1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Shared application/kernel submission and completion ring pairs, for
4  * supporting fast/efficient IO.
5  *
6  * A note on the read/write ordering memory barriers that are matched between
7  * the application and kernel side.
8  *
9  * After the application reads the CQ ring tail, it must use an
10  * appropriate smp_rmb() to pair with the smp_wmb() the kernel uses
11  * before writing the tail (using smp_load_acquire to read the tail will
12  * do). It also needs a smp_mb() before updating CQ head (ordering the
13  * entry load(s) with the head store), pairing with an implicit barrier
14  * through a control-dependency in io_get_cqe (smp_store_release to
15  * store head will do). Failure to do so could lead to reading invalid
16  * CQ entries.
17  *
18  * Likewise, the application must use an appropriate smp_wmb() before
19  * writing the SQ tail (ordering SQ entry stores with the tail store),
20  * which pairs with smp_load_acquire in io_get_sqring (smp_store_release
21  * to store the tail will do). And it needs a barrier ordering the SQ
22  * head load before writing new SQ entries (smp_load_acquire to read
23  * head will do).
24  *
25  * When using the SQ poll thread (IORING_SETUP_SQPOLL), the application
26  * needs to check the SQ flags for IORING_SQ_NEED_WAKEUP *after*
27  * updating the SQ tail; a full memory barrier smp_mb() is needed
28  * between.
29  *
30  * Also see the examples in the liburing library:
31  *
32  *	git://git.kernel.dk/liburing
33  *
34  * io_uring also uses READ/WRITE_ONCE() for _any_ store or load that happens
35  * from data shared between the kernel and application. This is done both
36  * for ordering purposes, but also to ensure that once a value is loaded from
37  * data that the application could potentially modify, it remains stable.
38  *
39  * Copyright (C) 2018-2019 Jens Axboe
40  * Copyright (c) 2018-2019 Christoph Hellwig
41  */
42 #include <linux/kernel.h>
43 #include <linux/init.h>
44 #include <linux/errno.h>
45 #include <linux/syscalls.h>
46 #include <linux/compat.h>
47 #include <net/compat.h>
48 #include <linux/refcount.h>
49 #include <linux/uio.h>
50 #include <linux/bits.h>
51 
52 #include <linux/sched/signal.h>
53 #include <linux/fs.h>
54 #include <linux/file.h>
55 #include <linux/fdtable.h>
56 #include <linux/mm.h>
57 #include <linux/mman.h>
58 #include <linux/percpu.h>
59 #include <linux/slab.h>
60 #include <linux/blkdev.h>
61 #include <linux/bvec.h>
62 #include <linux/net.h>
63 #include <net/sock.h>
64 #include <net/af_unix.h>
65 #include <net/scm.h>
66 #include <linux/anon_inodes.h>
67 #include <linux/sched/mm.h>
68 #include <linux/uaccess.h>
69 #include <linux/nospec.h>
70 #include <linux/sizes.h>
71 #include <linux/hugetlb.h>
72 #include <linux/highmem.h>
73 #include <linux/namei.h>
74 #include <linux/fsnotify.h>
75 #include <linux/fadvise.h>
76 #include <linux/eventpoll.h>
77 #include <linux/splice.h>
78 #include <linux/task_work.h>
79 #include <linux/pagemap.h>
80 #include <linux/io_uring.h>
81 #include <linux/tracehook.h>
82 
83 #define CREATE_TRACE_POINTS
84 #include <trace/events/io_uring.h>
85 
86 #include <uapi/linux/io_uring.h>
87 
88 #include "../fs/internal.h"
89 #include "io-wq.h"
90 
91 #define IORING_MAX_ENTRIES	32768
92 #define IORING_MAX_CQ_ENTRIES	(2 * IORING_MAX_ENTRIES)
93 #define IORING_SQPOLL_CAP_ENTRIES_VALUE 8
94 
95 /* only define max */
96 #define IORING_MAX_FIXED_FILES	(1U << 15)
97 #define IORING_MAX_RESTRICTIONS	(IORING_RESTRICTION_LAST + \
98 				 IORING_REGISTER_LAST + IORING_OP_LAST)
99 
100 #define IO_RSRC_TAG_TABLE_SHIFT	(PAGE_SHIFT - 3)
101 #define IO_RSRC_TAG_TABLE_MAX	(1U << IO_RSRC_TAG_TABLE_SHIFT)
102 #define IO_RSRC_TAG_TABLE_MASK	(IO_RSRC_TAG_TABLE_MAX - 1)
103 
104 #define IORING_MAX_REG_BUFFERS	(1U << 14)
105 
106 #define SQE_VALID_FLAGS	(IOSQE_FIXED_FILE|IOSQE_IO_DRAIN|IOSQE_IO_LINK|	\
107 				IOSQE_IO_HARDLINK | IOSQE_ASYNC | \
108 				IOSQE_BUFFER_SELECT)
109 #define IO_REQ_CLEAN_FLAGS (REQ_F_BUFFER_SELECTED | REQ_F_NEED_CLEANUP | \
110 				REQ_F_POLLED | REQ_F_INFLIGHT | REQ_F_CREDS)
111 
112 #define IO_TCTX_REFS_CACHE_NR	(1U << 10)
113 
114 struct io_uring {
115 	u32 head ____cacheline_aligned_in_smp;
116 	u32 tail ____cacheline_aligned_in_smp;
117 };
118 
119 /*
120  * This data is shared with the application through the mmap at offsets
121  * IORING_OFF_SQ_RING and IORING_OFF_CQ_RING.
122  *
123  * The offsets to the member fields are published through struct
124  * io_sqring_offsets when calling io_uring_setup.
125  */
126 struct io_rings {
127 	/*
128 	 * Head and tail offsets into the ring; the offsets need to be
129 	 * masked to get valid indices.
130 	 *
131 	 * The kernel controls head of the sq ring and the tail of the cq ring,
132 	 * and the application controls tail of the sq ring and the head of the
133 	 * cq ring.
134 	 */
135 	struct io_uring		sq, cq;
136 	/*
137 	 * Bitmasks to apply to head and tail offsets (constant, equals
138 	 * ring_entries - 1)
139 	 */
140 	u32			sq_ring_mask, cq_ring_mask;
141 	/* Ring sizes (constant, power of 2) */
142 	u32			sq_ring_entries, cq_ring_entries;
143 	/*
144 	 * Number of invalid entries dropped by the kernel due to
145 	 * invalid index stored in array
146 	 *
147 	 * Written by the kernel, shouldn't be modified by the
148 	 * application (i.e. get number of "new events" by comparing to
149 	 * cached value).
150 	 *
151 	 * After a new SQ head value was read by the application this
152 	 * counter includes all submissions that were dropped reaching
153 	 * the new SQ head (and possibly more).
154 	 */
155 	u32			sq_dropped;
156 	/*
157 	 * Runtime SQ flags
158 	 *
159 	 * Written by the kernel, shouldn't be modified by the
160 	 * application.
161 	 *
162 	 * The application needs a full memory barrier before checking
163 	 * for IORING_SQ_NEED_WAKEUP after updating the sq tail.
164 	 */
165 	u32			sq_flags;
166 	/*
167 	 * Runtime CQ flags
168 	 *
169 	 * Written by the application, shouldn't be modified by the
170 	 * kernel.
171 	 */
172 	u32			cq_flags;
173 	/*
174 	 * Number of completion events lost because the queue was full;
175 	 * this should be avoided by the application by making sure
176 	 * there are not more requests pending than there is space in
177 	 * the completion queue.
178 	 *
179 	 * Written by the kernel, shouldn't be modified by the
180 	 * application (i.e. get number of "new events" by comparing to
181 	 * cached value).
182 	 *
183 	 * As completion events come in out of order this counter is not
184 	 * ordered with any other data.
185 	 */
186 	u32			cq_overflow;
187 	/*
188 	 * Ring buffer of completion events.
189 	 *
190 	 * The kernel writes completion events fresh every time they are
191 	 * produced, so the application is allowed to modify pending
192 	 * entries.
193 	 */
194 	struct io_uring_cqe	cqes[] ____cacheline_aligned_in_smp;
195 };
196 
197 enum io_uring_cmd_flags {
198 	IO_URING_F_NONBLOCK		= 1,
199 	IO_URING_F_COMPLETE_DEFER	= 2,
200 };
201 
202 struct io_mapped_ubuf {
203 	u64		ubuf;
204 	u64		ubuf_end;
205 	unsigned int	nr_bvecs;
206 	unsigned long	acct_pages;
207 	struct bio_vec	bvec[];
208 };
209 
210 struct io_ring_ctx;
211 
212 struct io_overflow_cqe {
213 	struct io_uring_cqe cqe;
214 	struct list_head list;
215 };
216 
217 struct io_fixed_file {
218 	/* file * with additional FFS_* flags */
219 	unsigned long file_ptr;
220 };
221 
222 struct io_rsrc_put {
223 	struct list_head list;
224 	u64 tag;
225 	union {
226 		void *rsrc;
227 		struct file *file;
228 		struct io_mapped_ubuf *buf;
229 	};
230 };
231 
232 struct io_file_table {
233 	struct io_fixed_file *files;
234 };
235 
236 struct io_rsrc_node {
237 	struct percpu_ref		refs;
238 	struct list_head		node;
239 	struct list_head		rsrc_list;
240 	struct io_rsrc_data		*rsrc_data;
241 	struct llist_node		llist;
242 	bool				done;
243 };
244 
245 typedef void (rsrc_put_fn)(struct io_ring_ctx *ctx, struct io_rsrc_put *prsrc);
246 
247 struct io_rsrc_data {
248 	struct io_ring_ctx		*ctx;
249 
250 	u64				**tags;
251 	unsigned int			nr;
252 	rsrc_put_fn			*do_put;
253 	atomic_t			refs;
254 	struct completion		done;
255 	bool				quiesce;
256 };
257 
258 struct io_buffer {
259 	struct list_head list;
260 	__u64 addr;
261 	__u32 len;
262 	__u16 bid;
263 };
264 
265 struct io_restriction {
266 	DECLARE_BITMAP(register_op, IORING_REGISTER_LAST);
267 	DECLARE_BITMAP(sqe_op, IORING_OP_LAST);
268 	u8 sqe_flags_allowed;
269 	u8 sqe_flags_required;
270 	bool registered;
271 };
272 
273 enum {
274 	IO_SQ_THREAD_SHOULD_STOP = 0,
275 	IO_SQ_THREAD_SHOULD_PARK,
276 };
277 
278 struct io_sq_data {
279 	refcount_t		refs;
280 	atomic_t		park_pending;
281 	struct mutex		lock;
282 
283 	/* ctx's that are using this sqd */
284 	struct list_head	ctx_list;
285 
286 	struct task_struct	*thread;
287 	struct wait_queue_head	wait;
288 
289 	unsigned		sq_thread_idle;
290 	int			sq_cpu;
291 	pid_t			task_pid;
292 	pid_t			task_tgid;
293 
294 	unsigned long		state;
295 	struct completion	exited;
296 };
297 
298 #define IO_COMPL_BATCH			32
299 #define IO_REQ_CACHE_SIZE		32
300 #define IO_REQ_ALLOC_BATCH		8
301 
302 struct io_submit_link {
303 	struct io_kiocb		*head;
304 	struct io_kiocb		*last;
305 };
306 
307 struct io_submit_state {
308 	struct blk_plug		plug;
309 	struct io_submit_link	link;
310 
311 	/*
312 	 * io_kiocb alloc cache
313 	 */
314 	void			*reqs[IO_REQ_CACHE_SIZE];
315 	unsigned int		free_reqs;
316 
317 	bool			plug_started;
318 
319 	/*
320 	 * Batch completion logic
321 	 */
322 	struct io_kiocb		*compl_reqs[IO_COMPL_BATCH];
323 	unsigned int		compl_nr;
324 	/* inline/task_work completion list, under ->uring_lock */
325 	struct list_head	free_list;
326 
327 	unsigned int		ios_left;
328 };
329 
330 struct io_ring_ctx {
331 	/* const or read-mostly hot data */
332 	struct {
333 		struct percpu_ref	refs;
334 
335 		struct io_rings		*rings;
336 		unsigned int		flags;
337 		unsigned int		compat: 1;
338 		unsigned int		drain_next: 1;
339 		unsigned int		eventfd_async: 1;
340 		unsigned int		restricted: 1;
341 		unsigned int		off_timeout_used: 1;
342 		unsigned int		drain_active: 1;
343 	} ____cacheline_aligned_in_smp;
344 
345 	/* submission data */
346 	struct {
347 		struct mutex		uring_lock;
348 
349 		/*
350 		 * Ring buffer of indices into array of io_uring_sqe, which is
351 		 * mmapped by the application using the IORING_OFF_SQES offset.
352 		 *
353 		 * This indirection could e.g. be used to assign fixed
354 		 * io_uring_sqe entries to operations and only submit them to
355 		 * the queue when needed.
356 		 *
357 		 * The kernel modifies neither the indices array nor the entries
358 		 * array.
359 		 */
360 		u32			*sq_array;
361 		struct io_uring_sqe	*sq_sqes;
362 		unsigned		cached_sq_head;
363 		unsigned		sq_entries;
364 		struct list_head	defer_list;
365 
366 		/*
367 		 * Fixed resources fast path, should be accessed only under
368 		 * uring_lock, and updated through io_uring_register(2)
369 		 */
370 		struct io_rsrc_node	*rsrc_node;
371 		struct io_file_table	file_table;
372 		unsigned		nr_user_files;
373 		unsigned		nr_user_bufs;
374 		struct io_mapped_ubuf	**user_bufs;
375 
376 		struct io_submit_state	submit_state;
377 		struct list_head	timeout_list;
378 		struct list_head	ltimeout_list;
379 		struct list_head	cq_overflow_list;
380 		struct xarray		io_buffers;
381 		struct xarray		personalities;
382 		u32			pers_next;
383 		unsigned		sq_thread_idle;
384 	} ____cacheline_aligned_in_smp;
385 
386 	/* IRQ completion list, under ->completion_lock */
387 	struct list_head	locked_free_list;
388 	unsigned int		locked_free_nr;
389 
390 	const struct cred	*sq_creds;	/* cred used for __io_sq_thread() */
391 	struct io_sq_data	*sq_data;	/* if using sq thread polling */
392 
393 	struct wait_queue_head	sqo_sq_wait;
394 	struct list_head	sqd_list;
395 
396 	unsigned long		check_cq_overflow;
397 
398 	struct {
399 		unsigned		cached_cq_tail;
400 		unsigned		cq_entries;
401 		struct eventfd_ctx	*cq_ev_fd;
402 		struct wait_queue_head	poll_wait;
403 		struct wait_queue_head	cq_wait;
404 		unsigned		cq_extra;
405 		atomic_t		cq_timeouts;
406 		unsigned		cq_last_tm_flush;
407 	} ____cacheline_aligned_in_smp;
408 
409 	struct {
410 		spinlock_t		completion_lock;
411 
412 		spinlock_t		timeout_lock;
413 
414 		/*
415 		 * ->iopoll_list is protected by the ctx->uring_lock for
416 		 * io_uring instances that don't use IORING_SETUP_SQPOLL.
417 		 * For SQPOLL, only the single threaded io_sq_thread() will
418 		 * manipulate the list, hence no extra locking is needed there.
419 		 */
420 		struct list_head	iopoll_list;
421 		struct hlist_head	*cancel_hash;
422 		unsigned		cancel_hash_bits;
423 		bool			poll_multi_queue;
424 	} ____cacheline_aligned_in_smp;
425 
426 	struct io_restriction		restrictions;
427 
428 	/* slow path rsrc auxilary data, used by update/register */
429 	struct {
430 		struct io_rsrc_node		*rsrc_backup_node;
431 		struct io_mapped_ubuf		*dummy_ubuf;
432 		struct io_rsrc_data		*file_data;
433 		struct io_rsrc_data		*buf_data;
434 
435 		struct delayed_work		rsrc_put_work;
436 		struct llist_head		rsrc_put_llist;
437 		struct list_head		rsrc_ref_list;
438 		spinlock_t			rsrc_ref_lock;
439 	};
440 
441 	/* Keep this last, we don't need it for the fast path */
442 	struct {
443 		#if defined(CONFIG_UNIX)
444 			struct socket		*ring_sock;
445 		#endif
446 		/* hashed buffered write serialization */
447 		struct io_wq_hash		*hash_map;
448 
449 		/* Only used for accounting purposes */
450 		struct user_struct		*user;
451 		struct mm_struct		*mm_account;
452 
453 		/* ctx exit and cancelation */
454 		struct llist_head		fallback_llist;
455 		struct delayed_work		fallback_work;
456 		struct work_struct		exit_work;
457 		struct list_head		tctx_list;
458 		struct completion		ref_comp;
459 		u32				iowq_limits[2];
460 		bool				iowq_limits_set;
461 	};
462 };
463 
464 struct io_uring_task {
465 	/* submission side */
466 	int			cached_refs;
467 	struct xarray		xa;
468 	struct wait_queue_head	wait;
469 	const struct io_ring_ctx *last;
470 	struct io_wq		*io_wq;
471 	struct percpu_counter	inflight;
472 	atomic_t		inflight_tracked;
473 	atomic_t		in_idle;
474 
475 	spinlock_t		task_lock;
476 	struct io_wq_work_list	task_list;
477 	struct callback_head	task_work;
478 	bool			task_running;
479 };
480 
481 /*
482  * First field must be the file pointer in all the
483  * iocb unions! See also 'struct kiocb' in <linux/fs.h>
484  */
485 struct io_poll_iocb {
486 	struct file			*file;
487 	struct wait_queue_head		*head;
488 	__poll_t			events;
489 	int				retries;
490 	struct wait_queue_entry		wait;
491 };
492 
493 struct io_poll_update {
494 	struct file			*file;
495 	u64				old_user_data;
496 	u64				new_user_data;
497 	__poll_t			events;
498 	bool				update_events;
499 	bool				update_user_data;
500 };
501 
502 struct io_close {
503 	struct file			*file;
504 	int				fd;
505 	u32				file_slot;
506 };
507 
508 struct io_timeout_data {
509 	struct io_kiocb			*req;
510 	struct hrtimer			timer;
511 	struct timespec64		ts;
512 	enum hrtimer_mode		mode;
513 	u32				flags;
514 };
515 
516 struct io_accept {
517 	struct file			*file;
518 	struct sockaddr __user		*addr;
519 	int __user			*addr_len;
520 	int				flags;
521 	u32				file_slot;
522 	unsigned long			nofile;
523 };
524 
525 struct io_sync {
526 	struct file			*file;
527 	loff_t				len;
528 	loff_t				off;
529 	int				flags;
530 	int				mode;
531 };
532 
533 struct io_cancel {
534 	struct file			*file;
535 	u64				addr;
536 };
537 
538 struct io_timeout {
539 	struct file			*file;
540 	u32				off;
541 	u32				target_seq;
542 	struct list_head		list;
543 	/* head of the link, used by linked timeouts only */
544 	struct io_kiocb			*head;
545 	/* for linked completions */
546 	struct io_kiocb			*prev;
547 };
548 
549 struct io_timeout_rem {
550 	struct file			*file;
551 	u64				addr;
552 
553 	/* timeout update */
554 	struct timespec64		ts;
555 	u32				flags;
556 	bool				ltimeout;
557 };
558 
559 struct io_rw {
560 	/* NOTE: kiocb has the file as the first member, so don't do it here */
561 	struct kiocb			kiocb;
562 	u64				addr;
563 	u64				len;
564 };
565 
566 struct io_connect {
567 	struct file			*file;
568 	struct sockaddr __user		*addr;
569 	int				addr_len;
570 };
571 
572 struct io_sr_msg {
573 	struct file			*file;
574 	union {
575 		struct compat_msghdr __user	*umsg_compat;
576 		struct user_msghdr __user	*umsg;
577 		void __user			*buf;
578 	};
579 	int				msg_flags;
580 	int				bgid;
581 	size_t				len;
582 	size_t				done_io;
583 	struct io_buffer		*kbuf;
584 	void __user			*msg_control;
585 };
586 
587 struct io_open {
588 	struct file			*file;
589 	int				dfd;
590 	u32				file_slot;
591 	struct filename			*filename;
592 	struct open_how			how;
593 	unsigned long			nofile;
594 };
595 
596 struct io_rsrc_update {
597 	struct file			*file;
598 	u64				arg;
599 	u32				nr_args;
600 	u32				offset;
601 };
602 
603 struct io_fadvise {
604 	struct file			*file;
605 	u64				offset;
606 	u32				len;
607 	u32				advice;
608 };
609 
610 struct io_madvise {
611 	struct file			*file;
612 	u64				addr;
613 	u32				len;
614 	u32				advice;
615 };
616 
617 struct io_epoll {
618 	struct file			*file;
619 	int				epfd;
620 	int				op;
621 	int				fd;
622 	struct epoll_event		event;
623 };
624 
625 struct io_splice {
626 	struct file			*file_out;
627 	loff_t				off_out;
628 	loff_t				off_in;
629 	u64				len;
630 	int				splice_fd_in;
631 	unsigned int			flags;
632 };
633 
634 struct io_provide_buf {
635 	struct file			*file;
636 	__u64				addr;
637 	__u32				len;
638 	__u32				bgid;
639 	__u16				nbufs;
640 	__u16				bid;
641 };
642 
643 struct io_statx {
644 	struct file			*file;
645 	int				dfd;
646 	unsigned int			mask;
647 	unsigned int			flags;
648 	const char __user		*filename;
649 	struct statx __user		*buffer;
650 };
651 
652 struct io_shutdown {
653 	struct file			*file;
654 	int				how;
655 };
656 
657 struct io_rename {
658 	struct file			*file;
659 	int				old_dfd;
660 	int				new_dfd;
661 	struct filename			*oldpath;
662 	struct filename			*newpath;
663 	int				flags;
664 };
665 
666 struct io_unlink {
667 	struct file			*file;
668 	int				dfd;
669 	int				flags;
670 	struct filename			*filename;
671 };
672 
673 struct io_mkdir {
674 	struct file			*file;
675 	int				dfd;
676 	umode_t				mode;
677 	struct filename			*filename;
678 };
679 
680 struct io_symlink {
681 	struct file			*file;
682 	int				new_dfd;
683 	struct filename			*oldpath;
684 	struct filename			*newpath;
685 };
686 
687 struct io_hardlink {
688 	struct file			*file;
689 	int				old_dfd;
690 	int				new_dfd;
691 	struct filename			*oldpath;
692 	struct filename			*newpath;
693 	int				flags;
694 };
695 
696 struct io_completion {
697 	struct file			*file;
698 	u32				cflags;
699 };
700 
701 struct io_async_connect {
702 	struct sockaddr_storage		address;
703 };
704 
705 struct io_async_msghdr {
706 	struct iovec			fast_iov[UIO_FASTIOV];
707 	/* points to an allocated iov, if NULL we use fast_iov instead */
708 	struct iovec			*free_iov;
709 	struct sockaddr __user		*uaddr;
710 	struct msghdr			msg;
711 	struct sockaddr_storage		addr;
712 };
713 
714 struct io_async_rw {
715 	struct iovec			fast_iov[UIO_FASTIOV];
716 	const struct iovec		*free_iovec;
717 	struct iov_iter			iter;
718 	struct iov_iter_state		iter_state;
719 	size_t				bytes_done;
720 	struct wait_page_queue		wpq;
721 };
722 
723 enum {
724 	REQ_F_FIXED_FILE_BIT	= IOSQE_FIXED_FILE_BIT,
725 	REQ_F_IO_DRAIN_BIT	= IOSQE_IO_DRAIN_BIT,
726 	REQ_F_LINK_BIT		= IOSQE_IO_LINK_BIT,
727 	REQ_F_HARDLINK_BIT	= IOSQE_IO_HARDLINK_BIT,
728 	REQ_F_FORCE_ASYNC_BIT	= IOSQE_ASYNC_BIT,
729 	REQ_F_BUFFER_SELECT_BIT	= IOSQE_BUFFER_SELECT_BIT,
730 
731 	/* first byte is taken by user flags, shift it to not overlap */
732 	REQ_F_FAIL_BIT		= 8,
733 	REQ_F_INFLIGHT_BIT,
734 	REQ_F_CUR_POS_BIT,
735 	REQ_F_NOWAIT_BIT,
736 	REQ_F_LINK_TIMEOUT_BIT,
737 	REQ_F_NEED_CLEANUP_BIT,
738 	REQ_F_POLLED_BIT,
739 	REQ_F_BUFFER_SELECTED_BIT,
740 	REQ_F_COMPLETE_INLINE_BIT,
741 	REQ_F_REISSUE_BIT,
742 	REQ_F_CREDS_BIT,
743 	REQ_F_REFCOUNT_BIT,
744 	REQ_F_ARM_LTIMEOUT_BIT,
745 	REQ_F_PARTIAL_IO_BIT,
746 	/* keep async read/write and isreg together and in order */
747 	REQ_F_NOWAIT_READ_BIT,
748 	REQ_F_NOWAIT_WRITE_BIT,
749 	REQ_F_ISREG_BIT,
750 
751 	/* not a real bit, just to check we're not overflowing the space */
752 	__REQ_F_LAST_BIT,
753 };
754 
755 enum {
756 	/* ctx owns file */
757 	REQ_F_FIXED_FILE	= BIT(REQ_F_FIXED_FILE_BIT),
758 	/* drain existing IO first */
759 	REQ_F_IO_DRAIN		= BIT(REQ_F_IO_DRAIN_BIT),
760 	/* linked sqes */
761 	REQ_F_LINK		= BIT(REQ_F_LINK_BIT),
762 	/* doesn't sever on completion < 0 */
763 	REQ_F_HARDLINK		= BIT(REQ_F_HARDLINK_BIT),
764 	/* IOSQE_ASYNC */
765 	REQ_F_FORCE_ASYNC	= BIT(REQ_F_FORCE_ASYNC_BIT),
766 	/* IOSQE_BUFFER_SELECT */
767 	REQ_F_BUFFER_SELECT	= BIT(REQ_F_BUFFER_SELECT_BIT),
768 
769 	/* fail rest of links */
770 	REQ_F_FAIL		= BIT(REQ_F_FAIL_BIT),
771 	/* on inflight list, should be cancelled and waited on exit reliably */
772 	REQ_F_INFLIGHT		= BIT(REQ_F_INFLIGHT_BIT),
773 	/* read/write uses file position */
774 	REQ_F_CUR_POS		= BIT(REQ_F_CUR_POS_BIT),
775 	/* must not punt to workers */
776 	REQ_F_NOWAIT		= BIT(REQ_F_NOWAIT_BIT),
777 	/* has or had linked timeout */
778 	REQ_F_LINK_TIMEOUT	= BIT(REQ_F_LINK_TIMEOUT_BIT),
779 	/* needs cleanup */
780 	REQ_F_NEED_CLEANUP	= BIT(REQ_F_NEED_CLEANUP_BIT),
781 	/* already went through poll handler */
782 	REQ_F_POLLED		= BIT(REQ_F_POLLED_BIT),
783 	/* buffer already selected */
784 	REQ_F_BUFFER_SELECTED	= BIT(REQ_F_BUFFER_SELECTED_BIT),
785 	/* completion is deferred through io_comp_state */
786 	REQ_F_COMPLETE_INLINE	= BIT(REQ_F_COMPLETE_INLINE_BIT),
787 	/* caller should reissue async */
788 	REQ_F_REISSUE		= BIT(REQ_F_REISSUE_BIT),
789 	/* supports async reads */
790 	REQ_F_NOWAIT_READ	= BIT(REQ_F_NOWAIT_READ_BIT),
791 	/* supports async writes */
792 	REQ_F_NOWAIT_WRITE	= BIT(REQ_F_NOWAIT_WRITE_BIT),
793 	/* regular file */
794 	REQ_F_ISREG		= BIT(REQ_F_ISREG_BIT),
795 	/* has creds assigned */
796 	REQ_F_CREDS		= BIT(REQ_F_CREDS_BIT),
797 	/* skip refcounting if not set */
798 	REQ_F_REFCOUNT		= BIT(REQ_F_REFCOUNT_BIT),
799 	/* there is a linked timeout that has to be armed */
800 	REQ_F_ARM_LTIMEOUT	= BIT(REQ_F_ARM_LTIMEOUT_BIT),
801 	/* request has already done partial IO */
802 	REQ_F_PARTIAL_IO	= BIT(REQ_F_PARTIAL_IO_BIT),
803 };
804 
805 struct async_poll {
806 	struct io_poll_iocb	poll;
807 	struct io_poll_iocb	*double_poll;
808 };
809 
810 typedef void (*io_req_tw_func_t)(struct io_kiocb *req, bool *locked);
811 
812 struct io_task_work {
813 	union {
814 		struct io_wq_work_node	node;
815 		struct llist_node	fallback_node;
816 	};
817 	io_req_tw_func_t		func;
818 };
819 
820 enum {
821 	IORING_RSRC_FILE		= 0,
822 	IORING_RSRC_BUFFER		= 1,
823 };
824 
825 /*
826  * NOTE! Each of the iocb union members has the file pointer
827  * as the first entry in their struct definition. So you can
828  * access the file pointer through any of the sub-structs,
829  * or directly as just 'ki_filp' in this struct.
830  */
831 struct io_kiocb {
832 	union {
833 		struct file		*file;
834 		struct io_rw		rw;
835 		struct io_poll_iocb	poll;
836 		struct io_poll_update	poll_update;
837 		struct io_accept	accept;
838 		struct io_sync		sync;
839 		struct io_cancel	cancel;
840 		struct io_timeout	timeout;
841 		struct io_timeout_rem	timeout_rem;
842 		struct io_connect	connect;
843 		struct io_sr_msg	sr_msg;
844 		struct io_open		open;
845 		struct io_close		close;
846 		struct io_rsrc_update	rsrc_update;
847 		struct io_fadvise	fadvise;
848 		struct io_madvise	madvise;
849 		struct io_epoll		epoll;
850 		struct io_splice	splice;
851 		struct io_provide_buf	pbuf;
852 		struct io_statx		statx;
853 		struct io_shutdown	shutdown;
854 		struct io_rename	rename;
855 		struct io_unlink	unlink;
856 		struct io_mkdir		mkdir;
857 		struct io_symlink	symlink;
858 		struct io_hardlink	hardlink;
859 		/* use only after cleaning per-op data, see io_clean_op() */
860 		struct io_completion	compl;
861 	};
862 
863 	/* opcode allocated if it needs to store data for async defer */
864 	void				*async_data;
865 	u8				opcode;
866 	/* polled IO has completed */
867 	u8				iopoll_completed;
868 
869 	u16				buf_index;
870 	u32				result;
871 
872 	struct io_ring_ctx		*ctx;
873 	unsigned int			flags;
874 	atomic_t			refs;
875 	struct task_struct		*task;
876 	u64				user_data;
877 
878 	struct io_kiocb			*link;
879 	struct percpu_ref		*fixed_rsrc_refs;
880 
881 	/* used with ctx->iopoll_list with reads/writes */
882 	struct list_head		inflight_entry;
883 	struct io_task_work		io_task_work;
884 	/* for polled requests, i.e. IORING_OP_POLL_ADD and async armed poll */
885 	struct hlist_node		hash_node;
886 	struct async_poll		*apoll;
887 	struct io_wq_work		work;
888 	const struct cred		*creds;
889 
890 	/* store used ubuf, so we can prevent reloading */
891 	struct io_mapped_ubuf		*imu;
892 	/* stores selected buf, valid IFF REQ_F_BUFFER_SELECTED is set */
893 	struct io_buffer		*kbuf;
894 	atomic_t			poll_refs;
895 };
896 
897 struct io_tctx_node {
898 	struct list_head	ctx_node;
899 	struct task_struct	*task;
900 	struct io_ring_ctx	*ctx;
901 };
902 
903 struct io_defer_entry {
904 	struct list_head	list;
905 	struct io_kiocb		*req;
906 	u32			seq;
907 };
908 
909 struct io_op_def {
910 	/* needs req->file assigned */
911 	unsigned		needs_file : 1;
912 	/* hash wq insertion if file is a regular file */
913 	unsigned		hash_reg_file : 1;
914 	/* unbound wq insertion if file is a non-regular file */
915 	unsigned		unbound_nonreg_file : 1;
916 	/* opcode is not supported by this kernel */
917 	unsigned		not_supported : 1;
918 	/* set if opcode supports polled "wait" */
919 	unsigned		pollin : 1;
920 	unsigned		pollout : 1;
921 	/* op supports buffer selection */
922 	unsigned		buffer_select : 1;
923 	/* do prep async if is going to be punted */
924 	unsigned		needs_async_setup : 1;
925 	/* should block plug */
926 	unsigned		plug : 1;
927 	/* size of async data needed, if any */
928 	unsigned short		async_size;
929 };
930 
931 static const struct io_op_def io_op_defs[] = {
932 	[IORING_OP_NOP] = {},
933 	[IORING_OP_READV] = {
934 		.needs_file		= 1,
935 		.unbound_nonreg_file	= 1,
936 		.pollin			= 1,
937 		.buffer_select		= 1,
938 		.needs_async_setup	= 1,
939 		.plug			= 1,
940 		.async_size		= sizeof(struct io_async_rw),
941 	},
942 	[IORING_OP_WRITEV] = {
943 		.needs_file		= 1,
944 		.hash_reg_file		= 1,
945 		.unbound_nonreg_file	= 1,
946 		.pollout		= 1,
947 		.needs_async_setup	= 1,
948 		.plug			= 1,
949 		.async_size		= sizeof(struct io_async_rw),
950 	},
951 	[IORING_OP_FSYNC] = {
952 		.needs_file		= 1,
953 	},
954 	[IORING_OP_READ_FIXED] = {
955 		.needs_file		= 1,
956 		.unbound_nonreg_file	= 1,
957 		.pollin			= 1,
958 		.plug			= 1,
959 		.async_size		= sizeof(struct io_async_rw),
960 	},
961 	[IORING_OP_WRITE_FIXED] = {
962 		.needs_file		= 1,
963 		.hash_reg_file		= 1,
964 		.unbound_nonreg_file	= 1,
965 		.pollout		= 1,
966 		.plug			= 1,
967 		.async_size		= sizeof(struct io_async_rw),
968 	},
969 	[IORING_OP_POLL_ADD] = {
970 		.needs_file		= 1,
971 		.unbound_nonreg_file	= 1,
972 	},
973 	[IORING_OP_POLL_REMOVE] = {},
974 	[IORING_OP_SYNC_FILE_RANGE] = {
975 		.needs_file		= 1,
976 	},
977 	[IORING_OP_SENDMSG] = {
978 		.needs_file		= 1,
979 		.unbound_nonreg_file	= 1,
980 		.pollout		= 1,
981 		.needs_async_setup	= 1,
982 		.async_size		= sizeof(struct io_async_msghdr),
983 	},
984 	[IORING_OP_RECVMSG] = {
985 		.needs_file		= 1,
986 		.unbound_nonreg_file	= 1,
987 		.pollin			= 1,
988 		.buffer_select		= 1,
989 		.needs_async_setup	= 1,
990 		.async_size		= sizeof(struct io_async_msghdr),
991 	},
992 	[IORING_OP_TIMEOUT] = {
993 		.async_size		= sizeof(struct io_timeout_data),
994 	},
995 	[IORING_OP_TIMEOUT_REMOVE] = {
996 		/* used by timeout updates' prep() */
997 	},
998 	[IORING_OP_ACCEPT] = {
999 		.needs_file		= 1,
1000 		.unbound_nonreg_file	= 1,
1001 		.pollin			= 1,
1002 	},
1003 	[IORING_OP_ASYNC_CANCEL] = {},
1004 	[IORING_OP_LINK_TIMEOUT] = {
1005 		.async_size		= sizeof(struct io_timeout_data),
1006 	},
1007 	[IORING_OP_CONNECT] = {
1008 		.needs_file		= 1,
1009 		.unbound_nonreg_file	= 1,
1010 		.pollout		= 1,
1011 		.needs_async_setup	= 1,
1012 		.async_size		= sizeof(struct io_async_connect),
1013 	},
1014 	[IORING_OP_FALLOCATE] = {
1015 		.needs_file		= 1,
1016 	},
1017 	[IORING_OP_OPENAT] = {},
1018 	[IORING_OP_CLOSE] = {},
1019 	[IORING_OP_FILES_UPDATE] = {},
1020 	[IORING_OP_STATX] = {},
1021 	[IORING_OP_READ] = {
1022 		.needs_file		= 1,
1023 		.unbound_nonreg_file	= 1,
1024 		.pollin			= 1,
1025 		.buffer_select		= 1,
1026 		.plug			= 1,
1027 		.async_size		= sizeof(struct io_async_rw),
1028 	},
1029 	[IORING_OP_WRITE] = {
1030 		.needs_file		= 1,
1031 		.hash_reg_file		= 1,
1032 		.unbound_nonreg_file	= 1,
1033 		.pollout		= 1,
1034 		.plug			= 1,
1035 		.async_size		= sizeof(struct io_async_rw),
1036 	},
1037 	[IORING_OP_FADVISE] = {
1038 		.needs_file		= 1,
1039 	},
1040 	[IORING_OP_MADVISE] = {},
1041 	[IORING_OP_SEND] = {
1042 		.needs_file		= 1,
1043 		.unbound_nonreg_file	= 1,
1044 		.pollout		= 1,
1045 	},
1046 	[IORING_OP_RECV] = {
1047 		.needs_file		= 1,
1048 		.unbound_nonreg_file	= 1,
1049 		.pollin			= 1,
1050 		.buffer_select		= 1,
1051 	},
1052 	[IORING_OP_OPENAT2] = {
1053 	},
1054 	[IORING_OP_EPOLL_CTL] = {
1055 		.unbound_nonreg_file	= 1,
1056 	},
1057 	[IORING_OP_SPLICE] = {
1058 		.needs_file		= 1,
1059 		.hash_reg_file		= 1,
1060 		.unbound_nonreg_file	= 1,
1061 	},
1062 	[IORING_OP_PROVIDE_BUFFERS] = {},
1063 	[IORING_OP_REMOVE_BUFFERS] = {},
1064 	[IORING_OP_TEE] = {
1065 		.needs_file		= 1,
1066 		.hash_reg_file		= 1,
1067 		.unbound_nonreg_file	= 1,
1068 	},
1069 	[IORING_OP_SHUTDOWN] = {
1070 		.needs_file		= 1,
1071 	},
1072 	[IORING_OP_RENAMEAT] = {},
1073 	[IORING_OP_UNLINKAT] = {},
1074 };
1075 
1076 /* requests with any of those set should undergo io_disarm_next() */
1077 #define IO_DISARM_MASK (REQ_F_ARM_LTIMEOUT | REQ_F_LINK_TIMEOUT | REQ_F_FAIL)
1078 
1079 static bool io_disarm_next(struct io_kiocb *req);
1080 static void io_uring_del_tctx_node(unsigned long index);
1081 static void io_uring_try_cancel_requests(struct io_ring_ctx *ctx,
1082 					 struct task_struct *task,
1083 					 bool cancel_all);
1084 static void io_uring_cancel_generic(bool cancel_all, struct io_sq_data *sqd);
1085 
1086 static void io_fill_cqe_req(struct io_kiocb *req, s32 res, u32 cflags);
1087 
1088 static void io_put_req(struct io_kiocb *req);
1089 static void io_put_req_deferred(struct io_kiocb *req);
1090 static void io_dismantle_req(struct io_kiocb *req);
1091 static void io_queue_linked_timeout(struct io_kiocb *req);
1092 static int __io_register_rsrc_update(struct io_ring_ctx *ctx, unsigned type,
1093 				     struct io_uring_rsrc_update2 *up,
1094 				     unsigned nr_args);
1095 static void io_clean_op(struct io_kiocb *req);
1096 static struct file *io_file_get(struct io_ring_ctx *ctx,
1097 				struct io_kiocb *req, int fd, bool fixed,
1098 				unsigned int issue_flags);
1099 static void __io_queue_sqe(struct io_kiocb *req);
1100 static void io_rsrc_put_work(struct work_struct *work);
1101 
1102 static void io_req_task_queue(struct io_kiocb *req);
1103 static void io_submit_flush_completions(struct io_ring_ctx *ctx);
1104 static int io_req_prep_async(struct io_kiocb *req);
1105 
1106 static int io_install_fixed_file(struct io_kiocb *req, struct file *file,
1107 				 unsigned int issue_flags, u32 slot_index);
1108 static int io_close_fixed(struct io_kiocb *req, unsigned int issue_flags);
1109 
1110 static enum hrtimer_restart io_link_timeout_fn(struct hrtimer *timer);
1111 
1112 static struct kmem_cache *req_cachep;
1113 
1114 static const struct file_operations io_uring_fops;
1115 
io_uring_get_socket(struct file *file)1116 struct sock *io_uring_get_socket(struct file *file)
1117 {
1118 #if defined(CONFIG_UNIX)
1119 	if (file->f_op == &io_uring_fops) {
1120 		struct io_ring_ctx *ctx = file->private_data;
1121 
1122 		return ctx->ring_sock->sk;
1123 	}
1124 #endif
1125 	return NULL;
1126 }
1127 EXPORT_SYMBOL(io_uring_get_socket);
1128 
io_tw_lock(struct io_ring_ctx *ctx, bool *locked)1129 static inline void io_tw_lock(struct io_ring_ctx *ctx, bool *locked)
1130 {
1131 	if (!*locked) {
1132 		mutex_lock(&ctx->uring_lock);
1133 		*locked = true;
1134 	}
1135 }
1136 
1137 #define io_for_each_link(pos, head) \
1138 	for (pos = (head); pos; pos = pos->link)
1139 
1140 /*
1141  * Shamelessly stolen from the mm implementation of page reference checking,
1142  * see commit f958d7b528b1 for details.
1143  */
1144 #define req_ref_zero_or_close_to_overflow(req)	\
1145 	((unsigned int) atomic_read(&(req->refs)) + 127u <= 127u)
1146 
req_ref_inc_not_zero(struct io_kiocb *req)1147 static inline bool req_ref_inc_not_zero(struct io_kiocb *req)
1148 {
1149 	WARN_ON_ONCE(!(req->flags & REQ_F_REFCOUNT));
1150 	return atomic_inc_not_zero(&req->refs);
1151 }
1152 
req_ref_put_and_test(struct io_kiocb *req)1153 static inline bool req_ref_put_and_test(struct io_kiocb *req)
1154 {
1155 	if (likely(!(req->flags & REQ_F_REFCOUNT)))
1156 		return true;
1157 
1158 	WARN_ON_ONCE(req_ref_zero_or_close_to_overflow(req));
1159 	return atomic_dec_and_test(&req->refs);
1160 }
1161 
req_ref_get(struct io_kiocb *req)1162 static inline void req_ref_get(struct io_kiocb *req)
1163 {
1164 	WARN_ON_ONCE(!(req->flags & REQ_F_REFCOUNT));
1165 	WARN_ON_ONCE(req_ref_zero_or_close_to_overflow(req));
1166 	atomic_inc(&req->refs);
1167 }
1168 
__io_req_set_refcount(struct io_kiocb *req, int nr)1169 static inline void __io_req_set_refcount(struct io_kiocb *req, int nr)
1170 {
1171 	if (!(req->flags & REQ_F_REFCOUNT)) {
1172 		req->flags |= REQ_F_REFCOUNT;
1173 		atomic_set(&req->refs, nr);
1174 	}
1175 }
1176 
io_req_set_refcount(struct io_kiocb *req)1177 static inline void io_req_set_refcount(struct io_kiocb *req)
1178 {
1179 	__io_req_set_refcount(req, 1);
1180 }
1181 
io_req_set_rsrc_node(struct io_kiocb *req)1182 static inline void io_req_set_rsrc_node(struct io_kiocb *req)
1183 {
1184 	struct io_ring_ctx *ctx = req->ctx;
1185 
1186 	if (!req->fixed_rsrc_refs) {
1187 		req->fixed_rsrc_refs = &ctx->rsrc_node->refs;
1188 		percpu_ref_get(req->fixed_rsrc_refs);
1189 	}
1190 }
1191 
io_refs_resurrect(struct percpu_ref *ref, struct completion *compl)1192 static void io_refs_resurrect(struct percpu_ref *ref, struct completion *compl)
1193 {
1194 	bool got = percpu_ref_tryget(ref);
1195 
1196 	/* already at zero, wait for ->release() */
1197 	if (!got)
1198 		wait_for_completion(compl);
1199 	percpu_ref_resurrect(ref);
1200 	if (got)
1201 		percpu_ref_put(ref);
1202 }
1203 
1204 static bool io_match_task(struct io_kiocb *head, struct task_struct *task,
1205 			  bool cancel_all)
1206 	__must_hold(&req->ctx->timeout_lock)
1207 {
1208 	struct io_kiocb *req;
1209 
1210 	if (task && head->task != task)
1211 		return false;
1212 	if (cancel_all)
1213 		return true;
1214 
io_for_each_linknull1215 	io_for_each_link(req, head) {
1216 		if (req->flags & REQ_F_INFLIGHT)
1217 			return true;
1218 	}
1219 	return false;
1220 }
1221 
io_match_linked(struct io_kiocb *head)1222 static bool io_match_linked(struct io_kiocb *head)
1223 {
1224 	struct io_kiocb *req;
1225 
1226 	io_for_each_link(req, head) {
1227 		if (req->flags & REQ_F_INFLIGHT)
1228 			return true;
1229 	}
1230 	return false;
1231 }
1232 
1233 /*
1234  * As io_match_task() but protected against racing with linked timeouts.
1235  * User must not hold timeout_lock.
1236  */
io_match_task_safe(struct io_kiocb *head, struct task_struct *task, bool cancel_all)1237 static bool io_match_task_safe(struct io_kiocb *head, struct task_struct *task,
1238 			       bool cancel_all)
1239 {
1240 	bool matched;
1241 
1242 	if (task && head->task != task)
1243 		return false;
1244 	if (cancel_all)
1245 		return true;
1246 
1247 	if (head->flags & REQ_F_LINK_TIMEOUT) {
1248 		struct io_ring_ctx *ctx = head->ctx;
1249 
1250 		/* protect against races with linked timeouts */
1251 		spin_lock_irq(&ctx->timeout_lock);
1252 		matched = io_match_linked(head);
1253 		spin_unlock_irq(&ctx->timeout_lock);
1254 	} else {
1255 		matched = io_match_linked(head);
1256 	}
1257 	return matched;
1258 }
1259 
req_set_fail(struct io_kiocb *req)1260 static inline void req_set_fail(struct io_kiocb *req)
1261 {
1262 	req->flags |= REQ_F_FAIL;
1263 }
1264 
req_fail_link_node(struct io_kiocb *req, int res)1265 static inline void req_fail_link_node(struct io_kiocb *req, int res)
1266 {
1267 	req_set_fail(req);
1268 	req->result = res;
1269 }
1270 
io_ring_ctx_ref_free(struct percpu_ref *ref)1271 static void io_ring_ctx_ref_free(struct percpu_ref *ref)
1272 {
1273 	struct io_ring_ctx *ctx = container_of(ref, struct io_ring_ctx, refs);
1274 
1275 	complete(&ctx->ref_comp);
1276 }
1277 
io_is_timeout_noseq(struct io_kiocb *req)1278 static inline bool io_is_timeout_noseq(struct io_kiocb *req)
1279 {
1280 	return !req->timeout.off;
1281 }
1282 
io_fallback_req_func(struct work_struct *work)1283 static void io_fallback_req_func(struct work_struct *work)
1284 {
1285 	struct io_ring_ctx *ctx = container_of(work, struct io_ring_ctx,
1286 						fallback_work.work);
1287 	struct llist_node *node = llist_del_all(&ctx->fallback_llist);
1288 	struct io_kiocb *req, *tmp;
1289 	bool locked = false;
1290 
1291 	percpu_ref_get(&ctx->refs);
1292 	llist_for_each_entry_safe(req, tmp, node, io_task_work.fallback_node)
1293 		req->io_task_work.func(req, &locked);
1294 
1295 	if (locked) {
1296 		if (ctx->submit_state.compl_nr)
1297 			io_submit_flush_completions(ctx);
1298 		mutex_unlock(&ctx->uring_lock);
1299 	}
1300 	percpu_ref_put(&ctx->refs);
1301 
1302 }
1303 
io_ring_ctx_alloc(struct io_uring_params *p)1304 static struct io_ring_ctx *io_ring_ctx_alloc(struct io_uring_params *p)
1305 {
1306 	struct io_ring_ctx *ctx;
1307 	int hash_bits;
1308 
1309 	ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
1310 	if (!ctx)
1311 		return NULL;
1312 
1313 	/*
1314 	 * Use 5 bits less than the max cq entries, that should give us around
1315 	 * 32 entries per hash list if totally full and uniformly spread.
1316 	 */
1317 	hash_bits = ilog2(p->cq_entries);
1318 	hash_bits -= 5;
1319 	if (hash_bits <= 0)
1320 		hash_bits = 1;
1321 	ctx->cancel_hash_bits = hash_bits;
1322 	ctx->cancel_hash = kmalloc((1U << hash_bits) * sizeof(struct hlist_head),
1323 					GFP_KERNEL);
1324 	if (!ctx->cancel_hash)
1325 		goto err;
1326 	__hash_init(ctx->cancel_hash, 1U << hash_bits);
1327 
1328 	ctx->dummy_ubuf = kzalloc(sizeof(*ctx->dummy_ubuf), GFP_KERNEL);
1329 	if (!ctx->dummy_ubuf)
1330 		goto err;
1331 	/* set invalid range, so io_import_fixed() fails meeting it */
1332 	ctx->dummy_ubuf->ubuf = -1UL;
1333 
1334 	if (percpu_ref_init(&ctx->refs, io_ring_ctx_ref_free,
1335 			    PERCPU_REF_ALLOW_REINIT, GFP_KERNEL))
1336 		goto err;
1337 
1338 	ctx->flags = p->flags;
1339 	init_waitqueue_head(&ctx->sqo_sq_wait);
1340 	INIT_LIST_HEAD(&ctx->sqd_list);
1341 	init_waitqueue_head(&ctx->poll_wait);
1342 	INIT_LIST_HEAD(&ctx->cq_overflow_list);
1343 	init_completion(&ctx->ref_comp);
1344 	xa_init_flags(&ctx->io_buffers, XA_FLAGS_ALLOC1);
1345 	xa_init_flags(&ctx->personalities, XA_FLAGS_ALLOC1);
1346 	mutex_init(&ctx->uring_lock);
1347 	init_waitqueue_head(&ctx->cq_wait);
1348 	spin_lock_init(&ctx->completion_lock);
1349 	spin_lock_init(&ctx->timeout_lock);
1350 	INIT_LIST_HEAD(&ctx->iopoll_list);
1351 	INIT_LIST_HEAD(&ctx->defer_list);
1352 	INIT_LIST_HEAD(&ctx->timeout_list);
1353 	INIT_LIST_HEAD(&ctx->ltimeout_list);
1354 	spin_lock_init(&ctx->rsrc_ref_lock);
1355 	INIT_LIST_HEAD(&ctx->rsrc_ref_list);
1356 	INIT_DELAYED_WORK(&ctx->rsrc_put_work, io_rsrc_put_work);
1357 	init_llist_head(&ctx->rsrc_put_llist);
1358 	INIT_LIST_HEAD(&ctx->tctx_list);
1359 	INIT_LIST_HEAD(&ctx->submit_state.free_list);
1360 	INIT_LIST_HEAD(&ctx->locked_free_list);
1361 	INIT_DELAYED_WORK(&ctx->fallback_work, io_fallback_req_func);
1362 	return ctx;
1363 err:
1364 	kfree(ctx->dummy_ubuf);
1365 	kfree(ctx->cancel_hash);
1366 	kfree(ctx);
1367 	return NULL;
1368 }
1369 
io_account_cq_overflow(struct io_ring_ctx *ctx)1370 static void io_account_cq_overflow(struct io_ring_ctx *ctx)
1371 {
1372 	struct io_rings *r = ctx->rings;
1373 
1374 	WRITE_ONCE(r->cq_overflow, READ_ONCE(r->cq_overflow) + 1);
1375 	ctx->cq_extra--;
1376 }
1377 
req_need_defer(struct io_kiocb *req, u32 seq)1378 static bool req_need_defer(struct io_kiocb *req, u32 seq)
1379 {
1380 	if (unlikely(req->flags & REQ_F_IO_DRAIN)) {
1381 		struct io_ring_ctx *ctx = req->ctx;
1382 
1383 		return seq + READ_ONCE(ctx->cq_extra) != ctx->cached_cq_tail;
1384 	}
1385 
1386 	return false;
1387 }
1388 
1389 #define FFS_ASYNC_READ		0x1UL
1390 #define FFS_ASYNC_WRITE		0x2UL
1391 #ifdef CONFIG_64BIT
1392 #define FFS_ISREG		0x4UL
1393 #else
1394 #define FFS_ISREG		0x0UL
1395 #endif
1396 #define FFS_MASK		~(FFS_ASYNC_READ|FFS_ASYNC_WRITE|FFS_ISREG)
1397 
io_req_ffs_set(struct io_kiocb *req)1398 static inline bool io_req_ffs_set(struct io_kiocb *req)
1399 {
1400 	return IS_ENABLED(CONFIG_64BIT) && (req->flags & REQ_F_FIXED_FILE);
1401 }
1402 
io_req_track_inflight(struct io_kiocb *req)1403 static void io_req_track_inflight(struct io_kiocb *req)
1404 {
1405 	if (!(req->flags & REQ_F_INFLIGHT)) {
1406 		req->flags |= REQ_F_INFLIGHT;
1407 		atomic_inc(&req->task->io_uring->inflight_tracked);
1408 	}
1409 }
1410 
__io_prep_linked_timeout(struct io_kiocb *req)1411 static struct io_kiocb *__io_prep_linked_timeout(struct io_kiocb *req)
1412 {
1413 	if (WARN_ON_ONCE(!req->link))
1414 		return NULL;
1415 
1416 	req->flags &= ~REQ_F_ARM_LTIMEOUT;
1417 	req->flags |= REQ_F_LINK_TIMEOUT;
1418 
1419 	/* linked timeouts should have two refs once prep'ed */
1420 	io_req_set_refcount(req);
1421 	__io_req_set_refcount(req->link, 2);
1422 	return req->link;
1423 }
1424 
io_prep_linked_timeout(struct io_kiocb *req)1425 static inline struct io_kiocb *io_prep_linked_timeout(struct io_kiocb *req)
1426 {
1427 	if (likely(!(req->flags & REQ_F_ARM_LTIMEOUT)))
1428 		return NULL;
1429 	return __io_prep_linked_timeout(req);
1430 }
1431 
io_prep_async_work(struct io_kiocb *req)1432 static void io_prep_async_work(struct io_kiocb *req)
1433 {
1434 	const struct io_op_def *def = &io_op_defs[req->opcode];
1435 	struct io_ring_ctx *ctx = req->ctx;
1436 
1437 	if (!(req->flags & REQ_F_CREDS)) {
1438 		req->flags |= REQ_F_CREDS;
1439 		req->creds = get_current_cred();
1440 	}
1441 
1442 	req->work.list.next = NULL;
1443 	req->work.flags = 0;
1444 	if (req->flags & REQ_F_FORCE_ASYNC)
1445 		req->work.flags |= IO_WQ_WORK_CONCURRENT;
1446 
1447 	if (req->flags & REQ_F_ISREG) {
1448 		if (def->hash_reg_file || (ctx->flags & IORING_SETUP_IOPOLL))
1449 			io_wq_hash_work(&req->work, file_inode(req->file));
1450 	} else if (!req->file || !S_ISBLK(file_inode(req->file)->i_mode)) {
1451 		if (def->unbound_nonreg_file)
1452 			req->work.flags |= IO_WQ_WORK_UNBOUND;
1453 	}
1454 }
1455 
io_prep_async_link(struct io_kiocb *req)1456 static void io_prep_async_link(struct io_kiocb *req)
1457 {
1458 	struct io_kiocb *cur;
1459 
1460 	if (req->flags & REQ_F_LINK_TIMEOUT) {
1461 		struct io_ring_ctx *ctx = req->ctx;
1462 
1463 		spin_lock_irq(&ctx->timeout_lock);
1464 		io_for_each_link(cur, req)
1465 			io_prep_async_work(cur);
1466 		spin_unlock_irq(&ctx->timeout_lock);
1467 	} else {
1468 		io_for_each_link(cur, req)
1469 			io_prep_async_work(cur);
1470 	}
1471 }
1472 
io_queue_async_work(struct io_kiocb *req, bool *locked)1473 static void io_queue_async_work(struct io_kiocb *req, bool *locked)
1474 {
1475 	struct io_ring_ctx *ctx = req->ctx;
1476 	struct io_kiocb *link = io_prep_linked_timeout(req);
1477 	struct io_uring_task *tctx = req->task->io_uring;
1478 
1479 	/* must not take the lock, NULL it as a precaution */
1480 	locked = NULL;
1481 
1482 	BUG_ON(!tctx);
1483 	BUG_ON(!tctx->io_wq);
1484 
1485 	/* init ->work of the whole link before punting */
1486 	io_prep_async_link(req);
1487 
1488 	/*
1489 	 * Not expected to happen, but if we do have a bug where this _can_
1490 	 * happen, catch it here and ensure the request is marked as
1491 	 * canceled. That will make io-wq go through the usual work cancel
1492 	 * procedure rather than attempt to run this request (or create a new
1493 	 * worker for it).
