1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Shared application/kernel submission and completion ring pairs, for
4 * supporting fast/efficient IO.
5 *
6 * A note on the read/write ordering memory barriers that are matched between
7 * the application and kernel side.
8 *
9 * After the application reads the CQ ring tail, it must use an
10 * appropriate smp_rmb() to pair with the smp_wmb() the kernel uses
11 * before writing the tail (using smp_load_acquire to read the tail will
12 * do). It also needs a smp_mb() before updating CQ head (ordering the
13 * entry load(s) with the head store), pairing with an implicit barrier
14 * through a control-dependency in io_get_cqe (smp_store_release to
15 * store head will do). Failure to do so could lead to reading invalid
16 * CQ entries.
17 *
18 * Likewise, the application must use an appropriate smp_wmb() before
19 * writing the SQ tail (ordering SQ entry stores with the tail store),
20 * which pairs with smp_load_acquire in io_get_sqring (smp_store_release
21 * to store the tail will do). And it needs a barrier ordering the SQ
22 * head load before writing new SQ entries (smp_load_acquire to read
23 * head will do).
24 *
25 * When using the SQ poll thread (IORING_SETUP_SQPOLL), the application
26 * needs to check the SQ flags for IORING_SQ_NEED_WAKEUP *after*
27 * updating the SQ tail; a full memory barrier smp_mb() is needed
28 * between.
29 *
30 * Also see the examples in the liburing library:
31 *
32 * git://git.kernel.dk/liburing
33 *
34 * io_uring also uses READ/WRITE_ONCE() for _any_ store or load that happens
35 * from data shared between the kernel and application. This is done both
36 * for ordering purposes, but also to ensure that once a value is loaded from
37 * data that the application could potentially modify, it remains stable.
38 *
39 * Copyright (C) 2018-2019 Jens Axboe
40 * Copyright (c) 2018-2019 Christoph Hellwig
41 */
42 #include <linux/kernel.h>
43 #include <linux/init.h>
44 #include <linux/errno.h>
45 #include <linux/syscalls.h>
46 #include <linux/compat.h>
47 #include <net/compat.h>
48 #include <linux/refcount.h>
49 #include <linux/uio.h>
50 #include <linux/bits.h>
51
52 #include <linux/sched/signal.h>
53 #include <linux/fs.h>
54 #include <linux/file.h>
55 #include <linux/fdtable.h>
56 #include <linux/mm.h>
57 #include <linux/mman.h>
58 #include <linux/percpu.h>
59 #include <linux/slab.h>
60 #include <linux/blkdev.h>
61 #include <linux/bvec.h>
62 #include <linux/net.h>
63 #include <net/sock.h>
64 #include <net/af_unix.h>
65 #include <net/scm.h>
66 #include <linux/anon_inodes.h>
67 #include <linux/sched/mm.h>
68 #include <linux/uaccess.h>
69 #include <linux/nospec.h>
70 #include <linux/sizes.h>
71 #include <linux/hugetlb.h>
72 #include <linux/highmem.h>
73 #include <linux/namei.h>
74 #include <linux/fsnotify.h>
75 #include <linux/fadvise.h>
76 #include <linux/eventpoll.h>
77 #include <linux/splice.h>
78 #include <linux/task_work.h>
79 #include <linux/pagemap.h>
80 #include <linux/io_uring.h>
81 #include <linux/tracehook.h>
82
83 #define CREATE_TRACE_POINTS
84 #include <trace/events/io_uring.h>
85
86 #include <uapi/linux/io_uring.h>
87
88 #include "../fs/internal.h"
89 #include "io-wq.h"
90
91 #define IORING_MAX_ENTRIES 32768
92 #define IORING_MAX_CQ_ENTRIES (2 * IORING_MAX_ENTRIES)
93 #define IORING_SQPOLL_CAP_ENTRIES_VALUE 8
94
95 /* only define max */
96 #define IORING_MAX_FIXED_FILES (1U << 15)
97 #define IORING_MAX_RESTRICTIONS (IORING_RESTRICTION_LAST + \
98 IORING_REGISTER_LAST + IORING_OP_LAST)
99
100 #define IO_RSRC_TAG_TABLE_SHIFT (PAGE_SHIFT - 3)
101 #define IO_RSRC_TAG_TABLE_MAX (1U << IO_RSRC_TAG_TABLE_SHIFT)
102 #define IO_RSRC_TAG_TABLE_MASK (IO_RSRC_TAG_TABLE_MAX - 1)
103
104 #define IORING_MAX_REG_BUFFERS (1U << 14)
105
106 #define SQE_VALID_FLAGS (IOSQE_FIXED_FILE|IOSQE_IO_DRAIN|IOSQE_IO_LINK| \
107 IOSQE_IO_HARDLINK | IOSQE_ASYNC | \
108 IOSQE_BUFFER_SELECT)
109 #define IO_REQ_CLEAN_FLAGS (REQ_F_BUFFER_SELECTED | REQ_F_NEED_CLEANUP | \
110 REQ_F_POLLED | REQ_F_INFLIGHT | REQ_F_CREDS)
111
112 #define IO_TCTX_REFS_CACHE_NR (1U << 10)
113
114 struct io_uring {
115 u32 head ____cacheline_aligned_in_smp;
116 u32 tail ____cacheline_aligned_in_smp;
117 };
118
119 /*
120 * This data is shared with the application through the mmap at offsets
121 * IORING_OFF_SQ_RING and IORING_OFF_CQ_RING.
122 *
123 * The offsets to the member fields are published through struct
124 * io_sqring_offsets when calling io_uring_setup.
125 */
126 struct io_rings {
127 /*
128 * Head and tail offsets into the ring; the offsets need to be
129 * masked to get valid indices.
130 *
131 * The kernel controls head of the sq ring and the tail of the cq ring,
132 * and the application controls tail of the sq ring and the head of the
133 * cq ring.
134 */
135 struct io_uring sq, cq;
136 /*
137 * Bitmasks to apply to head and tail offsets (constant, equals
138 * ring_entries - 1)
139 */
140 u32 sq_ring_mask, cq_ring_mask;
141 /* Ring sizes (constant, power of 2) */
142 u32 sq_ring_entries, cq_ring_entries;
143 /*
144 * Number of invalid entries dropped by the kernel due to
145 * invalid index stored in array
146 *
147 * Written by the kernel, shouldn't be modified by the
148 * application (i.e. get number of "new events" by comparing to
149 * cached value).
150 *
151 * After a new SQ head value was read by the application this
152 * counter includes all submissions that were dropped reaching
153 * the new SQ head (and possibly more).
154 */
155 u32 sq_dropped;
156 /*
157 * Runtime SQ flags
158 *
159 * Written by the kernel, shouldn't be modified by the
160 * application.
161 *
162 * The application needs a full memory barrier before checking
163 * for IORING_SQ_NEED_WAKEUP after updating the sq tail.
164 */
165 u32 sq_flags;
166 /*
167 * Runtime CQ flags
168 *
169 * Written by the application, shouldn't be modified by the
170 * kernel.
171 */
172 u32 cq_flags;
173 /*
174 * Number of completion events lost because the queue was full;
175 * this should be avoided by the application by making sure
176 * there are not more requests pending than there is space in
177 * the completion queue.
178 *
179 * Written by the kernel, shouldn't be modified by the
180 * application (i.e. get number of "new events" by comparing to
181 * cached value).
182 *
183 * As completion events come in out of order this counter is not
184 * ordered with any other data.
185 */
186 u32 cq_overflow;
187 /*
188 * Ring buffer of completion events.
189 *
190 * The kernel writes completion events fresh every time they are
191 * produced, so the application is allowed to modify pending
192 * entries.
193 */
194 struct io_uring_cqe cqes[] ____cacheline_aligned_in_smp;
195 };
196
197 enum io_uring_cmd_flags {
198 IO_URING_F_NONBLOCK = 1,
199 IO_URING_F_COMPLETE_DEFER = 2,
200 };
201
202 struct io_mapped_ubuf {
203 u64 ubuf;
204 u64 ubuf_end;
205 unsigned int nr_bvecs;
206 unsigned long acct_pages;
207 struct bio_vec bvec[];
208 };
209
210 struct io_ring_ctx;
211
212 struct io_overflow_cqe {
213 struct io_uring_cqe cqe;
214 struct list_head list;
215 };
216
217 struct io_fixed_file {
218 /* file * with additional FFS_* flags */
219 unsigned long file_ptr;
220 };
221
222 struct io_rsrc_put {
223 struct list_head list;
224 u64 tag;
225 union {
226 void *rsrc;
227 struct file *file;
228 struct io_mapped_ubuf *buf;
229 };
230 };
231
232 struct io_file_table {
233 struct io_fixed_file *files;
234 };
235
236 struct io_rsrc_node {
237 struct percpu_ref refs;
238 struct list_head node;
239 struct list_head rsrc_list;
240 struct io_rsrc_data *rsrc_data;
241 struct llist_node llist;
242 bool done;
243 };
244
245 typedef void (rsrc_put_fn)(struct io_ring_ctx *ctx, struct io_rsrc_put *prsrc);
246
247 struct io_rsrc_data {
248 struct io_ring_ctx *ctx;
249
250 u64 **tags;
251 unsigned int nr;
252 rsrc_put_fn *do_put;
253 atomic_t refs;
254 struct completion done;
255 bool quiesce;
256 };
257
258 struct io_buffer {
259 struct list_head list;
260 __u64 addr;
261 __u32 len;
262 __u16 bid;
263 };
264
265 struct io_restriction {
266 DECLARE_BITMAP(register_op, IORING_REGISTER_LAST);
267 DECLARE_BITMAP(sqe_op, IORING_OP_LAST);
268 u8 sqe_flags_allowed;
269 u8 sqe_flags_required;
270 bool registered;
271 };
272
273 enum {
274 IO_SQ_THREAD_SHOULD_STOP = 0,
275 IO_SQ_THREAD_SHOULD_PARK,
276 };
277
278 struct io_sq_data {
279 refcount_t refs;
280 atomic_t park_pending;
281 struct mutex lock;
282
283 /* ctx's that are using this sqd */
284 struct list_head ctx_list;
285
286 struct task_struct *thread;
287 struct wait_queue_head wait;
288
289 unsigned sq_thread_idle;
290 int sq_cpu;
291 pid_t task_pid;
292 pid_t task_tgid;
293
294 unsigned long state;
295 struct completion exited;
296 };
297
298 #define IO_COMPL_BATCH 32
299 #define IO_REQ_CACHE_SIZE 32
300 #define IO_REQ_ALLOC_BATCH 8
301
302 struct io_submit_link {
303 struct io_kiocb *head;
304 struct io_kiocb *last;
305 };
306
307 struct io_submit_state {
308 struct blk_plug plug;
309 struct io_submit_link link;
310
311 /*
312 * io_kiocb alloc cache
313 */
314 void *reqs[IO_REQ_CACHE_SIZE];
315 unsigned int free_reqs;
316
317 bool plug_started;
318
319 /*
320 * Batch completion logic
321 */
322 struct io_kiocb *compl_reqs[IO_COMPL_BATCH];
323 unsigned int compl_nr;
324 /* inline/task_work completion list, under ->uring_lock */
325 struct list_head free_list;
326
327 unsigned int ios_left;
328 };
329
330 struct io_ring_ctx {
331 /* const or read-mostly hot data */
332 struct {
333 struct percpu_ref refs;
334
335 struct io_rings *rings;
336 unsigned int flags;
337 unsigned int compat: 1;
338 unsigned int drain_next: 1;
339 unsigned int eventfd_async: 1;
340 unsigned int restricted: 1;
341 unsigned int off_timeout_used: 1;
342 unsigned int drain_active: 1;
343 } ____cacheline_aligned_in_smp;
344
345 /* submission data */
346 struct {
347 struct mutex uring_lock;
348
349 /*
350 * Ring buffer of indices into array of io_uring_sqe, which is
351 * mmapped by the application using the IORING_OFF_SQES offset.
352 *
353 * This indirection could e.g. be used to assign fixed
354 * io_uring_sqe entries to operations and only submit them to
355 * the queue when needed.
356 *
357 * The kernel modifies neither the indices array nor the entries
358 * array.
359 */
360 u32 *sq_array;
361 struct io_uring_sqe *sq_sqes;
362 unsigned cached_sq_head;
363 unsigned sq_entries;
364 struct list_head defer_list;
365
366 /*
367 * Fixed resources fast path, should be accessed only under
368 * uring_lock, and updated through io_uring_register(2)
369 */
370 struct io_rsrc_node *rsrc_node;
371 struct io_file_table file_table;
372 unsigned nr_user_files;
373 unsigned nr_user_bufs;
374 struct io_mapped_ubuf **user_bufs;
375
376 struct io_submit_state submit_state;
377 struct list_head timeout_list;
378 struct list_head ltimeout_list;
379 struct list_head cq_overflow_list;
380 struct xarray io_buffers;
381 struct xarray personalities;
382 u32 pers_next;
383 unsigned sq_thread_idle;
384 } ____cacheline_aligned_in_smp;
385
386 /* IRQ completion list, under ->completion_lock */
387 struct list_head locked_free_list;
388 unsigned int locked_free_nr;
389
390 const struct cred *sq_creds; /* cred used for __io_sq_thread() */
391 struct io_sq_data *sq_data; /* if using sq thread polling */
392
393 struct wait_queue_head sqo_sq_wait;
394 struct list_head sqd_list;
395
396 unsigned long check_cq_overflow;
397
398 struct {
399 unsigned cached_cq_tail;
400 unsigned cq_entries;
401 struct eventfd_ctx *cq_ev_fd;
402 struct wait_queue_head poll_wait;
403 struct wait_queue_head cq_wait;
404 unsigned cq_extra;
405 atomic_t cq_timeouts;
406 unsigned cq_last_tm_flush;
407 } ____cacheline_aligned_in_smp;
408
409 struct {
410 spinlock_t completion_lock;
411
412 spinlock_t timeout_lock;
413
414 /*
415 * ->iopoll_list is protected by the ctx->uring_lock for
416 * io_uring instances that don't use IORING_SETUP_SQPOLL.
417 * For SQPOLL, only the single threaded io_sq_thread() will
418 * manipulate the list, hence no extra locking is needed there.
419 */
420 struct list_head iopoll_list;
421 struct hlist_head *cancel_hash;
422 unsigned cancel_hash_bits;
423 bool poll_multi_queue;
424 } ____cacheline_aligned_in_smp;
425
426 struct io_restriction restrictions;
427
428 /* slow path rsrc auxilary data, used by update/register */
429 struct {
430 struct io_rsrc_node *rsrc_backup_node;
431 struct io_mapped_ubuf *dummy_ubuf;
432 struct io_rsrc_data *file_data;
433 struct io_rsrc_data *buf_data;
434
435 struct delayed_work rsrc_put_work;
436 struct llist_head rsrc_put_llist;
437 struct list_head rsrc_ref_list;
438 spinlock_t rsrc_ref_lock;
439 };
440
441 /* Keep this last, we don't need it for the fast path */
442 struct {
443 #if defined(CONFIG_UNIX)
444 struct socket *ring_sock;
445 #endif
446 /* hashed buffered write serialization */
447 struct io_wq_hash *hash_map;
448
449 /* Only used for accounting purposes */
450 struct user_struct *user;
451 struct mm_struct *mm_account;
452
453 /* ctx exit and cancelation */
454 struct llist_head fallback_llist;
455 struct delayed_work fallback_work;
456 struct work_struct exit_work;
457 struct list_head tctx_list;
458 struct completion ref_comp;
459 u32 iowq_limits[2];
460 bool iowq_limits_set;
461 };
462 };
463
464 struct io_uring_task {
465 /* submission side */
466 int cached_refs;
467 struct xarray xa;
468 struct wait_queue_head wait;
469 const struct io_ring_ctx *last;
470 struct io_wq *io_wq;
471 struct percpu_counter inflight;
472 atomic_t inflight_tracked;
473 atomic_t in_idle;
474
475 spinlock_t task_lock;
476 struct io_wq_work_list task_list;
477 struct callback_head task_work;
478 bool task_running;
479 };
480
481 /*
482 * First field must be the file pointer in all the
483 * iocb unions! See also 'struct kiocb' in <linux/fs.h>
484 */
485 struct io_poll_iocb {
486 struct file *file;
487 struct wait_queue_head *head;
488 __poll_t events;
489 int retries;
490 struct wait_queue_entry wait;
491 };
492
493 struct io_poll_update {
494 struct file *file;
495 u64 old_user_data;
496 u64 new_user_data;
497 __poll_t events;
498 bool update_events;
499 bool update_user_data;
500 };
501
502 struct io_close {
503 struct file *file;
504 int fd;
505 u32 file_slot;
506 };
507
508 struct io_timeout_data {
509 struct io_kiocb *req;
510 struct hrtimer timer;
511 struct timespec64 ts;
512 enum hrtimer_mode mode;
513 u32 flags;
514 };
515
516 struct io_accept {
517 struct file *file;
518 struct sockaddr __user *addr;
519 int __user *addr_len;
520 int flags;
521 u32 file_slot;
522 unsigned long nofile;
523 };
524
525 struct io_sync {
526 struct file *file;
527 loff_t len;
528 loff_t off;
529 int flags;
530 int mode;
531 };
532
533 struct io_cancel {
534 struct file *file;
535 u64 addr;
536 };
537
538 struct io_timeout {
539 struct file *file;
540 u32 off;
541 u32 target_seq;
542 struct list_head list;
543 /* head of the link, used by linked timeouts only */
544 struct io_kiocb *head;
545 /* for linked completions */
546 struct io_kiocb *prev;
547 };
548
549 struct io_timeout_rem {
550 struct file *file;
551 u64 addr;
552
553 /* timeout update */
554 struct timespec64 ts;
555 u32 flags;
556 bool ltimeout;
557 };
558
559 struct io_rw {
560 /* NOTE: kiocb has the file as the first member, so don't do it here */
561 struct kiocb kiocb;
562 u64 addr;
563 u64 len;
564 };
565
566 struct io_connect {
567 struct file *file;
568 struct sockaddr __user *addr;
569 int addr_len;
570 };
571
572 struct io_sr_msg {
573 struct file *file;
574 union {
575 struct compat_msghdr __user *umsg_compat;
576 struct user_msghdr __user *umsg;
577 void __user *buf;
578 };
579 int msg_flags;
580 int bgid;
581 size_t len;
582 size_t done_io;
583 struct io_buffer *kbuf;
584 void __user *msg_control;
585 };
586
587 struct io_open {
588 struct file *file;
589 int dfd;
590 u32 file_slot;
591 struct filename *filename;
592 struct open_how how;
593 unsigned long nofile;
594 };
595
596 struct io_rsrc_update {
597 struct file *file;
598 u64 arg;
599 u32 nr_args;
600 u32 offset;
601 };
602
603 struct io_fadvise {
604 struct file *file;
605 u64 offset;
606 u32 len;
607 u32 advice;
608 };
609
610 struct io_madvise {
611 struct file *file;
612 u64 addr;
613 u32 len;
614 u32 advice;
615 };
616
617 struct io_epoll {
618 struct file *file;
619 int epfd;
620 int op;
621 int fd;
622 struct epoll_event event;
623 };
624
625 struct io_splice {
626 struct file *file_out;
627 loff_t off_out;
628 loff_t off_in;
629 u64 len;
630 int splice_fd_in;
631 unsigned int flags;
632 };
633
634 struct io_provide_buf {
635 struct file *file;
636 __u64 addr;
637 __u32 len;
638 __u32 bgid;
639 __u16 nbufs;
640 __u16 bid;
641 };
642
643 struct io_statx {
644 struct file *file;
645 int dfd;
646 unsigned int mask;
647 unsigned int flags;
648 const char __user *filename;
649 struct statx __user *buffer;
650 };
651
652 struct io_shutdown {
653 struct file *file;
654 int how;
655 };
656
657 struct io_rename {
658 struct file *file;
659 int old_dfd;
660 int new_dfd;
661 struct filename *oldpath;
662 struct filename *newpath;
663 int flags;
664 };
665
666 struct io_unlink {
667 struct file *file;
668 int dfd;
669 int flags;
670 struct filename *filename;
671 };
672
673 struct io_mkdir {
674 struct file *file;
675 int dfd;
676 umode_t mode;
677 struct filename *filename;
678 };
679
680 struct io_symlink {
681 struct file *file;
682 int new_dfd;
683 struct filename *oldpath;
684 struct filename *newpath;
685 };
686
687 struct io_hardlink {
688 struct file *file;
689 int old_dfd;
690 int new_dfd;
691 struct filename *oldpath;
692 struct filename *newpath;
693 int flags;
694 };
695
696 struct io_completion {
697 struct file *file;
698 u32 cflags;
699 };
700
701 struct io_async_connect {
702 struct sockaddr_storage address;
703 };
704
705 struct io_async_msghdr {
706 struct iovec fast_iov[UIO_FASTIOV];
707 /* points to an allocated iov, if NULL we use fast_iov instead */
708 struct iovec *free_iov;
709 struct sockaddr __user *uaddr;
710 struct msghdr msg;
711 struct sockaddr_storage addr;
712 };
713
714 struct io_async_rw {
715 struct iovec fast_iov[UIO_FASTIOV];
716 const struct iovec *free_iovec;
717 struct iov_iter iter;
718 struct iov_iter_state iter_state;
719 size_t bytes_done;
720 struct wait_page_queue wpq;
721 };
722
723 enum {
724 REQ_F_FIXED_FILE_BIT = IOSQE_FIXED_FILE_BIT,
725 REQ_F_IO_DRAIN_BIT = IOSQE_IO_DRAIN_BIT,
726 REQ_F_LINK_BIT = IOSQE_IO_LINK_BIT,
727 REQ_F_HARDLINK_BIT = IOSQE_IO_HARDLINK_BIT,
728 REQ_F_FORCE_ASYNC_BIT = IOSQE_ASYNC_BIT,
729 REQ_F_BUFFER_SELECT_BIT = IOSQE_BUFFER_SELECT_BIT,
730
731 /* first byte is taken by user flags, shift it to not overlap */
732 REQ_F_FAIL_BIT = 8,
733 REQ_F_INFLIGHT_BIT,
734 REQ_F_CUR_POS_BIT,
735 REQ_F_NOWAIT_BIT,
736 REQ_F_LINK_TIMEOUT_BIT,
737 REQ_F_NEED_CLEANUP_BIT,
738 REQ_F_POLLED_BIT,
739 REQ_F_BUFFER_SELECTED_BIT,
740 REQ_F_COMPLETE_INLINE_BIT,
741 REQ_F_REISSUE_BIT,
742 REQ_F_CREDS_BIT,
743 REQ_F_REFCOUNT_BIT,
744 REQ_F_ARM_LTIMEOUT_BIT,
745 REQ_F_PARTIAL_IO_BIT,
746 /* keep async read/write and isreg together and in order */
747 REQ_F_NOWAIT_READ_BIT,
748 REQ_F_NOWAIT_WRITE_BIT,
749 REQ_F_ISREG_BIT,
750
751 /* not a real bit, just to check we're not overflowing the space */
752 __REQ_F_LAST_BIT,
753 };
754
755 enum {
756 /* ctx owns file */
757 REQ_F_FIXED_FILE = BIT(REQ_F_FIXED_FILE_BIT),
758 /* drain existing IO first */
759 REQ_F_IO_DRAIN = BIT(REQ_F_IO_DRAIN_BIT),
760 /* linked sqes */
761 REQ_F_LINK = BIT(REQ_F_LINK_BIT),
762 /* doesn't sever on completion < 0 */
763 REQ_F_HARDLINK = BIT(REQ_F_HARDLINK_BIT),
764 /* IOSQE_ASYNC */
765 REQ_F_FORCE_ASYNC = BIT(REQ_F_FORCE_ASYNC_BIT),
766 /* IOSQE_BUFFER_SELECT */
767 REQ_F_BUFFER_SELECT = BIT(REQ_F_BUFFER_SELECT_BIT),
768
769 /* fail rest of links */
770 REQ_F_FAIL = BIT(REQ_F_FAIL_BIT),
771 /* on inflight list, should be cancelled and waited on exit reliably */
772 REQ_F_INFLIGHT = BIT(REQ_F_INFLIGHT_BIT),
773 /* read/write uses file position */
774 REQ_F_CUR_POS = BIT(REQ_F_CUR_POS_BIT),
775 /* must not punt to workers */
776 REQ_F_NOWAIT = BIT(REQ_F_NOWAIT_BIT),
777 /* has or had linked timeout */
778 REQ_F_LINK_TIMEOUT = BIT(REQ_F_LINK_TIMEOUT_BIT),
779 /* needs cleanup */
780 REQ_F_NEED_CLEANUP = BIT(REQ_F_NEED_CLEANUP_BIT),
781 /* already went through poll handler */
782 REQ_F_POLLED = BIT(REQ_F_POLLED_BIT),
783 /* buffer already selected */
784 REQ_F_BUFFER_SELECTED = BIT(REQ_F_BUFFER_SELECTED_BIT),
785 /* completion is deferred through io_comp_state */
786 REQ_F_COMPLETE_INLINE = BIT(REQ_F_COMPLETE_INLINE_BIT),
787 /* caller should reissue async */
788 REQ_F_REISSUE = BIT(REQ_F_REISSUE_BIT),
789 /* supports async reads */
790 REQ_F_NOWAIT_READ = BIT(REQ_F_NOWAIT_READ_BIT),
791 /* supports async writes */
792 REQ_F_NOWAIT_WRITE = BIT(REQ_F_NOWAIT_WRITE_BIT),
793 /* regular file */
794 REQ_F_ISREG = BIT(REQ_F_ISREG_BIT),
795 /* has creds assigned */
796 REQ_F_CREDS = BIT(REQ_F_CREDS_BIT),
797 /* skip refcounting if not set */
798 REQ_F_REFCOUNT = BIT(REQ_F_REFCOUNT_BIT),
799 /* there is a linked timeout that has to be armed */
800 REQ_F_ARM_LTIMEOUT = BIT(REQ_F_ARM_LTIMEOUT_BIT),
801 /* request has already done partial IO */
802 REQ_F_PARTIAL_IO = BIT(REQ_F_PARTIAL_IO_BIT),
803 };
804
805 struct async_poll {
806 struct io_poll_iocb poll;
807 struct io_poll_iocb *double_poll;
808 };
809
810 typedef void (*io_req_tw_func_t)(struct io_kiocb *req, bool *locked);
811
812 struct io_task_work {
813 union {
814 struct io_wq_work_node node;
815 struct llist_node fallback_node;
816 };
817 io_req_tw_func_t func;
818 };
819
820 enum {
821 IORING_RSRC_FILE = 0,
822 IORING_RSRC_BUFFER = 1,
823 };
824
825 /*
826 * NOTE! Each of the iocb union members has the file pointer
827 * as the first entry in their struct definition. So you can
828 * access the file pointer through any of the sub-structs,
829 * or directly as just 'ki_filp' in this struct.
830 */
831 struct io_kiocb {
832 union {
833 struct file *file;
834 struct io_rw rw;
835 struct io_poll_iocb poll;
836 struct io_poll_update poll_update;
837 struct io_accept accept;
838 struct io_sync sync;
839 struct io_cancel cancel;
840 struct io_timeout timeout;
841 struct io_timeout_rem timeout_rem;
842 struct io_connect connect;
843 struct io_sr_msg sr_msg;
844 struct io_open open;
845 struct io_close close;
846 struct io_rsrc_update rsrc_update;
847 struct io_fadvise fadvise;
848 struct io_madvise madvise;
849 struct io_epoll epoll;
850 struct io_splice splice;
851 struct io_provide_buf pbuf;
852 struct io_statx statx;
853 struct io_shutdown shutdown;
854 struct io_rename rename;
855 struct io_unlink unlink;
856 struct io_mkdir mkdir;
857 struct io_symlink symlink;
858 struct io_hardlink hardlink;
859 /* use only after cleaning per-op data, see io_clean_op() */
860 struct io_completion compl;
861 };
862
863 /* opcode allocated if it needs to store data for async defer */
864 void *async_data;
865 u8 opcode;
866 /* polled IO has completed */
867 u8 iopoll_completed;
868
869 u16 buf_index;
870 u32 result;
871
872 struct io_ring_ctx *ctx;
873 unsigned int flags;
874 atomic_t refs;
875 struct task_struct *task;
876 u64 user_data;
877
878 struct io_kiocb *link;
879 struct percpu_ref *fixed_rsrc_refs;
880
881 /* used with ctx->iopoll_list with reads/writes */
882 struct list_head inflight_entry;
883 struct io_task_work io_task_work;
884 /* for polled requests, i.e. IORING_OP_POLL_ADD and async armed poll */
885 struct hlist_node hash_node;
886 struct async_poll *apoll;
887 struct io_wq_work work;
888 const struct cred *creds;
889
890 /* store used ubuf, so we can prevent reloading */
891 struct io_mapped_ubuf *imu;
892 /* stores selected buf, valid IFF REQ_F_BUFFER_SELECTED is set */
893 struct io_buffer *kbuf;
894 atomic_t poll_refs;
895 };
896
897 struct io_tctx_node {
898 struct list_head ctx_node;
899 struct task_struct *task;
900 struct io_ring_ctx *ctx;
901 };
902
903 struct io_defer_entry {
904 struct list_head list;
905 struct io_kiocb *req;
906 u32 seq;
907 };
908
909 struct io_op_def {
910 /* needs req->file assigned */
911 unsigned needs_file : 1;
912 /* hash wq insertion if file is a regular file */
913 unsigned hash_reg_file : 1;
914 /* unbound wq insertion if file is a non-regular file */
915 unsigned unbound_nonreg_file : 1;
916 /* opcode is not supported by this kernel */
917 unsigned not_supported : 1;
918 /* set if opcode supports polled "wait" */
919 unsigned pollin : 1;
920 unsigned pollout : 1;
921 /* op supports buffer selection */
922 unsigned buffer_select : 1;
923 /* do prep async if is going to be punted */
924 unsigned needs_async_setup : 1;
925 /* should block plug */
926 unsigned plug : 1;
927 /* size of async data needed, if any */
928 unsigned short async_size;
929 };
930
931 static const struct io_op_def io_op_defs[] = {
932 [IORING_OP_NOP] = {},
933 [IORING_OP_READV] = {
934 .needs_file = 1,
935 .unbound_nonreg_file = 1,
936 .pollin = 1,
937 .buffer_select = 1,
938 .needs_async_setup = 1,
939 .plug = 1,
940 .async_size = sizeof(struct io_async_rw),
941 },
942 [IORING_OP_WRITEV] = {
943 .needs_file = 1,
944 .hash_reg_file = 1,
945 .unbound_nonreg_file = 1,
946 .pollout = 1,
947 .needs_async_setup = 1,
948 .plug = 1,
949 .async_size = sizeof(struct io_async_rw),
950 },
951 [IORING_OP_FSYNC] = {
952 .needs_file = 1,
953 },
954 [IORING_OP_READ_FIXED] = {
955 .needs_file = 1,
956 .unbound_nonreg_file = 1,
957 .pollin = 1,
958 .plug = 1,
959 .async_size = sizeof(struct io_async_rw),
960 },
961 [IORING_OP_WRITE_FIXED] = {
962 .needs_file = 1,
963 .hash_reg_file = 1,
964 .unbound_nonreg_file = 1,
965 .pollout = 1,
966 .plug = 1,
967 .async_size = sizeof(struct io_async_rw),
968 },
969 [IORING_OP_POLL_ADD] = {
970 .needs_file = 1,
971 .unbound_nonreg_file = 1,
972 },
973 [IORING_OP_POLL_REMOVE] = {},
974 [IORING_OP_SYNC_FILE_RANGE] = {
975 .needs_file = 1,
976 },
977 [IORING_OP_SENDMSG] = {
978 .needs_file = 1,
979 .unbound_nonreg_file = 1,
980 .pollout = 1,
981 .needs_async_setup = 1,
982 .async_size = sizeof(struct io_async_msghdr),
983 },
984 [IORING_OP_RECVMSG] = {
985 .needs_file = 1,
986 .unbound_nonreg_file = 1,
987 .pollin = 1,
988 .buffer_select = 1,
989 .needs_async_setup = 1,
990 .async_size = sizeof(struct io_async_msghdr),
991 },
992 [IORING_OP_TIMEOUT] = {
993 .async_size = sizeof(struct io_timeout_data),
994 },
995 [IORING_OP_TIMEOUT_REMOVE] = {
996 /* used by timeout updates' prep() */
997 },
998 [IORING_OP_ACCEPT] = {
999 .needs_file = 1,
1000 .unbound_nonreg_file = 1,
1001 .pollin = 1,
1002 },
1003 [IORING_OP_ASYNC_CANCEL] = {},
1004 [IORING_OP_LINK_TIMEOUT] = {
1005 .async_size = sizeof(struct io_timeout_data),
1006 },
1007 [IORING_OP_CONNECT] = {
1008 .needs_file = 1,
1009 .unbound_nonreg_file = 1,
1010 .pollout = 1,
1011 .needs_async_setup = 1,
1012 .async_size = sizeof(struct io_async_connect),
1013 },
1014 [IORING_OP_FALLOCATE] = {
1015 .needs_file = 1,
1016 },
1017 [IORING_OP_OPENAT] = {},
1018 [IORING_OP_CLOSE] = {},
1019 [IORING_OP_FILES_UPDATE] = {},
1020 [IORING_OP_STATX] = {},
1021 [IORING_OP_READ] = {
1022 .needs_file = 1,
1023 .unbound_nonreg_file = 1,
1024 .pollin = 1,
1025 .buffer_select = 1,
1026 .plug = 1,
1027 .async_size = sizeof(struct io_async_rw),
1028 },
1029 [IORING_OP_WRITE] = {
1030 .needs_file = 1,
1031 .hash_reg_file = 1,
1032 .unbound_nonreg_file = 1,
1033 .pollout = 1,
1034 .plug = 1,
1035 .async_size = sizeof(struct io_async_rw),
1036 },
1037 [IORING_OP_FADVISE] = {
1038 .needs_file = 1,
1039 },
1040 [IORING_OP_MADVISE] = {},
1041 [IORING_OP_SEND] = {
1042 .needs_file = 1,
1043 .unbound_nonreg_file = 1,
1044 .pollout = 1,
1045 },
1046 [IORING_OP_RECV] = {
1047 .needs_file = 1,
1048 .unbound_nonreg_file = 1,
1049 .pollin = 1,
1050 .buffer_select = 1,
1051 },
1052 [IORING_OP_OPENAT2] = {
1053 },
1054 [IORING_OP_EPOLL_CTL] = {
1055 .unbound_nonreg_file = 1,
1056 },
1057 [IORING_OP_SPLICE] = {
1058 .needs_file = 1,
1059 .hash_reg_file = 1,
1060 .unbound_nonreg_file = 1,
1061 },
1062 [IORING_OP_PROVIDE_BUFFERS] = {},
1063 [IORING_OP_REMOVE_BUFFERS] = {},
1064 [IORING_OP_TEE] = {
1065 .needs_file = 1,
1066 .hash_reg_file = 1,
1067 .unbound_nonreg_file = 1,
1068 },
1069 [IORING_OP_SHUTDOWN] = {
1070 .needs_file = 1,
1071 },
1072 [IORING_OP_RENAMEAT] = {},
1073 [IORING_OP_UNLINKAT] = {},
1074 };
1075
1076 /* requests with any of those set should undergo io_disarm_next() */
1077 #define IO_DISARM_MASK (REQ_F_ARM_LTIMEOUT | REQ_F_LINK_TIMEOUT | REQ_F_FAIL)
1078
1079 static bool io_disarm_next(struct io_kiocb *req);
1080 static void io_uring_del_tctx_node(unsigned long index);
1081 static void io_uring_try_cancel_requests(struct io_ring_ctx *ctx,
1082 struct task_struct *task,
1083 bool cancel_all);
1084 static void io_uring_cancel_generic(bool cancel_all, struct io_sq_data *sqd);
1085
1086 static void io_fill_cqe_req(struct io_kiocb *req, s32 res, u32 cflags);
1087
1088 static void io_put_req(struct io_kiocb *req);
1089 static void io_put_req_deferred(struct io_kiocb *req);
1090 static void io_dismantle_req(struct io_kiocb *req);
1091 static void io_queue_linked_timeout(struct io_kiocb *req);
1092 static int __io_register_rsrc_update(struct io_ring_ctx *ctx, unsigned type,
1093 struct io_uring_rsrc_update2 *up,
1094 unsigned nr_args);
1095 static void io_clean_op(struct io_kiocb *req);
1096 static struct file *io_file_get(struct io_ring_ctx *ctx,
1097 struct io_kiocb *req, int fd, bool fixed,
1098 unsigned int issue_flags);
1099 static void __io_queue_sqe(struct io_kiocb *req);
1100 static void io_rsrc_put_work(struct work_struct *work);
1101
1102 static void io_req_task_queue(struct io_kiocb *req);
1103 static void io_submit_flush_completions(struct io_ring_ctx *ctx);
1104 static int io_req_prep_async(struct io_kiocb *req);
1105
1106 static int io_install_fixed_file(struct io_kiocb *req, struct file *file,
1107 unsigned int issue_flags, u32 slot_index);
1108 static int io_close_fixed(struct io_kiocb *req, unsigned int issue_flags);
1109
1110 static enum hrtimer_restart io_link_timeout_fn(struct hrtimer *timer);
1111
1112 static struct kmem_cache *req_cachep;
1113
1114 static const struct file_operations io_uring_fops;
1115
io_uring_get_socket(struct file *file)1116 struct sock *io_uring_get_socket(struct file *file)
1117 {
1118 #if defined(CONFIG_UNIX)
1119 if (file->f_op == &io_uring_fops) {
1120 struct io_ring_ctx *ctx = file->private_data;
1121
1122 return ctx->ring_sock->sk;
1123 }
1124 #endif
1125 return NULL;
1126 }
1127 EXPORT_SYMBOL(io_uring_get_socket);
1128
io_tw_lock(struct io_ring_ctx *ctx, bool *locked)1129 static inline void io_tw_lock(struct io_ring_ctx *ctx, bool *locked)
1130 {
1131 if (!*locked) {
1132 mutex_lock(&ctx->uring_lock);
1133 *locked = true;
1134 }
1135 }
1136
1137 #define io_for_each_link(pos, head) \
1138 for (pos = (head); pos; pos = pos->link)
1139
1140 /*
1141 * Shamelessly stolen from the mm implementation of page reference checking,
1142 * see commit f958d7b528b1 for details.
1143 */
1144 #define req_ref_zero_or_close_to_overflow(req) \
1145 ((unsigned int) atomic_read(&(req->refs)) + 127u <= 127u)
1146
req_ref_inc_not_zero(struct io_kiocb *req)1147 static inline bool req_ref_inc_not_zero(struct io_kiocb *req)
1148 {
1149 WARN_ON_ONCE(!(req->flags & REQ_F_REFCOUNT));
1150 return atomic_inc_not_zero(&req->refs);
1151 }
1152
req_ref_put_and_test(struct io_kiocb *req)1153 static inline bool req_ref_put_and_test(struct io_kiocb *req)
1154 {
1155 if (likely(!(req->flags & REQ_F_REFCOUNT)))
1156 return true;
1157
1158 WARN_ON_ONCE(req_ref_zero_or_close_to_overflow(req));
1159 return atomic_dec_and_test(&req->refs);
1160 }
1161
req_ref_get(struct io_kiocb *req)1162 static inline void req_ref_get(struct io_kiocb *req)
1163 {
1164 WARN_ON_ONCE(!(req->flags & REQ_F_REFCOUNT));
1165 WARN_ON_ONCE(req_ref_zero_or_close_to_overflow(req));
1166 atomic_inc(&req->refs);
1167 }
1168
__io_req_set_refcount(struct io_kiocb *req, int nr)1169 static inline void __io_req_set_refcount(struct io_kiocb *req, int nr)
1170 {
1171 if (!(req->flags & REQ_F_REFCOUNT)) {
1172 req->flags |= REQ_F_REFCOUNT;
1173 atomic_set(&req->refs, nr);
1174 }
1175 }
1176
io_req_set_refcount(struct io_kiocb *req)1177 static inline void io_req_set_refcount(struct io_kiocb *req)
1178 {
1179 __io_req_set_refcount(req, 1);
1180 }
1181
io_req_set_rsrc_node(struct io_kiocb *req)1182 static inline void io_req_set_rsrc_node(struct io_kiocb *req)
1183 {
1184 struct io_ring_ctx *ctx = req->ctx;
1185
1186 if (!req->fixed_rsrc_refs) {
1187 req->fixed_rsrc_refs = &ctx->rsrc_node->refs;
1188 percpu_ref_get(req->fixed_rsrc_refs);
1189 }
1190 }
1191
io_refs_resurrect(struct percpu_ref *ref, struct completion *compl)1192 static void io_refs_resurrect(struct percpu_ref *ref, struct completion *compl)
1193 {
1194 bool got = percpu_ref_tryget(ref);
1195
1196 /* already at zero, wait for ->release() */
1197 if (!got)
1198 wait_for_completion(compl);
1199 percpu_ref_resurrect(ref);
1200 if (got)
1201 percpu_ref_put(ref);
1202 }
1203
1204 static bool io_match_task(struct io_kiocb *head, struct task_struct *task,
1205 bool cancel_all)
1206 __must_hold(&req->ctx->timeout_lock)
1207 {
1208 struct io_kiocb *req;
1209
1210 if (task && head->task != task)
1211 return false;
1212 if (cancel_all)
1213 return true;
1214
io_for_each_linknull1215 io_for_each_link(req, head) {
1216 if (req->flags & REQ_F_INFLIGHT)
1217 return true;
1218 }
1219 return false;
1220 }
1221
io_match_linked(struct io_kiocb *head)1222 static bool io_match_linked(struct io_kiocb *head)
1223 {
1224 struct io_kiocb *req;
1225
1226 io_for_each_link(req, head) {
1227 if (req->flags & REQ_F_INFLIGHT)
1228 return true;
1229 }
1230 return false;
1231 }
1232
1233 /*
1234 * As io_match_task() but protected against racing with linked timeouts.
1235 * User must not hold timeout_lock.
1236 */
io_match_task_safe(struct io_kiocb *head, struct task_struct *task, bool cancel_all)1237 static bool io_match_task_safe(struct io_kiocb *head, struct task_struct *task,
1238 bool cancel_all)
1239 {
1240 bool matched;
1241
1242 if (task && head->task != task)
1243 return false;
1244 if (cancel_all)
1245 return true;
1246
1247 if (head->flags & REQ_F_LINK_TIMEOUT) {
1248 struct io_ring_ctx *ctx = head->ctx;
1249
1250 /* protect against races with linked timeouts */
1251 spin_lock_irq(&ctx->timeout_lock);
1252 matched = io_match_linked(head);
1253 spin_unlock_irq(&ctx->timeout_lock);
1254 } else {
1255 matched = io_match_linked(head);
1256 }
1257 return matched;
1258 }
1259
req_set_fail(struct io_kiocb *req)1260 static inline void req_set_fail(struct io_kiocb *req)
1261 {
1262 req->flags |= REQ_F_FAIL;
1263 }
1264
req_fail_link_node(struct io_kiocb *req, int res)1265 static inline void req_fail_link_node(struct io_kiocb *req, int res)
1266 {
1267 req_set_fail(req);
1268 req->result = res;
1269 }
1270
io_ring_ctx_ref_free(struct percpu_ref *ref)1271 static void io_ring_ctx_ref_free(struct percpu_ref *ref)
1272 {
1273 struct io_ring_ctx *ctx = container_of(ref, struct io_ring_ctx, refs);
1274
1275 complete(&ctx->ref_comp);
1276 }
1277
io_is_timeout_noseq(struct io_kiocb *req)1278 static inline bool io_is_timeout_noseq(struct io_kiocb *req)
1279 {
1280 return !req->timeout.off;
1281 }
1282
io_fallback_req_func(struct work_struct *work)1283 static void io_fallback_req_func(struct work_struct *work)
1284 {
1285 struct io_ring_ctx *ctx = container_of(work, struct io_ring_ctx,
1286 fallback_work.work);
1287 struct llist_node *node = llist_del_all(&ctx->fallback_llist);
1288 struct io_kiocb *req, *tmp;
1289 bool locked = false;
1290
1291 percpu_ref_get(&ctx->refs);
1292 llist_for_each_entry_safe(req, tmp, node, io_task_work.fallback_node)
1293 req->io_task_work.func(req, &locked);
1294
1295 if (locked) {
1296 if (ctx->submit_state.compl_nr)
1297 io_submit_flush_completions(ctx);
1298 mutex_unlock(&ctx->uring_lock);
1299 }
1300 percpu_ref_put(&ctx->refs);
1301
1302 }
1303
io_ring_ctx_alloc(struct io_uring_params *p)1304 static struct io_ring_ctx *io_ring_ctx_alloc(struct io_uring_params *p)
1305 {
1306 struct io_ring_ctx *ctx;
1307 int hash_bits;
1308
1309 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
1310 if (!ctx)
1311 return NULL;
1312
1313 /*
1314 * Use 5 bits less than the max cq entries, that should give us around
1315 * 32 entries per hash list if totally full and uniformly spread.
1316 */
1317 hash_bits = ilog2(p->cq_entries);
1318 hash_bits -= 5;
1319 if (hash_bits <= 0)
1320 hash_bits = 1;
1321 ctx->cancel_hash_bits = hash_bits;
1322 ctx->cancel_hash = kmalloc((1U << hash_bits) * sizeof(struct hlist_head),
1323 GFP_KERNEL);
1324 if (!ctx->cancel_hash)
1325 goto err;
1326 __hash_init(ctx->cancel_hash, 1U << hash_bits);
1327
1328 ctx->dummy_ubuf = kzalloc(sizeof(*ctx->dummy_ubuf), GFP_KERNEL);
1329 if (!ctx->dummy_ubuf)
1330 goto err;
1331 /* set invalid range, so io_import_fixed() fails meeting it */
1332 ctx->dummy_ubuf->ubuf = -1UL;
1333
1334 if (percpu_ref_init(&ctx->refs, io_ring_ctx_ref_free,
1335 PERCPU_REF_ALLOW_REINIT, GFP_KERNEL))
1336 goto err;
1337
1338 ctx->flags = p->flags;
1339 init_waitqueue_head(&ctx->sqo_sq_wait);
1340 INIT_LIST_HEAD(&ctx->sqd_list);
1341 init_waitqueue_head(&ctx->poll_wait);
1342 INIT_LIST_HEAD(&ctx->cq_overflow_list);
1343 init_completion(&ctx->ref_comp);
1344 xa_init_flags(&ctx->io_buffers, XA_FLAGS_ALLOC1);
1345 xa_init_flags(&ctx->personalities, XA_FLAGS_ALLOC1);
1346 mutex_init(&ctx->uring_lock);
1347 init_waitqueue_head(&ctx->cq_wait);
1348 spin_lock_init(&ctx->completion_lock);
1349 spin_lock_init(&ctx->timeout_lock);
1350 INIT_LIST_HEAD(&ctx->iopoll_list);
1351 INIT_LIST_HEAD(&ctx->defer_list);
1352 INIT_LIST_HEAD(&ctx->timeout_list);
1353 INIT_LIST_HEAD(&ctx->ltimeout_list);
1354 spin_lock_init(&ctx->rsrc_ref_lock);
1355 INIT_LIST_HEAD(&ctx->rsrc_ref_list);
1356 INIT_DELAYED_WORK(&ctx->rsrc_put_work, io_rsrc_put_work);
1357 init_llist_head(&ctx->rsrc_put_llist);
1358 INIT_LIST_HEAD(&ctx->tctx_list);
1359 INIT_LIST_HEAD(&ctx->submit_state.free_list);
1360 INIT_LIST_HEAD(&ctx->locked_free_list);
1361 INIT_DELAYED_WORK(&ctx->fallback_work, io_fallback_req_func);
1362 return ctx;
1363 err:
1364 kfree(ctx->dummy_ubuf);
1365 kfree(ctx->cancel_hash);
1366 kfree(ctx);
1367 return NULL;
1368 }
1369
io_account_cq_overflow(struct io_ring_ctx *ctx)1370 static void io_account_cq_overflow(struct io_ring_ctx *ctx)
1371 {
1372 struct io_rings *r = ctx->rings;
1373
1374 WRITE_ONCE(r->cq_overflow, READ_ONCE(r->cq_overflow) + 1);
1375 ctx->cq_extra--;
1376 }
1377
req_need_defer(struct io_kiocb *req, u32 seq)1378 static bool req_need_defer(struct io_kiocb *req, u32 seq)
1379 {
1380 if (unlikely(req->flags & REQ_F_IO_DRAIN)) {
1381 struct io_ring_ctx *ctx = req->ctx;
1382
1383 return seq + READ_ONCE(ctx->cq_extra) != ctx->cached_cq_tail;
1384 }
1385
1386 return false;
1387 }
1388
1389 #define FFS_ASYNC_READ 0x1UL
1390 #define FFS_ASYNC_WRITE 0x2UL
1391 #ifdef CONFIG_64BIT
1392 #define FFS_ISREG 0x4UL
1393 #else
1394 #define FFS_ISREG 0x0UL
1395 #endif
1396 #define FFS_MASK ~(FFS_ASYNC_READ|FFS_ASYNC_WRITE|FFS_ISREG)
1397
io_req_ffs_set(struct io_kiocb *req)1398 static inline bool io_req_ffs_set(struct io_kiocb *req)
1399 {
1400 return IS_ENABLED(CONFIG_64BIT) && (req->flags & REQ_F_FIXED_FILE);
1401 }
1402
io_req_track_inflight(struct io_kiocb *req)1403 static void io_req_track_inflight(struct io_kiocb *req)
1404 {
1405 if (!(req->flags & REQ_F_INFLIGHT)) {
1406 req->flags |= REQ_F_INFLIGHT;
1407 atomic_inc(&req->task->io_uring->inflight_tracked);
1408 }
1409 }
1410
__io_prep_linked_timeout(struct io_kiocb *req)1411 static struct io_kiocb *__io_prep_linked_timeout(struct io_kiocb *req)
1412 {
1413 if (WARN_ON_ONCE(!req->link))
1414 return NULL;
1415
1416 req->flags &= ~REQ_F_ARM_LTIMEOUT;
1417 req->flags |= REQ_F_LINK_TIMEOUT;
1418
1419 /* linked timeouts should have two refs once prep'ed */
1420 io_req_set_refcount(req);
1421 __io_req_set_refcount(req->link, 2);
1422 return req->link;
1423 }
1424
io_prep_linked_timeout(struct io_kiocb *req)1425 static inline struct io_kiocb *io_prep_linked_timeout(struct io_kiocb *req)
1426 {
1427 if (likely(!(req->flags & REQ_F_ARM_LTIMEOUT)))
1428 return NULL;
1429 return __io_prep_linked_timeout(req);
1430 }
1431
io_prep_async_work(struct io_kiocb *req)1432 static void io_prep_async_work(struct io_kiocb *req)
1433 {
1434 const struct io_op_def *def = &io_op_defs[req->opcode];
1435 struct io_ring_ctx *ctx = req->ctx;
1436
1437 if (!(req->flags & REQ_F_CREDS)) {
1438 req->flags |= REQ_F_CREDS;
1439 req->creds = get_current_cred();
1440 }
1441
1442 req->work.list.next = NULL;
1443 req->work.flags = 0;
1444 if (req->flags & REQ_F_FORCE_ASYNC)
1445 req->work.flags |= IO_WQ_WORK_CONCURRENT;
1446
1447 if (req->flags & REQ_F_ISREG) {
1448 if (def->hash_reg_file || (ctx->flags & IORING_SETUP_IOPOLL))
1449 io_wq_hash_work(&req->work, file_inode(req->file));
1450 } else if (!req->file || !S_ISBLK(file_inode(req->file)->i_mode)) {
1451 if (def->unbound_nonreg_file)
1452 req->work.flags |= IO_WQ_WORK_UNBOUND;
1453 }
1454 }
1455
io_prep_async_link(struct io_kiocb *req)1456 static void io_prep_async_link(struct io_kiocb *req)
1457 {
1458 struct io_kiocb *cur;
1459
1460 if (req->flags & REQ_F_LINK_TIMEOUT) {
1461 struct io_ring_ctx *ctx = req->ctx;
1462
1463 spin_lock_irq(&ctx->timeout_lock);
1464 io_for_each_link(cur, req)
1465 io_prep_async_work(cur);
1466 spin_unlock_irq(&ctx->timeout_lock);
1467 } else {
1468 io_for_each_link(cur, req)
1469 io_prep_async_work(cur);
1470 }
1471 }
1472
io_queue_async_work(struct io_kiocb *req, bool *locked)1473 static void io_queue_async_work(struct io_kiocb *req, bool *locked)
1474 {
1475 struct io_ring_ctx *ctx = req->ctx;
1476 struct io_kiocb *link = io_prep_linked_timeout(req);
1477 struct io_uring_task *tctx = req->task->io_uring;
1478
1479 /* must not take the lock, NULL it as a precaution */
1480 locked = NULL;
1481
1482 BUG_ON(!tctx);
1483 BUG_ON(!tctx->io_wq);
1484
1485 /* init ->work of the whole link before punting */
1486 io_prep_async_link(req);
1487
1488 /*
1489 * Not expected to happen, but if we do have a bug where this _can_
1490 * happen, catch it here and ensure the request is marked as
1491 * canceled. That will make io-wq go through the usual work cancel
1492 * procedure rather than attempt to run this request (or create a new
1493 * worker for it).
1494 */
1495 if (WARN_ON_ONCE(!same_thread_group(req->task, current)))
1496 req->work.flags |= IO_WQ_WORK_CANCEL;
1497
1498 trace_io_uring_queue_async_work(ctx, io_wq_is_hashed(&req->work), req,
1499 &req->work, req->flags);
1500 io_wq_enqueue(tctx->io_wq, &req->work);
1501 if (link)
1502 io_queue_linked_timeout(link);
1503 }
1504
1505 static void io_kill_timeout(struct io_kiocb *req, int status)
1506 __must_hold(&req->ctx->completion_lock)
1507 __must_hold(&req->ctx->timeout_lock)
1508 {
1509 struct io_timeout_data *io = req->async_data;
1510
1511 if (hrtimer_try_to_cancel(&io->timer) != -1) {
1512 if (status)
1513 req_set_fail(req);
1514 atomic_set(&req->ctx->cq_timeouts,
1515 atomic_read(&req->ctx->cq_timeouts) + 1);
1516 list_del_init(&req->timeout.list);
1517 io_fill_cqe_req(req, status, 0);
1518 io_put_req_deferred(req);
1519 }
1520 }
1521
io_queue_deferred(struct io_ring_ctx *ctx)1522 static void io_queue_deferred(struct io_ring_ctx *ctx)
1523 {
1524 lockdep_assert_held(&ctx->completion_lock);
1525
1526 while (!list_empty(&ctx->defer_list)) {
1527 struct io_defer_entry *de = list_first_entry(&ctx->defer_list,
1528 struct io_defer_entry, list);
1529
1530 if (req_need_defer(de->req, de->seq))
1531 break;
1532 list_del_init(&de->list);
1533 io_req_task_queue(de->req);
1534 kfree(de);
1535 }
1536 }
1537
1538 static void io_flush_timeouts(struct io_ring_ctx *ctx)
1539 __must_hold(&ctx->completion_lock)
1540 {
1541 u32 seq = ctx->cached_cq_tail - atomic_read(&ctx->cq_timeouts);
1542 struct io_kiocb *req, *tmp;
1543
1544 spin_lock_irq(&ctx->timeout_lock);
1545 list_for_each_entry_safe(req, tmp, &ctx->timeout_list, timeout.list) {
1546 u32 events_needed, events_got;
1547
1548 if (io_is_timeout_noseq(req))
1549 break;
1550
1551 /*
1552 * Since seq can easily wrap around over time, subtract
1553 * the last seq at which timeouts were flushed before comparing.
