526 	 */
1527 	if (ctx.retval != 0 && ctx.retval != retval) {
1528 		ret = -EFAULT;
1529 		goto out;
1530 	}
1531 
1532 	if (ctx.optlen != 0) {
1533 		if (optval && copy_to_user(optval, ctx.optval, ctx.optlen)) {
1534 			ret = -EFAULT;
1535 			goto out;
1536 		}
1537 		if (put_user(ctx.optlen, optlen)) {
1538 			ret = -EFAULT;
1539 			goto out;
1540 		}
1541 	}
1542 
1543 	ret = ctx.retval;
1544 
1545 out:
1546 	sockopt_free_buf(&ctx);
1547 	return ret;
1548 }
1549 
__cgroup_bpf_run_filter_getsockopt_kern(struct sock *sk, int level, int optname, void *optval, int *optlen, int retval)1550 int __cgroup_bpf_run_filter_getsockopt_kern(struct sock *sk, int level,
1551 					    int optname, void *optval,
1552 					    int *optlen, int retval)
1553 {
1554 	struct cgroup *cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data);
1555 	struct bpf_sockopt_kern ctx = {
1556 		.sk = sk,
1557 		.level = level,
1558 		.optname = optname,
1559 		.retval = retval,
1560 		.optlen = *optlen,
1561 		.optval = optval,
1562 		.optval_end = optval + *optlen,
1563 	};
1564 	int ret;
1565 
1566 	/* Note that __cgroup_bpf_run_filter_getsockopt doesn't copy
1567 	 * user data back into BPF buffer when reval != 0. This is
1568 	 * done as an optimization to avoid extra copy, assuming
1569 	 * kernel won't populate the data in case of an error.
1570 	 * Here we always pass the data and memset() should
1571 	 * be called if that data shouldn't be "exported".
1572 	 */
1573 
1574 	ret = BPF_PROG_RUN_ARRAY(cgrp->bpf.effective[BPF_CGROUP_GETSOCKOPT],
1575 				 &ctx, BPF_PROG_RUN);
1576 	if (!ret)
1577 		return -EPERM;
1578 
1579 	if (ctx.optlen > *optlen)
1580 		return -EFAULT;
1581 
1582 	/* BPF programs only allowed to set retval to 0, not some
1583 	 * arbitrary value.
1584 	 */
1585 	if (ctx.retval != 0 && ctx.retval != retval)
1586 		return -EFAULT;
1587 
1588 	/* BPF programs can shrink the buffer, export the modifications.
1589 	 */
1590 	if (ctx.optlen != 0)
1591 		*optlen = ctx.optlen;
1592 
1593 	return ctx.retval;
1594 }
1595 #endif
1596 
sysctl_cpy_dir(const struct ctl_dir *dir, char **bufp, size_t *lenp)1597 static ssize_t sysctl_cpy_dir(const struct ctl_dir *dir, char **bufp,
1598 			      size_t *lenp)
1599 {
1600 	ssize_t tmp_ret = 0, ret;
1601 
1602 	if (dir->header.parent) {
1603 		tmp_ret = sysctl_cpy_dir(dir->header.parent, bufp, lenp);
1604 		if (tmp_ret < 0)
1605 			return tmp_ret;
1606 	}
1607 
1608 	ret = strscpy(*bufp, dir->header.ctl_table[0].procname, *lenp);
1609 	if (ret < 0)
1610 		return ret;
1611 	*bufp += ret;
1612 	*lenp -= ret;
1613 	ret += tmp_ret;
1614 
1615 	/* Avoid leading slash. */
1616 	if (!ret)
1617 		return ret;
1618 
1619 	tmp_ret = strscpy(*bufp, "/", *lenp);
1620 	if (tmp_ret < 0)
1621 		return tmp_ret;
1622 	*bufp += tmp_ret;
1623 	*lenp -= tmp_ret;
1624 
1625 	return ret + tmp_ret;
1626 }
1627 
BPF_CALL_4(bpf_sysctl_get_name, struct bpf_sysctl_kern *, ctx, char *, buf, size_t, buf_len, u64, flags)1628 BPF_CALL_4(bpf_sysctl_get_name, struct bpf_sysctl_kern *, ctx, char *, buf,
1629 	   size_t, buf_len, u64, flags)
1630 {
1631 	ssize_t tmp_ret = 0, ret;
1632 
1633 	if (!buf)