1494 	 */
1495 	if (WARN_ON_ONCE(!same_thread_group(req->task, current)))
1496 		req->work.flags |= IO_WQ_WORK_CANCEL;
1497 
1498 	trace_io_uring_queue_async_work(ctx, io_wq_is_hashed(&req->work), req,
1499 					&req->work, req->flags);
1500 	io_wq_enqueue(tctx->io_wq, &req->work);
1501 	if (link)
1502 		io_queue_linked_timeout(link);
1503 }
1504 
1505 static void io_kill_timeout(struct io_kiocb *req, int status)
1506 	__must_hold(&req->ctx->completion_lock)
1507 	__must_hold(&req->ctx->timeout_lock)
1508 {
1509 	struct io_timeout_data *io = req->async_data;
1510 
1511 	if (hrtimer_try_to_cancel(&io->timer) != -1) {
1512 		if (status)
1513 			req_set_fail(req);
1514 		atomic_set(&req->ctx->cq_timeouts,
1515 			atomic_read(&req->ctx->cq_timeouts) + 1);
1516 		list_del_init(&req->timeout.list);
1517 		io_fill_cqe_req(req, status, 0);
1518 		io_put_req_deferred(req);
1519 	}
1520 }
1521 
io_queue_deferred(struct io_ring_ctx *ctx)1522 static void io_queue_deferred(struct io_ring_ctx *ctx)
1523 {
1524 	lockdep_assert_held(&ctx->completion_lock);
1525 
1526 	while (!list_empty(&ctx->defer_list)) {
1527 		struct io_defer_entry *de = list_first_entry(&ctx->defer_list,
1528 						struct io_defer_entry, list);
1529 
1530 		if (req_need_defer(de->req, de->seq))
1531 			break;
1532 		list_del_init(&de->list);
1533 		io_req_task_queue(de->req);
1534 		kfree(de);
1535 	}
1536 }
1537 
1538 static void io_flush_timeouts(struct io_ring_ctx *ctx)
1539 	__must_hold(&ctx->completion_lock)
1540 {
1541 	u32 seq = ctx->cached_cq_tail - atomic_read(&ctx->cq_timeouts);
1542 	struct io_kiocb *req, *tmp;
1543 
1544 	spin_lock_irq(&ctx->timeout_lock);
1545 	list_for_each_entry_safe(req, tmp, &ctx->timeout_list, timeout.list) {
1546 		u32 events_needed, events_got;
1547 
1548 		if (io_is_timeout_noseq(req))
1549 			break;
1550 
1551 		/*
1552 		 * Since seq can easily wrap around over time, subtract
1553 		 * the last seq at which timeouts were flushed before comparing.
1554 		 * Assuming not more than 2^31-1 events have happened since,
1555 		 * these subtractions won't have wrapped, so we can check if
1556 		 * target is in [last_seq, current_seq] by comparing the two.
1557 		 */
1558 		events_needed = req->timeout.target_seq - ctx->cq_last_tm_flush;
1559 		events_got = seq - ctx->cq_last_tm_flush;
1560 		if (events_got < events_needed)
1561 			break;
1562 
1563 		io_kill_timeout(req, 0);
1564 	}
1565 	ctx->cq_last_tm_flush = seq;
1566 	spin_unlock_irq(&ctx->timeout_lock);
1567 }
1568 
__io_commit_cqring_flush(struct io_ring_ctx *ctx)1569 static void __io_commit_cqring_flush(struct io_ring_ctx *ctx)
1570 {
1571 	if (ctx->off_timeout_used)
1572 		io_flush_timeouts(ctx);
1573 	if (ctx->drain_active)
1574 		io_queue_deferred(ctx);
1575 }
1576 
io_commit_needs_flush(struct io_ring_ctx *ctx)1577 static inline bool io_commit_needs_flush(struct io_ring_ctx *ctx)
1578 {
1579 	return ctx->off_timeout_used || ctx->drain_active;
1580 }
1581 
__io_commit_cqring(struct io_ring_ctx *ctx)1582 static inline void __io_commit_cqring(struct io_ring_ctx *ctx)
1583 {
1584 	/* order cqe stores with ring update */
1585 	smp_store_release(&ctx->rings->cq.tail, ctx->cached_cq_tail);
1586 }
1587 
io_commit_cqring(struct io_ring_ctx *ctx)1588 static inline void io_commit_cqring(struct io_ring_ctx *ctx)
1589 {
1590 	if (unlikely(io_commit_needs_flush(ctx)))
1591 		__io_commit_cqring_flush(ctx);
1592 	__io_commit_cqring(ctx);
1593 }
1594 
io_sqring_full(struct io_ring_ctx *ctx)1595 static inline bool io_sqring_full(struct io_ring_ctx *ctx)
1596 {
1597 	struct io_rings *r = ctx->rings;
1598 
1599 	return READ_ONCE(r->sq.tail) - ctx->cached_sq_head == ctx->sq_entries;
1600 }
1601 
__io_cqring_events(struct io_ring_ctx *ctx)1602 static inline unsigned int __io_cqring_events(struct io_ring_ctx *ctx)
1603 {
1604 	return ctx->cached_cq_tail - READ_ONCE(ctx->rings->cq.head);
1605 }
1606 
io_get_cqe(struct io_ring_ctx *ctx)1607 static inline struct io_uring_cqe *io_get_cqe(struct io_ring_ctx *ctx)
1608 {
1609 	struct io_rings *rings = ctx->rings;
1610 	unsigned tail, mask = ctx->cq_entries - 1;
1611 
1612 	/*
1613 	 * writes to the cq entry need to come after reading head; the
1614 	 * control dependency is enough as we're using WRITE_ONCE to
1615 	 * fill the cq entry
1616 	 */
1617 	if (__io_cqring_events(ctx) == ctx->cq_entries)
1618 		return NULL;
1619 
1620 	tail = ctx->cached_cq_tail++;
1621 	return &rings->cqes[tail & mask];
1622 }
1623 
io_should_trigger_evfd(struct io_ring_ctx *ctx)1624 static inline bool io_should_trigger_evfd(struct io_ring_ctx *ctx)
1625 {
1626 	if (likely(!ctx->cq_ev_fd))
1627 		return false;
1628 	if (READ_ONCE(ctx->rings->cq_flags) & IORING_CQ_EVENTFD_DISABLED)
1629 		return false;
1630 	return !ctx->eventfd_async || io_wq_current_is_worker();
1631 }
1632 
1633 /*
1634  * This should only get called when at least one event has been posted.
1635  * Some applications rely on the eventfd notification count only changing
1636  * IFF a new CQE has been added to the CQ ring. There's no depedency on
1637  * 1:1 relationship between how many times this function is called (and
1638  * hence the eventfd count) and number of CQEs posted to the CQ ring.
1639  */
io_cqring_ev_posted(struct io_ring_ctx *ctx)1640 static void io_cqring_ev_posted(struct io_ring_ctx *ctx)
1641 {
1642 	/*
1643 	 * wake_up_all() may seem excessive, but io_wake_function() and
1644 	 * io_should_wake() handle the termination of the loop and only
1645 	 * wake as many waiters as we need to.
1646 	 */
1647 	if (wq_has_sleeper(&ctx->cq_wait))
1648 		__wake_up(&ctx->cq_wait, TASK_NORMAL, 0,
1649 				poll_to_key(EPOLL_URING_WAKE | EPOLLIN));
1650 	if (ctx->sq_data && waitqueue_active(&ctx->sq_data->wait))
1651 		wake_up(&ctx->sq_data->wait);
1652 	if (io_should_trigger_evfd(ctx))
1653 		eventfd_signal_mask(ctx->cq_ev_fd, 1, EPOLL_URING_WAKE);
1654 	if (waitqueue_active(&ctx->poll_wait))
1655 		__wake_up(&ctx->poll_wait, TASK_INTERRUPTIBLE, 0,
1656 				poll_to_key(EPOLL_URING_WAKE | EPOLLIN));
1657 }
1658 
io_cqring_ev_posted_iopoll(struct io_ring_ctx *ctx)1659 static void io_cqring_ev_posted_iopoll(struct io_ring_ctx *ctx)
1660 {
1661 	/* see waitqueue_active() comment */
1662 	smp_mb();
1663 
1664 	if (ctx->flags & IORING_SETUP_SQPOLL) {
1665 		if (waitqueue_active(&ctx->cq_wait))
1666 			__wake_up(&ctx->cq_wait, TASK_NORMAL, 0,
1667 				  poll_to_key(EPOLL_URING_WAKE | EPOLLIN));
1668 	}
1669 	if (io_should_trigger_evfd(ctx))
1670 		eventfd_signal_mask(ctx->cq_ev_fd, 1, EPOLL_URING_WAKE);
1671 	if (waitqueue_active(&ctx->poll_wait))
1672 		__wake_up(&ctx->poll_wait, TASK_INTERRUPTIBLE, 0,
1673 				poll_to_key(EPOLL_URING_WAKE | EPOLLIN));
1674 }
1675 
1676 /* Returns true if there are no backlogged entries after the flush */
__io_cqring_overflow_flush(struct io_ring_ctx *ctx, bool force)1677 static bool __io_cqring_overflow_flush(struct io_ring_ctx *ctx, bool force)
1678 {
1679 	bool all_flushed, posted;
1680 
1681 	if (!force && __io_cqring_events(ctx) == ctx->cq_entries)
1682 		return false;
1683 
1684 	posted = false;
1685 	spin_lock(&ctx->completion_lock);
1686 	while (!list_empty(&ctx->cq_overflow_list)) {
1687 		struct io_uring_cqe *cqe = io_get_cqe(ctx);
1688 		struct io_overflow_cqe *ocqe;
1689 
1690 		if (!cqe && !force)
1691 			break;
1692 		ocqe = list_first_entry(&ctx->cq_overflow_list,
1693 					struct io_overflow_cqe, list);
1694 		if (cqe)
1695 			memcpy(cqe, &ocqe->cqe, sizeof(*cqe));
1696 		else
1697 			io_account_cq_overflow(ctx);
1698 
1699 		posted = true;
1700 		list_del(&ocqe->list);
1701 		kfree(ocqe);
1702 	}
1703 
1704 	all_flushed = list_empty(&ctx->cq_overflow_list);
1705 	if (all_flushed) {
1706 		clear_bit(0, &ctx->check_cq_overflow);
1707 		WRITE_ONCE(ctx->rings->sq_flags,
1708 			   ctx->rings->sq_flags & ~IORING_SQ_CQ_OVERFLOW);
1709 	}
1710 
1711 	if (posted)
1712 		io_commit_cqring(ctx);
1713 	spin_unlock(&ctx->completion_lock);
1714 	if (posted)
1715 		io_cqring_ev_posted(ctx);
1716 	return all_flushed;
1717 }
1718 
io_cqring_overflow_flush(struct io_ring_ctx *ctx)1719 static bool io_cqring_overflow_flush(struct io_ring_ctx *ctx)
1720 {
1721 	bool ret = true;
1722 
1723 	if (test_bit(0, &ctx->check_cq_overflow)) {
1724 		/* iopoll syncs against uring_lock, not completion_lock */
1725 		if (ctx->flags & IORING_SETUP_IOPOLL)
1726 			mutex_lock(&ctx->uring_lock);
1727 		ret = __io_cqring_overflow_flush(ctx, false);
1728 		if (ctx->flags & IORING_SETUP_IOPOLL)
1729 			mutex_unlock(&ctx->uring_lock);
1730 	}
1731 
1732 	return ret;
1733 }
1734 
1735 /* must to be called somewhat shortly after putting a request */
io_put_task(struct task_struct *task, int nr)1736 static inline void io_put_task(struct task_struct *task, int nr)
1737 {
1738 	struct io_uring_task *tctx = task->io_uring;
1739 
1740 	if (likely(task == current)) {
1741 		tctx->cached_refs += nr;
1742 	} else {
1743 		percpu_counter_sub(&tctx->inflight, nr);
1744 		if (unlikely(atomic_read(&tctx->in_idle)))
1745 			wake_up(&tctx->wait);
1746 		put_task_struct_many(task, nr);
1747 	}
1748 }
1749 
io_task_refs_refill(struct io_uring_task *tctx)1750 static void io_task_refs_refill(struct io_uring_task *tctx)
1751 {
1752 	unsigned int refill = -tctx->cached_refs + IO_TCTX_REFS_CACHE_NR;
1753 
1754 	percpu_counter_add(&tctx->inflight, refill);
1755 	refcount_add(refill, &current->usage);
1756 	tctx->cached_refs += refill;
1757 }
1758 
io_get_task_refs(int nr)1759 static inline void io_get_task_refs(int nr)
1760 {
1761 	struct io_uring_task *tctx = current->io_uring;
1762 
1763 	tctx->cached_refs -= nr;
1764 	if (unlikely(tctx->cached_refs < 0))
1765 		io_task_refs_refill(tctx);
1766 }
1767 
io_uring_drop_tctx_refs(struct task_struct *task)1768 static __cold void io_uring_drop_tctx_refs(struct task_struct *task)
1769 {
1770 	struct io_uring_task *tctx = task->io_uring;
1771 	unsigned int refs = tctx->cached_refs;
1772 
1773 	if (refs) {
1774 		tctx->cached_refs = 0;
1775 		percpu_counter_sub(&tctx->inflight, refs);
1776 		put_task_struct_many(task, refs);
1777 	}
1778 }
1779 
io_cqring_event_overflow(struct io_ring_ctx *ctx, u64 user_data, s32 res, u32 cflags)1780 static bool io_cqring_event_overflow(struct io_ring_ctx *ctx, u64 user_data,
1781 				     s32 res, u32 cflags)
1782 {
1783 	struct io_overflow_cqe *ocqe;
1784 
1785 	ocqe = kmalloc(sizeof(*ocqe), GFP_ATOMIC | __GFP_ACCOUNT);
1786 	if (!ocqe) {
1787 		/*
1788 		 * If we're in ring overflow flush mode, or in task cancel mode,
1789 		 * or cannot allocate an overflow entry, then we need to drop it
1790 		 * on the floor.
1791 		 */
1792 		io_account_cq_overflow(ctx);
1793 		return false;
1794 	}
1795 	if (list_empty(&ctx->cq_overflow_list)) {
1796 		set_bit(0, &ctx->check_cq_overflow);
1797 		WRITE_ONCE(ctx->rings->sq_flags,
1798 			   ctx->rings->sq_flags | IORING_SQ_CQ_OVERFLOW);
1799 
1800 	}
1801 	ocqe->cqe.user_data = user_data;
1802 	ocqe->cqe.res = res;
1803 	ocqe->cqe.flags = cflags;
1804 	list_add_tail(&ocqe->list, &ctx->cq_overflow_list);
1805 	return true;
1806 }
1807 
__io_fill_cqe(struct io_ring_ctx *ctx, u64 user_data, s32 res, u32 cflags)1808 static inline bool __io_fill_cqe(struct io_ring_ctx *ctx, u64 user_data,
1809 				 s32 res, u32 cflags)
1810 {
1811 	struct io_uring_cqe *cqe;
1812 
1813 	trace_io_uring_complete(ctx, user_data, res, cflags);
1814 
1815 	/*
1816 	 * If we can't get a cq entry, userspace overflowed the
1817 	 * submission (by quite a lot). Increment the overflow count in
1818 	 * the ring.
1819 	 */
1820 	cqe = io_get_cqe(ctx);
1821 	if (likely(cqe)) {
1822 		WRITE_ONCE(cqe->user_data, user_data);
1823 		WRITE_ONCE(cqe->res, res);
1824 		WRITE_ONCE(cqe->flags, cflags);
1825 		return true;
1826 	}
1827 	return io_cqring_event_overflow(ctx, user_data, res, cflags);
1828 }
1829 
io_fill_cqe_req(struct io_kiocb *req, s32 res, u32 cflags)1830 static noinline void io_fill_cqe_req(struct io_kiocb *req, s32 res, u32 cflags)
1831 {
1832 	__io_fill_cqe(req->ctx, req->user_data, res, cflags);
1833 }
1834 
io_fill_cqe_aux(struct io_ring_ctx *ctx, u64 user_data, s32 res, u32 cflags)1835 static noinline bool io_fill_cqe_aux(struct io_ring_ctx *ctx, u64 user_data,
1836 				     s32 res, u32 cflags)
1837 {
1838 	ctx->cq_extra++;
1839 	return __io_fill_cqe(ctx, user_data, res, cflags);
1840 }
1841 
io_req_complete_post(struct io_kiocb *req, s32 res, u32 cflags)1842 static void io_req_complete_post(struct io_kiocb *req, s32 res,
1843 				 u32 cflags)
1844 {
1845 	struct io_ring_ctx *ctx = req->ctx;
1846 
1847 	spin_lock(&ctx->completion_lock);
1848 	__io_fill_cqe(ctx, req->user_data, res, cflags);
1849 	/*
1850 	 * If we're the last reference to this request, add to our locked
1851 	 * free_list cache.
1852 	 */
1853 	if (req_ref_put_and_test(req)) {
1854 		if (req->flags & (REQ_F_LINK | REQ_F_HARDLINK)) {
1855 			if (req->flags & IO_DISARM_MASK)
1856 				io_disarm_next(req);
1857 			if (req->link) {
1858 				io_req_task_queue(req->link);
1859 				req->link = NULL;
1860 			}
1861 		}
1862 		io_dismantle_req(req);
1863 		io_put_task(req->task, 1);
1864 		list_add(&req->inflight_entry, &ctx->locked_free_list);
1865 		ctx->locked_free_nr++;
1866 	} else {
1867 		if (!percpu_ref_tryget(&ctx->refs))
1868 			req = NULL;
1869 	}
1870 	io_commit_cqring(ctx);
1871 	spin_unlock(&ctx->completion_lock);
1872 
1873 	if (req) {
1874 		io_cqring_ev_posted(ctx);
1875 		percpu_ref_put(&ctx->refs);
1876 	}
1877 }
1878 
io_req_needs_clean(struct io_kiocb *req)1879 static inline bool io_req_needs_clean(struct io_kiocb *req)
1880 {
1881 	return req->flags & IO_REQ_CLEAN_FLAGS;
1882 }
1883 
io_req_complete_state(struct io_kiocb *req, s32 res, u32 cflags)1884 static inline void io_req_complete_state(struct io_kiocb *req, s32 res,
1885 					 u32 cflags)
1886 {
1887 	if (io_req_needs_clean(req))
1888 		io_clean_op(req);
1889 	req->result = res;
1890 	req->compl.cflags = cflags;
1891 	req->flags |= REQ_F_COMPLETE_INLINE;
1892 }
1893 
__io_req_complete(struct io_kiocb *req, unsigned issue_flags, s32 res, u32 cflags)1894 static inline void __io_req_complete(struct io_kiocb *req, unsigned issue_flags,
1895 				     s32 res, u32 cflags)
1896 {
1897 	if (issue_flags & IO_URING_F_COMPLETE_DEFER)
1898 		io_req_complete_state(req, res, cflags);
1899 	else
1900 		io_req_complete_post(req, res, cflags);
1901 }
1902 
io_req_complete(struct io_kiocb *req, s32 res)1903 static inline void io_req_complete(struct io_kiocb *req, s32 res)
1904 {
1905 	__io_req_complete(req, 0, res, 0);
1906 }
1907 
io_req_complete_failed(struct io_kiocb *req, s32 res)1908 static void io_req_complete_failed(struct io_kiocb *req, s32 res)
1909 {
1910 	req_set_fail(req);
1911 	io_req_complete_post(req, res, 0);
1912 }
1913 
io_req_complete_fail_submit(struct io_kiocb *req)1914 static void io_req_complete_fail_submit(struct io_kiocb *req)
1915 {
1916 	/*
1917 	 * We don't submit, fail them all, for that replace hardlinks with
1918 	 * normal links. Extra REQ_F_LINK is tolerated.
1919 	 */
1920 	req->flags &= ~REQ_F_HARDLINK;
1921 	req->flags |= REQ_F_LINK;
1922 	io_req_complete_failed(req, req->result);
1923 }
1924 
1925 /*
1926  * Don't initialise the fields below on every allocation, but do that in
1927  * advance and keep them valid across allocations.
1928  */
io_preinit_req(struct io_kiocb *req, struct io_ring_ctx *ctx)1929 static void io_preinit_req(struct io_kiocb *req, struct io_ring_ctx *ctx)
1930 {
1931 	req->ctx = ctx;
1932 	req->link = NULL;
1933 	req->async_data = NULL;
1934 	/* not necessary, but safer to zero */
1935 	req->result = 0;
1936 }
1937 
io_flush_cached_locked_reqs(struct io_ring_ctx *ctx, struct io_submit_state *state)1938 static void io_flush_cached_locked_reqs(struct io_ring_ctx *ctx,
1939 					struct io_submit_state *state)
1940 {
1941 	spin_lock(&ctx->completion_lock);
1942 	list_splice_init(&ctx->locked_free_list, &state->free_list);
1943 	ctx->locked_free_nr = 0;
1944 	spin_unlock(&ctx->completion_lock);
1945 }
1946 
1947 /* Returns true IFF there are requests in the cache */
io_flush_cached_reqs(struct io_ring_ctx *ctx)1948 static bool io_flush_cached_reqs(struct io_ring_ctx *ctx)
1949 {
1950 	struct io_submit_state *state = &ctx->submit_state;
1951 	int nr;
1952 
1953 	/*
1954 	 * If we have more than a batch's worth of requests in our IRQ side
1955 	 * locked cache, grab the lock and move them over to our submission
1956 	 * side cache.
1957 	 */
1958 	if (READ_ONCE(ctx->locked_free_nr) > IO_COMPL_BATCH)
1959 		io_flush_cached_locked_reqs(ctx, state);
1960 
1961 	nr = state->free_reqs;
1962 	while (!list_empty(&state->free_list)) {
1963 		struct io_kiocb *req = list_first_entry(&state->free_list,
1964 					struct io_kiocb, inflight_entry);
1965 
1966 		list_del(&req->inflight_entry);
1967 		state->reqs[nr++] = req;
1968 		if (nr == ARRAY_SIZE(state->reqs))
1969 			break;
1970 	}
1971 
1972 	state->free_reqs = nr;
1973 	return nr != 0;
1974 }
1975 
1976 /*
1977  * A request might get retired back into the request caches even before opcode
1978  * handlers and io_issue_sqe() are done with it, e.g. inline completion path.
1979  * Because of that, io_alloc_req() should be called only under ->uring_lock
1980  * and with extra caution to not get a request that is still worked on.
1981  */
1982 static struct io_kiocb *io_alloc_req(struct io_ring_ctx *ctx)
1983 	__must_hold(&ctx->uring_lock)
1984 {
1985 	struct io_submit_state *state = &ctx->submit_state;
1986 	gfp_t gfp = GFP_KERNEL | __GFP_NOWARN;
1987 	int ret, i;
1988 
1989 	BUILD_BUG_ON(ARRAY_SIZE(state->reqs) < IO_REQ_ALLOC_BATCH);
1990 
1991 	if (likely(state->free_reqs || io_flush_cached_reqs(ctx)))
1992 		goto got_req;
1993 
1994 	ret = kmem_cache_alloc_bulk(req_cachep, gfp, IO_REQ_ALLOC_BATCH,
1995 				    state->reqs);
1996 
1997 	/*
1998 	 * Bulk alloc is all-or-nothing. If we fail to get a batch,
1999 	 * retry single alloc to be on the safe side.
2000 	 */
2001 	if (unlikely(ret <= 0)) {
2002 		state->reqs[0] = kmem_cache_alloc(req_cachep, gfp);
2003 		if (!state->reqs[0])
2004 			return NULL;
2005 		ret = 1;
2006 	}
2007 
2008 	for (i = 0; i < ret; i++)
2009 		io_preinit_req(state->reqs[i], ctx);
2010 	state->free_reqs = ret;
2011 got_req:
2012 	state->free_reqs--;
2013 	return state->reqs[state->free_reqs];
2014 }
2015 
io_put_file(struct file *file)2016 static inline void io_put_file(struct file *file)
2017 {
2018 	if (file)
2019 		fput(file);
2020 }
2021 
io_dismantle_req(struct io_kiocb *req)2022 static void io_dismantle_req(struct io_kiocb *req)
2023 {
2024 	unsigned int flags = req->flags;
2025 
2026 	if (io_req_needs_clean(req))
2027 		io_clean_op(req);
2028 	if (!(flags & REQ_F_FIXED_FILE))
2029 		io_put_file(req->file);
2030 	if (req->fixed_rsrc_refs)
2031 		percpu_ref_put(req->fixed_rsrc_refs);
2032 	if (req->async_data) {
2033 		kfree(req->async_data);
2034 		req->async_data = NULL;
2035 	}
2036 }
2037 
__io_free_req(struct io_kiocb *req)2038 static void __io_free_req(struct io_kiocb *req)
2039 {
2040 	struct io_ring_ctx *ctx = req->ctx;
2041 
2042 	io_dismantle_req(req);
2043 	io_put_task(req->task, 1);
2044 
2045 	spin_lock(&ctx->completion_lock);
2046 	list_add(&req->inflight_entry, &ctx->locked_free_list);
2047 	ctx->locked_free_nr++;
2048 	spin_unlock(&ctx->completion_lock);
2049 
2050 	percpu_ref_put(&ctx->refs);
2051 }
2052 
io_remove_next_linked(struct io_kiocb *req)2053 static inline void io_remove_next_linked(struct io_kiocb *req)
2054 {
2055 	struct io_kiocb *nxt = req->link;
2056 
2057 	req->link = nxt->link;
2058 	nxt->link = NULL;
2059 }
2060 
2061 static bool io_kill_linked_timeout(struct io_kiocb *req)
2062 	__must_hold(&req->ctx->completion_lock)
2063 	__must_hold(&req->ctx->timeout_lock)
2064 {
2065 	struct io_kiocb *link = req->link;
2066 
2067 	if (link && link->opcode == IORING_OP_LINK_TIMEOUT) {
2068 		struct io_timeout_data *io = link->async_data;
2069 
2070 		io_remove_next_linked(req);
2071 		link->timeout.head = NULL;
2072 		if (hrtimer_try_to_cancel(&io->timer) != -1) {
2073 			list_del(&link->timeout.list);
2074 			io_fill_cqe_req(link, -ECANCELED, 0);
2075 			io_put_req_deferred(link);
2076 			return true;
2077 		}
2078 	}
2079 	return false;
2080 }
2081 
2082 static void io_fail_links(struct io_kiocb *req)
2083 	__must_hold(&req->ctx->completion_lock)
2084 {
2085 	struct io_kiocb *nxt, *link = req->link;
2086 
2087 	req->link = NULL;
2088 	while (link) {
2089 		long res = -ECANCELED;
2090 
2091 		if (link->flags & REQ_F_FAIL)
2092 			res = link->result;
2093 
2094 		nxt = link->link;
2095 		link->link = NULL;
2096 
2097 		trace_io_uring_fail_link(req, link);
2098 		io_fill_cqe_req(link, res, 0);
2099 		io_put_req_deferred(link);
2100 		link = nxt;
2101 	}
2102 }
2103 
2104 static bool io_disarm_next(struct io_kiocb *req)
2105 	__must_hold(&req->ctx->completion_lock)
2106 {
2107 	bool posted = false;
2108 
2109 	if (req->flags & REQ_F_ARM_LTIMEOUT) {
2110 		struct io_kiocb *link = req->link;
2111 
2112 		req->flags &= ~REQ_F_ARM_LTIMEOUT;
2113 		if (link && link->opcode == IORING_OP_LINK_TIMEOUT) {
2114 			io_remove_next_linked(req);
2115 			io_fill_cqe_req(link, -ECANCELED, 0);
2116 			io_put_req_deferred(link);
2117 			posted = true;
2118 		}
2119 	} else if (req->flags & REQ_F_LINK_TIMEOUT) {
2120 		struct io_ring_ctx *ctx = req->ctx;
2121 
2122 		spin_lock_irq(&ctx->timeout_lock);
2123 		posted = io_kill_linked_timeout(req);
2124 		spin_unlock_irq(&ctx->timeout_lock);
2125 	}
2126 	if (unlikely((req->flags & REQ_F_FAIL) &&
2127 		     !(req->flags & REQ_F_HARDLINK))) {
2128 		posted |= (req->link != NULL);
2129 		io_fail_links(req);
2130 	}
2131 	return posted;
2132 }
2133 
__io_req_find_next(struct io_kiocb *req)2134 static struct io_kiocb *__io_req_find_next(struct io_kiocb *req)
2135 {
2136 	struct io_kiocb *nxt;
2137 
2138 	/*
2139 	 * If LINK is set, we have dependent requests in this chain. If we
2140 	 * didn't fail this request, queue the first one up, moving any other
2141 	 * dependencies to the next request. In case of failure, fail the rest
2142 	 * of the chain.
2143 	 */
2144 	if (req->flags & IO_DISARM_MASK) {
2145 		struct io_ring_ctx *ctx = req->ctx;
2146 		bool posted;
2147 
2148 		spin_lock(&ctx->completion_lock);
2149 		posted = io_disarm_next(req);
2150 		if (posted)
2151 			io_commit_cqring(req->ctx);
2152 		spin_unlock(&ctx->completion_lock);
2153 		if (posted)
2154 			io_cqring_ev_posted(ctx);
2155 	}
2156 	nxt = req->link;
2157 	req->link = NULL;
2158 	return nxt;
2159 }
2160 
io_req_find_next(struct io_kiocb *req)2161 static inline struct io_kiocb *io_req_find_next(struct io_kiocb *req)
2162 {
2163 	if (likely(!(req->flags & (REQ_F_LINK|REQ_F_HARDLINK))))
2164 		return NULL;
2165 	return __io_req_find_next(req);
2166 }
2167 
ctx_flush_and_put(struct io_ring_ctx *ctx, bool *locked)2168 static void ctx_flush_and_put(struct io_ring_ctx *ctx, bool *locked)
2169 {
2170 	if (!ctx)
2171 		return;
2172 	if (*locked) {
2173 		if (ctx->submit_state.compl_nr)
2174 			io_submit_flush_completions(ctx);
2175 		mutex_unlock(&ctx->uring_lock);
2176 		*locked = false;
2177 	}
2178 	percpu_ref_put(&ctx->refs);
2179 }
2180 
tctx_task_work(struct callback_head *cb)2181 static void tctx_task_work(struct callback_head *cb)
2182 {
2183 	bool locked = false;
2184 	struct io_ring_ctx *ctx = NULL;
2185 	struct io_uring_task *tctx = container_of(cb, struct io_uring_task,
2186 						  task_work);
2187 
2188 	while (1) {
2189 		struct io_wq_work_node *node;
2190 
2191 		if (!tctx->task_list.first && locked && ctx->submit_state.compl_nr)
2192 			io_submit_flush_completions(ctx);
2193 
2194 		spin_lock_irq(&tctx->task_lock);
2195 		node = tctx->task_list.first;
2196 		INIT_WQ_LIST(&tctx->task_list);
2197 		if (!node)
2198 			tctx->task_running = false;
2199 		spin_unlock_irq(&tctx->task_lock);
2200 		if (!node)
2201 			break;
2202 
2203 		do {
2204 			struct io_wq_work_node *next = node->next;
2205 			struct io_kiocb *req = container_of(node, struct io_kiocb,
2206 							    io_task_work.node);
2207 
2208 			if (req->ctx != ctx) {
2209 				ctx_flush_and_put(ctx, &locked);
2210 				ctx = req->ctx;
2211 				/* if not contended, grab and improve batching */
2212 				locked = mutex_trylock(&ctx->uring_lock);
2213 				percpu_ref_get(&ctx->refs);
2214 			}
2215 			req->io_task_work.func(req, &locked);
2216 			node = next;
2217 			if (unlikely(need_resched())) {
2218 				ctx_flush_and_put(ctx, &locked);
2219 				ctx = NULL;
2220 				cond_resched();
2221 			}
2222 		} while (node);
2223 	}
2224 
2225 	ctx_flush_and_put(ctx, &locked);
2226 
2227 	/* relaxed read is enough as only the task itself sets ->in_idle */
2228 	if (unlikely(atomic_read(&tctx->in_idle)))
2229 		io_uring_drop_tctx_refs(current);
2230 }
2231 
io_req_task_work_add(struct io_kiocb *req)2232 static void io_req_task_work_add(struct io_kiocb *req)
2233 {
2234 	struct task_struct *tsk = req->task;
2235 	struct io_uring_task *tctx = tsk->io_uring;
2236 	enum task_work_notify_mode notify;
2237 	struct io_wq_work_node *node;
2238 	unsigned long flags;
2239 	bool running;
2240 
2241 	WARN_ON_ONCE(!tctx);
2242 
2243 	spin_lock_irqsave(&tctx->task_lock, flags);
2244 	wq_list_add_tail(&req->io_task_work.node, &tctx->task_list);
2245 	running = tctx->task_running;
2246 	if (!running)
2247 		tctx->task_running = true;
2248 	spin_unlock_irqrestore(&tctx->task_lock, flags);
2249 
2250 	/* task_work already pending, we're done */
2251 	if (running)
2252 		return;
2253 
2254 	/*
2255 	 * SQPOLL kernel thread doesn't need notification, just a wakeup. For
2256 	 * all other cases, use TWA_SIGNAL unconditionally to ensure we're
2257 	 * processing task_work. There's no reliable way to tell if TWA_RESUME
2258 	 * will do the job.
2259 	 */
2260 	notify = (req->ctx->flags & IORING_SETUP_SQPOLL) ? TWA_NONE : TWA_SIGNAL;
2261 	if (!task_work_add(tsk, &tctx->task_work, notify)) {
2262 		wake_up_process(tsk);
2263 		return;
2264 	}
2265 
2266 	spin_lock_irqsave(&tctx->task_lock, flags);
2267 	tctx->task_running = false;
2268 	node = tctx->task_list.first;
2269 	INIT_WQ_LIST(&tctx->task_list);
2270 	spin_unlock_irqrestore(&tctx->task_lock, flags);
2271 
2272 	while (node) {
2273 		req = container_of(node, struct io_kiocb, io_task_work.node);
2274 		node = node->next;
2275 		if (llist_add(&req->io_task_work.fallback_node,
2276 			      &req->ctx->fallback_llist))
2277 			schedule_delayed_work(&req->ctx->fallback_work, 1);
2278 	}
2279 }
2280 
io_req_task_cancel(struct io_kiocb *req, bool *locked)2281 static void io_req_task_cancel(struct io_kiocb *req, bool *locked)
2282 {
2283 	struct io_ring_ctx *ctx = req->ctx;
2284 
2285 	/* not needed for normal modes, but SQPOLL depends on it */
2286 	io_tw_lock(ctx, locked);
2287 	io_req_complete_failed(req, req->result);
2288 }
2289 
io_req_task_submit(struct io_kiocb *req, bool *locked)2290 static void io_req_task_submit(struct io_kiocb *req, bool *locked)
2291 {
2292 	struct io_ring_ctx *ctx = req->ctx;
2293 
2294 	io_tw_lock(ctx, locked);
2295 	/* req->task == current here, checking PF_EXITING is safe */
2296 	if (likely(!(req->task->flags & PF_EXITING)))
2297 		__io_queue_sqe(req);
2298 	else
2299 		io_req_complete_failed(req, -EFAULT);
2300 }
2301 
io_req_task_queue_fail(struct io_kiocb *req, int ret)2302 static void io_req_task_queue_fail(struct io_kiocb *req, int ret)
2303 {
2304 	req->result = ret;
2305 	req->io_task_work.func = io_req_task_cancel;
2306 	io_req_task_work_add(req);
2307 }
2308 
io_req_task_queue(struct io_kiocb *req)2309 static void io_req_task_queue(struct io_kiocb *req)
2310 {
2311 	req->io_task_work.func = io_req_task_submit;
2312 	io_req_task_work_add(req);
2313 }
2314 
io_req_task_queue_reissue(struct io_kiocb *req)2315 static void io_req_task_queue_reissue(struct io_kiocb *req)
2316 {
2317 	req->io_task_work.func = io_queue_async_work;
2318 	io_req_task_work_add(req);
2319 }
2320 
io_queue_next(struct io_kiocb *req)2321 static inline void io_queue_next(struct io_kiocb *req)
2322 {
2323 	struct io_kiocb *nxt = io_req_find_next(req);
2324 
2325 	if (nxt)
2326 		io_req_task_queue(nxt);
2327 }
2328 
io_free_req(struct io_kiocb *req)2329 static void io_free_req(struct io_kiocb *req)
2330 {
2331 	io_queue_next(req);
2332 	__io_free_req(req);
2333 }
2334 
io_free_req_work(struct io_kiocb *req, bool *locked)2335 static void io_free_req_work(struct io_kiocb *req, bool *locked)
2336 {
2337 	io_free_req(req);
2338 }
2339 
2340 struct req_batch {
2341 	struct task_struct	*task;
2342 	int			task_refs;
2343 	int			ctx_refs;
2344 };
2345 
io_init_req_batch(struct req_batch *rb)2346 static inline void io_init_req_batch(struct req_batch *rb)
2347 {
2348 	rb->task_refs = 0;
2349 	rb->ctx_refs = 0;
2350 	rb->task = NULL;
2351 }
2352 
io_req_free_batch_finish(struct io_ring_ctx *ctx, struct req_batch *rb)2353 static void io_req_free_batch_finish(struct io_ring_ctx *ctx,
2354 				     struct req_batch *rb)
2355 {
2356 	if (rb->ctx_refs)
2357 		percpu_ref_put_many(&ctx->refs, rb->ctx_refs);
2358 	if (rb->task)
2359 		io_put_task(rb->task, rb->task_refs);
2360 }
2361 
io_req_free_batch(struct req_batch *rb, struct io_kiocb *req, struct io_submit_state *state)2362 static void io_req_free_batch(struct req_batch *rb, struct io_kiocb *req,
2363 			      struct io_submit_state *state)
2364 {
2365 	io_queue_next(req);
2366 	io_dismantle_req(req);
2367 
2368 	if (req->task != rb->task) {
2369 		if (rb->task)
2370 			io_put_task(rb->task, rb->task_refs);
2371 		rb->task = req->task;
2372 		rb->task_refs = 0;
2373 	}
2374 	rb->task_refs++;
2375 	rb->ctx_refs++;
2376 
2377 	if (state->free_reqs != ARRAY_SIZE(state->reqs))
2378 		state->reqs[state->free_reqs++] = req;
2379 	else
2380 		list_add(&req->inflight_entry, &state->free_list);
2381 }
2382 
2383 static void io_submit_flush_completions(struct io_ring_ctx *ctx)
2384 	__must_hold(&ctx->uring_lock)
2385 {
2386 	struct io_submit_state *state = &ctx->submit_state;
2387 	int i, nr = state->compl_nr;
2388 	struct req_batch rb;
2389 
2390 	spin_lock(&ctx->completion_lock);
2391 	for (i = 0; i < nr; i++) {
2392 		struct io_kiocb *req = state->compl_reqs[i];
2393 
2394 		__io_fill_cqe(ctx, req->user_data, req->result,
2395 			      req->compl.cflags);
2396 	}
2397 	io_commit_cqring(ctx);
2398 	spin_unlock(&ctx->completion_lock);
2399 	io_cqring_ev_posted(ctx);
2400 
2401 	io_init_req_batch(&rb);
2402 	for (i = 0; i < nr; i++) {
2403 		struct io_kiocb *req = state->compl_reqs[i];
2404 
2405 		if (req_ref_put_and_test(req))
2406 			io_req_free_batch(&rb, req, &ctx->submit_state);
2407 	}
2408 
2409 	io_req_free_batch_finish(ctx, &rb);
2410 	state->compl_nr = 0;
2411 }
2412 
2413 /*
2414  * Drop reference to request, return next in chain (if there is one) if this
2415  * was the last reference to this request.
2416  */
io_put_req_find_next(struct io_kiocb *req)2417 static inline struct io_kiocb *io_put_req_find_next(struct io_kiocb *req)
2418 {
2419 	struct io_kiocb *nxt = NULL;
2420 
2421 	if (req_ref_put_and_test(req)) {
2422 		nxt = io_req_find_next(req);
2423 		__io_free_req(req);
2424 	}
2425 	return nxt;
2426 }
2427 
io_put_req(struct io_kiocb *req)2428 static inline void io_put_req(struct io_kiocb *req)
2429 {
2430 	if (req_ref_put_and_test(req))
2431 		io_free_req(req);
2432 }
2433 
io_put_req_deferred(struct io_kiocb *req)2434 static inline void io_put_req_deferred(struct io_kiocb *req)
2435 {
2436 	if (req_ref_put_and_test(req)) {
2437 		req->io_task_work.func = io_free_req_work;
2438 		io_req_task_work_add(req);
2439 	}
2440 }
2441 
io_cqring_events(struct io_ring_ctx *ctx)2442 static unsigned io_cqring_events(struct io_ring_ctx *ctx)
2443 {
2444 	/* See comment at the top of this file */
2445 	smp_rmb();
2446 	return __io_cqring_events(ctx);
2447 }
2448 
io_sqring_entries(struct io_ring_ctx *ctx)2449 static inline unsigned int io_sqring_entries(struct io_ring_ctx *ctx)
2450 {
2451 	struct io_rings *rings = ctx->rings;
2452 
2453 	/* make sure SQ entry isn't read before tail */
2454 	return smp_load_acquire(&rings->sq.tail) - ctx->cached_sq_head;
2455 }
2456 
io_put_kbuf(struct io_kiocb *req, struct io_buffer *kbuf)2457 static unsigned int io_put_kbuf(struct io_kiocb *req, struct io_buffer *kbuf)
2458 {
2459 	unsigned int cflags;
2460 
2461 	cflags = kbuf->bid << IORING_CQE_BUFFER_SHIFT;
2462 	cflags |= IORING_CQE_F_BUFFER;
2463 	req->flags &= ~REQ_F_BUFFER_SELECTED;
2464 	kfree(kbuf);
2465 	return cflags;
2466 }
2467 
io_put_rw_kbuf(struct io_kiocb *req)2468 static inline unsigned int io_put_rw_kbuf(struct io_kiocb *req)
2469 {
2470 	struct io_buffer *kbuf;
2471 
2472 	if (likely(!(req->flags & REQ_F_BUFFER_SELECTED)))
2473 		return 0;
2474 	kbuf = (struct io_buffer *) (unsigned long) req->rw.addr;
2475 	return io_put_kbuf(req, kbuf);
2476 }
2477 
io_run_task_work(void)2478 static inline bool io_run_task_work(void)
2479 {
2480 	/*
2481 	 * PF_IO_WORKER never returns to userspace, so check here if we have
2482 	 * notify work that needs processing.
2483 	 */
2484 	if (current->flags & PF_IO_WORKER &&
2485 	    test_thread_flag(TIF_NOTIFY_RESUME)) {
2486 		__set_current_state(TASK_RUNNING);
2487 		tracehook_notify_resume(NULL);
2488 	}
2489 	if (test_thread_flag(TIF_NOTIFY_SIGNAL) || current->task_works) {
2490 		__set_current_state(TASK_RUNNING);
2491 		tracehook_notify_signal();
2492 		return true;
2493 	}
2494 
2495 	return false;
2496 }
2497 
2498 /*
2499  * Find and free completed poll iocbs
2500  */
io_iopoll_complete(struct io_ring_ctx *ctx, unsigned int *nr_events, struct list_head *done)2501 static void io_iopoll_complete(struct io_ring_ctx *ctx, unsigned int *nr_events,
2502 			       struct list_head *done)
2503 {
2504 	struct req_batch rb;
2505 	struct io_kiocb *req;
2506 
2507 	/* order with ->result store in io_complete_rw_iopoll() */
2508 	smp_rmb();
2509 
2510 	io_init_req_batch(&rb);
2511 	while (!list_empty(done)) {
2512 		struct io_uring_cqe *cqe;
2513 		unsigned cflags;
2514 
2515 		req = list_first_entry(done, struct io_kiocb, inflight_entry);
2516 		list_del(&req->inflight_entry);
2517 		cflags = io_put_rw_kbuf(req);
2518 		(*nr_events)++;
2519 
2520 		cqe = io_get_cqe(ctx);
2521 		if (cqe) {
2522 			WRITE_ONCE(cqe->user_data, req->user_data);
2523 			WRITE_ONCE(cqe->res, req->result);
2524 			WRITE_ONCE(cqe->flags, cflags);
2525 		} else {
2526 			spin_lock(&ctx->completion_lock);
2527 			io_cqring_event_overflow(ctx, req->user_data,
2528 							req->result, cflags);
2529 			spin_unlock(&ctx->completion_lock);
2530 		}
2531 
2532 		if (req_ref_put_and_test(req))
2533 			io_req_free_batch(&rb, req, &ctx->submit_state);
2534 	}
2535 
2536 	if (io_commit_needs_flush(ctx)) {
2537 		spin_lock(&ctx->completion_lock);
2538 		__io_commit_cqring_flush(ctx);
2539 		spin_unlock(&ctx->completion_lock);
2540 	}
2541 	__io_commit_cqring(ctx);
2542 	io_cqring_ev_posted_iopoll(ctx);
2543 	io_req_free_batch_finish(ctx, &rb);
2544 }
2545 
io_do_iopoll(struct io_ring_ctx *ctx, unsigned int *nr_events, long min)2546 static int io_do_iopoll(struct io_ring_ctx *ctx, unsigned int *nr_events,
2547 			long min)
2548 {
2549 	struct io_kiocb *req, *tmp;
2550 	LIST_HEAD(done);
2551 	bool spin;
2552 
2553 	/*
2554 	 * Only spin for completions if we don't have multiple devices hanging
2555 	 * off our complete list, and we're under the requested amount.
2556 	 */
2557 	spin = !ctx->poll_multi_queue && *nr_events < min;
2558 
2559 	list_for_each_entry_safe(req, tmp, &ctx->iopoll_list, inflight_entry) {
2560 		struct kiocb *kiocb = &req->rw.kiocb;
2561 		int ret;
2562 
2563 		/*
2564 		 * Move completed and retryable entries to our local lists.
2565 		 * If we find a request that requires polling, break out
2566 		 * and complete those lists first, if we have entries there.
2567 		 */
2568 		if (READ_ONCE(req->iopoll_completed)) {
2569 			list_move_tail(&req->inflight_entry, &done);
2570 			continue;
2571 		}
2572 		if (!list_empty(&done))
2573 			break;
2574 
2575 		ret = kiocb->ki_filp->f_op->iopoll(kiocb, spin);
2576 		if (unlikely(ret < 0))
2577 			return ret;
2578 		else if (ret)
2579 			spin = false;
2580 
2581 		/* iopoll may have completed current req */
2582 		if (READ_ONCE(req->iopoll_completed))
2583 			list_move_tail(&req->inflight_entry, &done);
2584 	}
2585 
2586 	if (!list_empty(&done))
2587 		io_iopoll_complete(ctx, nr_events, &done);
2588 
2589 	return 0;
2590 }
2591 
2592 /*
2593  * We can't just wait for polled events to come to us, we have to actively
2594  * find and complete them.
2595  */
io_iopoll_try_reap_events(struct io_ring_ctx *ctx)2596 static void io_iopoll_try_reap_events(struct io_ring_ctx *ctx)
2597 {
2598 	if (!(ctx->flags & IORING_SETUP_IOPOLL))
2599 		return;
2600 
2601 	mutex_lock(&ctx->uring_lock);
2602 	while (!list_empty(&ctx->iopoll_list)) {
2603 		unsigned int nr_events = 0;
2604 
2605 		io_do_iopoll(ctx, &nr_events, 0);
2606 
2607 		/* let it sleep and repeat later if can't complete a request */
2608 		if (nr_events == 0)
2609 			break;
2610 		/*
2611 		 * Ensure we allow local-to-the-cpu processing to take place,
2612 		 * in this case we need to ensure that we reap all events.
2613 		 * Also let task_work, etc. to progress by releasing the mutex
2614 		 */
2615 		if (need_resched()) {
2616 			mutex_unlock(&ctx->uring_lock);
2617 			cond_resched();
2618 			mutex_lock(&ctx->uring_lock);
2619 		}
2620 	}
2621 	mutex_unlock(&ctx->uring_lock);
2622 }
2623 
io_iopoll_check(struct io_ring_ctx *ctx, long min)2624 static int io_iopoll_check(struct io_ring_ctx *ctx, long min)
2625 {
2626 	unsigned int nr_events = 0;
2627 	int ret = 0;
2628 
2629 	/*
2630 	 * We disallow the app entering submit/complete with polling, but we
2631 	 * still need to lock the ring to prevent racing with polled issue
2632 	 * that got punted to a workqueue.
2633 	 */
2634 	mutex_lock(&ctx->uring_lock);
2635 	/*
2636 	 * Don't enter poll loop if we already have events pending.
2637 	 * If we do, we can potentially be spinning for commands that
2638 	 * already triggered a CQE (eg in error).
2639 	 */
2640 	if (test_bit(0, &ctx->check_cq_overflow))
2641 		__io_cqring_overflow_flush(ctx, false);
2642 	if (io_cqring_events(ctx))
2643 		goto out;
2644 	do {
2645 		/*
2646 		 * If a submit got punted to a workqueue, we can have the
2647 		 * application entering polling for a command before it gets
2648 		 * issued. That app will hold the uring_lock for the duration
2649 		 * of the poll right here, so we need to take a breather every
2650 		 * now and then to ensure that the issue has a chance to add
2651 		 * the poll to the issued list. Otherwise we can spin here
2652 		 * forever, while the workqueue is stuck trying to acquire the
2653 		 * very same mutex.