1554 * Assuming not more than 2^31-1 events have happened since,
1555 * these subtractions won't have wrapped, so we can check if
1556 * target is in [last_seq, current_seq] by comparing the two.
1557 */
1558 events_needed = req->timeout.target_seq - ctx->cq_last_tm_flush;
1559 events_got = seq - ctx->cq_last_tm_flush;
1560 if (events_got < events_needed)
1561 break;
1562
1563 io_kill_timeout(req, 0);
1564 }
1565 ctx->cq_last_tm_flush = seq;
1566 spin_unlock_irq(&ctx->timeout_lock);
1567 }
1568
__io_commit_cqring_flush(struct io_ring_ctx *ctx)1569 static void __io_commit_cqring_flush(struct io_ring_ctx *ctx)
1570 {
1571 if (ctx->off_timeout_used)
1572 io_flush_timeouts(ctx);
1573 if (ctx->drain_active)
1574 io_queue_deferred(ctx);
1575 }
1576
io_commit_needs_flush(struct io_ring_ctx *ctx)1577 static inline bool io_commit_needs_flush(struct io_ring_ctx *ctx)
1578 {
1579 return ctx->off_timeout_used || ctx->drain_active;
1580 }
1581
__io_commit_cqring(struct io_ring_ctx *ctx)1582 static inline void __io_commit_cqring(struct io_ring_ctx *ctx)
1583 {
1584 /* order cqe stores with ring update */
1585 smp_store_release(&ctx->rings->cq.tail, ctx->cached_cq_tail);
1586 }
1587
io_commit_cqring(struct io_ring_ctx *ctx)1588 static inline void io_commit_cqring(struct io_ring_ctx *ctx)
1589 {
1590 if (unlikely(io_commit_needs_flush(ctx)))
1591 __io_commit_cqring_flush(ctx);
1592 __io_commit_cqring(ctx);
1593 }
1594
io_sqring_full(struct io_ring_ctx *ctx)1595 static inline bool io_sqring_full(struct io_ring_ctx *ctx)
1596 {
1597 struct io_rings *r = ctx->rings;
1598
1599 return READ_ONCE(r->sq.tail) - ctx->cached_sq_head == ctx->sq_entries;
1600 }
1601
__io_cqring_events(struct io_ring_ctx *ctx)1602 static inline unsigned int __io_cqring_events(struct io_ring_ctx *ctx)
1603 {
1604 return ctx->cached_cq_tail - READ_ONCE(ctx->rings->cq.head);
1605 }
1606
io_get_cqe(struct io_ring_ctx *ctx)1607 static inline struct io_uring_cqe *io_get_cqe(struct io_ring_ctx *ctx)
1608 {
1609 struct io_rings *rings = ctx->rings;
1610 unsigned tail, mask = ctx->cq_entries - 1;
1611
1612 /*
1613 * writes to the cq entry need to come after reading head; the
1614 * control dependency is enough as we're using WRITE_ONCE to
1615 * fill the cq entry
1616 */
1617 if (__io_cqring_events(ctx) == ctx->cq_entries)
1618 return NULL;
1619
1620 tail = ctx->cached_cq_tail++;
1621 return &rings->cqes[tail & mask];
1622 }
1623
io_should_trigger_evfd(struct io_ring_ctx *ctx)1624 static inline bool io_should_trigger_evfd(struct io_ring_ctx *ctx)
1625 {
1626 if (likely(!ctx->cq_ev_fd))
1627 return false;
1628 if (READ_ONCE(ctx->rings->cq_flags) & IORING_CQ_EVENTFD_DISABLED)
1629 return false;
1630 return !ctx->eventfd_async || io_wq_current_is_worker();
1631 }
1632
1633 /*
1634 * This should only get called when at least one event has been posted.
1635 * Some applications rely on the eventfd notification count only changing
1636 * IFF a new CQE has been added to the CQ ring. There's no depedency on
1637 * 1:1 relationship between how many times this function is called (and
1638 * hence the eventfd count) and number of CQEs posted to the CQ ring.
1639 */
io_cqring_ev_posted(struct io_ring_ctx *ctx)1640 static void io_cqring_ev_posted(struct io_ring_ctx *ctx)
1641 {
1642 /*
1643 * wake_up_all() may seem excessive, but io_wake_function() and
1644 * io_should_wake() handle the termination of the loop and only
1645 * wake as many waiters as we need to.
1646 */
1647 if (wq_has_sleeper(&ctx->cq_wait))
1648 __wake_up(&ctx->cq_wait, TASK_NORMAL, 0,
1649 poll_to_key(EPOLL_URING_WAKE | EPOLLIN));
1650 if (ctx->sq_data && waitqueue_active(&ctx->sq_data->wait))
1651 wake_up(&ctx->sq_data->wait);
1652 if (io_should_trigger_evfd(ctx))
1653 eventfd_signal_mask(ctx->cq_ev_fd, 1, EPOLL_URING_WAKE);
1654 if (waitqueue_active(&ctx->poll_wait))
1655 __wake_up(&ctx->poll_wait, TASK_INTERRUPTIBLE, 0,
1656 poll_to_key(EPOLL_URING_WAKE | EPOLLIN));
1657 }
1658
io_cqring_ev_posted_iopoll(struct io_ring_ctx *ctx)1659 static void io_cqring_ev_posted_iopoll(struct io_ring_ctx *ctx)
1660 {
1661 /* see waitqueue_active() comment */
1662 smp_mb();
1663
1664 if (ctx->flags & IORING_SETUP_SQPOLL) {
1665 if (waitqueue_active(&ctx->cq_wait))
1666 __wake_up(&ctx->cq_wait, TASK_NORMAL, 0,
1667 poll_to_key(EPOLL_URING_WAKE | EPOLLIN));
1668 }
1669 if (io_should_trigger_evfd(ctx))
1670 eventfd_signal_mask(ctx->cq_ev_fd, 1, EPOLL_URING_WAKE);
1671 if (waitqueue_active(&ctx->poll_wait))
1672 __wake_up(&ctx->poll_wait, TASK_INTERRUPTIBLE, 0,
1673 poll_to_key(EPOLL_URING_WAKE | EPOLLIN));
1674 }
1675
1676 /* Returns true if there are no backlogged entries after the flush */
__io_cqring_overflow_flush(struct io_ring_ctx *ctx, bool force)1677 static bool __io_cqring_overflow_flush(struct io_ring_ctx *ctx, bool force)
1678 {
1679 bool all_flushed, posted;
1680
1681 if (!force && __io_cqring_events(ctx) == ctx->cq_entries)
1682 return false;
1683
1684 posted = false;
1685 spin_lock(&ctx->completion_lock);
1686 while (!list_empty(&ctx->cq_overflow_list)) {
1687 struct io_uring_cqe *cqe = io_get_cqe(ctx);
1688 struct io_overflow_cqe *ocqe;
1689
1690 if (!cqe && !force)
1691 break;
1692 ocqe = list_first_entry(&ctx->cq_overflow_list,
1693 struct io_overflow_cqe, list);
1694 if (cqe)
1695 memcpy(cqe, &ocqe->cqe, sizeof(*cqe));
1696 else
1697 io_account_cq_overflow(ctx);
1698
1699 posted = true;
1700 list_del(&ocqe->list);
1701 kfree(ocqe);
1702 }
1703
1704 all_flushed = list_empty(&ctx->cq_overflow_list);
1705 if (all_flushed) {
1706 clear_bit(0, &ctx->check_cq_overflow);
1707 WRITE_ONCE(ctx->rings->sq_flags,
1708 ctx->rings->sq_flags & ~IORING_SQ_CQ_OVERFLOW);
1709 }
1710
1711 if (posted)
1712 io_commit_cqring(ctx);
1713 spin_unlock(&ctx->completion_lock);
1714 if (posted)
1715 io_cqring_ev_posted(ctx);
1716 return all_flushed;
1717 }
1718
io_cqring_overflow_flush(struct io_ring_ctx *ctx)1719 static bool io_cqring_overflow_flush(struct io_ring_ctx *ctx)
1720 {
1721 bool ret = true;
1722
1723 if (test_bit(0, &ctx->check_cq_overflow)) {
1724 /* iopoll syncs against uring_lock, not completion_lock */
1725 if (ctx->flags & IORING_SETUP_IOPOLL)
1726 mutex_lock(&ctx->uring_lock);
1727 ret = __io_cqring_overflow_flush(ctx, false);
1728 if (ctx->flags & IORING_SETUP_IOPOLL)
1729 mutex_unlock(&ctx->uring_lock);
1730 }
1731
1732 return ret;
1733 }
1734
1735 /* must to be called somewhat shortly after putting a request */
io_put_task(struct task_struct *task, int nr)1736 static inline void io_put_task(struct task_struct *task, int nr)
1737 {
1738 struct io_uring_task *tctx = task->io_uring;
1739
1740 if (likely(task == current)) {
1741 tctx->cached_refs += nr;
1742 } else {
1743 percpu_counter_sub(&tctx->inflight, nr);
1744 if (unlikely(atomic_read(&tctx->in_idle)))
1745 wake_up(&tctx->wait);
1746 put_task_struct_many(task, nr);
1747 }
1748 }
1749
io_task_refs_refill(struct io_uring_task *tctx)1750 static void io_task_refs_refill(struct io_uring_task *tctx)
1751 {
1752 unsigned int refill = -tctx->cached_refs + IO_TCTX_REFS_CACHE_NR;
1753
1754 percpu_counter_add(&tctx->inflight, refill);
1755 refcount_add(refill, ¤t->usage);
1756 tctx->cached_refs += refill;
1757 }
1758
io_get_task_refs(int nr)1759 static inline void io_get_task_refs(int nr)
1760 {
1761 struct io_uring_task *tctx = current->io_uring;
1762
1763 tctx->cached_refs -= nr;
1764 if (unlikely(tctx->cached_refs < 0))
1765 io_task_refs_refill(tctx);
1766 }
1767
io_uring_drop_tctx_refs(struct task_struct *task)1768 static __cold void io_uring_drop_tctx_refs(struct task_struct *task)
1769 {
1770 struct io_uring_task *tctx = task->io_uring;
1771 unsigned int refs = tctx->cached_refs;
1772
1773 if (refs) {
1774 tctx->cached_refs = 0;
1775 percpu_counter_sub(&tctx->inflight, refs);
1776 put_task_struct_many(task, refs);
1777 }
1778 }
1779
io_cqring_event_overflow(struct io_ring_ctx *ctx, u64 user_data, s32 res, u32 cflags)1780 static bool io_cqring_event_overflow(struct io_ring_ctx *ctx, u64 user_data,
1781 s32 res, u32 cflags)
1782 {
1783 struct io_overflow_cqe *ocqe;
1784
1785 ocqe = kmalloc(sizeof(*ocqe), GFP_ATOMIC | __GFP_ACCOUNT);
1786 if (!ocqe) {
1787 /*
1788 * If we're in ring overflow flush mode, or in task cancel mode,
1789 * or cannot allocate an overflow entry, then we need to drop it
1790 * on the floor.
1791 */
1792 io_account_cq_overflow(ctx);
1793 return false;
1794 }
1795 if (list_empty(&ctx->cq_overflow_list)) {
1796 set_bit(0, &ctx->check_cq_overflow);
1797 WRITE_ONCE(ctx->rings->sq_flags,
1798 ctx->rings->sq_flags | IORING_SQ_CQ_OVERFLOW);
1799
1800 }
1801 ocqe->cqe.user_data = user_data;
1802 ocqe->cqe.res = res;
1803 ocqe->cqe.flags = cflags;
1804 list_add_tail(&ocqe->list, &ctx->cq_overflow_list);
1805 return true;
1806 }
1807
__io_fill_cqe(struct io_ring_ctx *ctx, u64 user_data, s32 res, u32 cflags)1808 static inline bool __io_fill_cqe(struct io_ring_ctx *ctx, u64 user_data,
1809 s32 res, u32 cflags)
1810 {
1811 struct io_uring_cqe *cqe;
1812
1813 trace_io_uring_complete(ctx, user_data, res, cflags);
1814
1815 /*
1816 * If we can't get a cq entry, userspace overflowed the
1817 * submission (by quite a lot). Increment the overflow count in
1818 * the ring.
1819 */
1820 cqe = io_get_cqe(ctx);
1821 if (likely(cqe)) {
1822 WRITE_ONCE(cqe->user_data, user_data);
1823 WRITE_ONCE(cqe->res, res);
1824 WRITE_ONCE(cqe->flags, cflags);
1825 return true;
1826 }
1827 return io_cqring_event_overflow(ctx, user_data, res, cflags);
1828 }
1829
io_fill_cqe_req(struct io_kiocb *req, s32 res, u32 cflags)1830 static noinline void io_fill_cqe_req(struct io_kiocb *req, s32 res, u32 cflags)
1831 {
1832 __io_fill_cqe(req->ctx, req->user_data, res, cflags);
1833 }
1834
io_fill_cqe_aux(struct io_ring_ctx *ctx, u64 user_data, s32 res, u32 cflags)1835 static noinline bool io_fill_cqe_aux(struct io_ring_ctx *ctx, u64 user_data,
1836 s32 res, u32 cflags)
1837 {
1838 ctx->cq_extra++;
1839 return __io_fill_cqe(ctx, user_data, res, cflags);
1840 }
1841
io_req_complete_post(struct io_kiocb *req, s32 res, u32 cflags)1842 static void io_req_complete_post(struct io_kiocb *req, s32 res,
1843 u32 cflags)
1844 {
1845 struct io_ring_ctx *ctx = req->ctx;
1846
1847 spin_lock(&ctx->completion_lock);
1848 __io_fill_cqe(ctx, req->user_data, res, cflags);
1849 /*
1850 * If we're the last reference to this request, add to our locked
1851 * free_list cache.
1852 */
1853 if (req_ref_put_and_test(req)) {
1854 if (req->flags & (REQ_F_LINK | REQ_F_HARDLINK)) {
1855 if (req->flags & IO_DISARM_MASK)
1856 io_disarm_next(req);
1857 if (req->link) {
1858 io_req_task_queue(req->link);
1859 req->link = NULL;
1860 }
1861 }
1862 io_dismantle_req(req);
1863 io_put_task(req->task, 1);
1864 list_add(&req->inflight_entry, &ctx->locked_free_list);
1865 ctx->locked_free_nr++;
1866 } else {
1867 if (!percpu_ref_tryget(&ctx->refs))
1868 req = NULL;
1869 }
1870 io_commit_cqring(ctx);
1871 spin_unlock(&ctx->completion_lock);
1872
1873 if (req) {
1874 io_cqring_ev_posted(ctx);
1875 percpu_ref_put(&ctx->refs);
1876 }
1877 }
1878
io_req_needs_clean(struct io_kiocb *req)1879 static inline bool io_req_needs_clean(struct io_kiocb *req)
1880 {
1881 return req->flags & IO_REQ_CLEAN_FLAGS;
1882 }
1883
io_req_complete_state(struct io_kiocb *req, s32 res, u32 cflags)1884 static inline void io_req_complete_state(struct io_kiocb *req, s32 res,
1885 u32 cflags)
1886 {
1887 if (io_req_needs_clean(req))
1888 io_clean_op(req);
1889 req->result = res;
1890 req->compl.cflags = cflags;
1891 req->flags |= REQ_F_COMPLETE_INLINE;
1892 }
1893
__io_req_complete(struct io_kiocb *req, unsigned issue_flags, s32 res, u32 cflags)1894 static inline void __io_req_complete(struct io_kiocb *req, unsigned issue_flags,
1895 s32 res, u32 cflags)
1896 {
1897 if (issue_flags & IO_URING_F_COMPLETE_DEFER)
1898 io_req_complete_state(req, res, cflags);
1899 else
1900 io_req_complete_post(req, res, cflags);
1901 }
1902
io_req_complete(struct io_kiocb *req, s32 res)1903 static inline void io_req_complete(struct io_kiocb *req, s32 res)
1904 {
1905 __io_req_complete(req, 0, res, 0);
1906 }
1907
io_req_complete_failed(struct io_kiocb *req, s32 res)1908 static void io_req_complete_failed(struct io_kiocb *req, s32 res)
1909 {
1910 req_set_fail(req);
1911 io_req_complete_post(req, res, 0);
1912 }
1913
io_req_complete_fail_submit(struct io_kiocb *req)1914 static void io_req_complete_fail_submit(struct io_kiocb *req)
1915 {
1916 /*
1917 * We don't submit, fail them all, for that replace hardlinks with
1918 * normal links. Extra REQ_F_LINK is tolerated.
1919 */
1920 req->flags &= ~REQ_F_HARDLINK;
1921 req->flags |= REQ_F_LINK;
1922 io_req_complete_failed(req, req->result);
1923 }
1924
1925 /*
1926 * Don't initialise the fields below on every allocation, but do that in
1927 * advance and keep them valid across allocations.
1928 */
io_preinit_req(struct io_kiocb *req, struct io_ring_ctx *ctx)1929 static void io_preinit_req(struct io_kiocb *req, struct io_ring_ctx *ctx)
1930 {
1931 req->ctx = ctx;
1932 req->link = NULL;
1933 req->async_data = NULL;
1934 /* not necessary, but safer to zero */
1935 req->result = 0;
1936 }
1937
io_flush_cached_locked_reqs(struct io_ring_ctx *ctx, struct io_submit_state *state)1938 static void io_flush_cached_locked_reqs(struct io_ring_ctx *ctx,
1939 struct io_submit_state *state)
1940 {
1941 spin_lock(&ctx->completion_lock);
1942 list_splice_init(&ctx->locked_free_list, &state->free_list);
1943 ctx->locked_free_nr = 0;
1944 spin_unlock(&ctx->completion_lock);
1945 }
1946
1947 /* Returns true IFF there are requests in the cache */
io_flush_cached_reqs(struct io_ring_ctx *ctx)1948 static bool io_flush_cached_reqs(struct io_ring_ctx *ctx)
1949 {
1950 struct io_submit_state *state = &ctx->submit_state;
1951 int nr;
1952
1953 /*
1954 * If we have more than a batch's worth of requests in our IRQ side
1955 * locked cache, grab the lock and move them over to our submission
1956 * side cache.
1957 */
1958 if (READ_ONCE(ctx->locked_free_nr) > IO_COMPL_BATCH)
1959 io_flush_cached_locked_reqs(ctx, state);
1960
1961 nr = state->free_reqs;
1962 while (!list_empty(&state->free_list)) {
1963 struct io_kiocb *req = list_first_entry(&state->free_list,
1964 struct io_kiocb, inflight_entry);
1965
1966 list_del(&req->inflight_entry);
1967 state->reqs[nr++] = req;
1968 if (nr == ARRAY_SIZE(state->reqs))
1969 break;
1970 }
1971
1972 state->free_reqs = nr;
1973 return nr != 0;
1974 }
1975
1976 /*
1977 * A request might get retired back into the request caches even before opcode
1978 * handlers and io_issue_sqe() are done with it, e.g. inline completion path.
1979 * Because of that, io_alloc_req() should be called only under ->uring_lock
1980 * and with extra caution to not get a request that is still worked on.
1981 */
1982 static struct io_kiocb *io_alloc_req(struct io_ring_ctx *ctx)
1983 __must_hold(&ctx->uring_lock)
1984 {
1985 struct io_submit_state *state = &ctx->submit_state;
1986 gfp_t gfp = GFP_KERNEL | __GFP_NOWARN;
1987 int ret, i;
1988
1989 BUILD_BUG_ON(ARRAY_SIZE(state->reqs) < IO_REQ_ALLOC_BATCH);
1990
1991 if (likely(state->free_reqs || io_flush_cached_reqs(ctx)))
1992 goto got_req;
1993
1994 ret = kmem_cache_alloc_bulk(req_cachep, gfp, IO_REQ_ALLOC_BATCH,
1995 state->reqs);
1996
1997 /*
1998 * Bulk alloc is all-or-nothing. If we fail to get a batch,
1999 * retry single alloc to be on the safe side.
2000 */
2001 if (unlikely(ret <= 0)) {
2002 state->reqs[0] = kmem_cache_alloc(req_cachep, gfp);
2003 if (!state->reqs[0])
2004 return NULL;
2005 ret = 1;
2006 }
2007
2008 for (i = 0; i < ret; i++)
2009 io_preinit_req(state->reqs[i], ctx);
2010 state->free_reqs = ret;
2011 got_req:
2012 state->free_reqs--;
2013 return state->reqs[state->free_reqs];
2014 }
2015
io_put_file(struct file *file)2016 static inline void io_put_file(struct file *file)
2017 {
2018 if (file)
2019 fput(file);
2020 }
2021
io_dismantle_req(struct io_kiocb *req)2022 static void io_dismantle_req(struct io_kiocb *req)
2023 {
2024 unsigned int flags = req->flags;
2025
2026 if (io_req_needs_clean(req))
2027 io_clean_op(req);
2028 if (!(flags & REQ_F_FIXED_FILE))
2029 io_put_file(req->file);
2030 if (req->fixed_rsrc_refs)
2031 percpu_ref_put(req->fixed_rsrc_refs);
2032 if (req->async_data) {
2033 kfree(req->async_data);
2034 req->async_data = NULL;
2035 }
2036 }
2037
__io_free_req(struct io_kiocb *req)2038 static void __io_free_req(struct io_kiocb *req)
2039 {
2040 struct io_ring_ctx *ctx = req->ctx;
2041
2042 io_dismantle_req(req);
2043 io_put_task(req->task, 1);
2044
2045 spin_lock(&ctx->completion_lock);
2046 list_add(&req->inflight_entry, &ctx->locked_free_list);
2047 ctx->locked_free_nr++;
2048 spin_unlock(&ctx->completion_lock);
2049
2050 percpu_ref_put(&ctx->refs);
2051 }
2052
io_remove_next_linked(struct io_kiocb *req)2053 static inline void io_remove_next_linked(struct io_kiocb *req)
2054 {
2055 struct io_kiocb *nxt = req->link;
2056
2057 req->link = nxt->link;
2058 nxt->link = NULL;
2059 }
2060
2061 static bool io_kill_linked_timeout(struct io_kiocb *req)
2062 __must_hold(&req->ctx->completion_lock)
2063 __must_hold(&req->ctx->timeout_lock)
2064 {
2065 struct io_kiocb *link = req->link;
2066
2067 if (link && link->opcode == IORING_OP_LINK_TIMEOUT) {
2068 struct io_timeout_data *io = link->async_data;
2069
2070 io_remove_next_linked(req);
2071 link->timeout.head = NULL;
2072 if (hrtimer_try_to_cancel(&io->timer) != -1) {
2073 list_del(&link->timeout.list);
2074 io_fill_cqe_req(link, -ECANCELED, 0);
2075 io_put_req_deferred(link);
2076 return true;
2077 }
2078 }
2079 return false;
2080 }
2081
2082 static void io_fail_links(struct io_kiocb *req)
2083 __must_hold(&req->ctx->completion_lock)
2084 {
2085 struct io_kiocb *nxt, *link = req->link;
2086
2087 req->link = NULL;
2088 while (link) {
2089 long res = -ECANCELED;
2090
2091 if (link->flags & REQ_F_FAIL)
2092 res = link->result;
2093
2094 nxt = link->link;
2095 link->link = NULL;
2096
2097 trace_io_uring_fail_link(req, link);
2098 io_fill_cqe_req(link, res, 0);
2099 io_put_req_deferred(link);
2100 link = nxt;
2101 }
2102 }
2103
2104 static bool io_disarm_next(struct io_kiocb *req)
2105 __must_hold(&req->ctx->completion_lock)
2106 {
2107 bool posted = false;
2108
2109 if (req->flags & REQ_F_ARM_LTIMEOUT) {
2110 struct io_kiocb *link = req->link;
2111
2112 req->flags &= ~REQ_F_ARM_LTIMEOUT;
2113 if (link && link->opcode == IORING_OP_LINK_TIMEOUT) {
2114 io_remove_next_linked(req);
2115 io_fill_cqe_req(link, -ECANCELED, 0);
2116 io_put_req_deferred(link);
2117 posted = true;
2118 }
2119 } else if (req->flags & REQ_F_LINK_TIMEOUT) {
2120 struct io_ring_ctx *ctx = req->ctx;
2121
2122 spin_lock_irq(&ctx->timeout_lock);
2123 posted = io_kill_linked_timeout(req);
2124 spin_unlock_irq(&ctx->timeout_lock);
2125 }
2126 if (unlikely((req->flags & REQ_F_FAIL) &&
2127 !(req->flags & REQ_F_HARDLINK))) {
2128 posted |= (req->link != NULL);
2129 io_fail_links(req);
2130 }
2131 return posted;
2132 }
2133
__io_req_find_next(struct io_kiocb *req)2134 static struct io_kiocb *__io_req_find_next(struct io_kiocb *req)
2135 {
2136 struct io_kiocb *nxt;
2137
2138 /*
2139 * If LINK is set, we have dependent requests in this chain. If we
2140 * didn't fail this request, queue the first one up, moving any other
2141 * dependencies to the next request. In case of failure, fail the rest
2142 * of the chain.
2143 */
2144 if (req->flags & IO_DISARM_MASK) {
2145 struct io_ring_ctx *ctx = req->ctx;
2146 bool posted;
2147
2148 spin_lock(&ctx->completion_lock);
2149 posted = io_disarm_next(req);
2150 if (posted)
2151 io_commit_cqring(req->ctx);
2152 spin_unlock(&ctx->completion_lock);
2153 if (posted)
2154 io_cqring_ev_posted(ctx);
2155 }
2156 nxt = req->link;
2157 req->link = NULL;
2158 return nxt;
2159 }
2160
io_req_find_next(struct io_kiocb *req)2161 static inline struct io_kiocb *io_req_find_next(struct io_kiocb *req)
2162 {
2163 if (likely(!(req->flags & (REQ_F_LINK|REQ_F_HARDLINK))))
2164 return NULL;
2165 return __io_req_find_next(req);
2166 }
2167
ctx_flush_and_put(struct io_ring_ctx *ctx, bool *locked)2168 static void ctx_flush_and_put(struct io_ring_ctx *ctx, bool *locked)
2169 {
2170 if (!ctx)
2171 return;
2172 if (*locked) {
2173 if (ctx->submit_state.compl_nr)
2174 io_submit_flush_completions(ctx);
2175 mutex_unlock(&ctx->uring_lock);
2176 *locked = false;
2177 }
2178 percpu_ref_put(&ctx->refs);
2179 }
2180
tctx_task_work(struct callback_head *cb)2181 static void tctx_task_work(struct callback_head *cb)
2182 {
2183 bool locked = false;
2184 struct io_ring_ctx *ctx = NULL;
2185 struct io_uring_task *tctx = container_of(cb, struct io_uring_task,
2186 task_work);
2187
2188 while (1) {
2189 struct io_wq_work_node *node;
2190
2191 if (!tctx->task_list.first && locked && ctx->submit_state.compl_nr)
2192 io_submit_flush_completions(ctx);
2193
2194 spin_lock_irq(&tctx->task_lock);
2195 node = tctx->task_list.first;
2196 INIT_WQ_LIST(&tctx->task_list);
2197 if (!node)
2198 tctx->task_running = false;
2199 spin_unlock_irq(&tctx->task_lock);
2200 if (!node)
2201 break;
2202
2203 do {
2204 struct io_wq_work_node *next = node->next;
2205 struct io_kiocb *req = container_of(node, struct io_kiocb,
2206 io_task_work.node);
2207
2208 if (req->ctx != ctx) {
2209 ctx_flush_and_put(ctx, &locked);
2210 ctx = req->ctx;
2211 /* if not contended, grab and improve batching */
2212 locked = mutex_trylock(&ctx->uring_lock);
2213 percpu_ref_get(&ctx->refs);
2214 }
2215 req->io_task_work.func(req, &locked);
2216 node = next;
2217 if (unlikely(need_resched())) {
2218 ctx_flush_and_put(ctx, &locked);
2219 ctx = NULL;
2220 cond_resched();
2221 }
2222 } while (node);
2223 }
2224
2225 ctx_flush_and_put(ctx, &locked);
2226
2227 /* relaxed read is enough as only the task itself sets ->in_idle */
2228 if (unlikely(atomic_read(&tctx->in_idle)))
2229 io_uring_drop_tctx_refs(current);
2230 }
2231
io_req_task_work_add(struct io_kiocb *req)2232 static void io_req_task_work_add(struct io_kiocb *req)
2233 {
2234 struct task_struct *tsk = req->task;
2235 struct io_uring_task *tctx = tsk->io_uring;
2236 enum task_work_notify_mode notify;
2237 struct io_wq_work_node *node;
2238 unsigned long flags;
2239 bool running;
2240
2241 WARN_ON_ONCE(!tctx);
2242
2243 spin_lock_irqsave(&tctx->task_lock, flags);
2244 wq_list_add_tail(&req->io_task_work.node, &tctx->task_list);
2245 running = tctx->task_running;
2246 if (!running)
2247 tctx->task_running = true;
2248 spin_unlock_irqrestore(&tctx->task_lock, flags);
2249
2250 /* task_work already pending, we're done */
2251 if (running)
2252 return;
2253
2254 /*
2255 * SQPOLL kernel thread doesn't need notification, just a wakeup. For
2256 * all other cases, use TWA_SIGNAL unconditionally to ensure we're
2257 * processing task_work. There's no reliable way to tell if TWA_RESUME
2258 * will do the job.
2259 */
2260 notify = (req->ctx->flags & IORING_SETUP_SQPOLL) ? TWA_NONE : TWA_SIGNAL;
2261 if (!task_work_add(tsk, &tctx->task_work, notify)) {
2262 wake_up_process(tsk);
2263 return;
2264 }
2265
2266 spin_lock_irqsave(&tctx->task_lock, flags);
2267 tctx->task_running = false;
2268 node = tctx->task_list.first;
2269 INIT_WQ_LIST(&tctx->task_list);
2270 spin_unlock_irqrestore(&tctx->task_lock, flags);
2271
2272 while (node) {
2273 req = container_of(node, struct io_kiocb, io_task_work.node);
2274 node = node->next;
2275 if (llist_add(&req->io_task_work.fallback_node,
2276 &req->ctx->fallback_llist))
2277 schedule_delayed_work(&req->ctx->fallback_work, 1);
2278 }
2279 }
2280
io_req_task_cancel(struct io_kiocb *req, bool *locked)2281 static void io_req_task_cancel(struct io_kiocb *req, bool *locked)
2282 {
2283 struct io_ring_ctx *ctx = req->ctx;
2284
2285 /* not needed for normal modes, but SQPOLL depends on it */
2286 io_tw_lock(ctx, locked);
2287 io_req_complete_failed(req, req->result);
2288 }
2289
io_req_task_submit(struct io_kiocb *req, bool *locked)2290 static void io_req_task_submit(struct io_kiocb *req, bool *locked)
2291 {
2292 struct io_ring_ctx *ctx = req->ctx;
2293
2294 io_tw_lock(ctx, locked);
2295 /* req->task == current here, checking PF_EXITING is safe */
2296 if (likely(!(req->task->flags & PF_EXITING)))
2297 __io_queue_sqe(req);
2298 else
2299 io_req_complete_failed(req, -EFAULT);
2300 }
2301
io_req_task_queue_fail(struct io_kiocb *req, int ret)2302 static void io_req_task_queue_fail(struct io_kiocb *req, int ret)
2303 {
2304 req->result = ret;
2305 req->io_task_work.func = io_req_task_cancel;
2306 io_req_task_work_add(req);
2307 }
2308
io_req_task_queue(struct io_kiocb *req)2309 static void io_req_task_queue(struct io_kiocb *req)
2310 {
2311 req->io_task_work.func = io_req_task_submit;
2312 io_req_task_work_add(req);
2313 }
2314
io_req_task_queue_reissue(struct io_kiocb *req)2315 static void io_req_task_queue_reissue(struct io_kiocb *req)
2316 {
2317 req->io_task_work.func = io_queue_async_work;
2318 io_req_task_work_add(req);
2319 }
2320
io_queue_next(struct io_kiocb *req)2321 static inline void io_queue_next(struct io_kiocb *req)
2322 {
2323 struct io_kiocb *nxt = io_req_find_next(req);
2324
2325 if (nxt)
2326 io_req_task_queue(nxt);
2327 }
2328
io_free_req(struct io_kiocb *req)2329 static void io_free_req(struct io_kiocb *req)
2330 {
2331 io_queue_next(req);
2332 __io_free_req(req);
2333 }
2334
io_free_req_work(struct io_kiocb *req, bool *locked)2335 static void io_free_req_work(struct io_kiocb *req, bool *locked)
2336 {
2337 io_free_req(req);
2338 }
2339
2340 struct req_batch {
2341 struct task_struct *task;
2342 int task_refs;
2343 int ctx_refs;
2344 };
2345
io_init_req_batch(struct req_batch *rb)2346 static inline void io_init_req_batch(struct req_batch *rb)
2347 {
2348 rb->task_refs = 0;
2349 rb->ctx_refs = 0;
2350 rb->task = NULL;
2351 }
2352
io_req_free_batch_finish(struct io_ring_ctx *ctx, struct req_batch *rb)2353 static void io_req_free_batch_finish(struct io_ring_ctx *ctx,
2354 struct req_batch *rb)
2355 {
2356 if (rb->ctx_refs)
2357 percpu_ref_put_many(&ctx->refs, rb->ctx_refs);
2358 if (rb->task)
2359 io_put_task(rb->task, rb->task_refs);
2360 }
2361
io_req_free_batch(struct req_batch *rb, struct io_kiocb *req, struct io_submit_state *state)2362 static void io_req_free_batch(struct req_batch *rb, struct io_kiocb *req,
2363 struct io_submit_state *state)
2364 {
2365 io_queue_next(req);
2366 io_dismantle_req(req);
2367
2368 if (req->task != rb->task) {
2369 if (rb->task)
2370 io_put_task(rb->task, rb->task_refs);
2371 rb->task = req->task;
2372 rb->task_refs = 0;
2373 }
2374 rb->task_refs++;
2375 rb->ctx_refs++;
2376
2377 if (state->free_reqs != ARRAY_SIZE(state->reqs))
2378 state->reqs[state->free_reqs++] = req;
2379 else
2380 list_add(&req->inflight_entry, &state->free_list);
2381 }
2382
2383 static void io_submit_flush_completions(struct io_ring_ctx *ctx)
2384 __must_hold(&ctx->uring_lock)
2385 {
2386 struct io_submit_state *state = &ctx->submit_state;
2387 int i, nr = state->compl_nr;
2388 struct req_batch rb;
2389
2390 spin_lock(&ctx->completion_lock);
2391 for (i = 0; i < nr; i++) {
2392 struct io_kiocb *req = state->compl_reqs[i];
2393
2394 __io_fill_cqe(ctx, req->user_data, req->result,
2395 req->compl.cflags);
2396 }
2397 io_commit_cqring(ctx);
2398 spin_unlock(&ctx->completion_lock);
2399 io_cqring_ev_posted(ctx);
2400
2401 io_init_req_batch(&rb);
2402 for (i = 0; i < nr; i++) {
2403 struct io_kiocb *req = state->compl_reqs[i];
2404
2405 if (req_ref_put_and_test(req))
2406 io_req_free_batch(&rb, req, &ctx->submit_state);
2407 }
2408
2409 io_req_free_batch_finish(ctx, &rb);
2410 state->compl_nr = 0;
2411 }
2412
2413 /*
2414 * Drop reference to request, return next in chain (if there is one) if this
2415 * was the last reference to this request.
2416 */
io_put_req_find_next(struct io_kiocb *req)2417 static inline struct io_kiocb *io_put_req_find_next(struct io_kiocb *req)
2418 {
2419 struct io_kiocb *nxt = NULL;
2420
2421 if (req_ref_put_and_test(req)) {
2422 nxt = io_req_find_next(req);
2423 __io_free_req(req);
2424 }
2425 return nxt;
2426 }
2427
io_put_req(struct io_kiocb *req)2428 static inline void io_put_req(struct io_kiocb *req)
2429 {
2430 if (req_ref_put_and_test(req))
2431 io_free_req(req);
2432 }
2433
io_put_req_deferred(struct io_kiocb *req)2434 static inline void io_put_req_deferred(struct io_kiocb *req)
2435 {
2436 if (req_ref_put_and_test(req)) {
2437 req->io_task_work.func = io_free_req_work;
2438 io_req_task_work_add(req);
2439 }
2440 }
2441
io_cqring_events(struct io_ring_ctx *ctx)2442 static unsigned io_cqring_events(struct io_ring_ctx *ctx)
2443 {
2444 /* See comment at the top of this file */
2445 smp_rmb();
2446 return __io_cqring_events(ctx);
2447 }
2448
io_sqring_entries(struct io_ring_ctx *ctx)2449 static inline unsigned int io_sqring_entries(struct io_ring_ctx *ctx)
2450 {
2451 struct io_rings *rings = ctx->rings;
2452
2453 /* make sure SQ entry isn't read before tail */
2454 return smp_load_acquire(&rings->sq.tail) - ctx->cached_sq_head;
2455 }
2456
io_put_kbuf(struct io_kiocb *req, struct io_buffer *kbuf)2457 static unsigned int io_put_kbuf(struct io_kiocb *req, struct io_buffer *kbuf)
2458 {
2459 unsigned int cflags;
2460
2461 cflags = kbuf->bid << IORING_CQE_BUFFER_SHIFT;
2462 cflags |= IORING_CQE_F_BUFFER;
2463 req->flags &= ~REQ_F_BUFFER_SELECTED;
2464 kfree(kbuf);
2465 return cflags;
2466 }
2467
io_put_rw_kbuf(struct io_kiocb *req)2468 static inline unsigned int io_put_rw_kbuf(struct io_kiocb *req)
2469 {
2470 struct io_buffer *kbuf;
2471
2472 if (likely(!(req->flags & REQ_F_BUFFER_SELECTED)))
2473 return 0;
2474 kbuf = (struct io_buffer *) (unsigned long) req->rw.addr;
2475 return io_put_kbuf(req, kbuf);
2476 }
2477
io_run_task_work(void)2478 static inline bool io_run_task_work(void)
2479 {
2480 /*
2481 * PF_IO_WORKER never returns to userspace, so check here if we have
2482 * notify work that needs processing.
2483 */
2484 if (current->flags & PF_IO_WORKER &&
2485 test_thread_flag(TIF_NOTIFY_RESUME)) {
2486 __set_current_state(TASK_RUNNING);
2487 tracehook_notify_resume(NULL);
2488 }
2489 if (test_thread_flag(TIF_NOTIFY_SIGNAL) || current->task_works) {
2490 __set_current_state(TASK_RUNNING);
2491 tracehook_notify_signal();
2492 return true;
2493 }
2494
2495 return false;
2496 }
2497
2498 /*
2499 * Find and free completed poll iocbs
2500 */
io_iopoll_complete(struct io_ring_ctx *ctx, unsigned int *nr_events, struct list_head *done)2501 static void io_iopoll_complete(struct io_ring_ctx *ctx, unsigned int *nr_events,
2502 struct list_head *done)
2503 {
2504 struct req_batch rb;
2505 struct io_kiocb *req;
2506
2507 /* order with ->result store in io_complete_rw_iopoll() */
2508 smp_rmb();
2509
2510 io_init_req_batch(&rb);
2511 while (!list_empty(done)) {
2512 struct io_uring_cqe *cqe;
2513 unsigned cflags;
2514
2515 req = list_first_entry(done, struct io_kiocb, inflight_entry);
2516 list_del(&req->inflight_entry);
2517 cflags = io_put_rw_kbuf(req);
2518 (*nr_events)++;
2519
2520 cqe = io_get_cqe(ctx);
2521 if (cqe) {
2522 WRITE_ONCE(cqe->user_data, req->user_data);
2523 WRITE_ONCE(cqe->res, req->result);
2524 WRITE_ONCE(cqe->flags, cflags);
2525 } else {
2526 spin_lock(&ctx->completion_lock);
2527 io_cqring_event_overflow(ctx, req->user_data,
2528 req->result, cflags);
2529 spin_unlock(&ctx->completion_lock);
2530 }
2531
2532 if (req_ref_put_and_test(req))
2533 io_req_free_batch(&rb, req, &ctx->submit_state);
2534 }
2535
2536 if (io_commit_needs_flush(ctx)) {
2537 spin_lock(&ctx->completion_lock);
2538 __io_commit_cqring_flush(ctx);
2539 spin_unlock(&ctx->completion_lock);
2540 }
2541 __io_commit_cqring(ctx);
2542 io_cqring_ev_posted_iopoll(ctx);
2543 io_req_free_batch_finish(ctx, &rb);
2544 }
2545
io_do_iopoll(struct io_ring_ctx *ctx, unsigned int *nr_events, long min)2546 static int io_do_iopoll(struct io_ring_ctx *ctx, unsigned int *nr_events,
2547 long min)
2548 {
2549 struct io_kiocb *req, *tmp;
2550 LIST_HEAD(done);
2551 bool spin;
2552
2553 /*
2554 * Only spin for completions if we don't have multiple devices hanging
2555 * off our complete list, and we're under the requested amount.
2556 */
2557 spin = !ctx->poll_multi_queue && *nr_events < min;
2558
2559 list_for_each_entry_safe(req, tmp, &ctx->iopoll_list, inflight_entry) {
2560 struct kiocb *kiocb = &req->rw.kiocb;
2561 int ret;
2562
2563 /*
2564 * Move completed and retryable entries to our local lists.
2565 * If we find a request that requires polling, break out
2566 * and complete those lists first, if we have entries there.
2567 */
2568 if (READ_ONCE(req->iopoll_completed)) {
2569 list_move_tail(&req->inflight_entry, &done);
2570 continue;
2571 }
2572 if (!list_empty(&done))
2573 break;
2574
2575 ret = kiocb->ki_filp->f_op->iopoll(kiocb, spin);
2576 if (unlikely(ret < 0))
2577 return ret;
2578 else if (ret)
2579 spin = false;
2580
2581 /* iopoll may have completed current req */
2582 if (READ_ONCE(req->iopoll_completed))
2583 list_move_tail(&req->inflight_entry, &done);
2584 }
2585
2586 if (!list_empty(&done))
2587 io_iopoll_complete(ctx, nr_events, &done);
2588
2589 return 0;
2590 }
2591
2592 /*
2593 * We can't just wait for polled events to come to us, we have to actively
2594 * find and complete them.
2595 */
io_iopoll_try_reap_events(struct io_ring_ctx *ctx)2596 static void io_iopoll_try_reap_events(struct io_ring_ctx *ctx)
2597 {
2598 if (!(ctx->flags & IORING_SETUP_IOPOLL))
2599 return;
2600
2601 mutex_lock(&ctx->uring_lock);
2602 while (!list_empty(&ctx->iopoll_list)) {
2603 unsigned int nr_events = 0;
2604
2605 io_do_iopoll(ctx, &nr_events, 0);
2606
2607 /* let it sleep and repeat later if can't complete a request */
2608 if (nr_events == 0)
2609 break;
2610 /*
2611 * Ensure we allow local-to-the-cpu processing to take place,
2612 * in this case we need to ensure that we reap all events.
2613 * Also let task_work, etc. to progress by releasing the mutex
2614 */
2615 if (need_resched()) {
2616 mutex_unlock(&ctx->uring_lock);
2617 cond_resched();
2618 mutex_lock(&ctx->uring_lock);
2619 }
2620 }
2621 mutex_unlock(&ctx->uring_lock);
2622 }
2623
io_iopoll_check(struct io_ring_ctx *ctx, long min)2624 static int io_iopoll_check(struct io_ring_ctx *ctx, long min)
2625 {
2626 unsigned int nr_events = 0;
2627 int ret = 0;
2628
2629 /*
2630 * We disallow the app entering submit/complete with polling, but we
2631 * still need to lock the ring to prevent racing with polled issue
2632 * that got punted to a workqueue.
2633 */
2634 mutex_lock(&ctx->uring_lock);
2635 /*
2636 * Don't enter poll loop if we already have events pending.
2637 * If we do, we can potentially be spinning for commands that
2638 * already triggered a CQE (eg in error).
2639 */
2640 if (test_bit(0, &ctx->check_cq_overflow))
2641 __io_cqring_overflow_flush(ctx, false);
2642 if (io_cqring_events(ctx))
2643 goto out;
2644 do {
2645 /*
2646 * If a submit got punted to a workqueue, we can have the
2647 * application entering polling for a command before it gets
2648 * issued. That app will hold the uring_lock for the duration
2649 * of the poll right here, so we need to take a breather every
2650 * now and then to ensure that the issue has a chance to add
2651 * the poll to the issued list. Otherwise we can spin here
2652 * forever, while the workqueue is stuck trying to acquire the
2653 * very same mutex.
2654 */
2655 if (list_empty(&ctx->iopoll_list)) {
2656 u32 tail = ctx->cached_cq_tail;
2657
2658 mutex_unlock(&ctx->uring_lock);
2659 io_run_task_work();
2660 mutex_lock(&ctx->uring_lock);
2661
2662 /* some requests don't go through iopoll_list */
2663 if (tail != ctx->cached_cq_tail ||
2664 list_empty(&ctx->iopoll_list))
2665 break;
2666 }
2667 ret = io_do_iopoll(ctx, &nr_events, min);
2668
2669 if (task_sigpending(current)) {
2670 ret = -EINTR;
2671 goto out;
2672 }
2673 } while (!ret && nr_events < min && !need_resched());
2674 out:
2675 mutex_unlock(&ctx->uring_lock);
2676 return ret;
2677 }
2678
kiocb_end_write(struct io_kiocb *req)2679 static void kiocb_end_write(struct io_kiocb *req)
2680 {
2681 /*
2682 * Tell lockdep we inherited freeze protection from submission
2683 * thread.
2684 */
2685 if (req->flags & REQ_F_ISREG) {
2686 struct super_block *sb = file_inode(req->file)->i_sb;
2687
2688 __sb_writers_acquired(sb, SB_FREEZE_WRITE);
2689 sb_end_write(sb);
2690 }
2691 }
2692
2693 #ifdef CONFIG_BLOCK
io_resubmit_prep(struct io_kiocb *req)2694 static bool io_resubmit_prep(struct io_kiocb *req)
2695 {
2696 struct io_async_rw *rw = req->async_data;
2697
2698 if (!rw)
2699 return !io_req_prep_async(req);
2700 iov_iter_restore(&rw->iter, &rw->iter_state);
2701 return true;
2702 }
2703
io_rw_should_reissue(struct io_kiocb *req)2704 static bool io_rw_should_reissue(struct io_kiocb *req)
2705 {
2706 umode_t mode = file_inode(req->file)->i_mode;
2707 struct io_ring_ctx *ctx = req->ctx;
2708
2709 if (!S_ISBLK(mode) && !S_ISREG(mode))
2710 return false;
2711 if ((req->flags & REQ_F_NOWAIT) || (io_wq_current_is_worker() &&
2712 !(ctx->flags & IORING_SETUP_IOPOLL)))
2713 return false;
2714 /*
2715 * If ref is dying, we might be running poll reap from the exit work.
2716 * Don't attempt to reissue from that path, just let it fail with
2717 * -EAGAIN.
2718 */
2719 if (percpu_ref_is_dying(&ctx->refs))
2720 return false;
2721 /*
2722 * Play it safe and assume not safe to re-import and reissue if we're
2723 * not in the original thread group (or in task context).
2724 */
2725 if (!same_thread_group(req->task, current) || !in_task())
2726 return false;
2727 return true;
2728 }
2729 #else
io_resubmit_prep(struct io_kiocb *req)2730 static bool io_resubmit_prep(struct io_kiocb *req)
2731 {
2732 return false;
2733 }
io_rw_should_reissue(struct io_kiocb *req)2734 static bool io_rw_should_reissue(struct io_kiocb *req)
2735 {
2736 return false;
2737 }
2738 #endif
2739
2740 /*
2741 * Trigger the notifications after having done some IO, and finish the write
2742 * accounting, if any.
2743 */
io_req_io_end(struct io_kiocb *req)2744 static void io_req_io_end(struct io_kiocb *req)
2745 {
2746 struct io_rw *rw = &req->rw;
2747
2748 if (rw->kiocb.ki_flags & IOCB_WRITE) {
2749 kiocb_end_write(req);
2750 fsnotify_modify(req->file);
2751 } else {
2752 fsnotify_access(req->file);
2753 }
2754 }
2755
__io_complete_rw_common(struct io_kiocb *req, long res)2756 static bool __io_complete_rw_common(struct io_kiocb *req, long res)
2757 {
2758 if (res != req->result) {
2759 if ((res == -EAGAIN || res == -EOPNOTSUPP) &&
2760 io_rw_should_reissue(req)) {
2761 /*
2762 * Reissue will start accounting again, finish the
2763 * current cycle.
2764 */
2765 io_req_io_end(req);
2766 req->flags |= REQ_F_REISSUE;
2767 return true;
2768 }
2769 req_set_fail(req);
2770 req->result = res;
2771 }
2772 return false;
2773 }
2774
io_fixup_rw_res(struct io_kiocb *req, long res)2775 static inline int io_fixup_rw_res(struct io_kiocb *req, long res)
2776 {
2777 struct io_async_rw *io = req->async_data;
2778
2779 /* add previously done IO, if any */
2780 if (io && io->bytes_done > 0) {
2781 if (res < 0)
2782 res = io->bytes_done;
2783 else
2784 res += io->bytes_done;
2785 }
2786 return res;
2787 }
2788
io_req_task_complete(struct io_kiocb *req, bool *locked)2789 static void io_req_task_complete(struct io_kiocb *req, bool *locked)
2790 {
2791 unsigned int cflags = io_put_rw_kbuf(req);
2792 int res = req->result;
2793
2794 if (*locked) {
2795 struct io_ring_ctx *ctx = req->ctx;
2796 struct io_submit_state *state = &ctx->submit_state;
2797
2798 io_req_complete_state(req, res, cflags);
2799 state->compl_reqs[state->compl_nr++] = req;
2800 if (state->compl_nr == ARRAY_SIZE(state->compl_reqs))
2801 io_submit_flush_completions(ctx);
2802 } else {
2803 io_req_complete_post(req, res, cflags);
2804 }
2805 }
2806
io_req_rw_complete(struct io_kiocb *req, bool *locked)2807 static void io_req_rw_complete(struct io_kiocb *req, bool *locked)
2808 {
2809 io_req_io_end(req);
2810 io_req_task_complete(req, locked);
2811 }
2812
io_complete_rw(struct kiocb *kiocb, long res, long res2)2813 static void io_complete_rw(struct kiocb *kiocb, long res, long res2)
2814 {
2815 struct io_kiocb *req = container_of(kiocb, struct io_kiocb, rw.kiocb);
2816
2817 if (__io_complete_rw_common(req, res))
2818 return;
2819 req->result = io_fixup_rw_res(req, res);
2820 req->io_task_work.func = io_req_rw_complete;
2821 io_req_task_work_add(req);
2822 }
2823
io_complete_rw_iopoll(struct kiocb *kiocb, long res, long res2)2824 static void io_complete_rw_iopoll(struct kiocb *kiocb, long res, long res2)
2825 {
2826 struct io_kiocb *req = container_of(kiocb, struct io_kiocb, rw.kiocb);
2827
2828 if (kiocb->ki_flags & IOCB_WRITE)
2829 kiocb_end_write(req);
2830 if (unlikely(res != req->result)) {
2831 if (res == -EAGAIN && io_rw_should_reissue(req)) {
2832 req->flags |= REQ_F_REISSUE;
2833 return;
2834 }
2835 }
2836
2837 WRITE_ONCE(req->result, res);
2838 /* order with io_iopoll_complete() checking ->result */
2839 smp_wmb();
2840 WRITE_ONCE(req->iopoll_completed, 1);
2841 }
2842
2843 /*
2844 * After the iocb has been issued, it's safe to be found on the poll list.
2845 * Adding the kiocb to the list AFTER submission ensures that we don't
2846 * find it from a io_do_iopoll() thread before the issuer is done
2847 * accessing the kiocb cookie.
2848 */
io_iopoll_req_issued(struct io_kiocb *req)2849 static void io_iopoll_req_issued(struct io_kiocb *req)
2850 {
2851 struct io_ring_ctx *ctx = req->ctx;
2852 const bool in_async = io_wq_current_is_worker();
2853
2854 /* workqueue context doesn't hold uring_lock, grab it now */
2855 if (unlikely(in_async))
2856 mutex_lock(&ctx->uring_lock);
2857
2858 /*
2859 * Track whether we have multiple files in our lists. This will impact
2860 * how we do polling eventually, not spinning if we're on potentially
2861 * different devices.
2862 */
2863 if (list_empty(&ctx->iopoll_list)) {
2864 ctx->poll_multi_queue = false;
2865 } else if (!ctx->poll_multi_queue) {
2866 struct io_kiocb *list_req;
2867 unsigned int queue_num0, queue_num1;
2868
2869 list_req = list_first_entry(&ctx->iopoll_list, struct io_kiocb,
2870 inflight_entry);
2871
2872 if (list_req->file != req->file) {
2873 ctx->poll_multi_queue = true;
2874 } else {
2875 queue_num0 = blk_qc_t_to_queue_num(list_req->rw.kiocb.ki_cookie);
2876 queue_num1 = blk_qc_t_to_queue_num(req->rw.kiocb.ki_cookie);
2877 if (queue_num0 != queue_num1)
2878 ctx->poll_multi_queue = true;
2879 }
2880 }
2881
2882 /*
2883 * For fast devices, IO may have already completed. If it has, add
2884 * it to the front so we find it first.
2885 */
2886 if (READ_ONCE(req->iopoll_completed))
2887 list_add(&req->inflight_entry, &ctx->iopoll_list);
2888 else
2889 list_add_tail(&req->inflight_entry, &ctx->iopoll_list);
2890
2891 if (unlikely(in_async)) {
2892 /*
2893 * If IORING_SETUP_SQPOLL is enabled, sqes are either handle
2894 * in sq thread task context or in io worker task context. If
2895 * current task context is sq thread, we don't need to check
2896 * whether should wake up sq thread.