1634 		return -EINVAL;
1635 
1636 	if (!(flags & BPF_F_SYSCTL_BASE_NAME)) {
1637 		if (!ctx->head)
1638 			return -EINVAL;
1639 		tmp_ret = sysctl_cpy_dir(ctx->head->parent, &buf, &buf_len);
1640 		if (tmp_ret < 0)
1641 			return tmp_ret;
1642 	}
1643 
1644 	ret = strscpy(buf, ctx->table->procname, buf_len);
1645 
1646 	return ret < 0 ? ret : tmp_ret + ret;
1647 }
1648 
1649 static const struct bpf_func_proto bpf_sysctl_get_name_proto = {
1650 	.func		= bpf_sysctl_get_name,
1651 	.gpl_only	= false,
1652 	.ret_type	= RET_INTEGER,
1653 	.arg1_type	= ARG_PTR_TO_CTX,
1654 	.arg2_type	= ARG_PTR_TO_MEM,
1655 	.arg3_type	= ARG_CONST_SIZE,
1656 	.arg4_type	= ARG_ANYTHING,
1657 };
1658 
copy_sysctl_value(char *dst, size_t dst_len, char *src, size_t src_len)1659 static int copy_sysctl_value(char *dst, size_t dst_len, char *src,
1660 			     size_t src_len)
1661 {
1662 	if (!dst)
1663 		return -EINVAL;
1664 
1665 	if (!dst_len)
1666 		return -E2BIG;
1667 
1668 	if (!src || !src_len) {
1669 		memset(dst, 0, dst_len);
1670 		return -EINVAL;
1671 	}
1672 
1673 	memcpy(dst, src, min(dst_len, src_len));
1674 
1675 	if (dst_len > src_len) {
1676 		memset(dst + src_len, '\0', dst_len - src_len);
1677 		return src_len;
1678 	}
1679 
1680 	dst[dst_len - 1] = '\0';
1681 
1682 	return -E2BIG;
1683 }
1684 
BPF_CALL_3(bpf_sysctl_get_current_value, struct bpf_sysctl_kern *, ctx, char *, buf, size_t, buf_len)1685 BPF_CALL_3(bpf_sysctl_get_current_value, struct bpf_sysctl_kern *, ctx,
1686 	   char *, buf, size_t, buf_len)
1687 {
1688 	return copy_sysctl_value(buf, buf_len, ctx->cur_val, ctx->cur_len);
1689 }
1690 
1691 static const struct bpf_func_proto bpf_sysctl_get_current_value_proto = {
1692 	.func		= bpf_sysctl_get_current_value,
1693 	.gpl_only	= false,
1694 	.ret_type	= RET_INTEGER,
1695 	.arg1_type	= ARG_PTR_TO_CTX,
1696 	.arg2_type	= ARG_PTR_TO_UNINIT_MEM,
1697 	.arg3_type	= ARG_CONST_SIZE,
1698 };
1699 
BPF_CALL_3(bpf_sysctl_get_new_value, struct bpf_sysctl_kern *, ctx, char *, buf, size_t, buf_len)1700 BPF_CALL_3(bpf_sysctl_get_new_value, struct bpf_sysctl_kern *, ctx, char *, buf,
1701 	   size_t, buf_len)
1702 {
1703 	if (!ctx->write) {
1704 		if (buf && buf_len)
1705 			memset(buf, '\0', buf_len);
1706 		return -EINVAL;
1707 	}
1708 	return copy_sysctl_value(buf, buf_len, ctx->new_val, ctx->new_len);
1709 }
1710 
1711 static const struct bpf_func_proto bpf_sysctl_get_new_value_proto = {
1712 	.func		= bpf_sysctl_get_new_value,
1713 	.gpl_only	= false,
1714 	.ret_type	= RET_INTEGER,
1715 	.arg1_type	= ARG_PTR_TO_CTX,
1716 	.arg2_type	= ARG_PTR_TO_UNINIT_MEM,
1717 	.arg3_type	= ARG_CONST_SIZE,
1718 };
1719 
BPF_CALL_3(bpf_sysctl_set_new_value, struct bpf_sysctl_kern *, ctx, const char *, buf, size_t, buf_len)1720 BPF_CALL_3(bpf_sysctl_set_new_value, struct bpf_sysctl_kern *, ctx,
1721 	   const char *, buf, size_t, buf_len)
1722 {
1723 	if (!ctx->write || !ctx->new_val || !ctx->new_len || !buf || !buf_len)
1724 		return -EINVAL;
1725 
1726 	if (buf_len > PAGE_SIZE - 1)
1727 		return -E2BIG;
1728 
1729 	memcpy(ctx->new_val, buf, buf_len);
1730 	ctx->new_len = buf_len;
1731 	ctx->new_updated = 1;
1732 
1733 	return 0;