2654 		 */
2655 		if (list_empty(&ctx->iopoll_list)) {
2656 			u32 tail = ctx->cached_cq_tail;
2657 
2658 			mutex_unlock(&ctx->uring_lock);
2659 			io_run_task_work();
2660 			mutex_lock(&ctx->uring_lock);
2661 
2662 			/* some requests don't go through iopoll_list */
2663 			if (tail != ctx->cached_cq_tail ||
2664 			    list_empty(&ctx->iopoll_list))
2665 				break;
2666 		}
2667 		ret = io_do_iopoll(ctx, &nr_events, min);
2668 
2669 		if (task_sigpending(current)) {
2670 			ret = -EINTR;
2671 			goto out;
2672 		}
2673 	} while (!ret && nr_events < min && !need_resched());
2674 out:
2675 	mutex_unlock(&ctx->uring_lock);
2676 	return ret;
2677 }
2678 
kiocb_end_write(struct io_kiocb *req)2679 static void kiocb_end_write(struct io_kiocb *req)
2680 {
2681 	/*
2682 	 * Tell lockdep we inherited freeze protection from submission
2683 	 * thread.
2684 	 */
2685 	if (req->flags & REQ_F_ISREG) {
2686 		struct super_block *sb = file_inode(req->file)->i_sb;
2687 
2688 		__sb_writers_acquired(sb, SB_FREEZE_WRITE);
2689 		sb_end_write(sb);
2690 	}
2691 }
2692 
2693 #ifdef CONFIG_BLOCK
io_resubmit_prep(struct io_kiocb *req)2694 static bool io_resubmit_prep(struct io_kiocb *req)
2695 {
2696 	struct io_async_rw *rw = req->async_data;
2697 
2698 	if (!rw)
2699 		return !io_req_prep_async(req);
2700 	iov_iter_restore(&rw->iter, &rw->iter_state);
2701 	return true;
2702 }
2703 
io_rw_should_reissue(struct io_kiocb *req)2704 static bool io_rw_should_reissue(struct io_kiocb *req)
2705 {
2706 	umode_t mode = file_inode(req->file)->i_mode;
2707 	struct io_ring_ctx *ctx = req->ctx;
2708 
2709 	if (!S_ISBLK(mode) && !S_ISREG(mode))
2710 		return false;
2711 	if ((req->flags & REQ_F_NOWAIT) || (io_wq_current_is_worker() &&
2712 	    !(ctx->flags & IORING_SETUP_IOPOLL)))
2713 		return false;
2714 	/*
2715 	 * If ref is dying, we might be running poll reap from the exit work.
2716 	 * Don't attempt to reissue from that path, just let it fail with
2717 	 * -EAGAIN.
2718 	 */
2719 	if (percpu_ref_is_dying(&ctx->refs))
2720 		return false;
2721 	/*
2722 	 * Play it safe and assume not safe to re-import and reissue if we're
2723 	 * not in the original thread group (or in task context).
2724 	 */
2725 	if (!same_thread_group(req->task, current) || !in_task())
2726 		return false;
2727 	return true;
2728 }
2729 #else
io_resubmit_prep(struct io_kiocb *req)2730 static bool io_resubmit_prep(struct io_kiocb *req)
2731 {
2732 	return false;
2733 }
io_rw_should_reissue(struct io_kiocb *req)2734 static bool io_rw_should_reissue(struct io_kiocb *req)
2735 {
2736 	return false;
2737 }
2738 #endif
2739 
2740 /*
2741  * Trigger the notifications after having done some IO, and finish the write
2742  * accounting, if any.
2743  */
io_req_io_end(struct io_kiocb *req)2744 static void io_req_io_end(struct io_kiocb *req)
2745 {
2746 	struct io_rw *rw = &req->rw;
2747 
2748 	if (rw->kiocb.ki_flags & IOCB_WRITE) {
2749 		kiocb_end_write(req);
2750 		fsnotify_modify(req->file);
2751 	} else {
2752 		fsnotify_access(req->file);
2753 	}
2754 }
2755 
__io_complete_rw_common(struct io_kiocb *req, long res)2756 static bool __io_complete_rw_common(struct io_kiocb *req, long res)
2757 {
2758 	if (res != req->result) {
2759 		if ((res == -EAGAIN || res == -EOPNOTSUPP) &&
2760 		    io_rw_should_reissue(req)) {
2761 			/*
2762 			 * Reissue will start accounting again, finish the
2763 			 * current cycle.
2764 			 */
2765 			io_req_io_end(req);
2766 			req->flags |= REQ_F_REISSUE;
2767 			return true;
2768 		}
2769 		req_set_fail(req);
2770 		req->result = res;
2771 	}
2772 	return false;
2773 }
2774 
io_fixup_rw_res(struct io_kiocb *req, long res)2775 static inline int io_fixup_rw_res(struct io_kiocb *req, long res)
2776 {
2777 	struct io_async_rw *io = req->async_data;
2778 
2779 	/* add previously done IO, if any */
2780 	if (io && io->bytes_done > 0) {
2781 		if (res < 0)
2782 			res = io->bytes_done;
2783 		else
2784 			res += io->bytes_done;
2785 	}
2786 	return res;
2787 }
2788 
io_req_task_complete(struct io_kiocb *req, bool *locked)2789 static void io_req_task_complete(struct io_kiocb *req, bool *locked)
2790 {
2791 	unsigned int cflags = io_put_rw_kbuf(req);
2792 	int res = req->result;
2793 
2794 	if (*locked) {
2795 		struct io_ring_ctx *ctx = req->ctx;
2796 		struct io_submit_state *state = &ctx->submit_state;
2797 
2798 		io_req_complete_state(req, res, cflags);
2799 		state->compl_reqs[state->compl_nr++] = req;
2800 		if (state->compl_nr == ARRAY_SIZE(state->compl_reqs))
2801 			io_submit_flush_completions(ctx);
2802 	} else {
2803 		io_req_complete_post(req, res, cflags);
2804 	}
2805 }
2806 
io_req_rw_complete(struct io_kiocb *req, bool *locked)2807 static void io_req_rw_complete(struct io_kiocb *req, bool *locked)
2808 {
2809 	io_req_io_end(req);
2810 	io_req_task_complete(req, locked);
2811 }
2812 
io_complete_rw(struct kiocb *kiocb, long res, long res2)2813 static void io_complete_rw(struct kiocb *kiocb, long res, long res2)
2814 {
2815 	struct io_kiocb *req = container_of(kiocb, struct io_kiocb, rw.kiocb);
2816 
2817 	if (__io_complete_rw_common(req, res))
2818 		return;
2819 	req->result = io_fixup_rw_res(req, res);
2820 	req->io_task_work.func = io_req_rw_complete;
2821 	io_req_task_work_add(req);
2822 }
2823 
io_complete_rw_iopoll(struct kiocb *kiocb, long res, long res2)2824 static void io_complete_rw_iopoll(struct kiocb *kiocb, long res, long res2)
2825 {
2826 	struct io_kiocb *req = container_of(kiocb, struct io_kiocb, rw.kiocb);
2827 
2828 	if (kiocb->ki_flags & IOCB_WRITE)
2829 		kiocb_end_write(req);
2830 	if (unlikely(res != req->result)) {
2831 		if (res == -EAGAIN && io_rw_should_reissue(req)) {
2832 			req->flags |= REQ_F_REISSUE;
2833 			return;
2834 		}
2835 	}
2836 
2837 	WRITE_ONCE(req->result, res);
2838 	/* order with io_iopoll_complete() checking ->result */
2839 	smp_wmb();
2840 	WRITE_ONCE(req->iopoll_completed, 1);
2841 }
2842 
2843 /*
2844  * After the iocb has been issued, it's safe to be found on the poll list.
2845  * Adding the kiocb to the list AFTER submission ensures that we don't
2846  * find it from a io_do_iopoll() thread before the issuer is done
2847  * accessing the kiocb cookie.
2848  */
io_iopoll_req_issued(struct io_kiocb *req)2849 static void io_iopoll_req_issued(struct io_kiocb *req)
2850 {
2851 	struct io_ring_ctx *ctx = req->ctx;
2852 	const bool in_async = io_wq_current_is_worker();
2853 
2854 	/* workqueue context doesn't hold uring_lock, grab it now */
2855 	if (unlikely(in_async))
2856 		mutex_lock(&ctx->uring_lock);
2857 
2858 	/*
2859 	 * Track whether we have multiple files in our lists. This will impact
2860 	 * how we do polling eventually, not spinning if we're on potentially
2861 	 * different devices.
2862 	 */
2863 	if (list_empty(&ctx->iopoll_list)) {
2864 		ctx->poll_multi_queue = false;
2865 	} else if (!ctx->poll_multi_queue) {
2866 		struct io_kiocb *list_req;
2867 		unsigned int queue_num0, queue_num1;
2868 
2869 		list_req = list_first_entry(&ctx->iopoll_list, struct io_kiocb,
2870 						inflight_entry);
2871 
2872 		if (list_req->file != req->file) {
2873 			ctx->poll_multi_queue = true;
2874 		} else {
2875 			queue_num0 = blk_qc_t_to_queue_num(list_req->rw.kiocb.ki_cookie);
2876 			queue_num1 = blk_qc_t_to_queue_num(req->rw.kiocb.ki_cookie);
2877 			if (queue_num0 != queue_num1)
2878 				ctx->poll_multi_queue = true;
2879 		}
2880 	}
2881 
2882 	/*
2883 	 * For fast devices, IO may have already completed. If it has, add
2884 	 * it to the front so we find it first.
2885 	 */
2886 	if (READ_ONCE(req->iopoll_completed))
2887 		list_add(&req->inflight_entry, &ctx->iopoll_list);
2888 	else
2889 		list_add_tail(&req->inflight_entry, &ctx->iopoll_list);
2890 
2891 	if (unlikely(in_async)) {
2892 		/*
2893 		 * If IORING_SETUP_SQPOLL is enabled, sqes are either handle
2894 		 * in sq thread task context or in io worker task context. If
2895 		 * current task context is sq thread, we don't need to check
2896 		 * whether should wake up sq thread.
2897 		 */
2898 		if ((ctx->flags & IORING_SETUP_SQPOLL) &&
2899 		    wq_has_sleeper(&ctx->sq_data->wait))
2900 			wake_up(&ctx->sq_data->wait);
2901 
2902 		mutex_unlock(&ctx->uring_lock);
2903 	}
2904 }
2905 
io_bdev_nowait(struct block_device *bdev)2906 static bool io_bdev_nowait(struct block_device *bdev)
2907 {
2908 	return !bdev || blk_queue_nowait(bdev_get_queue(bdev));
2909 }
2910 
2911 /*
2912  * If we tracked the file through the SCM inflight mechanism, we could support
2913  * any file. For now, just ensure that anything potentially problematic is done
2914  * inline.
2915  */
__io_file_supports_nowait(struct file *file, int rw)2916 static bool __io_file_supports_nowait(struct file *file, int rw)
2917 {
2918 	umode_t mode = file_inode(file)->i_mode;
2919 
2920 	if (S_ISBLK(mode)) {
2921 		if (IS_ENABLED(CONFIG_BLOCK) &&
2922 		    io_bdev_nowait(I_BDEV(file->f_mapping->host)))
2923 			return true;
2924 		return false;
2925 	}
2926 	if (S_ISSOCK(mode))
2927 		return true;
2928 	if (S_ISREG(mode)) {
2929 		if (IS_ENABLED(CONFIG_BLOCK) &&
2930 		    io_bdev_nowait(file->f_inode->i_sb->s_bdev) &&
2931 		    file->f_op != &io_uring_fops)
2932 			return true;
2933 		return false;
2934 	}
2935 
2936 	/* any ->read/write should understand O_NONBLOCK */
2937 	if (file->f_flags & O_NONBLOCK)
2938 		return true;
2939 
2940 	if (!(file->f_mode & FMODE_NOWAIT))
2941 		return false;
2942 
2943 	if (rw == READ)
2944 		return file->f_op->read_iter != NULL;
2945 
2946 	return file->f_op->write_iter != NULL;
2947 }
2948 
io_file_supports_nowait(struct io_kiocb *req, int rw)2949 static bool io_file_supports_nowait(struct io_kiocb *req, int rw)
2950 {
2951 	if (rw == READ && (req->flags & REQ_F_NOWAIT_READ))
2952 		return true;
2953 	else if (rw == WRITE && (req->flags & REQ_F_NOWAIT_WRITE))
2954 		return true;
2955 
2956 	return __io_file_supports_nowait(req->file, rw);
2957 }
2958 
io_prep_rw(struct io_kiocb *req, const struct io_uring_sqe *sqe, int rw)2959 static int io_prep_rw(struct io_kiocb *req, const struct io_uring_sqe *sqe,
2960 		      int rw)
2961 {
2962 	struct io_ring_ctx *ctx = req->ctx;
2963 	struct kiocb *kiocb = &req->rw.kiocb;
2964 	struct file *file = req->file;
2965 	unsigned ioprio;
2966 	int ret;
2967 
2968 	if (!io_req_ffs_set(req) && S_ISREG(file_inode(file)->i_mode))
2969 		req->flags |= REQ_F_ISREG;
2970 
2971 	kiocb->ki_pos = READ_ONCE(sqe->off);
2972 	kiocb->ki_hint = ki_hint_validate(file_write_hint(kiocb->ki_filp));
2973 	kiocb->ki_flags = iocb_flags(kiocb->ki_filp);
2974 	ret = kiocb_set_rw_flags(kiocb, READ_ONCE(sqe->rw_flags));
2975 	if (unlikely(ret))
2976 		return ret;
2977 
2978 	/*
2979 	 * If the file is marked O_NONBLOCK, still allow retry for it if it
2980 	 * supports async. Otherwise it's impossible to use O_NONBLOCK files
2981 	 * reliably. If not, or it IOCB_NOWAIT is set, don't retry.
2982 	 */
2983 	if ((kiocb->ki_flags & IOCB_NOWAIT) ||
2984 	    ((file->f_flags & O_NONBLOCK) && !io_file_supports_nowait(req, rw)))
2985 		req->flags |= REQ_F_NOWAIT;
2986 
2987 	ioprio = READ_ONCE(sqe->ioprio);
2988 	if (ioprio) {
2989 		ret = ioprio_check_cap(ioprio);
2990 		if (ret)
2991 			return ret;
2992 
2993 		kiocb->ki_ioprio = ioprio;
2994 	} else
2995 		kiocb->ki_ioprio = get_current_ioprio();
2996 
2997 	if (ctx->flags & IORING_SETUP_IOPOLL) {
2998 		if (!(kiocb->ki_flags & IOCB_DIRECT) ||
2999 		    !kiocb->ki_filp->f_op->iopoll)
3000 			return -EOPNOTSUPP;
3001 
3002 		kiocb->ki_flags |= IOCB_HIPRI;
3003 		kiocb->ki_complete = io_complete_rw_iopoll;
3004 		req->iopoll_completed = 0;
3005 	} else {
3006 		if (kiocb->ki_flags & IOCB_HIPRI)
3007 			return -EINVAL;
3008 		kiocb->ki_complete = io_complete_rw;
3009 	}
3010 
3011 	/* used for fixed read/write too - just read unconditionally */
3012 	req->buf_index = READ_ONCE(sqe->buf_index);
3013 	req->imu = NULL;
3014 
3015 	if (req->opcode == IORING_OP_READ_FIXED ||
3016 	    req->opcode == IORING_OP_WRITE_FIXED) {
3017 		struct io_ring_ctx *ctx = req->ctx;
3018 		u16 index;
3019 
3020 		if (unlikely(req->buf_index >= ctx->nr_user_bufs))
3021 			return -EFAULT;
3022 		index = array_index_nospec(req->buf_index, ctx->nr_user_bufs);
3023 		req->imu = ctx->user_bufs[index];
3024 		io_req_set_rsrc_node(req);
3025 	}
3026 
3027 	req->rw.addr = READ_ONCE(sqe->addr);
3028 	req->rw.len = READ_ONCE(sqe->len);
3029 	return 0;
3030 }
3031 
io_rw_done(struct kiocb *kiocb, ssize_t ret)3032 static inline void io_rw_done(struct kiocb *kiocb, ssize_t ret)
3033 {
3034 	switch (ret) {
3035 	case -EIOCBQUEUED:
3036 		break;
3037 	case -ERESTARTSYS:
3038 	case -ERESTARTNOINTR:
3039 	case -ERESTARTNOHAND:
3040 	case -ERESTART_RESTARTBLOCK:
3041 		/*
3042 		 * We can't just restart the syscall, since previously
3043 		 * submitted sqes may already be in progress. Just fail this
3044 		 * IO with EINTR.
3045 		 */
3046 		ret = -EINTR;
3047 		fallthrough;
3048 	default:
3049 		kiocb->ki_complete(kiocb, ret, 0);
3050 	}
3051 }
3052 
io_kiocb_update_pos(struct io_kiocb *req)3053 static inline loff_t *io_kiocb_update_pos(struct io_kiocb *req)
3054 {
3055 	struct kiocb *kiocb = &req->rw.kiocb;
3056 
3057 	if (kiocb->ki_pos != -1)
3058 		return &kiocb->ki_pos;
3059 
3060 	if (!(req->file->f_mode & FMODE_STREAM)) {
3061 		req->flags |= REQ_F_CUR_POS;
3062 		kiocb->ki_pos = req->file->f_pos;
3063 		return &kiocb->ki_pos;
3064 	}
3065 
3066 	kiocb->ki_pos = 0;
3067 	return NULL;
3068 }
3069 
kiocb_done(struct kiocb *kiocb, ssize_t ret, unsigned int issue_flags)3070 static void kiocb_done(struct kiocb *kiocb, ssize_t ret,
3071 		       unsigned int issue_flags)
3072 {
3073 	struct io_kiocb *req = container_of(kiocb, struct io_kiocb, rw.kiocb);
3074 
3075 	if (req->flags & REQ_F_CUR_POS)
3076 		req->file->f_pos = kiocb->ki_pos;
3077 	if (ret >= 0 && (kiocb->ki_complete == io_complete_rw)) {
3078 		if (!__io_complete_rw_common(req, ret)) {
3079 			/*
3080 			 * Safe to call io_end from here as we're inline
3081 			 * from the submission path.
3082 			 */
3083 			io_req_io_end(req);
3084 			__io_req_complete(req, issue_flags,
3085 					  io_fixup_rw_res(req, ret),
3086 					  io_put_rw_kbuf(req));
3087 		}
3088 	} else {
3089 		io_rw_done(kiocb, ret);
3090 	}
3091 
3092 	if (req->flags & REQ_F_REISSUE) {
3093 		req->flags &= ~REQ_F_REISSUE;
3094 		if (io_resubmit_prep(req)) {
3095 			io_req_task_queue_reissue(req);
3096 		} else {
3097 			unsigned int cflags = io_put_rw_kbuf(req);
3098 			struct io_ring_ctx *ctx = req->ctx;
3099 
3100 			ret = io_fixup_rw_res(req, ret);
3101 			req_set_fail(req);
3102 			if (!(issue_flags & IO_URING_F_NONBLOCK)) {
3103 				mutex_lock(&ctx->uring_lock);
3104 				__io_req_complete(req, issue_flags, ret, cflags);
3105 				mutex_unlock(&ctx->uring_lock);
3106 			} else {
3107 				__io_req_complete(req, issue_flags, ret, cflags);
3108 			}
3109 		}
3110 	}
3111 }
3112 
__io_import_fixed(struct io_kiocb *req, int rw, struct iov_iter *iter, struct io_mapped_ubuf *imu)3113 static int __io_import_fixed(struct io_kiocb *req, int rw, struct iov_iter *iter,
3114 			     struct io_mapped_ubuf *imu)
3115 {
3116 	size_t len = req->rw.len;
3117 	u64 buf_end, buf_addr = req->rw.addr;
3118 	size_t offset;
3119 
3120 	if (unlikely(check_add_overflow(buf_addr, (u64)len, &buf_end)))
3121 		return -EFAULT;
3122 	/* not inside the mapped region */
3123 	if (unlikely(buf_addr < imu->ubuf || buf_end > imu->ubuf_end))
3124 		return -EFAULT;
3125 
3126 	/*
3127 	 * May not be a start of buffer, set size appropriately
3128 	 * and advance us to the beginning.
3129 	 */
3130 	offset = buf_addr - imu->ubuf;
3131 	iov_iter_bvec(iter, rw, imu->bvec, imu->nr_bvecs, offset + len);
3132 
3133 	if (offset) {
3134 		/*
3135 		 * Don't use iov_iter_advance() here, as it's really slow for
3136 		 * using the latter parts of a big fixed buffer - it iterates
3137 		 * over each segment manually. We can cheat a bit here, because
3138 		 * we know that:
3139 		 *
3140 		 * 1) it's a BVEC iter, we set it up
3141 		 * 2) all bvecs are PAGE_SIZE in size, except potentially the
3142 		 *    first and last bvec
3143 		 *
3144 		 * So just find our index, and adjust the iterator afterwards.
3145 		 * If the offset is within the first bvec (or the whole first
3146 		 * bvec, just use iov_iter_advance(). This makes it easier
3147 		 * since we can just skip the first segment, which may not
3148 		 * be PAGE_SIZE aligned.
3149 		 */
3150 		const struct bio_vec *bvec = imu->bvec;
3151 
3152 		if (offset < bvec->bv_len) {
3153 			iov_iter_advance(iter, offset);
3154 		} else {
3155 			unsigned long seg_skip;
3156 
3157 			/* skip first vec */
3158 			offset -= bvec->bv_len;
3159 			seg_skip = 1 + (offset >> PAGE_SHIFT);
3160 
3161 			iter->bvec = bvec + seg_skip;
3162 			iter->nr_segs -= seg_skip;
3163 			iter->count -= bvec->bv_len + offset;
3164 			iter->iov_offset = offset & ~PAGE_MASK;
3165 		}
3166 	}
3167 
3168 	return 0;
3169 }
3170 
io_import_fixed(struct io_kiocb *req, int rw, struct iov_iter *iter)3171 static int io_import_fixed(struct io_kiocb *req, int rw, struct iov_iter *iter)
3172 {
3173 	if (WARN_ON_ONCE(!req->imu))
3174 		return -EFAULT;
3175 	return __io_import_fixed(req, rw, iter, req->imu);
3176 }
3177 
io_ring_submit_unlock(struct io_ring_ctx *ctx, bool needs_lock)3178 static void io_ring_submit_unlock(struct io_ring_ctx *ctx, bool needs_lock)
3179 {
3180 	if (needs_lock)
3181 		mutex_unlock(&ctx->uring_lock);
3182 }
3183 
io_ring_submit_lock(struct io_ring_ctx *ctx, bool needs_lock)3184 static void io_ring_submit_lock(struct io_ring_ctx *ctx, bool needs_lock)
3185 {
3186 	/*
3187 	 * "Normal" inline submissions always hold the uring_lock, since we
3188 	 * grab it from the system call. Same is true for the SQPOLL offload.
3189 	 * The only exception is when we've detached the request and issue it
3190 	 * from an async worker thread, grab the lock for that case.
3191 	 */
3192 	if (needs_lock)
3193 		mutex_lock(&ctx->uring_lock);
3194 }
3195 
io_buffer_select(struct io_kiocb *req, size_t *len, int bgid, struct io_buffer *kbuf, bool needs_lock)3196 static struct io_buffer *io_buffer_select(struct io_kiocb *req, size_t *len,
3197 					  int bgid, struct io_buffer *kbuf,
3198 					  bool needs_lock)
3199 {
3200 	struct io_buffer *head;
3201 
3202 	if (req->flags & REQ_F_BUFFER_SELECTED)
3203 		return kbuf;
3204 
3205 	io_ring_submit_lock(req->ctx, needs_lock);
3206 
3207 	lockdep_assert_held(&req->ctx->uring_lock);
3208 
3209 	head = xa_load(&req->ctx->io_buffers, bgid);
3210 	if (head) {
3211 		if (!list_empty(&head->list)) {
3212 			kbuf = list_last_entry(&head->list, struct io_buffer,
3213 							list);
3214 			list_del(&kbuf->list);
3215 		} else {
3216 			kbuf = head;
3217 			xa_erase(&req->ctx->io_buffers, bgid);
3218 		}
3219 		if (*len > kbuf->len)
3220 			*len = kbuf->len;
3221 	} else {
3222 		kbuf = ERR_PTR(-ENOBUFS);
3223 	}
3224 
3225 	io_ring_submit_unlock(req->ctx, needs_lock);
3226 
3227 	return kbuf;
3228 }
3229 
io_rw_buffer_select(struct io_kiocb *req, size_t *len, bool needs_lock)3230 static void __user *io_rw_buffer_select(struct io_kiocb *req, size_t *len,
3231 					bool needs_lock)
3232 {
3233 	struct io_buffer *kbuf;
3234 	u16 bgid;
3235 
3236 	kbuf = (struct io_buffer *) (unsigned long) req->rw.addr;
3237 	bgid = req->buf_index;
3238 	kbuf = io_buffer_select(req, len, bgid, kbuf, needs_lock);
3239 	if (IS_ERR(kbuf))
3240 		return kbuf;
3241 	req->rw.addr = (u64) (unsigned long) kbuf;
3242 	req->flags |= REQ_F_BUFFER_SELECTED;
3243 	return u64_to_user_ptr(kbuf->addr);
3244 }
3245 
3246 #ifdef CONFIG_COMPAT
io_compat_import(struct io_kiocb *req, struct iovec *iov, bool needs_lock)3247 static ssize_t io_compat_import(struct io_kiocb *req, struct iovec *iov,
3248 				bool needs_lock)
3249 {
3250 	struct compat_iovec __user *uiov;
3251 	compat_ssize_t clen;
3252 	void __user *buf;
3253 	ssize_t len;
3254 
3255 	uiov = u64_to_user_ptr(req->rw.addr);
3256 	if (!access_ok(uiov, sizeof(*uiov)))
3257 		return -EFAULT;
3258 	if (__get_user(clen, &uiov->iov_len))
3259 		return -EFAULT;
3260 	if (clen < 0)
3261 		return -EINVAL;
3262 
3263 	len = clen;
3264 	buf = io_rw_buffer_select(req, &len, needs_lock);
3265 	if (IS_ERR(buf))
3266 		return PTR_ERR(buf);
3267 	iov[0].iov_base = buf;
3268 	iov[0].iov_len = (compat_size_t) len;
3269 	return 0;
3270 }
3271 #endif
3272 
__io_iov_buffer_select(struct io_kiocb *req, struct iovec *iov, bool needs_lock)3273 static ssize_t __io_iov_buffer_select(struct io_kiocb *req, struct iovec *iov,
3274 				      bool needs_lock)
3275 {
3276 	struct iovec __user *uiov = u64_to_user_ptr(req->rw.addr);
3277 	void __user *buf;
3278 	ssize_t len;
3279 
3280 	if (copy_from_user(iov, uiov, sizeof(*uiov)))
3281 		return -EFAULT;
3282 
3283 	len = iov[0].iov_len;
3284 	if (len < 0)
3285 		return -EINVAL;
3286 	buf = io_rw_buffer_select(req, &len, needs_lock);
3287 	if (IS_ERR(buf))
3288 		return PTR_ERR(buf);
3289 	iov[0].iov_base = buf;
3290 	iov[0].iov_len = len;
3291 	return 0;
3292 }
3293 
io_iov_buffer_select(struct io_kiocb *req, struct iovec *iov, bool needs_lock)3294 static ssize_t io_iov_buffer_select(struct io_kiocb *req, struct iovec *iov,
3295 				    bool needs_lock)
3296 {
3297 	if (req->flags & REQ_F_BUFFER_SELECTED) {
3298 		struct io_buffer *kbuf;
3299 
3300 		kbuf = (struct io_buffer *) (unsigned long) req->rw.addr;
3301 		iov[0].iov_base = u64_to_user_ptr(kbuf->addr);
3302 		iov[0].iov_len = kbuf->len;
3303 		return 0;
3304 	}
3305 	if (req->rw.len != 1)
3306 		return -EINVAL;
3307 
3308 #ifdef CONFIG_COMPAT
3309 	if (req->ctx->compat)
3310 		return io_compat_import(req, iov, needs_lock);
3311 #endif
3312 
3313 	return __io_iov_buffer_select(req, iov, needs_lock);
3314 }
3315 
io_import_iovec(int rw, struct io_kiocb *req, struct iovec **iovec, struct iov_iter *iter, bool needs_lock)3316 static int io_import_iovec(int rw, struct io_kiocb *req, struct iovec **iovec,
3317 			   struct iov_iter *iter, bool needs_lock)
3318 {
3319 	void __user *buf = u64_to_user_ptr(req->rw.addr);
3320 	size_t sqe_len = req->rw.len;
3321 	u8 opcode = req->opcode;
3322 	ssize_t ret;
3323 
3324 	if (opcode == IORING_OP_READ_FIXED || opcode == IORING_OP_WRITE_FIXED) {
3325 		*iovec = NULL;
3326 		return io_import_fixed(req, rw, iter);
3327 	}
3328 
3329 	/* buffer index only valid with fixed read/write, or buffer select  */
3330 	if (req->buf_index && !(req->flags & REQ_F_BUFFER_SELECT))
3331 		return -EINVAL;
3332 
3333 	if (opcode == IORING_OP_READ || opcode == IORING_OP_WRITE) {
3334 		if (req->flags & REQ_F_BUFFER_SELECT) {
3335 			buf = io_rw_buffer_select(req, &sqe_len, needs_lock);
3336 			if (IS_ERR(buf))
3337 				return PTR_ERR(buf);
3338 			req->rw.len = sqe_len;
3339 		}
3340 
3341 		ret = import_single_range(rw, buf, sqe_len, *iovec, iter);
3342 		*iovec = NULL;
3343 		return ret;
3344 	}
3345 
3346 	if (req->flags & REQ_F_BUFFER_SELECT) {
3347 		ret = io_iov_buffer_select(req, *iovec, needs_lock);
3348 		if (!ret)
3349 			iov_iter_init(iter, rw, *iovec, 1, (*iovec)->iov_len);
3350 		*iovec = NULL;
3351 		return ret;
3352 	}
3353 
3354 	return __import_iovec(rw, buf, sqe_len, UIO_FASTIOV, iovec, iter,
3355 			      req->ctx->compat);
3356 }
3357 
io_kiocb_ppos(struct kiocb *kiocb)3358 static inline loff_t *io_kiocb_ppos(struct kiocb *kiocb)
3359 {
3360 	return (kiocb->ki_filp->f_mode & FMODE_STREAM) ? NULL : &kiocb->ki_pos;
3361 }
3362 
3363 /*
3364  * For files that don't have ->read_iter() and ->write_iter(), handle them
3365  * by looping over ->read() or ->write() manually.
3366  */
loop_rw_iter(int rw, struct io_kiocb *req, struct iov_iter *iter)3367 static ssize_t loop_rw_iter(int rw, struct io_kiocb *req, struct iov_iter *iter)
3368 {
3369 	struct kiocb *kiocb = &req->rw.kiocb;
3370 	struct file *file = req->file;
3371 	ssize_t ret = 0;
3372 	loff_t *ppos;
3373 
3374 	/*
3375 	 * Don't support polled IO through this interface, and we can't
3376 	 * support non-blocking either. For the latter, this just causes
3377 	 * the kiocb to be handled from an async context.
3378 	 */
3379 	if (kiocb->ki_flags & IOCB_HIPRI)
3380 		return -EOPNOTSUPP;
3381 	if (kiocb->ki_flags & IOCB_NOWAIT)
3382 		return -EAGAIN;
3383 
3384 	ppos = io_kiocb_ppos(kiocb);
3385 
3386 	while (iov_iter_count(iter)) {
3387 		struct iovec iovec;
3388 		ssize_t nr;
3389 
3390 		if (!iov_iter_is_bvec(iter)) {
3391 			iovec = iov_iter_iovec(iter);
3392 		} else {
3393 			iovec.iov_base = u64_to_user_ptr(req->rw.addr);
3394 			iovec.iov_len = req->rw.len;
3395 		}
3396 
3397 		if (rw == READ) {
3398 			nr = file->f_op->read(file, iovec.iov_base,
3399 					      iovec.iov_len, ppos);
3400 		} else {
3401 			nr = file->f_op->write(file, iovec.iov_base,
3402 					       iovec.iov_len, ppos);
3403 		}
3404 
3405 		if (nr < 0) {
3406 			if (!ret)
3407 				ret = nr;
3408 			break;
3409 		}
3410 		ret += nr;
3411 		if (!iov_iter_is_bvec(iter)) {
3412 			iov_iter_advance(iter, nr);
3413 		} else {
3414 			req->rw.addr += nr;
3415 			req->rw.len -= nr;
3416 			if (!req->rw.len)
3417 				break;
3418 		}
3419 		if (nr != iovec.iov_len)
3420 			break;
3421 	}
3422 
3423 	return ret;
3424 }
3425 
io_req_map_rw(struct io_kiocb *req, const struct iovec *iovec, const struct iovec *fast_iov, struct iov_iter *iter)3426 static void io_req_map_rw(struct io_kiocb *req, const struct iovec *iovec,
3427 			  const struct iovec *fast_iov, struct iov_iter *iter)
3428 {
3429 	struct io_async_rw *rw = req->async_data;
3430 
3431 	memcpy(&rw->iter, iter, sizeof(*iter));
3432 	rw->free_iovec = iovec;
3433 	rw->bytes_done = 0;
3434 	/* can only be fixed buffers, no need to do anything */
3435 	if (iov_iter_is_bvec(iter))
3436 		return;
3437 	if (!iovec) {
3438 		unsigned iov_off = 0;
3439 
3440 		rw->iter.iov = rw->fast_iov;
3441 		if (iter->iov != fast_iov) {
3442 			iov_off = iter->iov - fast_iov;
3443 			rw->iter.iov += iov_off;
3444 		}
3445 		if (rw->fast_iov != fast_iov)
3446 			memcpy(rw->fast_iov + iov_off, fast_iov + iov_off,
3447 			       sizeof(struct iovec) * iter->nr_segs);
3448 	} else {
3449 		req->flags |= REQ_F_NEED_CLEANUP;
3450 	}
3451 }
3452 
io_alloc_async_data(struct io_kiocb *req)3453 static inline int io_alloc_async_data(struct io_kiocb *req)
3454 {
3455 	WARN_ON_ONCE(!io_op_defs[req->opcode].async_size);
3456 	req->async_data = kmalloc(io_op_defs[req->opcode].async_size, GFP_KERNEL);
3457 	return req->async_data == NULL;
3458 }
3459 
io_setup_async_rw(struct io_kiocb *req, const struct iovec *iovec, const struct iovec *fast_iov, struct iov_iter *iter, bool force)3460 static int io_setup_async_rw(struct io_kiocb *req, const struct iovec *iovec,
3461 			     const struct iovec *fast_iov,
3462 			     struct iov_iter *iter, bool force)
3463 {
3464 	if (!force && !io_op_defs[req->opcode].needs_async_setup)
3465 		return 0;
3466 	if (!req->async_data) {
3467 		struct io_async_rw *iorw;
3468 
3469 		if (io_alloc_async_data(req)) {
3470 			kfree(iovec);
3471 			return -ENOMEM;
3472 		}
3473 
3474 		io_req_map_rw(req, iovec, fast_iov, iter);
3475 		iorw = req->async_data;
3476 		/* we've copied and mapped the iter, ensure state is saved */
3477 		iov_iter_save_state(&iorw->iter, &iorw->iter_state);
3478 	}
3479 	return 0;
3480 }
3481 
io_rw_prep_async(struct io_kiocb *req, int rw)3482 static inline int io_rw_prep_async(struct io_kiocb *req, int rw)
3483 {
3484 	struct io_async_rw *iorw = req->async_data;
3485 	struct iovec *iov = iorw->fast_iov;
3486 	int ret;
3487 
3488 	iorw->bytes_done = 0;
3489 	iorw->free_iovec = NULL;
3490 
3491 	ret = io_import_iovec(rw, req, &iov, &iorw->iter, false);
3492 	if (unlikely(ret < 0))
3493 		return ret;
3494 
3495 	if (iov) {
3496 		iorw->free_iovec = iov;
3497 		req->flags |= REQ_F_NEED_CLEANUP;
3498 	}
3499 	iov_iter_save_state(&iorw->iter, &iorw->iter_state);
3500 	return 0;
3501 }
3502 
io_read_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)3503 static int io_read_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
3504 {
3505 	if (unlikely(!(req->file->f_mode & FMODE_READ)))
3506 		return -EBADF;
3507 	return io_prep_rw(req, sqe, READ);
3508 }
3509 
3510 /*
3511  * This is our waitqueue callback handler, registered through lock_page_async()
3512  * when we initially tried to do the IO with the iocb armed our waitqueue.
3513  * This gets called when the page is unlocked, and we generally expect that to
3514  * happen when the page IO is completed and the page is now uptodate. This will
3515  * queue a task_work based retry of the operation, attempting to copy the data
3516  * again. If the latter fails because the page was NOT uptodate, then we will
3517  * do a thread based blocking retry of the operation. That's the unexpected
3518  * slow path.
3519  */
io_async_buf_func(struct wait_queue_entry *wait, unsigned mode, int sync, void *arg)3520 static int io_async_buf_func(struct wait_queue_entry *wait, unsigned mode,
3521 			     int sync, void *arg)
3522 {
3523 	struct wait_page_queue *wpq;
3524 	struct io_kiocb *req = wait->private;
3525 	struct wait_page_key *key = arg;
3526 
3527 	wpq = container_of(wait, struct wait_page_queue, wait);
3528 
3529 	if (!wake_page_match(wpq, key))
3530 		return 0;
3531 
3532 	req->rw.kiocb.ki_flags &= ~IOCB_WAITQ;
3533 	list_del_init(&wait->entry);
3534 	io_req_task_queue(req);
3535 	return 1;
3536 }
3537 
3538 /*
3539  * This controls whether a given IO request should be armed for async page
3540  * based retry. If we return false here, the request is handed to the async
3541  * worker threads for retry. If we're doing buffered reads on a regular file,
3542  * we prepare a private wait_page_queue entry and retry the operation. This
3543  * will either succeed because the page is now uptodate and unlocked, or it
3544  * will register a callback when the page is unlocked at IO completion. Through
3545  * that callback, io_uring uses task_work to setup a retry of the operation.
3546  * That retry will attempt the buffered read again. The retry will generally
3547  * succeed, or in rare cases where it fails, we then fall back to using the
3548  * async worker threads for a blocking retry.
3549  */
io_rw_should_retry(struct io_kiocb *req)3550 static bool io_rw_should_retry(struct io_kiocb *req)
3551 {
3552 	struct io_async_rw *rw = req->async_data;
3553 	struct wait_page_queue *wait = &rw->wpq;
3554 	struct kiocb *kiocb = &req->rw.kiocb;
3555 
3556 	/* never retry for NOWAIT, we just complete with -EAGAIN */
3557 	if (req->flags & REQ_F_NOWAIT)
3558 		return false;
3559 
3560 	/* Only for buffered IO */
3561 	if (kiocb->ki_flags & (IOCB_DIRECT | IOCB_HIPRI))
3562 		return false;
3563 
3564 	/*
3565 	 * just use poll if we can, and don't attempt if the fs doesn't
3566 	 * support callback based unlocks
3567 	 */
3568 	if (file_can_poll(req->file) || !(req->file->f_mode & FMODE_BUF_RASYNC))
3569 		return false;
3570 
3571 	wait->wait.func = io_async_buf_func;
3572 	wait->wait.private = req;
3573 	wait->wait.flags = 0;
3574 	INIT_LIST_HEAD(&wait->wait.entry);
3575 	kiocb->ki_flags |= IOCB_WAITQ;
3576 	kiocb->ki_flags &= ~IOCB_NOWAIT;
3577 	kiocb->ki_waitq = wait;
3578 	return true;
3579 }
3580 
io_iter_do_read(struct io_kiocb *req, struct iov_iter *iter)3581 static inline int io_iter_do_read(struct io_kiocb *req, struct iov_iter *iter)
3582 {
3583 	if (req->file->f_op->read_iter)
3584 		return call_read_iter(req->file, &req->rw.kiocb, iter);
3585 	else if (req->file->f_op->read)
3586 		return loop_rw_iter(READ, req, iter);
3587 	else
3588 		return -EINVAL;
3589 }
3590 
need_read_all(struct io_kiocb *req)3591 static bool need_read_all(struct io_kiocb *req)
3592 {
3593 	return req->flags & REQ_F_ISREG ||
3594 		S_ISBLK(file_inode(req->file)->i_mode);
3595 }
3596 
io_read(struct io_kiocb *req, unsigned int issue_flags)3597 static int io_read(struct io_kiocb *req, unsigned int issue_flags)
3598 {
3599 	struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
3600 	struct kiocb *kiocb = &req->rw.kiocb;
3601 	struct iov_iter __iter, *iter = &__iter;
3602 	struct io_async_rw *rw = req->async_data;
3603 	bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK;
3604 	struct iov_iter_state __state, *state;
3605 	ssize_t ret, ret2;
3606 	loff_t *ppos;
3607 
3608 	if (rw) {
3609 		iter = &rw->iter;
3610 		state = &rw->iter_state;
3611 		/*
3612 		 * We come here from an earlier attempt, restore our state to
3613 		 * match in case it doesn't. It's cheap enough that we don't
3614 		 * need to make this conditional.
3615 		 */
3616 		iov_iter_restore(iter, state);
3617 		iovec = NULL;
3618 	} else {
3619 		ret = io_import_iovec(READ, req, &iovec, iter, !force_nonblock);
3620 		if (ret < 0)
3621 			return ret;
3622 		state = &__state;
3623 		iov_iter_save_state(iter, state);
3624 	}
3625 	req->result = iov_iter_count(iter);
3626 
3627 	/* Ensure we clear previously set non-block flag */
3628 	if (!force_nonblock)
3629 		kiocb->ki_flags &= ~IOCB_NOWAIT;
3630 	else
3631 		kiocb->ki_flags |= IOCB_NOWAIT;
3632 
3633 	/* If the file doesn't support async, just async punt */
3634 	if (force_nonblock && !io_file_supports_nowait(req, READ)) {
3635 		ret = io_setup_async_rw(req, iovec, inline_vecs, iter, true);
3636 		return ret ?: -EAGAIN;
3637 	}
3638 
3639 	ppos = io_kiocb_update_pos(req);
3640 
3641 	ret = rw_verify_area(READ, req->file, ppos, req->result);
3642 	if (unlikely(ret)) {
3643 		kfree(iovec);
3644 		return ret;
3645 	}
3646 
3647 	ret = io_iter_do_read(req, iter);
3648 
3649 	if (ret == -EAGAIN || (req->flags & REQ_F_REISSUE)) {
3650 		req->flags &= ~REQ_F_REISSUE;
3651 		/* IOPOLL retry should happen for io-wq threads */
3652 		if (!force_nonblock && !(req->ctx->flags & IORING_SETUP_IOPOLL))
3653 			goto done;
3654 		/* no retry on NONBLOCK nor RWF_NOWAIT */
3655 		if (req->flags & REQ_F_NOWAIT)
3656 			goto done;
3657 		ret = 0;
3658 	} else if (ret == -EIOCBQUEUED) {
3659 		goto out_free;
3660 	} else if (ret <= 0 || ret == req->result || !force_nonblock ||
3661 		   (req->flags & REQ_F_NOWAIT) || !need_read_all(req)) {
3662 		/* read all, failed, already did sync or don't want to retry */
3663 		goto done;
3664 	}
3665 
3666 	/*
3667 	 * Don't depend on the iter state matching what was consumed, or being
3668 	 * untouched in case of error. Restore it and we'll advance it
3669 	 * manually if we need to.
3670 	 */
3671 	iov_iter_restore(iter, state);
3672 
3673 	ret2 = io_setup_async_rw(req, iovec, inline_vecs, iter, true);
3674 	if (ret2)
3675 		return ret2;
3676 
3677 	iovec = NULL;
3678 	rw = req->async_data;
3679 	/*
3680 	 * Now use our persistent iterator and state, if we aren't already.
3681 	 * We've restored and mapped the iter to match.
3682 	 */
3683 	if (iter != &rw->iter) {
3684 		iter = &rw->iter;
3685 		state = &rw->iter_state;
3686 	}
3687 
3688 	do {
3689 		/*
3690 		 * We end up here because of a partial read, either from
3691 		 * above or inside this loop. Advance the iter by the bytes
3692 		 * that were consumed.
3693 		 */
3694 		iov_iter_advance(iter, ret);
3695 		if (!iov_iter_count(iter))
3696 			break;
3697 		rw->bytes_done += ret;
3698 		iov_iter_save_state(iter, state);
3699 
3700 		/* if we can retry, do so with the callbacks armed */
3701 		if (!io_rw_should_retry(req)) {
3702 			kiocb->ki_flags &= ~IOCB_WAITQ;
3703 			return -EAGAIN;
3704 		}
3705 
3706 		req->result = iov_iter_count(iter);
3707 		/*
3708 		 * Now retry read with the IOCB_WAITQ parts set in the iocb. If
3709 		 * we get -EIOCBQUEUED, then we'll get a notification when the
3710 		 * desired page gets unlocked. We can also get a partial read
3711 		 * here, and if we do, then just retry at the new offset.
3712 		 */
3713 		ret = io_iter_do_read(req, iter);
3714 		if (ret == -EIOCBQUEUED)
3715 			return 0;
3716 		/* we got some bytes, but not all. retry. */
3717 		kiocb->ki_flags &= ~IOCB_WAITQ;
3718 		iov_iter_restore(iter, state);
3719 	} while (ret > 0);
3720 done:
3721 	kiocb_done(kiocb, ret, issue_flags);
3722 out_free:
3723 	/* it's faster to check here then delegate to kfree */
3724 	if (iovec)
3725 		kfree(iovec);
3726 	return 0;
3727 }
3728 
io_write_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)3729 static int io_write_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
3730 {
3731 	if (unlikely(!(req->file->f_mode & FMODE_WRITE)))
3732 		return -EBADF;
3733 	return io_prep_rw(req, sqe, WRITE);
3734 }
3735 
io_write(struct io_kiocb *req, unsigned int issue_flags)3736 static int io_write(struct io_kiocb *req, unsigned int issue_flags)
3737 {
3738 	struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
3739 	struct kiocb *kiocb = &req->rw.kiocb;
3740 	struct iov_iter __iter, *iter = &__iter;
3741 	struct io_async_rw *rw = req->async_data;
3742 	bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK;
3743 	struct iov_iter_state __state, *state;
3744 	ssize_t ret, ret2;
3745 	loff_t *ppos;
3746 
3747 	if (rw) {
3748 		iter = &rw->iter;
3749 		state = &rw->iter_state;
3750 		iov_iter_restore(iter, state);
3751 		iovec = NULL;
3752 	} else {
3753 		ret = io_import_iovec(WRITE, req, &iovec, iter, !force_nonblock);
3754 		if (ret < 0)
3755 			return ret;
3756 		state = &__state;
3757 		iov_iter_save_state(iter, state);
3758 	}
3759 	req->result = iov_iter_count(iter);
3760 
3761 	/* Ensure we clear previously set non-block flag */
3762 	if (!force_nonblock)
3763 		kiocb->ki_flags &= ~IOCB_NOWAIT;
3764 	else
3765 		kiocb->ki_flags |= IOCB_NOWAIT;
3766 
3767 	/* If the file doesn't support async, just async punt */
3768 	if (force_nonblock && !io_file_supports_nowait(req, WRITE))
3769 		goto copy_iov;
3770 
3771 	/* file path doesn't support NOWAIT for non-direct_IO */
3772 	if (force_nonblock && !(kiocb->ki_flags & IOCB_DIRECT) &&
3773 	    (req->flags & REQ_F_ISREG))
3774 		goto copy_iov;
3775 
3776 	ppos = io_kiocb_update_pos(req);
3777 
3778 	ret = rw_verify_area(WRITE, req->file, ppos, req->result);
3779 	if (unlikely(ret))
3780 		goto out_free;
3781 
3782 	/*
3783 	 * Open-code file_start_write here to grab freeze protection,
3784 	 * which will be released by another thread in
3785 	 * io_complete_rw().  Fool lockdep by telling it the lock got
3786 	 * released so that it doesn't complain about the held lock when
3787 	 * we return to userspace.
3788 	 */
3789 	if (req->flags & REQ_F_ISREG) {
3790 		sb_start_write(file_inode(req->file)->i_sb);
3791 		__sb_writers_release(file_inode(req->file)->i_sb,
3792 					SB_FREEZE_WRITE);
3793 	}
3794 	kiocb->ki_flags |= IOCB_WRITE;
3795 
3796 	if (req->file->f_op->write_iter)
3797 		ret2 = call_write_iter(req->file, kiocb, iter);
3798 	else if (req->file->f_op->write)
3799 		ret2 = loop_rw_iter(WRITE, req, iter);
3800 	else
3801 		ret2 = -EINVAL;
3802 
3803 	if (req->flags & REQ_F_REISSUE) {
3804 		req->flags &= ~REQ_F_REISSUE;
3805 		ret2 = -EAGAIN;
3806 	}
3807 
3808 	/*
3809 	 * Raw bdev writes will return -EOPNOTSUPP for IOCB_NOWAIT. Just
3810 	 * retry them without IOCB_NOWAIT.