2897 */
2898 if ((ctx->flags & IORING_SETUP_SQPOLL) &&
2899 wq_has_sleeper(&ctx->sq_data->wait))
2900 wake_up(&ctx->sq_data->wait);
2901
2902 mutex_unlock(&ctx->uring_lock);
2903 }
2904 }
2905
io_bdev_nowait(struct block_device *bdev)2906 static bool io_bdev_nowait(struct block_device *bdev)
2907 {
2908 return !bdev || blk_queue_nowait(bdev_get_queue(bdev));
2909 }
2910
2911 /*
2912 * If we tracked the file through the SCM inflight mechanism, we could support
2913 * any file. For now, just ensure that anything potentially problematic is done
2914 * inline.
2915 */
__io_file_supports_nowait(struct file *file, int rw)2916 static bool __io_file_supports_nowait(struct file *file, int rw)
2917 {
2918 umode_t mode = file_inode(file)->i_mode;
2919
2920 if (S_ISBLK(mode)) {
2921 if (IS_ENABLED(CONFIG_BLOCK) &&
2922 io_bdev_nowait(I_BDEV(file->f_mapping->host)))
2923 return true;
2924 return false;
2925 }
2926 if (S_ISSOCK(mode))
2927 return true;
2928 if (S_ISREG(mode)) {
2929 if (IS_ENABLED(CONFIG_BLOCK) &&
2930 io_bdev_nowait(file->f_inode->i_sb->s_bdev) &&
2931 file->f_op != &io_uring_fops)
2932 return true;
2933 return false;
2934 }
2935
2936 /* any ->read/write should understand O_NONBLOCK */
2937 if (file->f_flags & O_NONBLOCK)
2938 return true;
2939
2940 if (!(file->f_mode & FMODE_NOWAIT))
2941 return false;
2942
2943 if (rw == READ)
2944 return file->f_op->read_iter != NULL;
2945
2946 return file->f_op->write_iter != NULL;
2947 }
2948
io_file_supports_nowait(struct io_kiocb *req, int rw)2949 static bool io_file_supports_nowait(struct io_kiocb *req, int rw)
2950 {
2951 if (rw == READ && (req->flags & REQ_F_NOWAIT_READ))
2952 return true;
2953 else if (rw == WRITE && (req->flags & REQ_F_NOWAIT_WRITE))
2954 return true;
2955
2956 return __io_file_supports_nowait(req->file, rw);
2957 }
2958
io_prep_rw(struct io_kiocb *req, const struct io_uring_sqe *sqe, int rw)2959 static int io_prep_rw(struct io_kiocb *req, const struct io_uring_sqe *sqe,
2960 int rw)
2961 {
2962 struct io_ring_ctx *ctx = req->ctx;
2963 struct kiocb *kiocb = &req->rw.kiocb;
2964 struct file *file = req->file;
2965 unsigned ioprio;
2966 int ret;
2967
2968 if (!io_req_ffs_set(req) && S_ISREG(file_inode(file)->i_mode))
2969 req->flags |= REQ_F_ISREG;
2970
2971 kiocb->ki_pos = READ_ONCE(sqe->off);
2972 kiocb->ki_hint = ki_hint_validate(file_write_hint(kiocb->ki_filp));
2973 kiocb->ki_flags = iocb_flags(kiocb->ki_filp);
2974 ret = kiocb_set_rw_flags(kiocb, READ_ONCE(sqe->rw_flags));
2975 if (unlikely(ret))
2976 return ret;
2977
2978 /*
2979 * If the file is marked O_NONBLOCK, still allow retry for it if it
2980 * supports async. Otherwise it's impossible to use O_NONBLOCK files
2981 * reliably. If not, or it IOCB_NOWAIT is set, don't retry.
2982 */
2983 if ((kiocb->ki_flags & IOCB_NOWAIT) ||
2984 ((file->f_flags & O_NONBLOCK) && !io_file_supports_nowait(req, rw)))
2985 req->flags |= REQ_F_NOWAIT;
2986
2987 ioprio = READ_ONCE(sqe->ioprio);
2988 if (ioprio) {
2989 ret = ioprio_check_cap(ioprio);
2990 if (ret)
2991 return ret;
2992
2993 kiocb->ki_ioprio = ioprio;
2994 } else
2995 kiocb->ki_ioprio = get_current_ioprio();
2996
2997 if (ctx->flags & IORING_SETUP_IOPOLL) {
2998 if (!(kiocb->ki_flags & IOCB_DIRECT) ||
2999 !kiocb->ki_filp->f_op->iopoll)
3000 return -EOPNOTSUPP;
3001
3002 kiocb->ki_flags |= IOCB_HIPRI;
3003 kiocb->ki_complete = io_complete_rw_iopoll;
3004 req->iopoll_completed = 0;
3005 } else {
3006 if (kiocb->ki_flags & IOCB_HIPRI)
3007 return -EINVAL;
3008 kiocb->ki_complete = io_complete_rw;
3009 }
3010
3011 /* used for fixed read/write too - just read unconditionally */
3012 req->buf_index = READ_ONCE(sqe->buf_index);
3013 req->imu = NULL;
3014
3015 if (req->opcode == IORING_OP_READ_FIXED ||
3016 req->opcode == IORING_OP_WRITE_FIXED) {
3017 struct io_ring_ctx *ctx = req->ctx;
3018 u16 index;
3019
3020 if (unlikely(req->buf_index >= ctx->nr_user_bufs))
3021 return -EFAULT;
3022 index = array_index_nospec(req->buf_index, ctx->nr_user_bufs);
3023 req->imu = ctx->user_bufs[index];
3024 io_req_set_rsrc_node(req);
3025 }
3026
3027 req->rw.addr = READ_ONCE(sqe->addr);
3028 req->rw.len = READ_ONCE(sqe->len);
3029 return 0;
3030 }
3031
io_rw_done(struct kiocb *kiocb, ssize_t ret)3032 static inline void io_rw_done(struct kiocb *kiocb, ssize_t ret)
3033 {
3034 switch (ret) {
3035 case -EIOCBQUEUED:
3036 break;
3037 case -ERESTARTSYS:
3038 case -ERESTARTNOINTR:
3039 case -ERESTARTNOHAND:
3040 case -ERESTART_RESTARTBLOCK:
3041 /*
3042 * We can't just restart the syscall, since previously
3043 * submitted sqes may already be in progress. Just fail this
3044 * IO with EINTR.
3045 */
3046 ret = -EINTR;
3047 fallthrough;
3048 default:
3049 kiocb->ki_complete(kiocb, ret, 0);
3050 }
3051 }
3052
io_kiocb_update_pos(struct io_kiocb *req)3053 static inline loff_t *io_kiocb_update_pos(struct io_kiocb *req)
3054 {
3055 struct kiocb *kiocb = &req->rw.kiocb;
3056
3057 if (kiocb->ki_pos != -1)
3058 return &kiocb->ki_pos;
3059
3060 if (!(req->file->f_mode & FMODE_STREAM)) {
3061 req->flags |= REQ_F_CUR_POS;
3062 kiocb->ki_pos = req->file->f_pos;
3063 return &kiocb->ki_pos;
3064 }
3065
3066 kiocb->ki_pos = 0;
3067 return NULL;
3068 }
3069
kiocb_done(struct kiocb *kiocb, ssize_t ret, unsigned int issue_flags)3070 static void kiocb_done(struct kiocb *kiocb, ssize_t ret,
3071 unsigned int issue_flags)
3072 {
3073 struct io_kiocb *req = container_of(kiocb, struct io_kiocb, rw.kiocb);
3074
3075 if (req->flags & REQ_F_CUR_POS)
3076 req->file->f_pos = kiocb->ki_pos;
3077 if (ret >= 0 && (kiocb->ki_complete == io_complete_rw)) {
3078 if (!__io_complete_rw_common(req, ret)) {
3079 /*
3080 * Safe to call io_end from here as we're inline
3081 * from the submission path.
3082 */
3083 io_req_io_end(req);
3084 __io_req_complete(req, issue_flags,
3085 io_fixup_rw_res(req, ret),
3086 io_put_rw_kbuf(req));
3087 }
3088 } else {
3089 io_rw_done(kiocb, ret);
3090 }
3091
3092 if (req->flags & REQ_F_REISSUE) {
3093 req->flags &= ~REQ_F_REISSUE;
3094 if (io_resubmit_prep(req)) {
3095 io_req_task_queue_reissue(req);
3096 } else {
3097 unsigned int cflags = io_put_rw_kbuf(req);
3098 struct io_ring_ctx *ctx = req->ctx;
3099
3100 ret = io_fixup_rw_res(req, ret);
3101 req_set_fail(req);
3102 if (!(issue_flags & IO_URING_F_NONBLOCK)) {
3103 mutex_lock(&ctx->uring_lock);
3104 __io_req_complete(req, issue_flags, ret, cflags);
3105 mutex_unlock(&ctx->uring_lock);
3106 } else {
3107 __io_req_complete(req, issue_flags, ret, cflags);
3108 }
3109 }
3110 }
3111 }
3112
__io_import_fixed(struct io_kiocb *req, int rw, struct iov_iter *iter, struct io_mapped_ubuf *imu)3113 static int __io_import_fixed(struct io_kiocb *req, int rw, struct iov_iter *iter,
3114 struct io_mapped_ubuf *imu)
3115 {
3116 size_t len = req->rw.len;
3117 u64 buf_end, buf_addr = req->rw.addr;
3118 size_t offset;
3119
3120 if (unlikely(check_add_overflow(buf_addr, (u64)len, &buf_end)))
3121 return -EFAULT;
3122 /* not inside the mapped region */
3123 if (unlikely(buf_addr < imu->ubuf || buf_end > imu->ubuf_end))
3124 return -EFAULT;
3125
3126 /*
3127 * May not be a start of buffer, set size appropriately
3128 * and advance us to the beginning.
3129 */
3130 offset = buf_addr - imu->ubuf;
3131 iov_iter_bvec(iter, rw, imu->bvec, imu->nr_bvecs, offset + len);
3132
3133 if (offset) {
3134 /*
3135 * Don't use iov_iter_advance() here, as it's really slow for
3136 * using the latter parts of a big fixed buffer - it iterates
3137 * over each segment manually. We can cheat a bit here, because
3138 * we know that:
3139 *
3140 * 1) it's a BVEC iter, we set it up
3141 * 2) all bvecs are PAGE_SIZE in size, except potentially the
3142 * first and last bvec
3143 *
3144 * So just find our index, and adjust the iterator afterwards.
3145 * If the offset is within the first bvec (or the whole first
3146 * bvec, just use iov_iter_advance(). This makes it easier
3147 * since we can just skip the first segment, which may not
3148 * be PAGE_SIZE aligned.
3149 */
3150 const struct bio_vec *bvec = imu->bvec;
3151
3152 if (offset < bvec->bv_len) {
3153 iov_iter_advance(iter, offset);
3154 } else {
3155 unsigned long seg_skip;
3156
3157 /* skip first vec */
3158 offset -= bvec->bv_len;
3159 seg_skip = 1 + (offset >> PAGE_SHIFT);
3160
3161 iter->bvec = bvec + seg_skip;
3162 iter->nr_segs -= seg_skip;
3163 iter->count -= bvec->bv_len + offset;
3164 iter->iov_offset = offset & ~PAGE_MASK;
3165 }
3166 }
3167
3168 return 0;
3169 }
3170
io_import_fixed(struct io_kiocb *req, int rw, struct iov_iter *iter)3171 static int io_import_fixed(struct io_kiocb *req, int rw, struct iov_iter *iter)
3172 {
3173 if (WARN_ON_ONCE(!req->imu))
3174 return -EFAULT;
3175 return __io_import_fixed(req, rw, iter, req->imu);
3176 }
3177
io_ring_submit_unlock(struct io_ring_ctx *ctx, bool needs_lock)3178 static void io_ring_submit_unlock(struct io_ring_ctx *ctx, bool needs_lock)
3179 {
3180 if (needs_lock)
3181 mutex_unlock(&ctx->uring_lock);
3182 }
3183
io_ring_submit_lock(struct io_ring_ctx *ctx, bool needs_lock)3184 static void io_ring_submit_lock(struct io_ring_ctx *ctx, bool needs_lock)
3185 {
3186 /*
3187 * "Normal" inline submissions always hold the uring_lock, since we
3188 * grab it from the system call. Same is true for the SQPOLL offload.
3189 * The only exception is when we've detached the request and issue it
3190 * from an async worker thread, grab the lock for that case.
3191 */
3192 if (needs_lock)
3193 mutex_lock(&ctx->uring_lock);
3194 }
3195
io_buffer_select(struct io_kiocb *req, size_t *len, int bgid, struct io_buffer *kbuf, bool needs_lock)3196 static struct io_buffer *io_buffer_select(struct io_kiocb *req, size_t *len,
3197 int bgid, struct io_buffer *kbuf,
3198 bool needs_lock)
3199 {
3200 struct io_buffer *head;
3201
3202 if (req->flags & REQ_F_BUFFER_SELECTED)
3203 return kbuf;
3204
3205 io_ring_submit_lock(req->ctx, needs_lock);
3206
3207 lockdep_assert_held(&req->ctx->uring_lock);
3208
3209 head = xa_load(&req->ctx->io_buffers, bgid);
3210 if (head) {
3211 if (!list_empty(&head->list)) {
3212 kbuf = list_last_entry(&head->list, struct io_buffer,
3213 list);
3214 list_del(&kbuf->list);
3215 } else {
3216 kbuf = head;
3217 xa_erase(&req->ctx->io_buffers, bgid);
3218 }
3219 if (*len > kbuf->len)
3220 *len = kbuf->len;
3221 } else {
3222 kbuf = ERR_PTR(-ENOBUFS);
3223 }
3224
3225 io_ring_submit_unlock(req->ctx, needs_lock);
3226
3227 return kbuf;
3228 }
3229
io_rw_buffer_select(struct io_kiocb *req, size_t *len, bool needs_lock)3230 static void __user *io_rw_buffer_select(struct io_kiocb *req, size_t *len,
3231 bool needs_lock)
3232 {
3233 struct io_buffer *kbuf;
3234 u16 bgid;
3235
3236 kbuf = (struct io_buffer *) (unsigned long) req->rw.addr;
3237 bgid = req->buf_index;
3238 kbuf = io_buffer_select(req, len, bgid, kbuf, needs_lock);
3239 if (IS_ERR(kbuf))
3240 return kbuf;
3241 req->rw.addr = (u64) (unsigned long) kbuf;
3242 req->flags |= REQ_F_BUFFER_SELECTED;
3243 return u64_to_user_ptr(kbuf->addr);
3244 }
3245
3246 #ifdef CONFIG_COMPAT
io_compat_import(struct io_kiocb *req, struct iovec *iov, bool needs_lock)3247 static ssize_t io_compat_import(struct io_kiocb *req, struct iovec *iov,
3248 bool needs_lock)
3249 {
3250 struct compat_iovec __user *uiov;
3251 compat_ssize_t clen;
3252 void __user *buf;
3253 ssize_t len;
3254
3255 uiov = u64_to_user_ptr(req->rw.addr);
3256 if (!access_ok(uiov, sizeof(*uiov)))
3257 return -EFAULT;
3258 if (__get_user(clen, &uiov->iov_len))
3259 return -EFAULT;
3260 if (clen < 0)
3261 return -EINVAL;
3262
3263 len = clen;
3264 buf = io_rw_buffer_select(req, &len, needs_lock);
3265 if (IS_ERR(buf))
3266 return PTR_ERR(buf);
3267 iov[0].iov_base = buf;
3268 iov[0].iov_len = (compat_size_t) len;
3269 return 0;
3270 }
3271 #endif
3272
__io_iov_buffer_select(struct io_kiocb *req, struct iovec *iov, bool needs_lock)3273 static ssize_t __io_iov_buffer_select(struct io_kiocb *req, struct iovec *iov,
3274 bool needs_lock)
3275 {
3276 struct iovec __user *uiov = u64_to_user_ptr(req->rw.addr);
3277 void __user *buf;
3278 ssize_t len;
3279
3280 if (copy_from_user(iov, uiov, sizeof(*uiov)))
3281 return -EFAULT;
3282
3283 len = iov[0].iov_len;
3284 if (len < 0)
3285 return -EINVAL;
3286 buf = io_rw_buffer_select(req, &len, needs_lock);
3287 if (IS_ERR(buf))
3288 return PTR_ERR(buf);
3289 iov[0].iov_base = buf;
3290 iov[0].iov_len = len;
3291 return 0;
3292 }
3293
io_iov_buffer_select(struct io_kiocb *req, struct iovec *iov, bool needs_lock)3294 static ssize_t io_iov_buffer_select(struct io_kiocb *req, struct iovec *iov,
3295 bool needs_lock)
3296 {
3297 if (req->flags & REQ_F_BUFFER_SELECTED) {
3298 struct io_buffer *kbuf;
3299
3300 kbuf = (struct io_buffer *) (unsigned long) req->rw.addr;
3301 iov[0].iov_base = u64_to_user_ptr(kbuf->addr);
3302 iov[0].iov_len = kbuf->len;
3303 return 0;
3304 }
3305 if (req->rw.len != 1)
3306 return -EINVAL;
3307
3308 #ifdef CONFIG_COMPAT
3309 if (req->ctx->compat)
3310 return io_compat_import(req, iov, needs_lock);
3311 #endif
3312
3313 return __io_iov_buffer_select(req, iov, needs_lock);
3314 }
3315
io_import_iovec(int rw, struct io_kiocb *req, struct iovec **iovec, struct iov_iter *iter, bool needs_lock)3316 static int io_import_iovec(int rw, struct io_kiocb *req, struct iovec **iovec,
3317 struct iov_iter *iter, bool needs_lock)
3318 {
3319 void __user *buf = u64_to_user_ptr(req->rw.addr);
3320 size_t sqe_len = req->rw.len;
3321 u8 opcode = req->opcode;
3322 ssize_t ret;
3323
3324 if (opcode == IORING_OP_READ_FIXED || opcode == IORING_OP_WRITE_FIXED) {
3325 *iovec = NULL;
3326 return io_import_fixed(req, rw, iter);
3327 }
3328
3329 /* buffer index only valid with fixed read/write, or buffer select */
3330 if (req->buf_index && !(req->flags & REQ_F_BUFFER_SELECT))
3331 return -EINVAL;
3332
3333 if (opcode == IORING_OP_READ || opcode == IORING_OP_WRITE) {
3334 if (req->flags & REQ_F_BUFFER_SELECT) {
3335 buf = io_rw_buffer_select(req, &sqe_len, needs_lock);
3336 if (IS_ERR(buf))
3337 return PTR_ERR(buf);
3338 req->rw.len = sqe_len;
3339 }
3340
3341 ret = import_single_range(rw, buf, sqe_len, *iovec, iter);
3342 *iovec = NULL;
3343 return ret;
3344 }
3345
3346 if (req->flags & REQ_F_BUFFER_SELECT) {
3347 ret = io_iov_buffer_select(req, *iovec, needs_lock);
3348 if (!ret)
3349 iov_iter_init(iter, rw, *iovec, 1, (*iovec)->iov_len);
3350 *iovec = NULL;
3351 return ret;
3352 }
3353
3354 return __import_iovec(rw, buf, sqe_len, UIO_FASTIOV, iovec, iter,
3355 req->ctx->compat);
3356 }
3357
io_kiocb_ppos(struct kiocb *kiocb)3358 static inline loff_t *io_kiocb_ppos(struct kiocb *kiocb)
3359 {
3360 return (kiocb->ki_filp->f_mode & FMODE_STREAM) ? NULL : &kiocb->ki_pos;
3361 }
3362
3363 /*
3364 * For files that don't have ->read_iter() and ->write_iter(), handle them
3365 * by looping over ->read() or ->write() manually.
3366 */
loop_rw_iter(int rw, struct io_kiocb *req, struct iov_iter *iter)3367 static ssize_t loop_rw_iter(int rw, struct io_kiocb *req, struct iov_iter *iter)
3368 {
3369 struct kiocb *kiocb = &req->rw.kiocb;
3370 struct file *file = req->file;
3371 ssize_t ret = 0;
3372 loff_t *ppos;
3373
3374 /*
3375 * Don't support polled IO through this interface, and we can't
3376 * support non-blocking either. For the latter, this just causes
3377 * the kiocb to be handled from an async context.
3378 */
3379 if (kiocb->ki_flags & IOCB_HIPRI)
3380 return -EOPNOTSUPP;
3381 if (kiocb->ki_flags & IOCB_NOWAIT)
3382 return -EAGAIN;
3383
3384 ppos = io_kiocb_ppos(kiocb);
3385
3386 while (iov_iter_count(iter)) {
3387 struct iovec iovec;
3388 ssize_t nr;
3389
3390 if (!iov_iter_is_bvec(iter)) {
3391 iovec = iov_iter_iovec(iter);
3392 } else {
3393 iovec.iov_base = u64_to_user_ptr(req->rw.addr);
3394 iovec.iov_len = req->rw.len;
3395 }
3396
3397 if (rw == READ) {
3398 nr = file->f_op->read(file, iovec.iov_base,
3399 iovec.iov_len, ppos);
3400 } else {
3401 nr = file->f_op->write(file, iovec.iov_base,
3402 iovec.iov_len, ppos);
3403 }
3404
3405 if (nr < 0) {
3406 if (!ret)
3407 ret = nr;
3408 break;
3409 }
3410 ret += nr;
3411 if (!iov_iter_is_bvec(iter)) {
3412 iov_iter_advance(iter, nr);
3413 } else {
3414 req->rw.addr += nr;
3415 req->rw.len -= nr;
3416 if (!req->rw.len)
3417 break;
3418 }
3419 if (nr != iovec.iov_len)
3420 break;
3421 }
3422
3423 return ret;
3424 }
3425
io_req_map_rw(struct io_kiocb *req, const struct iovec *iovec, const struct iovec *fast_iov, struct iov_iter *iter)3426 static void io_req_map_rw(struct io_kiocb *req, const struct iovec *iovec,
3427 const struct iovec *fast_iov, struct iov_iter *iter)
3428 {
3429 struct io_async_rw *rw = req->async_data;
3430
3431 memcpy(&rw->iter, iter, sizeof(*iter));
3432 rw->free_iovec = iovec;
3433 rw->bytes_done = 0;
3434 /* can only be fixed buffers, no need to do anything */
3435 if (iov_iter_is_bvec(iter))
3436 return;
3437 if (!iovec) {
3438 unsigned iov_off = 0;
3439
3440 rw->iter.iov = rw->fast_iov;
3441 if (iter->iov != fast_iov) {
3442 iov_off = iter->iov - fast_iov;
3443 rw->iter.iov += iov_off;
3444 }
3445 if (rw->fast_iov != fast_iov)
3446 memcpy(rw->fast_iov + iov_off, fast_iov + iov_off,
3447 sizeof(struct iovec) * iter->nr_segs);
3448 } else {
3449 req->flags |= REQ_F_NEED_CLEANUP;
3450 }
3451 }
3452
io_alloc_async_data(struct io_kiocb *req)3453 static inline int io_alloc_async_data(struct io_kiocb *req)
3454 {
3455 WARN_ON_ONCE(!io_op_defs[req->opcode].async_size);
3456 req->async_data = kmalloc(io_op_defs[req->opcode].async_size, GFP_KERNEL);
3457 return req->async_data == NULL;
3458 }
3459
io_setup_async_rw(struct io_kiocb *req, const struct iovec *iovec, const struct iovec *fast_iov, struct iov_iter *iter, bool force)3460 static int io_setup_async_rw(struct io_kiocb *req, const struct iovec *iovec,
3461 const struct iovec *fast_iov,
3462 struct iov_iter *iter, bool force)
3463 {
3464 if (!force && !io_op_defs[req->opcode].needs_async_setup)
3465 return 0;
3466 if (!req->async_data) {
3467 struct io_async_rw *iorw;
3468
3469 if (io_alloc_async_data(req)) {
3470 kfree(iovec);
3471 return -ENOMEM;
3472 }
3473
3474 io_req_map_rw(req, iovec, fast_iov, iter);
3475 iorw = req->async_data;
3476 /* we've copied and mapped the iter, ensure state is saved */
3477 iov_iter_save_state(&iorw->iter, &iorw->iter_state);
3478 }
3479 return 0;
3480 }
3481
io_rw_prep_async(struct io_kiocb *req, int rw)3482 static inline int io_rw_prep_async(struct io_kiocb *req, int rw)
3483 {
3484 struct io_async_rw *iorw = req->async_data;
3485 struct iovec *iov = iorw->fast_iov;
3486 int ret;
3487
3488 iorw->bytes_done = 0;
3489 iorw->free_iovec = NULL;
3490
3491 ret = io_import_iovec(rw, req, &iov, &iorw->iter, false);
3492 if (unlikely(ret < 0))
3493 return ret;
3494
3495 if (iov) {
3496 iorw->free_iovec = iov;
3497 req->flags |= REQ_F_NEED_CLEANUP;
3498 }
3499 iov_iter_save_state(&iorw->iter, &iorw->iter_state);
3500 return 0;
3501 }
3502
io_read_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)3503 static int io_read_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
3504 {
3505 if (unlikely(!(req->file->f_mode & FMODE_READ)))
3506 return -EBADF;
3507 return io_prep_rw(req, sqe, READ);
3508 }
3509
3510 /*
3511 * This is our waitqueue callback handler, registered through lock_page_async()
3512 * when we initially tried to do the IO with the iocb armed our waitqueue.
3513 * This gets called when the page is unlocked, and we generally expect that to
3514 * happen when the page IO is completed and the page is now uptodate. This will
3515 * queue a task_work based retry of the operation, attempting to copy the data
3516 * again. If the latter fails because the page was NOT uptodate, then we will
3517 * do a thread based blocking retry of the operation. That's the unexpected
3518 * slow path.
3519 */
io_async_buf_func(struct wait_queue_entry *wait, unsigned mode, int sync, void *arg)3520 static int io_async_buf_func(struct wait_queue_entry *wait, unsigned mode,
3521 int sync, void *arg)
3522 {
3523 struct wait_page_queue *wpq;
3524 struct io_kiocb *req = wait->private;
3525 struct wait_page_key *key = arg;
3526
3527 wpq = container_of(wait, struct wait_page_queue, wait);
3528
3529 if (!wake_page_match(wpq, key))
3530 return 0;
3531
3532 req->rw.kiocb.ki_flags &= ~IOCB_WAITQ;
3533 list_del_init(&wait->entry);
3534 io_req_task_queue(req);
3535 return 1;
3536 }
3537
3538 /*
3539 * This controls whether a given IO request should be armed for async page
3540 * based retry. If we return false here, the request is handed to the async
3541 * worker threads for retry. If we're doing buffered reads on a regular file,
3542 * we prepare a private wait_page_queue entry and retry the operation. This
3543 * will either succeed because the page is now uptodate and unlocked, or it
3544 * will register a callback when the page is unlocked at IO completion. Through
3545 * that callback, io_uring uses task_work to setup a retry of the operation.
3546 * That retry will attempt the buffered read again. The retry will generally
3547 * succeed, or in rare cases where it fails, we then fall back to using the
3548 * async worker threads for a blocking retry.
3549 */
io_rw_should_retry(struct io_kiocb *req)3550 static bool io_rw_should_retry(struct io_kiocb *req)
3551 {
3552 struct io_async_rw *rw = req->async_data;
3553 struct wait_page_queue *wait = &rw->wpq;
3554 struct kiocb *kiocb = &req->rw.kiocb;
3555
3556 /* never retry for NOWAIT, we just complete with -EAGAIN */
3557 if (req->flags & REQ_F_NOWAIT)
3558 return false;
3559
3560 /* Only for buffered IO */
3561 if (kiocb->ki_flags & (IOCB_DIRECT | IOCB_HIPRI))
3562 return false;
3563
3564 /*
3565 * just use poll if we can, and don't attempt if the fs doesn't
3566 * support callback based unlocks
3567 */
3568 if (file_can_poll(req->file) || !(req->file->f_mode & FMODE_BUF_RASYNC))
3569 return false;
3570
3571 wait->wait.func = io_async_buf_func;
3572 wait->wait.private = req;
3573 wait->wait.flags = 0;
3574 INIT_LIST_HEAD(&wait->wait.entry);
3575 kiocb->ki_flags |= IOCB_WAITQ;
3576 kiocb->ki_flags &= ~IOCB_NOWAIT;
3577 kiocb->ki_waitq = wait;
3578 return true;
3579 }
3580
io_iter_do_read(struct io_kiocb *req, struct iov_iter *iter)3581 static inline int io_iter_do_read(struct io_kiocb *req, struct iov_iter *iter)
3582 {
3583 if (req->file->f_op->read_iter)
3584 return call_read_iter(req->file, &req->rw.kiocb, iter);
3585 else if (req->file->f_op->read)
3586 return loop_rw_iter(READ, req, iter);
3587 else
3588 return -EINVAL;
3589 }
3590
need_read_all(struct io_kiocb *req)3591 static bool need_read_all(struct io_kiocb *req)
3592 {
3593 return req->flags & REQ_F_ISREG ||
3594 S_ISBLK(file_inode(req->file)->i_mode);
3595 }
3596
io_read(struct io_kiocb *req, unsigned int issue_flags)3597 static int io_read(struct io_kiocb *req, unsigned int issue_flags)
3598 {
3599 struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
3600 struct kiocb *kiocb = &req->rw.kiocb;
3601 struct iov_iter __iter, *iter = &__iter;
3602 struct io_async_rw *rw = req->async_data;
3603 bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK;
3604 struct iov_iter_state __state, *state;
3605 ssize_t ret, ret2;
3606 loff_t *ppos;
3607
3608 if (rw) {
3609 iter = &rw->iter;
3610 state = &rw->iter_state;
3611 /*
3612 * We come here from an earlier attempt, restore our state to
3613 * match in case it doesn't. It's cheap enough that we don't
3614 * need to make this conditional.
3615 */
3616 iov_iter_restore(iter, state);
3617 iovec = NULL;
3618 } else {
3619 ret = io_import_iovec(READ, req, &iovec, iter, !force_nonblock);
3620 if (ret < 0)
3621 return ret;
3622 state = &__state;
3623 iov_iter_save_state(iter, state);
3624 }
3625 req->result = iov_iter_count(iter);
3626
3627 /* Ensure we clear previously set non-block flag */
3628 if (!force_nonblock)
3629 kiocb->ki_flags &= ~IOCB_NOWAIT;
3630 else
3631 kiocb->ki_flags |= IOCB_NOWAIT;
3632
3633 /* If the file doesn't support async, just async punt */
3634 if (force_nonblock && !io_file_supports_nowait(req, READ)) {
3635 ret = io_setup_async_rw(req, iovec, inline_vecs, iter, true);
3636 return ret ?: -EAGAIN;
3637 }
3638
3639 ppos = io_kiocb_update_pos(req);
3640
3641 ret = rw_verify_area(READ, req->file, ppos, req->result);
3642 if (unlikely(ret)) {
3643 kfree(iovec);
3644 return ret;
3645 }
3646
3647 ret = io_iter_do_read(req, iter);
3648
3649 if (ret == -EAGAIN || (req->flags & REQ_F_REISSUE)) {
3650 req->flags &= ~REQ_F_REISSUE;
3651 /* IOPOLL retry should happen for io-wq threads */
3652 if (!force_nonblock && !(req->ctx->flags & IORING_SETUP_IOPOLL))
3653 goto done;
3654 /* no retry on NONBLOCK nor RWF_NOWAIT */
3655 if (req->flags & REQ_F_NOWAIT)
3656 goto done;
3657 ret = 0;
3658 } else if (ret == -EIOCBQUEUED) {
3659 goto out_free;
3660 } else if (ret <= 0 || ret == req->result || !force_nonblock ||
3661 (req->flags & REQ_F_NOWAIT) || !need_read_all(req)) {
3662 /* read all, failed, already did sync or don't want to retry */
3663 goto done;
3664 }
3665
3666 /*
3667 * Don't depend on the iter state matching what was consumed, or being
3668 * untouched in case of error. Restore it and we'll advance it
3669 * manually if we need to.
3670 */
3671 iov_iter_restore(iter, state);
3672
3673 ret2 = io_setup_async_rw(req, iovec, inline_vecs, iter, true);
3674 if (ret2)
3675 return ret2;
3676
3677 iovec = NULL;
3678 rw = req->async_data;
3679 /*
3680 * Now use our persistent iterator and state, if we aren't already.
3681 * We've restored and mapped the iter to match.
3682 */
3683 if (iter != &rw->iter) {
3684 iter = &rw->iter;
3685 state = &rw->iter_state;
3686 }
3687
3688 do {
3689 /*
3690 * We end up here because of a partial read, either from
3691 * above or inside this loop. Advance the iter by the bytes
3692 * that were consumed.
3693 */
3694 iov_iter_advance(iter, ret);
3695 if (!iov_iter_count(iter))
3696 break;
3697 rw->bytes_done += ret;
3698 iov_iter_save_state(iter, state);
3699
3700 /* if we can retry, do so with the callbacks armed */
3701 if (!io_rw_should_retry(req)) {
3702 kiocb->ki_flags &= ~IOCB_WAITQ;
3703 return -EAGAIN;
3704 }
3705
3706 req->result = iov_iter_count(iter);
3707 /*
3708 * Now retry read with the IOCB_WAITQ parts set in the iocb. If
3709 * we get -EIOCBQUEUED, then we'll get a notification when the
3710 * desired page gets unlocked. We can also get a partial read
3711 * here, and if we do, then just retry at the new offset.
3712 */
3713 ret = io_iter_do_read(req, iter);
3714 if (ret == -EIOCBQUEUED)
3715 return 0;
3716 /* we got some bytes, but not all. retry. */
3717 kiocb->ki_flags &= ~IOCB_WAITQ;
3718 iov_iter_restore(iter, state);
3719 } while (ret > 0);
3720 done:
3721 kiocb_done(kiocb, ret, issue_flags);
3722 out_free:
3723 /* it's faster to check here then delegate to kfree */
3724 if (iovec)
3725 kfree(iovec);
3726 return 0;
3727 }
3728
io_write_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)3729 static int io_write_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
3730 {
3731 if (unlikely(!(req->file->f_mode & FMODE_WRITE)))
3732 return -EBADF;
3733 return io_prep_rw(req, sqe, WRITE);
3734 }
3735
io_write(struct io_kiocb *req, unsigned int issue_flags)3736 static int io_write(struct io_kiocb *req, unsigned int issue_flags)
3737 {
3738 struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
3739 struct kiocb *kiocb = &req->rw.kiocb;
3740 struct iov_iter __iter, *iter = &__iter;
3741 struct io_async_rw *rw = req->async_data;
3742 bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK;
3743 struct iov_iter_state __state, *state;
3744 ssize_t ret, ret2;
3745 loff_t *ppos;
3746
3747 if (rw) {
3748 iter = &rw->iter;
3749 state = &rw->iter_state;
3750 iov_iter_restore(iter, state);
3751 iovec = NULL;
3752 } else {
3753 ret = io_import_iovec(WRITE, req, &iovec, iter, !force_nonblock);
3754 if (ret < 0)
3755 return ret;
3756 state = &__state;
3757 iov_iter_save_state(iter, state);
3758 }
3759 req->result = iov_iter_count(iter);
3760
3761 /* Ensure we clear previously set non-block flag */
3762 if (!force_nonblock)
3763 kiocb->ki_flags &= ~IOCB_NOWAIT;
3764 else
3765 kiocb->ki_flags |= IOCB_NOWAIT;
3766
3767 /* If the file doesn't support async, just async punt */
3768 if (force_nonblock && !io_file_supports_nowait(req, WRITE))
3769 goto copy_iov;
3770
3771 /* file path doesn't support NOWAIT for non-direct_IO */
3772 if (force_nonblock && !(kiocb->ki_flags & IOCB_DIRECT) &&
3773 (req->flags & REQ_F_ISREG))
3774 goto copy_iov;
3775
3776 ppos = io_kiocb_update_pos(req);
3777
3778 ret = rw_verify_area(WRITE, req->file, ppos, req->result);
3779 if (unlikely(ret))
3780 goto out_free;
3781
3782 /*
3783 * Open-code file_start_write here to grab freeze protection,
3784 * which will be released by another thread in
3785 * io_complete_rw(). Fool lockdep by telling it the lock got
3786 * released so that it doesn't complain about the held lock when
3787 * we return to userspace.
3788 */
3789 if (req->flags & REQ_F_ISREG) {
3790 sb_start_write(file_inode(req->file)->i_sb);
3791 __sb_writers_release(file_inode(req->file)->i_sb,
3792 SB_FREEZE_WRITE);
3793 }
3794 kiocb->ki_flags |= IOCB_WRITE;
3795
3796 if (req->file->f_op->write_iter)
3797 ret2 = call_write_iter(req->file, kiocb, iter);
3798 else if (req->file->f_op->write)
3799 ret2 = loop_rw_iter(WRITE, req, iter);
3800 else
3801 ret2 = -EINVAL;
3802
3803 if (req->flags & REQ_F_REISSUE) {
3804 req->flags &= ~REQ_F_REISSUE;
3805 ret2 = -EAGAIN;
3806 }
3807
3808 /*
3809 * Raw bdev writes will return -EOPNOTSUPP for IOCB_NOWAIT. Just
3810 * retry them without IOCB_NOWAIT.
3811 */
3812 if (ret2 == -EOPNOTSUPP && (kiocb->ki_flags & IOCB_NOWAIT))
3813 ret2 = -EAGAIN;
3814 /* no retry on NONBLOCK nor RWF_NOWAIT */
3815 if (ret2 == -EAGAIN && (req->flags & REQ_F_NOWAIT))
3816 goto done;
3817 if (!force_nonblock || ret2 != -EAGAIN) {
3818 /* IOPOLL retry should happen for io-wq threads */
3819 if ((req->ctx->flags & IORING_SETUP_IOPOLL) && ret2 == -EAGAIN)
3820 goto copy_iov;
3821 done:
3822 kiocb_done(kiocb, ret2, issue_flags);
3823 } else {
3824 copy_iov:
3825 iov_iter_restore(iter, state);
3826 ret = io_setup_async_rw(req, iovec, inline_vecs, iter, false);
3827 if (!ret) {
3828 if (kiocb->ki_flags & IOCB_WRITE)
3829 kiocb_end_write(req);
3830 return -EAGAIN;
3831 }
3832 return ret;
3833 }
3834 out_free:
3835 /* it's reportedly faster than delegating the null check to kfree() */
3836 if (iovec)
3837 kfree(iovec);
3838 return ret;
3839 }
3840
io_renameat_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)3841 static int io_renameat_prep(struct io_kiocb *req,
3842 const struct io_uring_sqe *sqe)
3843 {
3844 struct io_rename *ren = &req->rename;
3845 const char __user *oldf, *newf;
3846
3847 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
3848 return -EINVAL;
3849 if (sqe->ioprio || sqe->buf_index || sqe->splice_fd_in)
3850 return -EINVAL;
3851 if (unlikely(req->flags & REQ_F_FIXED_FILE))
3852 return -EBADF;
3853
3854 ren->old_dfd = READ_ONCE(sqe->fd);
3855 oldf = u64_to_user_ptr(READ_ONCE(sqe->addr));
3856 newf = u64_to_user_ptr(READ_ONCE(sqe->addr2));
3857 ren->new_dfd = READ_ONCE(sqe->len);
3858 ren->flags = READ_ONCE(sqe->rename_flags);
3859
3860 ren->oldpath = getname(oldf);
3861 if (IS_ERR(ren->oldpath))
3862 return PTR_ERR(ren->oldpath);
3863
3864 ren->newpath = getname(newf);
3865 if (IS_ERR(ren->newpath)) {
3866 putname(ren->oldpath);
3867 return PTR_ERR(ren->newpath);
3868 }
3869
3870 req->flags |= REQ_F_NEED_CLEANUP;
3871 return 0;
3872 }
3873
io_renameat(struct io_kiocb *req, unsigned int issue_flags)3874 static int io_renameat(struct io_kiocb *req, unsigned int issue_flags)
3875 {
3876 struct io_rename *ren = &req->rename;
3877 int ret;
3878
3879 if (issue_flags & IO_URING_F_NONBLOCK)
3880 return -EAGAIN;
3881
3882 ret = do_renameat2(ren->old_dfd, ren->oldpath, ren->new_dfd,
3883 ren->newpath, ren->flags);
3884
3885 req->flags &= ~REQ_F_NEED_CLEANUP;
3886 if (ret < 0)
3887 req_set_fail(req);
3888 io_req_complete(req, ret);
3889 return 0;
3890 }
3891
io_unlinkat_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)3892 static int io_unlinkat_prep(struct io_kiocb *req,
3893 const struct io_uring_sqe *sqe)
3894 {
3895 struct io_unlink *un = &req->unlink;
3896 const char __user *fname;
3897
3898 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
3899 return -EINVAL;
3900 if (sqe->ioprio || sqe->off || sqe->len || sqe->buf_index ||
3901 sqe->splice_fd_in)
3902 return -EINVAL;
3903 if (unlikely(req->flags & REQ_F_FIXED_FILE))
3904 return -EBADF;
3905
3906 un->dfd = READ_ONCE(sqe->fd);
3907
3908 un->flags = READ_ONCE(sqe->unlink_flags);
3909 if (un->flags & ~AT_REMOVEDIR)
3910 return -EINVAL;
3911
3912 fname = u64_to_user_ptr(READ_ONCE(sqe->addr));
3913 un->filename = getname(fname);
3914 if (IS_ERR(un->filename))
3915 return PTR_ERR(un->filename);
3916
3917 req->flags |= REQ_F_NEED_CLEANUP;
3918 return 0;
3919 }
3920
io_unlinkat(struct io_kiocb *req, unsigned int issue_flags)3921 static int io_unlinkat(struct io_kiocb *req, unsigned int issue_flags)
3922 {
3923 struct io_unlink *un = &req->unlink;
3924 int ret;
3925
3926 if (issue_flags & IO_URING_F_NONBLOCK)
3927 return -EAGAIN;
3928
3929 if (un->flags & AT_REMOVEDIR)
3930 ret = do_rmdir(un->dfd, un->filename);
3931 else
3932 ret = do_unlinkat(un->dfd, un->filename);
3933
3934 req->flags &= ~REQ_F_NEED_CLEANUP;
3935 if (ret < 0)
3936 req_set_fail(req);
3937 io_req_complete(req, ret);
3938 return 0;
3939 }
3940
io_shutdown_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)3941 static int io_shutdown_prep(struct io_kiocb *req,
3942 const struct io_uring_sqe *sqe)
3943 {
3944 #if defined(CONFIG_NET)
3945 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
3946 return -EINVAL;
3947 if (unlikely(sqe->ioprio || sqe->off || sqe->addr || sqe->rw_flags ||
3948 sqe->buf_index || sqe->splice_fd_in))
3949 return -EINVAL;
3950
3951 req->shutdown.how = READ_ONCE(sqe->len);
3952 return 0;
3953 #else
3954 return -EOPNOTSUPP;
3955 #endif
3956 }
3957
io_shutdown(struct io_kiocb *req, unsigned int issue_flags)3958 static int io_shutdown(struct io_kiocb *req, unsigned int issue_flags)
3959 {
3960 #if defined(CONFIG_NET)
3961 struct socket *sock;
3962 int ret;
3963
3964 if (issue_flags & IO_URING_F_NONBLOCK)
3965 return -EAGAIN;
3966
3967 sock = sock_from_file(req->file, &ret);
3968 if (unlikely(!sock))
3969 return ret;
3970
3971 ret = __sys_shutdown_sock(sock, req->shutdown.how);
3972 if (ret < 0)
3973 req_set_fail(req);
3974 io_req_complete(req, ret);
3975 return 0;
3976 #else
3977 return -EOPNOTSUPP;
3978 #endif
3979 }
3980
__io_splice_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)3981 static int __io_splice_prep(struct io_kiocb *req,
3982 const struct io_uring_sqe *sqe)
3983 {
3984 struct io_splice *sp = &req->splice;
3985 unsigned int valid_flags = SPLICE_F_FD_IN_FIXED | SPLICE_F_ALL;
3986
3987 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
3988 return -EINVAL;
3989
3990 sp->len = READ_ONCE(sqe->len);
3991 sp->flags = READ_ONCE(sqe->splice_flags);
3992 if (unlikely(sp->flags & ~valid_flags))
3993 return -EINVAL;
3994 sp->splice_fd_in = READ_ONCE(sqe->splice_fd_in);
3995 return 0;
3996 }
3997
io_tee_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)3998 static int io_tee_prep(struct io_kiocb *req,
3999 const struct io_uring_sqe *sqe)
4000 {
4001 if (READ_ONCE(sqe->splice_off_in) || READ_ONCE(sqe->off))
4002 return -EINVAL;
4003 return __io_splice_prep(req, sqe);
4004 }
4005
io_tee(struct io_kiocb *req, unsigned int issue_flags)4006 static int io_tee(struct io_kiocb *req, unsigned int issue_flags)
4007 {
4008 struct io_splice *sp = &req->splice;
4009 struct file *out = sp->file_out;
4010 unsigned int flags = sp->flags & ~SPLICE_F_FD_IN_FIXED;
4011 struct file *in;
4012 long ret = 0;
4013
4014 if (issue_flags & IO_URING_F_NONBLOCK)
4015 return -EAGAIN;
4016
4017 in = io_file_get(req->ctx, req, sp->splice_fd_in,
4018 (sp->flags & SPLICE_F_FD_IN_FIXED), issue_flags);
4019 if (!in) {
4020 ret = -EBADF;
4021 goto done;
4022 }
4023
4024 if (sp->len)
4025 ret = do_tee(in, out, sp->len, flags);
4026
4027 if (!(sp->flags & SPLICE_F_FD_IN_FIXED))
4028 io_put_file(in);
4029 done:
4030 if (ret != sp->len)
4031 req_set_fail(req);
4032 io_req_complete(req, ret);
4033 return 0;
4034 }
4035
io_splice_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)4036 static int io_splice_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4037 {
4038 struct io_splice *sp = &req->splice;
4039
4040 sp->off_in = READ_ONCE(sqe->splice_off_in);
4041 sp->off_out = READ_ONCE(sqe->off);
4042 return __io_splice_prep(req, sqe);
4043 }
4044
io_splice(struct io_kiocb *req, unsigned int issue_flags)4045 static int io_splice(struct io_kiocb *req, unsigned int issue_flags)
4046 {
4047 struct io_splice *sp = &req->splice;
4048 struct file *out = sp->file_out;
4049 unsigned int flags = sp->flags & ~SPLICE_F_FD_IN_FIXED;
4050 loff_t *poff_in, *poff_out;
4051 struct file *in;
4052 long ret = 0;
4053
4054 if (issue_flags & IO_URING_F_NONBLOCK)
4055 return -EAGAIN;
4056
4057 in = io_file_get(req->ctx, req, sp->splice_fd_in,
4058 (sp->flags & SPLICE_F_FD_IN_FIXED), issue_flags);
4059 if (!in) {
4060 ret = -EBADF;
4061 goto done;
4062 }
4063
4064 poff_in = (sp->off_in == -1) ? NULL : &sp->off_in;
4065 poff_out = (sp->off_out == -1) ? NULL : &sp->off_out;
4066
4067 if (sp->len)
4068 ret = do_splice(in, poff_in, out, poff_out, sp->len, flags);
4069
4070 if (!(sp->flags & SPLICE_F_FD_IN_FIXED))
4071 io_put_file(in);
4072 done:
4073 if (ret != sp->len)
4074 req_set_fail(req);
4075 io_req_complete(req, ret);
4076 return 0;
4077 }
4078
4079 /*
4080 * IORING_OP_NOP just posts a completion event, nothing else.
4081 */
io_nop(struct io_kiocb *req, unsigned int issue_flags)4082 static int io_nop(struct io_kiocb *req, unsigned int issue_flags)
4083 {
4084 struct io_ring_ctx *ctx = req->ctx;
4085
4086 if (unlikely(ctx->flags & IORING_SETUP_IOPOLL))
4087 return -EINVAL;
4088
4089 __io_req_complete(req, issue_flags, 0, 0);
4090 return 0;
4091 }
4092
io_fsync_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)4093 static int io_fsync_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4094 {
4095 struct io_ring_ctx *ctx = req->ctx;
4096
4097 if (unlikely(ctx->flags & IORING_SETUP_IOPOLL))
4098 return -EINVAL;
4099 if (unlikely(sqe->addr || sqe->ioprio || sqe->buf_index ||
4100 sqe->splice_fd_in))
4101 return -EINVAL;
4102
4103 req->sync.flags = READ_ONCE(sqe->fsync_flags);
4104 if (unlikely(req->sync.flags & ~IORING_FSYNC_DATASYNC))
4105 return -EINVAL;
4106
4107 req->sync.off = READ_ONCE(sqe->off);
4108 req->sync.len = READ_ONCE(sqe->len);
4109 return 0;
4110 }
4111
io_fsync(struct io_kiocb *req, unsigned int issue_flags)4112 static int io_fsync(struct io_kiocb *req, unsigned int issue_flags)
4113 {
4114 loff_t end = req->sync.off + req->sync.len;
4115 int ret;
4116
4117 /* fsync always requires a blocking context */
4118 if (issue_flags & IO_URING_F_NONBLOCK)
4119 return -EAGAIN;
4120
4121 ret = vfs_fsync_range(req->file, req->sync.off,
4122 end > 0 ? end : LLONG_MAX,
4123 req->sync.flags & IORING_FSYNC_DATASYNC);
4124 if (ret < 0)
4125 req_set_fail(req);
4126 io_req_complete(req, ret);
4127 return 0;
4128 }
4129
io_fallocate_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)4130 static int io_fallocate_prep(struct io_kiocb *req,
4131 const struct io_uring_sqe *sqe)
4132 {
4133 if (sqe->ioprio || sqe->buf_index || sqe->rw_flags ||
4134 sqe->splice_fd_in)
4135 return -EINVAL;
4136 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4137 return -EINVAL;
4138
4139 req->sync.off = READ_ONCE(sqe->off);
4140 req->sync.len = READ_ONCE(sqe->addr);
4141 req->sync.mode = READ_ONCE(sqe->len);
4142 return 0;
4143 }
4144
io_fallocate(struct io_kiocb *req, unsigned int issue_flags)4145 static int io_fallocate(struct io_kiocb *req, unsigned int issue_flags)
4146 {
4147 int ret;
4148
4149 /* fallocate always requiring blocking context */
4150 if (issue_flags & IO_URING_F_NONBLOCK)
4151 return -EAGAIN;
4152 ret = vfs_fallocate(req->file, req->sync.mode, req->sync.off,
4153 req->sync.len);
4154 if (ret < 0)
4155 req_set_fail(req);
4156 else
4157 fsnotify_modify(req->file);
4158 io_req_complete(req, ret);
4159 return 0;
4160 }
4161
__io_openat_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)4162 static int __io_openat_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4163 {
4164 const char __user *fname;
4165 int ret;
4166
4167 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4168 return -EINVAL;
4169 if (unlikely(sqe->ioprio || sqe->buf_index))
4170 return -EINVAL;
4171 if (unlikely(req->flags & REQ_F_FIXED_FILE))
4172 return -EBADF;
4173
4174 /* open.how should be already initialised */
4175 if (!(req->open.how.flags & O_PATH) && force_o_largefile())
4176 req->open.how.flags |= O_LARGEFILE;
4177
4178 req->open.dfd = READ_ONCE(sqe->fd);
4179 fname = u64_to_user_ptr(READ_ONCE(sqe->addr));
4180 req->open.filename = getname(fname);
4181 if (IS_ERR(req->open.filename)) {
4182 ret = PTR_ERR(req->open.filename);
4183 req->open.filename = NULL;
4184 return ret;
4185 }
4186
4187 req->open.file_slot = READ_ONCE(sqe->file_index);
4188 if (req->open.file_slot && (req->open.how.flags & O_CLOEXEC))
4189 return -EINVAL;
4190
4191 req->open.nofile = rlimit(RLIMIT_NOFILE);
4192 req->flags |= REQ_F_NEED_CLEANUP;
4193 return 0;
4194 }
4195
io_openat_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)4196 static int io_openat_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4197 {
4198 u64 mode = READ_ONCE(sqe->len);
4199 u64 flags = READ_ONCE(sqe->open_flags);
4200
4201 req->open.how = build_open_how(flags, mode);
4202 return __io_openat_prep(req, sqe);
4203 }
4204
io_openat2_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)4205 static int io_openat2_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4206 {
4207 struct open_how __user *how;
4208 size_t len;
4209 int ret;
4210
4211 how = u64_to_user_ptr(READ_ONCE(sqe->addr2));
4212 len = READ_ONCE(sqe->len);
4213 if (len < OPEN_HOW_SIZE_VER0)
4214 return -EINVAL;
4215
4216 ret = copy_struct_from_user(&req->open.how, sizeof(req->open.how), how,
4217 len);
4218 if (ret)
4219 return ret;
4220
4221 return __io_openat_prep(req, sqe);
4222 }
4223
io_openat2(struct io_kiocb *req, unsigned int issue_flags)4224 static int io_openat2(struct io_kiocb *req, unsigned int issue_flags)
4225 {
4226 struct open_flags op;
4227 struct file *file;
4228 bool resolve_nonblock, nonblock_set;
4229 bool fixed = !!req->open.file_slot;
4230 int ret;
4231
4232 ret = build_open_flags(&req->open.how, &op);
4233 if (ret)
4234 goto err;
4235 nonblock_set = op.open_flag & O_NONBLOCK;
4236 resolve_nonblock = req->open.how.resolve & RESOLVE_CACHED;
4237 if (issue_flags & IO_URING_F_NONBLOCK) {
4238 /*
4239 * Don't bother trying for O_TRUNC, O_CREAT, or O_TMPFILE open,
4240 * it'll always -EAGAIN. Note that we test for __O_TMPFILE
4241 * because O_TMPFILE includes O_DIRECTORY, which isn't a flag
4242 * we need to force async for.
4243 */
4244 if (req->open.how.flags & (O_TRUNC | O_CREAT | __O_TMPFILE))
4245 return -EAGAIN;
4246 op.lookup_flags |= LOOKUP_CACHED;
4247 op.open_flag |= O_NONBLOCK;
4248 }
4249
4250 if (!fixed) {
4251 ret = __get_unused_fd_flags(req->open.how.flags, req->open.nofile);
4252 if (ret < 0)
4253 goto err;
4254 }
4255
4256 file = do_filp_open(req->open.dfd, req->open.filename, &op);
4257 if (IS_ERR(file)) {
4258 /*
4259 * We could hang on to this 'fd' on retrying, but seems like
4260 * marginal gain for something that is now known to be a slower
4261 * path. So just put it, and we'll get a new one when we retry.