1734 }
1735 
1736 static const struct bpf_func_proto bpf_sysctl_set_new_value_proto = {
1737 	.func		= bpf_sysctl_set_new_value,
1738 	.gpl_only	= false,
1739 	.ret_type	= RET_INTEGER,
1740 	.arg1_type	= ARG_PTR_TO_CTX,
1741 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
1742 	.arg3_type	= ARG_CONST_SIZE,
1743 };
1744 
1745 static const struct bpf_func_proto *
sysctl_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)1746 sysctl_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
1747 {
1748 	switch (func_id) {
1749 	case BPF_FUNC_strtol:
1750 		return &bpf_strtol_proto;
1751 	case BPF_FUNC_strtoul:
1752 		return &bpf_strtoul_proto;
1753 	case BPF_FUNC_sysctl_get_name:
1754 		return &bpf_sysctl_get_name_proto;
1755 	case BPF_FUNC_sysctl_get_current_value:
1756 		return &bpf_sysctl_get_current_value_proto;
1757 	case BPF_FUNC_sysctl_get_new_value:
1758 		return &bpf_sysctl_get_new_value_proto;
1759 	case BPF_FUNC_sysctl_set_new_value:
1760 		return &bpf_sysctl_set_new_value_proto;
1761 	default:
1762 		return cgroup_base_func_proto(func_id, prog);
1763 	}
1764 }
1765 
sysctl_is_valid_access(int off, int size, enum bpf_access_type type, const struct bpf_prog *prog, struct bpf_insn_access_aux *info)1766 static bool sysctl_is_valid_access(int off, int size, enum bpf_access_type type,
1767 				   const struct bpf_prog *prog,
1768 				   struct bpf_insn_access_aux *info)
1769 {
1770 	const int size_default = sizeof(__u32);
1771 
1772 	if (off < 0 || off + size > sizeof(struct bpf_sysctl) || off % size)
1773 		return false;
1774 
1775 	switch (off) {
1776 	case bpf_ctx_range(struct bpf_sysctl, write):
1777 		if (type != BPF_READ)
1778 			return false;
1779 		bpf_ctx_record_field_size(info, size_default);
1780 		return bpf_ctx_narrow_access_ok(off, size, size_default);
1781 	case bpf_ctx_range(struct bpf_sysctl, file_pos):
1782 		if (type == BPF_READ) {
1783 			bpf_ctx_record_field_size(info, size_default);
1784 			return bpf_ctx_narrow_access_ok(off, size, size_default);
1785 		} else {
1786 			return size == size_default;
1787 		}
1788 	default:
1789 		return false;
1790 	}
1791 }
1792 
sysctl_convert_ctx_access(enum bpf_access_type type, const struct bpf_insn *si, struct bpf_insn *insn_buf, struct bpf_prog *prog, u32 *target_size)1793 static u32 sysctl_convert_ctx_access(enum bpf_access_type type,
1794 				     const struct bpf_insn *si,
1795 				     struct bpf_insn *insn_buf,
1796 				     struct bpf_prog *prog, u32 *target_size)
1797 {
1798 	struct bpf_insn *insn = insn_buf;
1799 	u32 read_size;
1800 
1801 	switch (si->off) {
1802 	case offsetof(struct bpf_sysctl, write):
1803 		*insn++ = BPF_LDX_MEM(
1804 			BPF_SIZE(si->code), si->dst_reg, si->src_reg,
1805 			bpf_target_off(struct bpf_sysctl_kern, write,
1806 				       sizeof_field(struct bpf_sysctl_kern,
1807 						    write),
1808 				       target_size));
1809 		break;
1810 	case offsetof(struct bpf_sysctl, file_pos):
1811 		/* ppos is a pointer so it should be accessed via indirect
1812 		 * loads and stores. Also for stores additional temporary
1813 		 * register is used since neither src_reg nor dst_reg can be
1814 		 * overridden.