3811 	 */
3812 	if (ret2 == -EOPNOTSUPP && (kiocb->ki_flags & IOCB_NOWAIT))
3813 		ret2 = -EAGAIN;
3814 	/* no retry on NONBLOCK nor RWF_NOWAIT */
3815 	if (ret2 == -EAGAIN && (req->flags & REQ_F_NOWAIT))
3816 		goto done;
3817 	if (!force_nonblock || ret2 != -EAGAIN) {
3818 		/* IOPOLL retry should happen for io-wq threads */
3819 		if ((req->ctx->flags & IORING_SETUP_IOPOLL) && ret2 == -EAGAIN)
3820 			goto copy_iov;
3821 done:
3822 		kiocb_done(kiocb, ret2, issue_flags);
3823 	} else {
3824 copy_iov:
3825 		iov_iter_restore(iter, state);
3826 		ret = io_setup_async_rw(req, iovec, inline_vecs, iter, false);
3827 		if (!ret) {
3828 			if (kiocb->ki_flags & IOCB_WRITE)
3829 				kiocb_end_write(req);
3830 			return -EAGAIN;
3831 		}
3832 		return ret;
3833 	}
3834 out_free:
3835 	/* it's reportedly faster than delegating the null check to kfree() */
3836 	if (iovec)
3837 		kfree(iovec);
3838 	return ret;
3839 }
3840 
io_renameat_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)3841 static int io_renameat_prep(struct io_kiocb *req,
3842 			    const struct io_uring_sqe *sqe)
3843 {
3844 	struct io_rename *ren = &req->rename;
3845 	const char __user *oldf, *newf;
3846 
3847 	if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
3848 		return -EINVAL;
3849 	if (sqe->ioprio || sqe->buf_index || sqe->splice_fd_in)
3850 		return -EINVAL;
3851 	if (unlikely(req->flags & REQ_F_FIXED_FILE))
3852 		return -EBADF;
3853 
3854 	ren->old_dfd = READ_ONCE(sqe->fd);
3855 	oldf = u64_to_user_ptr(READ_ONCE(sqe->addr));
3856 	newf = u64_to_user_ptr(READ_ONCE(sqe->addr2));
3857 	ren->new_dfd = READ_ONCE(sqe->len);
3858 	ren->flags = READ_ONCE(sqe->rename_flags);
3859 
3860 	ren->oldpath = getname(oldf);
3861 	if (IS_ERR(ren->oldpath))
3862 		return PTR_ERR(ren->oldpath);
3863 
3864 	ren->newpath = getname(newf);
3865 	if (IS_ERR(ren->newpath)) {
3866 		putname(ren->oldpath);
3867 		return PTR_ERR(ren->newpath);
3868 	}
3869 
3870 	req->flags |= REQ_F_NEED_CLEANUP;
3871 	return 0;
3872 }
3873 
io_renameat(struct io_kiocb *req, unsigned int issue_flags)3874 static int io_renameat(struct io_kiocb *req, unsigned int issue_flags)
3875 {
3876 	struct io_rename *ren = &req->rename;
3877 	int ret;
3878 
3879 	if (issue_flags & IO_URING_F_NONBLOCK)
3880 		return -EAGAIN;
3881 
3882 	ret = do_renameat2(ren->old_dfd, ren->oldpath, ren->new_dfd,
3883 				ren->newpath, ren->flags);
3884 
3885 	req->flags &= ~REQ_F_NEED_CLEANUP;
3886 	if (ret < 0)
3887 		req_set_fail(req);
3888 	io_req_complete(req, ret);
3889 	return 0;
3890 }
3891 
io_unlinkat_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)3892 static int io_unlinkat_prep(struct io_kiocb *req,
3893 			    const struct io_uring_sqe *sqe)
3894 {
3895 	struct io_unlink *un = &req->unlink;
3896 	const char __user *fname;
3897 
3898 	if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
3899 		return -EINVAL;
3900 	if (sqe->ioprio || sqe->off || sqe->len || sqe->buf_index ||
3901 	    sqe->splice_fd_in)
3902 		return -EINVAL;
3903 	if (unlikely(req->flags & REQ_F_FIXED_FILE))
3904 		return -EBADF;
3905 
3906 	un->dfd = READ_ONCE(sqe->fd);
3907 
3908 	un->flags = READ_ONCE(sqe->unlink_flags);
3909 	if (un->flags & ~AT_REMOVEDIR)
3910 		return -EINVAL;
3911 
3912 	fname = u64_to_user_ptr(READ_ONCE(sqe->addr));
3913 	un->filename = getname(fname);
3914 	if (IS_ERR(un->filename))
3915 		return PTR_ERR(un->filename);
3916 
3917 	req->flags |= REQ_F_NEED_CLEANUP;
3918 	return 0;
3919 }
3920 
io_unlinkat(struct io_kiocb *req, unsigned int issue_flags)3921 static int io_unlinkat(struct io_kiocb *req, unsigned int issue_flags)
3922 {
3923 	struct io_unlink *un = &req->unlink;
3924 	int ret;
3925 
3926 	if (issue_flags & IO_URING_F_NONBLOCK)
3927 		return -EAGAIN;
3928 
3929 	if (un->flags & AT_REMOVEDIR)
3930 		ret = do_rmdir(un->dfd, un->filename);
3931 	else
3932 		ret = do_unlinkat(un->dfd, un->filename);
3933 
3934 	req->flags &= ~REQ_F_NEED_CLEANUP;
3935 	if (ret < 0)
3936 		req_set_fail(req);
3937 	io_req_complete(req, ret);
3938 	return 0;
3939 }
3940 
io_shutdown_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)3941 static int io_shutdown_prep(struct io_kiocb *req,
3942 			    const struct io_uring_sqe *sqe)
3943 {
3944 #if defined(CONFIG_NET)
3945 	if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
3946 		return -EINVAL;
3947 	if (unlikely(sqe->ioprio || sqe->off || sqe->addr || sqe->rw_flags ||
3948 		     sqe->buf_index || sqe->splice_fd_in))
3949 		return -EINVAL;
3950 
3951 	req->shutdown.how = READ_ONCE(sqe->len);
3952 	return 0;
3953 #else
3954 	return -EOPNOTSUPP;
3955 #endif
3956 }
3957 
io_shutdown(struct io_kiocb *req, unsigned int issue_flags)3958 static int io_shutdown(struct io_kiocb *req, unsigned int issue_flags)
3959 {
3960 #if defined(CONFIG_NET)
3961 	struct socket *sock;
3962 	int ret;
3963 
3964 	if (issue_flags & IO_URING_F_NONBLOCK)
3965 		return -EAGAIN;
3966 
3967 	sock = sock_from_file(req->file, &ret);
3968 	if (unlikely(!sock))
3969 		return ret;
3970 
3971 	ret = __sys_shutdown_sock(sock, req->shutdown.how);
3972 	if (ret < 0)
3973 		req_set_fail(req);
3974 	io_req_complete(req, ret);
3975 	return 0;
3976 #else
3977 	return -EOPNOTSUPP;
3978 #endif
3979 }
3980 
__io_splice_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)3981 static int __io_splice_prep(struct io_kiocb *req,
3982 			    const struct io_uring_sqe *sqe)
3983 {
3984 	struct io_splice *sp = &req->splice;
3985 	unsigned int valid_flags = SPLICE_F_FD_IN_FIXED | SPLICE_F_ALL;
3986 
3987 	if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
3988 		return -EINVAL;
3989 
3990 	sp->len = READ_ONCE(sqe->len);
3991 	sp->flags = READ_ONCE(sqe->splice_flags);
3992 	if (unlikely(sp->flags & ~valid_flags))
3993 		return -EINVAL;
3994 	sp->splice_fd_in = READ_ONCE(sqe->splice_fd_in);
3995 	return 0;
3996 }
3997 
io_tee_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)3998 static int io_tee_prep(struct io_kiocb *req,
3999 		       const struct io_uring_sqe *sqe)
4000 {
4001 	if (READ_ONCE(sqe->splice_off_in) || READ_ONCE(sqe->off))
4002 		return -EINVAL;
4003 	return __io_splice_prep(req, sqe);
4004 }
4005 
io_tee(struct io_kiocb *req, unsigned int issue_flags)4006 static int io_tee(struct io_kiocb *req, unsigned int issue_flags)
4007 {
4008 	struct io_splice *sp = &req->splice;
4009 	struct file *out = sp->file_out;
4010 	unsigned int flags = sp->flags & ~SPLICE_F_FD_IN_FIXED;
4011 	struct file *in;
4012 	long ret = 0;
4013 
4014 	if (issue_flags & IO_URING_F_NONBLOCK)
4015 		return -EAGAIN;
4016 
4017 	in = io_file_get(req->ctx, req, sp->splice_fd_in,
4018 			 (sp->flags & SPLICE_F_FD_IN_FIXED), issue_flags);
4019 	if (!in) {
4020 		ret = -EBADF;
4021 		goto done;
4022 	}
4023 
4024 	if (sp->len)
4025 		ret = do_tee(in, out, sp->len, flags);
4026 
4027 	if (!(sp->flags & SPLICE_F_FD_IN_FIXED))
4028 		io_put_file(in);
4029 done:
4030 	if (ret != sp->len)
4031 		req_set_fail(req);
4032 	io_req_complete(req, ret);
4033 	return 0;
4034 }
4035 
io_splice_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)4036 static int io_splice_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4037 {
4038 	struct io_splice *sp = &req->splice;
4039 
4040 	sp->off_in = READ_ONCE(sqe->splice_off_in);
4041 	sp->off_out = READ_ONCE(sqe->off);
4042 	return __io_splice_prep(req, sqe);
4043 }
4044 
io_splice(struct io_kiocb *req, unsigned int issue_flags)4045 static int io_splice(struct io_kiocb *req, unsigned int issue_flags)
4046 {
4047 	struct io_splice *sp = &req->splice;
4048 	struct file *out = sp->file_out;
4049 	unsigned int flags = sp->flags & ~SPLICE_F_FD_IN_FIXED;
4050 	loff_t *poff_in, *poff_out;
4051 	struct file *in;
4052 	long ret = 0;
4053 
4054 	if (issue_flags & IO_URING_F_NONBLOCK)
4055 		return -EAGAIN;
4056 
4057 	in = io_file_get(req->ctx, req, sp->splice_fd_in,
4058 			 (sp->flags & SPLICE_F_FD_IN_FIXED), issue_flags);
4059 	if (!in) {
4060 		ret = -EBADF;
4061 		goto done;
4062 	}
4063 
4064 	poff_in = (sp->off_in == -1) ? NULL : &sp->off_in;
4065 	poff_out = (sp->off_out == -1) ? NULL : &sp->off_out;
4066 
4067 	if (sp->len)
4068 		ret = do_splice(in, poff_in, out, poff_out, sp->len, flags);
4069 
4070 	if (!(sp->flags & SPLICE_F_FD_IN_FIXED))
4071 		io_put_file(in);
4072 done:
4073 	if (ret != sp->len)
4074 		req_set_fail(req);
4075 	io_req_complete(req, ret);
4076 	return 0;
4077 }
4078 
4079 /*
4080  * IORING_OP_NOP just posts a completion event, nothing else.
4081  */
io_nop(struct io_kiocb *req, unsigned int issue_flags)4082 static int io_nop(struct io_kiocb *req, unsigned int issue_flags)
4083 {
4084 	struct io_ring_ctx *ctx = req->ctx;
4085 
4086 	if (unlikely(ctx->flags & IORING_SETUP_IOPOLL))
4087 		return -EINVAL;
4088 
4089 	__io_req_complete(req, issue_flags, 0, 0);
4090 	return 0;
4091 }
4092 
io_fsync_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)4093 static int io_fsync_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4094 {
4095 	struct io_ring_ctx *ctx = req->ctx;
4096 
4097 	if (unlikely(ctx->flags & IORING_SETUP_IOPOLL))
4098 		return -EINVAL;
4099 	if (unlikely(sqe->addr || sqe->ioprio || sqe->buf_index ||
4100 		     sqe->splice_fd_in))
4101 		return -EINVAL;
4102 
4103 	req->sync.flags = READ_ONCE(sqe->fsync_flags);
4104 	if (unlikely(req->sync.flags & ~IORING_FSYNC_DATASYNC))
4105 		return -EINVAL;
4106 
4107 	req->sync.off = READ_ONCE(sqe->off);
4108 	req->sync.len = READ_ONCE(sqe->len);
4109 	return 0;
4110 }
4111 
io_fsync(struct io_kiocb *req, unsigned int issue_flags)4112 static int io_fsync(struct io_kiocb *req, unsigned int issue_flags)
4113 {
4114 	loff_t end = req->sync.off + req->sync.len;
4115 	int ret;
4116 
4117 	/* fsync always requires a blocking context */
4118 	if (issue_flags & IO_URING_F_NONBLOCK)
4119 		return -EAGAIN;
4120 
4121 	ret = vfs_fsync_range(req->file, req->sync.off,
4122 				end > 0 ? end : LLONG_MAX,
4123 				req->sync.flags & IORING_FSYNC_DATASYNC);
4124 	if (ret < 0)
4125 		req_set_fail(req);
4126 	io_req_complete(req, ret);
4127 	return 0;
4128 }
4129 
io_fallocate_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)4130 static int io_fallocate_prep(struct io_kiocb *req,
4131 			     const struct io_uring_sqe *sqe)
4132 {
4133 	if (sqe->ioprio || sqe->buf_index || sqe->rw_flags ||
4134 	    sqe->splice_fd_in)
4135 		return -EINVAL;
4136 	if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4137 		return -EINVAL;
4138 
4139 	req->sync.off = READ_ONCE(sqe->off);
4140 	req->sync.len = READ_ONCE(sqe->addr);
4141 	req->sync.mode = READ_ONCE(sqe->len);
4142 	return 0;
4143 }
4144 
io_fallocate(struct io_kiocb *req, unsigned int issue_flags)4145 static int io_fallocate(struct io_kiocb *req, unsigned int issue_flags)
4146 {
4147 	int ret;
4148 
4149 	/* fallocate always requiring blocking context */
4150 	if (issue_flags & IO_URING_F_NONBLOCK)
4151 		return -EAGAIN;
4152 	ret = vfs_fallocate(req->file, req->sync.mode, req->sync.off,
4153 				req->sync.len);
4154 	if (ret < 0)
4155 		req_set_fail(req);
4156 	else
4157 		fsnotify_modify(req->file);
4158 	io_req_complete(req, ret);
4159 	return 0;
4160 }
4161 
__io_openat_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)4162 static int __io_openat_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4163 {
4164 	const char __user *fname;
4165 	int ret;
4166 
4167 	if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4168 		return -EINVAL;
4169 	if (unlikely(sqe->ioprio || sqe->buf_index))
4170 		return -EINVAL;
4171 	if (unlikely(req->flags & REQ_F_FIXED_FILE))
4172 		return -EBADF;
4173 
4174 	/* open.how should be already initialised */
4175 	if (!(req->open.how.flags & O_PATH) && force_o_largefile())
4176 		req->open.how.flags |= O_LARGEFILE;
4177 
4178 	req->open.dfd = READ_ONCE(sqe->fd);
4179 	fname = u64_to_user_ptr(READ_ONCE(sqe->addr));
4180 	req->open.filename = getname(fname);
4181 	if (IS_ERR(req->open.filename)) {
4182 		ret = PTR_ERR(req->open.filename);
4183 		req->open.filename = NULL;
4184 		return ret;
4185 	}
4186 
4187 	req->open.file_slot = READ_ONCE(sqe->file_index);
4188 	if (req->open.file_slot && (req->open.how.flags & O_CLOEXEC))
4189 		return -EINVAL;
4190 
4191 	req->open.nofile = rlimit(RLIMIT_NOFILE);
4192 	req->flags |= REQ_F_NEED_CLEANUP;
4193 	return 0;
4194 }
4195 
io_openat_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)4196 static int io_openat_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4197 {
4198 	u64 mode = READ_ONCE(sqe->len);
4199 	u64 flags = READ_ONCE(sqe->open_flags);
4200 
4201 	req->open.how = build_open_how(flags, mode);
4202 	return __io_openat_prep(req, sqe);
4203 }
4204 
io_openat2_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)4205 static int io_openat2_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4206 {
4207 	struct open_how __user *how;
4208 	size_t len;
4209 	int ret;
4210 
4211 	how = u64_to_user_ptr(READ_ONCE(sqe->addr2));
4212 	len = READ_ONCE(sqe->len);
4213 	if (len < OPEN_HOW_SIZE_VER0)
4214 		return -EINVAL;
4215 
4216 	ret = copy_struct_from_user(&req->open.how, sizeof(req->open.how), how,
4217 					len);
4218 	if (ret)
4219 		return ret;
4220 
4221 	return __io_openat_prep(req, sqe);
4222 }
4223 
io_openat2(struct io_kiocb *req, unsigned int issue_flags)4224 static int io_openat2(struct io_kiocb *req, unsigned int issue_flags)
4225 {
4226 	struct open_flags op;
4227 	struct file *file;
4228 	bool resolve_nonblock, nonblock_set;
4229 	bool fixed = !!req->open.file_slot;
4230 	int ret;
4231 
4232 	ret = build_open_flags(&req->open.how, &op);
4233 	if (ret)
4234 		goto err;
4235 	nonblock_set = op.open_flag & O_NONBLOCK;
4236 	resolve_nonblock = req->open.how.resolve & RESOLVE_CACHED;
4237 	if (issue_flags & IO_URING_F_NONBLOCK) {
4238 		/*
4239 		 * Don't bother trying for O_TRUNC, O_CREAT, or O_TMPFILE open,
4240 		 * it'll always -EAGAIN. Note that we test for __O_TMPFILE
4241 		 * because O_TMPFILE includes O_DIRECTORY, which isn't a flag
4242 		 * we need to force async for.
4243 		 */
4244 		if (req->open.how.flags & (O_TRUNC | O_CREAT | __O_TMPFILE))
4245 			return -EAGAIN;
4246 		op.lookup_flags |= LOOKUP_CACHED;
4247 		op.open_flag |= O_NONBLOCK;
4248 	}
4249 
4250 	if (!fixed) {
4251 		ret = __get_unused_fd_flags(req->open.how.flags, req->open.nofile);
4252 		if (ret < 0)
4253 			goto err;
4254 	}
4255 
4256 	file = do_filp_open(req->open.dfd, req->open.filename, &op);
4257 	if (IS_ERR(file)) {
4258 		/*
4259 		 * We could hang on to this 'fd' on retrying, but seems like
4260 		 * marginal gain for something that is now known to be a slower
4261 		 * path. So just put it, and we'll get a new one when we retry.
4262 		 */
4263 		if (!fixed)
4264 			put_unused_fd(ret);
4265 
4266 		ret = PTR_ERR(file);
4267 		/* only retry if RESOLVE_CACHED wasn't already set by application */
4268 		if (ret == -EAGAIN &&
4269 		    (!resolve_nonblock && (issue_flags & IO_URING_F_NONBLOCK)))
4270 			return -EAGAIN;
4271 		goto err;
4272 	}
4273 
4274 	if ((issue_flags & IO_URING_F_NONBLOCK) && !nonblock_set)
4275 		file->f_flags &= ~O_NONBLOCK;
4276 	fsnotify_open(file);
4277 
4278 	if (!fixed)
4279 		fd_install(ret, file);
4280 	else
4281 		ret = io_install_fixed_file(req, file, issue_flags,
4282 					    req->open.file_slot - 1);
4283 err:
4284 	putname(req->open.filename);
4285 	req->flags &= ~REQ_F_NEED_CLEANUP;
4286 	if (ret < 0)
4287 		req_set_fail(req);
4288 	__io_req_complete(req, issue_flags, ret, 0);
4289 	return 0;
4290 }
4291 
io_openat(struct io_kiocb *req, unsigned int issue_flags)4292 static int io_openat(struct io_kiocb *req, unsigned int issue_flags)
4293 {
4294 	return io_openat2(req, issue_flags);
4295 }
4296 
io_remove_buffers_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)4297 static int io_remove_buffers_prep(struct io_kiocb *req,
4298 				  const struct io_uring_sqe *sqe)
4299 {
4300 	struct io_provide_buf *p = &req->pbuf;
4301 	u64 tmp;
4302 
4303 	if (sqe->ioprio || sqe->rw_flags || sqe->addr || sqe->len || sqe->off ||
4304 	    sqe->splice_fd_in)
4305 		return -EINVAL;
4306 
4307 	tmp = READ_ONCE(sqe->fd);
4308 	if (!tmp || tmp > USHRT_MAX)
4309 		return -EINVAL;
4310 
4311 	memset(p, 0, sizeof(*p));
4312 	p->nbufs = tmp;
4313 	p->bgid = READ_ONCE(sqe->buf_group);
4314 	return 0;
4315 }
4316 
__io_remove_buffers(struct io_ring_ctx *ctx, struct io_buffer *buf, int bgid, unsigned nbufs)4317 static int __io_remove_buffers(struct io_ring_ctx *ctx, struct io_buffer *buf,
4318 			       int bgid, unsigned nbufs)
4319 {
4320 	unsigned i = 0;
4321 
4322 	/* shouldn't happen */
4323 	if (!nbufs)
4324 		return 0;
4325 
4326 	/* the head kbuf is the list itself */
4327 	while (!list_empty(&buf->list)) {
4328 		struct io_buffer *nxt;
4329 
4330 		nxt = list_first_entry(&buf->list, struct io_buffer, list);
4331 		list_del(&nxt->list);
4332 		kfree(nxt);
4333 		if (++i == nbufs)
4334 			return i;
4335 		cond_resched();
4336 	}
4337 	i++;
4338 	kfree(buf);
4339 	xa_erase(&ctx->io_buffers, bgid);
4340 
4341 	return i;
4342 }
4343 
io_remove_buffers(struct io_kiocb *req, unsigned int issue_flags)4344 static int io_remove_buffers(struct io_kiocb *req, unsigned int issue_flags)
4345 {
4346 	struct io_provide_buf *p = &req->pbuf;
4347 	struct io_ring_ctx *ctx = req->ctx;
4348 	struct io_buffer *head;
4349 	int ret = 0;
4350 	bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK;
4351 
4352 	io_ring_submit_lock(ctx, !force_nonblock);
4353 
4354 	lockdep_assert_held(&ctx->uring_lock);
4355 
4356 	ret = -ENOENT;
4357 	head = xa_load(&ctx->io_buffers, p->bgid);
4358 	if (head)
4359 		ret = __io_remove_buffers(ctx, head, p->bgid, p->nbufs);
4360 	if (ret < 0)
4361 		req_set_fail(req);
4362 
4363 	/* complete before unlock, IOPOLL may need the lock */
4364 	__io_req_complete(req, issue_flags, ret, 0);
4365 	io_ring_submit_unlock(ctx, !force_nonblock);
4366 	return 0;
4367 }
4368 
io_provide_buffers_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)4369 static int io_provide_buffers_prep(struct io_kiocb *req,
4370 				   const struct io_uring_sqe *sqe)
4371 {
4372 	unsigned long size, tmp_check;
4373 	struct io_provide_buf *p = &req->pbuf;
4374 	u64 tmp;
4375 
4376 	if (sqe->ioprio || sqe->rw_flags || sqe->splice_fd_in)
4377 		return -EINVAL;
4378 
4379 	tmp = READ_ONCE(sqe->fd);
4380 	if (!tmp || tmp > USHRT_MAX)
4381 		return -E2BIG;
4382 	p->nbufs = tmp;
4383 	p->addr = READ_ONCE(sqe->addr);
4384 	p->len = READ_ONCE(sqe->len);
4385 
4386 	if (check_mul_overflow((unsigned long)p->len, (unsigned long)p->nbufs,
4387 				&size))
4388 		return -EOVERFLOW;
4389 	if (check_add_overflow((unsigned long)p->addr, size, &tmp_check))
4390 		return -EOVERFLOW;
4391 
4392 	size = (unsigned long)p->len * p->nbufs;
4393 	if (!access_ok(u64_to_user_ptr(p->addr), size))
4394 		return -EFAULT;
4395 
4396 	p->bgid = READ_ONCE(sqe->buf_group);
4397 	tmp = READ_ONCE(sqe->off);
4398 	if (tmp > USHRT_MAX)
4399 		return -E2BIG;
4400 	p->bid = tmp;
4401 	return 0;
4402 }
4403 
io_add_buffers(struct io_provide_buf *pbuf, struct io_buffer **head)4404 static int io_add_buffers(struct io_provide_buf *pbuf, struct io_buffer **head)
4405 {
4406 	struct io_buffer *buf;
4407 	u64 addr = pbuf->addr;
4408 	int i, bid = pbuf->bid;
4409 
4410 	for (i = 0; i < pbuf->nbufs; i++) {
4411 		buf = kmalloc(sizeof(*buf), GFP_KERNEL_ACCOUNT);
4412 		if (!buf)
4413 			break;
4414 
4415 		buf->addr = addr;
4416 		buf->len = min_t(__u32, pbuf->len, MAX_RW_COUNT);
4417 		buf->bid = bid;
4418 		addr += pbuf->len;
4419 		bid++;
4420 		if (!*head) {
4421 			INIT_LIST_HEAD(&buf->list);
4422 			*head = buf;
4423 		} else {
4424 			list_add_tail(&buf->list, &(*head)->list);
4425 		}
4426 		cond_resched();
4427 	}
4428 
4429 	return i ? i : -ENOMEM;
4430 }
4431 
io_provide_buffers(struct io_kiocb *req, unsigned int issue_flags)4432 static int io_provide_buffers(struct io_kiocb *req, unsigned int issue_flags)
4433 {
4434 	struct io_provide_buf *p = &req->pbuf;
4435 	struct io_ring_ctx *ctx = req->ctx;
4436 	struct io_buffer *head, *list;
4437 	int ret = 0;
4438 	bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK;
4439 
4440 	io_ring_submit_lock(ctx, !force_nonblock);
4441 
4442 	lockdep_assert_held(&ctx->uring_lock);
4443 
4444 	list = head = xa_load(&ctx->io_buffers, p->bgid);
4445 
4446 	ret = io_add_buffers(p, &head);
4447 	if (ret >= 0 && !list) {
4448 		ret = xa_insert(&ctx->io_buffers, p->bgid, head,
4449 				GFP_KERNEL_ACCOUNT);
4450 		if (ret < 0)
4451 			__io_remove_buffers(ctx, head, p->bgid, -1U);
4452 	}
4453 	if (ret < 0)
4454 		req_set_fail(req);
4455 	/* complete before unlock, IOPOLL may need the lock */
4456 	__io_req_complete(req, issue_flags, ret, 0);
4457 	io_ring_submit_unlock(ctx, !force_nonblock);
4458 	return 0;
4459 }
4460 
io_epoll_ctl_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)4461 static int io_epoll_ctl_prep(struct io_kiocb *req,
4462 			     const struct io_uring_sqe *sqe)
4463 {
4464 #if defined(CONFIG_EPOLL)
4465 	if (sqe->ioprio || sqe->buf_index || sqe->splice_fd_in)
4466 		return -EINVAL;
4467 	if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4468 		return -EINVAL;
4469 
4470 	req->epoll.epfd = READ_ONCE(sqe->fd);
4471 	req->epoll.op = READ_ONCE(sqe->len);
4472 	req->epoll.fd = READ_ONCE(sqe->off);
4473 
4474 	if (ep_op_has_event(req->epoll.op)) {
4475 		struct epoll_event __user *ev;
4476 
4477 		ev = u64_to_user_ptr(READ_ONCE(sqe->addr));
4478 		if (copy_from_user(&req->epoll.event, ev, sizeof(*ev)))
4479 			return -EFAULT;
4480 	}
4481 
4482 	return 0;
4483 #else
4484 	return -EOPNOTSUPP;
4485 #endif
4486 }
4487 
io_epoll_ctl(struct io_kiocb *req, unsigned int issue_flags)4488 static int io_epoll_ctl(struct io_kiocb *req, unsigned int issue_flags)
4489 {
4490 #if defined(CONFIG_EPOLL)
4491 	struct io_epoll *ie = &req->epoll;
4492 	int ret;
4493 	bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK;
4494 
4495 	ret = do_epoll_ctl(ie->epfd, ie->op, ie->fd, &ie->event, force_nonblock);
4496 	if (force_nonblock && ret == -EAGAIN)
4497 		return -EAGAIN;
4498 
4499 	if (ret < 0)
4500 		req_set_fail(req);
4501 	__io_req_complete(req, issue_flags, ret, 0);
4502 	return 0;
4503 #else
4504 	return -EOPNOTSUPP;
4505 #endif
4506 }
4507 
io_madvise_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)4508 static int io_madvise_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4509 {
4510 #if defined(CONFIG_ADVISE_SYSCALLS) && defined(CONFIG_MMU)
4511 	if (sqe->ioprio || sqe->buf_index || sqe->off || sqe->splice_fd_in)
4512 		return -EINVAL;
4513 	if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4514 		return -EINVAL;
4515 
4516 	req->madvise.addr = READ_ONCE(sqe->addr);
4517 	req->madvise.len = READ_ONCE(sqe->len);
4518 	req->madvise.advice = READ_ONCE(sqe->fadvise_advice);
4519 	return 0;
4520 #else
4521 	return -EOPNOTSUPP;
4522 #endif
4523 }
4524 
io_madvise(struct io_kiocb *req, unsigned int issue_flags)4525 static int io_madvise(struct io_kiocb *req, unsigned int issue_flags)
4526 {
4527 #if defined(CONFIG_ADVISE_SYSCALLS) && defined(CONFIG_MMU)
4528 	struct io_madvise *ma = &req->madvise;
4529 	int ret;
4530 
4531 	if (issue_flags & IO_URING_F_NONBLOCK)
4532 		return -EAGAIN;
4533 
4534 	ret = do_madvise(current->mm, ma->addr, ma->len, ma->advice);
4535 	if (ret < 0)
4536 		req_set_fail(req);
4537 	io_req_complete(req, ret);
4538 	return 0;
4539 #else
4540 	return -EOPNOTSUPP;
4541 #endif
4542 }
4543 
io_fadvise_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)4544 static int io_fadvise_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4545 {
4546 	if (sqe->ioprio || sqe->buf_index || sqe->addr || sqe->splice_fd_in)
4547 		return -EINVAL;
4548 	if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4549 		return -EINVAL;
4550 
4551 	req->fadvise.offset = READ_ONCE(sqe->off);
4552 	req->fadvise.len = READ_ONCE(sqe->len);
4553 	req->fadvise.advice = READ_ONCE(sqe->fadvise_advice);
4554 	return 0;
4555 }
4556 
io_fadvise(struct io_kiocb *req, unsigned int issue_flags)4557 static int io_fadvise(struct io_kiocb *req, unsigned int issue_flags)
4558 {
4559 	struct io_fadvise *fa = &req->fadvise;
4560 	int ret;
4561 
4562 	if (issue_flags & IO_URING_F_NONBLOCK) {
4563 		switch (fa->advice) {
4564 		case POSIX_FADV_NORMAL:
4565 		case POSIX_FADV_RANDOM:
4566 		case POSIX_FADV_SEQUENTIAL:
4567 			break;
4568 		default:
4569 			return -EAGAIN;
4570 		}
4571 	}
4572 
4573 	ret = vfs_fadvise(req->file, fa->offset, fa->len, fa->advice);
4574 	if (ret < 0)
4575 		req_set_fail(req);
4576 	__io_req_complete(req, issue_flags, ret, 0);
4577 	return 0;
4578 }
4579 
io_statx_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)4580 static int io_statx_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4581 {
4582 	if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4583 		return -EINVAL;
4584 	if (sqe->ioprio || sqe->buf_index || sqe->splice_fd_in)
4585 		return -EINVAL;
4586 	if (req->flags & REQ_F_FIXED_FILE)
4587 		return -EBADF;
4588 
4589 	req->statx.dfd = READ_ONCE(sqe->fd);
4590 	req->statx.mask = READ_ONCE(sqe->len);
4591 	req->statx.filename = u64_to_user_ptr(READ_ONCE(sqe->addr));
4592 	req->statx.buffer = u64_to_user_ptr(READ_ONCE(sqe->addr2));
4593 	req->statx.flags = READ_ONCE(sqe->statx_flags);
4594 
4595 	return 0;
4596 }
4597 
io_statx(struct io_kiocb *req, unsigned int issue_flags)4598 static int io_statx(struct io_kiocb *req, unsigned int issue_flags)
4599 {
4600 	struct io_statx *ctx = &req->statx;
4601 	int ret;
4602 
4603 	if (issue_flags & IO_URING_F_NONBLOCK)
4604 		return -EAGAIN;
4605 
4606 	ret = do_statx(ctx->dfd, ctx->filename, ctx->flags, ctx->mask,
4607 		       ctx->buffer);
4608 
4609 	if (ret < 0)
4610 		req_set_fail(req);
4611 	io_req_complete(req, ret);
4612 	return 0;
4613 }
4614 
io_close_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)4615 static int io_close_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4616 {
4617 	if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4618 		return -EINVAL;
4619 	if (sqe->ioprio || sqe->off || sqe->addr || sqe->len ||
4620 	    sqe->rw_flags || sqe->buf_index)
4621 		return -EINVAL;
4622 	if (req->flags & REQ_F_FIXED_FILE)
4623 		return -EBADF;
4624 
4625 	req->close.fd = READ_ONCE(sqe->fd);
4626 	req->close.file_slot = READ_ONCE(sqe->file_index);
4627 	if (req->close.file_slot && req->close.fd)
4628 		return -EINVAL;
4629 
4630 	return 0;
4631 }
4632 
io_close(struct io_kiocb *req, unsigned int issue_flags)4633 static int io_close(struct io_kiocb *req, unsigned int issue_flags)
4634 {
4635 	struct files_struct *files = current->files;
4636 	struct io_close *close = &req->close;
4637 	struct fdtable *fdt;
4638 	struct file *file = NULL;
4639 	int ret = -EBADF;
4640 
4641 	if (req->close.file_slot) {
4642 		ret = io_close_fixed(req, issue_flags);
4643 		goto err;
4644 	}
4645 
4646 	spin_lock(&files->file_lock);
4647 	fdt = files_fdtable(files);
4648 	if (close->fd >= fdt->max_fds) {
4649 		spin_unlock(&files->file_lock);
4650 		goto err;
4651 	}
4652 	file = fdt->fd[close->fd];
4653 	if (!file || file->f_op == &io_uring_fops) {
4654 		spin_unlock(&files->file_lock);
4655 		file = NULL;
4656 		goto err;
4657 	}
4658 
4659 	/* if the file has a flush method, be safe and punt to async */
4660 	if (file->f_op->flush && (issue_flags & IO_URING_F_NONBLOCK)) {
4661 		spin_unlock(&files->file_lock);
4662 		return -EAGAIN;
4663 	}
4664 
4665 	ret = __close_fd_get_file(close->fd, &file);
4666 	spin_unlock(&files->file_lock);
4667 	if (ret < 0) {
4668 		if (ret == -ENOENT)
4669 			ret = -EBADF;
4670 		goto err;
4671 	}
4672 
4673 	/* No ->flush() or already async, safely close from here */
4674 	ret = filp_close(file, current->files);
4675 err:
4676 	if (ret < 0)
4677 		req_set_fail(req);
4678 	if (file)
4679 		fput(file);
4680 	__io_req_complete(req, issue_flags, ret, 0);
4681 	return 0;
4682 }
4683 
io_sfr_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)4684 static int io_sfr_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4685 {
4686 	struct io_ring_ctx *ctx = req->ctx;
4687 
4688 	if (unlikely(ctx->flags & IORING_SETUP_IOPOLL))
4689 		return -EINVAL;
4690 	if (unlikely(sqe->addr || sqe->ioprio || sqe->buf_index ||
4691 		     sqe->splice_fd_in))
4692 		return -EINVAL;
4693 
4694 	req->sync.off = READ_ONCE(sqe->off);
4695 	req->sync.len = READ_ONCE(sqe->len);
4696 	req->sync.flags = READ_ONCE(sqe->sync_range_flags);
4697 	return 0;
4698 }
4699 
io_sync_file_range(struct io_kiocb *req, unsigned int issue_flags)4700 static int io_sync_file_range(struct io_kiocb *req, unsigned int issue_flags)
4701 {
4702 	int ret;
4703 
4704 	/* sync_file_range always requires a blocking context */
4705 	if (issue_flags & IO_URING_F_NONBLOCK)
4706 		return -EAGAIN;
4707 
4708 	ret = sync_file_range(req->file, req->sync.off, req->sync.len,
4709 				req->sync.flags);
4710 	if (ret < 0)
4711 		req_set_fail(req);
4712 	io_req_complete(req, ret);
4713 	return 0;
4714 }
4715 
4716 #if defined(CONFIG_NET)
io_net_retry(struct socket *sock, int flags)4717 static bool io_net_retry(struct socket *sock, int flags)
4718 {
4719 	if (!(flags & MSG_WAITALL))
4720 		return false;
4721 	return sock->type == SOCK_STREAM || sock->type == SOCK_SEQPACKET;
4722 }
4723 
io_setup_async_msg(struct io_kiocb *req, struct io_async_msghdr *kmsg)4724 static int io_setup_async_msg(struct io_kiocb *req,
4725 			      struct io_async_msghdr *kmsg)
4726 {
4727 	struct io_async_msghdr *async_msg = req->async_data;
4728 
4729 	if (async_msg)
4730 		return -EAGAIN;
4731 	if (io_alloc_async_data(req)) {
4732 		kfree(kmsg->free_iov);
4733 		return -ENOMEM;
4734 	}
4735 	async_msg = req->async_data;
4736 	req->flags |= REQ_F_NEED_CLEANUP;
4737 	memcpy(async_msg, kmsg, sizeof(*kmsg));
4738 	if (async_msg->msg.msg_name)
4739 		async_msg->msg.msg_name = &async_msg->addr;
4740 	/* if were using fast_iov, set it to the new one */
4741 	if (!kmsg->free_iov) {
4742 		size_t fast_idx = kmsg->msg.msg_iter.iov - kmsg->fast_iov;
4743 		async_msg->msg.msg_iter.iov = &async_msg->fast_iov[fast_idx];
4744 	}
4745 
4746 	return -EAGAIN;
4747 }
4748 
io_sendmsg_copy_hdr(struct io_kiocb *req, struct io_async_msghdr *iomsg)4749 static int io_sendmsg_copy_hdr(struct io_kiocb *req,
4750 			       struct io_async_msghdr *iomsg)
4751 {
4752 	struct io_sr_msg *sr = &req->sr_msg;
4753 	int ret;
4754 
4755 	iomsg->msg.msg_name = &iomsg->addr;
4756 	iomsg->free_iov = iomsg->fast_iov;
4757 	ret = sendmsg_copy_msghdr(&iomsg->msg, req->sr_msg.umsg,
4758 				   req->sr_msg.msg_flags, &iomsg->free_iov);
4759 	/* save msg_control as sys_sendmsg() overwrites it */
4760 	sr->msg_control = iomsg->msg.msg_control;
4761 	return ret;
4762 }
4763 
io_sendmsg_prep_async(struct io_kiocb *req)4764 static int io_sendmsg_prep_async(struct io_kiocb *req)
4765 {
4766 	int ret;
4767 
4768 	ret = io_sendmsg_copy_hdr(req, req->async_data);
4769 	if (!ret)
4770 		req->flags |= REQ_F_NEED_CLEANUP;
4771 	return ret;
4772 }
4773 
io_sendmsg_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)4774 static int io_sendmsg_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4775 {
4776 	struct io_sr_msg *sr = &req->sr_msg;
4777 
4778 	if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4779 		return -EINVAL;
4780 	if (unlikely(sqe->addr2 || sqe->file_index))
4781 		return -EINVAL;
4782 	if (unlikely(sqe->addr2 || sqe->file_index || sqe->ioprio))
4783 		return -EINVAL;
4784 
4785 	sr->umsg = u64_to_user_ptr(READ_ONCE(sqe->addr));
4786 	sr->len = READ_ONCE(sqe->len);
4787 	sr->msg_flags = READ_ONCE(sqe->msg_flags) | MSG_NOSIGNAL;
4788 	if (sr->msg_flags & MSG_DONTWAIT)
4789 		req->flags |= REQ_F_NOWAIT;
4790 
4791 #ifdef CONFIG_COMPAT
4792 	if (req->ctx->compat)
4793 		sr->msg_flags |= MSG_CMSG_COMPAT;
4794 #endif
4795 	sr->done_io = 0;
4796 	return 0;
4797 }
4798 
io_sendmsg(struct io_kiocb *req, unsigned int issue_flags)4799 static int io_sendmsg(struct io_kiocb *req, unsigned int issue_flags)
4800 {
4801 	struct io_async_msghdr iomsg, *kmsg;
4802 	struct io_sr_msg *sr = &req->sr_msg;
4803 	struct socket *sock;
4804 	unsigned flags;
4805 	int min_ret = 0;
4806 	int ret;
4807 
4808 	sock = sock_from_file(req->file, &ret);
4809 	if (unlikely(!sock))
4810 		return ret;
4811 
4812 	kmsg = req->async_data;
4813 	if (!kmsg) {
4814 		ret = io_sendmsg_copy_hdr(req, &iomsg);
4815 		if (ret)
4816 			return ret;
4817 		kmsg = &iomsg;
4818 	} else {
4819 		kmsg->msg.msg_control = sr->msg_control;
4820 	}
4821 
4822 	flags = req->sr_msg.msg_flags;
4823 	if (issue_flags & IO_URING_F_NONBLOCK)
4824 		flags |= MSG_DONTWAIT;
4825 	if (flags & MSG_WAITALL)
4826 		min_ret = iov_iter_count(&kmsg->msg.msg_iter);
4827 
4828 	ret = __sys_sendmsg_sock(sock, &kmsg->msg, flags);
4829 
4830 	if (ret < min_ret) {
4831 		if (ret == -EAGAIN && (issue_flags & IO_URING_F_NONBLOCK))
4832 			return io_setup_async_msg(req, kmsg);
4833 		if (ret == -ERESTARTSYS)
4834 			ret = -EINTR;
4835 		if (ret > 0 && io_net_retry(sock, flags)) {
4836 			sr->done_io += ret;
4837 			req->flags |= REQ_F_PARTIAL_IO;
4838 			return io_setup_async_msg(req, kmsg);
4839 		}
4840 		req_set_fail(req);
4841 	}
4842 	/* fast path, check for non-NULL to avoid function call */
4843 	if (kmsg->free_iov)
4844 		kfree(kmsg->free_iov);
4845 	req->flags &= ~REQ_F_NEED_CLEANUP;
4846 	if (ret >= 0)
4847 		ret += sr->done_io;
4848 	else if (sr->done_io)
4849 		ret = sr->done_io;
4850 	__io_req_complete(req, issue_flags, ret, 0);
4851 	return 0;
4852 }
4853 
io_send(struct io_kiocb *req, unsigned int issue_flags)4854 static int io_send(struct io_kiocb *req, unsigned int issue_flags)
4855 {
4856 	struct io_sr_msg *sr = &req->sr_msg;
4857 	struct msghdr msg;
4858 	struct iovec iov;
4859 	struct socket *sock;
4860 	unsigned flags;
4861 	int min_ret = 0;
4862 	int ret;
4863 
4864 	sock = sock_from_file(req->file, &ret);
4865 	if (unlikely(!sock))
4866 		return ret;
4867 
4868 	ret = import_single_range(WRITE, sr->buf, sr->len, &iov, &msg.msg_iter);
4869 	if (unlikely(ret))
4870 		return ret;
4871 
4872 	msg.msg_name = NULL;
4873 	msg.msg_control = NULL;
4874 	msg.msg_controllen = 0;
4875 	msg.msg_namelen = 0;
4876 
4877 	flags = req->sr_msg.msg_flags;
4878 	if (issue_flags & IO_URING_F_NONBLOCK)
4879 		flags |= MSG_DONTWAIT;
4880 	if (flags & MSG_WAITALL)
4881 		min_ret = iov_iter_count(&msg.msg_iter);
4882 
4883 	msg.msg_flags = flags;
4884 	ret = sock_sendmsg(sock, &msg);
4885 	if (ret < min_ret) {
4886 		if (ret == -EAGAIN && (issue_flags & IO_URING_F_NONBLOCK))
4887 			return -EAGAIN;
4888 		if (ret == -ERESTARTSYS)
4889 			ret = -EINTR;
4890 		if (ret > 0 && io_net_retry(sock, flags)) {
4891 			sr->len -= ret;
4892 			sr->buf += ret;
4893 			sr->done_io += ret;
4894 			req->flags |= REQ_F_PARTIAL_IO;
4895 			return -EAGAIN;
4896 		}
4897 		req_set_fail(req);
4898 	}
4899 	if (ret >= 0)
4900 		ret += sr->done_io;
4901 	else if (sr->done_io)
4902 		ret = sr->done_io;
4903 	__io_req_complete(req, issue_flags, ret, 0);
4904 	return 0;
4905 }
4906 
__io_recvmsg_copy_hdr(struct io_kiocb *req, struct io_async_msghdr *iomsg)4907 static int __io_recvmsg_copy_hdr(struct io_kiocb *req,
4908 				 struct io_async_msghdr *iomsg)
4909 {
4910 	struct io_sr_msg *sr = &req->sr_msg;
4911 	struct iovec __user *uiov;
4912 	size_t iov_len;
4913 	int ret;
4914 
4915 	ret = __copy_msghdr_from_user(&iomsg->msg, sr->umsg,
4916 					&iomsg->uaddr, &uiov, &iov_len);
4917 	if (ret)
4918 		return ret;
4919 
4920 	if (req->flags & REQ_F_BUFFER_SELECT) {
4921 		if (iov_len > 1)
4922 			return -EINVAL;
4923 		if (copy_from_user(iomsg->fast_iov, uiov, sizeof(*uiov)))
4924 			return -EFAULT;
4925 		sr->len = iomsg->fast_iov[0].iov_len;
4926 		iomsg->free_iov = NULL;
4927 	} else {
4928 		iomsg->free_iov = iomsg->fast_iov;
4929 		ret = __import_iovec(READ, uiov, iov_len, UIO_FASTIOV,
4930 				     &iomsg->free_iov, &iomsg->msg.msg_iter,
4931 				     false);
4932 		if (ret > 0)
4933 			ret = 0;
4934 	}
4935 
4936 	return ret;
4937 }
4938 
4939 #ifdef CONFIG_COMPAT
__io_compat_recvmsg_copy_hdr(struct io_kiocb *req, struct io_async_msghdr *iomsg)4940 static int __io_compat_recvmsg_copy_hdr(struct io_kiocb *req,
4941 					struct io_async_msghdr *iomsg)
4942 {
4943 	struct io_sr_msg *sr = &req->sr_msg;
4944 	struct compat_iovec __user *uiov;
4945 	compat_uptr_t ptr;
4946 	compat_size_t len;
4947 	int ret;
4948 
4949 	ret = __get_compat_msghdr(&iomsg->msg, sr->umsg_compat, &iomsg->uaddr,
4950 				  &ptr, &len);
4951 	if (ret)
4952 		return ret;
4953 
4954 	uiov = compat_ptr(ptr);
4955 	if (req->flags & REQ_F_BUFFER_SELECT) {
4956 		compat_ssize_t clen;
4957 
4958 		if (len > 1)
4959 			return -EINVAL;
4960 		if (!access_ok(uiov, sizeof(*uiov)))
4961 			return -EFAULT;
4962 		if (__get_user(clen, &uiov->iov_len))
4963 			return -EFAULT;
4964 		if (clen < 0)
4965 			return -EINVAL;
4966 		sr->len = clen;
4967 		iomsg->free_iov = NULL;
4968 	} else {
4969 		iomsg->free_iov = iomsg->fast_iov;
4970 		ret = __import_iovec(READ, (struct iovec __user *)uiov, len,
4971 				   UIO_FASTIOV, &iomsg->free_iov,
4972 				   &iomsg->msg.msg_iter, true);
4973 		if (ret < 0)
4974 			return ret;
4975 	}
4976 
4977 	return 0;
4978 }
4979 #endif
4980 
io_recvmsg_copy_hdr(struct io_kiocb *req, struct io_async_msghdr *iomsg)4981 static int io_recvmsg_copy_hdr(struct io_kiocb *req,
4982 			       struct io_async_msghdr *iomsg)
4983 {
4984 	iomsg->msg.msg_name = &iomsg->addr;
4985 
4986 #ifdef CONFIG_COMPAT
4987 	if (req->ctx->compat)
4988 		return __io_compat_recvmsg_copy_hdr(req, iomsg);
4989 #endif
4990 
4991 	return __io_recvmsg_copy_hdr(req, iomsg);
4992 }
4993 
io_recv_buffer_select(struct io_kiocb *req, bool needs_lock)4994 static struct io_buffer *io_recv_buffer_select(struct io_kiocb *req,
4995 					       bool needs_lock)
4996 {
4997 	struct io_sr_msg *sr = &req->sr_msg;
4998 	struct io_buffer *kbuf;
4999 
5000 	kbuf = io_buffer_select(req, &sr->len, sr->bgid, sr->kbuf, needs_lock);
5001 	if (IS_ERR(kbuf))
5002 		return kbuf;
5003 
5004 	sr->kbuf = kbuf;
5005 	req->flags |= REQ_F_BUFFER_SELECTED;
5006 	return kbuf;
5007 }
5008 
io_put_recv_kbuf(struct io_kiocb *req)5009 static inline unsigned int io_put_recv_kbuf(struct io_kiocb *req)
5010 {
5011 	return io_put_kbuf(req, req->sr_msg.kbuf);
5012 }
5013 
io_recvmsg_prep_async(struct io_kiocb *req)5014 static int io_recvmsg_prep_async(struct io_kiocb *req)
5015 {
5016 	int ret;
5017 
5018 	ret = io_recvmsg_copy_hdr(req, req->async_data);
5019 	if (!ret)
5020 		req->flags |= REQ_F_NEED_CLEANUP;
5021 	return ret;
5022 }
5023 
io_recvmsg_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)5024 static int io_recvmsg_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
5025 {
5026 	struct io_sr_msg *sr = &req->sr_msg;
5027 
5028 	if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
5029 		return -EINVAL;
5030 	if (unlikely(sqe->addr2 || sqe->file_index))
5031 		return -EINVAL;
5032 	if (unlikely(sqe->addr2 || sqe->file_index || sqe->ioprio))
5033 		return -EINVAL;
5034 
5035 	sr->umsg = u64_to_user_ptr(READ_ONCE(sqe->addr));
5036 	sr->len = READ_ONCE(sqe->len);
5037 	sr->bgid = READ_ONCE(sqe->buf_group);
5038 	sr->msg_flags = READ_ONCE(sqe->msg_flags);
5039 	if (sr->msg_flags & MSG_DONTWAIT)
5040 		req->flags |= REQ_F_NOWAIT;
5041 
5042 #ifdef CONFIG_COMPAT
5043 	if (req->ctx->compat)
5044 		sr->msg_flags |= MSG_CMSG_COMPAT;
5045 #endif
5046 	sr->done_io = 0;
5047 	return 0;
5048 }
5049 
io_recvmsg(struct io_kiocb *req, unsigned int issue_flags)5050 static int io_recvmsg(struct io_kiocb *req, unsigned int issue_flags)
5051 {
5052 	struct io_async_msghdr iomsg, *kmsg;
5053 	struct io_sr_msg *sr = &req->sr_msg;
5054 	struct socket *sock;
5055 	struct io_buffer *kbuf;
5056 	unsigned flags;
5057 	int min_ret = 0;
5058 	int ret, cflags = 0;
5059 	bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK;
5060 
5061 	sock = sock_from_file(req->file, &ret);
5062 	if (unlikely(!sock))
5063 		return ret;
5064 
5065 	kmsg = req->async_data;
5066 	if (!kmsg) {
5067 		ret = io_recvmsg_copy_hdr(req, &iomsg);
5068 		if (ret)
5069 			return ret;
5070 		kmsg = &iomsg;
5071 	}
5072 
5073 	if (req->flags & REQ_F_BUFFER_SELECT) {
5074 		kbuf = io_recv_buffer_select(req, !force_nonblock);
5075 		if (IS_ERR(kbuf))
5076 			return PTR_ERR(kbuf);
5077 		kmsg->fast_iov[0].iov_base = u64_to_user_ptr(kbuf->addr);
5078 		kmsg->fast_iov[0].iov_len = req->sr_msg.len;
5079 		iov_iter_init(&kmsg->msg.msg_iter, READ, kmsg->fast_iov,
5080 				1, req->sr_msg.len);
5081 	}
5082 
5083 	flags = req->sr_msg.msg_flags;
5084 	if (force_nonblock)
5085 		flags |= MSG_DONTWAIT;
5086 	if (flags & MSG_WAITALL && !kmsg->msg.msg_controllen)
5087 		min_ret = iov_iter_count(&kmsg->msg.msg_iter);
5088 
5089 	ret = __sys_recvmsg_sock(sock, &kmsg->msg, req->sr_msg.umsg,
5090 					kmsg->uaddr, flags);
5091 	if (ret < min_ret) {
5092 		if (ret == -EAGAIN && force_nonblock)
5093 			return io_setup_async_msg(req, kmsg);
5094 		if (ret == -ERESTARTSYS)
5095 			ret = -EINTR;
5096 		if (ret > 0 && io_net_retry(sock, flags)) {
5097 			kmsg->msg.msg_controllen = 0;
5098 			kmsg->msg.msg_control = NULL;
5099 			sr->done_io += ret;
5100 			req->flags |= REQ_F_PARTIAL_IO;
5101 			return io_setup_async_msg(req, kmsg);
5102 		}
5103 		req_set_fail(req);
5104 	} else if ((flags & MSG_WAITALL) && (kmsg->msg.msg_flags & (MSG_TRUNC | MSG_CTRUNC))) {
5105 		req_set_fail(req);
5106 	}
5107 
5108 	if (req->flags & REQ_F_BUFFER_SELECTED)
5109 		cflags = io_put_recv_kbuf(req);
5110 	/* fast path, check for non-NULL to avoid function call */
5111 	if (kmsg->free_iov)
5112 		kfree(kmsg->free_iov);
5113 	req->flags &= ~REQ_F_NEED_CLEANUP;
5114 	if (ret >= 0)
5115 		ret += sr->done_io;
5116 	else if (sr->done_io)
5117 		ret = sr->done_io;
5118 	__io_req_complete(req, issue_flags, ret, cflags);
5119 	return 0;
5120 }
5121 
io_recv(struct io_kiocb *req, unsigned int issue_flags)5122 static int io_recv(struct io_kiocb *req, unsigned int issue_flags)
5123 {
5124 	struct io_buffer *kbuf;
5125 	struct io_sr_msg *sr = &req->sr_msg;
5126 	struct msghdr msg;
5127 	void __user *buf = sr->buf;
5128 	struct socket *sock;
5129 	struct iovec iov;
5130 	unsigned flags;
5131 	int min_ret = 0;
5132 	int ret, cflags = 0;
5133 	bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK;
5134 
5135 	sock = sock_from_file(req->file, &ret);
5136 	if (unlikely(!sock))
5137 		return ret;
5138 
5139 	if (req->flags & REQ_F_BUFFER_SELECT) {
5140 		kbuf = io_recv_buffer_select(req, !force_nonblock);
5141 		if (IS_ERR(kbuf))
5142 			return PTR_ERR(kbuf);
5143 		buf = u64_to_user_ptr(kbuf->addr);
5144 	}
5145 
5146 	ret = import_single_range(READ, buf, sr->len, &iov, &msg.msg_iter);
5147 	if (unlikely(ret))
5148 		goto out_free;
5149 
5150 	msg.msg_name = NULL;
5151 	msg.msg_control = NULL;
5152 	msg.msg_controllen = 0;
5153 	msg.msg_namelen = 0;
5154 	msg.msg_iocb = NULL;
5155 	msg.msg_flags = 0;
5156 
5157 	flags = req->sr_msg.msg_flags;
5158 	if (force_nonblock)
5159 		flags |= MSG_DONTWAIT;
5160 	if (flags & MSG_WAITALL)
5161 		min_ret = iov_iter_count(&msg.msg_iter);
5162 
5163 	ret = sock_recvmsg(sock, &msg, flags);
5164 	if (ret < min_ret) {
5165 		if (ret == -EAGAIN && force_nonblock)
5166 			return -EAGAIN;
5167 		if (ret == -ERESTARTSYS)
5168 			ret = -EINTR;
5169 		if (ret > 0 && io_net_retry(sock, flags)) {
5170 			sr->len -= ret;
5171 			sr->buf += ret;
5172 			sr->done_io += ret;
5173 			req->flags |= REQ_F_PARTIAL_IO;
5174 			return -EAGAIN;
5175 		}
5176 		req_set_fail(req);
5177 	} else if ((flags & MSG_WAITALL) && (msg.msg_flags & (MSG_TRUNC | MSG_CTRUNC))) {
5178 out_free:
5179 		req_set_fail(req);
5180 	}
5181 	if (req->flags & REQ_F_BUFFER_SELECTED)
5182 		cflags = io_put_recv_kbuf(req);
5183 	if (ret >= 0)
5184 		ret += sr->done_io;
5185 	else if (sr->done_io)
5186 		ret = sr->done_io;
5187 	__io_req_complete(req, issue_flags, ret, cflags);
5188 	return 0;
5189 }
5190 
io_accept_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)5191 static int io_accept_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
5192 {
5193 	struct io_accept *accept = &req->accept;
5194 
5195 	if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
5196 		return -EINVAL;
5197 	if (sqe->ioprio || sqe->len || sqe->buf_index)
5198 		return -EINVAL;
5199 
5200 	accept->addr = u64_to_user_ptr(READ_ONCE(sqe->addr));
5201 	accept->addr_len = u64_to_user_ptr(READ_ONCE(sqe->addr2));
5202 	accept->flags = READ_ONCE(sqe->accept_flags);
5203 	accept->nofile = rlimit(RLIMIT_NOFILE);
5204 
5205 	accept->file_slot = READ_ONCE(sqe->file_index);
5206 	if (accept->file_slot && (accept->flags & SOCK_CLOEXEC))
5207 		return -EINVAL;
5208 	if (accept->flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
5209 		return -EINVAL;
5210 	if (SOCK_NONBLOCK != O_NONBLOCK && (accept->flags & SOCK_NONBLOCK))
5211 		accept->flags = (accept->flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
5212 	return 0;
5213 }
5214 
io_accept(struct io_kiocb *req, unsigned int issue_flags)5215 static int io_accept(struct io_kiocb *req, unsigned int issue_flags)
5216 {
5217 	struct io_accept *accept = &req->accept;
5218 	bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK;
5219 	unsigned int file_flags = force_nonblock ? O_NONBLOCK : 0;
5220 	bool fixed = !!accept->file_slot;
5221 	struct file *file;
5222 	int ret, fd;
5223 
5224 	if (!fixed) {
5225 		fd = __get_unused_fd_flags(accept->flags, accept->nofile);
5226 		if (unlikely(fd < 0))
5227 			return fd;
5228 	}
5229 	file = do_accept(req->file, file_flags, accept->addr, accept->addr_len,
5230 			 accept->flags);
5231 
5232 	if (IS_ERR(file)) {
5233 		if (!fixed)
5234 			put_unused_fd(fd);
5235 		ret = PTR_ERR(file);
5236 		/* safe to retry */
5237 		req->flags |= REQ_F_PARTIAL_IO;
5238 		if (ret == -EAGAIN && force_nonblock)
5239 			return -EAGAIN;
5240 		if (ret == -ERESTARTSYS)
5241 			ret = -EINTR;
5242 		req_set_fail(req);
5243 	} else if (!fixed) {
5244 		fd_install(fd, file);
5245 		ret = fd;
5246 	} else {
5247 		ret = io_install_fixed_file(req, file, issue_flags,
5248 					    accept->file_slot - 1);
5249 	}
5250 	__io_req_complete(req, issue_flags, ret, 0);
5251 	return 0;
5252 }
5253 
io_connect_prep_async(struct io_kiocb *req)5254 static int io_connect_prep_async(struct io_kiocb *req)
5255 {
5256 	struct io_async_connect *io = req->async_data;
5257 	struct io_connect *conn = &req->connect;
5258 
5259 	return move_addr_to_kernel(conn->addr, conn->addr_len, &io->address);
5260 }
5261 
io_connect_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)5262 static int io_connect_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
5263 {
5264 	struct io_connect *conn = &req->connect;
5265 
5266 	if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
5267 		return -EINVAL;
5268 	if (sqe->ioprio || sqe->len || sqe->buf_index || sqe->rw_flags ||
5269 	    sqe->splice_fd_in)
5270 		return -EINVAL;
5271 
5272 	conn->addr = u64_to_user_ptr(READ_ONCE(sqe->addr));
5273 	conn->addr_len =  READ_ONCE(sqe->addr2);
5274 	return 0;
5275 }
5276 
io_connect(struct io_kiocb *req, unsigned int issue_flags)5277 static int io_connect(struct io_kiocb *req, unsigned int issue_flags)
5278 {
5279 	struct io_async_connect __io, *io;
5280 	unsigned file_flags;
5281 	int ret;
5282 	bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK;
5283 
5284 	if (req->async_data) {
5285 		io = req->async_data;
5286 	} else {
5287 		ret = move_addr_to_kernel(req->connect.addr,
5288 						req->connect.addr_len,
5289 						&__io.address);
5290 		if (ret)
5291 			goto out;
5292 		io = &__io;
5293 	}
5294 
5295 	file_flags = force_nonblock ? O_NONBLOCK : 0;
5296 
5297 	ret = __sys_connect_file(req->file, &io->address,
5298 					req->connect.addr_len, file_flags);
5299 	if ((ret == -EAGAIN || ret == -EINPROGRESS) && force_nonblock) {
5300 		if (req->async_data)
5301 			return -EAGAIN;
5302 		if (io_alloc_async_data(req)) {
5303 			ret = -ENOMEM;
5304 			goto out;
5305 		}
5306 		memcpy(req->async_data, &__io, sizeof(__io));
5307 		return -EAGAIN;
5308 	}
5309 	if (ret == -ERESTARTSYS)
5310 		ret = -EINTR;
5311 out:
5312 	if (ret < 0)
5313 		req_set_fail(req);
5314 	__io_req_complete(req, issue_flags, ret, 0);
5315 	return 0;
5316 }
5317 #else /* !CONFIG_NET */
5318 #define IO_NETOP_FN(op)							\
5319 static int io_##op(struct io_kiocb *req, unsigned int issue_flags)	\
5320 {									\
5321 	return -EOPNOTSUPP;						\
5322 }
5323 
5324 #define IO_NETOP_PREP(op)						\
5325 IO_NETOP_FN(op)								\
5326 static int io_##op##_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe) \
5327 {									\
5328 	return -EOPNOTSUPP;						\
5329 }									\
5330 
5331 #define IO_NETOP_PREP_ASYNC(op)						\
5332 IO_NETOP_PREP(op)							\
5333 static int io_##op##_prep_async(struct io_kiocb *req)			\
5334 {									\
5335 	return -EOPNOTSUPP;						\
5336 }
5337 
5338 IO_NETOP_PREP_ASYNC(sendmsg);
5339 IO_NETOP_PREP_ASYNC(recvmsg);
5340 IO_NETOP_PREP_ASYNC(connect);
5341 IO_NETOP_PREP(accept);
5342 IO_NETOP_FN(send);
5343 IO_NETOP_FN(recv);
5344 #endif /* CONFIG_NET */
5345 
5346 struct io_poll_table {
5347 	struct poll_table_struct pt;
5348 	struct io_kiocb *req;
5349 	int nr_entries;
5350 	int error;
5351 };
5352 
5353 #define IO_POLL_CANCEL_FLAG	BIT(31)
5354 #define IO_POLL_RETRY_FLAG	BIT(30)
5355 #define IO_POLL_REF_MASK	GENMASK(29, 0)
5356 
5357 /*
5358  * We usually have 1-2 refs taken, 128 is more than enough and we want to
5359  * maximise the margin between this amount and the moment when it overflows.