4262 */
4263 if (!fixed)
4264 put_unused_fd(ret);
4265
4266 ret = PTR_ERR(file);
4267 /* only retry if RESOLVE_CACHED wasn't already set by application */
4268 if (ret == -EAGAIN &&
4269 (!resolve_nonblock && (issue_flags & IO_URING_F_NONBLOCK)))
4270 return -EAGAIN;
4271 goto err;
4272 }
4273
4274 if ((issue_flags & IO_URING_F_NONBLOCK) && !nonblock_set)
4275 file->f_flags &= ~O_NONBLOCK;
4276 fsnotify_open(file);
4277
4278 if (!fixed)
4279 fd_install(ret, file);
4280 else
4281 ret = io_install_fixed_file(req, file, issue_flags,
4282 req->open.file_slot - 1);
4283 err:
4284 putname(req->open.filename);
4285 req->flags &= ~REQ_F_NEED_CLEANUP;
4286 if (ret < 0)
4287 req_set_fail(req);
4288 __io_req_complete(req, issue_flags, ret, 0);
4289 return 0;
4290 }
4291
io_openat(struct io_kiocb *req, unsigned int issue_flags)4292 static int io_openat(struct io_kiocb *req, unsigned int issue_flags)
4293 {
4294 return io_openat2(req, issue_flags);
4295 }
4296
io_remove_buffers_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)4297 static int io_remove_buffers_prep(struct io_kiocb *req,
4298 const struct io_uring_sqe *sqe)
4299 {
4300 struct io_provide_buf *p = &req->pbuf;
4301 u64 tmp;
4302
4303 if (sqe->ioprio || sqe->rw_flags || sqe->addr || sqe->len || sqe->off ||
4304 sqe->splice_fd_in)
4305 return -EINVAL;
4306
4307 tmp = READ_ONCE(sqe->fd);
4308 if (!tmp || tmp > USHRT_MAX)
4309 return -EINVAL;
4310
4311 memset(p, 0, sizeof(*p));
4312 p->nbufs = tmp;
4313 p->bgid = READ_ONCE(sqe->buf_group);
4314 return 0;
4315 }
4316
__io_remove_buffers(struct io_ring_ctx *ctx, struct io_buffer *buf, int bgid, unsigned nbufs)4317 static int __io_remove_buffers(struct io_ring_ctx *ctx, struct io_buffer *buf,
4318 int bgid, unsigned nbufs)
4319 {
4320 unsigned i = 0;
4321
4322 /* shouldn't happen */
4323 if (!nbufs)
4324 return 0;
4325
4326 /* the head kbuf is the list itself */
4327 while (!list_empty(&buf->list)) {
4328 struct io_buffer *nxt;
4329
4330 nxt = list_first_entry(&buf->list, struct io_buffer, list);
4331 list_del(&nxt->list);
4332 kfree(nxt);
4333 if (++i == nbufs)
4334 return i;
4335 cond_resched();
4336 }
4337 i++;
4338 kfree(buf);
4339 xa_erase(&ctx->io_buffers, bgid);
4340
4341 return i;
4342 }
4343
io_remove_buffers(struct io_kiocb *req, unsigned int issue_flags)4344 static int io_remove_buffers(struct io_kiocb *req, unsigned int issue_flags)
4345 {
4346 struct io_provide_buf *p = &req->pbuf;
4347 struct io_ring_ctx *ctx = req->ctx;
4348 struct io_buffer *head;
4349 int ret = 0;
4350 bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK;
4351
4352 io_ring_submit_lock(ctx, !force_nonblock);
4353
4354 lockdep_assert_held(&ctx->uring_lock);
4355
4356 ret = -ENOENT;
4357 head = xa_load(&ctx->io_buffers, p->bgid);
4358 if (head)
4359 ret = __io_remove_buffers(ctx, head, p->bgid, p->nbufs);
4360 if (ret < 0)
4361 req_set_fail(req);
4362
4363 /* complete before unlock, IOPOLL may need the lock */
4364 __io_req_complete(req, issue_flags, ret, 0);
4365 io_ring_submit_unlock(ctx, !force_nonblock);
4366 return 0;
4367 }
4368
io_provide_buffers_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)4369 static int io_provide_buffers_prep(struct io_kiocb *req,
4370 const struct io_uring_sqe *sqe)
4371 {
4372 unsigned long size, tmp_check;
4373 struct io_provide_buf *p = &req->pbuf;
4374 u64 tmp;
4375
4376 if (sqe->ioprio || sqe->rw_flags || sqe->splice_fd_in)
4377 return -EINVAL;
4378
4379 tmp = READ_ONCE(sqe->fd);
4380 if (!tmp || tmp > USHRT_MAX)
4381 return -E2BIG;
4382 p->nbufs = tmp;
4383 p->addr = READ_ONCE(sqe->addr);
4384 p->len = READ_ONCE(sqe->len);
4385
4386 if (check_mul_overflow((unsigned long)p->len, (unsigned long)p->nbufs,
4387 &size))
4388 return -EOVERFLOW;
4389 if (check_add_overflow((unsigned long)p->addr, size, &tmp_check))
4390 return -EOVERFLOW;
4391
4392 size = (unsigned long)p->len * p->nbufs;
4393 if (!access_ok(u64_to_user_ptr(p->addr), size))
4394 return -EFAULT;
4395
4396 p->bgid = READ_ONCE(sqe->buf_group);
4397 tmp = READ_ONCE(sqe->off);
4398 if (tmp > USHRT_MAX)
4399 return -E2BIG;
4400 p->bid = tmp;
4401 return 0;
4402 }
4403
io_add_buffers(struct io_provide_buf *pbuf, struct io_buffer **head)4404 static int io_add_buffers(struct io_provide_buf *pbuf, struct io_buffer **head)
4405 {
4406 struct io_buffer *buf;
4407 u64 addr = pbuf->addr;
4408 int i, bid = pbuf->bid;
4409
4410 for (i = 0; i < pbuf->nbufs; i++) {
4411 buf = kmalloc(sizeof(*buf), GFP_KERNEL_ACCOUNT);
4412 if (!buf)
4413 break;
4414
4415 buf->addr = addr;
4416 buf->len = min_t(__u32, pbuf->len, MAX_RW_COUNT);
4417 buf->bid = bid;
4418 addr += pbuf->len;
4419 bid++;
4420 if (!*head) {
4421 INIT_LIST_HEAD(&buf->list);
4422 *head = buf;
4423 } else {
4424 list_add_tail(&buf->list, &(*head)->list);
4425 }
4426 cond_resched();
4427 }
4428
4429 return i ? i : -ENOMEM;
4430 }
4431
io_provide_buffers(struct io_kiocb *req, unsigned int issue_flags)4432 static int io_provide_buffers(struct io_kiocb *req, unsigned int issue_flags)
4433 {
4434 struct io_provide_buf *p = &req->pbuf;
4435 struct io_ring_ctx *ctx = req->ctx;
4436 struct io_buffer *head, *list;
4437 int ret = 0;
4438 bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK;
4439
4440 io_ring_submit_lock(ctx, !force_nonblock);
4441
4442 lockdep_assert_held(&ctx->uring_lock);
4443
4444 list = head = xa_load(&ctx->io_buffers, p->bgid);
4445
4446 ret = io_add_buffers(p, &head);
4447 if (ret >= 0 && !list) {
4448 ret = xa_insert(&ctx->io_buffers, p->bgid, head,
4449 GFP_KERNEL_ACCOUNT);
4450 if (ret < 0)
4451 __io_remove_buffers(ctx, head, p->bgid, -1U);
4452 }
4453 if (ret < 0)
4454 req_set_fail(req);
4455 /* complete before unlock, IOPOLL may need the lock */
4456 __io_req_complete(req, issue_flags, ret, 0);
4457 io_ring_submit_unlock(ctx, !force_nonblock);
4458 return 0;
4459 }
4460
io_epoll_ctl_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)4461 static int io_epoll_ctl_prep(struct io_kiocb *req,
4462 const struct io_uring_sqe *sqe)
4463 {
4464 #if defined(CONFIG_EPOLL)
4465 if (sqe->ioprio || sqe->buf_index || sqe->splice_fd_in)
4466 return -EINVAL;
4467 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4468 return -EINVAL;
4469
4470 req->epoll.epfd = READ_ONCE(sqe->fd);
4471 req->epoll.op = READ_ONCE(sqe->len);
4472 req->epoll.fd = READ_ONCE(sqe->off);
4473
4474 if (ep_op_has_event(req->epoll.op)) {
4475 struct epoll_event __user *ev;
4476
4477 ev = u64_to_user_ptr(READ_ONCE(sqe->addr));
4478 if (copy_from_user(&req->epoll.event, ev, sizeof(*ev)))
4479 return -EFAULT;
4480 }
4481
4482 return 0;
4483 #else
4484 return -EOPNOTSUPP;
4485 #endif
4486 }
4487
io_epoll_ctl(struct io_kiocb *req, unsigned int issue_flags)4488 static int io_epoll_ctl(struct io_kiocb *req, unsigned int issue_flags)
4489 {
4490 #if defined(CONFIG_EPOLL)
4491 struct io_epoll *ie = &req->epoll;
4492 int ret;
4493 bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK;
4494
4495 ret = do_epoll_ctl(ie->epfd, ie->op, ie->fd, &ie->event, force_nonblock);
4496 if (force_nonblock && ret == -EAGAIN)
4497 return -EAGAIN;
4498
4499 if (ret < 0)
4500 req_set_fail(req);
4501 __io_req_complete(req, issue_flags, ret, 0);
4502 return 0;
4503 #else
4504 return -EOPNOTSUPP;
4505 #endif
4506 }
4507
io_madvise_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)4508 static int io_madvise_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4509 {
4510 #if defined(CONFIG_ADVISE_SYSCALLS) && defined(CONFIG_MMU)
4511 if (sqe->ioprio || sqe->buf_index || sqe->off || sqe->splice_fd_in)
4512 return -EINVAL;
4513 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4514 return -EINVAL;
4515
4516 req->madvise.addr = READ_ONCE(sqe->addr);
4517 req->madvise.len = READ_ONCE(sqe->len);
4518 req->madvise.advice = READ_ONCE(sqe->fadvise_advice);
4519 return 0;
4520 #else
4521 return -EOPNOTSUPP;
4522 #endif
4523 }
4524
io_madvise(struct io_kiocb *req, unsigned int issue_flags)4525 static int io_madvise(struct io_kiocb *req, unsigned int issue_flags)
4526 {
4527 #if defined(CONFIG_ADVISE_SYSCALLS) && defined(CONFIG_MMU)
4528 struct io_madvise *ma = &req->madvise;
4529 int ret;
4530
4531 if (issue_flags & IO_URING_F_NONBLOCK)
4532 return -EAGAIN;
4533
4534 ret = do_madvise(current->mm, ma->addr, ma->len, ma->advice);
4535 if (ret < 0)
4536 req_set_fail(req);
4537 io_req_complete(req, ret);
4538 return 0;
4539 #else
4540 return -EOPNOTSUPP;
4541 #endif
4542 }
4543
io_fadvise_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)4544 static int io_fadvise_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4545 {
4546 if (sqe->ioprio || sqe->buf_index || sqe->addr || sqe->splice_fd_in)
4547 return -EINVAL;
4548 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4549 return -EINVAL;
4550
4551 req->fadvise.offset = READ_ONCE(sqe->off);
4552 req->fadvise.len = READ_ONCE(sqe->len);
4553 req->fadvise.advice = READ_ONCE(sqe->fadvise_advice);
4554 return 0;
4555 }
4556
io_fadvise(struct io_kiocb *req, unsigned int issue_flags)4557 static int io_fadvise(struct io_kiocb *req, unsigned int issue_flags)
4558 {
4559 struct io_fadvise *fa = &req->fadvise;
4560 int ret;
4561
4562 if (issue_flags & IO_URING_F_NONBLOCK) {
4563 switch (fa->advice) {
4564 case POSIX_FADV_NORMAL:
4565 case POSIX_FADV_RANDOM:
4566 case POSIX_FADV_SEQUENTIAL:
4567 break;
4568 default:
4569 return -EAGAIN;
4570 }
4571 }
4572
4573 ret = vfs_fadvise(req->file, fa->offset, fa->len, fa->advice);
4574 if (ret < 0)
4575 req_set_fail(req);
4576 __io_req_complete(req, issue_flags, ret, 0);
4577 return 0;
4578 }
4579
io_statx_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)4580 static int io_statx_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4581 {
4582 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4583 return -EINVAL;
4584 if (sqe->ioprio || sqe->buf_index || sqe->splice_fd_in)
4585 return -EINVAL;
4586 if (req->flags & REQ_F_FIXED_FILE)
4587 return -EBADF;
4588
4589 req->statx.dfd = READ_ONCE(sqe->fd);
4590 req->statx.mask = READ_ONCE(sqe->len);
4591 req->statx.filename = u64_to_user_ptr(READ_ONCE(sqe->addr));
4592 req->statx.buffer = u64_to_user_ptr(READ_ONCE(sqe->addr2));
4593 req->statx.flags = READ_ONCE(sqe->statx_flags);
4594
4595 return 0;
4596 }
4597
io_statx(struct io_kiocb *req, unsigned int issue_flags)4598 static int io_statx(struct io_kiocb *req, unsigned int issue_flags)
4599 {
4600 struct io_statx *ctx = &req->statx;
4601 int ret;
4602
4603 if (issue_flags & IO_URING_F_NONBLOCK)
4604 return -EAGAIN;
4605
4606 ret = do_statx(ctx->dfd, ctx->filename, ctx->flags, ctx->mask,
4607 ctx->buffer);
4608
4609 if (ret < 0)
4610 req_set_fail(req);
4611 io_req_complete(req, ret);
4612 return 0;
4613 }
4614
io_close_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)4615 static int io_close_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4616 {
4617 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4618 return -EINVAL;
4619 if (sqe->ioprio || sqe->off || sqe->addr || sqe->len ||
4620 sqe->rw_flags || sqe->buf_index)
4621 return -EINVAL;
4622 if (req->flags & REQ_F_FIXED_FILE)
4623 return -EBADF;
4624
4625 req->close.fd = READ_ONCE(sqe->fd);
4626 req->close.file_slot = READ_ONCE(sqe->file_index);
4627 if (req->close.file_slot && req->close.fd)
4628 return -EINVAL;
4629
4630 return 0;
4631 }
4632
io_close(struct io_kiocb *req, unsigned int issue_flags)4633 static int io_close(struct io_kiocb *req, unsigned int issue_flags)
4634 {
4635 struct files_struct *files = current->files;
4636 struct io_close *close = &req->close;
4637 struct fdtable *fdt;
4638 struct file *file = NULL;
4639 int ret = -EBADF;
4640
4641 if (req->close.file_slot) {
4642 ret = io_close_fixed(req, issue_flags);
4643 goto err;
4644 }
4645
4646 spin_lock(&files->file_lock);
4647 fdt = files_fdtable(files);
4648 if (close->fd >= fdt->max_fds) {
4649 spin_unlock(&files->file_lock);
4650 goto err;
4651 }
4652 file = fdt->fd[close->fd];
4653 if (!file || file->f_op == &io_uring_fops) {
4654 spin_unlock(&files->file_lock);
4655 file = NULL;
4656 goto err;
4657 }
4658
4659 /* if the file has a flush method, be safe and punt to async */
4660 if (file->f_op->flush && (issue_flags & IO_URING_F_NONBLOCK)) {
4661 spin_unlock(&files->file_lock);
4662 return -EAGAIN;
4663 }
4664
4665 ret = __close_fd_get_file(close->fd, &file);
4666 spin_unlock(&files->file_lock);
4667 if (ret < 0) {
4668 if (ret == -ENOENT)
4669 ret = -EBADF;
4670 goto err;
4671 }
4672
4673 /* No ->flush() or already async, safely close from here */
4674 ret = filp_close(file, current->files);
4675 err:
4676 if (ret < 0)
4677 req_set_fail(req);
4678 if (file)
4679 fput(file);
4680 __io_req_complete(req, issue_flags, ret, 0);
4681 return 0;
4682 }
4683
io_sfr_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)4684 static int io_sfr_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4685 {
4686 struct io_ring_ctx *ctx = req->ctx;
4687
4688 if (unlikely(ctx->flags & IORING_SETUP_IOPOLL))
4689 return -EINVAL;
4690 if (unlikely(sqe->addr || sqe->ioprio || sqe->buf_index ||
4691 sqe->splice_fd_in))
4692 return -EINVAL;
4693
4694 req->sync.off = READ_ONCE(sqe->off);
4695 req->sync.len = READ_ONCE(sqe->len);
4696 req->sync.flags = READ_ONCE(sqe->sync_range_flags);
4697 return 0;
4698 }
4699
io_sync_file_range(struct io_kiocb *req, unsigned int issue_flags)4700 static int io_sync_file_range(struct io_kiocb *req, unsigned int issue_flags)
4701 {
4702 int ret;
4703
4704 /* sync_file_range always requires a blocking context */
4705 if (issue_flags & IO_URING_F_NONBLOCK)
4706 return -EAGAIN;
4707
4708 ret = sync_file_range(req->file, req->sync.off, req->sync.len,
4709 req->sync.flags);
4710 if (ret < 0)
4711 req_set_fail(req);
4712 io_req_complete(req, ret);
4713 return 0;
4714 }
4715
4716 #if defined(CONFIG_NET)
io_net_retry(struct socket *sock, int flags)4717 static bool io_net_retry(struct socket *sock, int flags)
4718 {
4719 if (!(flags & MSG_WAITALL))
4720 return false;
4721 return sock->type == SOCK_STREAM || sock->type == SOCK_SEQPACKET;
4722 }
4723
io_setup_async_msg(struct io_kiocb *req, struct io_async_msghdr *kmsg)4724 static int io_setup_async_msg(struct io_kiocb *req,
4725 struct io_async_msghdr *kmsg)
4726 {
4727 struct io_async_msghdr *async_msg = req->async_data;
4728
4729 if (async_msg)
4730 return -EAGAIN;
4731 if (io_alloc_async_data(req)) {
4732 kfree(kmsg->free_iov);
4733 return -ENOMEM;
4734 }
4735 async_msg = req->async_data;
4736 req->flags |= REQ_F_NEED_CLEANUP;
4737 memcpy(async_msg, kmsg, sizeof(*kmsg));
4738 if (async_msg->msg.msg_name)
4739 async_msg->msg.msg_name = &async_msg->addr;
4740 /* if were using fast_iov, set it to the new one */
4741 if (!kmsg->free_iov) {
4742 size_t fast_idx = kmsg->msg.msg_iter.iov - kmsg->fast_iov;
4743 async_msg->msg.msg_iter.iov = &async_msg->fast_iov[fast_idx];
4744 }
4745
4746 return -EAGAIN;
4747 }
4748
io_sendmsg_copy_hdr(struct io_kiocb *req, struct io_async_msghdr *iomsg)4749 static int io_sendmsg_copy_hdr(struct io_kiocb *req,
4750 struct io_async_msghdr *iomsg)
4751 {
4752 struct io_sr_msg *sr = &req->sr_msg;
4753 int ret;
4754
4755 iomsg->msg.msg_name = &iomsg->addr;
4756 iomsg->free_iov = iomsg->fast_iov;
4757 ret = sendmsg_copy_msghdr(&iomsg->msg, req->sr_msg.umsg,
4758 req->sr_msg.msg_flags, &iomsg->free_iov);
4759 /* save msg_control as sys_sendmsg() overwrites it */
4760 sr->msg_control = iomsg->msg.msg_control;
4761 return ret;
4762 }
4763
io_sendmsg_prep_async(struct io_kiocb *req)4764 static int io_sendmsg_prep_async(struct io_kiocb *req)
4765 {
4766 int ret;
4767
4768 ret = io_sendmsg_copy_hdr(req, req->async_data);
4769 if (!ret)
4770 req->flags |= REQ_F_NEED_CLEANUP;
4771 return ret;
4772 }
4773
io_sendmsg_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)4774 static int io_sendmsg_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4775 {
4776 struct io_sr_msg *sr = &req->sr_msg;
4777
4778 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4779 return -EINVAL;
4780 if (unlikely(sqe->addr2 || sqe->file_index))
4781 return -EINVAL;
4782 if (unlikely(sqe->addr2 || sqe->file_index || sqe->ioprio))
4783 return -EINVAL;
4784
4785 sr->umsg = u64_to_user_ptr(READ_ONCE(sqe->addr));
4786 sr->len = READ_ONCE(sqe->len);
4787 sr->msg_flags = READ_ONCE(sqe->msg_flags) | MSG_NOSIGNAL;
4788 if (sr->msg_flags & MSG_DONTWAIT)
4789 req->flags |= REQ_F_NOWAIT;
4790
4791 #ifdef CONFIG_COMPAT
4792 if (req->ctx->compat)
4793 sr->msg_flags |= MSG_CMSG_COMPAT;
4794 #endif
4795 sr->done_io = 0;
4796 return 0;
4797 }
4798
io_sendmsg(struct io_kiocb *req, unsigned int issue_flags)4799 static int io_sendmsg(struct io_kiocb *req, unsigned int issue_flags)
4800 {
4801 struct io_async_msghdr iomsg, *kmsg;
4802 struct io_sr_msg *sr = &req->sr_msg;
4803 struct socket *sock;
4804 unsigned flags;
4805 int min_ret = 0;
4806 int ret;
4807
4808 sock = sock_from_file(req->file, &ret);
4809 if (unlikely(!sock))
4810 return ret;
4811
4812 kmsg = req->async_data;
4813 if (!kmsg) {
4814 ret = io_sendmsg_copy_hdr(req, &iomsg);
4815 if (ret)
4816 return ret;
4817 kmsg = &iomsg;
4818 } else {
4819 kmsg->msg.msg_control = sr->msg_control;
4820 }
4821
4822 flags = req->sr_msg.msg_flags;
4823 if (issue_flags & IO_URING_F_NONBLOCK)
4824 flags |= MSG_DONTWAIT;
4825 if (flags & MSG_WAITALL)
4826 min_ret = iov_iter_count(&kmsg->msg.msg_iter);
4827
4828 ret = __sys_sendmsg_sock(sock, &kmsg->msg, flags);
4829
4830 if (ret < min_ret) {
4831 if (ret == -EAGAIN && (issue_flags & IO_URING_F_NONBLOCK))
4832 return io_setup_async_msg(req, kmsg);
4833 if (ret == -ERESTARTSYS)
4834 ret = -EINTR;
4835 if (ret > 0 && io_net_retry(sock, flags)) {
4836 sr->done_io += ret;
4837 req->flags |= REQ_F_PARTIAL_IO;
4838 return io_setup_async_msg(req, kmsg);
4839 }
4840 req_set_fail(req);
4841 }
4842 /* fast path, check for non-NULL to avoid function call */
4843 if (kmsg->free_iov)
4844 kfree(kmsg->free_iov);
4845 req->flags &= ~REQ_F_NEED_CLEANUP;
4846 if (ret >= 0)
4847 ret += sr->done_io;
4848 else if (sr->done_io)
4849 ret = sr->done_io;
4850 __io_req_complete(req, issue_flags, ret, 0);
4851 return 0;
4852 }
4853
io_send(struct io_kiocb *req, unsigned int issue_flags)4854 static int io_send(struct io_kiocb *req, unsigned int issue_flags)
4855 {
4856 struct io_sr_msg *sr = &req->sr_msg;
4857 struct msghdr msg;
4858 struct iovec iov;
4859 struct socket *sock;
4860 unsigned flags;
4861 int min_ret = 0;
4862 int ret;
4863
4864 sock = sock_from_file(req->file, &ret);
4865 if (unlikely(!sock))
4866 return ret;
4867
4868 ret = import_single_range(WRITE, sr->buf, sr->len, &iov, &msg.msg_iter);
4869 if (unlikely(ret))
4870 return ret;
4871
4872 msg.msg_name = NULL;
4873 msg.msg_control = NULL;
4874 msg.msg_controllen = 0;
4875 msg.msg_namelen = 0;
4876
4877 flags = req->sr_msg.msg_flags;
4878 if (issue_flags & IO_URING_F_NONBLOCK)
4879 flags |= MSG_DONTWAIT;
4880 if (flags & MSG_WAITALL)
4881 min_ret = iov_iter_count(&msg.msg_iter);
4882
4883 msg.msg_flags = flags;
4884 ret = sock_sendmsg(sock, &msg);
4885 if (ret < min_ret) {
4886 if (ret == -EAGAIN && (issue_flags & IO_URING_F_NONBLOCK))
4887 return -EAGAIN;
4888 if (ret == -ERESTARTSYS)
4889 ret = -EINTR;
4890 if (ret > 0 && io_net_retry(sock, flags)) {
4891 sr->len -= ret;
4892 sr->buf += ret;
4893 sr->done_io += ret;
4894 req->flags |= REQ_F_PARTIAL_IO;
4895 return -EAGAIN;
4896 }
4897 req_set_fail(req);
4898 }
4899 if (ret >= 0)
4900 ret += sr->done_io;
4901 else if (sr->done_io)
4902 ret = sr->done_io;
4903 __io_req_complete(req, issue_flags, ret, 0);
4904 return 0;
4905 }
4906
__io_recvmsg_copy_hdr(struct io_kiocb *req, struct io_async_msghdr *iomsg)4907 static int __io_recvmsg_copy_hdr(struct io_kiocb *req,
4908 struct io_async_msghdr *iomsg)
4909 {
4910 struct io_sr_msg *sr = &req->sr_msg;
4911 struct iovec __user *uiov;
4912 size_t iov_len;
4913 int ret;
4914
4915 ret = __copy_msghdr_from_user(&iomsg->msg, sr->umsg,
4916 &iomsg->uaddr, &uiov, &iov_len);
4917 if (ret)
4918 return ret;
4919
4920 if (req->flags & REQ_F_BUFFER_SELECT) {
4921 if (iov_len > 1)
4922 return -EINVAL;
4923 if (copy_from_user(iomsg->fast_iov, uiov, sizeof(*uiov)))
4924 return -EFAULT;
4925 sr->len = iomsg->fast_iov[0].iov_len;
4926 iomsg->free_iov = NULL;
4927 } else {
4928 iomsg->free_iov = iomsg->fast_iov;
4929 ret = __import_iovec(READ, uiov, iov_len, UIO_FASTIOV,
4930 &iomsg->free_iov, &iomsg->msg.msg_iter,
4931 false);
4932 if (ret > 0)
4933 ret = 0;
4934 }
4935
4936 return ret;
4937 }
4938
4939 #ifdef CONFIG_COMPAT
__io_compat_recvmsg_copy_hdr(struct io_kiocb *req, struct io_async_msghdr *iomsg)4940 static int __io_compat_recvmsg_copy_hdr(struct io_kiocb *req,
4941 struct io_async_msghdr *iomsg)
4942 {
4943 struct io_sr_msg *sr = &req->sr_msg;
4944 struct compat_iovec __user *uiov;
4945 compat_uptr_t ptr;
4946 compat_size_t len;
4947 int ret;
4948
4949 ret = __get_compat_msghdr(&iomsg->msg, sr->umsg_compat, &iomsg->uaddr,
4950 &ptr, &len);
4951 if (ret)
4952 return ret;
4953
4954 uiov = compat_ptr(ptr);
4955 if (req->flags & REQ_F_BUFFER_SELECT) {
4956 compat_ssize_t clen;
4957
4958 if (len > 1)
4959 return -EINVAL;
4960 if (!access_ok(uiov, sizeof(*uiov)))
4961 return -EFAULT;
4962 if (__get_user(clen, &uiov->iov_len))
4963 return -EFAULT;
4964 if (clen < 0)
4965 return -EINVAL;
4966 sr->len = clen;
4967 iomsg->free_iov = NULL;
4968 } else {
4969 iomsg->free_iov = iomsg->fast_iov;
4970 ret = __import_iovec(READ, (struct iovec __user *)uiov, len,
4971 UIO_FASTIOV, &iomsg->free_iov,
4972 &iomsg->msg.msg_iter, true);
4973 if (ret < 0)
4974 return ret;
4975 }
4976
4977 return 0;
4978 }
4979 #endif
4980
io_recvmsg_copy_hdr(struct io_kiocb *req, struct io_async_msghdr *iomsg)4981 static int io_recvmsg_copy_hdr(struct io_kiocb *req,
4982 struct io_async_msghdr *iomsg)
4983 {
4984 iomsg->msg.msg_name = &iomsg->addr;
4985
4986 #ifdef CONFIG_COMPAT
4987 if (req->ctx->compat)
4988 return __io_compat_recvmsg_copy_hdr(req, iomsg);
4989 #endif
4990
4991 return __io_recvmsg_copy_hdr(req, iomsg);
4992 }
4993
io_recv_buffer_select(struct io_kiocb *req, bool needs_lock)4994 static struct io_buffer *io_recv_buffer_select(struct io_kiocb *req,
4995 bool needs_lock)
4996 {
4997 struct io_sr_msg *sr = &req->sr_msg;
4998 struct io_buffer *kbuf;
4999
5000 kbuf = io_buffer_select(req, &sr->len, sr->bgid, sr->kbuf, needs_lock);
5001 if (IS_ERR(kbuf))
5002 return kbuf;
5003
5004 sr->kbuf = kbuf;
5005 req->flags |= REQ_F_BUFFER_SELECTED;
5006 return kbuf;
5007 }
5008
io_put_recv_kbuf(struct io_kiocb *req)5009 static inline unsigned int io_put_recv_kbuf(struct io_kiocb *req)
5010 {
5011 return io_put_kbuf(req, req->sr_msg.kbuf);
5012 }
5013
io_recvmsg_prep_async(struct io_kiocb *req)5014 static int io_recvmsg_prep_async(struct io_kiocb *req)
5015 {
5016 int ret;
5017
5018 ret = io_recvmsg_copy_hdr(req, req->async_data);
5019 if (!ret)
5020 req->flags |= REQ_F_NEED_CLEANUP;
5021 return ret;
5022 }
5023
io_recvmsg_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)5024 static int io_recvmsg_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
5025 {
5026 struct io_sr_msg *sr = &req->sr_msg;
5027
5028 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
5029 return -EINVAL;
5030 if (unlikely(sqe->addr2 || sqe->file_index))
5031 return -EINVAL;
5032 if (unlikely(sqe->addr2 || sqe->file_index || sqe->ioprio))
5033 return -EINVAL;
5034
5035 sr->umsg = u64_to_user_ptr(READ_ONCE(sqe->addr));
5036 sr->len = READ_ONCE(sqe->len);
5037 sr->bgid = READ_ONCE(sqe->buf_group);
5038 sr->msg_flags = READ_ONCE(sqe->msg_flags);
5039 if (sr->msg_flags & MSG_DONTWAIT)
5040 req->flags |= REQ_F_NOWAIT;
5041
5042 #ifdef CONFIG_COMPAT
5043 if (req->ctx->compat)
5044 sr->msg_flags |= MSG_CMSG_COMPAT;
5045 #endif
5046 sr->done_io = 0;
5047 return 0;
5048 }
5049
io_recvmsg(struct io_kiocb *req, unsigned int issue_flags)5050 static int io_recvmsg(struct io_kiocb *req, unsigned int issue_flags)
5051 {
5052 struct io_async_msghdr iomsg, *kmsg;
5053 struct io_sr_msg *sr = &req->sr_msg;
5054 struct socket *sock;
5055 struct io_buffer *kbuf;
5056 unsigned flags;
5057 int min_ret = 0;
5058 int ret, cflags = 0;
5059 bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK;
5060
5061 sock = sock_from_file(req->file, &ret);
5062 if (unlikely(!sock))
5063 return ret;
5064
5065 kmsg = req->async_data;
5066 if (!kmsg) {
5067 ret = io_recvmsg_copy_hdr(req, &iomsg);
5068 if (ret)
5069 return ret;
5070 kmsg = &iomsg;
5071 }
5072
5073 if (req->flags & REQ_F_BUFFER_SELECT) {
5074 kbuf = io_recv_buffer_select(req, !force_nonblock);
5075 if (IS_ERR(kbuf))
5076 return PTR_ERR(kbuf);
5077 kmsg->fast_iov[0].iov_base = u64_to_user_ptr(kbuf->addr);
5078 kmsg->fast_iov[0].iov_len = req->sr_msg.len;
5079 iov_iter_init(&kmsg->msg.msg_iter, READ, kmsg->fast_iov,
5080 1, req->sr_msg.len);
5081 }
5082
5083 flags = req->sr_msg.msg_flags;
5084 if (force_nonblock)
5085 flags |= MSG_DONTWAIT;
5086 if (flags & MSG_WAITALL && !kmsg->msg.msg_controllen)
5087 min_ret = iov_iter_count(&kmsg->msg.msg_iter);
5088
5089 ret = __sys_recvmsg_sock(sock, &kmsg->msg, req->sr_msg.umsg,
5090 kmsg->uaddr, flags);
5091 if (ret < min_ret) {
5092 if (ret == -EAGAIN && force_nonblock)
5093 return io_setup_async_msg(req, kmsg);
5094 if (ret == -ERESTARTSYS)
5095 ret = -EINTR;
5096 if (ret > 0 && io_net_retry(sock, flags)) {
5097 kmsg->msg.msg_controllen = 0;
5098 kmsg->msg.msg_control = NULL;
5099 sr->done_io += ret;
5100 req->flags |= REQ_F_PARTIAL_IO;
5101 return io_setup_async_msg(req, kmsg);
5102 }
5103 req_set_fail(req);
5104 } else if ((flags & MSG_WAITALL) && (kmsg->msg.msg_flags & (MSG_TRUNC | MSG_CTRUNC))) {
5105 req_set_fail(req);
5106 }
5107
5108 if (req->flags & REQ_F_BUFFER_SELECTED)
5109 cflags = io_put_recv_kbuf(req);
5110 /* fast path, check for non-NULL to avoid function call */
5111 if (kmsg->free_iov)
5112 kfree(kmsg->free_iov);
5113 req->flags &= ~REQ_F_NEED_CLEANUP;
5114 if (ret >= 0)
5115 ret += sr->done_io;
5116 else if (sr->done_io)
5117 ret = sr->done_io;
5118 __io_req_complete(req, issue_flags, ret, cflags);
5119 return 0;
5120 }
5121
io_recv(struct io_kiocb *req, unsigned int issue_flags)5122 static int io_recv(struct io_kiocb *req, unsigned int issue_flags)
5123 {
5124 struct io_buffer *kbuf;
5125 struct io_sr_msg *sr = &req->sr_msg;
5126 struct msghdr msg;
5127 void __user *buf = sr->buf;
5128 struct socket *sock;
5129 struct iovec iov;
5130 unsigned flags;
5131 int min_ret = 0;
5132 int ret, cflags = 0;
5133 bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK;
5134
5135 sock = sock_from_file(req->file, &ret);
5136 if (unlikely(!sock))
5137 return ret;
5138
5139 if (req->flags & REQ_F_BUFFER_SELECT) {
5140 kbuf = io_recv_buffer_select(req, !force_nonblock);
5141 if (IS_ERR(kbuf))
5142 return PTR_ERR(kbuf);
5143 buf = u64_to_user_ptr(kbuf->addr);
5144 }
5145
5146 ret = import_single_range(READ, buf, sr->len, &iov, &msg.msg_iter);
5147 if (unlikely(ret))
5148 goto out_free;
5149
5150 msg.msg_name = NULL;
5151 msg.msg_control = NULL;
5152 msg.msg_controllen = 0;
5153 msg.msg_namelen = 0;
5154 msg.msg_iocb = NULL;
5155 msg.msg_flags = 0;
5156
5157 flags = req->sr_msg.msg_flags;
5158 if (force_nonblock)
5159 flags |= MSG_DONTWAIT;
5160 if (flags & MSG_WAITALL)
5161 min_ret = iov_iter_count(&msg.msg_iter);
5162
5163 ret = sock_recvmsg(sock, &msg, flags);
5164 if (ret < min_ret) {
5165 if (ret == -EAGAIN && force_nonblock)
5166 return -EAGAIN;
5167 if (ret == -ERESTARTSYS)
5168 ret = -EINTR;
5169 if (ret > 0 && io_net_retry(sock, flags)) {
5170 sr->len -= ret;
5171 sr->buf += ret;
5172 sr->done_io += ret;
5173 req->flags |= REQ_F_PARTIAL_IO;
5174 return -EAGAIN;
5175 }
5176 req_set_fail(req);
5177 } else if ((flags & MSG_WAITALL) && (msg.msg_flags & (MSG_TRUNC | MSG_CTRUNC))) {
5178 out_free:
5179 req_set_fail(req);
5180 }
5181 if (req->flags & REQ_F_BUFFER_SELECTED)
5182 cflags = io_put_recv_kbuf(req);
5183 if (ret >= 0)
5184 ret += sr->done_io;
5185 else if (sr->done_io)
5186 ret = sr->done_io;
5187 __io_req_complete(req, issue_flags, ret, cflags);
5188 return 0;
5189 }
5190
io_accept_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)5191 static int io_accept_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
5192 {
5193 struct io_accept *accept = &req->accept;
5194
5195 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
5196 return -EINVAL;
5197 if (sqe->ioprio || sqe->len || sqe->buf_index)
5198 return -EINVAL;
5199
5200 accept->addr = u64_to_user_ptr(READ_ONCE(sqe->addr));
5201 accept->addr_len = u64_to_user_ptr(READ_ONCE(sqe->addr2));
5202 accept->flags = READ_ONCE(sqe->accept_flags);
5203 accept->nofile = rlimit(RLIMIT_NOFILE);
5204
5205 accept->file_slot = READ_ONCE(sqe->file_index);
5206 if (accept->file_slot && (accept->flags & SOCK_CLOEXEC))
5207 return -EINVAL;
5208 if (accept->flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
5209 return -EINVAL;
5210 if (SOCK_NONBLOCK != O_NONBLOCK && (accept->flags & SOCK_NONBLOCK))
5211 accept->flags = (accept->flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
5212 return 0;
5213 }
5214
io_accept(struct io_kiocb *req, unsigned int issue_flags)5215 static int io_accept(struct io_kiocb *req, unsigned int issue_flags)
5216 {
5217 struct io_accept *accept = &req->accept;
5218 bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK;
5219 unsigned int file_flags = force_nonblock ? O_NONBLOCK : 0;
5220 bool fixed = !!accept->file_slot;
5221 struct file *file;
5222 int ret, fd;
5223
5224 if (!fixed) {
5225 fd = __get_unused_fd_flags(accept->flags, accept->nofile);
5226 if (unlikely(fd < 0))
5227 return fd;
5228 }
5229 file = do_accept(req->file, file_flags, accept->addr, accept->addr_len,
5230 accept->flags);
5231
5232 if (IS_ERR(file)) {
5233 if (!fixed)
5234 put_unused_fd(fd);
5235 ret = PTR_ERR(file);
5236 /* safe to retry */
5237 req->flags |= REQ_F_PARTIAL_IO;
5238 if (ret == -EAGAIN && force_nonblock)
5239 return -EAGAIN;
5240 if (ret == -ERESTARTSYS)
5241 ret = -EINTR;
5242 req_set_fail(req);
5243 } else if (!fixed) {
5244 fd_install(fd, file);
5245 ret = fd;
5246 } else {
5247 ret = io_install_fixed_file(req, file, issue_flags,
5248 accept->file_slot - 1);
5249 }
5250 __io_req_complete(req, issue_flags, ret, 0);
5251 return 0;
5252 }
5253
io_connect_prep_async(struct io_kiocb *req)5254 static int io_connect_prep_async(struct io_kiocb *req)
5255 {
5256 struct io_async_connect *io = req->async_data;
5257 struct io_connect *conn = &req->connect;
5258
5259 return move_addr_to_kernel(conn->addr, conn->addr_len, &io->address);
5260 }
5261
io_connect_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)5262 static int io_connect_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
5263 {
5264 struct io_connect *conn = &req->connect;
5265
5266 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
5267 return -EINVAL;
5268 if (sqe->ioprio || sqe->len || sqe->buf_index || sqe->rw_flags ||
5269 sqe->splice_fd_in)
5270 return -EINVAL;
5271
5272 conn->addr = u64_to_user_ptr(READ_ONCE(sqe->addr));
5273 conn->addr_len = READ_ONCE(sqe->addr2);
5274 return 0;
5275 }
5276
io_connect(struct io_kiocb *req, unsigned int issue_flags)5277 static int io_connect(struct io_kiocb *req, unsigned int issue_flags)
5278 {
5279 struct io_async_connect __io, *io;
5280 unsigned file_flags;
5281 int ret;
5282 bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK;
5283
5284 if (req->async_data) {
5285 io = req->async_data;
5286 } else {
5287 ret = move_addr_to_kernel(req->connect.addr,
5288 req->connect.addr_len,
5289 &__io.address);
5290 if (ret)
5291 goto out;
5292 io = &__io;
5293 }
5294
5295 file_flags = force_nonblock ? O_NONBLOCK : 0;
5296
5297 ret = __sys_connect_file(req->file, &io->address,
5298 req->connect.addr_len, file_flags);
5299 if ((ret == -EAGAIN || ret == -EINPROGRESS) && force_nonblock) {
5300 if (req->async_data)
5301 return -EAGAIN;
5302 if (io_alloc_async_data(req)) {
5303 ret = -ENOMEM;
5304 goto out;
5305 }
5306 memcpy(req->async_data, &__io, sizeof(__io));
5307 return -EAGAIN;
5308 }
5309 if (ret == -ERESTARTSYS)
5310 ret = -EINTR;
5311 out:
5312 if (ret < 0)
5313 req_set_fail(req);
5314 __io_req_complete(req, issue_flags, ret, 0);
5315 return 0;
5316 }
5317 #else /* !CONFIG_NET */
5318 #define IO_NETOP_FN(op) \
5319 static int io_##op(struct io_kiocb *req, unsigned int issue_flags) \
5320 { \
5321 return -EOPNOTSUPP; \
5322 }
5323
5324 #define IO_NETOP_PREP(op) \
5325 IO_NETOP_FN(op) \
5326 static int io_##op##_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe) \
5327 { \
5328 return -EOPNOTSUPP; \
5329 } \
5330
5331 #define IO_NETOP_PREP_ASYNC(op) \
5332 IO_NETOP_PREP(op) \
5333 static int io_##op##_prep_async(struct io_kiocb *req) \
5334 { \
5335 return -EOPNOTSUPP; \
5336 }
5337
5338 IO_NETOP_PREP_ASYNC(sendmsg);
5339 IO_NETOP_PREP_ASYNC(recvmsg);
5340 IO_NETOP_PREP_ASYNC(connect);
5341 IO_NETOP_PREP(accept);
5342 IO_NETOP_FN(send);
5343 IO_NETOP_FN(recv);
5344 #endif /* CONFIG_NET */
5345
5346 struct io_poll_table {
5347 struct poll_table_struct pt;
5348 struct io_kiocb *req;
5349 int nr_entries;
5350 int error;
5351 };
5352
5353 #define IO_POLL_CANCEL_FLAG BIT(31)
5354 #define IO_POLL_RETRY_FLAG BIT(30)
5355 #define IO_POLL_REF_MASK GENMASK(29, 0)
5356
5357 /*
5358 * We usually have 1-2 refs taken, 128 is more than enough and we want to
5359 * maximise the margin between this amount and the moment when it overflows.
5360 */
5361 #define IO_POLL_REF_BIAS 128
5362
io_poll_get_ownership_slowpath(struct io_kiocb *req)5363 static bool io_poll_get_ownership_slowpath(struct io_kiocb *req)
5364 {
5365 int v;
5366
5367 /*
5368 * poll_refs are already elevated and we don't have much hope for
5369 * grabbing the ownership. Instead of incrementing set a retry flag
5370 * to notify the loop that there might have been some change.
5371 */
5372 v = atomic_fetch_or(IO_POLL_RETRY_FLAG, &req->poll_refs);
5373 if (v & IO_POLL_REF_MASK)
5374 return false;
5375 return !(atomic_fetch_inc(&req->poll_refs) & IO_POLL_REF_MASK);
5376 }
5377
5378 /*
5379 * If refs part of ->poll_refs (see IO_POLL_REF_MASK) is 0, it's free. We can
5380 * bump it and acquire ownership. It's disallowed to modify requests while not
5381 * owning it, that prevents from races for enqueueing task_work's and b/w
5382 * arming poll and wakeups.
5383 */
io_poll_get_ownership(struct io_kiocb *req)5384 static inline bool io_poll_get_ownership(struct io_kiocb *req)
5385 {
5386 if (unlikely(atomic_read(&req->poll_refs) >= IO_POLL_REF_BIAS))
5387 return io_poll_get_ownership_slowpath(req);
5388 return !(atomic_fetch_inc(&req->poll_refs) & IO_POLL_REF_MASK);
5389 }
5390
io_poll_mark_cancelled(struct io_kiocb *req)5391 static void io_poll_mark_cancelled(struct io_kiocb *req)
5392 {
5393 atomic_or(IO_POLL_CANCEL_FLAG, &req->poll_refs);
5394 }
5395
io_poll_get_double(struct io_kiocb *req)5396 static struct io_poll_iocb *io_poll_get_double(struct io_kiocb *req)
5397 {
5398 /* pure poll stashes this in ->async_data, poll driven retry elsewhere */
5399 if (req->opcode == IORING_OP_POLL_ADD)
5400 return req->async_data;
5401 return req->apoll->double_poll;
5402 }
5403
io_poll_get_single(struct io_kiocb *req)5404 static struct io_poll_iocb *io_poll_get_single(struct io_kiocb *req)
5405 {
5406 if (req->opcode == IORING_OP_POLL_ADD)
5407 return &req->poll;
5408 return &req->apoll->poll;
5409 }
5410
io_poll_req_insert(struct io_kiocb *req)5411 static void io_poll_req_insert(struct io_kiocb *req)
5412 {
5413 struct io_ring_ctx *ctx = req->ctx;
5414 struct hlist_head *list;
5415
5416 list = &ctx->cancel_hash[hash_long(req->user_data, ctx->cancel_hash_bits)];
5417 hlist_add_head(&req->hash_node, list);
5418 }
5419
io_init_poll_iocb(struct io_poll_iocb *poll, __poll_t events, wait_queue_func_t wake_func)5420 static void io_init_poll_iocb(struct io_poll_iocb *poll, __poll_t events,
5421 wait_queue_func_t wake_func)
5422 {
5423 poll->head = NULL;
5424 #define IO_POLL_UNMASK (EPOLLERR|EPOLLHUP|EPOLLNVAL|EPOLLRDHUP)
5425 /* mask in events that we always want/need */
5426 poll->events = events | IO_POLL_UNMASK;
5427 INIT_LIST_HEAD(&poll->wait.entry);
5428 init_waitqueue_func_entry(&poll->wait, wake_func);
5429 }
5430
io_poll_remove_entry(struct io_poll_iocb *poll)5431 static inline void io_poll_remove_entry(struct io_poll_iocb *poll)
5432 {
5433 struct wait_queue_head *head = smp_load_acquire(&poll->head);
5434
5435 if (head) {
5436 spin_lock_irq(&head->lock);
5437 list_del_init(&poll->wait.entry);
5438 poll->head = NULL;
5439 spin_unlock_irq(&head->lock);
5440 }
5441 }
5442
io_poll_remove_entries(struct io_kiocb *req)5443 static void io_poll_remove_entries(struct io_kiocb *req)
5444 {
5445 struct io_poll_iocb *poll = io_poll_get_single(req);
5446 struct io_poll_iocb *poll_double = io_poll_get_double(req);
5447
5448 /*
5449 * While we hold the waitqueue lock and the waitqueue is nonempty,
5450 * wake_up_pollfree() will wait for us. However, taking the waitqueue
5451 * lock in the first place can race with the waitqueue being freed.
5452 *
5453 * We solve this as eventpoll does: by taking advantage of the fact that
5454 * all users of wake_up_pollfree() will RCU-delay the actual free. If
5455 * we enter rcu_read_lock() and see that the pointer to the queue is
5456 * non-NULL, we can then lock it without the memory being freed out from
5457 * under us.
5458 *
5459 * Keep holding rcu_read_lock() as long as we hold the queue lock, in
5460 * case the caller deletes the entry from the queue, leaving it empty.
5461 * In that case, only RCU prevents the queue memory from being freed.
5462 */
5463 rcu_read_lock();
5464 io_poll_remove_entry(poll);
5465 if (poll_double)
5466 io_poll_remove_entry(poll_double);
5467 rcu_read_unlock();
5468 }
5469
5470 /*
5471 * All poll tw should go through this. Checks for poll events, manages
5472 * references, does rewait, etc.
5473 *
5474 * Returns a negative error on failure. >0 when no action require, which is
5475 * either spurious wakeup or multishot CQE is served. 0 when it's done with
5476 * the request, then the mask is stored in req->result.
5477 */
io_poll_check_events(struct io_kiocb *req)5478 static int io_poll_check_events(struct io_kiocb *req)
5479 {
5480 struct io_ring_ctx *ctx = req->ctx;
5481 struct io_poll_iocb *poll = io_poll_get_single(req);
5482 int v;
5483
5484 /* req->task == current here, checking PF_EXITING is safe */
5485 if (unlikely(req->task->flags & PF_EXITING))
5486 io_poll_mark_cancelled(req);
5487
5488 do {
5489 v = atomic_read(&req->poll_refs);
5490
5491 /* tw handler should be the owner, and so have some references */
5492 if (WARN_ON_ONCE(!(v & IO_POLL_REF_MASK)))
5493 return 0;
5494 if (v & IO_POLL_CANCEL_FLAG)
5495 return -ECANCELED;
5496 /*
5497 * cqe.res contains only events of the first wake up
5498 * and all others are be lost. Redo vfs_poll() to get
5499 * up to date state.
5500 */
5501 if ((v & IO_POLL_REF_MASK) != 1)
5502 req->result = 0;
5503 if (v & IO_POLL_RETRY_FLAG) {
5504 req->result = 0;
5505 /*
5506 * We won't find new events that came in between
5507 * vfs_poll and the ref put unless we clear the
5508 * flag in advance.
5509 */
5510 atomic_andnot(IO_POLL_RETRY_FLAG, &req->poll_refs);
5511 v &= ~IO_POLL_RETRY_FLAG;
5512 }
5513
5514 if (!req->result) {
5515 struct poll_table_struct pt = { ._key = poll->events };
5516
5517 req->result = vfs_poll(req->file, &pt) & poll->events;
5518 }
5519
5520 /* multishot, just fill an CQE and proceed */
5521 if (req->result && !(poll->events & EPOLLONESHOT)) {
5522 __poll_t mask = mangle_poll(req->result & poll->events);
5523 bool filled;
5524
5525 spin_lock(&ctx->completion_lock);
5526 filled = io_fill_cqe_aux(ctx, req->user_data, mask,
5527 IORING_CQE_F_MORE);
5528 io_commit_cqring(ctx);
5529 spin_unlock(&ctx->completion_lock);
5530 if (unlikely(!filled))
5531 return -ECANCELED;
5532 io_cqring_ev_posted(ctx);
5533 } else if (req->result) {
5534 return 0;
5535 }
5536
5537 /* force the next iteration to vfs_poll() */
5538 req->result = 0;
5539
5540 /*
5541 * Release all references, retry if someone tried to restart
5542 * task_work while we were executing it.
5543 */
5544 } while (atomic_sub_return(v & IO_POLL_REF_MASK, &req->poll_refs) &
5545 IO_POLL_REF_MASK);
5546
5547 return 1;
5548 }
5549
io_poll_task_func(struct io_kiocb *req, bool *locked)5550 static void io_poll_task_func(struct io_kiocb *req, bool *locked)
5551 {
5552 struct io_ring_ctx *ctx = req->ctx;
5553 int ret;
5554
5555 ret = io_poll_check_events(req);
5556 if (ret > 0)
5557 return;
5558
5559 if (!ret) {
5560 req->result = mangle_poll(req->result & req->poll.events);
5561 } else {
5562 req->result = ret;
5563 req_set_fail(req);
5564 }
5565
5566 io_poll_remove_entries(req);
5567 spin_lock(&ctx->completion_lock);
5568 hash_del(&req->hash_node);
5569 spin_unlock(&ctx->completion_lock);
5570 io_req_complete_post(req, req->result, 0);
5571 }
5572
io_apoll_task_func(struct io_kiocb *req, bool *locked)5573 static void io_apoll_task_func(struct io_kiocb *req, bool *locked)
5574 {
5575 struct io_ring_ctx *ctx = req->ctx;
5576 int ret;
5577
5578 ret = io_poll_check_events(req);
5579 if (ret > 0)
5580 return;
5581
5582 io_tw_lock(req->ctx, locked);
5583 io_poll_remove_entries(req);
5584 spin_lock(&ctx->completion_lock);
5585 hash_del(&req->hash_node);
5586 spin_unlock(&ctx->completion_lock);
5587
5588 if (!ret)
5589 io_req_task_submit(req, locked);
5590 else
5591 io_req_complete_failed(req, ret);
5592 }
5593
__io_poll_execute(struct io_kiocb *req, int mask)5594 static void __io_poll_execute(struct io_kiocb *req, int mask)
5595 {
5596 req->result = mask;
5597 if (req->opcode == IORING_OP_POLL_ADD)
5598 req->io_task_work.func = io_poll_task_func;
5599 else
5600 req->io_task_work.func = io_apoll_task_func;
5601
5602 trace_io_uring_task_add(req->ctx, req->opcode, req->user_data, mask);
5603 io_req_task_work_add(req);
5604 }
5605
io_poll_execute(struct io_kiocb *req, int res)5606 static inline void io_poll_execute(struct io_kiocb *req, int res)
5607 {
5608 if (io_poll_get_ownership(req))
5609 __io_poll_execute(req, res);
5610 }
5611
io_poll_cancel_req(struct io_kiocb *req)5612 static void io_poll_cancel_req(struct io_kiocb *req)
5613 {
5614 io_poll_mark_cancelled(req);
5615 /* kick tw, which should complete the request */
5616 io_poll_execute(req, 0);
5617 }
5618
io_poll_wake(struct wait_queue_entry *wait, unsigned mode, int sync, void *key)5619 static int io_poll_wake(struct wait_queue_entry *wait, unsigned mode, int sync,
5620 void *key)
5621 {
5622 struct io_kiocb *req = wait->private;
5623 struct io_poll_iocb *poll = container_of(wait, struct io_poll_iocb,
5624 wait);
5625 __poll_t mask = key_to_poll(key);
5626
5627 if (unlikely(mask & POLLFREE)) {
5628 io_poll_mark_cancelled(req);
5629 /* we have to kick tw in case it's not already */
5630 io_poll_execute(req, 0);
5631
5632 /*
5633 * If the waitqueue is being freed early but someone is already
5634 * holds ownership over it, we have to tear down the request as
5635 * best we can. That means immediately removing the request from
5636 * its waitqueue and preventing all further accesses to the
5637 * waitqueue via the request.
5638 */
5639 list_del_init(&poll->wait.entry);
5640
5641 /*
5642 * Careful: this *must* be the last step, since as soon
5643 * as req->head is NULL'ed out, the request can be
5644 * completed and freed, since aio_poll_complete_work()
5645 * will no longer need to take the waitqueue lock.
5646 */
5647 smp_store_release(&poll->head, NULL);
5648 return 1;
5649 }
5650
5651 /* for instances that support it check for an event match first */
5652 if (mask && !(mask & poll->events))
5653 return 0;
5654
5655 if (io_poll_get_ownership(req)) {
5656 /*
5657 * If we trigger a multishot poll off our own wakeup path,
5658 * disable multishot as there is a circular dependency between
5659 * CQ posting and triggering the event.