1815 		 */
1816 		if (type == BPF_WRITE) {
1817 			int treg = BPF_REG_9;
1818 
1819 			if (si->src_reg == treg || si->dst_reg == treg)
1820 				--treg;
1821 			if (si->src_reg == treg || si->dst_reg == treg)
1822 				--treg;
1823 			*insn++ = BPF_STX_MEM(
1824 				BPF_DW, si->dst_reg, treg,
1825 				offsetof(struct bpf_sysctl_kern, tmp_reg));
1826 			*insn++ = BPF_LDX_MEM(
1827 				BPF_FIELD_SIZEOF(struct bpf_sysctl_kern, ppos),
1828 				treg, si->dst_reg,
1829 				offsetof(struct bpf_sysctl_kern, ppos));
1830 			*insn++ = BPF_STX_MEM(
1831 				BPF_SIZEOF(u32), treg, si->src_reg,
1832 				bpf_ctx_narrow_access_offset(
1833 					0, sizeof(u32), sizeof(loff_t)));
1834 			*insn++ = BPF_LDX_MEM(
1835 				BPF_DW, treg, si->dst_reg,
1836 				offsetof(struct bpf_sysctl_kern, tmp_reg));
1837 		} else {
1838 			*insn++ = BPF_LDX_MEM(
1839 				BPF_FIELD_SIZEOF(struct bpf_sysctl_kern, ppos),
1840 				si->dst_reg, si->src_reg,
1841 				offsetof(struct bpf_sysctl_kern, ppos));
1842 			read_size = bpf_size_to_bytes(BPF_SIZE(si->code));
1843 			*insn++ = BPF_LDX_MEM(
1844 				BPF_SIZE(si->code), si->dst_reg, si->dst_reg,
1845 				bpf_ctx_narrow_access_offset(
1846 					0, read_size, sizeof(loff_t)));
1847 		}
1848 		*target_size = sizeof(u32);
1849 		break;
1850 	}
1851 
1852 	return insn - insn_buf;
1853 }
1854 
1855 const struct bpf_verifier_ops cg_sysctl_verifier_ops = {
1856 	.get_func_proto		= sysctl_func_proto,
1857 	.is_valid_access	= sysctl_is_valid_access,
1858 	.convert_ctx_access	= sysctl_convert_ctx_access,
1859 };
1860 
1861 const struct bpf_prog_ops cg_sysctl_prog_ops = {
1862 };
1863 
1864 static const struct bpf_func_proto *
cg_sockopt_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)1865 cg_sockopt_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
1866 {
1867 	switch (func_id) {
1868 #ifdef CONFIG_NET
1869 	case BPF_FUNC_sk_storage_get:
1870 		return &bpf_sk_storage_get_proto;
1871 	case BPF_FUNC_sk_storage_delete:
1872 		return &bpf_sk_storage_delete_proto;
1873 #endif
1874 #ifdef CONFIG_INET
1875 	case BPF_FUNC_tcp_sock:
1876 		return &bpf_tcp_sock_proto;
1877 #endif
1878 	default:
1879 		return cgroup_base_func_proto(func_id, prog);
1880 	}
1881 }
1882 
cg_sockopt_is_valid_access(int off, int size, enum bpf_access_type type, const struct bpf_prog *prog, struct bpf_insn_access_aux *info)1883 static bool cg_sockopt_is_valid_access(int off, int size,
1884 				       enum bpf_access_type type,
1885 				       const struct bpf_prog *prog,
1886 				       struct bpf_insn_access_aux *info)
1887 {
1888 	const int size_default = sizeof(__u32);
1889 
1890 	if (off < 0 || off >= sizeof(struct bpf_sockopt))
1891 		return false;
1892 
1893 	if (off % size != 0)
1894 		return false;
1895 
1896 	if (type == BPF_WRITE) {
1897 		switch (off) {
1898 		case offsetof(struct bpf_sockopt, retval):
1899 			if (size != size_default)
1900 				return false;
1901 			return prog->expected_attach_type ==
1902 				BPF_CGROUP_GETSOCKOPT;
1903 		case offsetof(struct bpf_sockopt, optname):
1904 			fallthrough;
1905 		case offsetof(struct bpf_sockopt, level):
1906 			if (size != size_default)
1907 				return false;
1908 			return prog->expected_attach_type ==
1909 				BPF_CGROUP_SETSOCKOPT;
1910 		case offsetof(struct bpf_sockopt, optlen):
1911 			return size == size_default;
1912 		default:
1913 			return false;
1914 		}
1915 	}
1916 
1917 	switch (off) {
1918 	case offsetof(struct bpf_sockopt, sk):