5360  */
5361 #define IO_POLL_REF_BIAS       128
5362 
io_poll_get_ownership_slowpath(struct io_kiocb *req)5363 static bool io_poll_get_ownership_slowpath(struct io_kiocb *req)
5364 {
5365 	int v;
5366 
5367 	/*
5368 	 * poll_refs are already elevated and we don't have much hope for
5369 	 * grabbing the ownership. Instead of incrementing set a retry flag
5370 	 * to notify the loop that there might have been some change.
5371 	 */
5372 	v = atomic_fetch_or(IO_POLL_RETRY_FLAG, &req->poll_refs);
5373 	if (v & IO_POLL_REF_MASK)
5374 		return false;
5375 	return !(atomic_fetch_inc(&req->poll_refs) & IO_POLL_REF_MASK);
5376 }
5377 
5378 /*
5379  * If refs part of ->poll_refs (see IO_POLL_REF_MASK) is 0, it's free. We can
5380  * bump it and acquire ownership. It's disallowed to modify requests while not
5381  * owning it, that prevents from races for enqueueing task_work's and b/w
5382  * arming poll and wakeups.
5383  */
io_poll_get_ownership(struct io_kiocb *req)5384 static inline bool io_poll_get_ownership(struct io_kiocb *req)
5385 {
5386 	if (unlikely(atomic_read(&req->poll_refs) >= IO_POLL_REF_BIAS))
5387 		return io_poll_get_ownership_slowpath(req);
5388 	return !(atomic_fetch_inc(&req->poll_refs) & IO_POLL_REF_MASK);
5389 }
5390 
io_poll_mark_cancelled(struct io_kiocb *req)5391 static void io_poll_mark_cancelled(struct io_kiocb *req)
5392 {
5393 	atomic_or(IO_POLL_CANCEL_FLAG, &req->poll_refs);
5394 }
5395 
io_poll_get_double(struct io_kiocb *req)5396 static struct io_poll_iocb *io_poll_get_double(struct io_kiocb *req)
5397 {
5398 	/* pure poll stashes this in ->async_data, poll driven retry elsewhere */
5399 	if (req->opcode == IORING_OP_POLL_ADD)
5400 		return req->async_data;
5401 	return req->apoll->double_poll;
5402 }
5403 
io_poll_get_single(struct io_kiocb *req)5404 static struct io_poll_iocb *io_poll_get_single(struct io_kiocb *req)
5405 {
5406 	if (req->opcode == IORING_OP_POLL_ADD)
5407 		return &req->poll;
5408 	return &req->apoll->poll;
5409 }
5410 
io_poll_req_insert(struct io_kiocb *req)5411 static void io_poll_req_insert(struct io_kiocb *req)
5412 {
5413 	struct io_ring_ctx *ctx = req->ctx;
5414 	struct hlist_head *list;
5415 
5416 	list = &ctx->cancel_hash[hash_long(req->user_data, ctx->cancel_hash_bits)];
5417 	hlist_add_head(&req->hash_node, list);
5418 }
5419 
io_init_poll_iocb(struct io_poll_iocb *poll, __poll_t events, wait_queue_func_t wake_func)5420 static void io_init_poll_iocb(struct io_poll_iocb *poll, __poll_t events,
5421 			      wait_queue_func_t wake_func)
5422 {
5423 	poll->head = NULL;
5424 #define IO_POLL_UNMASK	(EPOLLERR|EPOLLHUP|EPOLLNVAL|EPOLLRDHUP)
5425 	/* mask in events that we always want/need */
5426 	poll->events = events | IO_POLL_UNMASK;
5427 	INIT_LIST_HEAD(&poll->wait.entry);
5428 	init_waitqueue_func_entry(&poll->wait, wake_func);
5429 }
5430 
io_poll_remove_entry(struct io_poll_iocb *poll)5431 static inline void io_poll_remove_entry(struct io_poll_iocb *poll)
5432 {
5433 	struct wait_queue_head *head = smp_load_acquire(&poll->head);
5434 
5435 	if (head) {
5436 		spin_lock_irq(&head->lock);
5437 		list_del_init(&poll->wait.entry);
5438 		poll->head = NULL;
5439 		spin_unlock_irq(&head->lock);
5440 	}
5441 }
5442 
io_poll_remove_entries(struct io_kiocb *req)5443 static void io_poll_remove_entries(struct io_kiocb *req)
5444 {
5445 	struct io_poll_iocb *poll = io_poll_get_single(req);
5446 	struct io_poll_iocb *poll_double = io_poll_get_double(req);
5447 
5448 	/*
5449 	 * While we hold the waitqueue lock and the waitqueue is nonempty,
5450 	 * wake_up_pollfree() will wait for us.  However, taking the waitqueue
5451 	 * lock in the first place can race with the waitqueue being freed.
5452 	 *
5453 	 * We solve this as eventpoll does: by taking advantage of the fact that
5454 	 * all users of wake_up_pollfree() will RCU-delay the actual free.  If
5455 	 * we enter rcu_read_lock() and see that the pointer to the queue is
5456 	 * non-NULL, we can then lock it without the memory being freed out from
5457 	 * under us.
5458 	 *
5459 	 * Keep holding rcu_read_lock() as long as we hold the queue lock, in
5460 	 * case the caller deletes the entry from the queue, leaving it empty.
5461 	 * In that case, only RCU prevents the queue memory from being freed.
5462 	 */
5463 	rcu_read_lock();
5464 	io_poll_remove_entry(poll);
5465 	if (poll_double)
5466 		io_poll_remove_entry(poll_double);
5467 	rcu_read_unlock();
5468 }
5469 
5470 /*
5471  * All poll tw should go through this. Checks for poll events, manages
5472  * references, does rewait, etc.
5473  *
5474  * Returns a negative error on failure. >0 when no action require, which is
5475  * either spurious wakeup or multishot CQE is served. 0 when it's done with
5476  * the request, then the mask is stored in req->result.
5477  */
io_poll_check_events(struct io_kiocb *req)5478 static int io_poll_check_events(struct io_kiocb *req)
5479 {
5480 	struct io_ring_ctx *ctx = req->ctx;
5481 	struct io_poll_iocb *poll = io_poll_get_single(req);
5482 	int v;
5483 
5484 	/* req->task == current here, checking PF_EXITING is safe */
5485 	if (unlikely(req->task->flags & PF_EXITING))
5486 		io_poll_mark_cancelled(req);
5487 
5488 	do {
5489 		v = atomic_read(&req->poll_refs);
5490 
5491 		/* tw handler should be the owner, and so have some references */
5492 		if (WARN_ON_ONCE(!(v & IO_POLL_REF_MASK)))
5493 			return 0;
5494 		if (v & IO_POLL_CANCEL_FLAG)
5495 			return -ECANCELED;
5496 		/*
5497 		 * cqe.res contains only events of the first wake up
5498 		 * and all others are be lost. Redo vfs_poll() to get
5499 		 * up to date state.
5500 		 */
5501 		if ((v & IO_POLL_REF_MASK) != 1)
5502 			req->result = 0;
5503 		if (v & IO_POLL_RETRY_FLAG) {
5504 			req->result = 0;
5505 			/*
5506 			 * We won't find new events that came in between
5507 			 * vfs_poll and the ref put unless we clear the
5508 			 * flag in advance.
5509 			 */
5510 			atomic_andnot(IO_POLL_RETRY_FLAG, &req->poll_refs);
5511 			v &= ~IO_POLL_RETRY_FLAG;
5512 		}
5513 
5514 		if (!req->result) {
5515 			struct poll_table_struct pt = { ._key = poll->events };
5516 
5517 			req->result = vfs_poll(req->file, &pt) & poll->events;
5518 		}
5519 
5520 		/* multishot, just fill an CQE and proceed */
5521 		if (req->result && !(poll->events & EPOLLONESHOT)) {
5522 			__poll_t mask = mangle_poll(req->result & poll->events);
5523 			bool filled;
5524 
5525 			spin_lock(&ctx->completion_lock);
5526 			filled = io_fill_cqe_aux(ctx, req->user_data, mask,
5527 						 IORING_CQE_F_MORE);
5528 			io_commit_cqring(ctx);
5529 			spin_unlock(&ctx->completion_lock);
5530 			if (unlikely(!filled))
5531 				return -ECANCELED;
5532 			io_cqring_ev_posted(ctx);
5533 		} else if (req->result) {
5534 			return 0;
5535 		}
5536 
5537 		/* force the next iteration to vfs_poll() */
5538 		req->result = 0;
5539 
5540 		/*
5541 		 * Release all references, retry if someone tried to restart
5542 		 * task_work while we were executing it.
5543 		 */
5544 	} while (atomic_sub_return(v & IO_POLL_REF_MASK, &req->poll_refs) &
5545 					IO_POLL_REF_MASK);
5546 
5547 	return 1;
5548 }
5549 
io_poll_task_func(struct io_kiocb *req, bool *locked)5550 static void io_poll_task_func(struct io_kiocb *req, bool *locked)
5551 {
5552 	struct io_ring_ctx *ctx = req->ctx;
5553 	int ret;
5554 
5555 	ret = io_poll_check_events(req);
5556 	if (ret > 0)
5557 		return;
5558 
5559 	if (!ret) {
5560 		req->result = mangle_poll(req->result & req->poll.events);
5561 	} else {
5562 		req->result = ret;
5563 		req_set_fail(req);
5564 	}
5565 
5566 	io_poll_remove_entries(req);
5567 	spin_lock(&ctx->completion_lock);
5568 	hash_del(&req->hash_node);
5569 	spin_unlock(&ctx->completion_lock);
5570 	io_req_complete_post(req, req->result, 0);
5571 }
5572 
io_apoll_task_func(struct io_kiocb *req, bool *locked)5573 static void io_apoll_task_func(struct io_kiocb *req, bool *locked)
5574 {
5575 	struct io_ring_ctx *ctx = req->ctx;
5576 	int ret;
5577 
5578 	ret = io_poll_check_events(req);
5579 	if (ret > 0)
5580 		return;
5581 
5582 	io_tw_lock(req->ctx, locked);
5583 	io_poll_remove_entries(req);
5584 	spin_lock(&ctx->completion_lock);
5585 	hash_del(&req->hash_node);
5586 	spin_unlock(&ctx->completion_lock);
5587 
5588 	if (!ret)
5589 		io_req_task_submit(req, locked);
5590 	else
5591 		io_req_complete_failed(req, ret);
5592 }
5593 
__io_poll_execute(struct io_kiocb *req, int mask)5594 static void __io_poll_execute(struct io_kiocb *req, int mask)
5595 {
5596 	req->result = mask;
5597 	if (req->opcode == IORING_OP_POLL_ADD)
5598 		req->io_task_work.func = io_poll_task_func;
5599 	else
5600 		req->io_task_work.func = io_apoll_task_func;
5601 
5602 	trace_io_uring_task_add(req->ctx, req->opcode, req->user_data, mask);
5603 	io_req_task_work_add(req);
5604 }
5605 
io_poll_execute(struct io_kiocb *req, int res)5606 static inline void io_poll_execute(struct io_kiocb *req, int res)
5607 {
5608 	if (io_poll_get_ownership(req))
5609 		__io_poll_execute(req, res);
5610 }
5611 
io_poll_cancel_req(struct io_kiocb *req)5612 static void io_poll_cancel_req(struct io_kiocb *req)
5613 {
5614 	io_poll_mark_cancelled(req);
5615 	/* kick tw, which should complete the request */
5616 	io_poll_execute(req, 0);
5617 }
5618 
io_poll_wake(struct wait_queue_entry *wait, unsigned mode, int sync, void *key)5619 static int io_poll_wake(struct wait_queue_entry *wait, unsigned mode, int sync,
5620 			void *key)
5621 {
5622 	struct io_kiocb *req = wait->private;
5623 	struct io_poll_iocb *poll = container_of(wait, struct io_poll_iocb,
5624 						 wait);
5625 	__poll_t mask = key_to_poll(key);
5626 
5627 	if (unlikely(mask & POLLFREE)) {
5628 		io_poll_mark_cancelled(req);
5629 		/* we have to kick tw in case it's not already */
5630 		io_poll_execute(req, 0);
5631 
5632 		/*
5633 		 * If the waitqueue is being freed early but someone is already
5634 		 * holds ownership over it, we have to tear down the request as
5635 		 * best we can. That means immediately removing the request from
5636 		 * its waitqueue and preventing all further accesses to the
5637 		 * waitqueue via the request.
5638 		 */
5639 		list_del_init(&poll->wait.entry);
5640 
5641 		/*
5642 		 * Careful: this *must* be the last step, since as soon
5643 		 * as req->head is NULL'ed out, the request can be
5644 		 * completed and freed, since aio_poll_complete_work()
5645 		 * will no longer need to take the waitqueue lock.
5646 		 */
5647 		smp_store_release(&poll->head, NULL);
5648 		return 1;
5649 	}
5650 
5651 	/* for instances that support it check for an event match first */
5652 	if (mask && !(mask & poll->events))
5653 		return 0;
5654 
5655 	if (io_poll_get_ownership(req)) {
5656 		/*
5657 		 * If we trigger a multishot poll off our own wakeup path,
5658 		 * disable multishot as there is a circular dependency between
5659 		 * CQ posting and triggering the event.
5660 		 */
5661 		if (mask & EPOLL_URING_WAKE)
5662 			poll->events |= EPOLLONESHOT;
5663 
5664 		__io_poll_execute(req, mask);
5665 	}
5666 	return 1;
5667 }
5668 
__io_queue_proc(struct io_poll_iocb *poll, struct io_poll_table *pt, struct wait_queue_head *head, struct io_poll_iocb **poll_ptr)5669 static void __io_queue_proc(struct io_poll_iocb *poll, struct io_poll_table *pt,
5670 			    struct wait_queue_head *head,
5671 			    struct io_poll_iocb **poll_ptr)
5672 {
5673 	struct io_kiocb *req = pt->req;
5674 
5675 	/*
5676 	 * The file being polled uses multiple waitqueues for poll handling
5677 	 * (e.g. one for read, one for write). Setup a separate io_poll_iocb
5678 	 * if this happens.
5679 	 */
5680 	if (unlikely(pt->nr_entries)) {
5681 		struct io_poll_iocb *first = poll;
5682 
5683 		/* double add on the same waitqueue head, ignore */
5684 		if (first->head == head)
5685 			return;
5686 		/* already have a 2nd entry, fail a third attempt */
5687 		if (*poll_ptr) {
5688 			if ((*poll_ptr)->head == head)
5689 				return;
5690 			pt->error = -EINVAL;
5691 			return;
5692 		}
5693 
5694 		poll = kmalloc(sizeof(*poll), GFP_ATOMIC);
5695 		if (!poll) {
5696 			pt->error = -ENOMEM;
5697 			return;
5698 		}
5699 		io_init_poll_iocb(poll, first->events, first->wait.func);
5700 		*poll_ptr = poll;
5701 	}
5702 
5703 	pt->nr_entries++;
5704 	poll->head = head;
5705 	poll->wait.private = req;
5706 
5707 	if (poll->events & EPOLLEXCLUSIVE)
5708 		add_wait_queue_exclusive(head, &poll->wait);
5709 	else
5710 		add_wait_queue(head, &poll->wait);
5711 }
5712 
io_poll_queue_proc(struct file *file, struct wait_queue_head *head, struct poll_table_struct *p)5713 static void io_poll_queue_proc(struct file *file, struct wait_queue_head *head,
5714 			       struct poll_table_struct *p)
5715 {
5716 	struct io_poll_table *pt = container_of(p, struct io_poll_table, pt);
5717 
5718 	__io_queue_proc(&pt->req->poll, pt, head,
5719 			(struct io_poll_iocb **) &pt->req->async_data);
5720 }
5721 
__io_arm_poll_handler(struct io_kiocb *req, struct io_poll_iocb *poll, struct io_poll_table *ipt, __poll_t mask)5722 static int __io_arm_poll_handler(struct io_kiocb *req,
5723 				 struct io_poll_iocb *poll,
5724 				 struct io_poll_table *ipt, __poll_t mask)
5725 {
5726 	struct io_ring_ctx *ctx = req->ctx;
5727 
5728 	INIT_HLIST_NODE(&req->hash_node);
5729 	io_init_poll_iocb(poll, mask, io_poll_wake);
5730 	poll->file = req->file;
5731 	poll->wait.private = req;
5732 
5733 	ipt->pt._key = mask;
5734 	ipt->req = req;
5735 	ipt->error = 0;
5736 	ipt->nr_entries = 0;
5737 
5738 	/*
5739 	 * Take the ownership to delay any tw execution up until we're done
5740 	 * with poll arming. see io_poll_get_ownership().
5741 	 */
5742 	atomic_set(&req->poll_refs, 1);
5743 	mask = vfs_poll(req->file, &ipt->pt) & poll->events;
5744 
5745 	if (mask && (poll->events & EPOLLONESHOT)) {
5746 		io_poll_remove_entries(req);
5747 		/* no one else has access to the req, forget about the ref */
5748 		return mask;
5749 	}
5750 	if (!mask && unlikely(ipt->error || !ipt->nr_entries)) {
5751 		io_poll_remove_entries(req);
5752 		if (!ipt->error)
5753 			ipt->error = -EINVAL;
5754 		return 0;
5755 	}
5756 
5757 	spin_lock(&ctx->completion_lock);
5758 	io_poll_req_insert(req);
5759 	spin_unlock(&ctx->completion_lock);
5760 
5761 	if (mask) {
5762 		/* can't multishot if failed, just queue the event we've got */
5763 		if (unlikely(ipt->error || !ipt->nr_entries)) {
5764 			poll->events |= EPOLLONESHOT;
5765 			ipt->error = 0;
5766 		}
5767 		__io_poll_execute(req, mask);
5768 		return 0;
5769 	}
5770 
5771 	/*
5772 	 * Try to release ownership. If we see a change of state, e.g.
5773 	 * poll was waken up, queue up a tw, it'll deal with it.
5774 	 */
5775 	if (atomic_cmpxchg(&req->poll_refs, 1, 0) != 1)
5776 		__io_poll_execute(req, 0);
5777 	return 0;
5778 }
5779 
io_async_queue_proc(struct file *file, struct wait_queue_head *head, struct poll_table_struct *p)5780 static void io_async_queue_proc(struct file *file, struct wait_queue_head *head,
5781 			       struct poll_table_struct *p)
5782 {
5783 	struct io_poll_table *pt = container_of(p, struct io_poll_table, pt);
5784 	struct async_poll *apoll = pt->req->apoll;
5785 
5786 	__io_queue_proc(&apoll->poll, pt, head, &apoll->double_poll);
5787 }
5788 
5789 enum {
5790 	IO_APOLL_OK,
5791 	IO_APOLL_ABORTED,
5792 	IO_APOLL_READY
5793 };
5794 
5795 /*
5796  * We can't reliably detect loops in repeated poll triggers and issue
5797  * subsequently failing. But rather than fail these immediately, allow a
5798  * certain amount of retries before we give up. Given that this condition
5799  * should _rarely_ trigger even once, we should be fine with a larger value.
5800  */
5801 #define APOLL_MAX_RETRY		128
5802 
io_arm_poll_handler(struct io_kiocb *req)5803 static int io_arm_poll_handler(struct io_kiocb *req)
5804 {
5805 	const struct io_op_def *def = &io_op_defs[req->opcode];
5806 	struct io_ring_ctx *ctx = req->ctx;
5807 	struct async_poll *apoll;
5808 	struct io_poll_table ipt;
5809 	__poll_t mask = EPOLLONESHOT | POLLERR | POLLPRI;
5810 	int ret;
5811 
5812 	if (!req->file || !file_can_poll(req->file))
5813 		return IO_APOLL_ABORTED;
5814 	if (!def->pollin && !def->pollout)
5815 		return IO_APOLL_ABORTED;
5816 
5817 	if (def->pollin) {
5818 		mask |= POLLIN | POLLRDNORM;
5819 
5820 		/* If reading from MSG_ERRQUEUE using recvmsg, ignore POLLIN */
5821 		if ((req->opcode == IORING_OP_RECVMSG) &&
5822 		    (req->sr_msg.msg_flags & MSG_ERRQUEUE))
5823 			mask &= ~POLLIN;
5824 	} else {
5825 		mask |= POLLOUT | POLLWRNORM;
5826 	}
5827 
5828 	if (req->flags & REQ_F_POLLED) {
5829 		apoll = req->apoll;
5830 		kfree(apoll->double_poll);
5831 		if (unlikely(!--apoll->poll.retries)) {
5832 			apoll->double_poll = NULL;
5833 			return IO_APOLL_ABORTED;
5834 		}
5835 	} else {
5836 		apoll = kmalloc(sizeof(*apoll), GFP_ATOMIC);
5837 		if (unlikely(!apoll))
5838 			return IO_APOLL_ABORTED;
5839 		apoll->poll.retries = APOLL_MAX_RETRY;
5840 	}
5841 	apoll->double_poll = NULL;
5842 	req->apoll = apoll;
5843 	req->flags |= REQ_F_POLLED;
5844 	ipt.pt._qproc = io_async_queue_proc;
5845 
5846 	ret = __io_arm_poll_handler(req, &apoll->poll, &ipt, mask);
5847 	if (ret || ipt.error)
5848 		return ret ? IO_APOLL_READY : IO_APOLL_ABORTED;
5849 
5850 	trace_io_uring_poll_arm(ctx, req, req->opcode, req->user_data,
5851 				mask, apoll->poll.events);
5852 	return IO_APOLL_OK;
5853 }
5854 
5855 /*
5856  * Returns true if we found and killed one or more poll requests
5857  */
io_poll_remove_all(struct io_ring_ctx *ctx, struct task_struct *tsk, bool cancel_all)5858 static bool io_poll_remove_all(struct io_ring_ctx *ctx, struct task_struct *tsk,
5859 			       bool cancel_all)
5860 {
5861 	struct hlist_node *tmp;
5862 	struct io_kiocb *req;
5863 	bool found = false;
5864 	int i;
5865 
5866 	spin_lock(&ctx->completion_lock);
5867 	for (i = 0; i < (1U << ctx->cancel_hash_bits); i++) {
5868 		struct hlist_head *list;
5869 
5870 		list = &ctx->cancel_hash[i];
5871 		hlist_for_each_entry_safe(req, tmp, list, hash_node) {
5872 			if (io_match_task_safe(req, tsk, cancel_all)) {
5873 				hlist_del_init(&req->hash_node);
5874 				io_poll_cancel_req(req);
5875 				found = true;
5876 			}
5877 		}
5878 	}
5879 	spin_unlock(&ctx->completion_lock);
5880 	return found;
5881 }
5882 
5883 static struct io_kiocb *io_poll_find(struct io_ring_ctx *ctx, __u64 sqe_addr,
5884 				     bool poll_only)
5885 	__must_hold(&ctx->completion_lock)
5886 {
5887 	struct hlist_head *list;
5888 	struct io_kiocb *req;
5889 
5890 	list = &ctx->cancel_hash[hash_long(sqe_addr, ctx->cancel_hash_bits)];
hlist_for_each_entrynull5891 	hlist_for_each_entry(req, list, hash_node) {
5892 		if (sqe_addr != req->user_data)
5893 			continue;
5894 		if (poll_only && req->opcode != IORING_OP_POLL_ADD)
5895 			continue;
5896 		return req;
5897 	}
5898 	return NULL;
5899 }
5900 
5901 static bool io_poll_disarm(struct io_kiocb *req)
5902 	__must_hold(&ctx->completion_lock)
5903 {
5904 	if (!io_poll_get_ownership(req))
5905 		return false;
5906 	io_poll_remove_entries(req);
5907 	hash_del(&req->hash_node);
5908 	return true;
5909 }
5910 
5911 static int io_poll_cancel(struct io_ring_ctx *ctx, __u64 sqe_addr,
5912 			  bool poll_only)
5913 	__must_hold(&ctx->completion_lock)
5914 {
5915 	struct io_kiocb *req = io_poll_find(ctx, sqe_addr, poll_only);
5916 
5917 	if (!req)
5918 		return -ENOENT;
5919 	io_poll_cancel_req(req);
5920 	return 0;
5921 }
5922 
io_poll_parse_events(const struct io_uring_sqe *sqe, unsigned int flags)5923 static __poll_t io_poll_parse_events(const struct io_uring_sqe *sqe,
5924 				     unsigned int flags)
5925 {
5926 	u32 events;
5927 
5928 	events = READ_ONCE(sqe->poll32_events);
5929 #ifdef __BIG_ENDIAN
5930 	events = swahw32(events);
5931 #endif
5932 	if (!(flags & IORING_POLL_ADD_MULTI))
5933 		events |= EPOLLONESHOT;
5934 	return demangle_poll(events) | (events & (EPOLLEXCLUSIVE|EPOLLONESHOT));
5935 }
5936 
io_poll_update_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)5937 static int io_poll_update_prep(struct io_kiocb *req,
5938 			       const struct io_uring_sqe *sqe)
5939 {
5940 	struct io_poll_update *upd = &req->poll_update;
5941 	u32 flags;
5942 
5943 	if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
5944 		return -EINVAL;
5945 	if (sqe->ioprio || sqe->buf_index || sqe->splice_fd_in)
5946 		return -EINVAL;
5947 	flags = READ_ONCE(sqe->len);
5948 	if (flags & ~(IORING_POLL_UPDATE_EVENTS | IORING_POLL_UPDATE_USER_DATA |
5949 		      IORING_POLL_ADD_MULTI))
5950 		return -EINVAL;
5951 	/* meaningless without update */
5952 	if (flags == IORING_POLL_ADD_MULTI)
5953 		return -EINVAL;
5954 
5955 	upd->old_user_data = READ_ONCE(sqe->addr);
5956 	upd->update_events = flags & IORING_POLL_UPDATE_EVENTS;
5957 	upd->update_user_data = flags & IORING_POLL_UPDATE_USER_DATA;
5958 
5959 	upd->new_user_data = READ_ONCE(sqe->off);
5960 	if (!upd->update_user_data && upd->new_user_data)
5961 		return -EINVAL;
5962 	if (upd->update_events)
5963 		upd->events = io_poll_parse_events(sqe, flags);
5964 	else if (sqe->poll32_events)
5965 		return -EINVAL;
5966 
5967 	return 0;
5968 }
5969 
io_poll_add_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)5970 static int io_poll_add_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
5971 {
5972 	struct io_poll_iocb *poll = &req->poll;
5973 	u32 flags;
5974 
5975 	if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
5976 		return -EINVAL;
5977 	if (sqe->ioprio || sqe->buf_index || sqe->off || sqe->addr)
5978 		return -EINVAL;
5979 	flags = READ_ONCE(sqe->len);
5980 	if (flags & ~IORING_POLL_ADD_MULTI)
5981 		return -EINVAL;
5982 
5983 	io_req_set_refcount(req);
5984 	poll->events = io_poll_parse_events(sqe, flags);
5985 	return 0;
5986 }
5987 
io_poll_add(struct io_kiocb *req, unsigned int issue_flags)5988 static int io_poll_add(struct io_kiocb *req, unsigned int issue_flags)
5989 {
5990 	struct io_poll_iocb *poll = &req->poll;
5991 	struct io_poll_table ipt;
5992 	int ret;
5993 
5994 	ipt.pt._qproc = io_poll_queue_proc;
5995 
5996 	ret = __io_arm_poll_handler(req, &req->poll, &ipt, poll->events);
5997 	if (!ret && ipt.error)
5998 		req_set_fail(req);
5999 	ret = ret ?: ipt.error;
6000 	if (ret)
6001 		__io_req_complete(req, issue_flags, ret, 0);
6002 	return 0;
6003 }
6004 
io_poll_update(struct io_kiocb *req, unsigned int issue_flags)6005 static int io_poll_update(struct io_kiocb *req, unsigned int issue_flags)
6006 {
6007 	struct io_ring_ctx *ctx = req->ctx;
6008 	struct io_kiocb *preq;
6009 	int ret2, ret = 0;
6010 
6011 	io_ring_submit_lock(ctx, !(issue_flags & IO_URING_F_NONBLOCK));
6012 
6013 	spin_lock(&ctx->completion_lock);
6014 	preq = io_poll_find(ctx, req->poll_update.old_user_data, true);
6015 	if (!preq || !io_poll_disarm(preq)) {
6016 		spin_unlock(&ctx->completion_lock);
6017 		ret = preq ? -EALREADY : -ENOENT;
6018 		goto out;
6019 	}
6020 	spin_unlock(&ctx->completion_lock);
6021 
6022 	if (req->poll_update.update_events || req->poll_update.update_user_data) {
6023 		/* only mask one event flags, keep behavior flags */
6024 		if (req->poll_update.update_events) {
6025 			preq->poll.events &= ~0xffff;
6026 			preq->poll.events |= req->poll_update.events & 0xffff;
6027 			preq->poll.events |= IO_POLL_UNMASK;
6028 		}
6029 		if (req->poll_update.update_user_data)
6030 			preq->user_data = req->poll_update.new_user_data;
6031 
6032 		ret2 = io_poll_add(preq, issue_flags);
6033 		/* successfully updated, don't complete poll request */
6034 		if (!ret2)
6035 			goto out;
6036 	}
6037 	req_set_fail(preq);
6038 	io_req_complete(preq, -ECANCELED);
6039 out:
6040 	if (ret < 0)
6041 		req_set_fail(req);
6042 	/* complete update request, we're done with it */
6043 	io_req_complete(req, ret);
6044 	io_ring_submit_unlock(ctx, !(issue_flags & IO_URING_F_NONBLOCK));
6045 	return 0;
6046 }
6047 
io_req_task_timeout(struct io_kiocb *req, bool *locked)6048 static void io_req_task_timeout(struct io_kiocb *req, bool *locked)
6049 {
6050 	req_set_fail(req);
6051 	io_req_complete_post(req, -ETIME, 0);
6052 }
6053 
io_timeout_fn(struct hrtimer *timer)6054 static enum hrtimer_restart io_timeout_fn(struct hrtimer *timer)
6055 {
6056 	struct io_timeout_data *data = container_of(timer,
6057 						struct io_timeout_data, timer);
6058 	struct io_kiocb *req = data->req;
6059 	struct io_ring_ctx *ctx = req->ctx;
6060 	unsigned long flags;
6061 
6062 	spin_lock_irqsave(&ctx->timeout_lock, flags);
6063 	list_del_init(&req->timeout.list);
6064 	atomic_set(&req->ctx->cq_timeouts,
6065 		atomic_read(&req->ctx->cq_timeouts) + 1);
6066 	spin_unlock_irqrestore(&ctx->timeout_lock, flags);
6067 
6068 	req->io_task_work.func = io_req_task_timeout;
6069 	io_req_task_work_add(req);
6070 	return HRTIMER_NORESTART;
6071 }
6072 
6073 static struct io_kiocb *io_timeout_extract(struct io_ring_ctx *ctx,
6074 					   __u64 user_data)
6075 	__must_hold(&ctx->timeout_lock)
6076 {
6077 	struct io_timeout_data *io;
6078 	struct io_kiocb *req;
6079 	bool found = false;
6080 
6081 	list_for_each_entry(req, &ctx->timeout_list, timeout.list) {
6082 		found = user_data == req->user_data;
6083 		if (found)
6084 			break;
6085 	}
6086 	if (!found)
6087 		return ERR_PTR(-ENOENT);
6088 
6089 	io = req->async_data;
6090 	if (hrtimer_try_to_cancel(&io->timer) == -1)
6091 		return ERR_PTR(-EALREADY);
6092 	list_del_init(&req->timeout.list);
6093 	return req;
6094 }
6095 
6096 static int io_timeout_cancel(struct io_ring_ctx *ctx, __u64 user_data)
6097 	__must_hold(&ctx->completion_lock)
6098 	__must_hold(&ctx->timeout_lock)
6099 {
6100 	struct io_kiocb *req = io_timeout_extract(ctx, user_data);
6101 
6102 	if (IS_ERR(req))
6103 		return PTR_ERR(req);
6104 
6105 	req_set_fail(req);
6106 	io_fill_cqe_req(req, -ECANCELED, 0);
6107 	io_put_req_deferred(req);
6108 	return 0;
6109 }
6110 
io_timeout_get_clock(struct io_timeout_data *data)6111 static clockid_t io_timeout_get_clock(struct io_timeout_data *data)
6112 {
6113 	switch (data->flags & IORING_TIMEOUT_CLOCK_MASK) {
6114 	case IORING_TIMEOUT_BOOTTIME:
6115 		return CLOCK_BOOTTIME;
6116 	case IORING_TIMEOUT_REALTIME:
6117 		return CLOCK_REALTIME;
6118 	default:
6119 		/* can't happen, vetted at prep time */
6120 		WARN_ON_ONCE(1);
6121 		fallthrough;
6122 	case 0:
6123 		return CLOCK_MONOTONIC;
6124 	}
6125 }
6126 
6127 static int io_linked_timeout_update(struct io_ring_ctx *ctx, __u64 user_data,
6128 				    struct timespec64 *ts, enum hrtimer_mode mode)
6129 	__must_hold(&ctx->timeout_lock)
6130 {
6131 	struct io_timeout_data *io;
6132 	struct io_kiocb *req;
6133 	bool found = false;
6134 
6135 	list_for_each_entry(req, &ctx->ltimeout_list, timeout.list) {
6136 		found = user_data == req->user_data;
6137 		if (found)
6138 			break;
6139 	}
6140 	if (!found)
6141 		return -ENOENT;
6142 
6143 	io = req->async_data;
6144 	if (hrtimer_try_to_cancel(&io->timer) == -1)
6145 		return -EALREADY;
6146 	hrtimer_init(&io->timer, io_timeout_get_clock(io), mode);
6147 	io->timer.function = io_link_timeout_fn;
6148 	hrtimer_start(&io->timer, timespec64_to_ktime(*ts), mode);
6149 	return 0;
6150 }
6151 
6152 static int io_timeout_update(struct io_ring_ctx *ctx, __u64 user_data,
6153 			     struct timespec64 *ts, enum hrtimer_mode mode)
6154 	__must_hold(&ctx->timeout_lock)
6155 {
6156 	struct io_kiocb *req = io_timeout_extract(ctx, user_data);
6157 	struct io_timeout_data *data;
6158 
6159 	if (IS_ERR(req))
6160 		return PTR_ERR(req);
6161 
6162 	req->timeout.off = 0; /* noseq */
6163 	data = req->async_data;
6164 	list_add_tail(&req->timeout.list, &ctx->timeout_list);
6165 	hrtimer_init(&data->timer, io_timeout_get_clock(data), mode);
6166 	data->timer.function = io_timeout_fn;
6167 	hrtimer_start(&data->timer, timespec64_to_ktime(*ts), mode);
6168 	return 0;
6169 }
6170 
io_timeout_remove_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)6171 static int io_timeout_remove_prep(struct io_kiocb *req,
6172 				  const struct io_uring_sqe *sqe)
6173 {
6174 	struct io_timeout_rem *tr = &req->timeout_rem;
6175 
6176 	if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
6177 		return -EINVAL;
6178 	if (unlikely(req->flags & (REQ_F_FIXED_FILE | REQ_F_BUFFER_SELECT)))
6179 		return -EINVAL;
6180 	if (sqe->ioprio || sqe->buf_index || sqe->len || sqe->splice_fd_in)
6181 		return -EINVAL;
6182 
6183 	tr->ltimeout = false;
6184 	tr->addr = READ_ONCE(sqe->addr);
6185 	tr->flags = READ_ONCE(sqe->timeout_flags);
6186 	if (tr->flags & IORING_TIMEOUT_UPDATE_MASK) {
6187 		if (hweight32(tr->flags & IORING_TIMEOUT_CLOCK_MASK) > 1)
6188 			return -EINVAL;
6189 		if (tr->flags & IORING_LINK_TIMEOUT_UPDATE)
6190 			tr->ltimeout = true;
6191 		if (tr->flags & ~(IORING_TIMEOUT_UPDATE_MASK|IORING_TIMEOUT_ABS))
6192 			return -EINVAL;
6193 		if (get_timespec64(&tr->ts, u64_to_user_ptr(sqe->addr2)))
6194 			return -EFAULT;
6195 	} else if (tr->flags) {
6196 		/* timeout removal doesn't support flags */
6197 		return -EINVAL;
6198 	}
6199 
6200 	return 0;
6201 }
6202 
io_translate_timeout_mode(unsigned int flags)6203 static inline enum hrtimer_mode io_translate_timeout_mode(unsigned int flags)
6204 {
6205 	return (flags & IORING_TIMEOUT_ABS) ? HRTIMER_MODE_ABS
6206 					    : HRTIMER_MODE_REL;
6207 }
6208 
6209 /*
6210  * Remove or update an existing timeout command
6211  */
io_timeout_remove(struct io_kiocb *req, unsigned int issue_flags)6212 static int io_timeout_remove(struct io_kiocb *req, unsigned int issue_flags)
6213 {
6214 	struct io_timeout_rem *tr = &req->timeout_rem;
6215 	struct io_ring_ctx *ctx = req->ctx;
6216 	int ret;
6217 
6218 	if (!(req->timeout_rem.flags & IORING_TIMEOUT_UPDATE)) {
6219 		spin_lock(&ctx->completion_lock);
6220 		spin_lock_irq(&ctx->timeout_lock);
6221 		ret = io_timeout_cancel(ctx, tr->addr);
6222 		spin_unlock_irq(&ctx->timeout_lock);
6223 		spin_unlock(&ctx->completion_lock);
6224 	} else {
6225 		enum hrtimer_mode mode = io_translate_timeout_mode(tr->flags);
6226 
6227 		spin_lock_irq(&ctx->timeout_lock);
6228 		if (tr->ltimeout)
6229 			ret = io_linked_timeout_update(ctx, tr->addr, &tr->ts, mode);
6230 		else
6231 			ret = io_timeout_update(ctx, tr->addr, &tr->ts, mode);
6232 		spin_unlock_irq(&ctx->timeout_lock);
6233 	}
6234 
6235 	if (ret < 0)
6236 		req_set_fail(req);
6237 	io_req_complete_post(req, ret, 0);
6238 	return 0;
6239 }
6240 
io_timeout_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe, bool is_timeout_link)6241 static int io_timeout_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe,
6242 			   bool is_timeout_link)
6243 {
6244 	struct io_timeout_data *data;
6245 	unsigned flags;
6246 	u32 off = READ_ONCE(sqe->off);
6247 
6248 	if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
6249 		return -EINVAL;
6250 	if (sqe->ioprio || sqe->buf_index || sqe->len != 1 ||
6251 	    sqe->splice_fd_in)
6252 		return -EINVAL;
6253 	if (off && is_timeout_link)
6254 		return -EINVAL;
6255 	flags = READ_ONCE(sqe->timeout_flags);
6256 	if (flags & ~(IORING_TIMEOUT_ABS | IORING_TIMEOUT_CLOCK_MASK))
6257 		return -EINVAL;
6258 	/* more than one clock specified is invalid, obviously */
6259 	if (hweight32(flags & IORING_TIMEOUT_CLOCK_MASK) > 1)
6260 		return -EINVAL;
6261 
6262 	INIT_LIST_HEAD(&req->timeout.list);
6263 	req->timeout.off = off;
6264 	if (unlikely(off && !req->ctx->off_timeout_used))
6265 		req->ctx->off_timeout_used = true;
6266 
6267 	if (!req->async_data && io_alloc_async_data(req))
6268 		return -ENOMEM;
6269 
6270 	data = req->async_data;
6271 	data->req = req;
6272 	data->flags = flags;
6273 
6274 	if (get_timespec64(&data->ts, u64_to_user_ptr(sqe->addr)))
6275 		return -EFAULT;
6276 
6277 	INIT_LIST_HEAD(&req->timeout.list);
6278 	data->mode = io_translate_timeout_mode(flags);
6279 	hrtimer_init(&data->timer, io_timeout_get_clock(data), data->mode);
6280 
6281 	if (is_timeout_link) {
6282 		struct io_submit_link *link = &req->ctx->submit_state.link;
6283 
6284 		if (!link->head)
6285 			return -EINVAL;
6286 		if (link->last->opcode == IORING_OP_LINK_TIMEOUT)
6287 			return -EINVAL;
6288 		req->timeout.head = link->last;
6289 		link->last->flags |= REQ_F_ARM_LTIMEOUT;
6290 	}
6291 	return 0;
6292 }
6293 
io_timeout(struct io_kiocb *req, unsigned int issue_flags)6294 static int io_timeout(struct io_kiocb *req, unsigned int issue_flags)
6295 {
6296 	struct io_ring_ctx *ctx = req->ctx;
6297 	struct io_timeout_data *data = req->async_data;
6298 	struct list_head *entry;
6299 	u32 tail, off = req->timeout.off;
6300 
6301 	spin_lock_irq(&ctx->timeout_lock);
6302 
6303 	/*
6304 	 * sqe->off holds how many events that need to occur for this
6305 	 * timeout event to be satisfied. If it isn't set, then this is
6306 	 * a pure timeout request, sequence isn't used.
6307 	 */
6308 	if (io_is_timeout_noseq(req)) {
6309 		entry = ctx->timeout_list.prev;
6310 		goto add;
6311 	}
6312 
6313 	tail = ctx->cached_cq_tail - atomic_read(&ctx->cq_timeouts);
6314 	req->timeout.target_seq = tail + off;
6315 
6316 	/* Update the last seq here in case io_flush_timeouts() hasn't.
6317 	 * This is safe because ->completion_lock is held, and submissions
6318 	 * and completions are never mixed in the same ->completion_lock section.
6319 	 */
6320 	ctx->cq_last_tm_flush = tail;
6321 
6322 	/*
6323 	 * Insertion sort, ensuring the first entry in the list is always
6324 	 * the one we need first.
6325 	 */
6326 	list_for_each_prev(entry, &ctx->timeout_list) {
6327 		struct io_kiocb *nxt = list_entry(entry, struct io_kiocb,
6328 						  timeout.list);
6329 
6330 		if (io_is_timeout_noseq(nxt))
6331 			continue;
6332 		/* nxt.seq is behind @tail, otherwise would've been completed */
6333 		if (off >= nxt->timeout.target_seq - tail)
6334 			break;
6335 	}
6336 add:
6337 	list_add(&req->timeout.list, entry);
6338 	data->timer.function = io_timeout_fn;
6339 	hrtimer_start(&data->timer, timespec64_to_ktime(data->ts), data->mode);
6340 	spin_unlock_irq(&ctx->timeout_lock);
6341 	return 0;
6342 }
6343 
6344 struct io_cancel_data {
6345 	struct io_ring_ctx *ctx;
6346 	u64 user_data;
6347 };
6348 
io_cancel_cb(struct io_wq_work *work, void *data)6349 static bool io_cancel_cb(struct io_wq_work *work, void *data)
6350 {
6351 	struct io_kiocb *req = container_of(work, struct io_kiocb, work);
6352 	struct io_cancel_data *cd = data;
6353 
6354 	return req->ctx == cd->ctx && req->user_data == cd->user_data;
6355 }
6356 
io_async_cancel_one(struct io_uring_task *tctx, u64 user_data, struct io_ring_ctx *ctx)6357 static int io_async_cancel_one(struct io_uring_task *tctx, u64 user_data,
6358 			       struct io_ring_ctx *ctx)
6359 {
6360 	struct io_cancel_data data = { .ctx = ctx, .user_data = user_data, };
6361 	enum io_wq_cancel cancel_ret;
6362 	int ret = 0;
6363 
6364 	if (!tctx || !tctx->io_wq)
6365 		return -ENOENT;
6366 
6367 	cancel_ret = io_wq_cancel_cb(tctx->io_wq, io_cancel_cb, &data, false);
6368 	switch (cancel_ret) {
6369 	case IO_WQ_CANCEL_OK:
6370 		ret = 0;
6371 		break;
6372 	case IO_WQ_CANCEL_RUNNING:
6373 		ret = -EALREADY;
6374 		break;
6375 	case IO_WQ_CANCEL_NOTFOUND:
6376 		ret = -ENOENT;
6377 		break;
6378 	}
6379 
6380 	return ret;
6381 }
6382 
io_try_cancel_userdata(struct io_kiocb *req, u64 sqe_addr)6383 static int io_try_cancel_userdata(struct io_kiocb *req, u64 sqe_addr)
6384 {
6385 	struct io_ring_ctx *ctx = req->ctx;
6386 	int ret;
6387 
6388 	WARN_ON_ONCE(!io_wq_current_is_worker() && req->task != current);
6389 
6390 	ret = io_async_cancel_one(req->task->io_uring, sqe_addr, ctx);
6391 	if (ret != -ENOENT)
6392 		return ret;
6393 
6394 	spin_lock(&ctx->completion_lock);
6395 	spin_lock_irq(&ctx->timeout_lock);
6396 	ret = io_timeout_cancel(ctx, sqe_addr);
6397 	spin_unlock_irq(&ctx->timeout_lock);
6398 	if (ret != -ENOENT)
6399 		goto out;
6400 	ret = io_poll_cancel(ctx, sqe_addr, false);
6401 out:
6402 	spin_unlock(&ctx->completion_lock);
6403 	return ret;
6404 }
6405 
io_async_cancel_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)6406 static int io_async_cancel_prep(struct io_kiocb *req,
6407 				const struct io_uring_sqe *sqe)
6408 {
6409 	if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
6410 		return -EINVAL;
6411 	if (unlikely(req->flags & (REQ_F_FIXED_FILE | REQ_F_BUFFER_SELECT)))
6412 		return -EINVAL;
6413 	if (sqe->ioprio || sqe->off || sqe->len || sqe->cancel_flags ||
6414 	    sqe->splice_fd_in)
6415 		return -EINVAL;
6416 
6417 	req->cancel.addr = READ_ONCE(sqe->addr);
6418 	return 0;
6419 }
6420 
io_async_cancel(struct io_kiocb *req, unsigned int issue_flags)6421 static int io_async_cancel(struct io_kiocb *req, unsigned int issue_flags)
6422 {
6423 	struct io_ring_ctx *ctx = req->ctx;
6424 	u64 sqe_addr = req->cancel.addr;
6425 	struct io_tctx_node *node;
6426 	int ret;
6427 
6428 	ret = io_try_cancel_userdata(req, sqe_addr);
6429 	if (ret != -ENOENT)
6430 		goto done;
6431 
6432 	/* slow path, try all io-wq's */
6433 	io_ring_submit_lock(ctx, !(issue_flags & IO_URING_F_NONBLOCK));
6434 	ret = -ENOENT;
6435 	list_for_each_entry(node, &ctx->tctx_list, ctx_node) {
6436 		struct io_uring_task *tctx = node->task->io_uring;
6437 
6438 		ret = io_async_cancel_one(tctx, req->cancel.addr, ctx);
6439 		if (ret != -ENOENT)
6440 			break;
6441 	}
6442 	io_ring_submit_unlock(ctx, !(issue_flags & IO_URING_F_NONBLOCK));
6443 done:
6444 	if (ret < 0)
6445 		req_set_fail(req);
6446 	io_req_complete_post(req, ret, 0);
6447 	return 0;
6448 }
6449 
io_rsrc_update_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)6450 static int io_rsrc_update_prep(struct io_kiocb *req,
6451 				const struct io_uring_sqe *sqe)
6452 {
6453 	if (unlikely(req->flags & (REQ_F_FIXED_FILE | REQ_F_BUFFER_SELECT)))
6454 		return -EINVAL;
6455 	if (sqe->ioprio || sqe->rw_flags || sqe->splice_fd_in)
6456 		return -EINVAL;
6457 
6458 	req->rsrc_update.offset = READ_ONCE(sqe->off);
6459 	req->rsrc_update.nr_args = READ_ONCE(sqe->len);
6460 	if (!req->rsrc_update.nr_args)
6461 		return -EINVAL;
6462 	req->rsrc_update.arg = READ_ONCE(sqe->addr);
6463 	return 0;
6464 }
6465 
io_files_update(struct io_kiocb *req, unsigned int issue_flags)6466 static int io_files_update(struct io_kiocb *req, unsigned int issue_flags)
6467 {
6468 	struct io_ring_ctx *ctx = req->ctx;
6469 	struct io_uring_rsrc_update2 up;
6470 	int ret;
6471 
6472 	up.offset = req->rsrc_update.offset;
6473 	up.data = req->rsrc_update.arg;
6474 	up.nr = 0;
6475 	up.tags = 0;
6476 	up.resv = 0;
6477 	up.resv2 = 0;
6478 
6479 	io_ring_submit_lock(ctx, !(issue_flags & IO_URING_F_NONBLOCK));
6480 	ret = __io_register_rsrc_update(ctx, IORING_RSRC_FILE,
6481 					&up, req->rsrc_update.nr_args);
6482 	io_ring_submit_unlock(ctx, !(issue_flags & IO_URING_F_NONBLOCK));
6483 
6484 	if (ret < 0)
6485 		req_set_fail(req);
6486 	__io_req_complete(req, issue_flags, ret, 0);
6487 	return 0;
6488 }
6489 
io_req_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)6490 static int io_req_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
6491 {
6492 	switch (req->opcode) {
6493 	case IORING_OP_NOP:
6494 		return 0;
6495 	case IORING_OP_READV:
6496 	case IORING_OP_READ_FIXED:
6497 	case IORING_OP_READ:
6498 		return io_read_prep(req, sqe);
6499 	case IORING_OP_WRITEV:
6500 	case IORING_OP_WRITE_FIXED:
6501 	case IORING_OP_WRITE:
6502 		return io_write_prep(req, sqe);
6503 	case IORING_OP_POLL_ADD:
6504 		return io_poll_add_prep(req, sqe);
6505 	case IORING_OP_POLL_REMOVE:
6506 		return io_poll_update_prep(req, sqe);
6507 	case IORING_OP_FSYNC:
6508 		return io_fsync_prep(req, sqe);
6509 	case IORING_OP_SYNC_FILE_RANGE:
6510 		return io_sfr_prep(req, sqe);
6511 	case IORING_OP_SENDMSG:
6512 	case IORING_OP_SEND:
6513 		return io_sendmsg_prep(req, sqe);
6514 	case IORING_OP_RECVMSG:
6515 	case IORING_OP_RECV:
6516 		return io_recvmsg_prep(req, sqe);
6517 	case IORING_OP_CONNECT:
6518 		return io_connect_prep(req, sqe);
6519 	case IORING_OP_TIMEOUT:
6520 		return io_timeout_prep(req, sqe, false);
6521 	case IORING_OP_TIMEOUT_REMOVE:
6522 		return io_timeout_remove_prep(req, sqe);
6523 	case IORING_OP_ASYNC_CANCEL:
6524 		return io_async_cancel_prep(req, sqe);
6525 	case IORING_OP_LINK_TIMEOUT:
6526 		return io_timeout_prep(req, sqe, true);
6527 	case IORING_OP_ACCEPT:
6528 		return io_accept_prep(req, sqe);
6529 	case IORING_OP_FALLOCATE:
6530 		return io_fallocate_prep(req, sqe);
6531 	case IORING_OP_OPENAT:
6532 		return io_openat_prep(req, sqe);
6533 	case IORING_OP_CLOSE:
6534 		return io_close_prep(req, sqe);
6535 	case IORING_OP_FILES_UPDATE:
6536 		return io_rsrc_update_prep(req, sqe);
6537 	case IORING_OP_STATX:
6538 		return io_statx_prep(req, sqe);
6539 	case IORING_OP_FADVISE:
6540 		return io_fadvise_prep(req, sqe);
6541 	case IORING_OP_MADVISE:
6542 		return io_madvise_prep(req, sqe);
6543 	case IORING_OP_OPENAT2:
6544 		return io_openat2_prep(req, sqe);
6545 	case IORING_OP_EPOLL_CTL:
6546 		return io_epoll_ctl_prep(req, sqe);
6547 	case IORING_OP_SPLICE:
6548 		return io_splice_prep(req, sqe);
6549 	case IORING_OP_PROVIDE_BUFFERS:
6550 		return io_provide_buffers_prep(req, sqe);
6551 	case IORING_OP_REMOVE_BUFFERS:
6552 		return io_remove_buffers_prep(req, sqe);
6553 	case IORING_OP_TEE:
6554 		return io_tee_prep(req, sqe);
6555 	case IORING_OP_SHUTDOWN:
6556 		return io_shutdown_prep(req, sqe);
6557 	case IORING_OP_RENAMEAT:
6558 		return io_renameat_prep(req, sqe);
6559 	case IORING_OP_UNLINKAT:
6560 		return io_unlinkat_prep(req, sqe);
6561 	}
6562 
6563 	printk_once(KERN_WARNING "io_uring: unhandled opcode %d\n",
6564 			req->opcode);
6565 	return -EINVAL;
6566 }
6567 
io_req_prep_async(struct io_kiocb *req)6568 static int io_req_prep_async(struct io_kiocb *req)
6569 {
6570 	if (!io_op_defs[req->opcode].needs_async_setup)
6571 		return 0;
6572 	if (WARN_ON_ONCE(req->async_data))
6573 		return -EFAULT;
6574 	if (io_alloc_async_data(req))
6575 		return -EAGAIN;
6576 
6577 	switch (req->opcode) {
6578 	case IORING_OP_READV:
6579 		return io_rw_prep_async(req, READ);
6580 	case IORING_OP_WRITEV:
6581 		return io_rw_prep_async(req, WRITE);
6582 	case IORING_OP_SENDMSG:
6583 		return io_sendmsg_prep_async(req);
6584 	case IORING_OP_RECVMSG:
6585 		return io_recvmsg_prep_async(req);
6586 	case IORING_OP_CONNECT:
6587 		return io_connect_prep_async(req);
6588 	}
6589 	printk_once(KERN_WARNING "io_uring: prep_async() bad opcode %d\n",
6590 		    req->opcode);
6591 	return -EFAULT;
6592 }
6593 
io_get_sequence(struct io_kiocb *req)6594 static u32 io_get_sequence(struct io_kiocb *req)
6595 {
6596 	u32 seq = req->ctx->cached_sq_head;
6597 
6598 	/* need original cached_sq_head, but it was increased for each req */
6599 	io_for_each_link(req, req)
6600 		seq--;
6601 	return seq;
6602 }
6603 
io_drain_req(struct io_kiocb *req)6604 static bool io_drain_req(struct io_kiocb *req)
6605 {
6606 	struct io_kiocb *pos;
6607 	struct io_ring_ctx *ctx = req->ctx;
6608 	struct io_defer_entry *de;
6609 	int ret;
6610 	u32 seq;
6611 
6612 	if (req->flags & REQ_F_FAIL) {
6613 		io_req_complete_fail_submit(req);
6614 		return true;
6615 	}
6616 
6617 	/*
6618 	 * If we need to drain a request in the middle of a link, drain the
6619 	 * head request and the next request/link after the current link.