5660 */
5661 if (mask & EPOLL_URING_WAKE)
5662 poll->events |= EPOLLONESHOT;
5663
5664 __io_poll_execute(req, mask);
5665 }
5666 return 1;
5667 }
5668
__io_queue_proc(struct io_poll_iocb *poll, struct io_poll_table *pt, struct wait_queue_head *head, struct io_poll_iocb **poll_ptr)5669 static void __io_queue_proc(struct io_poll_iocb *poll, struct io_poll_table *pt,
5670 struct wait_queue_head *head,
5671 struct io_poll_iocb **poll_ptr)
5672 {
5673 struct io_kiocb *req = pt->req;
5674
5675 /*
5676 * The file being polled uses multiple waitqueues for poll handling
5677 * (e.g. one for read, one for write). Setup a separate io_poll_iocb
5678 * if this happens.
5679 */
5680 if (unlikely(pt->nr_entries)) {
5681 struct io_poll_iocb *first = poll;
5682
5683 /* double add on the same waitqueue head, ignore */
5684 if (first->head == head)
5685 return;
5686 /* already have a 2nd entry, fail a third attempt */
5687 if (*poll_ptr) {
5688 if ((*poll_ptr)->head == head)
5689 return;
5690 pt->error = -EINVAL;
5691 return;
5692 }
5693
5694 poll = kmalloc(sizeof(*poll), GFP_ATOMIC);
5695 if (!poll) {
5696 pt->error = -ENOMEM;
5697 return;
5698 }
5699 io_init_poll_iocb(poll, first->events, first->wait.func);
5700 *poll_ptr = poll;
5701 }
5702
5703 pt->nr_entries++;
5704 poll->head = head;
5705 poll->wait.private = req;
5706
5707 if (poll->events & EPOLLEXCLUSIVE)
5708 add_wait_queue_exclusive(head, &poll->wait);
5709 else
5710 add_wait_queue(head, &poll->wait);
5711 }
5712
io_poll_queue_proc(struct file *file, struct wait_queue_head *head, struct poll_table_struct *p)5713 static void io_poll_queue_proc(struct file *file, struct wait_queue_head *head,
5714 struct poll_table_struct *p)
5715 {
5716 struct io_poll_table *pt = container_of(p, struct io_poll_table, pt);
5717
5718 __io_queue_proc(&pt->req->poll, pt, head,
5719 (struct io_poll_iocb **) &pt->req->async_data);
5720 }
5721
__io_arm_poll_handler(struct io_kiocb *req, struct io_poll_iocb *poll, struct io_poll_table *ipt, __poll_t mask)5722 static int __io_arm_poll_handler(struct io_kiocb *req,
5723 struct io_poll_iocb *poll,
5724 struct io_poll_table *ipt, __poll_t mask)
5725 {
5726 struct io_ring_ctx *ctx = req->ctx;
5727
5728 INIT_HLIST_NODE(&req->hash_node);
5729 io_init_poll_iocb(poll, mask, io_poll_wake);
5730 poll->file = req->file;
5731 poll->wait.private = req;
5732
5733 ipt->pt._key = mask;
5734 ipt->req = req;
5735 ipt->error = 0;
5736 ipt->nr_entries = 0;
5737
5738 /*
5739 * Take the ownership to delay any tw execution up until we're done
5740 * with poll arming. see io_poll_get_ownership().
5741 */
5742 atomic_set(&req->poll_refs, 1);
5743 mask = vfs_poll(req->file, &ipt->pt) & poll->events;
5744
5745 if (mask && (poll->events & EPOLLONESHOT)) {
5746 io_poll_remove_entries(req);
5747 /* no one else has access to the req, forget about the ref */
5748 return mask;
5749 }
5750 if (!mask && unlikely(ipt->error || !ipt->nr_entries)) {
5751 io_poll_remove_entries(req);
5752 if (!ipt->error)
5753 ipt->error = -EINVAL;
5754 return 0;
5755 }
5756
5757 spin_lock(&ctx->completion_lock);
5758 io_poll_req_insert(req);
5759 spin_unlock(&ctx->completion_lock);
5760
5761 if (mask) {
5762 /* can't multishot if failed, just queue the event we've got */
5763 if (unlikely(ipt->error || !ipt->nr_entries)) {
5764 poll->events |= EPOLLONESHOT;
5765 ipt->error = 0;
5766 }
5767 __io_poll_execute(req, mask);
5768 return 0;
5769 }
5770
5771 /*
5772 * Try to release ownership. If we see a change of state, e.g.
5773 * poll was waken up, queue up a tw, it'll deal with it.
5774 */
5775 if (atomic_cmpxchg(&req->poll_refs, 1, 0) != 1)
5776 __io_poll_execute(req, 0);
5777 return 0;
5778 }
5779
io_async_queue_proc(struct file *file, struct wait_queue_head *head, struct poll_table_struct *p)5780 static void io_async_queue_proc(struct file *file, struct wait_queue_head *head,
5781 struct poll_table_struct *p)
5782 {
5783 struct io_poll_table *pt = container_of(p, struct io_poll_table, pt);
5784 struct async_poll *apoll = pt->req->apoll;
5785
5786 __io_queue_proc(&apoll->poll, pt, head, &apoll->double_poll);
5787 }
5788
5789 enum {
5790 IO_APOLL_OK,
5791 IO_APOLL_ABORTED,
5792 IO_APOLL_READY
5793 };
5794
5795 /*
5796 * We can't reliably detect loops in repeated poll triggers and issue
5797 * subsequently failing. But rather than fail these immediately, allow a
5798 * certain amount of retries before we give up. Given that this condition
5799 * should _rarely_ trigger even once, we should be fine with a larger value.
5800 */
5801 #define APOLL_MAX_RETRY 128
5802
io_arm_poll_handler(struct io_kiocb *req)5803 static int io_arm_poll_handler(struct io_kiocb *req)
5804 {
5805 const struct io_op_def *def = &io_op_defs[req->opcode];
5806 struct io_ring_ctx *ctx = req->ctx;
5807 struct async_poll *apoll;
5808 struct io_poll_table ipt;
5809 __poll_t mask = EPOLLONESHOT | POLLERR | POLLPRI;
5810 int ret;
5811
5812 if (!req->file || !file_can_poll(req->file))
5813 return IO_APOLL_ABORTED;
5814 if (!def->pollin && !def->pollout)
5815 return IO_APOLL_ABORTED;
5816
5817 if (def->pollin) {
5818 mask |= POLLIN | POLLRDNORM;
5819
5820 /* If reading from MSG_ERRQUEUE using recvmsg, ignore POLLIN */
5821 if ((req->opcode == IORING_OP_RECVMSG) &&
5822 (req->sr_msg.msg_flags & MSG_ERRQUEUE))
5823 mask &= ~POLLIN;
5824 } else {
5825 mask |= POLLOUT | POLLWRNORM;
5826 }
5827
5828 if (req->flags & REQ_F_POLLED) {
5829 apoll = req->apoll;
5830 kfree(apoll->double_poll);
5831 if (unlikely(!--apoll->poll.retries)) {
5832 apoll->double_poll = NULL;
5833 return IO_APOLL_ABORTED;
5834 }
5835 } else {
5836 apoll = kmalloc(sizeof(*apoll), GFP_ATOMIC);
5837 if (unlikely(!apoll))
5838 return IO_APOLL_ABORTED;
5839 apoll->poll.retries = APOLL_MAX_RETRY;
5840 }
5841 apoll->double_poll = NULL;
5842 req->apoll = apoll;
5843 req->flags |= REQ_F_POLLED;
5844 ipt.pt._qproc = io_async_queue_proc;
5845
5846 ret = __io_arm_poll_handler(req, &apoll->poll, &ipt, mask);
5847 if (ret || ipt.error)
5848 return ret ? IO_APOLL_READY : IO_APOLL_ABORTED;
5849
5850 trace_io_uring_poll_arm(ctx, req, req->opcode, req->user_data,
5851 mask, apoll->poll.events);
5852 return IO_APOLL_OK;
5853 }
5854
5855 /*
5856 * Returns true if we found and killed one or more poll requests
5857 */
io_poll_remove_all(struct io_ring_ctx *ctx, struct task_struct *tsk, bool cancel_all)5858 static bool io_poll_remove_all(struct io_ring_ctx *ctx, struct task_struct *tsk,
5859 bool cancel_all)
5860 {
5861 struct hlist_node *tmp;
5862 struct io_kiocb *req;
5863 bool found = false;
5864 int i;
5865
5866 spin_lock(&ctx->completion_lock);
5867 for (i = 0; i < (1U << ctx->cancel_hash_bits); i++) {
5868 struct hlist_head *list;
5869
5870 list = &ctx->cancel_hash[i];
5871 hlist_for_each_entry_safe(req, tmp, list, hash_node) {
5872 if (io_match_task_safe(req, tsk, cancel_all)) {
5873 hlist_del_init(&req->hash_node);
5874 io_poll_cancel_req(req);
5875 found = true;
5876 }
5877 }
5878 }
5879 spin_unlock(&ctx->completion_lock);
5880 return found;
5881 }
5882
5883 static struct io_kiocb *io_poll_find(struct io_ring_ctx *ctx, __u64 sqe_addr,
5884 bool poll_only)
5885 __must_hold(&ctx->completion_lock)
5886 {
5887 struct hlist_head *list;
5888 struct io_kiocb *req;
5889
5890 list = &ctx->cancel_hash[hash_long(sqe_addr, ctx->cancel_hash_bits)];
hlist_for_each_entrynull5891 hlist_for_each_entry(req, list, hash_node) {
5892 if (sqe_addr != req->user_data)
5893 continue;
5894 if (poll_only && req->opcode != IORING_OP_POLL_ADD)
5895 continue;
5896 return req;
5897 }
5898 return NULL;
5899 }
5900
5901 static bool io_poll_disarm(struct io_kiocb *req)
5902 __must_hold(&ctx->completion_lock)
5903 {
5904 if (!io_poll_get_ownership(req))
5905 return false;
5906 io_poll_remove_entries(req);
5907 hash_del(&req->hash_node);
5908 return true;
5909 }
5910
5911 static int io_poll_cancel(struct io_ring_ctx *ctx, __u64 sqe_addr,
5912 bool poll_only)
5913 __must_hold(&ctx->completion_lock)
5914 {
5915 struct io_kiocb *req = io_poll_find(ctx, sqe_addr, poll_only);
5916
5917 if (!req)
5918 return -ENOENT;
5919 io_poll_cancel_req(req);
5920 return 0;
5921 }
5922
io_poll_parse_events(const struct io_uring_sqe *sqe, unsigned int flags)5923 static __poll_t io_poll_parse_events(const struct io_uring_sqe *sqe,
5924 unsigned int flags)
5925 {
5926 u32 events;
5927
5928 events = READ_ONCE(sqe->poll32_events);
5929 #ifdef __BIG_ENDIAN
5930 events = swahw32(events);
5931 #endif
5932 if (!(flags & IORING_POLL_ADD_MULTI))
5933 events |= EPOLLONESHOT;
5934 return demangle_poll(events) | (events & (EPOLLEXCLUSIVE|EPOLLONESHOT));
5935 }
5936
io_poll_update_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)5937 static int io_poll_update_prep(struct io_kiocb *req,
5938 const struct io_uring_sqe *sqe)
5939 {
5940 struct io_poll_update *upd = &req->poll_update;
5941 u32 flags;
5942
5943 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
5944 return -EINVAL;
5945 if (sqe->ioprio || sqe->buf_index || sqe->splice_fd_in)
5946 return -EINVAL;
5947 flags = READ_ONCE(sqe->len);
5948 if (flags & ~(IORING_POLL_UPDATE_EVENTS | IORING_POLL_UPDATE_USER_DATA |
5949 IORING_POLL_ADD_MULTI))
5950 return -EINVAL;
5951 /* meaningless without update */
5952 if (flags == IORING_POLL_ADD_MULTI)
5953 return -EINVAL;
5954
5955 upd->old_user_data = READ_ONCE(sqe->addr);
5956 upd->update_events = flags & IORING_POLL_UPDATE_EVENTS;
5957 upd->update_user_data = flags & IORING_POLL_UPDATE_USER_DATA;
5958
5959 upd->new_user_data = READ_ONCE(sqe->off);
5960 if (!upd->update_user_data && upd->new_user_data)
5961 return -EINVAL;
5962 if (upd->update_events)
5963 upd->events = io_poll_parse_events(sqe, flags);
5964 else if (sqe->poll32_events)
5965 return -EINVAL;
5966
5967 return 0;
5968 }
5969
io_poll_add_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)5970 static int io_poll_add_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
5971 {
5972 struct io_poll_iocb *poll = &req->poll;
5973 u32 flags;
5974
5975 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
5976 return -EINVAL;
5977 if (sqe->ioprio || sqe->buf_index || sqe->off || sqe->addr)
5978 return -EINVAL;
5979 flags = READ_ONCE(sqe->len);
5980 if (flags & ~IORING_POLL_ADD_MULTI)
5981 return -EINVAL;
5982
5983 io_req_set_refcount(req);
5984 poll->events = io_poll_parse_events(sqe, flags);
5985 return 0;
5986 }
5987
io_poll_add(struct io_kiocb *req, unsigned int issue_flags)5988 static int io_poll_add(struct io_kiocb *req, unsigned int issue_flags)
5989 {
5990 struct io_poll_iocb *poll = &req->poll;
5991 struct io_poll_table ipt;
5992 int ret;
5993
5994 ipt.pt._qproc = io_poll_queue_proc;
5995
5996 ret = __io_arm_poll_handler(req, &req->poll, &ipt, poll->events);
5997 if (!ret && ipt.error)
5998 req_set_fail(req);
5999 ret = ret ?: ipt.error;
6000 if (ret)
6001 __io_req_complete(req, issue_flags, ret, 0);
6002 return 0;
6003 }
6004
io_poll_update(struct io_kiocb *req, unsigned int issue_flags)6005 static int io_poll_update(struct io_kiocb *req, unsigned int issue_flags)
6006 {
6007 struct io_ring_ctx *ctx = req->ctx;
6008 struct io_kiocb *preq;
6009 int ret2, ret = 0;
6010
6011 io_ring_submit_lock(ctx, !(issue_flags & IO_URING_F_NONBLOCK));
6012
6013 spin_lock(&ctx->completion_lock);
6014 preq = io_poll_find(ctx, req->poll_update.old_user_data, true);
6015 if (!preq || !io_poll_disarm(preq)) {
6016 spin_unlock(&ctx->completion_lock);
6017 ret = preq ? -EALREADY : -ENOENT;
6018 goto out;
6019 }
6020 spin_unlock(&ctx->completion_lock);
6021
6022 if (req->poll_update.update_events || req->poll_update.update_user_data) {
6023 /* only mask one event flags, keep behavior flags */
6024 if (req->poll_update.update_events) {
6025 preq->poll.events &= ~0xffff;
6026 preq->poll.events |= req->poll_update.events & 0xffff;
6027 preq->poll.events |= IO_POLL_UNMASK;
6028 }
6029 if (req->poll_update.update_user_data)
6030 preq->user_data = req->poll_update.new_user_data;
6031
6032 ret2 = io_poll_add(preq, issue_flags);
6033 /* successfully updated, don't complete poll request */
6034 if (!ret2)
6035 goto out;
6036 }
6037 req_set_fail(preq);
6038 io_req_complete(preq, -ECANCELED);
6039 out:
6040 if (ret < 0)
6041 req_set_fail(req);
6042 /* complete update request, we're done with it */
6043 io_req_complete(req, ret);
6044 io_ring_submit_unlock(ctx, !(issue_flags & IO_URING_F_NONBLOCK));
6045 return 0;
6046 }
6047
io_req_task_timeout(struct io_kiocb *req, bool *locked)6048 static void io_req_task_timeout(struct io_kiocb *req, bool *locked)
6049 {
6050 req_set_fail(req);
6051 io_req_complete_post(req, -ETIME, 0);
6052 }
6053
io_timeout_fn(struct hrtimer *timer)6054 static enum hrtimer_restart io_timeout_fn(struct hrtimer *timer)
6055 {
6056 struct io_timeout_data *data = container_of(timer,
6057 struct io_timeout_data, timer);
6058 struct io_kiocb *req = data->req;
6059 struct io_ring_ctx *ctx = req->ctx;
6060 unsigned long flags;
6061
6062 spin_lock_irqsave(&ctx->timeout_lock, flags);
6063 list_del_init(&req->timeout.list);
6064 atomic_set(&req->ctx->cq_timeouts,
6065 atomic_read(&req->ctx->cq_timeouts) + 1);
6066 spin_unlock_irqrestore(&ctx->timeout_lock, flags);
6067
6068 req->io_task_work.func = io_req_task_timeout;
6069 io_req_task_work_add(req);
6070 return HRTIMER_NORESTART;
6071 }
6072
6073 static struct io_kiocb *io_timeout_extract(struct io_ring_ctx *ctx,
6074 __u64 user_data)
6075 __must_hold(&ctx->timeout_lock)
6076 {
6077 struct io_timeout_data *io;
6078 struct io_kiocb *req;
6079 bool found = false;
6080
6081 list_for_each_entry(req, &ctx->timeout_list, timeout.list) {
6082 found = user_data == req->user_data;
6083 if (found)
6084 break;
6085 }
6086 if (!found)
6087 return ERR_PTR(-ENOENT);
6088
6089 io = req->async_data;
6090 if (hrtimer_try_to_cancel(&io->timer) == -1)
6091 return ERR_PTR(-EALREADY);
6092 list_del_init(&req->timeout.list);
6093 return req;
6094 }
6095
6096 static int io_timeout_cancel(struct io_ring_ctx *ctx, __u64 user_data)
6097 __must_hold(&ctx->completion_lock)
6098 __must_hold(&ctx->timeout_lock)
6099 {
6100 struct io_kiocb *req = io_timeout_extract(ctx, user_data);
6101
6102 if (IS_ERR(req))
6103 return PTR_ERR(req);
6104
6105 req_set_fail(req);
6106 io_fill_cqe_req(req, -ECANCELED, 0);
6107 io_put_req_deferred(req);
6108 return 0;
6109 }
6110
io_timeout_get_clock(struct io_timeout_data *data)6111 static clockid_t io_timeout_get_clock(struct io_timeout_data *data)
6112 {
6113 switch (data->flags & IORING_TIMEOUT_CLOCK_MASK) {
6114 case IORING_TIMEOUT_BOOTTIME:
6115 return CLOCK_BOOTTIME;
6116 case IORING_TIMEOUT_REALTIME:
6117 return CLOCK_REALTIME;
6118 default:
6119 /* can't happen, vetted at prep time */
6120 WARN_ON_ONCE(1);
6121 fallthrough;
6122 case 0:
6123 return CLOCK_MONOTONIC;
6124 }
6125 }
6126
6127 static int io_linked_timeout_update(struct io_ring_ctx *ctx, __u64 user_data,
6128 struct timespec64 *ts, enum hrtimer_mode mode)
6129 __must_hold(&ctx->timeout_lock)
6130 {
6131 struct io_timeout_data *io;
6132 struct io_kiocb *req;
6133 bool found = false;
6134
6135 list_for_each_entry(req, &ctx->ltimeout_list, timeout.list) {
6136 found = user_data == req->user_data;
6137 if (found)
6138 break;
6139 }
6140 if (!found)
6141 return -ENOENT;
6142
6143 io = req->async_data;
6144 if (hrtimer_try_to_cancel(&io->timer) == -1)
6145 return -EALREADY;
6146 hrtimer_init(&io->timer, io_timeout_get_clock(io), mode);
6147 io->timer.function = io_link_timeout_fn;
6148 hrtimer_start(&io->timer, timespec64_to_ktime(*ts), mode);
6149 return 0;
6150 }
6151
6152 static int io_timeout_update(struct io_ring_ctx *ctx, __u64 user_data,
6153 struct timespec64 *ts, enum hrtimer_mode mode)
6154 __must_hold(&ctx->timeout_lock)
6155 {
6156 struct io_kiocb *req = io_timeout_extract(ctx, user_data);
6157 struct io_timeout_data *data;
6158
6159 if (IS_ERR(req))
6160 return PTR_ERR(req);
6161
6162 req->timeout.off = 0; /* noseq */
6163 data = req->async_data;
6164 list_add_tail(&req->timeout.list, &ctx->timeout_list);
6165 hrtimer_init(&data->timer, io_timeout_get_clock(data), mode);
6166 data->timer.function = io_timeout_fn;
6167 hrtimer_start(&data->timer, timespec64_to_ktime(*ts), mode);
6168 return 0;
6169 }
6170
io_timeout_remove_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)6171 static int io_timeout_remove_prep(struct io_kiocb *req,
6172 const struct io_uring_sqe *sqe)
6173 {
6174 struct io_timeout_rem *tr = &req->timeout_rem;
6175
6176 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
6177 return -EINVAL;
6178 if (unlikely(req->flags & (REQ_F_FIXED_FILE | REQ_F_BUFFER_SELECT)))
6179 return -EINVAL;
6180 if (sqe->ioprio || sqe->buf_index || sqe->len || sqe->splice_fd_in)
6181 return -EINVAL;
6182
6183 tr->ltimeout = false;
6184 tr->addr = READ_ONCE(sqe->addr);
6185 tr->flags = READ_ONCE(sqe->timeout_flags);
6186 if (tr->flags & IORING_TIMEOUT_UPDATE_MASK) {
6187 if (hweight32(tr->flags & IORING_TIMEOUT_CLOCK_MASK) > 1)
6188 return -EINVAL;
6189 if (tr->flags & IORING_LINK_TIMEOUT_UPDATE)
6190 tr->ltimeout = true;
6191 if (tr->flags & ~(IORING_TIMEOUT_UPDATE_MASK|IORING_TIMEOUT_ABS))
6192 return -EINVAL;
6193 if (get_timespec64(&tr->ts, u64_to_user_ptr(sqe->addr2)))
6194 return -EFAULT;
6195 } else if (tr->flags) {
6196 /* timeout removal doesn't support flags */
6197 return -EINVAL;
6198 }
6199
6200 return 0;
6201 }
6202
io_translate_timeout_mode(unsigned int flags)6203 static inline enum hrtimer_mode io_translate_timeout_mode(unsigned int flags)
6204 {
6205 return (flags & IORING_TIMEOUT_ABS) ? HRTIMER_MODE_ABS
6206 : HRTIMER_MODE_REL;
6207 }
6208
6209 /*
6210 * Remove or update an existing timeout command
6211 */
io_timeout_remove(struct io_kiocb *req, unsigned int issue_flags)6212 static int io_timeout_remove(struct io_kiocb *req, unsigned int issue_flags)
6213 {
6214 struct io_timeout_rem *tr = &req->timeout_rem;
6215 struct io_ring_ctx *ctx = req->ctx;
6216 int ret;
6217
6218 if (!(req->timeout_rem.flags & IORING_TIMEOUT_UPDATE)) {
6219 spin_lock(&ctx->completion_lock);
6220 spin_lock_irq(&ctx->timeout_lock);
6221 ret = io_timeout_cancel(ctx, tr->addr);
6222 spin_unlock_irq(&ctx->timeout_lock);
6223 spin_unlock(&ctx->completion_lock);
6224 } else {
6225 enum hrtimer_mode mode = io_translate_timeout_mode(tr->flags);
6226
6227 spin_lock_irq(&ctx->timeout_lock);
6228 if (tr->ltimeout)
6229 ret = io_linked_timeout_update(ctx, tr->addr, &tr->ts, mode);
6230 else
6231 ret = io_timeout_update(ctx, tr->addr, &tr->ts, mode);
6232 spin_unlock_irq(&ctx->timeout_lock);
6233 }
6234
6235 if (ret < 0)
6236 req_set_fail(req);
6237 io_req_complete_post(req, ret, 0);
6238 return 0;
6239 }
6240
io_timeout_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe, bool is_timeout_link)6241 static int io_timeout_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe,
6242 bool is_timeout_link)
6243 {
6244 struct io_timeout_data *data;
6245 unsigned flags;
6246 u32 off = READ_ONCE(sqe->off);
6247
6248 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
6249 return -EINVAL;
6250 if (sqe->ioprio || sqe->buf_index || sqe->len != 1 ||
6251 sqe->splice_fd_in)
6252 return -EINVAL;
6253 if (off && is_timeout_link)
6254 return -EINVAL;
6255 flags = READ_ONCE(sqe->timeout_flags);
6256 if (flags & ~(IORING_TIMEOUT_ABS | IORING_TIMEOUT_CLOCK_MASK))
6257 return -EINVAL;
6258 /* more than one clock specified is invalid, obviously */
6259 if (hweight32(flags & IORING_TIMEOUT_CLOCK_MASK) > 1)
6260 return -EINVAL;
6261
6262 INIT_LIST_HEAD(&req->timeout.list);
6263 req->timeout.off = off;
6264 if (unlikely(off && !req->ctx->off_timeout_used))
6265 req->ctx->off_timeout_used = true;
6266
6267 if (!req->async_data && io_alloc_async_data(req))
6268 return -ENOMEM;
6269
6270 data = req->async_data;
6271 data->req = req;
6272 data->flags = flags;
6273
6274 if (get_timespec64(&data->ts, u64_to_user_ptr(sqe->addr)))
6275 return -EFAULT;
6276
6277 INIT_LIST_HEAD(&req->timeout.list);
6278 data->mode = io_translate_timeout_mode(flags);
6279 hrtimer_init(&data->timer, io_timeout_get_clock(data), data->mode);
6280
6281 if (is_timeout_link) {
6282 struct io_submit_link *link = &req->ctx->submit_state.link;
6283
6284 if (!link->head)
6285 return -EINVAL;
6286 if (link->last->opcode == IORING_OP_LINK_TIMEOUT)
6287 return -EINVAL;
6288 req->timeout.head = link->last;
6289 link->last->flags |= REQ_F_ARM_LTIMEOUT;
6290 }
6291 return 0;
6292 }
6293
io_timeout(struct io_kiocb *req, unsigned int issue_flags)6294 static int io_timeout(struct io_kiocb *req, unsigned int issue_flags)
6295 {
6296 struct io_ring_ctx *ctx = req->ctx;
6297 struct io_timeout_data *data = req->async_data;
6298 struct list_head *entry;
6299 u32 tail, off = req->timeout.off;
6300
6301 spin_lock_irq(&ctx->timeout_lock);
6302
6303 /*
6304 * sqe->off holds how many events that need to occur for this
6305 * timeout event to be satisfied. If it isn't set, then this is
6306 * a pure timeout request, sequence isn't used.
6307 */
6308 if (io_is_timeout_noseq(req)) {
6309 entry = ctx->timeout_list.prev;
6310 goto add;
6311 }
6312
6313 tail = ctx->cached_cq_tail - atomic_read(&ctx->cq_timeouts);
6314 req->timeout.target_seq = tail + off;
6315
6316 /* Update the last seq here in case io_flush_timeouts() hasn't.
6317 * This is safe because ->completion_lock is held, and submissions
6318 * and completions are never mixed in the same ->completion_lock section.
6319 */
6320 ctx->cq_last_tm_flush = tail;
6321
6322 /*
6323 * Insertion sort, ensuring the first entry in the list is always
6324 * the one we need first.
6325 */
6326 list_for_each_prev(entry, &ctx->timeout_list) {
6327 struct io_kiocb *nxt = list_entry(entry, struct io_kiocb,
6328 timeout.list);
6329
6330 if (io_is_timeout_noseq(nxt))
6331 continue;
6332 /* nxt.seq is behind @tail, otherwise would've been completed */
6333 if (off >= nxt->timeout.target_seq - tail)
6334 break;
6335 }
6336 add:
6337 list_add(&req->timeout.list, entry);
6338 data->timer.function = io_timeout_fn;
6339 hrtimer_start(&data->timer, timespec64_to_ktime(data->ts), data->mode);
6340 spin_unlock_irq(&ctx->timeout_lock);
6341 return 0;
6342 }
6343
6344 struct io_cancel_data {
6345 struct io_ring_ctx *ctx;
6346 u64 user_data;
6347 };
6348
io_cancel_cb(struct io_wq_work *work, void *data)6349 static bool io_cancel_cb(struct io_wq_work *work, void *data)
6350 {
6351 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
6352 struct io_cancel_data *cd = data;
6353
6354 return req->ctx == cd->ctx && req->user_data == cd->user_data;
6355 }
6356
io_async_cancel_one(struct io_uring_task *tctx, u64 user_data, struct io_ring_ctx *ctx)6357 static int io_async_cancel_one(struct io_uring_task *tctx, u64 user_data,
6358 struct io_ring_ctx *ctx)
6359 {
6360 struct io_cancel_data data = { .ctx = ctx, .user_data = user_data, };
6361 enum io_wq_cancel cancel_ret;
6362 int ret = 0;
6363
6364 if (!tctx || !tctx->io_wq)
6365 return -ENOENT;
6366
6367 cancel_ret = io_wq_cancel_cb(tctx->io_wq, io_cancel_cb, &data, false);
6368 switch (cancel_ret) {
6369 case IO_WQ_CANCEL_OK:
6370 ret = 0;
6371 break;
6372 case IO_WQ_CANCEL_RUNNING:
6373 ret = -EALREADY;
6374 break;
6375 case IO_WQ_CANCEL_NOTFOUND:
6376 ret = -ENOENT;
6377 break;
6378 }
6379
6380 return ret;
6381 }
6382
io_try_cancel_userdata(struct io_kiocb *req, u64 sqe_addr)6383 static int io_try_cancel_userdata(struct io_kiocb *req, u64 sqe_addr)
6384 {
6385 struct io_ring_ctx *ctx = req->ctx;
6386 int ret;
6387
6388 WARN_ON_ONCE(!io_wq_current_is_worker() && req->task != current);
6389
6390 ret = io_async_cancel_one(req->task->io_uring, sqe_addr, ctx);
6391 if (ret != -ENOENT)
6392 return ret;
6393
6394 spin_lock(&ctx->completion_lock);
6395 spin_lock_irq(&ctx->timeout_lock);
6396 ret = io_timeout_cancel(ctx, sqe_addr);
6397 spin_unlock_irq(&ctx->timeout_lock);
6398 if (ret != -ENOENT)
6399 goto out;
6400 ret = io_poll_cancel(ctx, sqe_addr, false);
6401 out:
6402 spin_unlock(&ctx->completion_lock);
6403 return ret;
6404 }
6405
io_async_cancel_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)6406 static int io_async_cancel_prep(struct io_kiocb *req,
6407 const struct io_uring_sqe *sqe)
6408 {
6409 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
6410 return -EINVAL;
6411 if (unlikely(req->flags & (REQ_F_FIXED_FILE | REQ_F_BUFFER_SELECT)))
6412 return -EINVAL;
6413 if (sqe->ioprio || sqe->off || sqe->len || sqe->cancel_flags ||
6414 sqe->splice_fd_in)
6415 return -EINVAL;
6416
6417 req->cancel.addr = READ_ONCE(sqe->addr);
6418 return 0;
6419 }
6420
io_async_cancel(struct io_kiocb *req, unsigned int issue_flags)6421 static int io_async_cancel(struct io_kiocb *req, unsigned int issue_flags)
6422 {
6423 struct io_ring_ctx *ctx = req->ctx;
6424 u64 sqe_addr = req->cancel.addr;
6425 struct io_tctx_node *node;
6426 int ret;
6427
6428 ret = io_try_cancel_userdata(req, sqe_addr);
6429 if (ret != -ENOENT)
6430 goto done;
6431
6432 /* slow path, try all io-wq's */
6433 io_ring_submit_lock(ctx, !(issue_flags & IO_URING_F_NONBLOCK));
6434 ret = -ENOENT;
6435 list_for_each_entry(node, &ctx->tctx_list, ctx_node) {
6436 struct io_uring_task *tctx = node->task->io_uring;
6437
6438 ret = io_async_cancel_one(tctx, req->cancel.addr, ctx);
6439 if (ret != -ENOENT)
6440 break;
6441 }
6442 io_ring_submit_unlock(ctx, !(issue_flags & IO_URING_F_NONBLOCK));
6443 done:
6444 if (ret < 0)
6445 req_set_fail(req);
6446 io_req_complete_post(req, ret, 0);
6447 return 0;
6448 }
6449
io_rsrc_update_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)6450 static int io_rsrc_update_prep(struct io_kiocb *req,
6451 const struct io_uring_sqe *sqe)
6452 {
6453 if (unlikely(req->flags & (REQ_F_FIXED_FILE | REQ_F_BUFFER_SELECT)))
6454 return -EINVAL;
6455 if (sqe->ioprio || sqe->rw_flags || sqe->splice_fd_in)
6456 return -EINVAL;
6457
6458 req->rsrc_update.offset = READ_ONCE(sqe->off);
6459 req->rsrc_update.nr_args = READ_ONCE(sqe->len);
6460 if (!req->rsrc_update.nr_args)
6461 return -EINVAL;
6462 req->rsrc_update.arg = READ_ONCE(sqe->addr);
6463 return 0;
6464 }
6465
io_files_update(struct io_kiocb *req, unsigned int issue_flags)6466 static int io_files_update(struct io_kiocb *req, unsigned int issue_flags)
6467 {
6468 struct io_ring_ctx *ctx = req->ctx;
6469 struct io_uring_rsrc_update2 up;
6470 int ret;
6471
6472 up.offset = req->rsrc_update.offset;
6473 up.data = req->rsrc_update.arg;
6474 up.nr = 0;
6475 up.tags = 0;
6476 up.resv = 0;
6477 up.resv2 = 0;
6478
6479 io_ring_submit_lock(ctx, !(issue_flags & IO_URING_F_NONBLOCK));
6480 ret = __io_register_rsrc_update(ctx, IORING_RSRC_FILE,
6481 &up, req->rsrc_update.nr_args);
6482 io_ring_submit_unlock(ctx, !(issue_flags & IO_URING_F_NONBLOCK));
6483
6484 if (ret < 0)
6485 req_set_fail(req);
6486 __io_req_complete(req, issue_flags, ret, 0);
6487 return 0;
6488 }
6489
io_req_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)6490 static int io_req_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
6491 {
6492 switch (req->opcode) {
6493 case IORING_OP_NOP:
6494 return 0;
6495 case IORING_OP_READV:
6496 case IORING_OP_READ_FIXED:
6497 case IORING_OP_READ:
6498 return io_read_prep(req, sqe);
6499 case IORING_OP_WRITEV:
6500 case IORING_OP_WRITE_FIXED:
6501 case IORING_OP_WRITE:
6502 return io_write_prep(req, sqe);
6503 case IORING_OP_POLL_ADD:
6504 return io_poll_add_prep(req, sqe);
6505 case IORING_OP_POLL_REMOVE:
6506 return io_poll_update_prep(req, sqe);
6507 case IORING_OP_FSYNC:
6508 return io_fsync_prep(req, sqe);
6509 case IORING_OP_SYNC_FILE_RANGE:
6510 return io_sfr_prep(req, sqe);
6511 case IORING_OP_SENDMSG:
6512 case IORING_OP_SEND:
6513 return io_sendmsg_prep(req, sqe);
6514 case IORING_OP_RECVMSG:
6515 case IORING_OP_RECV:
6516 return io_recvmsg_prep(req, sqe);
6517 case IORING_OP_CONNECT:
6518 return io_connect_prep(req, sqe);
6519 case IORING_OP_TIMEOUT:
6520 return io_timeout_prep(req, sqe, false);
6521 case IORING_OP_TIMEOUT_REMOVE:
6522 return io_timeout_remove_prep(req, sqe);
6523 case IORING_OP_ASYNC_CANCEL:
6524 return io_async_cancel_prep(req, sqe);
6525 case IORING_OP_LINK_TIMEOUT:
6526 return io_timeout_prep(req, sqe, true);
6527 case IORING_OP_ACCEPT:
6528 return io_accept_prep(req, sqe);
6529 case IORING_OP_FALLOCATE:
6530 return io_fallocate_prep(req, sqe);
6531 case IORING_OP_OPENAT:
6532 return io_openat_prep(req, sqe);
6533 case IORING_OP_CLOSE:
6534 return io_close_prep(req, sqe);
6535 case IORING_OP_FILES_UPDATE:
6536 return io_rsrc_update_prep(req, sqe);
6537 case IORING_OP_STATX:
6538 return io_statx_prep(req, sqe);
6539 case IORING_OP_FADVISE:
6540 return io_fadvise_prep(req, sqe);
6541 case IORING_OP_MADVISE:
6542 return io_madvise_prep(req, sqe);
6543 case IORING_OP_OPENAT2:
6544 return io_openat2_prep(req, sqe);
6545 case IORING_OP_EPOLL_CTL:
6546 return io_epoll_ctl_prep(req, sqe);
6547 case IORING_OP_SPLICE:
6548 return io_splice_prep(req, sqe);
6549 case IORING_OP_PROVIDE_BUFFERS:
6550 return io_provide_buffers_prep(req, sqe);
6551 case IORING_OP_REMOVE_BUFFERS:
6552 return io_remove_buffers_prep(req, sqe);
6553 case IORING_OP_TEE:
6554 return io_tee_prep(req, sqe);
6555 case IORING_OP_SHUTDOWN:
6556 return io_shutdown_prep(req, sqe);
6557 case IORING_OP_RENAMEAT:
6558 return io_renameat_prep(req, sqe);
6559 case IORING_OP_UNLINKAT:
6560 return io_unlinkat_prep(req, sqe);
6561 }
6562
6563 printk_once(KERN_WARNING "io_uring: unhandled opcode %d\n",
6564 req->opcode);
6565 return -EINVAL;
6566 }
6567
io_req_prep_async(struct io_kiocb *req)6568 static int io_req_prep_async(struct io_kiocb *req)
6569 {
6570 if (!io_op_defs[req->opcode].needs_async_setup)
6571 return 0;
6572 if (WARN_ON_ONCE(req->async_data))
6573 return -EFAULT;
6574 if (io_alloc_async_data(req))
6575 return -EAGAIN;
6576
6577 switch (req->opcode) {
6578 case IORING_OP_READV:
6579 return io_rw_prep_async(req, READ);
6580 case IORING_OP_WRITEV:
6581 return io_rw_prep_async(req, WRITE);
6582 case IORING_OP_SENDMSG:
6583 return io_sendmsg_prep_async(req);
6584 case IORING_OP_RECVMSG:
6585 return io_recvmsg_prep_async(req);
6586 case IORING_OP_CONNECT:
6587 return io_connect_prep_async(req);
6588 }
6589 printk_once(KERN_WARNING "io_uring: prep_async() bad opcode %d\n",
6590 req->opcode);
6591 return -EFAULT;
6592 }
6593
io_get_sequence(struct io_kiocb *req)6594 static u32 io_get_sequence(struct io_kiocb *req)
6595 {
6596 u32 seq = req->ctx->cached_sq_head;
6597
6598 /* need original cached_sq_head, but it was increased for each req */
6599 io_for_each_link(req, req)
6600 seq--;
6601 return seq;
6602 }
6603
io_drain_req(struct io_kiocb *req)6604 static bool io_drain_req(struct io_kiocb *req)
6605 {
6606 struct io_kiocb *pos;
6607 struct io_ring_ctx *ctx = req->ctx;
6608 struct io_defer_entry *de;
6609 int ret;
6610 u32 seq;
6611
6612 if (req->flags & REQ_F_FAIL) {
6613 io_req_complete_fail_submit(req);
6614 return true;
6615 }
6616
6617 /*
6618 * If we need to drain a request in the middle of a link, drain the
6619 * head request and the next request/link after the current link.
6620 * Considering sequential execution of links, IOSQE_IO_DRAIN will be
6621 * maintained for every request of our link.
6622 */
6623 if (ctx->drain_next) {
6624 req->flags |= REQ_F_IO_DRAIN;
6625 ctx->drain_next = false;
6626 }
6627 /* not interested in head, start from the first linked */
6628 io_for_each_link(pos, req->link) {
6629 if (pos->flags & REQ_F_IO_DRAIN) {
6630 ctx->drain_next = true;
6631 req->flags |= REQ_F_IO_DRAIN;
6632 break;
6633 }
6634 }
6635
6636 /* Still need defer if there is pending req in defer list. */
6637 spin_lock(&ctx->completion_lock);
6638 if (likely(list_empty_careful(&ctx->defer_list) &&
6639 !(req->flags & REQ_F_IO_DRAIN))) {
6640 spin_unlock(&ctx->completion_lock);
6641 ctx->drain_active = false;
6642 return false;
6643 }
6644 spin_unlock(&ctx->completion_lock);
6645
6646 seq = io_get_sequence(req);
6647 /* Still a chance to pass the sequence check */
6648 if (!req_need_defer(req, seq) && list_empty_careful(&ctx->defer_list))
6649 return false;
6650
6651 ret = io_req_prep_async(req);
6652 if (ret)
6653 goto fail;
6654 io_prep_async_link(req);
6655 de = kmalloc(sizeof(*de), GFP_KERNEL);
6656 if (!de) {
6657 ret = -ENOMEM;
6658 fail:
6659 io_req_complete_failed(req, ret);
6660 return true;
6661 }
6662
6663 spin_lock(&ctx->completion_lock);
6664 if (!req_need_defer(req, seq) && list_empty(&ctx->defer_list)) {
6665 spin_unlock(&ctx->completion_lock);
6666 kfree(de);
6667 io_queue_async_work(req, NULL);
6668 return true;
6669 }
6670
6671 trace_io_uring_defer(ctx, req, req->user_data);
6672 de->req = req;
6673 de->seq = seq;
6674 list_add_tail(&de->list, &ctx->defer_list);
6675 spin_unlock(&ctx->completion_lock);
6676 return true;
6677 }
6678
io_clean_op(struct io_kiocb *req)6679 static void io_clean_op(struct io_kiocb *req)
6680 {
6681 if (req->flags & REQ_F_BUFFER_SELECTED) {
6682 switch (req->opcode) {
6683 case IORING_OP_READV:
6684 case IORING_OP_READ_FIXED:
6685 case IORING_OP_READ:
6686 kfree((void *)(unsigned long)req->rw.addr);
6687 break;
6688 case IORING_OP_RECVMSG:
6689 case IORING_OP_RECV:
6690 kfree(req->sr_msg.kbuf);
6691 break;
6692 }
6693 }
6694
6695 if (req->flags & REQ_F_NEED_CLEANUP) {
6696 switch (req->opcode) {
6697 case IORING_OP_READV:
6698 case IORING_OP_READ_FIXED:
6699 case IORING_OP_READ:
6700 case IORING_OP_WRITEV:
6701 case IORING_OP_WRITE_FIXED:
6702 case IORING_OP_WRITE: {
6703 struct io_async_rw *io = req->async_data;
6704
6705 kfree(io->free_iovec);
6706 break;
6707 }
6708 case IORING_OP_RECVMSG:
6709 case IORING_OP_SENDMSG: {
6710 struct io_async_msghdr *io = req->async_data;
6711
6712 kfree(io->free_iov);
6713 break;
6714 }
6715 case IORING_OP_OPENAT:
6716 case IORING_OP_OPENAT2:
6717 if (req->open.filename)
6718 putname(req->open.filename);
6719 break;
6720 case IORING_OP_RENAMEAT:
6721 putname(req->rename.oldpath);
6722 putname(req->rename.newpath);
6723 break;
6724 case IORING_OP_UNLINKAT:
6725 putname(req->unlink.filename);
6726 break;
6727 }
6728 }
6729 if ((req->flags & REQ_F_POLLED) && req->apoll) {
6730 kfree(req->apoll->double_poll);
6731 kfree(req->apoll);
6732 req->apoll = NULL;
6733 }
6734 if (req->flags & REQ_F_INFLIGHT) {
6735 struct io_uring_task *tctx = req->task->io_uring;
6736
6737 atomic_dec(&tctx->inflight_tracked);
6738 }
6739 if (req->flags & REQ_F_CREDS)
6740 put_cred(req->creds);
6741
6742 req->flags &= ~IO_REQ_CLEAN_FLAGS;
6743 }
6744
io_issue_sqe(struct io_kiocb *req, unsigned int issue_flags)6745 static int io_issue_sqe(struct io_kiocb *req, unsigned int issue_flags)
6746 {
6747 struct io_ring_ctx *ctx = req->ctx;
6748 const struct cred *creds = NULL;
6749 int ret;
6750
6751 if ((req->flags & REQ_F_CREDS) && req->creds != current_cred())
6752 creds = override_creds(req->creds);
6753
6754 switch (req->opcode) {
6755 case IORING_OP_NOP:
6756 ret = io_nop(req, issue_flags);
6757 break;
6758 case IORING_OP_READV:
6759 case IORING_OP_READ_FIXED:
6760 case IORING_OP_READ:
6761 ret = io_read(req, issue_flags);
6762 break;
6763 case IORING_OP_WRITEV:
6764 case IORING_OP_WRITE_FIXED:
6765 case IORING_OP_WRITE:
6766 ret = io_write(req, issue_flags);
6767 break;
6768 case IORING_OP_FSYNC:
6769 ret = io_fsync(req, issue_flags);
6770 break;
6771 case IORING_OP_POLL_ADD:
6772 ret = io_poll_add(req, issue_flags);
6773 break;
6774 case IORING_OP_POLL_REMOVE:
6775 ret = io_poll_update(req, issue_flags);
6776 break;
6777 case IORING_OP_SYNC_FILE_RANGE:
6778 ret = io_sync_file_range(req, issue_flags);
6779 break;
6780 case IORING_OP_SENDMSG:
6781 ret = io_sendmsg(req, issue_flags);
6782 break;
6783 case IORING_OP_SEND:
6784 ret = io_send(req, issue_flags);
6785 break;
6786 case IORING_OP_RECVMSG:
6787 ret = io_recvmsg(req, issue_flags);
6788 break;
6789 case IORING_OP_RECV:
6790 ret = io_recv(req, issue_flags);
6791 break;
6792 case IORING_OP_TIMEOUT:
6793 ret = io_timeout(req, issue_flags);
6794 break;
6795 case IORING_OP_TIMEOUT_REMOVE:
6796 ret = io_timeout_remove(req, issue_flags);
6797 break;
6798 case IORING_OP_ACCEPT:
6799 ret = io_accept(req, issue_flags);
6800 break;
6801 case IORING_OP_CONNECT:
6802 ret = io_connect(req, issue_flags);
6803 break;
6804 case IORING_OP_ASYNC_CANCEL:
6805 ret = io_async_cancel(req, issue_flags);
6806 break;
6807 case IORING_OP_FALLOCATE:
6808 ret = io_fallocate(req, issue_flags);
6809 break;
6810 case IORING_OP_OPENAT:
6811 ret = io_openat(req, issue_flags);
6812 break;
6813 case IORING_OP_CLOSE:
6814 ret = io_close(req, issue_flags);
6815 break;
6816 case IORING_OP_FILES_UPDATE:
6817 ret = io_files_update(req, issue_flags);
6818 break;
6819 case IORING_OP_STATX:
6820 ret = io_statx(req, issue_flags);
6821 break;
6822 case IORING_OP_FADVISE:
6823 ret = io_fadvise(req, issue_flags);
6824 break;
6825 case IORING_OP_MADVISE:
6826 ret = io_madvise(req, issue_flags);
6827 break;
6828 case IORING_OP_OPENAT2:
6829 ret = io_openat2(req, issue_flags);
6830 break;
6831 case IORING_OP_EPOLL_CTL:
6832 ret = io_epoll_ctl(req, issue_flags);
6833 break;
6834 case IORING_OP_SPLICE:
6835 ret = io_splice(req, issue_flags);
6836 break;
6837 case IORING_OP_PROVIDE_BUFFERS:
6838 ret = io_provide_buffers(req, issue_flags);
6839 break;
6840 case IORING_OP_REMOVE_BUFFERS:
6841 ret = io_remove_buffers(req, issue_flags);
6842 break;
6843 case IORING_OP_TEE:
6844 ret = io_tee(req, issue_flags);
6845 break;
6846 case IORING_OP_SHUTDOWN:
6847 ret = io_shutdown(req, issue_flags);
6848 break;
6849 case IORING_OP_RENAMEAT:
6850 ret = io_renameat(req, issue_flags);
6851 break;
6852 case IORING_OP_UNLINKAT:
6853 ret = io_unlinkat(req, issue_flags);
6854 break;
6855 default:
6856 ret = -EINVAL;
6857 break;
6858 }
6859
6860 if (creds)
6861 revert_creds(creds);
6862 if (ret)
6863 return ret;
6864 /* If the op doesn't have a file, we're not polling for it */
6865 if ((ctx->flags & IORING_SETUP_IOPOLL) && req->file)
6866 io_iopoll_req_issued(req);
6867
6868 return 0;
6869 }
6870
io_wq_free_work(struct io_wq_work *work)6871 static struct io_wq_work *io_wq_free_work(struct io_wq_work *work)
6872 {
6873 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
6874
6875 req = io_put_req_find_next(req);
6876 return req ? &req->work : NULL;
6877 }
6878
io_wq_submit_work(struct io_wq_work *work)6879 static void io_wq_submit_work(struct io_wq_work *work)
6880 {
6881 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
6882 struct io_kiocb *timeout;
6883 int ret = 0;
6884
6885 /* one will be dropped by ->io_free_work() after returning to io-wq */
6886 if (!(req->flags & REQ_F_REFCOUNT))
6887 __io_req_set_refcount(req, 2);
6888 else
6889 req_ref_get(req);
6890
6891 timeout = io_prep_linked_timeout(req);
6892 if (timeout)
6893 io_queue_linked_timeout(timeout);
6894 /* either cancelled or io-wq is dying, so don't touch tctx->iowq */
6895 if (work->flags & IO_WQ_WORK_CANCEL)
6896 ret = -ECANCELED;
6897
6898 if (!ret) {
6899 do {
6900 ret = io_issue_sqe(req, 0);
6901 /*
6902 * We can get EAGAIN for polled IO even though we're
6903 * forcing a sync submission from here, since we can't
6904 * wait for request slots on the block side.
6905 */
6906 if (ret != -EAGAIN || !(req->ctx->flags & IORING_SETUP_IOPOLL))
6907 break;
6908 if (io_wq_worker_stopped())
6909 break;
6910 /*
6911 * If REQ_F_NOWAIT is set, then don't wait or retry with
6912 * poll. -EAGAIN is final for that case.
6913 */
6914 if (req->flags & REQ_F_NOWAIT)
6915 break;
6916
6917 cond_resched();
6918 } while (1);
6919 }
6920
6921 /* avoid locking problems by failing it from a clean context */
6922 if (ret)
6923 io_req_task_queue_fail(req, ret);
6924 }
6925
io_fixed_file_slot(struct io_file_table *table, unsigned i)6926 static inline struct io_fixed_file *io_fixed_file_slot(struct io_file_table *table,
6927 unsigned i)
6928 {
6929 return &table->files[i];
6930 }
6931
io_file_from_index(struct io_ring_ctx *ctx, int index)6932 static inline struct file *io_file_from_index(struct io_ring_ctx *ctx,
6933 int index)
6934 {
6935 struct io_fixed_file *slot = io_fixed_file_slot(&ctx->file_table, index);
6936
6937 return (struct file *) (slot->file_ptr & FFS_MASK);
6938 }
6939
io_fixed_file_set(struct io_fixed_file *file_slot, struct file *file)6940 static void io_fixed_file_set(struct io_fixed_file *file_slot, struct file *file)
6941 {
6942 unsigned long file_ptr = (unsigned long) file;
6943
6944 if (__io_file_supports_nowait(file, READ))
6945 file_ptr |= FFS_ASYNC_READ;
6946 if (__io_file_supports_nowait(file, WRITE))
6947 file_ptr |= FFS_ASYNC_WRITE;
6948 if (S_ISREG(file_inode(file)->i_mode))
6949 file_ptr |= FFS_ISREG;
6950 file_slot->file_ptr = file_ptr;
6951 }
6952
io_file_get_fixed(struct io_ring_ctx *ctx, struct io_kiocb *req, int fd, unsigned int issue_flags)6953 static inline struct file *io_file_get_fixed(struct io_ring_ctx *ctx,
6954 struct io_kiocb *req, int fd,
6955 unsigned int issue_flags)
6956 {
6957 struct file *file = NULL;
6958 unsigned long file_ptr;
6959
6960 io_ring_submit_lock(ctx, !(issue_flags & IO_URING_F_NONBLOCK));
6961
6962 if (unlikely((unsigned int)fd >= ctx->nr_user_files))
6963 goto out;
6964 fd = array_index_nospec(fd, ctx->nr_user_files);
6965 file_ptr = io_fixed_file_slot(&ctx->file_table, fd)->file_ptr;
6966 file = (struct file *) (file_ptr & FFS_MASK);
6967 file_ptr &= ~FFS_MASK;
6968 /* mask in overlapping REQ_F and FFS bits */
6969 req->flags |= (file_ptr << REQ_F_NOWAIT_READ_BIT);
6970 io_req_set_rsrc_node(req);
6971 out:
6972 io_ring_submit_unlock(ctx, !(issue_flags & IO_URING_F_NONBLOCK));
6973 return file;
6974 }
6975
io_file_get_normal(struct io_ring_ctx *ctx, struct io_kiocb *req, int fd)6976 static struct file *io_file_get_normal(struct io_ring_ctx *ctx,
6977 struct io_kiocb *req, int fd)
6978 {
6979 struct file *file = fget(fd);
6980
6981 trace_io_uring_file_get(ctx, fd);
6982
6983 /* we don't allow fixed io_uring files */
6984 if (file && unlikely(file->f_op == &io_uring_fops))
6985 io_req_track_inflight(req);
6986 return file;
6987 }
6988
io_file_get(struct io_ring_ctx *ctx, struct io_kiocb *req, int fd, bool fixed, unsigned int issue_flags)6989 static inline struct file *io_file_get(struct io_ring_ctx *ctx,
6990 struct io_kiocb *req, int fd, bool fixed,
6991 unsigned int issue_flags)
6992 {
6993 if (fixed)
6994 return io_file_get_fixed(ctx, req, fd, issue_flags);
6995 else
6996 return io_file_get_normal(ctx, req, fd);
6997 }
6998
io_req_task_link_timeout(struct io_kiocb *req, bool *locked)6999 static void io_req_task_link_timeout(struct io_kiocb *req, bool *locked)
7000 {
7001 struct io_kiocb *prev = req->timeout.prev;
7002 int ret = -ENOENT;
7003
7004 if (prev) {
7005 if (!(req->task->flags & PF_EXITING))
7006 ret = io_try_cancel_userdata(req, prev->user_data);
7007 io_req_complete_post(req, ret ?: -ETIME, 0);
7008 io_put_req(prev);
7009 } else {
7010 io_req_complete_post(req, -ETIME, 0);
7011 }
7012 }
7013
io_link_timeout_fn(struct hrtimer *timer)7014 static enum hrtimer_restart io_link_timeout_fn(struct hrtimer *timer)
7015 {
7016 struct io_timeout_data *data = container_of(timer,
7017 struct io_timeout_data, timer);
7018 struct io_kiocb *prev, *req = data->req;
7019 struct io_ring_ctx *ctx = req->ctx;
7020 unsigned long flags;
7021
7022 spin_lock_irqsave(&ctx->timeout_lock, flags);
7023 prev = req->timeout.head;
7024 req->timeout.head = NULL;
7025
7026 /*
7027 * We don't expect the list to be empty, that will only happen if we
7028 * race with the completion of the linked work.