1919 		if (size != sizeof(__u64))
1920 			return false;
1921 		info->reg_type = PTR_TO_SOCKET;
1922 		break;
1923 	case offsetof(struct bpf_sockopt, optval):
1924 		if (size != sizeof(__u64))
1925 			return false;
1926 		info->reg_type = PTR_TO_PACKET;
1927 		break;
1928 	case offsetof(struct bpf_sockopt, optval_end):
1929 		if (size != sizeof(__u64))
1930 			return false;
1931 		info->reg_type = PTR_TO_PACKET_END;
1932 		break;
1933 	case offsetof(struct bpf_sockopt, retval):
1934 		if (size != size_default)
1935 			return false;
1936 		return prog->expected_attach_type == BPF_CGROUP_GETSOCKOPT;
1937 	default:
1938 		if (size != size_default)
1939 			return false;
1940 		break;
1941 	}
1942 	return true;
1943 }
1944 
1945 #define CG_SOCKOPT_ACCESS_FIELD(T, F)					\
1946 	T(BPF_FIELD_SIZEOF(struct bpf_sockopt_kern, F),			\
1947 	  si->dst_reg, si->src_reg,					\
1948 	  offsetof(struct bpf_sockopt_kern, F))
1949 
cg_sockopt_convert_ctx_access(enum bpf_access_type type, const struct bpf_insn *si, struct bpf_insn *insn_buf, struct bpf_prog *prog, u32 *target_size)1950 static u32 cg_sockopt_convert_ctx_access(enum bpf_access_type type,
1951 					 const struct bpf_insn *si,
1952 					 struct bpf_insn *insn_buf,
1953 					 struct bpf_prog *prog,
1954 					 u32 *target_size)
1955 {
1956 	struct bpf_insn *insn = insn_buf;
1957 
1958 	switch (si->off) {
1959 	case offsetof(struct bpf_sockopt, sk):
1960 		*insn++ = CG_SOCKOPT_ACCESS_FIELD(BPF_LDX_MEM, sk);
1961 		break;
1962 	case offsetof(struct bpf_sockopt, level):
1963 		if (type == BPF_WRITE)
1964 			*insn++ = CG_SOCKOPT_ACCESS_FIELD(BPF_STX_MEM, level);
1965 		else
1966 			*insn++ = CG_SOCKOPT_ACCESS_FIELD(BPF_LDX_MEM, level);
1967 		break;
1968 	case offsetof(struct bpf_sockopt, optname):
1969 		if (type == BPF_WRITE)
1970 			*insn++ = CG_SOCKOPT_ACCESS_FIELD(BPF_STX_MEM, optname);
1971 		else
1972 			*insn++ = CG_SOCKOPT_ACCESS_FIELD(BPF_LDX_MEM, optname);
1973 		break;
1974 	case offsetof(struct bpf_sockopt, optlen):
1975 		if (type == BPF_WRITE)
1976 			*insn++ = CG_SOCKOPT_ACCESS_FIELD(BPF_STX_MEM, optlen);
1977 		else
1978 			*insn++ = CG_SOCKOPT_ACCESS_FIELD(BPF_LDX_MEM, optlen);
1979 		break;
1980 	case offsetof(struct bpf_sockopt, retval):
1981 		if (type == BPF_WRITE)
1982 			*insn++ = CG_SOCKOPT_ACCESS_FIELD(BPF_STX_MEM, retval);
1983 		else
1984 			*insn++ = CG_SOCKOPT_ACCESS_FIELD(BPF_LDX_MEM, retval);
1985 		break;
1986 	case offsetof(struct bpf_sockopt, optval):
1987 		*insn++ = CG_SOCKOPT_ACCESS_FIELD(BPF_LDX_MEM, optval);
1988 		break;
1989 	case offsetof(struct bpf_sockopt, optval_end):
1990 		*insn++ = CG_SOCKOPT_ACCESS_FIELD(BPF_LDX_MEM, optval_end);
1991 		break;
1992 	}
1993 
1994 	return insn - insn_buf;
1995 }
1996 
cg_sockopt_get_prologue(struct bpf_insn *insn_buf, bool direct_write, const struct bpf_prog *prog)1997 static int cg_sockopt_get_prologue(struct bpf_insn *insn_buf,
1998 				   bool direct_write,
1999 				   const struct bpf_prog *prog)
2000 {
2001 	/* Nothing to do for sockopt argument. The data is kzalloc'ated.
2002 	 */
2003 	return 0;
2004 }
2005 
2006 const struct bpf_verifier_ops cg_sockopt_verifier_ops = {
2007 	.get_func_proto		= cg_sockopt_func_proto,
2008 	.is_valid_access	= cg_sockopt_is_valid_access,
2009 	.convert_ctx_access	= cg_sockopt_convert_ctx_access,
2010 	.gen_prologue		= cg_sockopt_get_prologue,
2011 };
2012 
2013 const struct bpf_prog_ops cg_sockopt_prog_ops = {
2014 };
2015