6620 	 * Considering sequential execution of links, IOSQE_IO_DRAIN will be
6621 	 * maintained for every request of our link.
6622 	 */
6623 	if (ctx->drain_next) {
6624 		req->flags |= REQ_F_IO_DRAIN;
6625 		ctx->drain_next = false;
6626 	}
6627 	/* not interested in head, start from the first linked */
6628 	io_for_each_link(pos, req->link) {
6629 		if (pos->flags & REQ_F_IO_DRAIN) {
6630 			ctx->drain_next = true;
6631 			req->flags |= REQ_F_IO_DRAIN;
6632 			break;
6633 		}
6634 	}
6635 
6636 	/* Still need defer if there is pending req in defer list. */
6637 	spin_lock(&ctx->completion_lock);
6638 	if (likely(list_empty_careful(&ctx->defer_list) &&
6639 		!(req->flags & REQ_F_IO_DRAIN))) {
6640 		spin_unlock(&ctx->completion_lock);
6641 		ctx->drain_active = false;
6642 		return false;
6643 	}
6644 	spin_unlock(&ctx->completion_lock);
6645 
6646 	seq = io_get_sequence(req);
6647 	/* Still a chance to pass the sequence check */
6648 	if (!req_need_defer(req, seq) && list_empty_careful(&ctx->defer_list))
6649 		return false;
6650 
6651 	ret = io_req_prep_async(req);
6652 	if (ret)
6653 		goto fail;
6654 	io_prep_async_link(req);
6655 	de = kmalloc(sizeof(*de), GFP_KERNEL);
6656 	if (!de) {
6657 		ret = -ENOMEM;
6658 fail:
6659 		io_req_complete_failed(req, ret);
6660 		return true;
6661 	}
6662 
6663 	spin_lock(&ctx->completion_lock);
6664 	if (!req_need_defer(req, seq) && list_empty(&ctx->defer_list)) {
6665 		spin_unlock(&ctx->completion_lock);
6666 		kfree(de);
6667 		io_queue_async_work(req, NULL);
6668 		return true;
6669 	}
6670 
6671 	trace_io_uring_defer(ctx, req, req->user_data);
6672 	de->req = req;
6673 	de->seq = seq;
6674 	list_add_tail(&de->list, &ctx->defer_list);
6675 	spin_unlock(&ctx->completion_lock);
6676 	return true;
6677 }
6678 
io_clean_op(struct io_kiocb *req)6679 static void io_clean_op(struct io_kiocb *req)
6680 {
6681 	if (req->flags & REQ_F_BUFFER_SELECTED) {
6682 		switch (req->opcode) {
6683 		case IORING_OP_READV:
6684 		case IORING_OP_READ_FIXED:
6685 		case IORING_OP_READ:
6686 			kfree((void *)(unsigned long)req->rw.addr);
6687 			break;
6688 		case IORING_OP_RECVMSG:
6689 		case IORING_OP_RECV:
6690 			kfree(req->sr_msg.kbuf);
6691 			break;
6692 		}
6693 	}
6694 
6695 	if (req->flags & REQ_F_NEED_CLEANUP) {
6696 		switch (req->opcode) {
6697 		case IORING_OP_READV:
6698 		case IORING_OP_READ_FIXED:
6699 		case IORING_OP_READ:
6700 		case IORING_OP_WRITEV:
6701 		case IORING_OP_WRITE_FIXED:
6702 		case IORING_OP_WRITE: {
6703 			struct io_async_rw *io = req->async_data;
6704 
6705 			kfree(io->free_iovec);
6706 			break;
6707 			}
6708 		case IORING_OP_RECVMSG:
6709 		case IORING_OP_SENDMSG: {
6710 			struct io_async_msghdr *io = req->async_data;
6711 
6712 			kfree(io->free_iov);
6713 			break;
6714 			}
6715 		case IORING_OP_OPENAT:
6716 		case IORING_OP_OPENAT2:
6717 			if (req->open.filename)
6718 				putname(req->open.filename);
6719 			break;
6720 		case IORING_OP_RENAMEAT:
6721 			putname(req->rename.oldpath);
6722 			putname(req->rename.newpath);
6723 			break;
6724 		case IORING_OP_UNLINKAT:
6725 			putname(req->unlink.filename);
6726 			break;
6727 		}
6728 	}
6729 	if ((req->flags & REQ_F_POLLED) && req->apoll) {
6730 		kfree(req->apoll->double_poll);
6731 		kfree(req->apoll);
6732 		req->apoll = NULL;
6733 	}
6734 	if (req->flags & REQ_F_INFLIGHT) {
6735 		struct io_uring_task *tctx = req->task->io_uring;
6736 
6737 		atomic_dec(&tctx->inflight_tracked);
6738 	}
6739 	if (req->flags & REQ_F_CREDS)
6740 		put_cred(req->creds);
6741 
6742 	req->flags &= ~IO_REQ_CLEAN_FLAGS;
6743 }
6744 
io_issue_sqe(struct io_kiocb *req, unsigned int issue_flags)6745 static int io_issue_sqe(struct io_kiocb *req, unsigned int issue_flags)
6746 {
6747 	struct io_ring_ctx *ctx = req->ctx;
6748 	const struct cred *creds = NULL;
6749 	int ret;
6750 
6751 	if ((req->flags & REQ_F_CREDS) && req->creds != current_cred())
6752 		creds = override_creds(req->creds);
6753 
6754 	switch (req->opcode) {
6755 	case IORING_OP_NOP:
6756 		ret = io_nop(req, issue_flags);
6757 		break;
6758 	case IORING_OP_READV:
6759 	case IORING_OP_READ_FIXED:
6760 	case IORING_OP_READ:
6761 		ret = io_read(req, issue_flags);
6762 		break;
6763 	case IORING_OP_WRITEV:
6764 	case IORING_OP_WRITE_FIXED:
6765 	case IORING_OP_WRITE:
6766 		ret = io_write(req, issue_flags);
6767 		break;
6768 	case IORING_OP_FSYNC:
6769 		ret = io_fsync(req, issue_flags);
6770 		break;
6771 	case IORING_OP_POLL_ADD:
6772 		ret = io_poll_add(req, issue_flags);
6773 		break;
6774 	case IORING_OP_POLL_REMOVE:
6775 		ret = io_poll_update(req, issue_flags);
6776 		break;
6777 	case IORING_OP_SYNC_FILE_RANGE:
6778 		ret = io_sync_file_range(req, issue_flags);
6779 		break;
6780 	case IORING_OP_SENDMSG:
6781 		ret = io_sendmsg(req, issue_flags);
6782 		break;
6783 	case IORING_OP_SEND:
6784 		ret = io_send(req, issue_flags);
6785 		break;
6786 	case IORING_OP_RECVMSG:
6787 		ret = io_recvmsg(req, issue_flags);
6788 		break;
6789 	case IORING_OP_RECV:
6790 		ret = io_recv(req, issue_flags);
6791 		break;
6792 	case IORING_OP_TIMEOUT:
6793 		ret = io_timeout(req, issue_flags);
6794 		break;
6795 	case IORING_OP_TIMEOUT_REMOVE:
6796 		ret = io_timeout_remove(req, issue_flags);
6797 		break;
6798 	case IORING_OP_ACCEPT:
6799 		ret = io_accept(req, issue_flags);
6800 		break;
6801 	case IORING_OP_CONNECT:
6802 		ret = io_connect(req, issue_flags);
6803 		break;
6804 	case IORING_OP_ASYNC_CANCEL:
6805 		ret = io_async_cancel(req, issue_flags);
6806 		break;
6807 	case IORING_OP_FALLOCATE:
6808 		ret = io_fallocate(req, issue_flags);
6809 		break;
6810 	case IORING_OP_OPENAT:
6811 		ret = io_openat(req, issue_flags);
6812 		break;
6813 	case IORING_OP_CLOSE:
6814 		ret = io_close(req, issue_flags);
6815 		break;
6816 	case IORING_OP_FILES_UPDATE:
6817 		ret = io_files_update(req, issue_flags);
6818 		break;
6819 	case IORING_OP_STATX:
6820 		ret = io_statx(req, issue_flags);
6821 		break;
6822 	case IORING_OP_FADVISE:
6823 		ret = io_fadvise(req, issue_flags);
6824 		break;
6825 	case IORING_OP_MADVISE:
6826 		ret = io_madvise(req, issue_flags);
6827 		break;
6828 	case IORING_OP_OPENAT2:
6829 		ret = io_openat2(req, issue_flags);
6830 		break;
6831 	case IORING_OP_EPOLL_CTL:
6832 		ret = io_epoll_ctl(req, issue_flags);
6833 		break;
6834 	case IORING_OP_SPLICE:
6835 		ret = io_splice(req, issue_flags);
6836 		break;
6837 	case IORING_OP_PROVIDE_BUFFERS:
6838 		ret = io_provide_buffers(req, issue_flags);
6839 		break;
6840 	case IORING_OP_REMOVE_BUFFERS:
6841 		ret = io_remove_buffers(req, issue_flags);
6842 		break;
6843 	case IORING_OP_TEE:
6844 		ret = io_tee(req, issue_flags);
6845 		break;
6846 	case IORING_OP_SHUTDOWN:
6847 		ret = io_shutdown(req, issue_flags);
6848 		break;
6849 	case IORING_OP_RENAMEAT:
6850 		ret = io_renameat(req, issue_flags);
6851 		break;
6852 	case IORING_OP_UNLINKAT:
6853 		ret = io_unlinkat(req, issue_flags);
6854 		break;
6855 	default:
6856 		ret = -EINVAL;
6857 		break;
6858 	}
6859 
6860 	if (creds)
6861 		revert_creds(creds);
6862 	if (ret)
6863 		return ret;
6864 	/* If the op doesn't have a file, we're not polling for it */
6865 	if ((ctx->flags & IORING_SETUP_IOPOLL) && req->file)
6866 		io_iopoll_req_issued(req);
6867 
6868 	return 0;
6869 }
6870 
io_wq_free_work(struct io_wq_work *work)6871 static struct io_wq_work *io_wq_free_work(struct io_wq_work *work)
6872 {
6873 	struct io_kiocb *req = container_of(work, struct io_kiocb, work);
6874 
6875 	req = io_put_req_find_next(req);
6876 	return req ? &req->work : NULL;
6877 }
6878 
io_wq_submit_work(struct io_wq_work *work)6879 static void io_wq_submit_work(struct io_wq_work *work)
6880 {
6881 	struct io_kiocb *req = container_of(work, struct io_kiocb, work);
6882 	struct io_kiocb *timeout;
6883 	int ret = 0;
6884 
6885 	/* one will be dropped by ->io_free_work() after returning to io-wq */
6886 	if (!(req->flags & REQ_F_REFCOUNT))
6887 		__io_req_set_refcount(req, 2);
6888 	else
6889 		req_ref_get(req);
6890 
6891 	timeout = io_prep_linked_timeout(req);
6892 	if (timeout)
6893 		io_queue_linked_timeout(timeout);
6894 	/* either cancelled or io-wq is dying, so don't touch tctx->iowq */
6895 	if (work->flags & IO_WQ_WORK_CANCEL)
6896 		ret = -ECANCELED;
6897 
6898 	if (!ret) {
6899 		do {
6900 			ret = io_issue_sqe(req, 0);
6901 			/*
6902 			 * We can get EAGAIN for polled IO even though we're
6903 			 * forcing a sync submission from here, since we can't
6904 			 * wait for request slots on the block side.
6905 			 */
6906 			if (ret != -EAGAIN || !(req->ctx->flags & IORING_SETUP_IOPOLL))
6907 				break;
6908 			if (io_wq_worker_stopped())
6909 				break;
6910 			/*
6911 			 * If REQ_F_NOWAIT is set, then don't wait or retry with
6912 			 * poll. -EAGAIN is final for that case.
6913 			 */
6914 			if (req->flags & REQ_F_NOWAIT)
6915 				break;
6916 
6917 			cond_resched();
6918 		} while (1);
6919 	}
6920 
6921 	/* avoid locking problems by failing it from a clean context */
6922 	if (ret)
6923 		io_req_task_queue_fail(req, ret);
6924 }
6925 
io_fixed_file_slot(struct io_file_table *table, unsigned i)6926 static inline struct io_fixed_file *io_fixed_file_slot(struct io_file_table *table,
6927 						       unsigned i)
6928 {
6929 	return &table->files[i];
6930 }
6931 
io_file_from_index(struct io_ring_ctx *ctx, int index)6932 static inline struct file *io_file_from_index(struct io_ring_ctx *ctx,
6933 					      int index)
6934 {
6935 	struct io_fixed_file *slot = io_fixed_file_slot(&ctx->file_table, index);
6936 
6937 	return (struct file *) (slot->file_ptr & FFS_MASK);
6938 }
6939 
io_fixed_file_set(struct io_fixed_file *file_slot, struct file *file)6940 static void io_fixed_file_set(struct io_fixed_file *file_slot, struct file *file)
6941 {
6942 	unsigned long file_ptr = (unsigned long) file;
6943 
6944 	if (__io_file_supports_nowait(file, READ))
6945 		file_ptr |= FFS_ASYNC_READ;
6946 	if (__io_file_supports_nowait(file, WRITE))
6947 		file_ptr |= FFS_ASYNC_WRITE;
6948 	if (S_ISREG(file_inode(file)->i_mode))
6949 		file_ptr |= FFS_ISREG;
6950 	file_slot->file_ptr = file_ptr;
6951 }
6952 
io_file_get_fixed(struct io_ring_ctx *ctx, struct io_kiocb *req, int fd, unsigned int issue_flags)6953 static inline struct file *io_file_get_fixed(struct io_ring_ctx *ctx,
6954 					     struct io_kiocb *req, int fd,
6955 					     unsigned int issue_flags)
6956 {
6957 	struct file *file = NULL;
6958 	unsigned long file_ptr;
6959 
6960 	io_ring_submit_lock(ctx, !(issue_flags & IO_URING_F_NONBLOCK));
6961 
6962 	if (unlikely((unsigned int)fd >= ctx->nr_user_files))
6963 		goto out;
6964 	fd = array_index_nospec(fd, ctx->nr_user_files);
6965 	file_ptr = io_fixed_file_slot(&ctx->file_table, fd)->file_ptr;
6966 	file = (struct file *) (file_ptr & FFS_MASK);
6967 	file_ptr &= ~FFS_MASK;
6968 	/* mask in overlapping REQ_F and FFS bits */
6969 	req->flags |= (file_ptr << REQ_F_NOWAIT_READ_BIT);
6970 	io_req_set_rsrc_node(req);
6971 out:
6972 	io_ring_submit_unlock(ctx, !(issue_flags & IO_URING_F_NONBLOCK));
6973 	return file;
6974 }
6975 
io_file_get_normal(struct io_ring_ctx *ctx, struct io_kiocb *req, int fd)6976 static struct file *io_file_get_normal(struct io_ring_ctx *ctx,
6977 				       struct io_kiocb *req, int fd)
6978 {
6979 	struct file *file = fget(fd);
6980 
6981 	trace_io_uring_file_get(ctx, fd);
6982 
6983 	/* we don't allow fixed io_uring files */
6984 	if (file && unlikely(file->f_op == &io_uring_fops))
6985 		io_req_track_inflight(req);
6986 	return file;
6987 }
6988 
io_file_get(struct io_ring_ctx *ctx, struct io_kiocb *req, int fd, bool fixed, unsigned int issue_flags)6989 static inline struct file *io_file_get(struct io_ring_ctx *ctx,
6990 				       struct io_kiocb *req, int fd, bool fixed,
6991 				       unsigned int issue_flags)
6992 {
6993 	if (fixed)
6994 		return io_file_get_fixed(ctx, req, fd, issue_flags);
6995 	else
6996 		return io_file_get_normal(ctx, req, fd);
6997 }
6998 
io_req_task_link_timeout(struct io_kiocb *req, bool *locked)6999 static void io_req_task_link_timeout(struct io_kiocb *req, bool *locked)
7000 {
7001 	struct io_kiocb *prev = req->timeout.prev;
7002 	int ret = -ENOENT;
7003 
7004 	if (prev) {
7005 		if (!(req->task->flags & PF_EXITING))
7006 			ret = io_try_cancel_userdata(req, prev->user_data);
7007 		io_req_complete_post(req, ret ?: -ETIME, 0);
7008 		io_put_req(prev);
7009 	} else {
7010 		io_req_complete_post(req, -ETIME, 0);
7011 	}
7012 }
7013 
io_link_timeout_fn(struct hrtimer *timer)7014 static enum hrtimer_restart io_link_timeout_fn(struct hrtimer *timer)
7015 {
7016 	struct io_timeout_data *data = container_of(timer,
7017 						struct io_timeout_data, timer);
7018 	struct io_kiocb *prev, *req = data->req;
7019 	struct io_ring_ctx *ctx = req->ctx;
7020 	unsigned long flags;
7021 
7022 	spin_lock_irqsave(&ctx->timeout_lock, flags);
7023 	prev = req->timeout.head;
7024 	req->timeout.head = NULL;
7025 
7026 	/*
7027 	 * We don't expect the list to be empty, that will only happen if we
7028 	 * race with the completion of the linked work.
7029 	 */
7030 	if (prev) {
7031 		io_remove_next_linked(prev);
7032 		if (!req_ref_inc_not_zero(prev))
7033 			prev = NULL;
7034 	}
7035 	list_del(&req->timeout.list);
7036 	req->timeout.prev = prev;
7037 	spin_unlock_irqrestore(&ctx->timeout_lock, flags);
7038 
7039 	req->io_task_work.func = io_req_task_link_timeout;
7040 	io_req_task_work_add(req);
7041 	return HRTIMER_NORESTART;
7042 }
7043 
io_queue_linked_timeout(struct io_kiocb *req)7044 static void io_queue_linked_timeout(struct io_kiocb *req)
7045 {
7046 	struct io_ring_ctx *ctx = req->ctx;
7047 
7048 	spin_lock_irq(&ctx->timeout_lock);
7049 	/*
7050 	 * If the back reference is NULL, then our linked request finished
7051 	 * before we got a chance to setup the timer
7052 	 */
7053 	if (req->timeout.head) {
7054 		struct io_timeout_data *data = req->async_data;
7055 
7056 		data->timer.function = io_link_timeout_fn;
7057 		hrtimer_start(&data->timer, timespec64_to_ktime(data->ts),
7058 				data->mode);
7059 		list_add_tail(&req->timeout.list, &ctx->ltimeout_list);
7060 	}
7061 	spin_unlock_irq(&ctx->timeout_lock);
7062 	/* drop submission reference */
7063 	io_put_req(req);
7064 }
7065 
7066 static void __io_queue_sqe(struct io_kiocb *req)
7067 	__must_hold(&req->ctx->uring_lock)
7068 {
7069 	struct io_kiocb *linked_timeout;
7070 	int ret;
7071 
7072 issue_sqe:
7073 	ret = io_issue_sqe(req, IO_URING_F_NONBLOCK|IO_URING_F_COMPLETE_DEFER);
7074 
7075 	/*
7076 	 * We async punt it if the file wasn't marked NOWAIT, or if the file
7077 	 * doesn't support non-blocking read/write attempts
7078 	 */
7079 	if (likely(!ret)) {
7080 		if (req->flags & REQ_F_COMPLETE_INLINE) {
7081 			struct io_ring_ctx *ctx = req->ctx;
7082 			struct io_submit_state *state = &ctx->submit_state;
7083 
7084 			state->compl_reqs[state->compl_nr++] = req;
7085 			if (state->compl_nr == ARRAY_SIZE(state->compl_reqs))
7086 				io_submit_flush_completions(ctx);
7087 			return;
7088 		}
7089 
7090 		linked_timeout = io_prep_linked_timeout(req);
7091 		if (linked_timeout)
7092 			io_queue_linked_timeout(linked_timeout);
7093 	} else if (ret == -EAGAIN && !(req->flags & REQ_F_NOWAIT)) {
7094 		linked_timeout = io_prep_linked_timeout(req);
7095 
7096 		switch (io_arm_poll_handler(req)) {
7097 		case IO_APOLL_READY:
7098 			if (linked_timeout)
7099 				io_queue_linked_timeout(linked_timeout);
7100 			goto issue_sqe;
7101 		case IO_APOLL_ABORTED:
7102 			/*
7103 			 * Queued up for async execution, worker will release
7104 			 * submit reference when the iocb is actually submitted.
7105 			 */
7106 			io_queue_async_work(req, NULL);
7107 			break;
7108 		}
7109 
7110 		if (linked_timeout)
7111 			io_queue_linked_timeout(linked_timeout);
7112 	} else {
7113 		io_req_complete_failed(req, ret);
7114 	}
7115 }
7116 
7117 static inline void io_queue_sqe(struct io_kiocb *req)
7118 	__must_hold(&req->ctx->uring_lock)
7119 {
7120 	if (unlikely(req->ctx->drain_active) && io_drain_req(req))
7121 		return;
7122 
7123 	if (likely(!(req->flags & (REQ_F_FORCE_ASYNC | REQ_F_FAIL)))) {
7124 		__io_queue_sqe(req);
7125 	} else if (req->flags & REQ_F_FAIL) {
7126 		io_req_complete_fail_submit(req);
7127 	} else {
7128 		int ret = io_req_prep_async(req);
7129 
7130 		if (unlikely(ret))
7131 			io_req_complete_failed(req, ret);
7132 		else
7133 			io_queue_async_work(req, NULL);
7134 	}
7135 }
7136 
7137 /*
7138  * Check SQE restrictions (opcode and flags).
7139  *
7140  * Returns 'true' if SQE is allowed, 'false' otherwise.
7141  */
io_check_restriction(struct io_ring_ctx *ctx, struct io_kiocb *req, unsigned int sqe_flags)7142 static inline bool io_check_restriction(struct io_ring_ctx *ctx,
7143 					struct io_kiocb *req,
7144 					unsigned int sqe_flags)
7145 {
7146 	if (likely(!ctx->restricted))
7147 		return true;
7148 
7149 	if (!test_bit(req->opcode, ctx->restrictions.sqe_op))
7150 		return false;
7151 
7152 	if ((sqe_flags & ctx->restrictions.sqe_flags_required) !=
7153 	    ctx->restrictions.sqe_flags_required)
7154 		return false;
7155 
7156 	if (sqe_flags & ~(ctx->restrictions.sqe_flags_allowed |
7157 			  ctx->restrictions.sqe_flags_required))
7158 		return false;
7159 
7160 	return true;
7161 }
7162 
7163 static int io_init_req(struct io_ring_ctx *ctx, struct io_kiocb *req,
7164 		       const struct io_uring_sqe *sqe)
7165 	__must_hold(&ctx->uring_lock)
7166 {
7167 	struct io_submit_state *state;
7168 	unsigned int sqe_flags;
7169 	int personality, ret = 0;
7170 
7171 	/* req is partially pre-initialised, see io_preinit_req() */
7172 	req->opcode = READ_ONCE(sqe->opcode);
7173 	/* same numerical values with corresponding REQ_F_*, safe to copy */
7174 	req->flags = sqe_flags = READ_ONCE(sqe->flags);
7175 	req->user_data = READ_ONCE(sqe->user_data);
7176 	req->file = NULL;
7177 	req->fixed_rsrc_refs = NULL;
7178 	req->task = current;
7179 
7180 	/* enforce forwards compatibility on users */
7181 	if (unlikely(sqe_flags & ~SQE_VALID_FLAGS))
7182 		return -EINVAL;
7183 	if (unlikely(req->opcode >= IORING_OP_LAST))
7184 		return -EINVAL;
7185 	if (!io_check_restriction(ctx, req, sqe_flags))
7186 		return -EACCES;
7187 
7188 	if ((sqe_flags & IOSQE_BUFFER_SELECT) &&
7189 	    !io_op_defs[req->opcode].buffer_select)
7190 		return -EOPNOTSUPP;
7191 	if (unlikely(sqe_flags & IOSQE_IO_DRAIN))
7192 		ctx->drain_active = true;
7193 
7194 	personality = READ_ONCE(sqe->personality);
7195 	if (personality) {
7196 		req->creds = xa_load(&ctx->personalities, personality);
7197 		if (!req->creds)
7198 			return -EINVAL;
7199 		get_cred(req->creds);
7200 		req->flags |= REQ_F_CREDS;
7201 	}
7202 	state = &ctx->submit_state;
7203 
7204 	/*
7205 	 * Plug now if we have more than 1 IO left after this, and the target
7206 	 * is potentially a read/write to block based storage.
7207 	 */
7208 	if (!state->plug_started && state->ios_left > 1 &&
7209 	    io_op_defs[req->opcode].plug) {
7210 		blk_start_plug(&state->plug);
7211 		state->plug_started = true;
7212 	}
7213 
7214 	if (io_op_defs[req->opcode].needs_file) {
7215 		req->file = io_file_get(ctx, req, READ_ONCE(sqe->fd),
7216 					(sqe_flags & IOSQE_FIXED_FILE),
7217 					IO_URING_F_NONBLOCK);
7218 		if (unlikely(!req->file))
7219 			ret = -EBADF;
7220 	}
7221 
7222 	state->ios_left--;
7223 	return ret;
7224 }
7225 
7226 static int io_submit_sqe(struct io_ring_ctx *ctx, struct io_kiocb *req,
7227 			 const struct io_uring_sqe *sqe)
7228 	__must_hold(&ctx->uring_lock)
7229 {
7230 	struct io_submit_link *link = &ctx->submit_state.link;
7231 	int ret;
7232 
7233 	ret = io_init_req(ctx, req, sqe);
7234 	if (unlikely(ret)) {
7235 fail_req:
7236 		/* fail even hard links since we don't submit */
7237 		if (link->head) {
7238 			/*
7239 			 * we can judge a link req is failed or cancelled by if
7240 			 * REQ_F_FAIL is set, but the head is an exception since
7241 			 * it may be set REQ_F_FAIL because of other req's failure
7242 			 * so let's leverage req->result to distinguish if a head
7243 			 * is set REQ_F_FAIL because of its failure or other req's
7244 			 * failure so that we can set the correct ret code for it.
7245 			 * init result here to avoid affecting the normal path.
7246 			 */
7247 			if (!(link->head->flags & REQ_F_FAIL))
7248 				req_fail_link_node(link->head, -ECANCELED);
7249 		} else if (!(req->flags & (REQ_F_LINK | REQ_F_HARDLINK))) {
7250 			/*
7251 			 * the current req is a normal req, we should return
7252 			 * error and thus break the submittion loop.
7253 			 */
7254 			io_req_complete_failed(req, ret);
7255 			return ret;
7256 		}
7257 		req_fail_link_node(req, ret);
7258 	} else {
7259 		ret = io_req_prep(req, sqe);
7260 		if (unlikely(ret))
7261 			goto fail_req;
7262 	}
7263 
7264 	/* don't need @sqe from now on */
7265 	trace_io_uring_submit_sqe(ctx, req, req->opcode, req->user_data,
7266 				  req->flags, true,
7267 				  ctx->flags & IORING_SETUP_SQPOLL);
7268 
7269 	/*
7270 	 * If we already have a head request, queue this one for async
7271 	 * submittal once the head completes. If we don't have a head but
7272 	 * IOSQE_IO_LINK is set in the sqe, start a new head. This one will be
7273 	 * submitted sync once the chain is complete. If none of those
7274 	 * conditions are true (normal request), then just queue it.
7275 	 */
7276 	if (link->head) {
7277 		struct io_kiocb *head = link->head;
7278 
7279 		if (!(req->flags & REQ_F_FAIL)) {
7280 			ret = io_req_prep_async(req);
7281 			if (unlikely(ret)) {
7282 				req_fail_link_node(req, ret);
7283 				if (!(head->flags & REQ_F_FAIL))
7284 					req_fail_link_node(head, -ECANCELED);
7285 			}
7286 		}
7287 		trace_io_uring_link(ctx, req, head);
7288 		link->last->link = req;
7289 		link->last = req;
7290 
7291 		/* last request of a link, enqueue the link */
7292 		if (!(req->flags & (REQ_F_LINK | REQ_F_HARDLINK))) {
7293 			link->head = NULL;
7294 			io_queue_sqe(head);
7295 		}
7296 	} else {
7297 		if (req->flags & (REQ_F_LINK | REQ_F_HARDLINK)) {
7298 			link->head = req;
7299 			link->last = req;
7300 		} else {
7301 			io_queue_sqe(req);
7302 		}
7303 	}
7304 
7305 	return 0;
7306 }
7307 
7308 /*
7309  * Batched submission is done, ensure local IO is flushed out.
7310  */
io_submit_state_end(struct io_submit_state *state, struct io_ring_ctx *ctx)7311 static void io_submit_state_end(struct io_submit_state *state,
7312 				struct io_ring_ctx *ctx)
7313 {
7314 	if (state->link.head)
7315 		io_queue_sqe(state->link.head);
7316 	if (state->compl_nr)
7317 		io_submit_flush_completions(ctx);
7318 	if (state->plug_started)
7319 		blk_finish_plug(&state->plug);
7320 }
7321 
7322 /*
7323  * Start submission side cache.
7324  */
io_submit_state_start(struct io_submit_state *state, unsigned int max_ios)7325 static void io_submit_state_start(struct io_submit_state *state,
7326 				  unsigned int max_ios)
7327 {
7328 	state->plug_started = false;
7329 	state->ios_left = max_ios;
7330 	/* set only head, no need to init link_last in advance */
7331 	state->link.head = NULL;
7332 }
7333 
io_commit_sqring(struct io_ring_ctx *ctx)7334 static void io_commit_sqring(struct io_ring_ctx *ctx)
7335 {
7336 	struct io_rings *rings = ctx->rings;
7337 
7338 	/*
7339 	 * Ensure any loads from the SQEs are done at this point,
7340 	 * since once we write the new head, the application could
7341 	 * write new data to them.
7342 	 */
7343 	smp_store_release(&rings->sq.head, ctx->cached_sq_head);
7344 }
7345 
7346 /*
7347  * Fetch an sqe, if one is available. Note this returns a pointer to memory
7348  * that is mapped by userspace. This means that care needs to be taken to
7349  * ensure that reads are stable, as we cannot rely on userspace always
7350  * being a good citizen. If members of the sqe are validated and then later
7351  * used, it's important that those reads are done through READ_ONCE() to
7352  * prevent a re-load down the line.
7353  */
io_get_sqe(struct io_ring_ctx *ctx)7354 static const struct io_uring_sqe *io_get_sqe(struct io_ring_ctx *ctx)
7355 {
7356 	unsigned head, mask = ctx->sq_entries - 1;
7357 	unsigned sq_idx = ctx->cached_sq_head++ & mask;
7358 
7359 	/*
7360 	 * The cached sq head (or cq tail) serves two purposes:
7361 	 *
7362 	 * 1) allows us to batch the cost of updating the user visible
7363 	 *    head updates.
7364 	 * 2) allows the kernel side to track the head on its own, even
7365 	 *    though the application is the one updating it.
7366 	 */
7367 	head = READ_ONCE(ctx->sq_array[sq_idx]);
7368 	if (likely(head < ctx->sq_entries))
7369 		return &ctx->sq_sqes[head];
7370 
7371 	/* drop invalid entries */
7372 	ctx->cq_extra--;
7373 	WRITE_ONCE(ctx->rings->sq_dropped,
7374 		   READ_ONCE(ctx->rings->sq_dropped) + 1);
7375 	return NULL;
7376 }
7377 
7378 static int io_submit_sqes(struct io_ring_ctx *ctx, unsigned int nr)
7379 	__must_hold(&ctx->uring_lock)
7380 {
7381 	int submitted = 0;
7382 
7383 	/* make sure SQ entry isn't read before tail */
7384 	nr = min3(nr, ctx->sq_entries, io_sqring_entries(ctx));
7385 	if (!percpu_ref_tryget_many(&ctx->refs, nr))
7386 		return -EAGAIN;
7387 	io_get_task_refs(nr);
7388 
7389 	io_submit_state_start(&ctx->submit_state, nr);
7390 	while (submitted < nr) {
7391 		const struct io_uring_sqe *sqe;
7392 		struct io_kiocb *req;
7393 
7394 		req = io_alloc_req(ctx);
7395 		if (unlikely(!req)) {
7396 			if (!submitted)
7397 				submitted = -EAGAIN;
7398 			break;
7399 		}
7400 		sqe = io_get_sqe(ctx);
7401 		if (unlikely(!sqe)) {
7402 			list_add(&req->inflight_entry, &ctx->submit_state.free_list);
7403 			break;
7404 		}
7405 		/* will complete beyond this point, count as submitted */
7406 		submitted++;
7407 		if (io_submit_sqe(ctx, req, sqe))
7408 			break;
7409 	}
7410 
7411 	if (unlikely(submitted != nr)) {
7412 		int ref_used = (submitted == -EAGAIN) ? 0 : submitted;
7413 		int unused = nr - ref_used;
7414 
7415 		current->io_uring->cached_refs += unused;
7416 		percpu_ref_put_many(&ctx->refs, unused);
7417 	}
7418 
7419 	io_submit_state_end(&ctx->submit_state, ctx);
7420 	 /* Commit SQ ring head once we've consumed and submitted all SQEs */
7421 	io_commit_sqring(ctx);
7422 
7423 	return submitted;
7424 }
7425 
io_sqd_events_pending(struct io_sq_data *sqd)7426 static inline bool io_sqd_events_pending(struct io_sq_data *sqd)
7427 {
7428 	return READ_ONCE(sqd->state);
7429 }
7430 
io_ring_set_wakeup_flag(struct io_ring_ctx *ctx)7431 static inline void io_ring_set_wakeup_flag(struct io_ring_ctx *ctx)
7432 {
7433 	/* Tell userspace we may need a wakeup call */
7434 	spin_lock(&ctx->completion_lock);
7435 	WRITE_ONCE(ctx->rings->sq_flags,
7436 		   ctx->rings->sq_flags | IORING_SQ_NEED_WAKEUP);
7437 	spin_unlock(&ctx->completion_lock);
7438 }
7439 
io_ring_clear_wakeup_flag(struct io_ring_ctx *ctx)7440 static inline void io_ring_clear_wakeup_flag(struct io_ring_ctx *ctx)
7441 {
7442 	spin_lock(&ctx->completion_lock);
7443 	WRITE_ONCE(ctx->rings->sq_flags,
7444 		   ctx->rings->sq_flags & ~IORING_SQ_NEED_WAKEUP);
7445 	spin_unlock(&ctx->completion_lock);
7446 }
7447 
__io_sq_thread(struct io_ring_ctx *ctx, bool cap_entries)7448 static int __io_sq_thread(struct io_ring_ctx *ctx, bool cap_entries)
7449 {
7450 	unsigned int to_submit;
7451 	int ret = 0;
7452 
7453 	to_submit = io_sqring_entries(ctx);
7454 	/* if we're handling multiple rings, cap submit size for fairness */
7455 	if (cap_entries && to_submit > IORING_SQPOLL_CAP_ENTRIES_VALUE)
7456 		to_submit = IORING_SQPOLL_CAP_ENTRIES_VALUE;
7457 
7458 	if (!list_empty(&ctx->iopoll_list) || to_submit) {
7459 		unsigned nr_events = 0;
7460 		const struct cred *creds = NULL;
7461 
7462 		if (ctx->sq_creds != current_cred())
7463 			creds = override_creds(ctx->sq_creds);
7464 
7465 		mutex_lock(&ctx->uring_lock);
7466 		if (!list_empty(&ctx->iopoll_list))
7467 			io_do_iopoll(ctx, &nr_events, 0);
7468 
7469 		/*
7470 		 * Don't submit if refs are dying, good for io_uring_register(),
7471 		 * but also it is relied upon by io_ring_exit_work()
7472 		 */
7473 		if (to_submit && likely(!percpu_ref_is_dying(&ctx->refs)) &&
7474 		    !(ctx->flags & IORING_SETUP_R_DISABLED))
7475 			ret = io_submit_sqes(ctx, to_submit);
7476 		mutex_unlock(&ctx->uring_lock);
7477 
7478 		if (to_submit && wq_has_sleeper(&ctx->sqo_sq_wait))
7479 			wake_up(&ctx->sqo_sq_wait);
7480 		if (creds)
7481 			revert_creds(creds);
7482 	}
7483 
7484 	return ret;
7485 }
7486 
io_sqd_update_thread_idle(struct io_sq_data *sqd)7487 static void io_sqd_update_thread_idle(struct io_sq_data *sqd)
7488 {
7489 	struct io_ring_ctx *ctx;
7490 	unsigned sq_thread_idle = 0;
7491 
7492 	list_for_each_entry(ctx, &sqd->ctx_list, sqd_list)
7493 		sq_thread_idle = max(sq_thread_idle, ctx->sq_thread_idle);
7494 	sqd->sq_thread_idle = sq_thread_idle;
7495 }
7496 
io_sqd_handle_event(struct io_sq_data *sqd)7497 static bool io_sqd_handle_event(struct io_sq_data *sqd)
7498 {
7499 	bool did_sig = false;
7500 	struct ksignal ksig;
7501 
7502 	if (test_bit(IO_SQ_THREAD_SHOULD_PARK, &sqd->state) ||
7503 	    signal_pending(current)) {
7504 		mutex_unlock(&sqd->lock);
7505 		if (signal_pending(current))
7506 			did_sig = get_signal(&ksig);
7507 		cond_resched();
7508 		mutex_lock(&sqd->lock);
7509 	}
7510 	return did_sig || test_bit(IO_SQ_THREAD_SHOULD_STOP, &sqd->state);
7511 }
7512 
io_sq_thread(void *data)7513 static int io_sq_thread(void *data)
7514 {
7515 	struct io_sq_data *sqd = data;
7516 	struct io_ring_ctx *ctx;
7517 	unsigned long timeout = 0;
7518 	char buf[TASK_COMM_LEN];
7519 	DEFINE_WAIT(wait);
7520 
7521 	snprintf(buf, sizeof(buf), "iou-sqp-%d", sqd->task_pid);
7522 	set_task_comm(current, buf);
7523 
7524 	if (sqd->sq_cpu != -1)
7525 		set_cpus_allowed_ptr(current, cpumask_of(sqd->sq_cpu));
7526 	else
7527 		set_cpus_allowed_ptr(current, cpu_online_mask);
7528 	current->flags |= PF_NO_SETAFFINITY;
7529 
7530 	mutex_lock(&sqd->lock);
7531 	while (1) {
7532 		bool cap_entries, sqt_spin = false;
7533 
7534 		if (io_sqd_events_pending(sqd) || signal_pending(current)) {
7535 			if (io_sqd_handle_event(sqd))
7536 				break;
7537 			timeout = jiffies + sqd->sq_thread_idle;
7538 		}
7539 
7540 		cap_entries = !list_is_singular(&sqd->ctx_list);
7541 		list_for_each_entry(ctx, &sqd->ctx_list, sqd_list) {
7542 			int ret = __io_sq_thread(ctx, cap_entries);
7543 
7544 			if (!sqt_spin && (ret > 0 || !list_empty(&ctx->iopoll_list)))
7545 				sqt_spin = true;
7546 		}
7547 		if (io_run_task_work())
7548 			sqt_spin = true;
7549 
7550 		if (sqt_spin || !time_after(jiffies, timeout)) {
7551 			cond_resched();
7552 			if (sqt_spin)
7553 				timeout = jiffies + sqd->sq_thread_idle;
7554 			continue;
7555 		}
7556 
7557 		prepare_to_wait(&sqd->wait, &wait, TASK_INTERRUPTIBLE);
7558 		if (!io_sqd_events_pending(sqd) && !current->task_works) {
7559 			bool needs_sched = true;
7560 
7561 			list_for_each_entry(ctx, &sqd->ctx_list, sqd_list) {
7562 				io_ring_set_wakeup_flag(ctx);
7563 
7564 				if ((ctx->flags & IORING_SETUP_IOPOLL) &&
7565 				    !list_empty_careful(&ctx->iopoll_list)) {
7566 					needs_sched = false;
7567 					break;
7568 				}
7569 				if (io_sqring_entries(ctx)) {
7570 					needs_sched = false;
7571 					break;
7572 				}
7573 			}
7574 
7575 			if (needs_sched) {
7576 				mutex_unlock(&sqd->lock);
7577 				schedule();
7578 				mutex_lock(&sqd->lock);
7579 			}
7580 			list_for_each_entry(ctx, &sqd->ctx_list, sqd_list)
7581 				io_ring_clear_wakeup_flag(ctx);
7582 		}
7583 
7584 		finish_wait(&sqd->wait, &wait);
7585 		timeout = jiffies + sqd->sq_thread_idle;
7586 	}
7587 
7588 	io_uring_cancel_generic(true, sqd);
7589 	sqd->thread = NULL;
7590 	list_for_each_entry(ctx, &sqd->ctx_list, sqd_list)
7591 		io_ring_set_wakeup_flag(ctx);
7592 	io_run_task_work();
7593 	mutex_unlock(&sqd->lock);
7594 
7595 	complete(&sqd->exited);
7596 	do_exit(0);
7597 }
7598 
7599 struct io_wait_queue {
7600 	struct wait_queue_entry wq;
7601 	struct io_ring_ctx *ctx;
7602 	unsigned cq_tail;
7603 	unsigned nr_timeouts;
7604 };
7605 
io_should_wake(struct io_wait_queue *iowq)7606 static inline bool io_should_wake(struct io_wait_queue *iowq)
7607 {
7608 	struct io_ring_ctx *ctx = iowq->ctx;
7609 	int dist = ctx->cached_cq_tail - (int) iowq->cq_tail;
7610 
7611 	/*
7612 	 * Wake up if we have enough events, or if a timeout occurred since we
7613 	 * started waiting. For timeouts, we always want to return to userspace,
7614 	 * regardless of event count.
7615 	 */
7616 	return dist >= 0 || atomic_read(&ctx->cq_timeouts) != iowq->nr_timeouts;
7617 }
7618 
io_wake_function(struct wait_queue_entry *curr, unsigned int mode, int wake_flags, void *key)7619 static int io_wake_function(struct wait_queue_entry *curr, unsigned int mode,
7620 			    int wake_flags, void *key)
7621 {
7622 	struct io_wait_queue *iowq = container_of(curr, struct io_wait_queue,
7623 							wq);
7624 
7625 	/*
7626 	 * Cannot safely flush overflowed CQEs from here, ensure we wake up
7627 	 * the task, and the next invocation will do it.
7628 	 */
7629 	if (io_should_wake(iowq) || test_bit(0, &iowq->ctx->check_cq_overflow))
7630 		return autoremove_wake_function(curr, mode, wake_flags, key);
7631 	return -1;
7632 }
7633 
io_run_task_work_sig(void)7634 static int io_run_task_work_sig(void)
7635 {
7636 	if (io_run_task_work())
7637 		return 1;
7638 	if (!signal_pending(current))
7639 		return 0;
7640 	if (test_thread_flag(TIF_NOTIFY_SIGNAL))
7641 		return -ERESTARTSYS;
7642 	return -EINTR;
7643 }
7644 
current_pending_io(void)7645 static bool current_pending_io(void)
7646 {
7647 	struct io_uring_task *tctx = current->io_uring;
7648 
7649 	if (!tctx)
7650 		return false;
7651 	return percpu_counter_read_positive(&tctx->inflight);
7652 }
7653 
7654 /* when returns >0, the caller should retry */
io_cqring_wait_schedule(struct io_ring_ctx *ctx, struct io_wait_queue *iowq, ktime_t *timeout)7655 static inline int io_cqring_wait_schedule(struct io_ring_ctx *ctx,
7656 					  struct io_wait_queue *iowq,
7657 					  ktime_t *timeout)
7658 {
7659 	int io_wait, ret;
7660 
7661 	/* make sure we run task_work before checking for signals */
7662 	ret = io_run_task_work_sig();
7663 	if (ret || io_should_wake(iowq))
7664 		return ret;
7665 	/* let the caller flush overflows, retry */
7666 	if (test_bit(0, &ctx->check_cq_overflow))
7667 		return 1;
7668 
7669 	/*
7670 	 * Mark us as being in io_wait if we have pending requests, so cpufreq
7671 	 * can take into account that the task is waiting for IO - turns out
7672 	 * to be important for low QD IO.
7673 	 */
7674 	io_wait = current->in_iowait;
7675 	if (current_pending_io())
7676 		current->in_iowait = 1;
7677 	ret = 1;
7678 	if (!schedule_hrtimeout(timeout, HRTIMER_MODE_ABS))
7679 		ret = -ETIME;
7680 	current->in_iowait = io_wait;
7681 	return ret;
7682 }
7683 
7684 /*
7685  * Wait until events become available, if we don't already have some. The
7686  * application must reap them itself, as they reside on the shared cq ring.