7029 */
7030 if (prev) {
7031 io_remove_next_linked(prev);
7032 if (!req_ref_inc_not_zero(prev))
7033 prev = NULL;
7034 }
7035 list_del(&req->timeout.list);
7036 req->timeout.prev = prev;
7037 spin_unlock_irqrestore(&ctx->timeout_lock, flags);
7038
7039 req->io_task_work.func = io_req_task_link_timeout;
7040 io_req_task_work_add(req);
7041 return HRTIMER_NORESTART;
7042 }
7043
io_queue_linked_timeout(struct io_kiocb *req)7044 static void io_queue_linked_timeout(struct io_kiocb *req)
7045 {
7046 struct io_ring_ctx *ctx = req->ctx;
7047
7048 spin_lock_irq(&ctx->timeout_lock);
7049 /*
7050 * If the back reference is NULL, then our linked request finished
7051 * before we got a chance to setup the timer
7052 */
7053 if (req->timeout.head) {
7054 struct io_timeout_data *data = req->async_data;
7055
7056 data->timer.function = io_link_timeout_fn;
7057 hrtimer_start(&data->timer, timespec64_to_ktime(data->ts),
7058 data->mode);
7059 list_add_tail(&req->timeout.list, &ctx->ltimeout_list);
7060 }
7061 spin_unlock_irq(&ctx->timeout_lock);
7062 /* drop submission reference */
7063 io_put_req(req);
7064 }
7065
7066 static void __io_queue_sqe(struct io_kiocb *req)
7067 __must_hold(&req->ctx->uring_lock)
7068 {
7069 struct io_kiocb *linked_timeout;
7070 int ret;
7071
7072 issue_sqe:
7073 ret = io_issue_sqe(req, IO_URING_F_NONBLOCK|IO_URING_F_COMPLETE_DEFER);
7074
7075 /*
7076 * We async punt it if the file wasn't marked NOWAIT, or if the file
7077 * doesn't support non-blocking read/write attempts
7078 */
7079 if (likely(!ret)) {
7080 if (req->flags & REQ_F_COMPLETE_INLINE) {
7081 struct io_ring_ctx *ctx = req->ctx;
7082 struct io_submit_state *state = &ctx->submit_state;
7083
7084 state->compl_reqs[state->compl_nr++] = req;
7085 if (state->compl_nr == ARRAY_SIZE(state->compl_reqs))
7086 io_submit_flush_completions(ctx);
7087 return;
7088 }
7089
7090 linked_timeout = io_prep_linked_timeout(req);
7091 if (linked_timeout)
7092 io_queue_linked_timeout(linked_timeout);
7093 } else if (ret == -EAGAIN && !(req->flags & REQ_F_NOWAIT)) {
7094 linked_timeout = io_prep_linked_timeout(req);
7095
7096 switch (io_arm_poll_handler(req)) {
7097 case IO_APOLL_READY:
7098 if (linked_timeout)
7099 io_queue_linked_timeout(linked_timeout);
7100 goto issue_sqe;
7101 case IO_APOLL_ABORTED:
7102 /*
7103 * Queued up for async execution, worker will release
7104 * submit reference when the iocb is actually submitted.
7105 */
7106 io_queue_async_work(req, NULL);
7107 break;
7108 }
7109
7110 if (linked_timeout)
7111 io_queue_linked_timeout(linked_timeout);
7112 } else {
7113 io_req_complete_failed(req, ret);
7114 }
7115 }
7116
7117 static inline void io_queue_sqe(struct io_kiocb *req)
7118 __must_hold(&req->ctx->uring_lock)
7119 {
7120 if (unlikely(req->ctx->drain_active) && io_drain_req(req))
7121 return;
7122
7123 if (likely(!(req->flags & (REQ_F_FORCE_ASYNC | REQ_F_FAIL)))) {
7124 __io_queue_sqe(req);
7125 } else if (req->flags & REQ_F_FAIL) {
7126 io_req_complete_fail_submit(req);
7127 } else {
7128 int ret = io_req_prep_async(req);
7129
7130 if (unlikely(ret))
7131 io_req_complete_failed(req, ret);
7132 else
7133 io_queue_async_work(req, NULL);
7134 }
7135 }
7136
7137 /*
7138 * Check SQE restrictions (opcode and flags).
7139 *
7140 * Returns 'true' if SQE is allowed, 'false' otherwise.
7141 */
io_check_restriction(struct io_ring_ctx *ctx, struct io_kiocb *req, unsigned int sqe_flags)7142 static inline bool io_check_restriction(struct io_ring_ctx *ctx,
7143 struct io_kiocb *req,
7144 unsigned int sqe_flags)
7145 {
7146 if (likely(!ctx->restricted))
7147 return true;
7148
7149 if (!test_bit(req->opcode, ctx->restrictions.sqe_op))
7150 return false;
7151
7152 if ((sqe_flags & ctx->restrictions.sqe_flags_required) !=
7153 ctx->restrictions.sqe_flags_required)
7154 return false;
7155
7156 if (sqe_flags & ~(ctx->restrictions.sqe_flags_allowed |
7157 ctx->restrictions.sqe_flags_required))
7158 return false;
7159
7160 return true;
7161 }
7162
7163 static int io_init_req(struct io_ring_ctx *ctx, struct io_kiocb *req,
7164 const struct io_uring_sqe *sqe)
7165 __must_hold(&ctx->uring_lock)
7166 {
7167 struct io_submit_state *state;
7168 unsigned int sqe_flags;
7169 int personality, ret = 0;
7170
7171 /* req is partially pre-initialised, see io_preinit_req() */
7172 req->opcode = READ_ONCE(sqe->opcode);
7173 /* same numerical values with corresponding REQ_F_*, safe to copy */
7174 req->flags = sqe_flags = READ_ONCE(sqe->flags);
7175 req->user_data = READ_ONCE(sqe->user_data);
7176 req->file = NULL;
7177 req->fixed_rsrc_refs = NULL;
7178 req->task = current;
7179
7180 /* enforce forwards compatibility on users */
7181 if (unlikely(sqe_flags & ~SQE_VALID_FLAGS))
7182 return -EINVAL;
7183 if (unlikely(req->opcode >= IORING_OP_LAST))
7184 return -EINVAL;
7185 if (!io_check_restriction(ctx, req, sqe_flags))
7186 return -EACCES;
7187
7188 if ((sqe_flags & IOSQE_BUFFER_SELECT) &&
7189 !io_op_defs[req->opcode].buffer_select)
7190 return -EOPNOTSUPP;
7191 if (unlikely(sqe_flags & IOSQE_IO_DRAIN))
7192 ctx->drain_active = true;
7193
7194 personality = READ_ONCE(sqe->personality);
7195 if (personality) {
7196 req->creds = xa_load(&ctx->personalities, personality);
7197 if (!req->creds)
7198 return -EINVAL;
7199 get_cred(req->creds);
7200 req->flags |= REQ_F_CREDS;
7201 }
7202 state = &ctx->submit_state;
7203
7204 /*
7205 * Plug now if we have more than 1 IO left after this, and the target
7206 * is potentially a read/write to block based storage.
7207 */
7208 if (!state->plug_started && state->ios_left > 1 &&
7209 io_op_defs[req->opcode].plug) {
7210 blk_start_plug(&state->plug);
7211 state->plug_started = true;
7212 }
7213
7214 if (io_op_defs[req->opcode].needs_file) {
7215 req->file = io_file_get(ctx, req, READ_ONCE(sqe->fd),
7216 (sqe_flags & IOSQE_FIXED_FILE),
7217 IO_URING_F_NONBLOCK);
7218 if (unlikely(!req->file))
7219 ret = -EBADF;
7220 }
7221
7222 state->ios_left--;
7223 return ret;
7224 }
7225
7226 static int io_submit_sqe(struct io_ring_ctx *ctx, struct io_kiocb *req,
7227 const struct io_uring_sqe *sqe)
7228 __must_hold(&ctx->uring_lock)
7229 {
7230 struct io_submit_link *link = &ctx->submit_state.link;
7231 int ret;
7232
7233 ret = io_init_req(ctx, req, sqe);
7234 if (unlikely(ret)) {
7235 fail_req:
7236 /* fail even hard links since we don't submit */
7237 if (link->head) {
7238 /*
7239 * we can judge a link req is failed or cancelled by if
7240 * REQ_F_FAIL is set, but the head is an exception since
7241 * it may be set REQ_F_FAIL because of other req's failure
7242 * so let's leverage req->result to distinguish if a head
7243 * is set REQ_F_FAIL because of its failure or other req's
7244 * failure so that we can set the correct ret code for it.
7245 * init result here to avoid affecting the normal path.
7246 */
7247 if (!(link->head->flags & REQ_F_FAIL))
7248 req_fail_link_node(link->head, -ECANCELED);
7249 } else if (!(req->flags & (REQ_F_LINK | REQ_F_HARDLINK))) {
7250 /*
7251 * the current req is a normal req, we should return
7252 * error and thus break the submittion loop.
7253 */
7254 io_req_complete_failed(req, ret);
7255 return ret;
7256 }
7257 req_fail_link_node(req, ret);
7258 } else {
7259 ret = io_req_prep(req, sqe);
7260 if (unlikely(ret))
7261 goto fail_req;
7262 }
7263
7264 /* don't need @sqe from now on */
7265 trace_io_uring_submit_sqe(ctx, req, req->opcode, req->user_data,
7266 req->flags, true,
7267 ctx->flags & IORING_SETUP_SQPOLL);
7268
7269 /*
7270 * If we already have a head request, queue this one for async
7271 * submittal once the head completes. If we don't have a head but
7272 * IOSQE_IO_LINK is set in the sqe, start a new head. This one will be
7273 * submitted sync once the chain is complete. If none of those
7274 * conditions are true (normal request), then just queue it.
7275 */
7276 if (link->head) {
7277 struct io_kiocb *head = link->head;
7278
7279 if (!(req->flags & REQ_F_FAIL)) {
7280 ret = io_req_prep_async(req);
7281 if (unlikely(ret)) {
7282 req_fail_link_node(req, ret);
7283 if (!(head->flags & REQ_F_FAIL))
7284 req_fail_link_node(head, -ECANCELED);
7285 }
7286 }
7287 trace_io_uring_link(ctx, req, head);
7288 link->last->link = req;
7289 link->last = req;
7290
7291 /* last request of a link, enqueue the link */
7292 if (!(req->flags & (REQ_F_LINK | REQ_F_HARDLINK))) {
7293 link->head = NULL;
7294 io_queue_sqe(head);
7295 }
7296 } else {
7297 if (req->flags & (REQ_F_LINK | REQ_F_HARDLINK)) {
7298 link->head = req;
7299 link->last = req;
7300 } else {
7301 io_queue_sqe(req);
7302 }
7303 }
7304
7305 return 0;
7306 }
7307
7308 /*
7309 * Batched submission is done, ensure local IO is flushed out.
7310 */
io_submit_state_end(struct io_submit_state *state, struct io_ring_ctx *ctx)7311 static void io_submit_state_end(struct io_submit_state *state,
7312 struct io_ring_ctx *ctx)
7313 {
7314 if (state->link.head)
7315 io_queue_sqe(state->link.head);
7316 if (state->compl_nr)
7317 io_submit_flush_completions(ctx);
7318 if (state->plug_started)
7319 blk_finish_plug(&state->plug);
7320 }
7321
7322 /*
7323 * Start submission side cache.
7324 */
io_submit_state_start(struct io_submit_state *state, unsigned int max_ios)7325 static void io_submit_state_start(struct io_submit_state *state,
7326 unsigned int max_ios)
7327 {
7328 state->plug_started = false;
7329 state->ios_left = max_ios;
7330 /* set only head, no need to init link_last in advance */
7331 state->link.head = NULL;
7332 }
7333
io_commit_sqring(struct io_ring_ctx *ctx)7334 static void io_commit_sqring(struct io_ring_ctx *ctx)
7335 {
7336 struct io_rings *rings = ctx->rings;
7337
7338 /*
7339 * Ensure any loads from the SQEs are done at this point,
7340 * since once we write the new head, the application could
7341 * write new data to them.
7342 */
7343 smp_store_release(&rings->sq.head, ctx->cached_sq_head);
7344 }
7345
7346 /*
7347 * Fetch an sqe, if one is available. Note this returns a pointer to memory
7348 * that is mapped by userspace. This means that care needs to be taken to
7349 * ensure that reads are stable, as we cannot rely on userspace always
7350 * being a good citizen. If members of the sqe are validated and then later
7351 * used, it's important that those reads are done through READ_ONCE() to
7352 * prevent a re-load down the line.
7353 */
io_get_sqe(struct io_ring_ctx *ctx)7354 static const struct io_uring_sqe *io_get_sqe(struct io_ring_ctx *ctx)
7355 {
7356 unsigned head, mask = ctx->sq_entries - 1;
7357 unsigned sq_idx = ctx->cached_sq_head++ & mask;
7358
7359 /*
7360 * The cached sq head (or cq tail) serves two purposes:
7361 *
7362 * 1) allows us to batch the cost of updating the user visible
7363 * head updates.
7364 * 2) allows the kernel side to track the head on its own, even
7365 * though the application is the one updating it.
7366 */
7367 head = READ_ONCE(ctx->sq_array[sq_idx]);
7368 if (likely(head < ctx->sq_entries))
7369 return &ctx->sq_sqes[head];
7370
7371 /* drop invalid entries */
7372 ctx->cq_extra--;
7373 WRITE_ONCE(ctx->rings->sq_dropped,
7374 READ_ONCE(ctx->rings->sq_dropped) + 1);
7375 return NULL;
7376 }
7377
7378 static int io_submit_sqes(struct io_ring_ctx *ctx, unsigned int nr)
7379 __must_hold(&ctx->uring_lock)
7380 {
7381 int submitted = 0;
7382
7383 /* make sure SQ entry isn't read before tail */
7384 nr = min3(nr, ctx->sq_entries, io_sqring_entries(ctx));
7385 if (!percpu_ref_tryget_many(&ctx->refs, nr))
7386 return -EAGAIN;
7387 io_get_task_refs(nr);
7388
7389 io_submit_state_start(&ctx->submit_state, nr);
7390 while (submitted < nr) {
7391 const struct io_uring_sqe *sqe;
7392 struct io_kiocb *req;
7393
7394 req = io_alloc_req(ctx);
7395 if (unlikely(!req)) {
7396 if (!submitted)
7397 submitted = -EAGAIN;
7398 break;
7399 }
7400 sqe = io_get_sqe(ctx);
7401 if (unlikely(!sqe)) {
7402 list_add(&req->inflight_entry, &ctx->submit_state.free_list);
7403 break;
7404 }
7405 /* will complete beyond this point, count as submitted */
7406 submitted++;
7407 if (io_submit_sqe(ctx, req, sqe))
7408 break;
7409 }
7410
7411 if (unlikely(submitted != nr)) {
7412 int ref_used = (submitted == -EAGAIN) ? 0 : submitted;
7413 int unused = nr - ref_used;
7414
7415 current->io_uring->cached_refs += unused;
7416 percpu_ref_put_many(&ctx->refs, unused);
7417 }
7418
7419 io_submit_state_end(&ctx->submit_state, ctx);
7420 /* Commit SQ ring head once we've consumed and submitted all SQEs */
7421 io_commit_sqring(ctx);
7422
7423 return submitted;
7424 }
7425
io_sqd_events_pending(struct io_sq_data *sqd)7426 static inline bool io_sqd_events_pending(struct io_sq_data *sqd)
7427 {
7428 return READ_ONCE(sqd->state);
7429 }
7430
io_ring_set_wakeup_flag(struct io_ring_ctx *ctx)7431 static inline void io_ring_set_wakeup_flag(struct io_ring_ctx *ctx)
7432 {
7433 /* Tell userspace we may need a wakeup call */
7434 spin_lock(&ctx->completion_lock);
7435 WRITE_ONCE(ctx->rings->sq_flags,
7436 ctx->rings->sq_flags | IORING_SQ_NEED_WAKEUP);
7437 spin_unlock(&ctx->completion_lock);
7438 }
7439
io_ring_clear_wakeup_flag(struct io_ring_ctx *ctx)7440 static inline void io_ring_clear_wakeup_flag(struct io_ring_ctx *ctx)
7441 {
7442 spin_lock(&ctx->completion_lock);
7443 WRITE_ONCE(ctx->rings->sq_flags,
7444 ctx->rings->sq_flags & ~IORING_SQ_NEED_WAKEUP);
7445 spin_unlock(&ctx->completion_lock);
7446 }
7447
__io_sq_thread(struct io_ring_ctx *ctx, bool cap_entries)7448 static int __io_sq_thread(struct io_ring_ctx *ctx, bool cap_entries)
7449 {
7450 unsigned int to_submit;
7451 int ret = 0;
7452
7453 to_submit = io_sqring_entries(ctx);
7454 /* if we're handling multiple rings, cap submit size for fairness */
7455 if (cap_entries && to_submit > IORING_SQPOLL_CAP_ENTRIES_VALUE)
7456 to_submit = IORING_SQPOLL_CAP_ENTRIES_VALUE;
7457
7458 if (!list_empty(&ctx->iopoll_list) || to_submit) {
7459 unsigned nr_events = 0;
7460 const struct cred *creds = NULL;
7461
7462 if (ctx->sq_creds != current_cred())
7463 creds = override_creds(ctx->sq_creds);
7464
7465 mutex_lock(&ctx->uring_lock);
7466 if (!list_empty(&ctx->iopoll_list))
7467 io_do_iopoll(ctx, &nr_events, 0);
7468
7469 /*
7470 * Don't submit if refs are dying, good for io_uring_register(),
7471 * but also it is relied upon by io_ring_exit_work()
7472 */
7473 if (to_submit && likely(!percpu_ref_is_dying(&ctx->refs)) &&
7474 !(ctx->flags & IORING_SETUP_R_DISABLED))
7475 ret = io_submit_sqes(ctx, to_submit);
7476 mutex_unlock(&ctx->uring_lock);
7477
7478 if (to_submit && wq_has_sleeper(&ctx->sqo_sq_wait))
7479 wake_up(&ctx->sqo_sq_wait);
7480 if (creds)
7481 revert_creds(creds);
7482 }
7483
7484 return ret;
7485 }
7486
io_sqd_update_thread_idle(struct io_sq_data *sqd)7487 static void io_sqd_update_thread_idle(struct io_sq_data *sqd)
7488 {
7489 struct io_ring_ctx *ctx;
7490 unsigned sq_thread_idle = 0;
7491
7492 list_for_each_entry(ctx, &sqd->ctx_list, sqd_list)
7493 sq_thread_idle = max(sq_thread_idle, ctx->sq_thread_idle);
7494 sqd->sq_thread_idle = sq_thread_idle;
7495 }
7496
io_sqd_handle_event(struct io_sq_data *sqd)7497 static bool io_sqd_handle_event(struct io_sq_data *sqd)
7498 {
7499 bool did_sig = false;
7500 struct ksignal ksig;
7501
7502 if (test_bit(IO_SQ_THREAD_SHOULD_PARK, &sqd->state) ||
7503 signal_pending(current)) {
7504 mutex_unlock(&sqd->lock);
7505 if (signal_pending(current))
7506 did_sig = get_signal(&ksig);
7507 cond_resched();
7508 mutex_lock(&sqd->lock);
7509 }
7510 return did_sig || test_bit(IO_SQ_THREAD_SHOULD_STOP, &sqd->state);
7511 }
7512
io_sq_thread(void *data)7513 static int io_sq_thread(void *data)
7514 {
7515 struct io_sq_data *sqd = data;
7516 struct io_ring_ctx *ctx;
7517 unsigned long timeout = 0;
7518 char buf[TASK_COMM_LEN];
7519 DEFINE_WAIT(wait);
7520
7521 snprintf(buf, sizeof(buf), "iou-sqp-%d", sqd->task_pid);
7522 set_task_comm(current, buf);
7523
7524 if (sqd->sq_cpu != -1)
7525 set_cpus_allowed_ptr(current, cpumask_of(sqd->sq_cpu));
7526 else
7527 set_cpus_allowed_ptr(current, cpu_online_mask);
7528 current->flags |= PF_NO_SETAFFINITY;
7529
7530 mutex_lock(&sqd->lock);
7531 while (1) {
7532 bool cap_entries, sqt_spin = false;
7533
7534 if (io_sqd_events_pending(sqd) || signal_pending(current)) {
7535 if (io_sqd_handle_event(sqd))
7536 break;
7537 timeout = jiffies + sqd->sq_thread_idle;
7538 }
7539
7540 cap_entries = !list_is_singular(&sqd->ctx_list);
7541 list_for_each_entry(ctx, &sqd->ctx_list, sqd_list) {
7542 int ret = __io_sq_thread(ctx, cap_entries);
7543
7544 if (!sqt_spin && (ret > 0 || !list_empty(&ctx->iopoll_list)))
7545 sqt_spin = true;
7546 }
7547 if (io_run_task_work())
7548 sqt_spin = true;
7549
7550 if (sqt_spin || !time_after(jiffies, timeout)) {
7551 cond_resched();
7552 if (sqt_spin)
7553 timeout = jiffies + sqd->sq_thread_idle;
7554 continue;
7555 }
7556
7557 prepare_to_wait(&sqd->wait, &wait, TASK_INTERRUPTIBLE);
7558 if (!io_sqd_events_pending(sqd) && !current->task_works) {
7559 bool needs_sched = true;
7560
7561 list_for_each_entry(ctx, &sqd->ctx_list, sqd_list) {
7562 io_ring_set_wakeup_flag(ctx);
7563
7564 if ((ctx->flags & IORING_SETUP_IOPOLL) &&
7565 !list_empty_careful(&ctx->iopoll_list)) {
7566 needs_sched = false;
7567 break;
7568 }
7569 if (io_sqring_entries(ctx)) {
7570 needs_sched = false;
7571 break;
7572 }
7573 }
7574
7575 if (needs_sched) {
7576 mutex_unlock(&sqd->lock);
7577 schedule();
7578 mutex_lock(&sqd->lock);
7579 }
7580 list_for_each_entry(ctx, &sqd->ctx_list, sqd_list)
7581 io_ring_clear_wakeup_flag(ctx);
7582 }
7583
7584 finish_wait(&sqd->wait, &wait);
7585 timeout = jiffies + sqd->sq_thread_idle;
7586 }
7587
7588 io_uring_cancel_generic(true, sqd);
7589 sqd->thread = NULL;
7590 list_for_each_entry(ctx, &sqd->ctx_list, sqd_list)
7591 io_ring_set_wakeup_flag(ctx);
7592 io_run_task_work();
7593 mutex_unlock(&sqd->lock);
7594
7595 complete(&sqd->exited);
7596 do_exit(0);
7597 }
7598
7599 struct io_wait_queue {
7600 struct wait_queue_entry wq;
7601 struct io_ring_ctx *ctx;
7602 unsigned cq_tail;
7603 unsigned nr_timeouts;
7604 };
7605
io_should_wake(struct io_wait_queue *iowq)7606 static inline bool io_should_wake(struct io_wait_queue *iowq)
7607 {
7608 struct io_ring_ctx *ctx = iowq->ctx;
7609 int dist = ctx->cached_cq_tail - (int) iowq->cq_tail;
7610
7611 /*
7612 * Wake up if we have enough events, or if a timeout occurred since we
7613 * started waiting. For timeouts, we always want to return to userspace,
7614 * regardless of event count.
7615 */
7616 return dist >= 0 || atomic_read(&ctx->cq_timeouts) != iowq->nr_timeouts;
7617 }
7618
io_wake_function(struct wait_queue_entry *curr, unsigned int mode, int wake_flags, void *key)7619 static int io_wake_function(struct wait_queue_entry *curr, unsigned int mode,
7620 int wake_flags, void *key)
7621 {
7622 struct io_wait_queue *iowq = container_of(curr, struct io_wait_queue,
7623 wq);
7624
7625 /*
7626 * Cannot safely flush overflowed CQEs from here, ensure we wake up
7627 * the task, and the next invocation will do it.
7628 */
7629 if (io_should_wake(iowq) || test_bit(0, &iowq->ctx->check_cq_overflow))
7630 return autoremove_wake_function(curr, mode, wake_flags, key);
7631 return -1;
7632 }
7633
io_run_task_work_sig(void)7634 static int io_run_task_work_sig(void)
7635 {
7636 if (io_run_task_work())
7637 return 1;
7638 if (!signal_pending(current))
7639 return 0;
7640 if (test_thread_flag(TIF_NOTIFY_SIGNAL))
7641 return -ERESTARTSYS;
7642 return -EINTR;
7643 }
7644
current_pending_io(void)7645 static bool current_pending_io(void)
7646 {
7647 struct io_uring_task *tctx = current->io_uring;
7648
7649 if (!tctx)
7650 return false;
7651 return percpu_counter_read_positive(&tctx->inflight);
7652 }
7653
7654 /* when returns >0, the caller should retry */
io_cqring_wait_schedule(struct io_ring_ctx *ctx, struct io_wait_queue *iowq, ktime_t *timeout)7655 static inline int io_cqring_wait_schedule(struct io_ring_ctx *ctx,
7656 struct io_wait_queue *iowq,
7657 ktime_t *timeout)
7658 {
7659 int io_wait, ret;
7660
7661 /* make sure we run task_work before checking for signals */
7662 ret = io_run_task_work_sig();
7663 if (ret || io_should_wake(iowq))
7664 return ret;
7665 /* let the caller flush overflows, retry */
7666 if (test_bit(0, &ctx->check_cq_overflow))
7667 return 1;
7668
7669 /*
7670 * Mark us as being in io_wait if we have pending requests, so cpufreq
7671 * can take into account that the task is waiting for IO - turns out
7672 * to be important for low QD IO.
7673 */
7674 io_wait = current->in_iowait;
7675 if (current_pending_io())
7676 current->in_iowait = 1;
7677 ret = 1;
7678 if (!schedule_hrtimeout(timeout, HRTIMER_MODE_ABS))
7679 ret = -ETIME;
7680 current->in_iowait = io_wait;
7681 return ret;
7682 }
7683
7684 /*
7685 * Wait until events become available, if we don't already have some. The
7686 * application must reap them itself, as they reside on the shared cq ring.
7687 */
io_cqring_wait(struct io_ring_ctx *ctx, int min_events, const sigset_t __user *sig, size_t sigsz, struct __kernel_timespec __user *uts)7688 static int io_cqring_wait(struct io_ring_ctx *ctx, int min_events,
7689 const sigset_t __user *sig, size_t sigsz,
7690 struct __kernel_timespec __user *uts)
7691 {
7692 struct io_wait_queue iowq;
7693 struct io_rings *rings = ctx->rings;
7694 ktime_t timeout = KTIME_MAX;
7695 int ret;
7696
7697 do {
7698 io_cqring_overflow_flush(ctx);
7699 if (io_cqring_events(ctx) >= min_events)
7700 return 0;
7701 if (!io_run_task_work())
7702 break;
7703 } while (1);
7704
7705 if (uts) {
7706 struct timespec64 ts;
7707
7708 if (get_timespec64(&ts, uts))
7709 return -EFAULT;
7710 timeout = ktime_add_ns(timespec64_to_ktime(ts), ktime_get_ns());
7711 }
7712
7713 if (sig) {
7714 #ifdef CONFIG_COMPAT
7715 if (in_compat_syscall())
7716 ret = set_compat_user_sigmask((const compat_sigset_t __user *)sig,
7717 sigsz);
7718 else
7719 #endif
7720 ret = set_user_sigmask(sig, sigsz);
7721
7722 if (ret)
7723 return ret;
7724 }
7725
7726 init_waitqueue_func_entry(&iowq.wq, io_wake_function);
7727 iowq.wq.private = current;
7728 INIT_LIST_HEAD(&iowq.wq.entry);
7729 iowq.ctx = ctx;
7730 iowq.nr_timeouts = atomic_read(&ctx->cq_timeouts);
7731 iowq.cq_tail = READ_ONCE(ctx->rings->cq.head) + min_events;
7732
7733 trace_io_uring_cqring_wait(ctx, min_events);
7734 do {
7735 /* if we can't even flush overflow, don't wait for more */
7736 if (!io_cqring_overflow_flush(ctx)) {
7737 ret = -EBUSY;
7738 break;
7739 }
7740 prepare_to_wait_exclusive(&ctx->cq_wait, &iowq.wq,
7741 TASK_INTERRUPTIBLE);
7742 ret = io_cqring_wait_schedule(ctx, &iowq, &timeout);
7743 finish_wait(&ctx->cq_wait, &iowq.wq);
7744 cond_resched();
7745 } while (ret > 0);
7746
7747 restore_saved_sigmask_unless(ret == -EINTR);
7748
7749 return READ_ONCE(rings->cq.head) == READ_ONCE(rings->cq.tail) ? ret : 0;
7750 }
7751
io_free_page_table(void **table, size_t size)7752 static void io_free_page_table(void **table, size_t size)
7753 {
7754 unsigned i, nr_tables = DIV_ROUND_UP(size, PAGE_SIZE);
7755
7756 for (i = 0; i < nr_tables; i++)
7757 kfree(table[i]);
7758 kfree(table);
7759 }
7760
io_alloc_page_table(size_t size)7761 static void **io_alloc_page_table(size_t size)
7762 {
7763 unsigned i, nr_tables = DIV_ROUND_UP(size, PAGE_SIZE);
7764 size_t init_size = size;
7765 void **table;
7766
7767 table = kcalloc(nr_tables, sizeof(*table), GFP_KERNEL_ACCOUNT);
7768 if (!table)
7769 return NULL;
7770
7771 for (i = 0; i < nr_tables; i++) {
7772 unsigned int this_size = min_t(size_t, size, PAGE_SIZE);
7773
7774 table[i] = kzalloc(this_size, GFP_KERNEL_ACCOUNT);
7775 if (!table[i]) {
7776 io_free_page_table(table, init_size);
7777 return NULL;
7778 }
7779 size -= this_size;
7780 }
7781 return table;
7782 }
7783
io_rsrc_node_destroy(struct io_rsrc_node *ref_node)7784 static void io_rsrc_node_destroy(struct io_rsrc_node *ref_node)
7785 {
7786 percpu_ref_exit(&ref_node->refs);
7787 kfree(ref_node);
7788 }
7789
io_rsrc_node_ref_zero(struct percpu_ref *ref)7790 static void io_rsrc_node_ref_zero(struct percpu_ref *ref)
7791 {
7792 struct io_rsrc_node *node = container_of(ref, struct io_rsrc_node, refs);
7793 struct io_ring_ctx *ctx = node->rsrc_data->ctx;
7794 unsigned long flags;
7795 bool first_add = false;
7796 unsigned long delay = HZ;
7797
7798 spin_lock_irqsave(&ctx->rsrc_ref_lock, flags);
7799 node->done = true;
7800
7801 /* if we are mid-quiesce then do not delay */
7802 if (node->rsrc_data->quiesce)
7803 delay = 0;
7804
7805 while (!list_empty(&ctx->rsrc_ref_list)) {
7806 node = list_first_entry(&ctx->rsrc_ref_list,
7807 struct io_rsrc_node, node);
7808 /* recycle ref nodes in order */
7809 if (!node->done)
7810 break;
7811 list_del(&node->node);
7812 first_add |= llist_add(&node->llist, &ctx->rsrc_put_llist);
7813 }
7814 spin_unlock_irqrestore(&ctx->rsrc_ref_lock, flags);
7815
7816 if (first_add)
7817 mod_delayed_work(system_wq, &ctx->rsrc_put_work, delay);
7818 }
7819
io_rsrc_node_alloc(struct io_ring_ctx *ctx)7820 static struct io_rsrc_node *io_rsrc_node_alloc(struct io_ring_ctx *ctx)
7821 {
7822 struct io_rsrc_node *ref_node;
7823
7824 ref_node = kzalloc(sizeof(*ref_node), GFP_KERNEL);
7825 if (!ref_node)
7826 return NULL;
7827
7828 if (percpu_ref_init(&ref_node->refs, io_rsrc_node_ref_zero,
7829 0, GFP_KERNEL)) {
7830 kfree(ref_node);
7831 return NULL;
7832 }
7833 INIT_LIST_HEAD(&ref_node->node);
7834 INIT_LIST_HEAD(&ref_node->rsrc_list);
7835 ref_node->done = false;
7836 return ref_node;
7837 }
7838
io_rsrc_node_switch(struct io_ring_ctx *ctx, struct io_rsrc_data *data_to_kill)7839 static void io_rsrc_node_switch(struct io_ring_ctx *ctx,
7840 struct io_rsrc_data *data_to_kill)
7841 {
7842 WARN_ON_ONCE(!ctx->rsrc_backup_node);
7843 WARN_ON_ONCE(data_to_kill && !ctx->rsrc_node);
7844
7845 if (data_to_kill) {
7846 struct io_rsrc_node *rsrc_node = ctx->rsrc_node;
7847
7848 rsrc_node->rsrc_data = data_to_kill;
7849 spin_lock_irq(&ctx->rsrc_ref_lock);
7850 list_add_tail(&rsrc_node->node, &ctx->rsrc_ref_list);
7851 spin_unlock_irq(&ctx->rsrc_ref_lock);
7852
7853 atomic_inc(&data_to_kill->refs);
7854 percpu_ref_kill(&rsrc_node->refs);
7855 ctx->rsrc_node = NULL;
7856 }
7857
7858 if (!ctx->rsrc_node) {
7859 ctx->rsrc_node = ctx->rsrc_backup_node;
7860 ctx->rsrc_backup_node = NULL;
7861 }
7862 }
7863
io_rsrc_node_switch_start(struct io_ring_ctx *ctx)7864 static int io_rsrc_node_switch_start(struct io_ring_ctx *ctx)
7865 {
7866 if (ctx->rsrc_backup_node)
7867 return 0;
7868 ctx->rsrc_backup_node = io_rsrc_node_alloc(ctx);
7869 return ctx->rsrc_backup_node ? 0 : -ENOMEM;
7870 }
7871
io_rsrc_ref_quiesce(struct io_rsrc_data *data, struct io_ring_ctx *ctx)7872 static int io_rsrc_ref_quiesce(struct io_rsrc_data *data, struct io_ring_ctx *ctx)
7873 {
7874 int ret;
7875
7876 /* As we may drop ->uring_lock, other task may have started quiesce */
7877 if (data->quiesce)
7878 return -ENXIO;
7879
7880 data->quiesce = true;
7881 do {
7882 ret = io_rsrc_node_switch_start(ctx);
7883 if (ret)
7884 break;
7885 io_rsrc_node_switch(ctx, data);
7886
7887 /* kill initial ref, already quiesced if zero */
7888 if (atomic_dec_and_test(&data->refs))
7889 break;
7890 mutex_unlock(&ctx->uring_lock);
7891 flush_delayed_work(&ctx->rsrc_put_work);
7892 ret = wait_for_completion_interruptible(&data->done);
7893 if (!ret) {
7894 mutex_lock(&ctx->uring_lock);
7895 if (atomic_read(&data->refs) > 0) {
7896 /*
7897 * it has been revived by another thread while
7898 * we were unlocked
7899 */
7900 mutex_unlock(&ctx->uring_lock);
7901 } else {
7902 break;
7903 }
7904 }
7905
7906 atomic_inc(&data->refs);
7907 /* wait for all works potentially completing data->done */
7908 flush_delayed_work(&ctx->rsrc_put_work);
7909 reinit_completion(&data->done);
7910
7911 ret = io_run_task_work_sig();
7912 mutex_lock(&ctx->uring_lock);
7913 } while (ret >= 0);
7914 data->quiesce = false;
7915
7916 return ret;
7917 }
7918
io_get_tag_slot(struct io_rsrc_data *data, unsigned int idx)7919 static u64 *io_get_tag_slot(struct io_rsrc_data *data, unsigned int idx)
7920 {
7921 unsigned int off = idx & IO_RSRC_TAG_TABLE_MASK;
7922 unsigned int table_idx = idx >> IO_RSRC_TAG_TABLE_SHIFT;
7923
7924 return &data->tags[table_idx][off];
7925 }
7926
io_rsrc_data_free(struct io_rsrc_data *data)7927 static void io_rsrc_data_free(struct io_rsrc_data *data)
7928 {
7929 size_t size = data->nr * sizeof(data->tags[0][0]);
7930
7931 if (data->tags)
7932 io_free_page_table((void **)data->tags, size);
7933 kfree(data);
7934 }
7935
io_rsrc_data_alloc(struct io_ring_ctx *ctx, rsrc_put_fn *do_put, u64 __user *utags, unsigned nr, struct io_rsrc_data **pdata)7936 static int io_rsrc_data_alloc(struct io_ring_ctx *ctx, rsrc_put_fn *do_put,
7937 u64 __user *utags, unsigned nr,
7938 struct io_rsrc_data **pdata)
7939 {
7940 struct io_rsrc_data *data;
7941 int ret = -ENOMEM;
7942 unsigned i;
7943
7944 data = kzalloc(sizeof(*data), GFP_KERNEL);
7945 if (!data)
7946 return -ENOMEM;
7947 data->tags = (u64 **)io_alloc_page_table(nr * sizeof(data->tags[0][0]));
7948 if (!data->tags) {
7949 kfree(data);
7950 return -ENOMEM;
7951 }
7952
7953 data->nr = nr;
7954 data->ctx = ctx;
7955 data->do_put = do_put;
7956 if (utags) {
7957 ret = -EFAULT;
7958 for (i = 0; i < nr; i++) {
7959 u64 *tag_slot = io_get_tag_slot(data, i);
7960
7961 if (copy_from_user(tag_slot, &utags[i],
7962 sizeof(*tag_slot)))
7963 goto fail;
7964 }
7965 }
7966
7967 atomic_set(&data->refs, 1);
7968 init_completion(&data->done);
7969 *pdata = data;
7970 return 0;
7971 fail:
7972 io_rsrc_data_free(data);
7973 return ret;
7974 }
7975
io_alloc_file_tables(struct io_file_table *table, unsigned nr_files)7976 static bool io_alloc_file_tables(struct io_file_table *table, unsigned nr_files)
7977 {
7978 table->files = kvcalloc(nr_files, sizeof(table->files[0]),
7979 GFP_KERNEL_ACCOUNT);
7980 return !!table->files;
7981 }
7982
io_free_file_tables(struct io_file_table *table)7983 static void io_free_file_tables(struct io_file_table *table)
7984 {
7985 kvfree(table->files);
7986 table->files = NULL;
7987 }
7988
__io_sqe_files_unregister(struct io_ring_ctx *ctx)7989 static void __io_sqe_files_unregister(struct io_ring_ctx *ctx)
7990 {
7991 #if defined(CONFIG_UNIX)
7992 if (ctx->ring_sock) {
7993 struct sock *sock = ctx->ring_sock->sk;
7994 struct sk_buff *skb;
7995
7996 while ((skb = skb_dequeue(&sock->sk_receive_queue)) != NULL)
7997 kfree_skb(skb);
7998 }
7999 #else
8000 int i;
8001
8002 for (i = 0; i < ctx->nr_user_files; i++) {
8003 struct file *file;
8004
8005 file = io_file_from_index(ctx, i);
8006 if (file)
8007 fput(file);
8008 }
8009 #endif
8010 io_free_file_tables(&ctx->file_table);
8011 io_rsrc_data_free(ctx->file_data);
8012 ctx->file_data = NULL;
8013 ctx->nr_user_files = 0;
8014 }
8015
io_sqe_files_unregister(struct io_ring_ctx *ctx)8016 static int io_sqe_files_unregister(struct io_ring_ctx *ctx)
8017 {
8018 unsigned nr = ctx->nr_user_files;
8019 int ret;
8020
8021 if (!ctx->file_data)
8022 return -ENXIO;
8023
8024 /*
8025 * Quiesce may unlock ->uring_lock, and while it's not held
8026 * prevent new requests using the table.
8027 */
8028 ctx->nr_user_files = 0;
8029 ret = io_rsrc_ref_quiesce(ctx->file_data, ctx);
8030 ctx->nr_user_files = nr;
8031 if (!ret)
8032 __io_sqe_files_unregister(ctx);
8033 return ret;
8034 }
8035
8036 static void io_sq_thread_unpark(struct io_sq_data *sqd)
8037 __releases(&sqd->lock)
8038 {
8039 WARN_ON_ONCE(sqd->thread == current);
8040
8041 /*
8042 * Do the dance but not conditional clear_bit() because it'd race with
8043 * other threads incrementing park_pending and setting the bit.
8044 */
8045 clear_bit(IO_SQ_THREAD_SHOULD_PARK, &sqd->state);
8046 if (atomic_dec_return(&sqd->park_pending))
8047 set_bit(IO_SQ_THREAD_SHOULD_PARK, &sqd->state);
8048 mutex_unlock(&sqd->lock);
8049 }
8050
8051 static void io_sq_thread_park(struct io_sq_data *sqd)
8052 __acquires(&sqd->lock)
8053 {
8054 WARN_ON_ONCE(sqd->thread == current);
8055
8056 atomic_inc(&sqd->park_pending);
8057 set_bit(IO_SQ_THREAD_SHOULD_PARK, &sqd->state);
8058 mutex_lock(&sqd->lock);
8059 if (sqd->thread)
8060 wake_up_process(sqd->thread);
8061 }
8062
io_sq_thread_stop(struct io_sq_data *sqd)8063 static void io_sq_thread_stop(struct io_sq_data *sqd)
8064 {
8065 WARN_ON_ONCE(sqd->thread == current);
8066 WARN_ON_ONCE(test_bit(IO_SQ_THREAD_SHOULD_STOP, &sqd->state));
8067
8068 set_bit(IO_SQ_THREAD_SHOULD_STOP, &sqd->state);
8069 mutex_lock(&sqd->lock);
8070 if (sqd->thread)
8071 wake_up_process(sqd->thread);
8072 mutex_unlock(&sqd->lock);
8073 wait_for_completion(&sqd->exited);
8074 }
8075
io_put_sq_data(struct io_sq_data *sqd)8076 static void io_put_sq_data(struct io_sq_data *sqd)
8077 {
8078 if (refcount_dec_and_test(&sqd->refs)) {
8079 WARN_ON_ONCE(atomic_read(&sqd->park_pending));
8080
8081 io_sq_thread_stop(sqd);
8082 kfree(sqd);
8083 }
8084 }
8085
io_sq_thread_finish(struct io_ring_ctx *ctx)8086 static void io_sq_thread_finish(struct io_ring_ctx *ctx)
8087 {
8088 struct io_sq_data *sqd = ctx->sq_data;
8089
8090 if (sqd) {
8091 io_sq_thread_park(sqd);
8092 list_del_init(&ctx->sqd_list);
8093 io_sqd_update_thread_idle(sqd);
8094 io_sq_thread_unpark(sqd);
8095
8096 io_put_sq_data(sqd);
8097 ctx->sq_data = NULL;
8098 }
8099 }
8100
io_attach_sq_data(struct io_uring_params *p)8101 static struct io_sq_data *io_attach_sq_data(struct io_uring_params *p)
8102 {
8103 struct io_ring_ctx *ctx_attach;
8104 struct io_sq_data *sqd;
8105 struct fd f;
8106
8107 f = fdget(p->wq_fd);
8108 if (!f.file)
8109 return ERR_PTR(-ENXIO);
8110 if (f.file->f_op != &io_uring_fops) {
8111 fdput(f);
8112 return ERR_PTR(-EINVAL);
8113 }
8114
8115 ctx_attach = f.file->private_data;
8116 sqd = ctx_attach->sq_data;
8117 if (!sqd) {
8118 fdput(f);
8119 return ERR_PTR(-EINVAL);
8120 }
8121 if (sqd->task_tgid != current->tgid) {
8122 fdput(f);
8123 return ERR_PTR(-EPERM);
8124 }
8125
8126 refcount_inc(&sqd->refs);
8127 fdput(f);
8128 return sqd;
8129 }
8130
io_get_sq_data(struct io_uring_params *p, bool *attached)8131 static struct io_sq_data *io_get_sq_data(struct io_uring_params *p,
8132 bool *attached)
8133 {
8134 struct io_sq_data *sqd;
8135
8136 *attached = false;
8137 if (p->flags & IORING_SETUP_ATTACH_WQ) {
8138 sqd = io_attach_sq_data(p);
8139 if (!IS_ERR(sqd)) {
8140 *attached = true;
8141 return sqd;
8142 }
8143 /* fall through for EPERM case, setup new sqd/task */
8144 if (PTR_ERR(sqd) != -EPERM)
8145 return sqd;
8146 }
8147
8148 sqd = kzalloc(sizeof(*sqd), GFP_KERNEL);
8149 if (!sqd)
8150 return ERR_PTR(-ENOMEM);
8151
8152 atomic_set(&sqd->park_pending, 0);
8153 refcount_set(&sqd->refs, 1);
8154 INIT_LIST_HEAD(&sqd->ctx_list);
8155 mutex_init(&sqd->lock);
8156 init_waitqueue_head(&sqd->wait);
8157 init_completion(&sqd->exited);
8158 return sqd;
8159 }
8160
8161 #if defined(CONFIG_UNIX)
8162 /*
8163 * Ensure the UNIX gc is aware of our file set, so we are certain that
8164 * the io_uring can be safely unregistered on process exit, even if we have
8165 * loops in the file referencing.
8166 */
__io_sqe_files_scm(struct io_ring_ctx *ctx, int nr, int offset)8167 static int __io_sqe_files_scm(struct io_ring_ctx *ctx, int nr, int offset)
8168 {
8169 struct sock *sk = ctx->ring_sock->sk;
8170 struct scm_fp_list *fpl;
8171 struct sk_buff *skb;
8172 int i, nr_files;
8173
8174 fpl = kzalloc(sizeof(*fpl), GFP_KERNEL);
8175 if (!fpl)
8176 return -ENOMEM;
8177
8178 skb = alloc_skb(0, GFP_KERNEL);
8179 if (!skb) {
8180 kfree(fpl);
8181 return -ENOMEM;
8182 }
8183
8184 skb->sk = sk;
8185 skb->scm_io_uring = 1;
8186
8187 nr_files = 0;
8188 fpl->user = get_uid(current_user());
8189 for (i = 0; i < nr; i++) {
8190 struct file *file = io_file_from_index(ctx, i + offset);
8191
8192 if (!file)
8193 continue;
8194 fpl->fp[nr_files] = get_file(file);
8195 unix_inflight(fpl->user, fpl->fp[nr_files]);
8196 nr_files++;
8197 }
8198
8199 if (nr_files) {
8200 fpl->max = SCM_MAX_FD;
8201 fpl->count = nr_files;
8202 UNIXCB(skb).fp = fpl;
8203 skb->destructor = unix_destruct_scm;
8204 refcount_add(skb->truesize, &sk->sk_wmem_alloc);
8205 skb_queue_head(&sk->sk_receive_queue, skb);
8206
8207 for (i = 0; i < nr; i++) {
8208 struct file *file = io_file_from_index(ctx, i + offset);
8209
8210 if (file)
8211 fput(file);
8212 }
8213 } else {
8214 kfree_skb(skb);
8215 free_uid(fpl->user);
8216 kfree(fpl);
8217 }
8218
8219 return 0;
8220 }
8221
8222 /*
8223 * If UNIX sockets are enabled, fd passing can cause a reference cycle which
8224 * causes regular reference counting to break down. We rely on the UNIX
8225 * garbage collection to take care of this problem for us.
8226 */
io_sqe_files_scm(struct io_ring_ctx *ctx)8227 static int io_sqe_files_scm(struct io_ring_ctx *ctx)
8228 {
8229 unsigned left, total;
8230 int ret = 0;
8231
8232 total = 0;
8233 left = ctx->nr_user_files;
8234 while (left) {
8235 unsigned this_files = min_t(unsigned, left, SCM_MAX_FD);
8236
8237 ret = __io_sqe_files_scm(ctx, this_files, total);
8238 if (ret)
8239 break;
8240 left -= this_files;
8241 total += this_files;
8242 }
8243
8244 if (!ret)
8245 return 0;
8246
8247 while (total < ctx->nr_user_files) {
8248 struct file *file = io_file_from_index(ctx, total);
8249
8250 if (file)
8251 fput(file);
8252 total++;
8253 }
8254
8255 return ret;
8256 }
8257 #else
io_sqe_files_scm(struct io_ring_ctx *ctx)8258 static int io_sqe_files_scm(struct io_ring_ctx *ctx)
8259 {
8260 return 0;
8261 }
8262 #endif
8263
io_rsrc_file_put(struct io_ring_ctx *ctx, struct io_rsrc_put *prsrc)8264 static void io_rsrc_file_put(struct io_ring_ctx *ctx, struct io_rsrc_put *prsrc)
8265 {
8266 struct file *file = prsrc->file;
8267 #if defined(CONFIG_UNIX)
8268 struct sock *sock = ctx->ring_sock->sk;
8269 struct sk_buff_head list, *head = &sock->sk_receive_queue;
8270 struct sk_buff *skb;
8271 int i;
8272
8273 __skb_queue_head_init(&list);
8274
8275 /*
8276 * Find the skb that holds this file in its SCM_RIGHTS. When found,
8277 * remove this entry and rearrange the file array.
8278 */
8279 skb = skb_dequeue(head);
8280 while (skb) {
8281 struct scm_fp_list *fp;
8282
8283 fp = UNIXCB(skb).fp;
8284 for (i = 0; i < fp->count; i++) {
8285 int left;
8286
8287 if (fp->fp[i] != file)
8288 continue;
8289
8290 unix_notinflight(fp->user, fp->fp[i]);
8291 left = fp->count - 1 - i;
8292 if (left) {
8293 memmove(&fp->fp[i], &fp->fp[i + 1],
8294 left * sizeof(struct file *));
8295 }
8296 fp->count--;
8297 if (!fp->count) {
8298 kfree_skb(skb);
8299 skb = NULL;
8300 } else {
8301 __skb_queue_tail(&list, skb);
8302 }
8303 fput(file);
8304 file = NULL;
8305 break;
8306 }
8307
8308 if (!file)
8309 break;
8310
8311 __skb_queue_tail(&list, skb);
8312
8313 skb = skb_dequeue(head);
8314 }
8315
8316 if (skb_peek(&list)) {
8317 spin_lock_irq(&head->lock);
8318 while ((skb = __skb_dequeue(&list)) != NULL)
8319 __skb_queue_tail(head, skb);
8320 spin_unlock_irq(&head->lock);
8321 }
8322 #else
8323 fput(file);
8324 #endif
8325 }
8326
__io_rsrc_put_work(struct io_rsrc_node *ref_node)8327 static void __io_rsrc_put_work(struct io_rsrc_node *ref_node)
8328 {
8329 struct io_rsrc_data *rsrc_data = ref_node->rsrc_data;
8330 struct io_ring_ctx *ctx = rsrc_data->ctx;
8331 struct io_rsrc_put *prsrc, *tmp;
8332
8333 list_for_each_entry_safe(prsrc, tmp, &ref_node->rsrc_list, list) {
8334 list_del(&prsrc->list);
8335
8336 if (prsrc->tag) {
8337 bool lock_ring = ctx->flags & IORING_SETUP_IOPOLL;
8338
8339 io_ring_submit_lock(ctx, lock_ring);
8340 spin_lock(&ctx->completion_lock);
8341 io_fill_cqe_aux(ctx, prsrc->tag, 0, 0);
8342 io_commit_cqring(ctx);
8343 spin_unlock(&ctx->completion_lock);
8344 io_cqring_ev_posted(ctx);
8345 io_ring_submit_unlock(ctx, lock_ring);
8346 }
8347
8348 rsrc_data->do_put(ctx, prsrc);
8349 kfree(prsrc);
8350 }
8351
8352 io_rsrc_node_destroy(ref_node);
8353 if (atomic_dec_and_test(&rsrc_data->refs))
8354 complete(&rsrc_data->done);
8355 }
8356
io_rsrc_put_work(struct work_struct *work)8357 static void io_rsrc_put_work(struct work_struct *work)
8358 {
8359 struct io_ring_ctx *ctx;
8360 struct llist_node *node;
8361
8362 ctx = container_of(work, struct io_ring_ctx, rsrc_put_work.work);
8363 node = llist_del_all(&ctx->rsrc_put_llist);
8364
8365 while (node) {
8366 struct io_rsrc_node *ref_node;
8367 struct llist_node *next = node->next;
8368
8369 ref_node = llist_entry(node, struct io_rsrc_node, llist);
8370 __io_rsrc_put_work(ref_node);
8371 node = next;
8372 }
8373 }
8374
io_sqe_files_register(struct io_ring_ctx *ctx, void __user *arg, unsigned nr_args, u64 __user *tags)8375 static int io_sqe_files_register(struct io_ring_ctx *ctx, void __user *arg,
8376 unsigned nr_args, u64 __user *tags)
8377 {
8378 __s32 __user *fds = (__s32 __user *) arg;
8379 struct file *file;
8380 int fd, ret;
8381 unsigned i;
8382
8383 if (ctx->file_data)
8384 return -EBUSY;
8385 if (!nr_args)
8386 return -EINVAL;
8387 if (nr_args > IORING_MAX_FIXED_FILES)
8388 return -EMFILE;
8389 if (nr_args > rlimit(RLIMIT_NOFILE))
8390 return -EMFILE;
8391 ret = io_rsrc_node_switch_start(ctx);
8392 if (ret)
8393 return ret;
8394 ret = io_rsrc_data_alloc(ctx, io_rsrc_file_put, tags, nr_args,
8395 &ctx->file_data);
8396 if (ret)
8397 return ret;
8398
8399 ret = -ENOMEM;
8400 if (!io_alloc_file_tables(&ctx->file_table, nr_args))
8401 goto out_free;
8402
8403 for (i = 0; i < nr_args; i++, ctx->nr_user_files++) {
8404 if (copy_from_user(&fd, &fds[i], sizeof(fd))) {
8405 ret = -EFAULT;
8406 goto out_fput;
8407 }
8408 /* allow sparse sets */
8409 if (fd == -1) {
8410 ret = -EINVAL;
8411 if (unlikely(*io_get_tag_slot(ctx->file_data, i)))
8412 goto out_fput;
8413 continue;
8414 }
8415
8416 file = fget(fd);
8417 ret = -EBADF;
8418 if (unlikely(!file))
8419 goto out_fput;
8420
8421 /*
8422 * Don't allow io_uring instances to be registered. If UNIX
8423 * isn't enabled, then this causes a reference cycle and this
8424 * instance can never get freed. If UNIX is enabled we'll
8425 * handle it just fine, but there's still no point in allowing
8426 * a ring fd as it doesn't support regular read/write anyway.
8427 */
8428 if (file->f_op == &io_uring_fops) {
8429 fput(file);
8430 goto out_fput;
8431 }
8432 io_fixed_file_set(io_fixed_file_slot(&ctx->file_table, i), file);
8433 }
8434
8435 ret = io_sqe_files_scm(ctx);
8436 if (ret) {
8437 __io_sqe_files_unregister(ctx);
8438 return ret;
8439 }
8440
8441 io_rsrc_node_switch(ctx, NULL);
8442 return ret;
8443 out_fput:
8444 for (i = 0; i < ctx->nr_user_files; i++) {
8445 file = io_file_from_index(ctx, i);
8446 if (file)
8447 fput(file);
8448 }
8449 io_free_file_tables(&ctx->file_table);
8450 ctx->nr_user_files = 0;
8451 out_free:
8452 io_rsrc_data_free(ctx->file_data);
8453 ctx->file_data = NULL;
8454 return ret;
8455 }
8456
io_queue_rsrc_removal(struct io_rsrc_data *data, unsigned idx, struct io_rsrc_node *node, void *rsrc)8457 static int io_queue_rsrc_removal(struct io_rsrc_data *data, unsigned idx,
8458 struct io_rsrc_node *node, void *rsrc)
8459 {
8460 u64 *tag_slot = io_get_tag_slot(data, idx);
8461 struct io_rsrc_put *prsrc;
8462
8463 prsrc = kzalloc(sizeof(*prsrc), GFP_KERNEL);
8464 if (!prsrc)
8465 return -ENOMEM;
8466
8467 prsrc->tag = *tag_slot;
8468 *tag_slot = 0;
8469 prsrc->rsrc = rsrc;
8470 list_add(&prsrc->list, &node->rsrc_list);
8471 return 0;
8472 }
8473
io_install_fixed_file(struct io_kiocb *req, struct file *file, unsigned int issue_flags, u32 slot_index)8474 static int io_install_fixed_file(struct io_kiocb *req, struct file *file,
8475 unsigned int issue_flags, u32 slot_index)
8476 {
8477 struct io_ring_ctx *ctx = req->ctx;
8478 bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK;
8479 bool needs_switch = false;
8480 struct io_fixed_file *file_slot;
8481 int ret = -EBADF;
8482
8483 io_ring_submit_lock(ctx, !force_nonblock);
8484 if (file->f_op == &io_uring_fops)
8485 goto err;
8486 ret = -ENXIO;
8487 if (!ctx->file_data)
8488 goto err;
8489 ret = -EINVAL;
8490 if (slot_index >= ctx->nr_user_files)
8491 goto err;
8492
8493 slot_index = array_index_nospec(slot_index, ctx->nr_user_files);
8494 file_slot = io_fixed_file_slot(&ctx->file_table, slot_index);
8495
8496 if (file_slot->file_ptr) {
8497 struct file *old_file;
8498
8499 ret = io_rsrc_node_switch_start(ctx);
8500 if (ret)
8501 goto err;
8502
8503 old_file = (struct file *)(file_slot->file_ptr & FFS_MASK);
8504 ret = io_queue_rsrc_removal(ctx->file_data, slot_index,
8505 ctx->rsrc_node, old_file);
8506 if (ret)
8507 goto err;
8508 file_slot->file_ptr = 0;
8509 needs_switch = true;
8510 }
8511
8512 *io_get_tag_slot(ctx->file_data, slot_index) = 0;
8513 io_fixed_file_set(file_slot, file);
8514 ret = 0;
8515 err:
8516 if (needs_switch)
8517 io_rsrc_node_switch(ctx, ctx->file_data);
8518 io_ring_submit_unlock(ctx, !force_nonblock);
8519 if (ret)
8520 fput(file);
8521 return ret;
8522 }
8523
io_close_fixed(struct io_kiocb *req, unsigned int issue_flags)8524 static int io_close_fixed(struct io_kiocb *req, unsigned int issue_flags)
8525 {
8526 unsigned int offset = req->close.file_slot - 1;
8527 struct io_ring_ctx *ctx = req->ctx;
8528 struct io_fixed_file *file_slot;
8529 struct file *file;
8530 int ret;
8531
8532 io_ring_submit_lock(ctx, !(issue_flags & IO_URING_F_NONBLOCK));
8533 ret = -ENXIO;
8534 if (unlikely(!ctx->file_data))
8535 goto out;
8536 ret = -EINVAL;
8537 if (offset >= ctx->nr_user_files)
8538 goto out;
8539 ret = io_rsrc_node_switch_start(ctx);
8540 if (ret)
8541 goto out;
8542
8543 offset = array_index_nospec(offset, ctx->nr_user_files);
8544 file_slot = io_fixed_file_slot(&ctx->file_table, offset);
8545 ret = -EBADF;
8546 if (!file_slot->file_ptr)
8547 goto out;
8548
8549 file = (struct file *)(file_slot->file_ptr & FFS_MASK);
8550 ret = io_queue_rsrc_removal(ctx->file_data, offset, ctx->rsrc_node, file);
8551 if (ret)
8552 goto out;
8553
8554 file_slot->file_ptr = 0;
8555 io_rsrc_node_switch(ctx, ctx->file_data);
8556 ret = 0;
8557 out:
8558 io_ring_submit_unlock(ctx, !(issue_flags & IO_URING_F_NONBLOCK));
8559 return ret;
8560 }
8561
__io_sqe_files_update(struct io_ring_ctx *ctx, struct io_uring_rsrc_update2 *up, unsigned nr_args)8562 static int __io_sqe_files_update(struct io_ring_ctx *ctx,
8563 struct io_uring_rsrc_update2 *up,
8564 unsigned nr_args)
8565 {
8566 u64 __user *tags = u64_to_user_ptr(up->tags);
8567 __s32 __user *fds = u64_to_user_ptr(up->data);
8568 struct io_rsrc_data *data = ctx->file_data;
8569 struct io_fixed_file *file_slot;
8570 struct file *file;
8571 int fd, i, err = 0;
8572 unsigned int done;
8573 bool needs_switch = false;
8574
8575 if (!ctx->file_data)
8576 return -ENXIO;
8577 if (up->offset + nr_args > ctx->nr_user_files)
8578 return -EINVAL;
8579
8580 for (done = 0; done < nr_args; done++) {
8581 u64 tag = 0;
8582
8583 if ((tags && copy_from_user(&tag, &tags[done], sizeof(tag))) ||
8584 copy_from_user(&fd, &fds[done], sizeof(fd))) {
8585 err = -EFAULT;
8586 break;
8587 }
8588 if ((fd == IORING_REGISTER_FILES_SKIP || fd == -1) && tag) {
8589 err = -EINVAL;
8590 break;
8591 }
8592 if (fd == IORING_REGISTER_FILES_SKIP)
8593 continue;
8594
8595 i = array_index_nospec(up->offset + done, ctx->nr_user_files);
8596 file_slot = io_fixed_file_slot(&ctx->file_table, i);
8597
8598 if (file_slot->file_ptr) {
8599 file = (struct file *)(file_slot->file_ptr & FFS_MASK);
8600 err = io_queue_rsrc_removal(data, i, ctx->rsrc_node, file);
8601 if (err)
8602 break;
8603 file_slot->file_ptr = 0;
8604 needs_switch = true;
8605 }
8606 if (fd != -1) {
8607 file = fget(fd);
8608 if (!file) {
8609 err = -EBADF;
8610 break;
8611 }
8612 /*
8613 * Don't allow io_uring instances to be registered. If
8614 * UNIX isn't enabled, then this causes a reference
8615 * cycle and this instance can never get freed. If UNIX
8616 * is enabled we'll handle it just fine, but there's
8617 * still no point in allowing a ring fd as it doesn't
8618 * support regular read/write anyway.
8619 */
8620 if (file->f_op == &io_uring_fops) {
8621 fput(file);
8622 err = -EBADF;
8623 break;
8624 }
8625 *io_get_tag_slot(data, i) = tag;
8626 io_fixed_file_set(file_slot, file);
8627 }
8628 }
8629
8630 if (needs_switch)
8631 io_rsrc_node_switch(ctx, data);
8632 return done ? done : err;
8633 }
8634
io_init_wq_offload(struct io_ring_ctx *ctx, struct task_struct *task)8635 static struct io_wq *io_init_wq_offload(struct io_ring_ctx *ctx,
8636 struct task_struct *task)
8637 {
8638 struct io_wq_hash *hash;
8639 struct io_wq_data data;
8640 unsigned int concurrency;
8641
8642 mutex_lock(&ctx->uring_lock);
8643 hash = ctx->hash_map;
8644 if (!hash) {
8645 hash = kzalloc(sizeof(*hash), GFP_KERNEL);
8646 if (!hash) {
8647 mutex_unlock(&ctx->uring_lock);
8648 return ERR_PTR(-ENOMEM);
8649 }
8650 refcount_set(&hash->refs, 1);
8651 init_waitqueue_head(&hash->wait);
8652 ctx->hash_map = hash;
8653 }
8654 mutex_unlock(&ctx->uring_lock);
8655
8656 data.hash = hash;
8657 data.task = task;
8658 data.free_work = io_wq_free_work;
8659 data.do_work = io_wq_submit_work;
8660
8661 /* Do QD, or 4 * CPUS, whatever is smallest */
8662 concurrency = min(ctx->sq_entries, 4 * num_online_cpus());
8663
8664 return io_wq_create(concurrency, &data);
8665 }
8666
io_uring_alloc_task_context(struct task_struct *task, struct io_ring_ctx *ctx)8667 static int io_uring_alloc_task_context(struct task_struct *task,
8668 struct io_ring_ctx *ctx)
8669 {
8670 struct io_uring_task *tctx;
8671 int ret;
8672
8673 tctx = kzalloc(sizeof(*tctx), GFP_KERNEL);
8674 if (unlikely(!tctx))
8675 return -ENOMEM;
8676
8677 ret = percpu_counter_init(&tctx->inflight, 0, GFP_KERNEL);
8678 if (unlikely(ret)) {
8679 kfree(tctx);
8680 return ret;
8681 }
8682
8683 tctx->io_wq = io_init_wq_offload(ctx, task);
8684 if (IS_ERR(tctx->io_wq)) {
8685 ret = PTR_ERR(tctx->io_wq);
8686 percpu_counter_destroy(&tctx->inflight);
8687 kfree(tctx);
8688 return ret;
8689 }
8690
8691 xa_init(&tctx->xa);
8692 init_waitqueue_head(&tctx->wait);
8693 atomic_set(&tctx->in_idle, 0);
8694 atomic_set(&tctx->inflight_tracked, 0);
8695 task->io_uring = tctx;
8696 spin_lock_init(&tctx->task_lock);
8697 INIT_WQ_LIST(&tctx->task_list);
8698 init_task_work(&tctx->task_work, tctx_task_work);
8699 return 0;
8700 }
8701
__io_uring_free(struct task_struct *tsk)8702 void __io_uring_free(struct task_struct *tsk)
8703 {
8704 struct io_uring_task *tctx = tsk->io_uring;
8705
8706 WARN_ON_ONCE(!xa_empty(&tctx->xa));
8707 WARN_ON_ONCE(tctx->io_wq);
8708 WARN_ON_ONCE(tctx->cached_refs);
8709
8710 percpu_counter_destroy(&tctx->inflight);
8711 kfree(tctx);
8712 tsk->io_uring = NULL;
8713 }
8714
io_sq_offload_create(struct io_ring_ctx *ctx, struct io_uring_params *p)8715 static int io_sq_offload_create(struct io_ring_ctx *ctx,
8716 struct io_uring_params *p)
8717 {
8718 int ret;
8719
8720 /* Retain compatibility with failing for an invalid attach attempt */
8721 if ((ctx->flags & (IORING_SETUP_ATTACH_WQ | IORING_SETUP_SQPOLL)) ==
8722 IORING_SETUP_ATTACH_WQ) {
8723 struct fd f;
8724
8725 f = fdget(p->wq_fd);
8726 if (!f.file)
8727 return -ENXIO;
8728 if (f.file->f_op != &io_uring_fops) {
8729 fdput(f);
8730 return -EINVAL;
8731 }
8732 fdput(f);
8733 }
8734 if (ctx->flags & IORING_SETUP_SQPOLL) {
8735 struct task_struct *tsk;
8736 struct io_sq_data *sqd;
8737 bool attached;
8738
8739 sqd = io_get_sq_data(p, &attached);
8740 if (IS_ERR(sqd)) {
8741 ret = PTR_ERR(sqd);
8742 goto err;
8743 }
8744
8745 ctx->sq_creds = get_current_cred();
8746 ctx->sq_data = sqd;
8747 ctx->sq_thread_idle = msecs_to_jiffies(p->sq_thread_idle);
8748 if (!ctx->sq_thread_idle)
8749 ctx->sq_thread_idle = HZ;
8750
8751 io_sq_thread_park(sqd);
8752 list_add(&ctx->sqd_list, &sqd->ctx_list);
8753 io_sqd_update_thread_idle(sqd);
8754 /* don't attach to a dying SQPOLL thread, would be racy */
8755 ret = (attached && !sqd->thread) ? -ENXIO : 0;
8756 io_sq_thread_unpark(sqd);
8757
8758 if (ret < 0)
8759 goto err;
8760 if (attached)
8761 return 0;
8762
8763 if (p->flags & IORING_SETUP_SQ_AFF) {
8764 int cpu = p->sq_thread_cpu;
8765
8766 ret = -EINVAL;
8767 if (cpu >= nr_cpu_ids || !cpu_online(cpu))
8768 goto err_sqpoll;
8769 sqd->sq_cpu = cpu;
8770 } else {
8771 sqd->sq_cpu = -1;
8772 }
8773
8774 sqd->task_pid = current->pid;
8775 sqd->task_tgid = current->tgid;
8776 tsk = create_io_thread(io_sq_thread, sqd, NUMA_NO_NODE);
8777 if (IS_ERR(tsk)) {
8778 ret = PTR_ERR(tsk);
8779 goto err_sqpoll;
8780 }
8781
8782 sqd->thread = tsk;
8783 ret = io_uring_alloc_task_context(tsk, ctx);
8784 wake_up_new_task(tsk);
8785 if (ret)
8786 goto err;
8787 } else if (p->flags & IORING_SETUP_SQ_AFF) {
8788 /* Can't have SQ_AFF without SQPOLL */
8789 ret = -EINVAL;
8790 goto err;
8791 }
8792
8793 return 0;
8794 err_sqpoll:
8795 complete(&ctx->sq_data->exited);
8796 err:
8797 io_sq_thread_finish(ctx);
8798 return ret;
8799 }
8800
__io_unaccount_mem(struct user_struct *user, unsigned long nr_pages)8801 static inline void __io_unaccount_mem(struct user_struct *user,
8802 unsigned long nr_pages)
8803 {
8804 atomic_long_sub(nr_pages, &user->locked_vm);
8805 }
8806
__io_account_mem(struct user_struct *user, unsigned long nr_pages)8807 static inline int __io_account_mem(struct user_struct *user,
8808 unsigned long nr_pages)
8809 {
8810 unsigned long page_limit, cur_pages, new_pages;
8811
8812 /* Don't allow more pages than we can safely lock */
8813 page_limit = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT;
8814
8815 do {
8816 cur_pages = atomic_long_read(&user->locked_vm);
8817 new_pages = cur_pages + nr_pages;
8818 if (new_pages > page_limit)
8819 return -ENOMEM;
8820 } while (atomic_long_cmpxchg(&user->locked_vm, cur_pages,
8821 new_pages) != cur_pages);
8822
8823 return 0;
8824 }
8825
io_unaccount_mem(struct io_ring_ctx *ctx, unsigned long nr_pages)8826 static void io_unaccount_mem(struct io_ring_ctx *ctx, unsigned long nr_pages)
8827 {
8828 if (ctx->user)
8829 __io_unaccount_mem(ctx->user, nr_pages);
8830
8831 if (ctx->mm_account)
8832 atomic64_sub(nr_pages, &ctx->mm_account->pinned_vm);
8833 }
8834
io_account_mem(struct io_ring_ctx *ctx, unsigned long nr_pages)8835 static int io_account_mem(struct io_ring_ctx *ctx, unsigned long nr_pages)
8836 {
8837 int ret;
8838
8839 if (ctx->user) {
8840 ret = __io_account_mem(ctx->user, nr_pages);
8841 if (ret)
8842 return ret;
8843 }
8844
8845 if (ctx->mm_account)
8846 atomic64_add(nr_pages, &ctx->mm_account->pinned_vm);
8847
8848 return 0;
8849 }
8850
io_mem_free(void *ptr)8851 static void io_mem_free(void *ptr)
8852 {
8853 struct page *page;
8854
8855 if (!ptr)
8856 return;
8857
8858 page = virt_to_head_page(ptr);
8859 if (put_page_testzero(page))
8860 free_compound_page(page);
8861 }
8862
io_mem_alloc(size_t size)8863 static void *io_mem_alloc(size_t size)
8864 {
8865 gfp_t gfp = GFP_KERNEL_ACCOUNT | __GFP_ZERO | __GFP_NOWARN | __GFP_COMP;
8866
8867 return (void *) __get_free_pages(gfp, get_order(size));
8868 }
8869
rings_size(unsigned sq_entries, unsigned cq_entries, size_t *sq_offset)8870 static unsigned long rings_size(unsigned sq_entries, unsigned cq_entries,
8871 size_t *sq_offset)
8872 {
8873 struct io_rings *rings;
8874 size_t off, sq_array_size;
8875
8876 off = struct_size(rings, cqes, cq_entries);
8877 if (off == SIZE_MAX)
8878 return SIZE_MAX;
8879
8880 #ifdef CONFIG_SMP
8881 off = ALIGN(off, SMP_CACHE_BYTES);
8882 if (off == 0)
8883 return SIZE_MAX;
8884 #endif
8885
8886 if (sq_offset)
8887 *sq_offset = off;
8888
8889 sq_array_size = array_size(sizeof(u32), sq_entries);
8890 if (sq_array_size == SIZE_MAX)
8891 return SIZE_MAX;
8892
8893 if (check_add_overflow(off, sq_array_size, &off))
8894 return SIZE_MAX;
8895
8896 return off;
8897 }
8898
io_buffer_unmap(struct io_ring_ctx *ctx, struct io_mapped_ubuf **slot)8899 static void io_buffer_unmap(struct io_ring_ctx *ctx, struct io_mapped_ubuf **slot)
8900 {
8901 struct io_mapped_ubuf *imu = *slot;
8902 unsigned int i;
8903
8904 if (imu != ctx->dummy_ubuf) {
8905 for (i = 0; i < imu->nr_bvecs; i++)
8906 unpin_user_page(imu->bvec[i].bv_page);
8907 if (imu->acct_pages)
8908 io_unaccount_mem(ctx, imu->acct_pages);
8909 kvfree(imu);
8910 }
8911 *slot = NULL;
8912 }
8913
io_rsrc_buf_put(struct io_ring_ctx *ctx, struct io_rsrc_put *prsrc)8914 static void io_rsrc_buf_put(struct io_ring_ctx *ctx, struct io_rsrc_put *prsrc)
8915 {
8916 io_buffer_unmap(ctx, &prsrc->buf);
8917 prsrc->buf = NULL;
8918 }
8919
__io_sqe_buffers_unregister(struct io_ring_ctx *ctx)8920 static void __io_sqe_buffers_unregister(struct io_ring_ctx *ctx)
8921 {
8922 unsigned int i;
8923
8924 for (i = 0; i < ctx->nr_user_bufs; i++)
8925 io_buffer_unmap(ctx, &ctx->user_bufs[i]);
8926 kfree(ctx->user_bufs);
8927 io_rsrc_data_free(ctx->buf_data);
8928 ctx->user_bufs = NULL;
8929 ctx->buf_data = NULL;
8930 ctx->nr_user_bufs = 0;
8931 }
8932
io_sqe_buffers_unregister(struct io_ring_ctx *ctx)8933 static int io_sqe_buffers_unregister(struct io_ring_ctx *ctx)
8934 {
8935 unsigned nr = ctx->nr_user_bufs;
8936 int ret;
8937
8938 if (!ctx->buf_data)
8939 return -ENXIO;
8940
8941 /*
8942 * Quiesce may unlock ->uring_lock, and while it's not held
8943 * prevent new requests using the table.
8944 */
8945 ctx->nr_user_bufs = 0;
8946 ret = io_rsrc_ref_quiesce(ctx->buf_data, ctx);
8947 ctx->nr_user_bufs = nr;
8948 if (!ret)
8949 __io_sqe_buffers_unregister(ctx);
8950 return ret;
8951 }
8952
io_copy_iov(struct io_ring_ctx *ctx, struct iovec *dst, void __user *arg, unsigned index)8953 static int io_copy_iov(struct io_ring_ctx *ctx, struct iovec *dst,
8954 void __user *arg, unsigned index)
8955 {
8956 struct iovec __user *src;
8957
8958 #ifdef CONFIG_COMPAT
8959 if (ctx->compat) {
8960 struct compat_iovec __user *ciovs;
8961 struct compat_iovec ciov;
8962
8963 ciovs = (struct compat_iovec __user *) arg;
8964 if (copy_from_user(&ciov, &ciovs[index], sizeof(ciov)))
8965 return -EFAULT;
8966
8967 dst->iov_base = u64_to_user_ptr((u64)ciov.iov_base);
8968 dst->iov_len = ciov.iov_len;
8969 return 0;
8970 }
8971 #endif
8972 src = (struct iovec __user *) arg;
8973 if (copy_from_user(dst, &src[index], sizeof(*dst)))
8974 return -EFAULT;
8975 return 0;
8976 }
8977
8978 /*
8979 * Not super efficient, but this is just a registration time. And we do cache
8980 * the last compound head, so generally we'll only do a full search if we don't
8981 * match that one.
8982 *
8983 * We check if the given compound head page has already been accounted, to
8984 * avoid double accounting it. This allows us to account the full size of the
8985 * page, not just the constituent pages of a huge page.
8986 */
headpage_already_acct(struct io_ring_ctx *ctx, struct page **pages, int nr_pages, struct page *hpage)8987 static bool headpage_already_acct(struct io_ring_ctx *ctx, struct page **pages,
8988 int nr_pages, struct page *hpage)
8989 {
8990 int i, j;
8991
8992 /* check current page array */
8993 for (i = 0; i < nr_pages; i++) {
8994 if (!PageCompound(pages[i]))
8995 continue;
8996 if (compound_head(pages[i]) == hpage)
8997 return true;
8998 }
8999
9000 /* check previously registered pages */
9001 for (i = 0; i < ctx->nr_user_bufs; i++) {
9002 struct io_mapped_ubuf *imu = ctx->user_bufs[i];
9003
9004 for (j = 0; j < imu->nr_bvecs; j++) {
9005 if (!PageCompound(imu->bvec[j].bv_page))
9006 continue;
9007 if (compound_head(imu->bvec[j].bv_page) == hpage)
9008 return true;
9009 }
9010 }
9011
9012 return false;
9013 }
9014
io_buffer_account_pin(struct io_ring_ctx *ctx, struct page **pages, int nr_pages, struct io_mapped_ubuf *imu, struct page **last_hpage)9015 static int io_buffer_account_pin(struct io_ring_ctx *ctx, struct page **pages,
9016 int nr_pages, struct io_mapped_ubuf *imu,
9017 struct page **last_hpage)
9018 {
9019 int i, ret;
9020
9021 imu->acct_pages = 0;
9022 for (i = 0; i < nr_pages; i++) {
9023 if (!PageCompound(pages[i])) {
9024 imu->acct_pages++;
9025 } else {
9026 struct page *hpage;
9027
9028 hpage = compound_head(pages[i]);
9029 if (hpage == *last_hpage)
9030 continue;
9031 *last_hpage = hpage;
9032 if (headpage_already_acct(ctx, pages, i, hpage))
9033 continue;
9034 imu->acct_pages += page_size(hpage) >> PAGE_SHIFT;
9035 }
9036 }
9037
9038 if (!imu->acct_pages)
9039 return 0;
9040
9041 ret = io_account_mem(ctx, imu->acct_pages);
9042 if (ret)
9043 imu->acct_pages = 0;
9044 return ret;
9045 }
9046
io_sqe_buffer_register(struct io_ring_ctx *ctx, struct iovec *iov, struct io_mapped_ubuf **pimu, struct page **last_hpage)9047 static int io_sqe_buffer_register(struct io_ring_ctx *ctx, struct iovec *iov,
9048 struct io_mapped_ubuf **pimu,
9049 struct page **last_hpage)
9050 {
9051 struct io_mapped_ubuf *imu = NULL;
9052 struct vm_area_struct **vmas = NULL;
9053 struct page **pages = NULL;
9054 unsigned long off, start, end, ubuf;
9055 size_t size;
9056 int ret, pret, nr_pages, i;
9057
9058 if (!iov->iov_base) {
9059 *pimu = ctx->dummy_ubuf;
9060 return 0;
9061 }
9062
9063 ubuf = (unsigned long) iov->iov_base;
9064 end = (ubuf + iov->iov_len + PAGE_SIZE - 1) >> PAGE_SHIFT;
9065 start = ubuf >> PAGE_SHIFT;
9066 nr_pages = end - start;
9067
9068 *pimu = NULL;
9069 ret = -ENOMEM;
9070
9071 pages = kvmalloc_array(nr_pages, sizeof(struct page *), GFP_KERNEL);
9072 if (!pages)
9073 goto done;
9074
9075 vmas = kvmalloc_array(nr_pages, sizeof(struct vm_area_struct *),
9076 GFP_KERNEL);
9077 if (!vmas)
9078 goto done;
9079
9080 imu = kvmalloc(struct_size(imu, bvec, nr_pages), GFP_KERNEL);
9081 if (!imu)
9082 goto done;
9083
9084 ret = 0;
9085 mmap_read_lock(current->mm);
9086 pret = pin_user_pages(ubuf, nr_pages, FOLL_WRITE | FOLL_LONGTERM,
9087 pages, vmas);
9088 if (pret == nr_pages) {
9089 struct file *file = vmas[0]->vm_file;
9090
9091 /* don't support file backed memory */
9092 for (i = 0; i < nr_pages; i++) {
9093 if (vmas[i]->vm_file != file) {
9094 ret = -EINVAL;
9095 break;
9096 }
9097 if (!file)
9098 continue;
9099 if (!vma_is_shmem(vmas[i]) && !is_file_hugepages(file)) {
9100 ret = -EOPNOTSUPP;
9101 break;
9102 }
9103 }
9104 } else {
9105 ret = pret < 0 ? pret : -EFAULT;
9106 }
9107 mmap_read_unlock(current->mm);
9108 if (ret) {
9109 /*
9110 * if we did partial map, or found file backed vmas,
9111 * release any pages we did get
9112 */
9113 if (pret > 0)
9114 unpin_user_pages(pages, pret);
9115 goto done;
9116 }
9117
9118 ret = io_buffer_account_pin(ctx, pages, pret, imu, last_hpage);
9119 if (ret) {
9120 unpin_user_pages(pages, pret);
9121 goto done;
9122 }
9123
9124 off = ubuf & ~PAGE_MASK;
9125 size = iov->iov_len;
9126 for (i = 0; i < nr_pages; i++) {
9127 size_t vec_len;
9128
9129 vec_len = min_t(size_t, size, PAGE_SIZE - off);
9130 imu->bvec[i].bv_page = pages[i];
9131 imu->bvec[i].bv_len = vec_len;
9132 imu->bvec[i].bv_offset = off;
9133 off = 0;
9134 size -= vec_len;
9135 }
9136 /* store original address for later verification */
9137 imu->ubuf = ubuf;
9138 imu->ubuf_end = ubuf + iov->iov_len;
9139 imu->nr_bvecs = nr_pages;
9140 *pimu = imu;
9141 ret = 0;
9142 done:
9143 if (ret)
9144 kvfree(imu);
9145 kvfree(pages);
9146 kvfree(vmas);
9147 return ret;
9148 }
9149
io_buffers_map_alloc(struct io_ring_ctx *ctx, unsigned int nr_args)9150 static int io_buffers_map_alloc(struct io_ring_ctx *ctx, unsigned int nr_args)
9151 {
9152 ctx->user_bufs = kcalloc(nr_args, sizeof(*ctx->user_bufs), GFP_KERNEL);
9153 return ctx->user_bufs ? 0 : -ENOMEM;
9154 }
9155
io_buffer_validate(struct iovec *iov)9156 static int io_buffer_validate(struct iovec *iov)
9157 {
9158 unsigned long tmp, acct_len = iov->iov_len + (PAGE_SIZE - 1);
9159
9160 /*
9161 * Don't impose further limits on the size and buffer
9162 * constraints here, we'll -EINVAL later when IO is
9163 * submitted if they are wrong.
9164 */
9165 if (!iov->iov_base)
9166 return iov->iov_len ? -EFAULT : 0;
9167 if (!iov->iov_len)
9168 return -EFAULT;
9169
9170 /* arbitrary limit, but we need something */
9171 if (iov->iov_len > SZ_1G)
9172 return -EFAULT;
9173
9174 if (check_add_overflow((unsigned long)iov->iov_base, acct_len, &tmp))
9175 return -EOVERFLOW;
9176
9177 return 0;
9178 }
9179
io_sqe_buffers_register(struct io_ring_ctx *ctx, void __user *arg, unsigned int nr_args, u64 __user *tags)9180 static int io_sqe_buffers_register(struct io_ring_ctx *ctx, void __user *arg,
9181 unsigned int nr_args, u64 __user *tags)
9182 {
9183 struct page *last_hpage = NULL;
9184 struct io_rsrc_data *data;
9185 int i, ret;
9186 struct iovec iov;
9187
9188 if (ctx->user_bufs)
9189 return -EBUSY;
9190 if (!nr_args || nr_args > IORING_MAX_REG_BUFFERS)
9191 return -EINVAL;
9192 ret = io_rsrc_node_switch_start(ctx);
9193 if (ret)
9194 return ret;
9195 ret = io_rsrc_data_alloc(ctx, io_rsrc_buf_put, tags, nr_args, &data);
9196 if (ret)
9197 return ret;
9198 ret = io_buffers_map_alloc(ctx, nr_args);
9199 if (ret) {
9200 io_rsrc_data_free(data);
9201 return ret;
9202 }
9203
9204 for (i = 0; i < nr_args; i++, ctx->nr_user_bufs++) {
9205 ret = io_copy_iov(ctx, &iov, arg, i);
9206 if (ret)
9207 break;
9208 ret = io_buffer_validate(&iov);
9209 if (ret)
9210 break;
9211 if (!iov.iov_base && *io_get_tag_slot(data, i)) {
9212 ret = -EINVAL;
9213 break;
9214 }
9215
9216 ret = io_sqe_buffer_register(ctx, &iov, &ctx->user_bufs[i],
9217 &last_hpage);
9218 if (ret)
9219 break;
9220 }
9221
9222 WARN_ON_ONCE(ctx->buf_data);
9223
9224 ctx->buf_data = data;
9225 if (ret)
9226 __io_sqe_buffers_unregister(ctx);
9227 else
9228 io_rsrc_node_switch(ctx, NULL);
9229 return ret;
9230 }
9231
__io_sqe_buffers_update(struct io_ring_ctx *ctx, struct io_uring_rsrc_update2 *up, unsigned int nr_args)9232 static int __io_sqe_buffers_update(struct io_ring_ctx *ctx,
9233 struct io_uring_rsrc_update2 *up,
9234 unsigned int nr_args)
9235 {
9236 u64 __user *tags = u64_to_user_ptr(up->tags);
9237 struct iovec iov, __user *iovs = u64_to_user_ptr(up->data);
9238 struct page *last_hpage = NULL;
9239 bool needs_switch = false;
9240 __u32 done;
9241 int i, err;
9242
9243 if (!ctx->buf_data)
9244 return -ENXIO;
9245 if (up->offset + nr_args > ctx->nr_user_bufs)
9246 return -EINVAL;
9247
9248 for (done = 0; done < nr_args; done++) {
9249 struct io_mapped_ubuf *imu;
9250 int offset = up->offset + done;
9251 u64 tag = 0;
9252
9253 err = io_copy_iov(ctx, &iov, iovs, done);
9254 if (err)
9255 break;
9256 if (tags && copy_from_user(&tag, &tags[done], sizeof(tag))) {
9257 err = -EFAULT;
9258 break;
9259 }
9260 err = io_buffer_validate(&iov);
9261 if (err)
9262 break;
9263 if (!iov.iov_base && tag) {
9264 err = -EINVAL;
9265 break;
9266 }
9267 err = io_sqe_buffer_register(ctx, &iov, &imu, &last_hpage);
9268 if (err)
9269 break;
9270
9271 i = array_index_nospec(offset, ctx->nr_user_bufs);
9272 if (ctx->user_bufs[i] != ctx->dummy_ubuf) {
9273 err = io_queue_rsrc_removal(ctx->buf_data, i,
9274 ctx->rsrc_node, ctx->user_bufs[i]);
9275 if (unlikely(err)) {
9276 io_buffer_unmap(ctx, &imu);
9277 break;
9278 }
9279 ctx->user_bufs[i] = NULL;
9280 needs_switch = true;
9281 }
9282
9283 ctx->user_bufs[i] = imu;
9284 *io_get_tag_slot(ctx->buf_data, offset) = tag;
9285 }
9286
9287 if (needs_switch)
9288 io_rsrc_node_switch(ctx, ctx->buf_data);
9289 return done ? done : err;
9290 }
9291
io_eventfd_register(struct io_ring_ctx *ctx, void __user *arg)9292 static int io_eventfd_register(struct io_ring_ctx *ctx, void __user *arg)
9293 {
9294 __s32 __user *fds = arg;
9295 int fd;
9296
9297 if (ctx->cq_ev_fd)
9298 return -EBUSY;
9299
9300 if (copy_from_user(&fd, fds, sizeof(*fds)))
9301 return -EFAULT;
9302
9303 ctx->cq_ev_fd = eventfd_ctx_fdget(fd);
9304 if (IS_ERR(ctx->cq_ev_fd)) {
9305 int ret = PTR_ERR(ctx->cq_ev_fd);
9306
9307 ctx->cq_ev_fd = NULL;
9308 return ret;
9309 }
9310
9311 return 0;
9312 }
9313
io_eventfd_unregister(struct io_ring_ctx *ctx)9314 static int io_eventfd_unregister(struct io_ring_ctx *ctx)
9315 {
9316 if (ctx->cq_ev_fd) {
9317 eventfd_ctx_put(ctx->cq_ev_fd);
9318 ctx->cq_ev_fd = NULL;
9319 return 0;
9320 }
9321
9322 return -ENXIO;
9323 }
9324
io_destroy_buffers(struct io_ring_ctx *ctx)9325 static void io_destroy_buffers(struct io_ring_ctx *ctx)
9326 {
9327 struct io_buffer *buf;
9328 unsigned long index;
9329
9330 xa_for_each(&ctx->io_buffers, index, buf)
9331 __io_remove_buffers(ctx, buf, index, -1U);
9332 }
9333
io_req_cache_free(struct list_head *list)9334 static void io_req_cache_free(struct list_head *list)
9335 {
9336 struct io_kiocb *req, *nxt;
9337
9338 list_for_each_entry_safe(req, nxt, list, inflight_entry) {
9339 list_del(&req->inflight_entry);
9340 kmem_cache_free(req_cachep, req);
9341 }
9342 }
9343
io_req_caches_free(struct io_ring_ctx *ctx)9344 static void io_req_caches_free(struct io_ring_ctx *ctx)
9345 {
9346 struct io_submit_state *state = &ctx->submit_state;
9347
9348 mutex_lock(&ctx->uring_lock);
9349
9350 if (state->free_reqs) {
9351 kmem_cache_free_bulk(req_cachep, state->free_reqs, state->reqs);
9352 state->free_reqs = 0;
9353 }
9354
9355 io_flush_cached_locked_reqs(ctx, state);
9356 io_req_cache_free(&state->free_list);
9357 mutex_unlock(&ctx->uring_lock);
9358 }
9359
io_wait_rsrc_data(struct io_rsrc_data *data)9360 static void io_wait_rsrc_data(struct io_rsrc_data *data)
9361 {
9362 if (data && !atomic_dec_and_test(&data->refs))
9363 wait_for_completion(&data->done);
9364 }
9365
io_ring_ctx_free(struct io_ring_ctx *ctx)9366 static void io_ring_ctx_free(struct io_ring_ctx *ctx)
9367 {
9368 io_sq_thread_finish(ctx);
9369
9370 /* __io_rsrc_put_work() may need uring_lock to progress, wait w/o it */
9371 io_wait_rsrc_data(ctx->buf_data);
9372 io_wait_rsrc_data(ctx->file_data);
9373
9374 mutex_lock(&ctx->uring_lock);
9375 if (ctx->buf_data)
9376 __io_sqe_buffers_unregister(ctx);
9377 if (ctx->file_data)
9378 __io_sqe_files_unregister(ctx);
9379 if (ctx->rings)
9380 __io_cqring_overflow_flush(ctx, true);
9381 mutex_unlock(&ctx->uring_lock);
9382 io_eventfd_unregister(ctx);
9383 io_destroy_buffers(ctx);
9384 if (ctx->sq_creds)
9385 put_cred(ctx->sq_creds);
9386
9387 /* there are no registered resources left, nobody uses it */
9388 if (ctx->rsrc_node)
9389 io_rsrc_node_destroy(ctx->rsrc_node);
9390 if (ctx->rsrc_backup_node)
9391 io_rsrc_node_destroy(ctx->rsrc_backup_node);
9392 flush_delayed_work(&ctx->rsrc_put_work);
9393
9394 WARN_ON_ONCE(!list_empty(&ctx->rsrc_ref_list));
9395 WARN_ON_ONCE(!llist_empty(&ctx->rsrc_put_llist));
9396
9397 #if defined(CONFIG_UNIX)
9398 if (ctx->ring_sock) {
9399 ctx->ring_sock->file = NULL; /* so that iput() is called */
9400 sock_release(ctx->ring_sock);
9401 }
9402 #endif
9403 WARN_ON_ONCE(!list_empty(&ctx->ltimeout_list));
9404
9405 if (ctx->mm_account) {
9406 mmdrop(ctx->mm_account);
9407 ctx->mm_account = NULL;
9408 }
9409
9410 io_mem_free(ctx->rings);
9411 io_mem_free(ctx->sq_sqes);
9412
9413 percpu_ref_exit(&ctx->refs);
9414 free_uid(ctx->user);
9415 io_req_caches_free(ctx);
9416 if (ctx->hash_map)
9417 io_wq_put_hash(ctx->hash_map);
9418 kfree(ctx->cancel_hash);
9419 kfree(ctx->dummy_ubuf);
9420 kfree(ctx);
9421 }
9422
io_uring_poll(struct file *file, poll_table *wait)9423 static __poll_t io_uring_poll(struct file *file, poll_table *wait)
9424 {
9425 struct io_ring_ctx *ctx = file->private_data;
9426 __poll_t mask = 0;
9427
9428 poll_wait(file, &ctx->poll_wait, wait);
9429 /*
9430 * synchronizes with barrier from wq_has_sleeper call in
9431 * io_commit_cqring
9432 */
9433 smp_rmb();
9434 if (!io_sqring_full(ctx))
9435 mask |= EPOLLOUT | EPOLLWRNORM;
9436
9437 /*
9438 * Don't flush cqring overflow list here, just do a simple check.
9439 * Otherwise there could possible be ABBA deadlock:
9440 * CPU0 CPU1
9441 * ---- ----
9442 * lock(&ctx->uring_lock);
9443 * lock(&ep->mtx);
9444 * lock(&ctx->uring_lock);
9445 * lock(&ep->mtx);
9446 *
9447 * Users may get EPOLLIN meanwhile seeing nothing in cqring, this
9448 * pushs them to do the flush.
9449 */
9450 if (io_cqring_events(ctx) || test_bit(0, &ctx->check_cq_overflow))
9451 mask |= EPOLLIN | EPOLLRDNORM;
9452
9453 return mask;
9454 }
9455
io_unregister_personality(struct io_ring_ctx *ctx, unsigned id)9456 static int io_unregister_personality(struct io_ring_ctx *ctx, unsigned id)
9457 {
9458 const struct cred *creds;
9459
9460 creds = xa_erase(&ctx->personalities, id);
9461 if (creds) {
9462 put_cred(creds);
9463 return 0;
9464 }
9465
9466 return -EINVAL;
9467 }
9468
9469 struct io_tctx_exit {
9470 struct callback_head task_work;
9471 struct completion completion;
9472 struct io_ring_ctx *ctx;
9473 };
9474
io_tctx_exit_cb(struct callback_head *cb)9475 static void io_tctx_exit_cb(struct callback_head *cb)
9476 {
9477 struct io_uring_task *tctx = current->io_uring;
9478 struct io_tctx_exit *work;
9479
9480 work = container_of(cb, struct io_tctx_exit, task_work);
9481 /*
9482 * When @in_idle, we're in cancellation and it's racy to remove the
9483 * node. It'll be removed by the end of cancellation, just ignore it.
9484 * tctx can be NULL if the queueing of this task_work raced with
9485 * work cancelation off the exec path.
9486 */
9487 if (tctx && !atomic_read(&tctx->in_idle))
9488 io_uring_del_tctx_node((unsigned long)work->ctx);
9489 complete(&work->completion);
9490 }
9491
io_cancel_ctx_cb(struct io_wq_work *work, void *data)9492 static bool io_cancel_ctx_cb(struct io_wq_work *work, void *data)
9493 {
9494 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
9495
9496 return req->ctx == data;
9497 }
9498
io_ring_exit_work(struct work_struct *work)9499 static void io_ring_exit_work(struct work_struct *work)
9500 {
9501 struct io_ring_ctx *ctx = container_of(work, struct io_ring_ctx, exit_work);
9502 unsigned long timeout = jiffies + HZ * 60 * 5;
9503 unsigned long interval = HZ / 20;
9504 struct io_tctx_exit exit;
9505 struct io_tctx_node *node;
9506 int ret;
9507
9508 /*
9509 * If we're doing polled IO and end up having requests being
9510 * submitted async (out-of-line), then completions can come in while
9511 * we're waiting for refs to drop. We need to reap these manually,
9512 * as nobody else will be looking for them.
9513 */
9514 do {
9515 io_uring_try_cancel_requests(ctx, NULL, true);
9516 if (ctx->sq_data) {
9517 struct io_sq_data *sqd = ctx->sq_data;
9518 struct task_struct *tsk;
9519
9520 io_sq_thread_park(sqd);
9521 tsk = sqd->thread;
9522 if (tsk && tsk->io_uring && tsk->io_uring->io_wq)
9523 io_wq_cancel_cb(tsk->io_uring->io_wq,
9524 io_cancel_ctx_cb, ctx, true);
9525 io_sq_thread_unpark(sqd);
9526 }
9527
9528 if (WARN_ON_ONCE(time_after(jiffies, timeout))) {
9529 /* there is little hope left, don't run it too often */
9530 interval = HZ * 60;
9531 }
9532 /*
9533 * This is really an uninterruptible wait, as it has to be
9534 * complete. But it's also run from a kworker, which doesn't
9535 * take signals, so it's fine to make it interruptible. This
9536 * avoids scenarios where we knowingly can wait much longer
9537 * on completions, for example if someone does a SIGSTOP on
9538 * a task that needs to finish task_work to make this loop
9539 * complete. That's a synthetic situation that should not
9540 * cause a stuck task backtrace, and hence a potential panic
9541 * on stuck tasks if that is enabled.
9542 */
9543 } while (!wait_for_completion_interruptible_timeout(&ctx->ref_comp, interval));
9544
9545 init_completion(&exit.completion);
9546 init_task_work(&exit.task_work, io_tctx_exit_cb);
9547 exit.ctx = ctx;
9548 /*
9549 * Some may use context even when all refs and requests have been put,
9550 * and they are free to do so while still holding uring_lock or
9551 * completion_lock, see io_req_task_submit(). Apart from other work,
9552 * this lock/unlock section also waits them to finish.
9553 */
9554 mutex_lock(&ctx->uring_lock);
9555 while (!list_empty(&ctx->tctx_list)) {
9556 WARN_ON_ONCE(time_after(jiffies, timeout));
9557
9558 node = list_first_entry(&ctx->tctx_list, struct io_tctx_node,
9559 ctx_node);
9560 /* don't spin on a single task if cancellation failed */
9561 list_rotate_left(&ctx->tctx_list);
9562 ret = task_work_add(node->task, &exit.task_work, TWA_SIGNAL);
9563 if (WARN_ON_ONCE(ret))
9564 continue;
9565 wake_up_process(node->task);
9566
9567 mutex_unlock(&ctx->uring_lock);
9568 /*
9569 * See comment above for
9570 * wait_for_completion_interruptible_timeout() on why this
9571 * wait is marked as interruptible.
9572 */
9573 wait_for_completion_interruptible(&exit.completion);
9574 mutex_lock(&ctx->uring_lock);
9575 }
9576 mutex_unlock(&ctx->uring_lock);
9577 spin_lock(&ctx->completion_lock);
9578 spin_unlock(&ctx->completion_lock);
9579
9580 io_ring_ctx_free(ctx);
9581 }
9582
9583 /* Returns true if we found and killed one or more timeouts */
io_kill_timeouts(struct io_ring_ctx *ctx, struct task_struct *tsk, bool cancel_all)9584 static bool io_kill_timeouts(struct io_ring_ctx *ctx, struct task_struct *tsk,
9585 bool cancel_all)
9586 {
9587 struct io_kiocb *req, *tmp;
9588 int canceled = 0;
9589
9590 spin_lock(&ctx->completion_lock);
9591 spin_lock_irq(&ctx->timeout_lock);
9592 list_for_each_entry_safe(req, tmp, &ctx->timeout_list, timeout.list) {
9593 if (io_match_task(req, tsk, cancel_all)) {
9594 io_kill_timeout(req, -ECANCELED);
9595 canceled++;
9596 }
9597 }
9598 spin_unlock_irq(&ctx->timeout_lock);
9599 if (canceled != 0)
9600 io_commit_cqring(ctx);
9601 spin_unlock(&ctx->completion_lock);
9602 if (canceled != 0)
9603 io_cqring_ev_posted(ctx);
9604 return canceled != 0;
9605 }
9606
io_ring_ctx_wait_and_kill(struct io_ring_ctx *ctx)9607 static void io_ring_ctx_wait_and_kill(struct io_ring_ctx *ctx)
9608 {
9609 unsigned long index;
9610 struct creds *creds;
9611
9612 mutex_lock(&ctx->uring_lock);
9613 percpu_ref_kill(&ctx->refs);
9614 if (ctx->rings)
9615 __io_cqring_overflow_flush(ctx, true);
9616 xa_for_each(&ctx->personalities, index, creds)
9617 io_unregister_personality(ctx, index);
9618 mutex_unlock(&ctx->uring_lock);
9619
9620 io_kill_timeouts(ctx, NULL, true);
9621 io_poll_remove_all(ctx, NULL, true);
9622
9623 /* if we failed setting up the ctx, we might not have any rings */
9624 io_iopoll_try_reap_events(ctx);
9625
9626 /* drop cached put refs after potentially doing completions */
9627 if (current->io_uring)
9628 io_uring_drop_tctx_refs(current);
9629
9630 INIT_WORK(&ctx->exit_work, io_ring_exit_work);
9631 /*
9632 * Use system_unbound_wq to avoid spawning tons of event kworkers
9633 * if we're exiting a ton of rings at the same time. It just adds
9634 * noise and overhead, there's no discernable change in runtime
9635 * over using system_wq.
9636 */
9637 queue_work(system_unbound_wq, &ctx->exit_work);
9638 }
9639
io_uring_release(struct inode *inode, struct file *file)9640 static int io_uring_release(struct inode *inode, struct file *file)
9641 {
9642 struct io_ring_ctx *ctx = file->private_data;
9643
9644 file->private_data = NULL;
9645 io_ring_ctx_wait_and_kill(ctx);
9646 return 0;
9647 }
9648
9649 struct io_task_cancel {
9650 struct task_struct *task;
9651 bool all;
9652 };
9653
io_cancel_task_cb(struct io_wq_work *work, void *data)9654 static bool io_cancel_task_cb(struct io_wq_work *work, void *data)
9655 {
9656 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
9657 struct io_task_cancel *cancel = data;
9658
9659 return io_match_task_safe(req, cancel->task, cancel->all);
9660 }
9661
io_cancel_defer_files(struct io_ring_ctx *ctx, struct task_struct *task, bool cancel_all)9662 static bool io_cancel_defer_files(struct io_ring_ctx *ctx,
9663 struct task_struct *task, bool cancel_all)
9664 {
9665 struct io_defer_entry *de;
9666 LIST_HEAD(list);
9667
9668 spin_lock(&ctx->completion_lock);
9669 list_for_each_entry_reverse(de, &ctx->defer_list, list) {
9670 if (io_match_task_safe(de->req, task, cancel_all)) {
9671 list_cut_position(&list, &ctx->defer_list, &de->list);
9672 break;
9673 }
9674 }
9675 spin_unlock(&ctx->completion_lock);
9676 if (list_empty(&list))
9677 return false;
9678
9679 while (!list_empty(&list)) {
9680 de = list_first_entry(&list, struct io_defer_entry, list);
9681 list_del_init(&de->list);
9682 io_req_complete_failed(de->req, -ECANCELED);
9683 kfree(de);
9684 }
9685 return true;
9686 }
9687
io_uring_try_cancel_iowq(struct io_ring_ctx *ctx)9688 static bool io_uring_try_cancel_iowq(struct io_ring_ctx *ctx)
9689 {
9690 struct io_tctx_node *node;
9691 enum io_wq_cancel cret;
9692 bool ret = false;
9693
9694 mutex_lock(&ctx->uring_lock);
9695 list_for_each_entry(node, &ctx->tctx_list, ctx_node) {
9696 struct io_uring_task *tctx = node->task->io_uring;
9697
9698 /*
9699 * io_wq will stay alive while we hold uring_lock, because it's
9700 * killed after ctx nodes, which requires to take the lock.
9701 */
9702 if (!tctx || !tctx->io_wq)
9703 continue;
9704 cret = io_wq_cancel_cb(tctx->io_wq, io_cancel_ctx_cb, ctx, true);
9705 ret |= (cret != IO_WQ_CANCEL_NOTFOUND);
9706 }
9707 mutex_unlock(&ctx->uring_lock);
9708
9709 return ret;
9710 }
9711
io_uring_try_cancel_requests(struct io_ring_ctx *ctx, struct task_struct *task, bool cancel_all)9712 static void io_uring_try_cancel_requests(struct io_ring_ctx *ctx,
9713 struct task_struct *task,
9714 bool cancel_all)
9715 {
9716 struct io_task_cancel cancel = { .task = task, .all = cancel_all, };
9717 struct io_uring_task *tctx = task ? task->io_uring : NULL;
9718
9719 while (1) {
9720 enum io_wq_cancel cret;
9721 bool ret = false;
9722
9723 if (!task) {
9724 ret |= io_uring_try_cancel_iowq(ctx);
9725 } else if (tctx && tctx->io_wq) {
9726 /*
9727 * Cancels requests of all rings, not only @ctx, but
9728 * it's fine as the task is in exit/exec.
9729 */
9730 cret = io_wq_cancel_cb(tctx->io_wq, io_cancel_task_cb,
9731 &cancel, true);
9732 ret |= (cret != IO_WQ_CANCEL_NOTFOUND);
9733 }
9734
9735 /* SQPOLL thread does its own polling */
9736 if ((!(ctx->flags & IORING_SETUP_SQPOLL) && cancel_all) ||
9737 (ctx->sq_data && ctx->sq_data->thread == current)) {
9738 while (!list_empty_careful(&ctx->iopoll_list)) {
9739 io_iopoll_try_reap_events(ctx);
9740 ret = true;
9741 cond_resched();
9742 }
9743 }
9744
9745 ret |= io_cancel_defer_files(ctx, task, cancel_all);
9746 ret |= io_poll_remove_all(ctx, task, cancel_all);
9747 ret |= io_kill_timeouts(ctx, task, cancel_all);
9748 if (task)
9749 ret |= io_run_task_work();
9750 if (!ret)
9751 break;
9752 cond_resched();
9753 }
9754 }
9755
__io_uring_add_tctx_node(struct io_ring_ctx *ctx)9756 static int __io_uring_add_tctx_node(struct io_ring_ctx *ctx)
9757 {
9758 struct io_uring_task *tctx = current->io_uring;
9759 struct io_tctx_node *node;
9760 int ret;
9761
9762 if (unlikely(!tctx)) {
9763 ret = io_uring_alloc_task_context(current, ctx);
9764 if (unlikely(ret))
9765 return ret;
9766
9767 tctx = current->io_uring;
9768 if (ctx->iowq_limits_set) {
9769 unsigned int limits[2] = { ctx->iowq_limits[0],
9770 ctx->iowq_limits[1], };
9771
9772 ret = io_wq_max_workers(tctx->io_wq, limits);
9773 if (ret)
9774 return ret;
9775 }
9776 }
9777 if (!xa_load(&tctx->xa, (unsigned long)ctx)) {
9778 node = kmalloc(sizeof(*node), GFP_KERNEL);
9779 if (!node)
9780 return -ENOMEM;
9781 node->ctx = ctx;
9782 node->task = current;
9783
9784 ret = xa_err(xa_store(&tctx->xa, (unsigned long)ctx,
9785 node, GFP_KERNEL));
9786 if (ret) {
9787 kfree(node);
9788 return ret;
9789 }
9790
9791 mutex_lock(&ctx->uring_lock);
9792 list_add(&node->ctx_node, &ctx->tctx_list);
9793 mutex_unlock(&ctx->uring_lock);
9794 }
9795 tctx->last = ctx;
9796 return 0;
9797 }
9798
9799 /*
9800 * Note that this task has used io_uring. We use it for cancelation purposes.
9801 */
io_uring_add_tctx_node(struct io_ring_ctx *ctx)9802 static inline int io_uring_add_tctx_node(struct io_ring_ctx *ctx)
9803 {
9804 struct io_uring_task *tctx = current->io_uring;
9805
9806 if (likely(tctx && tctx->last == ctx))
9807 return 0;
9808 return __io_uring_add_tctx_node(ctx);
9809 }
9810
9811 /*
9812 * Remove this io_uring_file -> task mapping.
9813 */
io_uring_del_tctx_node(unsigned long index)9814 static void io_uring_del_tctx_node(unsigned long index)
9815 {
9816 struct io_uring_task *tctx = current->io_uring;
9817 struct io_tctx_node *node;
9818
9819 if (!tctx)
9820 return;
9821 node = xa_erase(&tctx->xa, index);
9822 if (!node)
9823 return;
9824
9825 WARN_ON_ONCE(current != node->task);
9826 WARN_ON_ONCE(list_empty(&node->ctx_node));
9827
9828 mutex_lock(&node->ctx->uring_lock);
9829 list_del(&node->ctx_node);
9830 mutex_unlock(&node->ctx->uring_lock);
9831
9832 if (tctx->last == node->ctx)
9833 tctx->last = NULL;
9834 kfree(node);
9835 }
9836
io_uring_clean_tctx(struct io_uring_task *tctx)9837 static void io_uring_clean_tctx(struct io_uring_task *tctx)
9838 {
9839 struct io_wq *wq = tctx->io_wq;
9840 struct io_tctx_node *node;
9841 unsigned long index;
9842
9843 xa_for_each(&tctx->xa, index, node) {
9844 io_uring_del_tctx_node(index);
9845 cond_resched();
9846 }
9847 if (wq) {
9848 /*
9849 * Must be after io_uring_del_task_file() (removes nodes under
9850 * uring_lock) to avoid race with io_uring_try_cancel_iowq().