7687  */
io_cqring_wait(struct io_ring_ctx *ctx, int min_events, const sigset_t __user *sig, size_t sigsz, struct __kernel_timespec __user *uts)7688 static int io_cqring_wait(struct io_ring_ctx *ctx, int min_events,
7689 			  const sigset_t __user *sig, size_t sigsz,
7690 			  struct __kernel_timespec __user *uts)
7691 {
7692 	struct io_wait_queue iowq;
7693 	struct io_rings *rings = ctx->rings;
7694 	ktime_t timeout = KTIME_MAX;
7695 	int ret;
7696 
7697 	do {
7698 		io_cqring_overflow_flush(ctx);
7699 		if (io_cqring_events(ctx) >= min_events)
7700 			return 0;
7701 		if (!io_run_task_work())
7702 			break;
7703 	} while (1);
7704 
7705 	if (uts) {
7706 		struct timespec64 ts;
7707 
7708 		if (get_timespec64(&ts, uts))
7709 			return -EFAULT;
7710 		timeout = ktime_add_ns(timespec64_to_ktime(ts), ktime_get_ns());
7711 	}
7712 
7713 	if (sig) {
7714 #ifdef CONFIG_COMPAT
7715 		if (in_compat_syscall())
7716 			ret = set_compat_user_sigmask((const compat_sigset_t __user *)sig,
7717 						      sigsz);
7718 		else
7719 #endif
7720 			ret = set_user_sigmask(sig, sigsz);
7721 
7722 		if (ret)
7723 			return ret;
7724 	}
7725 
7726 	init_waitqueue_func_entry(&iowq.wq, io_wake_function);
7727 	iowq.wq.private = current;
7728 	INIT_LIST_HEAD(&iowq.wq.entry);
7729 	iowq.ctx = ctx;
7730 	iowq.nr_timeouts = atomic_read(&ctx->cq_timeouts);
7731 	iowq.cq_tail = READ_ONCE(ctx->rings->cq.head) + min_events;
7732 
7733 	trace_io_uring_cqring_wait(ctx, min_events);
7734 	do {
7735 		/* if we can't even flush overflow, don't wait for more */
7736 		if (!io_cqring_overflow_flush(ctx)) {
7737 			ret = -EBUSY;
7738 			break;
7739 		}
7740 		prepare_to_wait_exclusive(&ctx->cq_wait, &iowq.wq,
7741 						TASK_INTERRUPTIBLE);
7742 		ret = io_cqring_wait_schedule(ctx, &iowq, &timeout);
7743 		finish_wait(&ctx->cq_wait, &iowq.wq);
7744 		cond_resched();
7745 	} while (ret > 0);
7746 
7747 	restore_saved_sigmask_unless(ret == -EINTR);
7748 
7749 	return READ_ONCE(rings->cq.head) == READ_ONCE(rings->cq.tail) ? ret : 0;
7750 }
7751 
io_free_page_table(void **table, size_t size)7752 static void io_free_page_table(void **table, size_t size)
7753 {
7754 	unsigned i, nr_tables = DIV_ROUND_UP(size, PAGE_SIZE);
7755 
7756 	for (i = 0; i < nr_tables; i++)
7757 		kfree(table[i]);
7758 	kfree(table);
7759 }
7760 
io_alloc_page_table(size_t size)7761 static void **io_alloc_page_table(size_t size)
7762 {
7763 	unsigned i, nr_tables = DIV_ROUND_UP(size, PAGE_SIZE);
7764 	size_t init_size = size;
7765 	void **table;
7766 
7767 	table = kcalloc(nr_tables, sizeof(*table), GFP_KERNEL_ACCOUNT);
7768 	if (!table)
7769 		return NULL;
7770 
7771 	for (i = 0; i < nr_tables; i++) {
7772 		unsigned int this_size = min_t(size_t, size, PAGE_SIZE);
7773 
7774 		table[i] = kzalloc(this_size, GFP_KERNEL_ACCOUNT);
7775 		if (!table[i]) {
7776 			io_free_page_table(table, init_size);
7777 			return NULL;
7778 		}
7779 		size -= this_size;
7780 	}
7781 	return table;
7782 }
7783 
io_rsrc_node_destroy(struct io_rsrc_node *ref_node)7784 static void io_rsrc_node_destroy(struct io_rsrc_node *ref_node)
7785 {
7786 	percpu_ref_exit(&ref_node->refs);
7787 	kfree(ref_node);
7788 }
7789 
io_rsrc_node_ref_zero(struct percpu_ref *ref)7790 static void io_rsrc_node_ref_zero(struct percpu_ref *ref)
7791 {
7792 	struct io_rsrc_node *node = container_of(ref, struct io_rsrc_node, refs);
7793 	struct io_ring_ctx *ctx = node->rsrc_data->ctx;
7794 	unsigned long flags;
7795 	bool first_add = false;
7796 	unsigned long delay = HZ;
7797 
7798 	spin_lock_irqsave(&ctx->rsrc_ref_lock, flags);
7799 	node->done = true;
7800 
7801 	/* if we are mid-quiesce then do not delay */
7802 	if (node->rsrc_data->quiesce)
7803 		delay = 0;
7804 
7805 	while (!list_empty(&ctx->rsrc_ref_list)) {
7806 		node = list_first_entry(&ctx->rsrc_ref_list,
7807 					    struct io_rsrc_node, node);
7808 		/* recycle ref nodes in order */
7809 		if (!node->done)
7810 			break;
7811 		list_del(&node->node);
7812 		first_add |= llist_add(&node->llist, &ctx->rsrc_put_llist);
7813 	}
7814 	spin_unlock_irqrestore(&ctx->rsrc_ref_lock, flags);
7815 
7816 	if (first_add)
7817 		mod_delayed_work(system_wq, &ctx->rsrc_put_work, delay);
7818 }
7819 
io_rsrc_node_alloc(struct io_ring_ctx *ctx)7820 static struct io_rsrc_node *io_rsrc_node_alloc(struct io_ring_ctx *ctx)
7821 {
7822 	struct io_rsrc_node *ref_node;
7823 
7824 	ref_node = kzalloc(sizeof(*ref_node), GFP_KERNEL);
7825 	if (!ref_node)
7826 		return NULL;
7827 
7828 	if (percpu_ref_init(&ref_node->refs, io_rsrc_node_ref_zero,
7829 			    0, GFP_KERNEL)) {
7830 		kfree(ref_node);
7831 		return NULL;
7832 	}
7833 	INIT_LIST_HEAD(&ref_node->node);
7834 	INIT_LIST_HEAD(&ref_node->rsrc_list);
7835 	ref_node->done = false;
7836 	return ref_node;
7837 }
7838 
io_rsrc_node_switch(struct io_ring_ctx *ctx, struct io_rsrc_data *data_to_kill)7839 static void io_rsrc_node_switch(struct io_ring_ctx *ctx,
7840 				struct io_rsrc_data *data_to_kill)
7841 {
7842 	WARN_ON_ONCE(!ctx->rsrc_backup_node);
7843 	WARN_ON_ONCE(data_to_kill && !ctx->rsrc_node);
7844 
7845 	if (data_to_kill) {
7846 		struct io_rsrc_node *rsrc_node = ctx->rsrc_node;
7847 
7848 		rsrc_node->rsrc_data = data_to_kill;
7849 		spin_lock_irq(&ctx->rsrc_ref_lock);
7850 		list_add_tail(&rsrc_node->node, &ctx->rsrc_ref_list);
7851 		spin_unlock_irq(&ctx->rsrc_ref_lock);
7852 
7853 		atomic_inc(&data_to_kill->refs);
7854 		percpu_ref_kill(&rsrc_node->refs);
7855 		ctx->rsrc_node = NULL;
7856 	}
7857 
7858 	if (!ctx->rsrc_node) {
7859 		ctx->rsrc_node = ctx->rsrc_backup_node;
7860 		ctx->rsrc_backup_node = NULL;
7861 	}
7862 }
7863 
io_rsrc_node_switch_start(struct io_ring_ctx *ctx)7864 static int io_rsrc_node_switch_start(struct io_ring_ctx *ctx)
7865 {
7866 	if (ctx->rsrc_backup_node)
7867 		return 0;
7868 	ctx->rsrc_backup_node = io_rsrc_node_alloc(ctx);
7869 	return ctx->rsrc_backup_node ? 0 : -ENOMEM;
7870 }
7871 
io_rsrc_ref_quiesce(struct io_rsrc_data *data, struct io_ring_ctx *ctx)7872 static int io_rsrc_ref_quiesce(struct io_rsrc_data *data, struct io_ring_ctx *ctx)
7873 {
7874 	int ret;
7875 
7876 	/* As we may drop ->uring_lock, other task may have started quiesce */
7877 	if (data->quiesce)
7878 		return -ENXIO;
7879 
7880 	data->quiesce = true;
7881 	do {
7882 		ret = io_rsrc_node_switch_start(ctx);
7883 		if (ret)
7884 			break;
7885 		io_rsrc_node_switch(ctx, data);
7886 
7887 		/* kill initial ref, already quiesced if zero */
7888 		if (atomic_dec_and_test(&data->refs))
7889 			break;
7890 		mutex_unlock(&ctx->uring_lock);
7891 		flush_delayed_work(&ctx->rsrc_put_work);
7892 		ret = wait_for_completion_interruptible(&data->done);
7893 		if (!ret) {
7894 			mutex_lock(&ctx->uring_lock);
7895 			if (atomic_read(&data->refs) > 0) {
7896 				/*
7897 				 * it has been revived by another thread while
7898 				 * we were unlocked
7899 				 */
7900 				mutex_unlock(&ctx->uring_lock);
7901 			} else {
7902 				break;
7903 			}
7904 		}
7905 
7906 		atomic_inc(&data->refs);
7907 		/* wait for all works potentially completing data->done */
7908 		flush_delayed_work(&ctx->rsrc_put_work);
7909 		reinit_completion(&data->done);
7910 
7911 		ret = io_run_task_work_sig();
7912 		mutex_lock(&ctx->uring_lock);
7913 	} while (ret >= 0);
7914 	data->quiesce = false;
7915 
7916 	return ret;
7917 }
7918 
io_get_tag_slot(struct io_rsrc_data *data, unsigned int idx)7919 static u64 *io_get_tag_slot(struct io_rsrc_data *data, unsigned int idx)
7920 {
7921 	unsigned int off = idx & IO_RSRC_TAG_TABLE_MASK;
7922 	unsigned int table_idx = idx >> IO_RSRC_TAG_TABLE_SHIFT;
7923 
7924 	return &data->tags[table_idx][off];
7925 }
7926 
io_rsrc_data_free(struct io_rsrc_data *data)7927 static void io_rsrc_data_free(struct io_rsrc_data *data)
7928 {
7929 	size_t size = data->nr * sizeof(data->tags[0][0]);
7930 
7931 	if (data->tags)
7932 		io_free_page_table((void **)data->tags, size);
7933 	kfree(data);
7934 }
7935 
io_rsrc_data_alloc(struct io_ring_ctx *ctx, rsrc_put_fn *do_put, u64 __user *utags, unsigned nr, struct io_rsrc_data **pdata)7936 static int io_rsrc_data_alloc(struct io_ring_ctx *ctx, rsrc_put_fn *do_put,
7937 			      u64 __user *utags, unsigned nr,
7938 			      struct io_rsrc_data **pdata)
7939 {
7940 	struct io_rsrc_data *data;
7941 	int ret = -ENOMEM;
7942 	unsigned i;
7943 
7944 	data = kzalloc(sizeof(*data), GFP_KERNEL);
7945 	if (!data)
7946 		return -ENOMEM;
7947 	data->tags = (u64 **)io_alloc_page_table(nr * sizeof(data->tags[0][0]));
7948 	if (!data->tags) {
7949 		kfree(data);
7950 		return -ENOMEM;
7951 	}
7952 
7953 	data->nr = nr;
7954 	data->ctx = ctx;
7955 	data->do_put = do_put;
7956 	if (utags) {
7957 		ret = -EFAULT;
7958 		for (i = 0; i < nr; i++) {
7959 			u64 *tag_slot = io_get_tag_slot(data, i);
7960 
7961 			if (copy_from_user(tag_slot, &utags[i],
7962 					   sizeof(*tag_slot)))
7963 				goto fail;
7964 		}
7965 	}
7966 
7967 	atomic_set(&data->refs, 1);
7968 	init_completion(&data->done);
7969 	*pdata = data;
7970 	return 0;
7971 fail:
7972 	io_rsrc_data_free(data);
7973 	return ret;
7974 }
7975 
io_alloc_file_tables(struct io_file_table *table, unsigned nr_files)7976 static bool io_alloc_file_tables(struct io_file_table *table, unsigned nr_files)
7977 {
7978 	table->files = kvcalloc(nr_files, sizeof(table->files[0]),
7979 				GFP_KERNEL_ACCOUNT);
7980 	return !!table->files;
7981 }
7982 
io_free_file_tables(struct io_file_table *table)7983 static void io_free_file_tables(struct io_file_table *table)
7984 {
7985 	kvfree(table->files);
7986 	table->files = NULL;
7987 }
7988 
__io_sqe_files_unregister(struct io_ring_ctx *ctx)7989 static void __io_sqe_files_unregister(struct io_ring_ctx *ctx)
7990 {
7991 #if defined(CONFIG_UNIX)
7992 	if (ctx->ring_sock) {
7993 		struct sock *sock = ctx->ring_sock->sk;
7994 		struct sk_buff *skb;
7995 
7996 		while ((skb = skb_dequeue(&sock->sk_receive_queue)) != NULL)
7997 			kfree_skb(skb);
7998 	}
7999 #else
8000 	int i;
8001 
8002 	for (i = 0; i < ctx->nr_user_files; i++) {
8003 		struct file *file;
8004 
8005 		file = io_file_from_index(ctx, i);
8006 		if (file)
8007 			fput(file);
8008 	}
8009 #endif
8010 	io_free_file_tables(&ctx->file_table);
8011 	io_rsrc_data_free(ctx->file_data);
8012 	ctx->file_data = NULL;
8013 	ctx->nr_user_files = 0;
8014 }
8015 
io_sqe_files_unregister(struct io_ring_ctx *ctx)8016 static int io_sqe_files_unregister(struct io_ring_ctx *ctx)
8017 {
8018 	unsigned nr = ctx->nr_user_files;
8019 	int ret;
8020 
8021 	if (!ctx->file_data)
8022 		return -ENXIO;
8023 
8024 	/*
8025 	 * Quiesce may unlock ->uring_lock, and while it's not held
8026 	 * prevent new requests using the table.
8027 	 */
8028 	ctx->nr_user_files = 0;
8029 	ret = io_rsrc_ref_quiesce(ctx->file_data, ctx);
8030 	ctx->nr_user_files = nr;
8031 	if (!ret)
8032 		__io_sqe_files_unregister(ctx);
8033 	return ret;
8034 }
8035 
8036 static void io_sq_thread_unpark(struct io_sq_data *sqd)
8037 	__releases(&sqd->lock)
8038 {
8039 	WARN_ON_ONCE(sqd->thread == current);
8040 
8041 	/*
8042 	 * Do the dance but not conditional clear_bit() because it'd race with
8043 	 * other threads incrementing park_pending and setting the bit.
8044 	 */
8045 	clear_bit(IO_SQ_THREAD_SHOULD_PARK, &sqd->state);
8046 	if (atomic_dec_return(&sqd->park_pending))
8047 		set_bit(IO_SQ_THREAD_SHOULD_PARK, &sqd->state);
8048 	mutex_unlock(&sqd->lock);
8049 }
8050 
8051 static void io_sq_thread_park(struct io_sq_data *sqd)
8052 	__acquires(&sqd->lock)
8053 {
8054 	WARN_ON_ONCE(sqd->thread == current);
8055 
8056 	atomic_inc(&sqd->park_pending);
8057 	set_bit(IO_SQ_THREAD_SHOULD_PARK, &sqd->state);
8058 	mutex_lock(&sqd->lock);
8059 	if (sqd->thread)
8060 		wake_up_process(sqd->thread);
8061 }
8062 
io_sq_thread_stop(struct io_sq_data *sqd)8063 static void io_sq_thread_stop(struct io_sq_data *sqd)
8064 {
8065 	WARN_ON_ONCE(sqd->thread == current);
8066 	WARN_ON_ONCE(test_bit(IO_SQ_THREAD_SHOULD_STOP, &sqd->state));
8067 
8068 	set_bit(IO_SQ_THREAD_SHOULD_STOP, &sqd->state);
8069 	mutex_lock(&sqd->lock);
8070 	if (sqd->thread)
8071 		wake_up_process(sqd->thread);
8072 	mutex_unlock(&sqd->lock);
8073 	wait_for_completion(&sqd->exited);
8074 }
8075 
io_put_sq_data(struct io_sq_data *sqd)8076 static void io_put_sq_data(struct io_sq_data *sqd)
8077 {
8078 	if (refcount_dec_and_test(&sqd->refs)) {
8079 		WARN_ON_ONCE(atomic_read(&sqd->park_pending));
8080 
8081 		io_sq_thread_stop(sqd);
8082 		kfree(sqd);
8083 	}
8084 }
8085 
io_sq_thread_finish(struct io_ring_ctx *ctx)8086 static void io_sq_thread_finish(struct io_ring_ctx *ctx)
8087 {
8088 	struct io_sq_data *sqd = ctx->sq_data;
8089 
8090 	if (sqd) {
8091 		io_sq_thread_park(sqd);
8092 		list_del_init(&ctx->sqd_list);
8093 		io_sqd_update_thread_idle(sqd);
8094 		io_sq_thread_unpark(sqd);
8095 
8096 		io_put_sq_data(sqd);
8097 		ctx->sq_data = NULL;
8098 	}
8099 }
8100 
io_attach_sq_data(struct io_uring_params *p)8101 static struct io_sq_data *io_attach_sq_data(struct io_uring_params *p)
8102 {
8103 	struct io_ring_ctx *ctx_attach;
8104 	struct io_sq_data *sqd;
8105 	struct fd f;
8106 
8107 	f = fdget(p->wq_fd);
8108 	if (!f.file)
8109 		return ERR_PTR(-ENXIO);
8110 	if (f.file->f_op != &io_uring_fops) {
8111 		fdput(f);
8112 		return ERR_PTR(-EINVAL);
8113 	}
8114 
8115 	ctx_attach = f.file->private_data;
8116 	sqd = ctx_attach->sq_data;
8117 	if (!sqd) {
8118 		fdput(f);
8119 		return ERR_PTR(-EINVAL);
8120 	}
8121 	if (sqd->task_tgid != current->tgid) {
8122 		fdput(f);
8123 		return ERR_PTR(-EPERM);
8124 	}
8125 
8126 	refcount_inc(&sqd->refs);
8127 	fdput(f);
8128 	return sqd;
8129 }
8130 
io_get_sq_data(struct io_uring_params *p, bool *attached)8131 static struct io_sq_data *io_get_sq_data(struct io_uring_params *p,
8132 					 bool *attached)
8133 {
8134 	struct io_sq_data *sqd;
8135 
8136 	*attached = false;
8137 	if (p->flags & IORING_SETUP_ATTACH_WQ) {
8138 		sqd = io_attach_sq_data(p);
8139 		if (!IS_ERR(sqd)) {
8140 			*attached = true;
8141 			return sqd;
8142 		}
8143 		/* fall through for EPERM case, setup new sqd/task */
8144 		if (PTR_ERR(sqd) != -EPERM)
8145 			return sqd;
8146 	}
8147 
8148 	sqd = kzalloc(sizeof(*sqd), GFP_KERNEL);
8149 	if (!sqd)
8150 		return ERR_PTR(-ENOMEM);
8151 
8152 	atomic_set(&sqd->park_pending, 0);
8153 	refcount_set(&sqd->refs, 1);
8154 	INIT_LIST_HEAD(&sqd->ctx_list);
8155 	mutex_init(&sqd->lock);
8156 	init_waitqueue_head(&sqd->wait);
8157 	init_completion(&sqd->exited);
8158 	return sqd;
8159 }
8160 
8161 #if defined(CONFIG_UNIX)
8162 /*
8163  * Ensure the UNIX gc is aware of our file set, so we are certain that
8164  * the io_uring can be safely unregistered on process exit, even if we have
8165  * loops in the file referencing.
8166  */
__io_sqe_files_scm(struct io_ring_ctx *ctx, int nr, int offset)8167 static int __io_sqe_files_scm(struct io_ring_ctx *ctx, int nr, int offset)
8168 {
8169 	struct sock *sk = ctx->ring_sock->sk;
8170 	struct scm_fp_list *fpl;
8171 	struct sk_buff *skb;
8172 	int i, nr_files;
8173 
8174 	fpl = kzalloc(sizeof(*fpl), GFP_KERNEL);
8175 	if (!fpl)
8176 		return -ENOMEM;
8177 
8178 	skb = alloc_skb(0, GFP_KERNEL);
8179 	if (!skb) {
8180 		kfree(fpl);
8181 		return -ENOMEM;
8182 	}
8183 
8184 	skb->sk = sk;
8185 	skb->scm_io_uring = 1;
8186 
8187 	nr_files = 0;
8188 	fpl->user = get_uid(current_user());
8189 	for (i = 0; i < nr; i++) {
8190 		struct file *file = io_file_from_index(ctx, i + offset);
8191 
8192 		if (!file)
8193 			continue;
8194 		fpl->fp[nr_files] = get_file(file);
8195 		unix_inflight(fpl->user, fpl->fp[nr_files]);
8196 		nr_files++;
8197 	}
8198 
8199 	if (nr_files) {
8200 		fpl->max = SCM_MAX_FD;
8201 		fpl->count = nr_files;
8202 		UNIXCB(skb).fp = fpl;
8203 		skb->destructor = unix_destruct_scm;
8204 		refcount_add(skb->truesize, &sk->sk_wmem_alloc);
8205 		skb_queue_head(&sk->sk_receive_queue, skb);
8206 
8207 		for (i = 0; i < nr; i++) {
8208 			struct file *file = io_file_from_index(ctx, i + offset);
8209 
8210 			if (file)
8211 				fput(file);
8212 		}
8213 	} else {
8214 		kfree_skb(skb);
8215 		free_uid(fpl->user);
8216 		kfree(fpl);
8217 	}
8218 
8219 	return 0;
8220 }
8221 
8222 /*
8223  * If UNIX sockets are enabled, fd passing can cause a reference cycle which
8224  * causes regular reference counting to break down. We rely on the UNIX
8225  * garbage collection to take care of this problem for us.
8226  */
io_sqe_files_scm(struct io_ring_ctx *ctx)8227 static int io_sqe_files_scm(struct io_ring_ctx *ctx)
8228 {
8229 	unsigned left, total;
8230 	int ret = 0;
8231 
8232 	total = 0;
8233 	left = ctx->nr_user_files;
8234 	while (left) {
8235 		unsigned this_files = min_t(unsigned, left, SCM_MAX_FD);
8236 
8237 		ret = __io_sqe_files_scm(ctx, this_files, total);
8238 		if (ret)
8239 			break;
8240 		left -= this_files;
8241 		total += this_files;
8242 	}
8243 
8244 	if (!ret)
8245 		return 0;
8246 
8247 	while (total < ctx->nr_user_files) {
8248 		struct file *file = io_file_from_index(ctx, total);
8249 
8250 		if (file)
8251 			fput(file);
8252 		total++;
8253 	}
8254 
8255 	return ret;
8256 }
8257 #else
io_sqe_files_scm(struct io_ring_ctx *ctx)8258 static int io_sqe_files_scm(struct io_ring_ctx *ctx)
8259 {
8260 	return 0;
8261 }
8262 #endif
8263 
io_rsrc_file_put(struct io_ring_ctx *ctx, struct io_rsrc_put *prsrc)8264 static void io_rsrc_file_put(struct io_ring_ctx *ctx, struct io_rsrc_put *prsrc)
8265 {
8266 	struct file *file = prsrc->file;
8267 #if defined(CONFIG_UNIX)
8268 	struct sock *sock = ctx->ring_sock->sk;
8269 	struct sk_buff_head list, *head = &sock->sk_receive_queue;
8270 	struct sk_buff *skb;
8271 	int i;
8272 
8273 	__skb_queue_head_init(&list);
8274 
8275 	/*
8276 	 * Find the skb that holds this file in its SCM_RIGHTS. When found,
8277 	 * remove this entry and rearrange the file array.
8278 	 */
8279 	skb = skb_dequeue(head);
8280 	while (skb) {
8281 		struct scm_fp_list *fp;
8282 
8283 		fp = UNIXCB(skb).fp;
8284 		for (i = 0; i < fp->count; i++) {
8285 			int left;
8286 
8287 			if (fp->fp[i] != file)
8288 				continue;
8289 
8290 			unix_notinflight(fp->user, fp->fp[i]);
8291 			left = fp->count - 1 - i;
8292 			if (left) {
8293 				memmove(&fp->fp[i], &fp->fp[i + 1],
8294 						left * sizeof(struct file *));
8295 			}
8296 			fp->count--;
8297 			if (!fp->count) {
8298 				kfree_skb(skb);
8299 				skb = NULL;
8300 			} else {
8301 				__skb_queue_tail(&list, skb);
8302 			}
8303 			fput(file);
8304 			file = NULL;
8305 			break;
8306 		}
8307 
8308 		if (!file)
8309 			break;
8310 
8311 		__skb_queue_tail(&list, skb);
8312 
8313 		skb = skb_dequeue(head);
8314 	}
8315 
8316 	if (skb_peek(&list)) {
8317 		spin_lock_irq(&head->lock);
8318 		while ((skb = __skb_dequeue(&list)) != NULL)
8319 			__skb_queue_tail(head, skb);
8320 		spin_unlock_irq(&head->lock);
8321 	}
8322 #else
8323 	fput(file);
8324 #endif
8325 }
8326 
__io_rsrc_put_work(struct io_rsrc_node *ref_node)8327 static void __io_rsrc_put_work(struct io_rsrc_node *ref_node)
8328 {
8329 	struct io_rsrc_data *rsrc_data = ref_node->rsrc_data;
8330 	struct io_ring_ctx *ctx = rsrc_data->ctx;
8331 	struct io_rsrc_put *prsrc, *tmp;
8332 
8333 	list_for_each_entry_safe(prsrc, tmp, &ref_node->rsrc_list, list) {
8334 		list_del(&prsrc->list);
8335 
8336 		if (prsrc->tag) {
8337 			bool lock_ring = ctx->flags & IORING_SETUP_IOPOLL;
8338 
8339 			io_ring_submit_lock(ctx, lock_ring);
8340 			spin_lock(&ctx->completion_lock);
8341 			io_fill_cqe_aux(ctx, prsrc->tag, 0, 0);
8342 			io_commit_cqring(ctx);
8343 			spin_unlock(&ctx->completion_lock);
8344 			io_cqring_ev_posted(ctx);
8345 			io_ring_submit_unlock(ctx, lock_ring);
8346 		}
8347 
8348 		rsrc_data->do_put(ctx, prsrc);
8349 		kfree(prsrc);
8350 	}
8351 
8352 	io_rsrc_node_destroy(ref_node);
8353 	if (atomic_dec_and_test(&rsrc_data->refs))
8354 		complete(&rsrc_data->done);
8355 }
8356 
io_rsrc_put_work(struct work_struct *work)8357 static void io_rsrc_put_work(struct work_struct *work)
8358 {
8359 	struct io_ring_ctx *ctx;
8360 	struct llist_node *node;
8361 
8362 	ctx = container_of(work, struct io_ring_ctx, rsrc_put_work.work);
8363 	node = llist_del_all(&ctx->rsrc_put_llist);
8364 
8365 	while (node) {
8366 		struct io_rsrc_node *ref_node;
8367 		struct llist_node *next = node->next;
8368 
8369 		ref_node = llist_entry(node, struct io_rsrc_node, llist);
8370 		__io_rsrc_put_work(ref_node);
8371 		node = next;
8372 	}
8373 }
8374 
io_sqe_files_register(struct io_ring_ctx *ctx, void __user *arg, unsigned nr_args, u64 __user *tags)8375 static int io_sqe_files_register(struct io_ring_ctx *ctx, void __user *arg,
8376 				 unsigned nr_args, u64 __user *tags)
8377 {
8378 	__s32 __user *fds = (__s32 __user *) arg;
8379 	struct file *file;
8380 	int fd, ret;
8381 	unsigned i;
8382 
8383 	if (ctx->file_data)
8384 		return -EBUSY;
8385 	if (!nr_args)
8386 		return -EINVAL;
8387 	if (nr_args > IORING_MAX_FIXED_FILES)
8388 		return -EMFILE;
8389 	if (nr_args > rlimit(RLIMIT_NOFILE))
8390 		return -EMFILE;
8391 	ret = io_rsrc_node_switch_start(ctx);
8392 	if (ret)
8393 		return ret;
8394 	ret = io_rsrc_data_alloc(ctx, io_rsrc_file_put, tags, nr_args,
8395 				 &ctx->file_data);
8396 	if (ret)
8397 		return ret;
8398 
8399 	ret = -ENOMEM;
8400 	if (!io_alloc_file_tables(&ctx->file_table, nr_args))
8401 		goto out_free;
8402 
8403 	for (i = 0; i < nr_args; i++, ctx->nr_user_files++) {
8404 		if (copy_from_user(&fd, &fds[i], sizeof(fd))) {
8405 			ret = -EFAULT;
8406 			goto out_fput;
8407 		}
8408 		/* allow sparse sets */
8409 		if (fd == -1) {
8410 			ret = -EINVAL;
8411 			if (unlikely(*io_get_tag_slot(ctx->file_data, i)))
8412 				goto out_fput;
8413 			continue;
8414 		}
8415 
8416 		file = fget(fd);
8417 		ret = -EBADF;
8418 		if (unlikely(!file))
8419 			goto out_fput;
8420 
8421 		/*
8422 		 * Don't allow io_uring instances to be registered. If UNIX
8423 		 * isn't enabled, then this causes a reference cycle and this
8424 		 * instance can never get freed. If UNIX is enabled we'll
8425 		 * handle it just fine, but there's still no point in allowing
8426 		 * a ring fd as it doesn't support regular read/write anyway.
8427 		 */
8428 		if (file->f_op == &io_uring_fops) {
8429 			fput(file);
8430 			goto out_fput;
8431 		}
8432 		io_fixed_file_set(io_fixed_file_slot(&ctx->file_table, i), file);
8433 	}
8434 
8435 	ret = io_sqe_files_scm(ctx);
8436 	if (ret) {
8437 		__io_sqe_files_unregister(ctx);
8438 		return ret;
8439 	}
8440 
8441 	io_rsrc_node_switch(ctx, NULL);
8442 	return ret;
8443 out_fput:
8444 	for (i = 0; i < ctx->nr_user_files; i++) {
8445 		file = io_file_from_index(ctx, i);
8446 		if (file)
8447 			fput(file);
8448 	}
8449 	io_free_file_tables(&ctx->file_table);
8450 	ctx->nr_user_files = 0;
8451 out_free:
8452 	io_rsrc_data_free(ctx->file_data);
8453 	ctx->file_data = NULL;
8454 	return ret;
8455 }
8456 
io_queue_rsrc_removal(struct io_rsrc_data *data, unsigned idx, struct io_rsrc_node *node, void *rsrc)8457 static int io_queue_rsrc_removal(struct io_rsrc_data *data, unsigned idx,
8458 				 struct io_rsrc_node *node, void *rsrc)
8459 {
8460 	u64 *tag_slot = io_get_tag_slot(data, idx);
8461 	struct io_rsrc_put *prsrc;
8462 
8463 	prsrc = kzalloc(sizeof(*prsrc), GFP_KERNEL);
8464 	if (!prsrc)
8465 		return -ENOMEM;
8466 
8467 	prsrc->tag = *tag_slot;
8468 	*tag_slot = 0;
8469 	prsrc->rsrc = rsrc;
8470 	list_add(&prsrc->list, &node->rsrc_list);
8471 	return 0;
8472 }
8473 
io_install_fixed_file(struct io_kiocb *req, struct file *file, unsigned int issue_flags, u32 slot_index)8474 static int io_install_fixed_file(struct io_kiocb *req, struct file *file,
8475 				 unsigned int issue_flags, u32 slot_index)
8476 {
8477 	struct io_ring_ctx *ctx = req->ctx;
8478 	bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK;
8479 	bool needs_switch = false;
8480 	struct io_fixed_file *file_slot;
8481 	int ret = -EBADF;
8482 
8483 	io_ring_submit_lock(ctx, !force_nonblock);
8484 	if (file->f_op == &io_uring_fops)
8485 		goto err;
8486 	ret = -ENXIO;
8487 	if (!ctx->file_data)
8488 		goto err;
8489 	ret = -EINVAL;
8490 	if (slot_index >= ctx->nr_user_files)
8491 		goto err;
8492 
8493 	slot_index = array_index_nospec(slot_index, ctx->nr_user_files);
8494 	file_slot = io_fixed_file_slot(&ctx->file_table, slot_index);
8495 
8496 	if (file_slot->file_ptr) {
8497 		struct file *old_file;
8498 
8499 		ret = io_rsrc_node_switch_start(ctx);
8500 		if (ret)
8501 			goto err;
8502 
8503 		old_file = (struct file *)(file_slot->file_ptr & FFS_MASK);
8504 		ret = io_queue_rsrc_removal(ctx->file_data, slot_index,
8505 					    ctx->rsrc_node, old_file);
8506 		if (ret)
8507 			goto err;
8508 		file_slot->file_ptr = 0;
8509 		needs_switch = true;
8510 	}
8511 
8512 	*io_get_tag_slot(ctx->file_data, slot_index) = 0;
8513 	io_fixed_file_set(file_slot, file);
8514 	ret = 0;
8515 err:
8516 	if (needs_switch)
8517 		io_rsrc_node_switch(ctx, ctx->file_data);
8518 	io_ring_submit_unlock(ctx, !force_nonblock);
8519 	if (ret)
8520 		fput(file);
8521 	return ret;
8522 }
8523 
io_close_fixed(struct io_kiocb *req, unsigned int issue_flags)8524 static int io_close_fixed(struct io_kiocb *req, unsigned int issue_flags)
8525 {
8526 	unsigned int offset = req->close.file_slot - 1;
8527 	struct io_ring_ctx *ctx = req->ctx;
8528 	struct io_fixed_file *file_slot;
8529 	struct file *file;
8530 	int ret;
8531 
8532 	io_ring_submit_lock(ctx, !(issue_flags & IO_URING_F_NONBLOCK));
8533 	ret = -ENXIO;
8534 	if (unlikely(!ctx->file_data))
8535 		goto out;
8536 	ret = -EINVAL;
8537 	if (offset >= ctx->nr_user_files)
8538 		goto out;
8539 	ret = io_rsrc_node_switch_start(ctx);
8540 	if (ret)
8541 		goto out;
8542 
8543 	offset = array_index_nospec(offset, ctx->nr_user_files);
8544 	file_slot = io_fixed_file_slot(&ctx->file_table, offset);
8545 	ret = -EBADF;
8546 	if (!file_slot->file_ptr)
8547 		goto out;
8548 
8549 	file = (struct file *)(file_slot->file_ptr & FFS_MASK);
8550 	ret = io_queue_rsrc_removal(ctx->file_data, offset, ctx->rsrc_node, file);
8551 	if (ret)
8552 		goto out;
8553 
8554 	file_slot->file_ptr = 0;
8555 	io_rsrc_node_switch(ctx, ctx->file_data);
8556 	ret = 0;
8557 out:
8558 	io_ring_submit_unlock(ctx, !(issue_flags & IO_URING_F_NONBLOCK));
8559 	return ret;
8560 }
8561 
__io_sqe_files_update(struct io_ring_ctx *ctx, struct io_uring_rsrc_update2 *up, unsigned nr_args)8562 static int __io_sqe_files_update(struct io_ring_ctx *ctx,
8563 				 struct io_uring_rsrc_update2 *up,
8564 				 unsigned nr_args)
8565 {
8566 	u64 __user *tags = u64_to_user_ptr(up->tags);
8567 	__s32 __user *fds = u64_to_user_ptr(up->data);
8568 	struct io_rsrc_data *data = ctx->file_data;
8569 	struct io_fixed_file *file_slot;
8570 	struct file *file;
8571 	int fd, i, err = 0;
8572 	unsigned int done;
8573 	bool needs_switch = false;
8574 
8575 	if (!ctx->file_data)
8576 		return -ENXIO;
8577 	if (up->offset + nr_args > ctx->nr_user_files)
8578 		return -EINVAL;
8579 
8580 	for (done = 0; done < nr_args; done++) {
8581 		u64 tag = 0;
8582 
8583 		if ((tags && copy_from_user(&tag, &tags[done], sizeof(tag))) ||
8584 		    copy_from_user(&fd, &fds[done], sizeof(fd))) {
8585 			err = -EFAULT;
8586 			break;
8587 		}
8588 		if ((fd == IORING_REGISTER_FILES_SKIP || fd == -1) && tag) {
8589 			err = -EINVAL;
8590 			break;
8591 		}
8592 		if (fd == IORING_REGISTER_FILES_SKIP)
8593 			continue;
8594 
8595 		i = array_index_nospec(up->offset + done, ctx->nr_user_files);
8596 		file_slot = io_fixed_file_slot(&ctx->file_table, i);
8597 
8598 		if (file_slot->file_ptr) {
8599 			file = (struct file *)(file_slot->file_ptr & FFS_MASK);
8600 			err = io_queue_rsrc_removal(data, i, ctx->rsrc_node, file);
8601 			if (err)
8602 				break;
8603 			file_slot->file_ptr = 0;
8604 			needs_switch = true;
8605 		}
8606 		if (fd != -1) {
8607 			file = fget(fd);
8608 			if (!file) {
8609 				err = -EBADF;
8610 				break;
8611 			}
8612 			/*
8613 			 * Don't allow io_uring instances to be registered. If
8614 			 * UNIX isn't enabled, then this causes a reference
8615 			 * cycle and this instance can never get freed. If UNIX
8616 			 * is enabled we'll handle it just fine, but there's
8617 			 * still no point in allowing a ring fd as it doesn't
8618 			 * support regular read/write anyway.
8619 			 */
8620 			if (file->f_op == &io_uring_fops) {
8621 				fput(file);
8622 				err = -EBADF;
8623 				break;
8624 			}
8625 			*io_get_tag_slot(data, i) = tag;
8626 			io_fixed_file_set(file_slot, file);
8627 		}
8628 	}
8629 
8630 	if (needs_switch)
8631 		io_rsrc_node_switch(ctx, data);
8632 	return done ? done : err;
8633 }
8634 
io_init_wq_offload(struct io_ring_ctx *ctx, struct task_struct *task)8635 static struct io_wq *io_init_wq_offload(struct io_ring_ctx *ctx,
8636 					struct task_struct *task)
8637 {
8638 	struct io_wq_hash *hash;
8639 	struct io_wq_data data;
8640 	unsigned int concurrency;
8641 
8642 	mutex_lock(&ctx->uring_lock);
8643 	hash = ctx->hash_map;
8644 	if (!hash) {
8645 		hash = kzalloc(sizeof(*hash), GFP_KERNEL);
8646 		if (!hash) {
8647 			mutex_unlock(&ctx->uring_lock);
8648 			return ERR_PTR(-ENOMEM);
8649 		}
8650 		refcount_set(&hash->refs, 1);
8651 		init_waitqueue_head(&hash->wait);
8652 		ctx->hash_map = hash;
8653 	}
8654 	mutex_unlock(&ctx->uring_lock);
8655 
8656 	data.hash = hash;
8657 	data.task = task;
8658 	data.free_work = io_wq_free_work;
8659 	data.do_work = io_wq_submit_work;
8660 
8661 	/* Do QD, or 4 * CPUS, whatever is smallest */
8662 	concurrency = min(ctx->sq_entries, 4 * num_online_cpus());
8663 
8664 	return io_wq_create(concurrency, &data);
8665 }
8666 
io_uring_alloc_task_context(struct task_struct *task, struct io_ring_ctx *ctx)8667 static int io_uring_alloc_task_context(struct task_struct *task,
8668 				       struct io_ring_ctx *ctx)
8669 {
8670 	struct io_uring_task *tctx;
8671 	int ret;
8672 
8673 	tctx = kzalloc(sizeof(*tctx), GFP_KERNEL);
8674 	if (unlikely(!tctx))
8675 		return -ENOMEM;
8676 
8677 	ret = percpu_counter_init(&tctx->inflight, 0, GFP_KERNEL);
8678 	if (unlikely(ret)) {
8679 		kfree(tctx);
8680 		return ret;
8681 	}
8682 
8683 	tctx->io_wq = io_init_wq_offload(ctx, task);
8684 	if (IS_ERR(tctx->io_wq)) {
8685 		ret = PTR_ERR(tctx->io_wq);
8686 		percpu_counter_destroy(&tctx->inflight);
8687 		kfree(tctx);
8688 		return ret;
8689 	}
8690 
8691 	xa_init(&tctx->xa);
8692 	init_waitqueue_head(&tctx->wait);
8693 	atomic_set(&tctx->in_idle, 0);
8694 	atomic_set(&tctx->inflight_tracked, 0);
8695 	task->io_uring = tctx;
8696 	spin_lock_init(&tctx->task_lock);
8697 	INIT_WQ_LIST(&tctx->task_list);
8698 	init_task_work(&tctx->task_work, tctx_task_work);
8699 	return 0;
8700 }
8701 
__io_uring_free(struct task_struct *tsk)8702 void __io_uring_free(struct task_struct *tsk)
8703 {
8704 	struct io_uring_task *tctx = tsk->io_uring;
8705 
8706 	WARN_ON_ONCE(!xa_empty(&tctx->xa));
8707 	WARN_ON_ONCE(tctx->io_wq);
8708 	WARN_ON_ONCE(tctx->cached_refs);
8709 
8710 	percpu_counter_destroy(&tctx->inflight);
8711 	kfree(tctx);
8712 	tsk->io_uring = NULL;
8713 }
8714 
io_sq_offload_create(struct io_ring_ctx *ctx, struct io_uring_params *p)8715 static int io_sq_offload_create(struct io_ring_ctx *ctx,
8716 				struct io_uring_params *p)
8717 {
8718 	int ret;
8719 
8720 	/* Retain compatibility with failing for an invalid attach attempt */
8721 	if ((ctx->flags & (IORING_SETUP_ATTACH_WQ | IORING_SETUP_SQPOLL)) ==
8722 				IORING_SETUP_ATTACH_WQ) {
8723 		struct fd f;
8724 
8725 		f = fdget(p->wq_fd);
8726 		if (!f.file)
8727 			return -ENXIO;
8728 		if (f.file->f_op != &io_uring_fops) {
8729 			fdput(f);
8730 			return -EINVAL;
8731 		}
8732 		fdput(f);
8733 	}
8734 	if (ctx->flags & IORING_SETUP_SQPOLL) {
8735 		struct task_struct *tsk;
8736 		struct io_sq_data *sqd;
8737 		bool attached;
8738 
8739 		sqd = io_get_sq_data(p, &attached);
8740 		if (IS_ERR(sqd)) {
8741 			ret = PTR_ERR(sqd);
8742 			goto err;
8743 		}
8744 
8745 		ctx->sq_creds = get_current_cred();
8746 		ctx->sq_data = sqd;
8747 		ctx->sq_thread_idle = msecs_to_jiffies(p->sq_thread_idle);
8748 		if (!ctx->sq_thread_idle)
8749 			ctx->sq_thread_idle = HZ;
8750 
8751 		io_sq_thread_park(sqd);
8752 		list_add(&ctx->sqd_list, &sqd->ctx_list);
8753 		io_sqd_update_thread_idle(sqd);
8754 		/* don't attach to a dying SQPOLL thread, would be racy */
8755 		ret = (attached && !sqd->thread) ? -ENXIO : 0;
8756 		io_sq_thread_unpark(sqd);
8757 
8758 		if (ret < 0)
8759 			goto err;
8760 		if (attached)
8761 			return 0;
8762 
8763 		if (p->flags & IORING_SETUP_SQ_AFF) {
8764 			int cpu = p->sq_thread_cpu;
8765 
8766 			ret = -EINVAL;
8767 			if (cpu >= nr_cpu_ids || !cpu_online(cpu))
8768 				goto err_sqpoll;
8769 			sqd->sq_cpu = cpu;
8770 		} else {
8771 			sqd->sq_cpu = -1;
8772 		}
8773 
8774 		sqd->task_pid = current->pid;
8775 		sqd->task_tgid = current->tgid;
8776 		tsk = create_io_thread(io_sq_thread, sqd, NUMA_NO_NODE);
8777 		if (IS_ERR(tsk)) {
8778 			ret = PTR_ERR(tsk);
8779 			goto err_sqpoll;
8780 		}
8781 
8782 		sqd->thread = tsk;
8783 		ret = io_uring_alloc_task_context(tsk, ctx);
8784 		wake_up_new_task(tsk);
8785 		if (ret)
8786 			goto err;
8787 	} else if (p->flags & IORING_SETUP_SQ_AFF) {
8788 		/* Can't have SQ_AFF without SQPOLL */
8789 		ret = -EINVAL;
8790 		goto err;
8791 	}
8792 
8793 	return 0;
8794 err_sqpoll:
8795 	complete(&ctx->sq_data->exited);
8796 err:
8797 	io_sq_thread_finish(ctx);
8798 	return ret;
8799 }
8800 
__io_unaccount_mem(struct user_struct *user, unsigned long nr_pages)8801 static inline void __io_unaccount_mem(struct user_struct *user,
8802 				      unsigned long nr_pages)
8803 {
8804 	atomic_long_sub(nr_pages, &user->locked_vm);
8805 }
8806 
__io_account_mem(struct user_struct *user, unsigned long nr_pages)8807 static inline int __io_account_mem(struct user_struct *user,
8808 				   unsigned long nr_pages)
8809 {
8810 	unsigned long page_limit, cur_pages, new_pages;
8811 
8812 	/* Don't allow more pages than we can safely lock */
8813 	page_limit = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT;
8814 
8815 	do {
8816 		cur_pages = atomic_long_read(&user->locked_vm);
8817 		new_pages = cur_pages + nr_pages;
8818 		if (new_pages > page_limit)
8819 			return -ENOMEM;
8820 	} while (atomic_long_cmpxchg(&user->locked_vm, cur_pages,
8821 					new_pages) != cur_pages);
8822 
8823 	return 0;
8824 }
8825 
io_unaccount_mem(struct io_ring_ctx *ctx, unsigned long nr_pages)8826 static void io_unaccount_mem(struct io_ring_ctx *ctx, unsigned long nr_pages)
8827 {
8828 	if (ctx->user)
8829 		__io_unaccount_mem(ctx->user, nr_pages);
8830 
8831 	if (ctx->mm_account)
8832 		atomic64_sub(nr_pages, &ctx->mm_account->pinned_vm);
8833 }
8834 
io_account_mem(struct io_ring_ctx *ctx, unsigned long nr_pages)8835 static int io_account_mem(struct io_ring_ctx *ctx, unsigned long nr_pages)
8836 {
8837 	int ret;
8838 
8839 	if (ctx->user) {
8840 		ret = __io_account_mem(ctx->user, nr_pages);
8841 		if (ret)
8842 			return ret;
8843 	}
8844 
8845 	if (ctx->mm_account)
8846 		atomic64_add(nr_pages, &ctx->mm_account->pinned_vm);
8847 
8848 	return 0;
8849 }
8850 
io_mem_free(void *ptr)8851 static void io_mem_free(void *ptr)
8852 {
8853 	struct page *page;
8854 
8855 	if (!ptr)
8856 		return;
8857 
8858 	page = virt_to_head_page(ptr);
8859 	if (put_page_testzero(page))
8860 		free_compound_page(page);
8861 }
8862 
io_mem_alloc(size_t size)8863 static void *io_mem_alloc(size_t size)
8864 {
8865 	gfp_t gfp = GFP_KERNEL_ACCOUNT | __GFP_ZERO | __GFP_NOWARN | __GFP_COMP;
8866 
8867 	return (void *) __get_free_pages(gfp, get_order(size));
8868 }
8869 
rings_size(unsigned sq_entries, unsigned cq_entries, size_t *sq_offset)8870 static unsigned long rings_size(unsigned sq_entries, unsigned cq_entries,
8871 				size_t *sq_offset)
8872 {
8873 	struct io_rings *rings;
8874 	size_t off, sq_array_size;
8875 
8876 	off = struct_size(rings, cqes, cq_entries);
8877 	if (off == SIZE_MAX)
8878 		return SIZE_MAX;
8879 
8880 #ifdef CONFIG_SMP
8881 	off = ALIGN(off, SMP_CACHE_BYTES);
8882 	if (off == 0)
8883 		return SIZE_MAX;
8884 #endif
8885 
8886 	if (sq_offset)
8887 		*sq_offset = off;
8888 
8889 	sq_array_size = array_size(sizeof(u32), sq_entries);
8890 	if (sq_array_size == SIZE_MAX)
8891 		return SIZE_MAX;
8892 
8893 	if (check_add_overflow(off, sq_array_size, &off))
8894 		return SIZE_MAX;
8895 
8896 	return off;
8897 }
8898 
io_buffer_unmap(struct io_ring_ctx *ctx, struct io_mapped_ubuf **slot)8899 static void io_buffer_unmap(struct io_ring_ctx *ctx, struct io_mapped_ubuf **slot)
8900 {
8901 	struct io_mapped_ubuf *imu = *slot;
8902 	unsigned int i;
8903 
8904 	if (imu != ctx->dummy_ubuf) {
8905 		for (i = 0; i < imu->nr_bvecs; i++)
8906 			unpin_user_page(imu->bvec[i].bv_page);
8907 		if (imu->acct_pages)
8908 			io_unaccount_mem(ctx, imu->acct_pages);
8909 		kvfree(imu);
8910 	}
8911 	*slot = NULL;
8912 }
8913 
io_rsrc_buf_put(struct io_ring_ctx *ctx, struct io_rsrc_put *prsrc)8914 static void io_rsrc_buf_put(struct io_ring_ctx *ctx, struct io_rsrc_put *prsrc)
8915 {
8916 	io_buffer_unmap(ctx, &prsrc->buf);
8917 	prsrc->buf = NULL;
8918 }
8919 
__io_sqe_buffers_unregister(struct io_ring_ctx *ctx)8920 static void __io_sqe_buffers_unregister(struct io_ring_ctx *ctx)
8921 {
8922 	unsigned int i;
8923 
8924 	for (i = 0; i < ctx->nr_user_bufs; i++)
8925 		io_buffer_unmap(ctx, &ctx->user_bufs[i]);
8926 	kfree(ctx->user_bufs);
8927 	io_rsrc_data_free(ctx->buf_data);
8928 	ctx->user_bufs = NULL;
8929 	ctx->buf_data = NULL;
8930 	ctx->nr_user_bufs = 0;
8931 }
8932 
io_sqe_buffers_unregister(struct io_ring_ctx *ctx)8933 static int io_sqe_buffers_unregister(struct io_ring_ctx *ctx)
8934 {
8935 	unsigned nr = ctx->nr_user_bufs;
8936 	int ret;
8937 
8938 	if (!ctx->buf_data)
8939 		return -ENXIO;
8940 
8941 	/*
8942 	 * Quiesce may unlock ->uring_lock, and while it's not held
8943 	 * prevent new requests using the table.
8944 	 */
8945 	ctx->nr_user_bufs = 0;
8946 	ret = io_rsrc_ref_quiesce(ctx->buf_data, ctx);
8947 	ctx->nr_user_bufs = nr;
8948 	if (!ret)
8949 		__io_sqe_buffers_unregister(ctx);
8950 	return ret;
8951 }
8952 
io_copy_iov(struct io_ring_ctx *ctx, struct iovec *dst, void __user *arg, unsigned index)8953 static int io_copy_iov(struct io_ring_ctx *ctx, struct iovec *dst,
8954 		       void __user *arg, unsigned index)
8955 {
8956 	struct iovec __user *src;
8957 
8958 #ifdef CONFIG_COMPAT
8959 	if (ctx->compat) {
8960 		struct compat_iovec __user *ciovs;
8961 		struct compat_iovec ciov;
8962 
8963 		ciovs = (struct compat_iovec __user *) arg;
8964 		if (copy_from_user(&ciov, &ciovs[index], sizeof(ciov)))
8965 			return -EFAULT;
8966 
8967 		dst->iov_base = u64_to_user_ptr((u64)ciov.iov_base);
8968 		dst->iov_len = ciov.iov_len;
8969 		return 0;
8970 	}
8971 #endif
8972 	src = (struct iovec __user *) arg;
8973 	if (copy_from_user(dst, &src[index], sizeof(*dst)))
8974 		return -EFAULT;
8975 	return 0;
8976 }
8977 
8978 /*
8979  * Not super efficient, but this is just a registration time. And we do cache
8980  * the last compound head, so generally we'll only do a full search if we don't
8981  * match that one.
8982  *
8983  * We check if the given compound head page has already been accounted, to
8984  * avoid double accounting it. This allows us to account the full size of the
8985  * page, not just the constituent pages of a huge page.