9851 */
9852 io_wq_put_and_exit(wq);
9853 tctx->io_wq = NULL;
9854 }
9855 }
9856
tctx_inflight(struct io_uring_task *tctx, bool tracked)9857 static s64 tctx_inflight(struct io_uring_task *tctx, bool tracked)
9858 {
9859 if (tracked)
9860 return atomic_read(&tctx->inflight_tracked);
9861 return percpu_counter_sum(&tctx->inflight);
9862 }
9863
9864 /*
9865 * Find any io_uring ctx that this task has registered or done IO on, and cancel
9866 * requests. @sqd should be not-null IFF it's an SQPOLL thread cancellation.
9867 */
io_uring_cancel_generic(bool cancel_all, struct io_sq_data *sqd)9868 static void io_uring_cancel_generic(bool cancel_all, struct io_sq_data *sqd)
9869 {
9870 struct io_uring_task *tctx = current->io_uring;
9871 struct io_ring_ctx *ctx;
9872 s64 inflight;
9873 DEFINE_WAIT(wait);
9874
9875 WARN_ON_ONCE(sqd && sqd->thread != current);
9876
9877 if (!current->io_uring)
9878 return;
9879 if (tctx->io_wq)
9880 io_wq_exit_start(tctx->io_wq);
9881
9882 atomic_inc(&tctx->in_idle);
9883 do {
9884 io_uring_drop_tctx_refs(current);
9885 /* read completions before cancelations */
9886 inflight = tctx_inflight(tctx, !cancel_all);
9887 if (!inflight)
9888 break;
9889
9890 if (!sqd) {
9891 struct io_tctx_node *node;
9892 unsigned long index;
9893
9894 xa_for_each(&tctx->xa, index, node) {
9895 /* sqpoll task will cancel all its requests */
9896 if (node->ctx->sq_data)
9897 continue;
9898 io_uring_try_cancel_requests(node->ctx, current,
9899 cancel_all);
9900 }
9901 } else {
9902 list_for_each_entry(ctx, &sqd->ctx_list, sqd_list)
9903 io_uring_try_cancel_requests(ctx, current,
9904 cancel_all);
9905 }
9906
9907 prepare_to_wait(&tctx->wait, &wait, TASK_INTERRUPTIBLE);
9908 io_run_task_work();
9909 io_uring_drop_tctx_refs(current);
9910
9911 /*
9912 * If we've seen completions, retry without waiting. This
9913 * avoids a race where a completion comes in before we did
9914 * prepare_to_wait().
9915 */
9916 if (inflight == tctx_inflight(tctx, !cancel_all))
9917 schedule();
9918 finish_wait(&tctx->wait, &wait);
9919 } while (1);
9920
9921 io_uring_clean_tctx(tctx);
9922 if (cancel_all) {
9923 /*
9924 * We shouldn't run task_works after cancel, so just leave
9925 * ->in_idle set for normal exit.
9926 */
9927 atomic_dec(&tctx->in_idle);
9928 /* for exec all current's requests should be gone, kill tctx */
9929 __io_uring_free(current);
9930 }
9931 }
9932
__io_uring_cancel(bool cancel_all)9933 void __io_uring_cancel(bool cancel_all)
9934 {
9935 io_uring_cancel_generic(cancel_all, NULL);
9936 }
9937
io_uring_validate_mmap_request(struct file *file, loff_t pgoff, size_t sz)9938 static void *io_uring_validate_mmap_request(struct file *file,
9939 loff_t pgoff, size_t sz)
9940 {
9941 struct io_ring_ctx *ctx = file->private_data;
9942 loff_t offset = pgoff << PAGE_SHIFT;
9943 struct page *page;
9944 void *ptr;
9945
9946 switch (offset) {
9947 case IORING_OFF_SQ_RING:
9948 case IORING_OFF_CQ_RING:
9949 ptr = ctx->rings;
9950 break;
9951 case IORING_OFF_SQES:
9952 ptr = ctx->sq_sqes;
9953 break;
9954 default:
9955 return ERR_PTR(-EINVAL);
9956 }
9957
9958 page = virt_to_head_page(ptr);
9959 if (sz > page_size(page))
9960 return ERR_PTR(-EINVAL);
9961
9962 return ptr;
9963 }
9964
9965 #ifdef CONFIG_MMU
9966
io_uring_mmap(struct file *file, struct vm_area_struct *vma)9967 static int io_uring_mmap(struct file *file, struct vm_area_struct *vma)
9968 {
9969 size_t sz = vma->vm_end - vma->vm_start;
9970 unsigned long pfn;
9971 void *ptr;
9972
9973 ptr = io_uring_validate_mmap_request(file, vma->vm_pgoff, sz);
9974 if (IS_ERR(ptr))
9975 return PTR_ERR(ptr);
9976
9977 pfn = virt_to_phys(ptr) >> PAGE_SHIFT;
9978 return remap_pfn_range(vma, vma->vm_start, pfn, sz, vma->vm_page_prot);
9979 }
9980
9981 #else /* !CONFIG_MMU */
9982
io_uring_mmap(struct file *file, struct vm_area_struct *vma)9983 static int io_uring_mmap(struct file *file, struct vm_area_struct *vma)
9984 {
9985 return vma->vm_flags & (VM_SHARED | VM_MAYSHARE) ? 0 : -EINVAL;
9986 }
9987
io_uring_nommu_mmap_capabilities(struct file *file)9988 static unsigned int io_uring_nommu_mmap_capabilities(struct file *file)
9989 {
9990 return NOMMU_MAP_DIRECT | NOMMU_MAP_READ | NOMMU_MAP_WRITE;
9991 }
9992
io_uring_nommu_get_unmapped_area(struct file *file, unsigned long addr, unsigned long len, unsigned long pgoff, unsigned long flags)9993 static unsigned long io_uring_nommu_get_unmapped_area(struct file *file,
9994 unsigned long addr, unsigned long len,
9995 unsigned long pgoff, unsigned long flags)
9996 {
9997 void *ptr;
9998
9999 ptr = io_uring_validate_mmap_request(file, pgoff, len);
10000 if (IS_ERR(ptr))
10001 return PTR_ERR(ptr);
10002
10003 return (unsigned long) ptr;
10004 }
10005
10006 #endif /* !CONFIG_MMU */
10007
io_sqpoll_wait_sq(struct io_ring_ctx *ctx)10008 static int io_sqpoll_wait_sq(struct io_ring_ctx *ctx)
10009 {
10010 DEFINE_WAIT(wait);
10011
10012 do {
10013 if (!io_sqring_full(ctx))
10014 break;
10015 prepare_to_wait(&ctx->sqo_sq_wait, &wait, TASK_INTERRUPTIBLE);
10016
10017 if (!io_sqring_full(ctx))
10018 break;
10019 schedule();
10020 } while (!signal_pending(current));
10021
10022 finish_wait(&ctx->sqo_sq_wait, &wait);
10023 return 0;
10024 }
10025
io_get_ext_arg(unsigned flags, const void __user *argp, size_t *argsz, struct __kernel_timespec __user **ts, const sigset_t __user **sig)10026 static int io_get_ext_arg(unsigned flags, const void __user *argp, size_t *argsz,
10027 struct __kernel_timespec __user **ts,
10028 const sigset_t __user **sig)
10029 {
10030 struct io_uring_getevents_arg arg;
10031
10032 /*
10033 * If EXT_ARG isn't set, then we have no timespec and the argp pointer
10034 * is just a pointer to the sigset_t.
10035 */
10036 if (!(flags & IORING_ENTER_EXT_ARG)) {
10037 *sig = (const sigset_t __user *) argp;
10038 *ts = NULL;
10039 return 0;
10040 }
10041
10042 /*
10043 * EXT_ARG is set - ensure we agree on the size of it and copy in our
10044 * timespec and sigset_t pointers if good.
10045 */
10046 if (*argsz != sizeof(arg))
10047 return -EINVAL;
10048 if (copy_from_user(&arg, argp, sizeof(arg)))
10049 return -EFAULT;
10050 if (arg.pad)
10051 return -EINVAL;
10052 *sig = u64_to_user_ptr(arg.sigmask);
10053 *argsz = arg.sigmask_sz;
10054 *ts = u64_to_user_ptr(arg.ts);
10055 return 0;
10056 }
10057
SYSCALL_DEFINE6(io_uring_enter, unsigned int, fd, u32, to_submit, u32, min_complete, u32, flags, const void __user *, argp, size_t, argsz)10058 SYSCALL_DEFINE6(io_uring_enter, unsigned int, fd, u32, to_submit,
10059 u32, min_complete, u32, flags, const void __user *, argp,
10060 size_t, argsz)
10061 {
10062 struct io_ring_ctx *ctx;
10063 int submitted = 0;
10064 struct fd f;
10065 long ret;
10066
10067 io_run_task_work();
10068
10069 if (unlikely(flags & ~(IORING_ENTER_GETEVENTS | IORING_ENTER_SQ_WAKEUP |
10070 IORING_ENTER_SQ_WAIT | IORING_ENTER_EXT_ARG)))
10071 return -EINVAL;
10072
10073 f = fdget(fd);
10074 if (unlikely(!f.file))
10075 return -EBADF;
10076
10077 ret = -EOPNOTSUPP;
10078 if (unlikely(f.file->f_op != &io_uring_fops))
10079 goto out_fput;
10080
10081 ret = -ENXIO;
10082 ctx = f.file->private_data;
10083 if (unlikely(!percpu_ref_tryget(&ctx->refs)))
10084 goto out_fput;
10085
10086 ret = -EBADFD;
10087 if (unlikely(ctx->flags & IORING_SETUP_R_DISABLED))
10088 goto out;
10089
10090 /*
10091 * For SQ polling, the thread will do all submissions and completions.
10092 * Just return the requested submit count, and wake the thread if
10093 * we were asked to.
10094 */
10095 ret = 0;
10096 if (ctx->flags & IORING_SETUP_SQPOLL) {
10097 io_cqring_overflow_flush(ctx);
10098
10099 if (unlikely(ctx->sq_data->thread == NULL)) {
10100 ret = -EOWNERDEAD;
10101 goto out;
10102 }
10103 if (flags & IORING_ENTER_SQ_WAKEUP)
10104 wake_up(&ctx->sq_data->wait);
10105 if (flags & IORING_ENTER_SQ_WAIT) {
10106 ret = io_sqpoll_wait_sq(ctx);
10107 if (ret)
10108 goto out;
10109 }
10110 submitted = to_submit;
10111 } else if (to_submit) {
10112 ret = io_uring_add_tctx_node(ctx);
10113 if (unlikely(ret))
10114 goto out;
10115 mutex_lock(&ctx->uring_lock);
10116 submitted = io_submit_sqes(ctx, to_submit);
10117 mutex_unlock(&ctx->uring_lock);
10118
10119 if (submitted != to_submit)
10120 goto out;
10121 }
10122 if (flags & IORING_ENTER_GETEVENTS) {
10123 const sigset_t __user *sig;
10124 struct __kernel_timespec __user *ts;
10125
10126 ret = io_get_ext_arg(flags, argp, &argsz, &ts, &sig);
10127 if (unlikely(ret))
10128 goto out;
10129
10130 min_complete = min(min_complete, ctx->cq_entries);
10131
10132 /*
10133 * When SETUP_IOPOLL and SETUP_SQPOLL are both enabled, user
10134 * space applications don't need to do io completion events
10135 * polling again, they can rely on io_sq_thread to do polling
10136 * work, which can reduce cpu usage and uring_lock contention.
10137 */
10138 if (ctx->flags & IORING_SETUP_IOPOLL &&
10139 !(ctx->flags & IORING_SETUP_SQPOLL)) {
10140 ret = io_iopoll_check(ctx, min_complete);
10141 } else {
10142 ret = io_cqring_wait(ctx, min_complete, sig, argsz, ts);
10143 }
10144 }
10145
10146 out:
10147 percpu_ref_put(&ctx->refs);
10148 out_fput:
10149 fdput(f);
10150 return submitted ? submitted : ret;
10151 }
10152
10153 #ifdef CONFIG_PROC_FS
io_uring_show_cred(struct seq_file *m, unsigned int id, const struct cred *cred)10154 static int io_uring_show_cred(struct seq_file *m, unsigned int id,
10155 const struct cred *cred)
10156 {
10157 struct user_namespace *uns = seq_user_ns(m);
10158 struct group_info *gi;
10159 kernel_cap_t cap;
10160 unsigned __capi;
10161 int g;
10162
10163 seq_printf(m, "%5d\n", id);
10164 seq_put_decimal_ull(m, "\tUid:\t", from_kuid_munged(uns, cred->uid));
10165 seq_put_decimal_ull(m, "\t\t", from_kuid_munged(uns, cred->euid));
10166 seq_put_decimal_ull(m, "\t\t", from_kuid_munged(uns, cred->suid));
10167 seq_put_decimal_ull(m, "\t\t", from_kuid_munged(uns, cred->fsuid));
10168 seq_put_decimal_ull(m, "\n\tGid:\t", from_kgid_munged(uns, cred->gid));
10169 seq_put_decimal_ull(m, "\t\t", from_kgid_munged(uns, cred->egid));
10170 seq_put_decimal_ull(m, "\t\t", from_kgid_munged(uns, cred->sgid));
10171 seq_put_decimal_ull(m, "\t\t", from_kgid_munged(uns, cred->fsgid));
10172 seq_puts(m, "\n\tGroups:\t");
10173 gi = cred->group_info;
10174 for (g = 0; g < gi->ngroups; g++) {
10175 seq_put_decimal_ull(m, g ? " " : "",
10176 from_kgid_munged(uns, gi->gid[g]));
10177 }
10178 seq_puts(m, "\n\tCapEff:\t");
10179 cap = cred->cap_effective;
10180 CAP_FOR_EACH_U32(__capi)
10181 seq_put_hex_ll(m, NULL, cap.cap[CAP_LAST_U32 - __capi], 8);
10182 seq_putc(m, '\n');
10183 return 0;
10184 }
10185
__io_uring_show_fdinfo(struct io_ring_ctx *ctx, struct seq_file *m)10186 static void __io_uring_show_fdinfo(struct io_ring_ctx *ctx, struct seq_file *m)
10187 {
10188 int sq_pid = -1, sq_cpu = -1;
10189 bool has_lock;
10190 int i;
10191
10192 /*
10193 * Avoid ABBA deadlock between the seq lock and the io_uring mutex,
10194 * since fdinfo case grabs it in the opposite direction of normal use
10195 * cases. If we fail to get the lock, we just don't iterate any
10196 * structures that could be going away outside the io_uring mutex.
10197 */
10198 has_lock = mutex_trylock(&ctx->uring_lock);
10199
10200 if (has_lock && (ctx->flags & IORING_SETUP_SQPOLL)) {
10201 struct io_sq_data *sq = ctx->sq_data;
10202
10203 if (mutex_trylock(&sq->lock)) {
10204 if (sq->thread) {
10205 sq_pid = task_pid_nr(sq->thread);
10206 sq_cpu = task_cpu(sq->thread);
10207 }
10208 mutex_unlock(&sq->lock);
10209 }
10210 }
10211
10212 seq_printf(m, "SqThread:\t%d\n", sq_pid);
10213 seq_printf(m, "SqThreadCpu:\t%d\n", sq_cpu);
10214 seq_printf(m, "UserFiles:\t%u\n", ctx->nr_user_files);
10215 for (i = 0; has_lock && i < ctx->nr_user_files; i++) {
10216 struct file *f = io_file_from_index(ctx, i);
10217
10218 if (f)
10219 seq_printf(m, "%5u: %s\n", i, file_dentry(f)->d_iname);
10220 else
10221 seq_printf(m, "%5u: <none>\n", i);
10222 }
10223 seq_printf(m, "UserBufs:\t%u\n", ctx->nr_user_bufs);
10224 for (i = 0; has_lock && i < ctx->nr_user_bufs; i++) {
10225 struct io_mapped_ubuf *buf = ctx->user_bufs[i];
10226 unsigned int len = buf->ubuf_end - buf->ubuf;
10227
10228 seq_printf(m, "%5u: 0x%llx/%u\n", i, buf->ubuf, len);
10229 }
10230 if (has_lock && !xa_empty(&ctx->personalities)) {
10231 unsigned long index;
10232 const struct cred *cred;
10233
10234 seq_printf(m, "Personalities:\n");
10235 xa_for_each(&ctx->personalities, index, cred)
10236 io_uring_show_cred(m, index, cred);
10237 }
10238 seq_printf(m, "PollList:\n");
10239 spin_lock(&ctx->completion_lock);
10240 for (i = 0; i < (1U << ctx->cancel_hash_bits); i++) {
10241 struct hlist_head *list = &ctx->cancel_hash[i];
10242 struct io_kiocb *req;
10243
10244 hlist_for_each_entry(req, list, hash_node)
10245 seq_printf(m, " op=%d, task_works=%d\n", req->opcode,
10246 req->task->task_works != NULL);
10247 }
10248 spin_unlock(&ctx->completion_lock);
10249 if (has_lock)
10250 mutex_unlock(&ctx->uring_lock);
10251 }
10252
io_uring_show_fdinfo(struct seq_file *m, struct file *f)10253 static void io_uring_show_fdinfo(struct seq_file *m, struct file *f)
10254 {
10255 struct io_ring_ctx *ctx = f->private_data;
10256
10257 if (percpu_ref_tryget(&ctx->refs)) {
10258 __io_uring_show_fdinfo(ctx, m);
10259 percpu_ref_put(&ctx->refs);
10260 }
10261 }
10262 #endif
10263
10264 static const struct file_operations io_uring_fops = {
10265 .release = io_uring_release,
10266 .mmap = io_uring_mmap,
10267 #ifndef CONFIG_MMU
10268 .get_unmapped_area = io_uring_nommu_get_unmapped_area,
10269 .mmap_capabilities = io_uring_nommu_mmap_capabilities,
10270 #endif
10271 .poll = io_uring_poll,
10272 #ifdef CONFIG_PROC_FS
10273 .show_fdinfo = io_uring_show_fdinfo,
10274 #endif
10275 };
10276
io_allocate_scq_urings(struct io_ring_ctx *ctx, struct io_uring_params *p)10277 static int io_allocate_scq_urings(struct io_ring_ctx *ctx,
10278 struct io_uring_params *p)
10279 {
10280 struct io_rings *rings;
10281 size_t size, sq_array_offset;
10282
10283 /* make sure these are sane, as we already accounted them */
10284 ctx->sq_entries = p->sq_entries;
10285 ctx->cq_entries = p->cq_entries;
10286
10287 size = rings_size(p->sq_entries, p->cq_entries, &sq_array_offset);
10288 if (size == SIZE_MAX)
10289 return -EOVERFLOW;
10290
10291 rings = io_mem_alloc(size);
10292 if (!rings)
10293 return -ENOMEM;
10294
10295 ctx->rings = rings;
10296 ctx->sq_array = (u32 *)((char *)rings + sq_array_offset);
10297 rings->sq_ring_mask = p->sq_entries - 1;
10298 rings->cq_ring_mask = p->cq_entries - 1;
10299 rings->sq_ring_entries = p->sq_entries;
10300 rings->cq_ring_entries = p->cq_entries;
10301
10302 size = array_size(sizeof(struct io_uring_sqe), p->sq_entries);
10303 if (size == SIZE_MAX) {
10304 io_mem_free(ctx->rings);
10305 ctx->rings = NULL;
10306 return -EOVERFLOW;
10307 }
10308
10309 ctx->sq_sqes = io_mem_alloc(size);
10310 if (!ctx->sq_sqes) {
10311 io_mem_free(ctx->rings);
10312 ctx->rings = NULL;
10313 return -ENOMEM;
10314 }
10315
10316 return 0;
10317 }
10318
io_uring_install_fd(struct io_ring_ctx *ctx, struct file *file)10319 static int io_uring_install_fd(struct io_ring_ctx *ctx, struct file *file)
10320 {
10321 int ret, fd;
10322
10323 fd = get_unused_fd_flags(O_RDWR | O_CLOEXEC);
10324 if (fd < 0)
10325 return fd;
10326
10327 ret = io_uring_add_tctx_node(ctx);
10328 if (ret) {
10329 put_unused_fd(fd);
10330 return ret;
10331 }
10332 fd_install(fd, file);
10333 return fd;
10334 }
10335
10336 /*
10337 * Allocate an anonymous fd, this is what constitutes the application
10338 * visible backing of an io_uring instance. The application mmaps this
10339 * fd to gain access to the SQ/CQ ring details. If UNIX sockets are enabled,
10340 * we have to tie this fd to a socket for file garbage collection purposes.
10341 */
io_uring_get_file(struct io_ring_ctx *ctx)10342 static struct file *io_uring_get_file(struct io_ring_ctx *ctx)
10343 {
10344 struct file *file;
10345 #if defined(CONFIG_UNIX)
10346 int ret;
10347
10348 ret = sock_create_kern(&init_net, PF_UNIX, SOCK_RAW, IPPROTO_IP,
10349 &ctx->ring_sock);
10350 if (ret)
10351 return ERR_PTR(ret);
10352 #endif
10353
10354 file = anon_inode_getfile("[io_uring]", &io_uring_fops, ctx,
10355 O_RDWR | O_CLOEXEC);
10356 #if defined(CONFIG_UNIX)
10357 if (IS_ERR(file)) {
10358 sock_release(ctx->ring_sock);
10359 ctx->ring_sock = NULL;
10360 } else {
10361 ctx->ring_sock->file = file;
10362 }
10363 #endif
10364 return file;
10365 }
10366
io_uring_create(unsigned entries, struct io_uring_params *p, struct io_uring_params __user *params)10367 static int io_uring_create(unsigned entries, struct io_uring_params *p,
10368 struct io_uring_params __user *params)
10369 {
10370 struct io_ring_ctx *ctx;
10371 struct file *file;
10372 int ret;
10373
10374 if (!entries)
10375 return -EINVAL;
10376 if (entries > IORING_MAX_ENTRIES) {
10377 if (!(p->flags & IORING_SETUP_CLAMP))
10378 return -EINVAL;
10379 entries = IORING_MAX_ENTRIES;
10380 }
10381
10382 /*
10383 * Use twice as many entries for the CQ ring. It's possible for the
10384 * application to drive a higher depth than the size of the SQ ring,
10385 * since the sqes are only used at submission time. This allows for
10386 * some flexibility in overcommitting a bit. If the application has
10387 * set IORING_SETUP_CQSIZE, it will have passed in the desired number
10388 * of CQ ring entries manually.
10389 */
10390 p->sq_entries = roundup_pow_of_two(entries);
10391 if (p->flags & IORING_SETUP_CQSIZE) {
10392 /*
10393 * If IORING_SETUP_CQSIZE is set, we do the same roundup
10394 * to a power-of-two, if it isn't already. We do NOT impose
10395 * any cq vs sq ring sizing.
10396 */
10397 if (!p->cq_entries)
10398 return -EINVAL;
10399 if (p->cq_entries > IORING_MAX_CQ_ENTRIES) {
10400 if (!(p->flags & IORING_SETUP_CLAMP))
10401 return -EINVAL;
10402 p->cq_entries = IORING_MAX_CQ_ENTRIES;
10403 }
10404 p->cq_entries = roundup_pow_of_two(p->cq_entries);
10405 if (p->cq_entries < p->sq_entries)
10406 return -EINVAL;
10407 } else {
10408 p->cq_entries = 2 * p->sq_entries;
10409 }
10410
10411 ctx = io_ring_ctx_alloc(p);
10412 if (!ctx)
10413 return -ENOMEM;
10414 ctx->compat = in_compat_syscall();
10415 if (!ns_capable_noaudit(&init_user_ns, CAP_IPC_LOCK))
10416 ctx->user = get_uid(current_user());
10417
10418 /*
10419 * This is just grabbed for accounting purposes. When a process exits,
10420 * the mm is exited and dropped before the files, hence we need to hang
10421 * on to this mm purely for the purposes of being able to unaccount
10422 * memory (locked/pinned vm). It's not used for anything else.
10423 */
10424 mmgrab(current->mm);
10425 ctx->mm_account = current->mm;
10426
10427 ret = io_allocate_scq_urings(ctx, p);
10428 if (ret)
10429 goto err;
10430
10431 ret = io_sq_offload_create(ctx, p);
10432 if (ret)
10433 goto err;
10434 /* always set a rsrc node */
10435 ret = io_rsrc_node_switch_start(ctx);
10436 if (ret)
10437 goto err;
10438 io_rsrc_node_switch(ctx, NULL);
10439
10440 memset(&p->sq_off, 0, sizeof(p->sq_off));
10441 p->sq_off.head = offsetof(struct io_rings, sq.head);
10442 p->sq_off.tail = offsetof(struct io_rings, sq.tail);
10443 p->sq_off.ring_mask = offsetof(struct io_rings, sq_ring_mask);
10444 p->sq_off.ring_entries = offsetof(struct io_rings, sq_ring_entries);
10445 p->sq_off.flags = offsetof(struct io_rings, sq_flags);
10446 p->sq_off.dropped = offsetof(struct io_rings, sq_dropped);
10447 p->sq_off.array = (char *)ctx->sq_array - (char *)ctx->rings;
10448
10449 memset(&p->cq_off, 0, sizeof(p->cq_off));
10450 p->cq_off.head = offsetof(struct io_rings, cq.head);
10451 p->cq_off.tail = offsetof(struct io_rings, cq.tail);
10452 p->cq_off.ring_mask = offsetof(struct io_rings, cq_ring_mask);
10453 p->cq_off.ring_entries = offsetof(struct io_rings, cq_ring_entries);
10454 p->cq_off.overflow = offsetof(struct io_rings, cq_overflow);
10455 p->cq_off.cqes = offsetof(struct io_rings, cqes);
10456 p->cq_off.flags = offsetof(struct io_rings, cq_flags);
10457
10458 p->features = IORING_FEAT_SINGLE_MMAP | IORING_FEAT_NODROP |
10459 IORING_FEAT_SUBMIT_STABLE | IORING_FEAT_RW_CUR_POS |
10460 IORING_FEAT_CUR_PERSONALITY | IORING_FEAT_FAST_POLL |
10461 IORING_FEAT_POLL_32BITS | IORING_FEAT_SQPOLL_NONFIXED |
10462 IORING_FEAT_EXT_ARG | IORING_FEAT_NATIVE_WORKERS |
10463 IORING_FEAT_RSRC_TAGS;
10464
10465 if (copy_to_user(params, p, sizeof(*p))) {
10466 ret = -EFAULT;
10467 goto err;
10468 }
10469
10470 file = io_uring_get_file(ctx);
10471 if (IS_ERR(file)) {
10472 ret = PTR_ERR(file);
10473 goto err;
10474 }
10475
10476 /*
10477 * Install ring fd as the very last thing, so we don't risk someone
10478 * having closed it before we finish setup
10479 */
10480 ret = io_uring_install_fd(ctx, file);
10481 if (ret < 0) {
10482 /* fput will clean it up */
10483 fput(file);
10484 return ret;
10485 }
10486
10487 trace_io_uring_create(ret, ctx, p->sq_entries, p->cq_entries, p->flags);
10488 return ret;
10489 err:
10490 io_ring_ctx_wait_and_kill(ctx);
10491 return ret;
10492 }
10493
10494 /*
10495 * Sets up an aio uring context, and returns the fd. Applications asks for a
10496 * ring size, we return the actual sq/cq ring sizes (among other things) in the
10497 * params structure passed in.
10498 */
io_uring_setup(u32 entries, struct io_uring_params __user *params)10499 static long io_uring_setup(u32 entries, struct io_uring_params __user *params)
10500 {
10501 struct io_uring_params p;
10502 int i;
10503
10504 if (copy_from_user(&p, params, sizeof(p)))
10505 return -EFAULT;
10506 for (i = 0; i < ARRAY_SIZE(p.resv); i++) {
10507 if (p.resv[i])
10508 return -EINVAL;
10509 }
10510
10511 if (p.flags & ~(IORING_SETUP_IOPOLL | IORING_SETUP_SQPOLL |
10512 IORING_SETUP_SQ_AFF | IORING_SETUP_CQSIZE |
10513 IORING_SETUP_CLAMP | IORING_SETUP_ATTACH_WQ |
10514 IORING_SETUP_R_DISABLED))
10515 return -EINVAL;
10516
10517 return io_uring_create(entries, &p, params);
10518 }
10519
SYSCALL_DEFINE2(io_uring_setup, u32, entries, struct io_uring_params __user *, params)10520 SYSCALL_DEFINE2(io_uring_setup, u32, entries,
10521 struct io_uring_params __user *, params)
10522 {
10523 return io_uring_setup(entries, params);
10524 }
10525
io_probe(struct io_ring_ctx *ctx, void __user *arg, unsigned nr_args)10526 static int io_probe(struct io_ring_ctx *ctx, void __user *arg, unsigned nr_args)
10527 {
10528 struct io_uring_probe *p;
10529 size_t size;
10530 int i, ret;
10531
10532 size = struct_size(p, ops, nr_args);
10533 if (size == SIZE_MAX)
10534 return -EOVERFLOW;
10535 p = kzalloc(size, GFP_KERNEL);
10536 if (!p)
10537 return -ENOMEM;
10538
10539 ret = -EFAULT;
10540 if (copy_from_user(p, arg, size))
10541 goto out;
10542 ret = -EINVAL;
10543 if (memchr_inv(p, 0, size))
10544 goto out;
10545
10546 p->last_op = IORING_OP_LAST - 1;
10547 if (nr_args > IORING_OP_LAST)
10548 nr_args = IORING_OP_LAST;
10549
10550 for (i = 0; i < nr_args; i++) {
10551 p->ops[i].op = i;
10552 if (!io_op_defs[i].not_supported)
10553 p->ops[i].flags = IO_URING_OP_SUPPORTED;
10554 }
10555 p->ops_len = i;
10556
10557 ret = 0;
10558 if (copy_to_user(arg, p, size))
10559 ret = -EFAULT;
10560 out:
10561 kfree(p);
10562 return ret;
10563 }
10564
io_register_personality(struct io_ring_ctx *ctx)10565 static int io_register_personality(struct io_ring_ctx *ctx)
10566 {
10567 const struct cred *creds;
10568 u32 id;
10569 int ret;
10570
10571 creds = get_current_cred();
10572
10573 ret = xa_alloc_cyclic(&ctx->personalities, &id, (void *)creds,
10574 XA_LIMIT(0, USHRT_MAX), &ctx->pers_next, GFP_KERNEL);
10575 if (ret < 0) {
10576 put_cred(creds);
10577 return ret;
10578 }
10579 return id;
10580 }
10581
io_register_restrictions(struct io_ring_ctx *ctx, void __user *arg, unsigned int nr_args)10582 static int io_register_restrictions(struct io_ring_ctx *ctx, void __user *arg,
10583 unsigned int nr_args)
10584 {
10585 struct io_uring_restriction *res;
10586 size_t size;
10587 int i, ret;
10588
10589 /* Restrictions allowed only if rings started disabled */
10590 if (!(ctx->flags & IORING_SETUP_R_DISABLED))
10591 return -EBADFD;
10592
10593 /* We allow only a single restrictions registration */
10594 if (ctx->restrictions.registered)
10595 return -EBUSY;
10596
10597 if (!arg || nr_args > IORING_MAX_RESTRICTIONS)
10598 return -EINVAL;
10599
10600 size = array_size(nr_args, sizeof(*res));
10601 if (size == SIZE_MAX)
10602 return -EOVERFLOW;
10603
10604 res = memdup_user(arg, size);
10605 if (IS_ERR(res))
10606 return PTR_ERR(res);
10607
10608 ret = 0;
10609
10610 for (i = 0; i < nr_args; i++) {
10611 switch (res[i].opcode) {
10612 case IORING_RESTRICTION_REGISTER_OP:
10613 if (res[i].register_op >= IORING_REGISTER_LAST) {
10614 ret = -EINVAL;
10615 goto out;
10616 }
10617
10618 __set_bit(res[i].register_op,
10619 ctx->restrictions.register_op);
10620 break;
10621 case IORING_RESTRICTION_SQE_OP:
10622 if (res[i].sqe_op >= IORING_OP_LAST) {
10623 ret = -EINVAL;
10624 goto out;
10625 }
10626
10627 __set_bit(res[i].sqe_op, ctx->restrictions.sqe_op);
10628 break;
10629 case IORING_RESTRICTION_SQE_FLAGS_ALLOWED:
10630 ctx->restrictions.sqe_flags_allowed = res[i].sqe_flags;
10631 break;
10632 case IORING_RESTRICTION_SQE_FLAGS_REQUIRED:
10633 ctx->restrictions.sqe_flags_required = res[i].sqe_flags;
10634 break;
10635 default:
10636 ret = -EINVAL;
10637 goto out;
10638 }
10639 }
10640
10641 out:
10642 /* Reset all restrictions if an error happened */
10643 if (ret != 0)
10644 memset(&ctx->restrictions, 0, sizeof(ctx->restrictions));
10645 else
10646 ctx->restrictions.registered = true;
10647
10648 kfree(res);
10649 return ret;
10650 }
10651
io_register_enable_rings(struct io_ring_ctx *ctx)10652 static int io_register_enable_rings(struct io_ring_ctx *ctx)
10653 {
10654 if (!(ctx->flags & IORING_SETUP_R_DISABLED))
10655 return -EBADFD;
10656
10657 if (ctx->restrictions.registered)
10658 ctx->restricted = 1;
10659
10660 ctx->flags &= ~IORING_SETUP_R_DISABLED;
10661 if (ctx->sq_data && wq_has_sleeper(&ctx->sq_data->wait))
10662 wake_up(&ctx->sq_data->wait);
10663 return 0;
10664 }
10665
__io_register_rsrc_update(struct io_ring_ctx *ctx, unsigned type, struct io_uring_rsrc_update2 *up, unsigned nr_args)10666 static int __io_register_rsrc_update(struct io_ring_ctx *ctx, unsigned type,
10667 struct io_uring_rsrc_update2 *up,
10668 unsigned nr_args)
10669 {
10670 __u32 tmp;
10671 int err;
10672
10673 if (check_add_overflow(up->offset, nr_args, &tmp))
10674 return -EOVERFLOW;
10675 err = io_rsrc_node_switch_start(ctx);
10676 if (err)
10677 return err;
10678
10679 switch (type) {
10680 case IORING_RSRC_FILE:
10681 return __io_sqe_files_update(ctx, up, nr_args);
10682 case IORING_RSRC_BUFFER:
10683 return __io_sqe_buffers_update(ctx, up, nr_args);
10684 }
10685 return -EINVAL;
10686 }
10687
io_register_files_update(struct io_ring_ctx *ctx, void __user *arg, unsigned nr_args)10688 static int io_register_files_update(struct io_ring_ctx *ctx, void __user *arg,
10689 unsigned nr_args)
10690 {
10691 struct io_uring_rsrc_update2 up;
10692
10693 if (!nr_args)
10694 return -EINVAL;
10695 memset(&up, 0, sizeof(up));
10696 if (copy_from_user(&up, arg, sizeof(struct io_uring_rsrc_update)))
10697 return -EFAULT;
10698 if (up.resv || up.resv2)
10699 return -EINVAL;
10700 return __io_register_rsrc_update(ctx, IORING_RSRC_FILE, &up, nr_args);
10701 }
10702
io_register_rsrc_update(struct io_ring_ctx *ctx, void __user *arg, unsigned size, unsigned type)10703 static int io_register_rsrc_update(struct io_ring_ctx *ctx, void __user *arg,
10704 unsigned size, unsigned type)
10705 {
10706 struct io_uring_rsrc_update2 up;
10707
10708 if (size != sizeof(up))
10709 return -EINVAL;
10710 if (copy_from_user(&up, arg, sizeof(up)))
10711 return -EFAULT;
10712 if (!up.nr || up.resv || up.resv2)
10713 return -EINVAL;
10714 return __io_register_rsrc_update(ctx, type, &up, up.nr);
10715 }
10716
io_register_rsrc(struct io_ring_ctx *ctx, void __user *arg, unsigned int size, unsigned int type)10717 static int io_register_rsrc(struct io_ring_ctx *ctx, void __user *arg,
10718 unsigned int size, unsigned int type)
10719 {
10720 struct io_uring_rsrc_register rr;
10721
10722 /* keep it extendible */
10723 if (size != sizeof(rr))
10724 return -EINVAL;
10725
10726 memset(&rr, 0, sizeof(rr));
10727 if (copy_from_user(&rr, arg, size))
10728 return -EFAULT;
10729 if (!rr.nr || rr.resv || rr.resv2)
10730 return -EINVAL;
10731
10732 switch (type) {
10733 case IORING_RSRC_FILE:
10734 return io_sqe_files_register(ctx, u64_to_user_ptr(rr.data),
10735 rr.nr, u64_to_user_ptr(rr.tags));
10736 case IORING_RSRC_BUFFER:
10737 return io_sqe_buffers_register(ctx, u64_to_user_ptr(rr.data),
10738 rr.nr, u64_to_user_ptr(rr.tags));
10739 }
10740 return -EINVAL;
10741 }
10742
io_register_iowq_aff(struct io_ring_ctx *ctx, void __user *arg, unsigned len)10743 static int io_register_iowq_aff(struct io_ring_ctx *ctx, void __user *arg,
10744 unsigned len)
10745 {
10746 struct io_uring_task *tctx = current->io_uring;
10747 cpumask_var_t new_mask;
10748 int ret;
10749
10750 if (!tctx || !tctx->io_wq)
10751 return -EINVAL;
10752
10753 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
10754 return -ENOMEM;
10755
10756 cpumask_clear(new_mask);
10757 if (len > cpumask_size())
10758 len = cpumask_size();
10759
10760 #ifdef CONFIG_COMPAT
10761 if (in_compat_syscall()) {
10762 ret = compat_get_bitmap(cpumask_bits(new_mask),
10763 (const compat_ulong_t __user *)arg,
10764 len * 8 /* CHAR_BIT */);
10765 } else {
10766 ret = copy_from_user(new_mask, arg, len);
10767 }
10768 #else
10769 ret = copy_from_user(new_mask, arg, len);
10770 #endif
10771
10772 if (ret) {
10773 free_cpumask_var(new_mask);
10774 return -EFAULT;
10775 }
10776
10777 ret = io_wq_cpu_affinity(tctx->io_wq, new_mask);
10778 free_cpumask_var(new_mask);
10779 return ret;
10780 }
10781
io_unregister_iowq_aff(struct io_ring_ctx *ctx)10782 static int io_unregister_iowq_aff(struct io_ring_ctx *ctx)
10783 {
10784 struct io_uring_task *tctx = current->io_uring;
10785
10786 if (!tctx || !tctx->io_wq)
10787 return -EINVAL;
10788
10789 return io_wq_cpu_affinity(tctx->io_wq, NULL);
10790 }
10791
10792 static int io_register_iowq_max_workers(struct io_ring_ctx *ctx,
10793 void __user *arg)
10794 __must_hold(&ctx->uring_lock)
10795 {
10796 struct io_tctx_node *node;
10797 struct io_uring_task *tctx = NULL;
10798 struct io_sq_data *sqd = NULL;
10799 __u32 new_count[2];
10800 int i, ret;
10801
10802 if (copy_from_user(new_count, arg, sizeof(new_count)))
10803 return -EFAULT;
10804 for (i = 0; i < ARRAY_SIZE(new_count); i++)
10805 if (new_count[i] > INT_MAX)
10806 return -EINVAL;
10807
10808 if (ctx->flags & IORING_SETUP_SQPOLL) {
10809 sqd = ctx->sq_data;
10810 if (sqd) {
10811 /*
10812 * Observe the correct sqd->lock -> ctx->uring_lock
10813 * ordering. Fine to drop uring_lock here, we hold
10814 * a ref to the ctx.
10815 */
10816 refcount_inc(&sqd->refs);
10817 mutex_unlock(&ctx->uring_lock);
10818 mutex_lock(&sqd->lock);
10819 mutex_lock(&ctx->uring_lock);
10820 if (sqd->thread)
10821 tctx = sqd->thread->io_uring;
10822 }
10823 } else {
10824 tctx = current->io_uring;
10825 }
10826
10827 BUILD_BUG_ON(sizeof(new_count) != sizeof(ctx->iowq_limits));
10828
10829 for (i = 0; i < ARRAY_SIZE(new_count); i++)
10830 if (new_count[i])
10831 ctx->iowq_limits[i] = new_count[i];
10832 ctx->iowq_limits_set = true;
10833
10834 ret = -EINVAL;
10835 if (tctx && tctx->io_wq) {
10836 ret = io_wq_max_workers(tctx->io_wq, new_count);
10837 if (ret)
10838 goto err;
10839 } else {
10840 memset(new_count, 0, sizeof(new_count));
10841 }
10842
10843 if (sqd) {
10844 mutex_unlock(&sqd->lock);
10845 io_put_sq_data(sqd);
10846 }
10847
10848 if (copy_to_user(arg, new_count, sizeof(new_count)))
10849 return -EFAULT;
10850
10851 /* that's it for SQPOLL, only the SQPOLL task creates requests */
10852 if (sqd)
10853 return 0;
10854
10855 /* now propagate the restriction to all registered users */
10856 list_for_each_entry(node, &ctx->tctx_list, ctx_node) {
10857 struct io_uring_task *tctx = node->task->io_uring;
10858
10859 if (WARN_ON_ONCE(!tctx->io_wq))
10860 continue;
10861
10862 for (i = 0; i < ARRAY_SIZE(new_count); i++)
10863 new_count[i] = ctx->iowq_limits[i];
10864 /* ignore errors, it always returns zero anyway */
10865 (void)io_wq_max_workers(tctx->io_wq, new_count);
10866 }
10867 return 0;
10868 err:
10869 if (sqd) {
10870 mutex_unlock(&sqd->lock);
10871 io_put_sq_data(sqd);
10872 }
10873 return ret;
10874 }
10875
io_register_op_must_quiesce(int op)10876 static bool io_register_op_must_quiesce(int op)
10877 {
10878 switch (op) {
10879 case IORING_REGISTER_BUFFERS:
10880 case IORING_UNREGISTER_BUFFERS:
10881 case IORING_REGISTER_FILES:
10882 case IORING_UNREGISTER_FILES:
10883 case IORING_REGISTER_FILES_UPDATE:
10884 case IORING_REGISTER_PROBE:
10885 case IORING_REGISTER_PERSONALITY:
10886 case IORING_UNREGISTER_PERSONALITY:
10887 case IORING_REGISTER_FILES2:
10888 case IORING_REGISTER_FILES_UPDATE2:
10889 case IORING_REGISTER_BUFFERS2:
10890 case IORING_REGISTER_BUFFERS_UPDATE:
10891 case IORING_REGISTER_IOWQ_AFF:
10892 case IORING_UNREGISTER_IOWQ_AFF:
10893 case IORING_REGISTER_IOWQ_MAX_WORKERS:
10894 return false;
10895 default:
10896 return true;
10897 }
10898 }
10899
io_ctx_quiesce(struct io_ring_ctx *ctx)10900 static int io_ctx_quiesce(struct io_ring_ctx *ctx)
10901 {
10902 long ret;
10903
10904 percpu_ref_kill(&ctx->refs);
10905
10906 /*
10907 * Drop uring mutex before waiting for references to exit. If another
10908 * thread is currently inside io_uring_enter() it might need to grab the
10909 * uring_lock to make progress. If we hold it here across the drain
10910 * wait, then we can deadlock. It's safe to drop the mutex here, since
10911 * no new references will come in after we've killed the percpu ref.
10912 */
10913 mutex_unlock(&ctx->uring_lock);
10914 do {
10915 ret = wait_for_completion_interruptible(&ctx->ref_comp);
10916 if (!ret)
10917 break;
10918 ret = io_run_task_work_sig();
10919 } while (ret >= 0);
10920 mutex_lock(&ctx->uring_lock);
10921
10922 if (ret)
10923 io_refs_resurrect(&ctx->refs, &ctx->ref_comp);
10924 return ret;
10925 }
10926
10927 static int __io_uring_register(struct io_ring_ctx *ctx, unsigned opcode,
10928 void __user *arg, unsigned nr_args)
10929 __releases(ctx->uring_lock)
10930 __acquires(ctx->uring_lock)
10931 {
10932 int ret;
10933
10934 /*
10935 * We're inside the ring mutex, if the ref is already dying, then
10936 * someone else killed the ctx or is already going through
10937 * io_uring_register().
10938 */
10939 if (percpu_ref_is_dying(&ctx->refs))
10940 return -ENXIO;
10941
10942 if (ctx->restricted) {
10943 opcode = array_index_nospec(opcode, IORING_REGISTER_LAST);
10944 if (!test_bit(opcode, ctx->restrictions.register_op))
10945 return -EACCES;
10946 }
10947
10948 if (io_register_op_must_quiesce(opcode)) {
10949 ret = io_ctx_quiesce(ctx);
10950 if (ret)
10951 return ret;
10952 }
10953
10954 switch (opcode) {
10955 case IORING_REGISTER_BUFFERS:
10956 ret = io_sqe_buffers_register(ctx, arg, nr_args, NULL);
10957 break;
10958 case IORING_UNREGISTER_BUFFERS:
10959 ret = -EINVAL;
10960 if (arg || nr_args)
10961 break;
10962 ret = io_sqe_buffers_unregister(ctx);
10963 break;
10964 case IORING_REGISTER_FILES:
10965 ret = io_sqe_files_register(ctx, arg, nr_args, NULL);
10966 break;
10967 case IORING_UNREGISTER_FILES:
10968 ret = -EINVAL;
10969 if (arg || nr_args)
10970 break;
10971 ret = io_sqe_files_unregister(ctx);
10972 break;
10973 case IORING_REGISTER_FILES_UPDATE:
10974 ret = io_register_files_update(ctx, arg, nr_args);
10975 break;
10976 case IORING_REGISTER_EVENTFD:
10977 case IORING_REGISTER_EVENTFD_ASYNC:
10978 ret = -EINVAL;
10979 if (nr_args != 1)
10980 break;
10981 ret = io_eventfd_register(ctx, arg);
10982 if (ret)
10983 break;
10984 if (opcode == IORING_REGISTER_EVENTFD_ASYNC)
10985 ctx->eventfd_async = 1;
10986 else
10987 ctx->eventfd_async = 0;
10988 break;
10989 case IORING_UNREGISTER_EVENTFD:
10990 ret = -EINVAL;
10991 if (arg || nr_args)
10992 break;
10993 ret = io_eventfd_unregister(ctx);
10994 break;
10995 case IORING_REGISTER_PROBE:
10996 ret = -EINVAL;
10997 if (!arg || nr_args > 256)
10998 break;
10999 ret = io_probe(ctx, arg, nr_args);
11000 break;
11001 case IORING_REGISTER_PERSONALITY:
11002 ret = -EINVAL;
11003 if (arg || nr_args)
11004 break;
11005 ret = io_register_personality(ctx);
11006 break;
11007 case IORING_UNREGISTER_PERSONALITY:
11008 ret = -EINVAL;
11009 if (arg)
11010 break;
11011 ret = io_unregister_personality(ctx, nr_args);
11012 break;
11013 case IORING_REGISTER_ENABLE_RINGS:
11014 ret = -EINVAL;
11015 if (arg || nr_args)
11016 break;
11017 ret = io_register_enable_rings(ctx);
11018 break;
11019 case IORING_REGISTER_RESTRICTIONS:
11020 ret = io_register_restrictions(ctx, arg, nr_args);
11021 break;
11022 case IORING_REGISTER_FILES2:
11023 ret = io_register_rsrc(ctx, arg, nr_args, IORING_RSRC_FILE);
11024 break;
11025 case IORING_REGISTER_FILES_UPDATE2:
11026 ret = io_register_rsrc_update(ctx, arg, nr_args,
11027 IORING_RSRC_FILE);
11028 break;
11029 case IORING_REGISTER_BUFFERS2:
11030 ret = io_register_rsrc(ctx, arg, nr_args, IORING_RSRC_BUFFER);
11031 break;
11032 case IORING_REGISTER_BUFFERS_UPDATE:
11033 ret = io_register_rsrc_update(ctx, arg, nr_args,
11034 IORING_RSRC_BUFFER);
11035 break;
11036 case IORING_REGISTER_IOWQ_AFF:
11037 ret = -EINVAL;
11038 if (!arg || !nr_args)
11039 break;
11040 ret = io_register_iowq_aff(ctx, arg, nr_args);
11041 break;
11042 case IORING_UNREGISTER_IOWQ_AFF:
11043 ret = -EINVAL;
11044 if (arg || nr_args)
11045 break;
11046 ret = io_unregister_iowq_aff(ctx);
11047 break;
11048 case IORING_REGISTER_IOWQ_MAX_WORKERS:
11049 ret = -EINVAL;
11050 if (!arg || nr_args != 2)
11051 break;
11052 ret = io_register_iowq_max_workers(ctx, arg);
11053 break;
11054 default:
11055 ret = -EINVAL;
11056 break;
11057 }
11058
11059 if (io_register_op_must_quiesce(opcode)) {
11060 /* bring the ctx back to life */
11061 percpu_ref_reinit(&ctx->refs);
11062 reinit_completion(&ctx->ref_comp);
11063 }
11064 return ret;
11065 }
11066
SYSCALL_DEFINE4(io_uring_register, unsigned int, fd, unsigned int, opcode, void __user *, arg, unsigned int, nr_args)11067 SYSCALL_DEFINE4(io_uring_register, unsigned int, fd, unsigned int, opcode,
11068 void __user *, arg, unsigned int, nr_args)
11069 {
11070 struct io_ring_ctx *ctx;
11071 long ret = -EBADF;
11072 struct fd f;
11073
11074 if (opcode >= IORING_REGISTER_LAST)
11075 return -EINVAL;
11076
11077 f = fdget(fd);
11078 if (!f.file)
11079 return -EBADF;
11080
11081 ret = -EOPNOTSUPP;
11082 if (f.file->f_op != &io_uring_fops)
11083 goto out_fput;
11084
11085 ctx = f.file->private_data;
11086
11087 io_run_task_work();
11088
11089 mutex_lock(&ctx->uring_lock);
11090 ret = __io_uring_register(ctx, opcode, arg, nr_args);
11091 mutex_unlock(&ctx->uring_lock);
11092 trace_io_uring_register(ctx, opcode, ctx->nr_user_files, ctx->nr_user_bufs,
11093 ctx->cq_ev_fd != NULL, ret);
11094 out_fput:
11095 fdput(f);
11096 return ret;
11097 }
11098
io_uring_init(void)11099 static int __init io_uring_init(void)
11100 {
11101 #define __BUILD_BUG_VERIFY_ELEMENT(stype, eoffset, etype, ename) do { \
11102 BUILD_BUG_ON(offsetof(stype, ename) != eoffset); \
11103 BUILD_BUG_ON(sizeof(etype) != sizeof_field(stype, ename)); \
11104 } while (0)
11105
11106 #define BUILD_BUG_SQE_ELEM(eoffset, etype, ename) \
11107 __BUILD_BUG_VERIFY_ELEMENT(struct io_uring_sqe, eoffset, etype, ename)
11108 BUILD_BUG_ON(sizeof(struct io_uring_sqe) != 64);
11109 BUILD_BUG_SQE_ELEM(0, __u8, opcode);
11110 BUILD_BUG_SQE_ELEM(1, __u8, flags);
11111 BUILD_BUG_SQE_ELEM(2, __u16, ioprio);
11112 BUILD_BUG_SQE_ELEM(4, __s32, fd);
11113 BUILD_BUG_SQE_ELEM(8, __u64, off);
11114 BUILD_BUG_SQE_ELEM(8, __u64, addr2);
11115 BUILD_BUG_SQE_ELEM(16, __u64, addr);
11116 BUILD_BUG_SQE_ELEM(16, __u64, splice_off_in);
11117 BUILD_BUG_SQE_ELEM(24, __u32, len);
11118 BUILD_BUG_SQE_ELEM(28, __kernel_rwf_t, rw_flags);
11119 BUILD_BUG_SQE_ELEM(28, /* compat */ int, rw_flags);
11120 BUILD_BUG_SQE_ELEM(28, /* compat */ __u32, rw_flags);
11121 BUILD_BUG_SQE_ELEM(28, __u32, fsync_flags);
11122 BUILD_BUG_SQE_ELEM(28, /* compat */ __u16, poll_events);
11123 BUILD_BUG_SQE_ELEM(28, __u32, poll32_events);
11124 BUILD_BUG_SQE_ELEM(28, __u32, sync_range_flags);
11125 BUILD_BUG_SQE_ELEM(28, __u32, msg_flags);
11126 BUILD_BUG_SQE_ELEM(28, __u32, timeout_flags);
11127 BUILD_BUG_SQE_ELEM(28, __u32, accept_flags);
11128 BUILD_BUG_SQE_ELEM(28, __u32, cancel_flags);
11129 BUILD_BUG_SQE_ELEM(28, __u32, open_flags);
11130 BUILD_BUG_SQE_ELEM(28, __u32, statx_flags);
11131 BUILD_BUG_SQE_ELEM(28, __u32, fadvise_advice);
11132 BUILD_BUG_SQE_ELEM(28, __u32, splice_flags);
11133 BUILD_BUG_SQE_ELEM(32, __u64, user_data);
11134 BUILD_BUG_SQE_ELEM(40, __u16, buf_index);
11135 BUILD_BUG_SQE_ELEM(40, __u16, buf_group);
11136 BUILD_BUG_SQE_ELEM(42, __u16, personality);
11137 BUILD_BUG_SQE_ELEM(44, __s32, splice_fd_in);
11138 BUILD_BUG_SQE_ELEM(44, __u32, file_index);
11139
11140 BUILD_BUG_ON(sizeof(struct io_uring_files_update) !=
11141 sizeof(struct io_uring_rsrc_update));
11142 BUILD_BUG_ON(sizeof(struct io_uring_rsrc_update) >
11143 sizeof(struct io_uring_rsrc_update2));
11144
11145 /* ->buf_index is u16 */
11146 BUILD_BUG_ON(IORING_MAX_REG_BUFFERS >= (1u << 16));
11147
11148 /* should fit into one byte */
11149 BUILD_BUG_ON(SQE_VALID_FLAGS >= (1 << 8));
11150
11151 BUILD_BUG_ON(ARRAY_SIZE(io_op_defs) != IORING_OP_LAST);
11152 BUILD_BUG_ON(__REQ_F_LAST_BIT > 8 * sizeof(int));
11153
11154 req_cachep = KMEM_CACHE(io_kiocb, SLAB_HWCACHE_ALIGN | SLAB_PANIC |
11155 SLAB_ACCOUNT);
11156 return 0;
11157 };
11158 __initcall(io_uring_init);
11159