8986  */
headpage_already_acct(struct io_ring_ctx *ctx, struct page **pages, int nr_pages, struct page *hpage)8987 static bool headpage_already_acct(struct io_ring_ctx *ctx, struct page **pages,
8988 				  int nr_pages, struct page *hpage)
8989 {
8990 	int i, j;
8991 
8992 	/* check current page array */
8993 	for (i = 0; i < nr_pages; i++) {
8994 		if (!PageCompound(pages[i]))
8995 			continue;
8996 		if (compound_head(pages[i]) == hpage)
8997 			return true;
8998 	}
8999 
9000 	/* check previously registered pages */
9001 	for (i = 0; i < ctx->nr_user_bufs; i++) {
9002 		struct io_mapped_ubuf *imu = ctx->user_bufs[i];
9003 
9004 		for (j = 0; j < imu->nr_bvecs; j++) {
9005 			if (!PageCompound(imu->bvec[j].bv_page))
9006 				continue;
9007 			if (compound_head(imu->bvec[j].bv_page) == hpage)
9008 				return true;
9009 		}
9010 	}
9011 
9012 	return false;
9013 }
9014 
io_buffer_account_pin(struct io_ring_ctx *ctx, struct page **pages, int nr_pages, struct io_mapped_ubuf *imu, struct page **last_hpage)9015 static int io_buffer_account_pin(struct io_ring_ctx *ctx, struct page **pages,
9016 				 int nr_pages, struct io_mapped_ubuf *imu,
9017 				 struct page **last_hpage)
9018 {
9019 	int i, ret;
9020 
9021 	imu->acct_pages = 0;
9022 	for (i = 0; i < nr_pages; i++) {
9023 		if (!PageCompound(pages[i])) {
9024 			imu->acct_pages++;
9025 		} else {
9026 			struct page *hpage;
9027 
9028 			hpage = compound_head(pages[i]);
9029 			if (hpage == *last_hpage)
9030 				continue;
9031 			*last_hpage = hpage;
9032 			if (headpage_already_acct(ctx, pages, i, hpage))
9033 				continue;
9034 			imu->acct_pages += page_size(hpage) >> PAGE_SHIFT;
9035 		}
9036 	}
9037 
9038 	if (!imu->acct_pages)
9039 		return 0;
9040 
9041 	ret = io_account_mem(ctx, imu->acct_pages);
9042 	if (ret)
9043 		imu->acct_pages = 0;
9044 	return ret;
9045 }
9046 
io_sqe_buffer_register(struct io_ring_ctx *ctx, struct iovec *iov, struct io_mapped_ubuf **pimu, struct page **last_hpage)9047 static int io_sqe_buffer_register(struct io_ring_ctx *ctx, struct iovec *iov,
9048 				  struct io_mapped_ubuf **pimu,
9049 				  struct page **last_hpage)
9050 {
9051 	struct io_mapped_ubuf *imu = NULL;
9052 	struct vm_area_struct **vmas = NULL;
9053 	struct page **pages = NULL;
9054 	unsigned long off, start, end, ubuf;
9055 	size_t size;
9056 	int ret, pret, nr_pages, i;
9057 
9058 	if (!iov->iov_base) {
9059 		*pimu = ctx->dummy_ubuf;
9060 		return 0;
9061 	}
9062 
9063 	ubuf = (unsigned long) iov->iov_base;
9064 	end = (ubuf + iov->iov_len + PAGE_SIZE - 1) >> PAGE_SHIFT;
9065 	start = ubuf >> PAGE_SHIFT;
9066 	nr_pages = end - start;
9067 
9068 	*pimu = NULL;
9069 	ret = -ENOMEM;
9070 
9071 	pages = kvmalloc_array(nr_pages, sizeof(struct page *), GFP_KERNEL);
9072 	if (!pages)
9073 		goto done;
9074 
9075 	vmas = kvmalloc_array(nr_pages, sizeof(struct vm_area_struct *),
9076 			      GFP_KERNEL);
9077 	if (!vmas)
9078 		goto done;
9079 
9080 	imu = kvmalloc(struct_size(imu, bvec, nr_pages), GFP_KERNEL);
9081 	if (!imu)
9082 		goto done;
9083 
9084 	ret = 0;
9085 	mmap_read_lock(current->mm);
9086 	pret = pin_user_pages(ubuf, nr_pages, FOLL_WRITE | FOLL_LONGTERM,
9087 			      pages, vmas);
9088 	if (pret == nr_pages) {
9089 		struct file *file = vmas[0]->vm_file;
9090 
9091 		/* don't support file backed memory */
9092 		for (i = 0; i < nr_pages; i++) {
9093 			if (vmas[i]->vm_file != file) {
9094 				ret = -EINVAL;
9095 				break;
9096 			}
9097 			if (!file)
9098 				continue;
9099 			if (!vma_is_shmem(vmas[i]) && !is_file_hugepages(file)) {
9100 				ret = -EOPNOTSUPP;
9101 				break;
9102 			}
9103 		}
9104 	} else {
9105 		ret = pret < 0 ? pret : -EFAULT;
9106 	}
9107 	mmap_read_unlock(current->mm);
9108 	if (ret) {
9109 		/*
9110 		 * if we did partial map, or found file backed vmas,
9111 		 * release any pages we did get
9112 		 */
9113 		if (pret > 0)
9114 			unpin_user_pages(pages, pret);
9115 		goto done;
9116 	}
9117 
9118 	ret = io_buffer_account_pin(ctx, pages, pret, imu, last_hpage);
9119 	if (ret) {
9120 		unpin_user_pages(pages, pret);
9121 		goto done;
9122 	}
9123 
9124 	off = ubuf & ~PAGE_MASK;
9125 	size = iov->iov_len;
9126 	for (i = 0; i < nr_pages; i++) {
9127 		size_t vec_len;
9128 
9129 		vec_len = min_t(size_t, size, PAGE_SIZE - off);
9130 		imu->bvec[i].bv_page = pages[i];
9131 		imu->bvec[i].bv_len = vec_len;
9132 		imu->bvec[i].bv_offset = off;
9133 		off = 0;
9134 		size -= vec_len;
9135 	}
9136 	/* store original address for later verification */
9137 	imu->ubuf = ubuf;
9138 	imu->ubuf_end = ubuf + iov->iov_len;
9139 	imu->nr_bvecs = nr_pages;
9140 	*pimu = imu;
9141 	ret = 0;
9142 done:
9143 	if (ret)
9144 		kvfree(imu);
9145 	kvfree(pages);
9146 	kvfree(vmas);
9147 	return ret;
9148 }
9149 
io_buffers_map_alloc(struct io_ring_ctx *ctx, unsigned int nr_args)9150 static int io_buffers_map_alloc(struct io_ring_ctx *ctx, unsigned int nr_args)
9151 {
9152 	ctx->user_bufs = kcalloc(nr_args, sizeof(*ctx->user_bufs), GFP_KERNEL);
9153 	return ctx->user_bufs ? 0 : -ENOMEM;
9154 }
9155 
io_buffer_validate(struct iovec *iov)9156 static int io_buffer_validate(struct iovec *iov)
9157 {
9158 	unsigned long tmp, acct_len = iov->iov_len + (PAGE_SIZE - 1);
9159 
9160 	/*
9161 	 * Don't impose further limits on the size and buffer
9162 	 * constraints here, we'll -EINVAL later when IO is
9163 	 * submitted if they are wrong.
9164 	 */
9165 	if (!iov->iov_base)
9166 		return iov->iov_len ? -EFAULT : 0;
9167 	if (!iov->iov_len)
9168 		return -EFAULT;
9169 
9170 	/* arbitrary limit, but we need something */
9171 	if (iov->iov_len > SZ_1G)
9172 		return -EFAULT;
9173 
9174 	if (check_add_overflow((unsigned long)iov->iov_base, acct_len, &tmp))
9175 		return -EOVERFLOW;
9176 
9177 	return 0;
9178 }
9179 
io_sqe_buffers_register(struct io_ring_ctx *ctx, void __user *arg, unsigned int nr_args, u64 __user *tags)9180 static int io_sqe_buffers_register(struct io_ring_ctx *ctx, void __user *arg,
9181 				   unsigned int nr_args, u64 __user *tags)
9182 {
9183 	struct page *last_hpage = NULL;
9184 	struct io_rsrc_data *data;
9185 	int i, ret;
9186 	struct iovec iov;
9187 
9188 	if (ctx->user_bufs)
9189 		return -EBUSY;
9190 	if (!nr_args || nr_args > IORING_MAX_REG_BUFFERS)
9191 		return -EINVAL;
9192 	ret = io_rsrc_node_switch_start(ctx);
9193 	if (ret)
9194 		return ret;
9195 	ret = io_rsrc_data_alloc(ctx, io_rsrc_buf_put, tags, nr_args, &data);
9196 	if (ret)
9197 		return ret;
9198 	ret = io_buffers_map_alloc(ctx, nr_args);
9199 	if (ret) {
9200 		io_rsrc_data_free(data);
9201 		return ret;
9202 	}
9203 
9204 	for (i = 0; i < nr_args; i++, ctx->nr_user_bufs++) {
9205 		ret = io_copy_iov(ctx, &iov, arg, i);
9206 		if (ret)
9207 			break;
9208 		ret = io_buffer_validate(&iov);
9209 		if (ret)
9210 			break;
9211 		if (!iov.iov_base && *io_get_tag_slot(data, i)) {
9212 			ret = -EINVAL;
9213 			break;
9214 		}
9215 
9216 		ret = io_sqe_buffer_register(ctx, &iov, &ctx->user_bufs[i],
9217 					     &last_hpage);
9218 		if (ret)
9219 			break;
9220 	}
9221 
9222 	WARN_ON_ONCE(ctx->buf_data);
9223 
9224 	ctx->buf_data = data;
9225 	if (ret)
9226 		__io_sqe_buffers_unregister(ctx);
9227 	else
9228 		io_rsrc_node_switch(ctx, NULL);
9229 	return ret;
9230 }
9231 
__io_sqe_buffers_update(struct io_ring_ctx *ctx, struct io_uring_rsrc_update2 *up, unsigned int nr_args)9232 static int __io_sqe_buffers_update(struct io_ring_ctx *ctx,
9233 				   struct io_uring_rsrc_update2 *up,
9234 				   unsigned int nr_args)
9235 {
9236 	u64 __user *tags = u64_to_user_ptr(up->tags);
9237 	struct iovec iov, __user *iovs = u64_to_user_ptr(up->data);
9238 	struct page *last_hpage = NULL;
9239 	bool needs_switch = false;
9240 	__u32 done;
9241 	int i, err;
9242 
9243 	if (!ctx->buf_data)
9244 		return -ENXIO;
9245 	if (up->offset + nr_args > ctx->nr_user_bufs)
9246 		return -EINVAL;
9247 
9248 	for (done = 0; done < nr_args; done++) {
9249 		struct io_mapped_ubuf *imu;
9250 		int offset = up->offset + done;
9251 		u64 tag = 0;
9252 
9253 		err = io_copy_iov(ctx, &iov, iovs, done);
9254 		if (err)
9255 			break;
9256 		if (tags && copy_from_user(&tag, &tags[done], sizeof(tag))) {
9257 			err = -EFAULT;
9258 			break;
9259 		}
9260 		err = io_buffer_validate(&iov);
9261 		if (err)
9262 			break;
9263 		if (!iov.iov_base && tag) {
9264 			err = -EINVAL;
9265 			break;
9266 		}
9267 		err = io_sqe_buffer_register(ctx, &iov, &imu, &last_hpage);
9268 		if (err)
9269 			break;
9270 
9271 		i = array_index_nospec(offset, ctx->nr_user_bufs);
9272 		if (ctx->user_bufs[i] != ctx->dummy_ubuf) {
9273 			err = io_queue_rsrc_removal(ctx->buf_data, i,
9274 						    ctx->rsrc_node, ctx->user_bufs[i]);
9275 			if (unlikely(err)) {
9276 				io_buffer_unmap(ctx, &imu);
9277 				break;
9278 			}
9279 			ctx->user_bufs[i] = NULL;
9280 			needs_switch = true;
9281 		}
9282 
9283 		ctx->user_bufs[i] = imu;
9284 		*io_get_tag_slot(ctx->buf_data, offset) = tag;
9285 	}
9286 
9287 	if (needs_switch)
9288 		io_rsrc_node_switch(ctx, ctx->buf_data);
9289 	return done ? done : err;
9290 }
9291 
io_eventfd_register(struct io_ring_ctx *ctx, void __user *arg)9292 static int io_eventfd_register(struct io_ring_ctx *ctx, void __user *arg)
9293 {
9294 	__s32 __user *fds = arg;
9295 	int fd;
9296 
9297 	if (ctx->cq_ev_fd)
9298 		return -EBUSY;
9299 
9300 	if (copy_from_user(&fd, fds, sizeof(*fds)))
9301 		return -EFAULT;
9302 
9303 	ctx->cq_ev_fd = eventfd_ctx_fdget(fd);
9304 	if (IS_ERR(ctx->cq_ev_fd)) {
9305 		int ret = PTR_ERR(ctx->cq_ev_fd);
9306 
9307 		ctx->cq_ev_fd = NULL;
9308 		return ret;
9309 	}
9310 
9311 	return 0;
9312 }
9313 
io_eventfd_unregister(struct io_ring_ctx *ctx)9314 static int io_eventfd_unregister(struct io_ring_ctx *ctx)
9315 {
9316 	if (ctx->cq_ev_fd) {
9317 		eventfd_ctx_put(ctx->cq_ev_fd);
9318 		ctx->cq_ev_fd = NULL;
9319 		return 0;
9320 	}
9321 
9322 	return -ENXIO;
9323 }
9324 
io_destroy_buffers(struct io_ring_ctx *ctx)9325 static void io_destroy_buffers(struct io_ring_ctx *ctx)
9326 {
9327 	struct io_buffer *buf;
9328 	unsigned long index;
9329 
9330 	xa_for_each(&ctx->io_buffers, index, buf)
9331 		__io_remove_buffers(ctx, buf, index, -1U);
9332 }
9333 
io_req_cache_free(struct list_head *list)9334 static void io_req_cache_free(struct list_head *list)
9335 {
9336 	struct io_kiocb *req, *nxt;
9337 
9338 	list_for_each_entry_safe(req, nxt, list, inflight_entry) {
9339 		list_del(&req->inflight_entry);
9340 		kmem_cache_free(req_cachep, req);
9341 	}
9342 }
9343 
io_req_caches_free(struct io_ring_ctx *ctx)9344 static void io_req_caches_free(struct io_ring_ctx *ctx)
9345 {
9346 	struct io_submit_state *state = &ctx->submit_state;
9347 
9348 	mutex_lock(&ctx->uring_lock);
9349 
9350 	if (state->free_reqs) {
9351 		kmem_cache_free_bulk(req_cachep, state->free_reqs, state->reqs);
9352 		state->free_reqs = 0;
9353 	}
9354 
9355 	io_flush_cached_locked_reqs(ctx, state);
9356 	io_req_cache_free(&state->free_list);
9357 	mutex_unlock(&ctx->uring_lock);
9358 }
9359 
io_wait_rsrc_data(struct io_rsrc_data *data)9360 static void io_wait_rsrc_data(struct io_rsrc_data *data)
9361 {
9362 	if (data && !atomic_dec_and_test(&data->refs))
9363 		wait_for_completion(&data->done);
9364 }
9365 
io_ring_ctx_free(struct io_ring_ctx *ctx)9366 static void io_ring_ctx_free(struct io_ring_ctx *ctx)
9367 {
9368 	io_sq_thread_finish(ctx);
9369 
9370 	/* __io_rsrc_put_work() may need uring_lock to progress, wait w/o it */
9371 	io_wait_rsrc_data(ctx->buf_data);
9372 	io_wait_rsrc_data(ctx->file_data);
9373 
9374 	mutex_lock(&ctx->uring_lock);
9375 	if (ctx->buf_data)
9376 		__io_sqe_buffers_unregister(ctx);
9377 	if (ctx->file_data)
9378 		__io_sqe_files_unregister(ctx);
9379 	if (ctx->rings)
9380 		__io_cqring_overflow_flush(ctx, true);
9381 	mutex_unlock(&ctx->uring_lock);
9382 	io_eventfd_unregister(ctx);
9383 	io_destroy_buffers(ctx);
9384 	if (ctx->sq_creds)
9385 		put_cred(ctx->sq_creds);
9386 
9387 	/* there are no registered resources left, nobody uses it */
9388 	if (ctx->rsrc_node)
9389 		io_rsrc_node_destroy(ctx->rsrc_node);
9390 	if (ctx->rsrc_backup_node)
9391 		io_rsrc_node_destroy(ctx->rsrc_backup_node);
9392 	flush_delayed_work(&ctx->rsrc_put_work);
9393 
9394 	WARN_ON_ONCE(!list_empty(&ctx->rsrc_ref_list));
9395 	WARN_ON_ONCE(!llist_empty(&ctx->rsrc_put_llist));
9396 
9397 #if defined(CONFIG_UNIX)
9398 	if (ctx->ring_sock) {
9399 		ctx->ring_sock->file = NULL; /* so that iput() is called */
9400 		sock_release(ctx->ring_sock);
9401 	}
9402 #endif
9403 	WARN_ON_ONCE(!list_empty(&ctx->ltimeout_list));
9404 
9405 	if (ctx->mm_account) {
9406 		mmdrop(ctx->mm_account);
9407 		ctx->mm_account = NULL;
9408 	}
9409 
9410 	io_mem_free(ctx->rings);
9411 	io_mem_free(ctx->sq_sqes);
9412 
9413 	percpu_ref_exit(&ctx->refs);
9414 	free_uid(ctx->user);
9415 	io_req_caches_free(ctx);
9416 	if (ctx->hash_map)
9417 		io_wq_put_hash(ctx->hash_map);
9418 	kfree(ctx->cancel_hash);
9419 	kfree(ctx->dummy_ubuf);
9420 	kfree(ctx);
9421 }
9422 
io_uring_poll(struct file *file, poll_table *wait)9423 static __poll_t io_uring_poll(struct file *file, poll_table *wait)
9424 {
9425 	struct io_ring_ctx *ctx = file->private_data;
9426 	__poll_t mask = 0;
9427 
9428 	poll_wait(file, &ctx->poll_wait, wait);
9429 	/*
9430 	 * synchronizes with barrier from wq_has_sleeper call in
9431 	 * io_commit_cqring
9432 	 */
9433 	smp_rmb();
9434 	if (!io_sqring_full(ctx))
9435 		mask |= EPOLLOUT | EPOLLWRNORM;
9436 
9437 	/*
9438 	 * Don't flush cqring overflow list here, just do a simple check.
9439 	 * Otherwise there could possible be ABBA deadlock:
9440 	 *      CPU0                    CPU1
9441 	 *      ----                    ----
9442 	 * lock(&ctx->uring_lock);
9443 	 *                              lock(&ep->mtx);
9444 	 *                              lock(&ctx->uring_lock);
9445 	 * lock(&ep->mtx);
9446 	 *
9447 	 * Users may get EPOLLIN meanwhile seeing nothing in cqring, this
9448 	 * pushs them to do the flush.
9449 	 */
9450 	if (io_cqring_events(ctx) || test_bit(0, &ctx->check_cq_overflow))
9451 		mask |= EPOLLIN | EPOLLRDNORM;
9452 
9453 	return mask;
9454 }
9455 
io_unregister_personality(struct io_ring_ctx *ctx, unsigned id)9456 static int io_unregister_personality(struct io_ring_ctx *ctx, unsigned id)
9457 {
9458 	const struct cred *creds;
9459 
9460 	creds = xa_erase(&ctx->personalities, id);
9461 	if (creds) {
9462 		put_cred(creds);
9463 		return 0;
9464 	}
9465 
9466 	return -EINVAL;
9467 }
9468 
9469 struct io_tctx_exit {
9470 	struct callback_head		task_work;
9471 	struct completion		completion;
9472 	struct io_ring_ctx		*ctx;
9473 };
9474 
io_tctx_exit_cb(struct callback_head *cb)9475 static void io_tctx_exit_cb(struct callback_head *cb)
9476 {
9477 	struct io_uring_task *tctx = current->io_uring;
9478 	struct io_tctx_exit *work;
9479 
9480 	work = container_of(cb, struct io_tctx_exit, task_work);
9481 	/*
9482 	 * When @in_idle, we're in cancellation and it's racy to remove the
9483 	 * node. It'll be removed by the end of cancellation, just ignore it.
9484 	 * tctx can be NULL if the queueing of this task_work raced with
9485 	 * work cancelation off the exec path.
9486 	 */
9487 	if (tctx && !atomic_read(&tctx->in_idle))
9488 		io_uring_del_tctx_node((unsigned long)work->ctx);
9489 	complete(&work->completion);
9490 }
9491 
io_cancel_ctx_cb(struct io_wq_work *work, void *data)9492 static bool io_cancel_ctx_cb(struct io_wq_work *work, void *data)
9493 {
9494 	struct io_kiocb *req = container_of(work, struct io_kiocb, work);
9495 
9496 	return req->ctx == data;
9497 }
9498 
io_ring_exit_work(struct work_struct *work)9499 static void io_ring_exit_work(struct work_struct *work)
9500 {
9501 	struct io_ring_ctx *ctx = container_of(work, struct io_ring_ctx, exit_work);
9502 	unsigned long timeout = jiffies + HZ * 60 * 5;
9503 	unsigned long interval = HZ / 20;
9504 	struct io_tctx_exit exit;
9505 	struct io_tctx_node *node;
9506 	int ret;
9507 
9508 	/*
9509 	 * If we're doing polled IO and end up having requests being
9510 	 * submitted async (out-of-line), then completions can come in while
9511 	 * we're waiting for refs to drop. We need to reap these manually,
9512 	 * as nobody else will be looking for them.
9513 	 */
9514 	do {
9515 		io_uring_try_cancel_requests(ctx, NULL, true);
9516 		if (ctx->sq_data) {
9517 			struct io_sq_data *sqd = ctx->sq_data;
9518 			struct task_struct *tsk;
9519 
9520 			io_sq_thread_park(sqd);
9521 			tsk = sqd->thread;
9522 			if (tsk && tsk->io_uring && tsk->io_uring->io_wq)
9523 				io_wq_cancel_cb(tsk->io_uring->io_wq,
9524 						io_cancel_ctx_cb, ctx, true);
9525 			io_sq_thread_unpark(sqd);
9526 		}
9527 
9528 		if (WARN_ON_ONCE(time_after(jiffies, timeout))) {
9529 			/* there is little hope left, don't run it too often */
9530 			interval = HZ * 60;
9531 		}
9532 		/*
9533 		 * This is really an uninterruptible wait, as it has to be
9534 		 * complete. But it's also run from a kworker, which doesn't
9535 		 * take signals, so it's fine to make it interruptible. This
9536 		 * avoids scenarios where we knowingly can wait much longer
9537 		 * on completions, for example if someone does a SIGSTOP on
9538 		 * a task that needs to finish task_work to make this loop
9539 		 * complete. That's a synthetic situation that should not
9540 		 * cause a stuck task backtrace, and hence a potential panic
9541 		 * on stuck tasks if that is enabled.
9542 		 */
9543 	} while (!wait_for_completion_interruptible_timeout(&ctx->ref_comp, interval));
9544 
9545 	init_completion(&exit.completion);
9546 	init_task_work(&exit.task_work, io_tctx_exit_cb);
9547 	exit.ctx = ctx;
9548 	/*
9549 	 * Some may use context even when all refs and requests have been put,
9550 	 * and they are free to do so while still holding uring_lock or
9551 	 * completion_lock, see io_req_task_submit(). Apart from other work,
9552 	 * this lock/unlock section also waits them to finish.
9553 	 */
9554 	mutex_lock(&ctx->uring_lock);
9555 	while (!list_empty(&ctx->tctx_list)) {
9556 		WARN_ON_ONCE(time_after(jiffies, timeout));
9557 
9558 		node = list_first_entry(&ctx->tctx_list, struct io_tctx_node,
9559 					ctx_node);
9560 		/* don't spin on a single task if cancellation failed */
9561 		list_rotate_left(&ctx->tctx_list);
9562 		ret = task_work_add(node->task, &exit.task_work, TWA_SIGNAL);
9563 		if (WARN_ON_ONCE(ret))
9564 			continue;
9565 		wake_up_process(node->task);
9566 
9567 		mutex_unlock(&ctx->uring_lock);
9568 		/*
9569 		 * See comment above for
9570 		 * wait_for_completion_interruptible_timeout() on why this
9571 		 * wait is marked as interruptible.
9572 		 */
9573 		wait_for_completion_interruptible(&exit.completion);
9574 		mutex_lock(&ctx->uring_lock);
9575 	}
9576 	mutex_unlock(&ctx->uring_lock);
9577 	spin_lock(&ctx->completion_lock);
9578 	spin_unlock(&ctx->completion_lock);
9579 
9580 	io_ring_ctx_free(ctx);
9581 }
9582 
9583 /* Returns true if we found and killed one or more timeouts */
io_kill_timeouts(struct io_ring_ctx *ctx, struct task_struct *tsk, bool cancel_all)9584 static bool io_kill_timeouts(struct io_ring_ctx *ctx, struct task_struct *tsk,
9585 			     bool cancel_all)
9586 {
9587 	struct io_kiocb *req, *tmp;
9588 	int canceled = 0;
9589 
9590 	spin_lock(&ctx->completion_lock);
9591 	spin_lock_irq(&ctx->timeout_lock);
9592 	list_for_each_entry_safe(req, tmp, &ctx->timeout_list, timeout.list) {
9593 		if (io_match_task(req, tsk, cancel_all)) {
9594 			io_kill_timeout(req, -ECANCELED);
9595 			canceled++;
9596 		}
9597 	}
9598 	spin_unlock_irq(&ctx->timeout_lock);
9599 	if (canceled != 0)
9600 		io_commit_cqring(ctx);
9601 	spin_unlock(&ctx->completion_lock);
9602 	if (canceled != 0)
9603 		io_cqring_ev_posted(ctx);
9604 	return canceled != 0;
9605 }
9606 
io_ring_ctx_wait_and_kill(struct io_ring_ctx *ctx)9607 static void io_ring_ctx_wait_and_kill(struct io_ring_ctx *ctx)
9608 {
9609 	unsigned long index;
9610 	struct creds *creds;
9611 
9612 	mutex_lock(&ctx->uring_lock);
9613 	percpu_ref_kill(&ctx->refs);
9614 	if (ctx->rings)
9615 		__io_cqring_overflow_flush(ctx, true);
9616 	xa_for_each(&ctx->personalities, index, creds)
9617 		io_unregister_personality(ctx, index);
9618 	mutex_unlock(&ctx->uring_lock);
9619 
9620 	io_kill_timeouts(ctx, NULL, true);
9621 	io_poll_remove_all(ctx, NULL, true);
9622 
9623 	/* if we failed setting up the ctx, we might not have any rings */
9624 	io_iopoll_try_reap_events(ctx);
9625 
9626 	/* drop cached put refs after potentially doing completions */
9627 	if (current->io_uring)
9628 		io_uring_drop_tctx_refs(current);
9629 
9630 	INIT_WORK(&ctx->exit_work, io_ring_exit_work);
9631 	/*
9632 	 * Use system_unbound_wq to avoid spawning tons of event kworkers
9633 	 * if we're exiting a ton of rings at the same time. It just adds
9634 	 * noise and overhead, there's no discernable change in runtime
9635 	 * over using system_wq.
9636 	 */
9637 	queue_work(system_unbound_wq, &ctx->exit_work);
9638 }
9639 
io_uring_release(struct inode *inode, struct file *file)9640 static int io_uring_release(struct inode *inode, struct file *file)
9641 {
9642 	struct io_ring_ctx *ctx = file->private_data;
9643 
9644 	file->private_data = NULL;
9645 	io_ring_ctx_wait_and_kill(ctx);
9646 	return 0;
9647 }
9648 
9649 struct io_task_cancel {
9650 	struct task_struct *task;
9651 	bool all;
9652 };
9653 
io_cancel_task_cb(struct io_wq_work *work, void *data)9654 static bool io_cancel_task_cb(struct io_wq_work *work, void *data)
9655 {
9656 	struct io_kiocb *req = container_of(work, struct io_kiocb, work);
9657 	struct io_task_cancel *cancel = data;
9658 
9659 	return io_match_task_safe(req, cancel->task, cancel->all);
9660 }
9661 
io_cancel_defer_files(struct io_ring_ctx *ctx, struct task_struct *task, bool cancel_all)9662 static bool io_cancel_defer_files(struct io_ring_ctx *ctx,
9663 				  struct task_struct *task, bool cancel_all)
9664 {
9665 	struct io_defer_entry *de;
9666 	LIST_HEAD(list);
9667 
9668 	spin_lock(&ctx->completion_lock);
9669 	list_for_each_entry_reverse(de, &ctx->defer_list, list) {
9670 		if (io_match_task_safe(de->req, task, cancel_all)) {
9671 			list_cut_position(&list, &ctx->defer_list, &de->list);
9672 			break;
9673 		}
9674 	}
9675 	spin_unlock(&ctx->completion_lock);
9676 	if (list_empty(&list))
9677 		return false;
9678 
9679 	while (!list_empty(&list)) {
9680 		de = list_first_entry(&list, struct io_defer_entry, list);
9681 		list_del_init(&de->list);
9682 		io_req_complete_failed(de->req, -ECANCELED);
9683 		kfree(de);
9684 	}
9685 	return true;
9686 }
9687 
io_uring_try_cancel_iowq(struct io_ring_ctx *ctx)9688 static bool io_uring_try_cancel_iowq(struct io_ring_ctx *ctx)
9689 {
9690 	struct io_tctx_node *node;
9691 	enum io_wq_cancel cret;
9692 	bool ret = false;
9693 
9694 	mutex_lock(&ctx->uring_lock);
9695 	list_for_each_entry(node, &ctx->tctx_list, ctx_node) {
9696 		struct io_uring_task *tctx = node->task->io_uring;
9697 
9698 		/*
9699 		 * io_wq will stay alive while we hold uring_lock, because it's
9700 		 * killed after ctx nodes, which requires to take the lock.
9701 		 */
9702 		if (!tctx || !tctx->io_wq)
9703 			continue;
9704 		cret = io_wq_cancel_cb(tctx->io_wq, io_cancel_ctx_cb, ctx, true);
9705 		ret |= (cret != IO_WQ_CANCEL_NOTFOUND);
9706 	}
9707 	mutex_unlock(&ctx->uring_lock);
9708 
9709 	return ret;
9710 }
9711 
io_uring_try_cancel_requests(struct io_ring_ctx *ctx, struct task_struct *task, bool cancel_all)9712 static void io_uring_try_cancel_requests(struct io_ring_ctx *ctx,
9713 					 struct task_struct *task,
9714 					 bool cancel_all)
9715 {
9716 	struct io_task_cancel cancel = { .task = task, .all = cancel_all, };
9717 	struct io_uring_task *tctx = task ? task->io_uring : NULL;
9718 
9719 	while (1) {
9720 		enum io_wq_cancel cret;
9721 		bool ret = false;
9722 
9723 		if (!task) {
9724 			ret |= io_uring_try_cancel_iowq(ctx);
9725 		} else if (tctx && tctx->io_wq) {
9726 			/*
9727 			 * Cancels requests of all rings, not only @ctx, but
9728 			 * it's fine as the task is in exit/exec.
9729 			 */
9730 			cret = io_wq_cancel_cb(tctx->io_wq, io_cancel_task_cb,
9731 					       &cancel, true);
9732 			ret |= (cret != IO_WQ_CANCEL_NOTFOUND);
9733 		}
9734 
9735 		/* SQPOLL thread does its own polling */
9736 		if ((!(ctx->flags & IORING_SETUP_SQPOLL) && cancel_all) ||
9737 		    (ctx->sq_data && ctx->sq_data->thread == current)) {
9738 			while (!list_empty_careful(&ctx->iopoll_list)) {
9739 				io_iopoll_try_reap_events(ctx);
9740 				ret = true;
9741 				cond_resched();
9742 			}
9743 		}
9744 
9745 		ret |= io_cancel_defer_files(ctx, task, cancel_all);
9746 		ret |= io_poll_remove_all(ctx, task, cancel_all);
9747 		ret |= io_kill_timeouts(ctx, task, cancel_all);
9748 		if (task)
9749 			ret |= io_run_task_work();
9750 		if (!ret)
9751 			break;
9752 		cond_resched();
9753 	}
9754 }
9755 
__io_uring_add_tctx_node(struct io_ring_ctx *ctx)9756 static int __io_uring_add_tctx_node(struct io_ring_ctx *ctx)
9757 {
9758 	struct io_uring_task *tctx = current->io_uring;
9759 	struct io_tctx_node *node;
9760 	int ret;
9761 
9762 	if (unlikely(!tctx)) {
9763 		ret = io_uring_alloc_task_context(current, ctx);
9764 		if (unlikely(ret))
9765 			return ret;
9766 
9767 		tctx = current->io_uring;
9768 		if (ctx->iowq_limits_set) {
9769 			unsigned int limits[2] = { ctx->iowq_limits[0],
9770 						   ctx->iowq_limits[1], };
9771 
9772 			ret = io_wq_max_workers(tctx->io_wq, limits);
9773 			if (ret)
9774 				return ret;
9775 		}
9776 	}
9777 	if (!xa_load(&tctx->xa, (unsigned long)ctx)) {
9778 		node = kmalloc(sizeof(*node), GFP_KERNEL);
9779 		if (!node)
9780 			return -ENOMEM;
9781 		node->ctx = ctx;
9782 		node->task = current;
9783 
9784 		ret = xa_err(xa_store(&tctx->xa, (unsigned long)ctx,
9785 					node, GFP_KERNEL));
9786 		if (ret) {
9787 			kfree(node);
9788 			return ret;
9789 		}
9790 
9791 		mutex_lock(&ctx->uring_lock);
9792 		list_add(&node->ctx_node, &ctx->tctx_list);
9793 		mutex_unlock(&ctx->uring_lock);
9794 	}
9795 	tctx->last = ctx;
9796 	return 0;
9797 }
9798 
9799 /*
9800  * Note that this task has used io_uring. We use it for cancelation purposes.
9801  */
io_uring_add_tctx_node(struct io_ring_ctx *ctx)9802 static inline int io_uring_add_tctx_node(struct io_ring_ctx *ctx)
9803 {
9804 	struct io_uring_task *tctx = current->io_uring;
9805 
9806 	if (likely(tctx && tctx->last == ctx))
9807 		return 0;
9808 	return __io_uring_add_tctx_node(ctx);
9809 }
9810 
9811 /*
9812  * Remove this io_uring_file -> task mapping.
9813  */
io_uring_del_tctx_node(unsigned long index)9814 static void io_uring_del_tctx_node(unsigned long index)
9815 {
9816 	struct io_uring_task *tctx = current->io_uring;
9817 	struct io_tctx_node *node;
9818 
9819 	if (!tctx)
9820 		return;
9821 	node = xa_erase(&tctx->xa, index);
9822 	if (!node)
9823 		return;
9824 
9825 	WARN_ON_ONCE(current != node->task);
9826 	WARN_ON_ONCE(list_empty(&node->ctx_node));
9827 
9828 	mutex_lock(&node->ctx->uring_lock);
9829 	list_del(&node->ctx_node);
9830 	mutex_unlock(&node->ctx->uring_lock);
9831 
9832 	if (tctx->last == node->ctx)
9833 		tctx->last = NULL;
9834 	kfree(node);
9835 }
9836 
io_uring_clean_tctx(struct io_uring_task *tctx)9837 static void io_uring_clean_tctx(struct io_uring_task *tctx)
9838 {
9839 	struct io_wq *wq = tctx->io_wq;
9840 	struct io_tctx_node *node;
9841 	unsigned long index;
9842 
9843 	xa_for_each(&tctx->xa, index, node) {
9844 		io_uring_del_tctx_node(index);
9845 		cond_resched();
9846 	}
9847 	if (wq) {
9848 		/*
9849 		 * Must be after io_uring_del_task_file() (removes nodes under
9850 		 * uring_lock) to avoid race with io_uring_try_cancel_iowq().
9851 		 */
9852 		io_wq_put_and_exit(wq);
9853 		tctx->io_wq = NULL;
9854 	}
9855 }
9856 
tctx_inflight(struct io_uring_task *tctx, bool tracked)9857 static s64 tctx_inflight(struct io_uring_task *tctx, bool tracked)
9858 {
9859 	if (tracked)
9860 		return atomic_read(&tctx->inflight_tracked);
9861 	return percpu_counter_sum(&tctx->inflight);
9862 }
9863 
9864 /*
9865  * Find any io_uring ctx that this task has registered or done IO on, and cancel
9866  * requests. @sqd should be not-null IFF it's an SQPOLL thread cancellation.
9867  */
io_uring_cancel_generic(bool cancel_all, struct io_sq_data *sqd)9868 static void io_uring_cancel_generic(bool cancel_all, struct io_sq_data *sqd)
9869 {
9870 	struct io_uring_task *tctx = current->io_uring;
9871 	struct io_ring_ctx *ctx;
9872 	s64 inflight;
9873 	DEFINE_WAIT(wait);
9874 
9875 	WARN_ON_ONCE(sqd && sqd->thread != current);
9876 
9877 	if (!current->io_uring)
9878 		return;
9879 	if (tctx->io_wq)
9880 		io_wq_exit_start(tctx->io_wq);
9881 
9882 	atomic_inc(&tctx->in_idle);
9883 	do {
9884 		io_uring_drop_tctx_refs(current);
9885 		/* read completions before cancelations */
9886 		inflight = tctx_inflight(tctx, !cancel_all);
9887 		if (!inflight)
9888 			break;
9889 
9890 		if (!sqd) {
9891 			struct io_tctx_node *node;
9892 			unsigned long index;
9893 
9894 			xa_for_each(&tctx->xa, index, node) {
9895 				/* sqpoll task will cancel all its requests */
9896 				if (node->ctx->sq_data)
9897 					continue;
9898 				io_uring_try_cancel_requests(node->ctx, current,
9899 							     cancel_all);
9900 			}
9901 		} else {
9902 			list_for_each_entry(ctx, &sqd->ctx_list, sqd_list)
9903 				io_uring_try_cancel_requests(ctx, current,
9904 							     cancel_all);
9905 		}
9906 
9907 		prepare_to_wait(&tctx->wait, &wait, TASK_INTERRUPTIBLE);
9908 		io_run_task_work();
9909 		io_uring_drop_tctx_refs(current);
9910 
9911 		/*
9912 		 * If we've seen completions, retry without waiting. This
9913 		 * avoids a race where a completion comes in before we did
9914 		 * prepare_to_wait().
9915 		 */
9916 		if (inflight == tctx_inflight(tctx, !cancel_all))
9917 			schedule();
9918 		finish_wait(&tctx->wait, &wait);
9919 	} while (1);
9920 
9921 	io_uring_clean_tctx(tctx);
9922 	if (cancel_all) {
9923 		/*
9924 		 * We shouldn't run task_works after cancel, so just leave
9925 		 * ->in_idle set for normal exit.
9926 		 */
9927 		atomic_dec(&tctx->in_idle);
9928 		/* for exec all current's requests should be gone, kill tctx */
9929 		__io_uring_free(current);
9930 	}
9931 }
9932 
__io_uring_cancel(bool cancel_all)9933 void __io_uring_cancel(bool cancel_all)
9934 {
9935 	io_uring_cancel_generic(cancel_all, NULL);
9936 }
9937 
io_uring_validate_mmap_request(struct file *file, loff_t pgoff, size_t sz)9938 static void *io_uring_validate_mmap_request(struct file *file,
9939 					    loff_t pgoff, size_t sz)
9940 {
9941 	struct io_ring_ctx *ctx = file->private_data;
9942 	loff_t offset = pgoff << PAGE_SHIFT;
9943 	struct page *page;
9944 	void *ptr;
9945 
9946 	switch (offset) {
9947 	case IORING_OFF_SQ_RING:
9948 	case IORING_OFF_CQ_RING:
9949 		ptr = ctx->rings;
9950 		break;
9951 	case IORING_OFF_SQES:
9952 		ptr = ctx->sq_sqes;
9953 		break;
9954 	default:
9955 		return ERR_PTR(-EINVAL);
9956 	}
9957 
9958 	page = virt_to_head_page(ptr);
9959 	if (sz > page_size(page))
9960 		return ERR_PTR(-EINVAL);
9961 
9962 	return ptr;
9963 }
9964 
9965 #ifdef CONFIG_MMU
9966 
io_uring_mmap(struct file *file, struct vm_area_struct *vma)9967 static int io_uring_mmap(struct file *file, struct vm_area_struct *vma)
9968 {
9969 	size_t sz = vma->vm_end - vma->vm_start;
9970 	unsigned long pfn;
9971 	void *ptr;
9972 
9973 	ptr = io_uring_validate_mmap_request(file, vma->vm_pgoff, sz);
9974 	if (IS_ERR(ptr))
9975 		return PTR_ERR(ptr);
9976 
9977 	pfn = virt_to_phys(ptr) >> PAGE_SHIFT;
9978 	return remap_pfn_range(vma, vma->vm_start, pfn, sz, vma->vm_page_prot);
9979 }
9980 
9981 #else /* !CONFIG_MMU */
9982 
io_uring_mmap(struct file *file, struct vm_area_struct *vma)9983 static int io_uring_mmap(struct file *file, struct vm_area_struct *vma)
9984 {
9985 	return vma->vm_flags & (VM_SHARED | VM_MAYSHARE) ? 0 : -EINVAL;
9986 }
9987 
io_uring_nommu_mmap_capabilities(struct file *file)9988 static unsigned int io_uring_nommu_mmap_capabilities(struct file *file)
9989 {
9990 	return NOMMU_MAP_DIRECT | NOMMU_MAP_READ | NOMMU_MAP_WRITE;
9991 }
9992 
io_uring_nommu_get_unmapped_area(struct file *file, unsigned long addr, unsigned long len, unsigned long pgoff, unsigned long flags)9993 static unsigned long io_uring_nommu_get_unmapped_area(struct file *file,
9994 	unsigned long addr, unsigned long len,
9995 	unsigned long pgoff, unsigned long flags)
9996 {
9997 	void *ptr;
9998 
9999 	ptr = io_uring_validate_mmap_request(file, pgoff, len);
10000 	if (IS_ERR(ptr))
10001 		return PTR_ERR(ptr);
10002 
10003 	return (unsigned long) ptr;
10004 }
10005 
10006 #endif /* !CONFIG_MMU */
10007 
io_sqpoll_wait_sq(struct io_ring_ctx *ctx)10008 static int io_sqpoll_wait_sq(struct io_ring_ctx *ctx)
10009 {
10010 	DEFINE_WAIT(wait);
10011 
10012 	do {
10013 		if (!io_sqring_full(ctx))
10014 			break;
10015 		prepare_to_wait(&ctx->sqo_sq_wait, &wait, TASK_INTERRUPTIBLE);
10016 
10017 		if (!io_sqring_full(ctx))
10018 			break;
10019 		schedule();
10020 	} while (!signal_pending(current));
10021 
10022 	finish_wait(&ctx->sqo_sq_wait, &wait);
10023 	return 0;
10024 }
10025 
io_get_ext_arg(unsigned flags, const void __user *argp, size_t *argsz, struct __kernel_timespec __user **ts, const sigset_t __user **sig)10026 static int io_get_ext_arg(unsigned flags, const void __user *argp, size_t *argsz,
10027 			  struct __kernel_timespec __user **ts,
10028 			  const sigset_t __user **sig)
10029 {
10030 	struct io_uring_getevents_arg arg;
10031 
10032 	/*
10033 	 * If EXT_ARG isn't set, then we have no timespec and the argp pointer
10034 	 * is just a pointer to the sigset_t.
10035 	 */
10036 	if (!(flags & IORING_ENTER_EXT_ARG)) {
10037 		*sig = (const sigset_t __user *) argp;
10038 		*ts = NULL;
10039 		return 0;
10040 	}
10041 
10042 	/*
10043 	 * EXT_ARG is set - ensure we agree on the size of it and copy in our
10044 	 * timespec and sigset_t pointers if good.
10045 	 */
10046 	if (*argsz != sizeof(arg))
10047 		return -EINVAL;
10048 	if (copy_from_user(&arg, argp, sizeof(arg)))
10049 		return -EFAULT;
10050 	if (arg.pad)
10051 		return -EINVAL;
10052 	*sig = u64_to_user_ptr(arg.sigmask);
10053 	*argsz = arg.sigmask_sz;
10054 	*ts = u64_to_user_ptr(arg.ts);
10055 	return 0;
10056 }
10057 
SYSCALL_DEFINE6(io_uring_enter, unsigned int, fd, u32, to_submit, u32, min_complete, u32, flags, const void __user *, argp, size_t, argsz)10058 SYSCALL_DEFINE6(io_uring_enter, unsigned int, fd, u32, to_submit,
10059 		u32, min_complete, u32, flags, const void __user *, argp,
10060 		size_t, argsz)
10061 {
10062 	struct io_ring_ctx *ctx;
10063 	int submitted = 0;
10064 	struct fd f;
10065 	long ret;
10066 
10067 	io_run_task_work();
10068 
10069 	if (unlikely(flags & ~(IORING_ENTER_GETEVENTS | IORING_ENTER_SQ_WAKEUP |
10070 			       IORING_ENTER_SQ_WAIT | IORING_ENTER_EXT_ARG)))
10071 		return -EINVAL;
10072 
10073 	f = fdget(fd);
10074 	if (unlikely(!f.file))
10075 		return -EBADF;
10076 
10077 	ret = -EOPNOTSUPP;
10078 	if (unlikely(f.file->f_op != &io_uring_fops))
10079 		goto out_fput;
10080 
10081 	ret = -ENXIO;
10082 	ctx = f.file->private_data;
10083 	if (unlikely(!percpu_ref_tryget(&ctx->refs)))
10084 		goto out_fput;
10085 
10086 	ret = -EBADFD;
10087 	if (unlikely(ctx->flags & IORING_SETUP_R_DISABLED))
10088 		goto out;
10089 
10090 	/*
10091 	 * For SQ polling, the thread will do all submissions and completions.
10092 	 * Just return the requested submit count, and wake the thread if
10093 	 * we were asked to.
10094 	 */
10095 	ret = 0;
10096 	if (ctx->flags & IORING_SETUP_SQPOLL) {
10097 		io_cqring_overflow_flush(ctx);
10098 
10099 		if (unlikely(ctx->sq_data->thread == NULL)) {
10100 			ret = -EOWNERDEAD;
10101 			goto out;
10102 		}
10103 		if (flags & IORING_ENTER_SQ_WAKEUP)
10104 			wake_up(&ctx->sq_data->wait);
10105 		if (flags & IORING_ENTER_SQ_WAIT) {
10106 			ret = io_sqpoll_wait_sq(ctx);
10107 			if (ret)
10108 				goto out;
10109 		}
10110 		submitted = to_submit;
10111 	} else if (to_submit) {
10112 		ret = io_uring_add_tctx_node(ctx);
10113 		if (unlikely(ret))
10114 			goto out;
10115 		mutex_lock(&ctx->uring_lock);
10116 		submitted = io_submit_sqes(ctx, to_submit);
10117 		mutex_unlock(&ctx->uring_lock);
10118 
10119 		if (submitted != to_submit)
10120 			goto out;
10121 	}
10122 	if (flags & IORING_ENTER_GETEVENTS) {
10123 		const sigset_t __user *sig;
10124 		struct __kernel_timespec __user *ts;
10125 
10126 		ret = io_get_ext_arg(flags, argp, &argsz, &ts, &sig);
10127 		if (unlikely(ret))
10128 			goto out;
10129 
10130 		min_complete = min(min_complete, ctx->cq_entries);
10131 
10132 		/*
10133 		 * When SETUP_IOPOLL and SETUP_SQPOLL are both enabled, user
10134 		 * space applications don't need to do io completion events
10135 		 * polling again, they can rely on io_sq_thread to do polling
10136 		 * work, which can reduce cpu usage and uring_lock contention.
10137 		 */
10138 		if (ctx->flags & IORING_SETUP_IOPOLL &&
10139 		    !(ctx->flags & IORING_SETUP_SQPOLL)) {
10140 			ret = io_iopoll_check(ctx, min_complete);
10141 		} else {
10142 			ret = io_cqring_wait(ctx, min_complete, sig, argsz, ts);
10143 		}
10144 	}
10145 
10146 out:
10147 	percpu_ref_put(&ctx->refs);
10148 out_fput:
10149 	fdput(f);
10150 	return submitted ? submitted : ret;
10151 }
10152 
10153 #ifdef CONFIG_PROC_FS
io_uring_show_cred(struct seq_file *m, unsigned int id, const struct cred *cred)10154 static int io_uring_show_cred(struct seq_file *m, unsigned int id,
10155 		const struct cred *cred)
10156 {
10157 	struct user_namespace *uns = seq_user_ns(m);
10158 	struct group_info *gi;
10159 	kernel_cap_t cap;
10160 	unsigned __capi;
10161 	int g;
10162 
10163 	seq_printf(m, "%5d\n", id);
10164 	seq_put_decimal_ull(m, "\tUid:\t", from_kuid_munged(uns, cred->uid));
10165 	seq_put_decimal_ull(m, "\t\t", from_kuid_munged(uns, cred->euid));
10166 	seq_put_decimal_ull(m, "\t\t", from_kuid_munged(uns, cred->suid));
10167 	seq_put_decimal_ull(m, "\t\t", from_kuid_munged(uns, cred->fsuid));
10168 	seq_put_decimal_ull(m, "\n\tGid:\t", from_kgid_munged(uns, cred->gid));
10169 	seq_put_decimal_ull(m, "\t\t", from_kgid_munged(uns, cred->egid));
10170 	seq_put_decimal_ull(m, "\t\t", from_kgid_munged(uns, cred->sgid));
10171 	seq_put_decimal_ull(m, "\t\t", from_kgid_munged(uns, cred->fsgid));
10172 	seq_puts(m, "\n\tGroups:\t");
10173 	gi = cred->group_info;
10174 	for (g = 0; g < gi->ngroups; g++) {
10175 		seq_put_decimal_ull(m, g ? " " : "",
10176 					from_kgid_munged(uns, gi->gid[g]));
10177 	}
10178 	seq_puts(m, "\n\tCapEff:\t");
10179 	cap = cred->cap_effective;
10180 	CAP_FOR_EACH_U32(__capi)
10181 		seq_put_hex_ll(m, NULL, cap.cap[CAP_LAST_U32 - __capi], 8);
10182 	seq_putc(m, '\n');
10183 	return 0;
10184 }
10185 
__io_uring_show_fdinfo(struct io_ring_ctx *ctx, struct seq_file *m)10186 static void __io_uring_show_fdinfo(struct io_ring_ctx *ctx, struct seq_file *m)
10187 {
10188 	int sq_pid = -1, sq_cpu = -1;
10189 	bool has_lock;
10190 	int i;
10191 
10192 	/*
10193 	 * Avoid ABBA deadlock between the seq lock and the io_uring mutex,
10194 	 * since fdinfo case grabs it in the opposite direction of normal use
10195 	 * cases. If we fail to get the lock, we just don't iterate any
10196 	 * structures that could be going away outside the io_uring mutex.
10197 	 */
10198 	has_lock = mutex_trylock(&ctx->uring_lock);
10199 
10200 	if (has_lock && (ctx->flags & IORING_SETUP_SQPOLL)) {
10201 		struct io_sq_data *sq = ctx->sq_data;
10202 
10203 		if (mutex_trylock(&sq->lock)) {
10204 			if (sq->thread) {
10205 				sq_pid = task_pid_nr(sq->thread);
10206 				sq_cpu = task_cpu(sq->thread);
10207 			}
10208 			mutex_unlock(&sq->lock);
10209 		}
10210 	}
10211 
10212 	seq_printf(m, "SqThread:\t%d\n", sq_pid);
10213 	seq_printf(m, "SqThreadCpu:\t%d\n", sq_cpu);
10214 	seq_printf(m, "UserFiles:\t%u\n", ctx->nr_user_files);
10215 	for (i = 0; has_lock && i < ctx->nr_user_files; i++) {
10216 		struct file *f = io_file_from_index(ctx, i);
10217 
10218 		if (f)
10219 			seq_printf(m, "%5u: %s\n", i, file_dentry(f)->d_iname);
10220 		else
10221 			seq_printf(m, "%5u: <none>\n", i);
10222 	}
10223 	seq_printf(m, "UserBufs:\t%u\n", ctx->nr_user_bufs);
10224 	for (i = 0; has_lock && i < ctx->nr_user_bufs; i++) {
10225 		struct io_mapped_ubuf *buf = ctx->user_bufs[i];
10226 		unsigned int len = buf->ubuf_end - buf->ubuf;
10227 
10228 		seq_printf(m, "%5u: 0x%llx/%u\n", i, buf->ubuf, len);
10229 	}
10230 	if (has_lock && !xa_empty(&ctx->personalities)) {
10231 		unsigned long index;
10232 		const struct cred *cred;
10233 
10234 		seq_printf(m, "Personalities:\n");
10235 		xa_for_each(&ctx->personalities, index, cred)
10236 			io_uring_show_cred(m, index, cred);
10237 	}
10238 	seq_printf(m, "PollList:\n");
10239 	spin_lock(&ctx->completion_lock);
10240 	for (i = 0; i < (1U << ctx->cancel_hash_bits); i++) {
10241 		struct hlist_head *list = &ctx->cancel_hash[i];
10242 		struct io_kiocb *req;
10243 
10244 		hlist_for_each_entry(req, list, hash_node)
10245 			seq_printf(m, "  op=%d, task_works=%d\n", req->opcode,
10246 					req->task->task_works != NULL);
10247 	}
10248 	spin_unlock(&ctx->completion_lock);
10249 	if (has_lock)
10250 		mutex_unlock(&ctx->uring_lock);
10251 }
10252 
io_uring_show_fdinfo(struct seq_file *m, struct file *f)10253 static void io_uring_show_fdinfo(struct seq_file *m, struct file *f)
10254 {
10255 	struct io_ring_ctx *ctx = f->private_data;
10256 
10257 	if (percpu_ref_tryget(&ctx->refs)) {
10258 		__io_uring_show_fdinfo(ctx, m);
10259 		percpu_ref_put(&ctx->refs);
10260 	}
10261 }
10262 #endif
10263 
10264 static const struct file_operations io_uring_fops = {
10265 	.release	= io_uring_release,
10266 	.mmap		= io_uring_mmap,
10267 #ifndef CONFIG_MMU
10268 	.get_unmapped_area = io_uring_nommu_get_unmapped_area,
10269 	.mmap_capabilities = io_uring_nommu_mmap_capabilities,
10270 #endif
10271 	.poll		= io_uring_poll,
10272 #ifdef CONFIG_PROC_FS
10273 	.show_fdinfo	= io_uring_show_fdinfo,
10274 #endif
10275 };
10276 
io_allocate_scq_urings(struct io_ring_ctx *ctx, struct io_uring_params *p)10277 static int io_allocate_scq_urings(struct io_ring_ctx *ctx,
10278 				  struct io_uring_params *p)
10279 {
10280 	struct io_rings *rings;
10281 	size_t size, sq_array_offset;
10282 
10283 	/* make sure these are sane, as we already accounted them */
10284 	ctx->sq_entries = p->sq_entries;
10285 	ctx->cq_entries = p->cq_entries;
10286 
10287 	size = rings_size(p->sq_entries, p->cq_entries, &sq_array_offset);
10288 	if (size == SIZE_MAX)
10289 		return -EOVERFLOW;
10290 
10291 	rings = io_mem_alloc(size);
10292 	if (!rings)
10293 		return -ENOMEM;
10294 
10295 	ctx->rings = rings;
10296 	ctx->sq_array = (u32 *)((char *)rings + sq_array_offset);
10297 	rings->sq_ring_mask = p->sq_entries - 1;
10298 	rings->cq_ring_mask = p->cq_entries - 1;
10299 	rings->sq_ring_entries = p->sq_entries;
10300 	rings->cq_ring_entries = p->cq_entries;
10301 
10302 	size = array_size(sizeof(struct io_uring_sqe), p->sq_entries);
10303 	if (size == SIZE_MAX) {
10304 		io_mem_free(ctx->rings);
10305 		ctx->rings = NULL;
10306 		return -EOVERFLOW;
10307 	}
10308 
10309 	ctx->sq_sqes = io_mem_alloc(size);
10310 	if (!ctx->sq_sqes) {
10311 		io_mem_free(ctx->rings);
10312 		ctx->rings = NULL;
10313 		return -ENOMEM;
10314 	}
10315 
10316 	return 0;
10317 }
10318 
io_uring_install_fd(struct io_ring_ctx *ctx, struct file *file)10319 static int io_uring_install_fd(struct io_ring_ctx *ctx, struct file *file)
10320 {
10321 	int ret, fd;
10322 
10323 	fd = get_unused_fd_flags(O_RDWR | O_CLOEXEC);
10324 	if (fd < 0)
10325 		return fd;
10326 
10327 	ret = io_uring_add_tctx_node(ctx);
10328 	if (ret) {
10329 		put_unused_fd(fd);
10330 		return ret;
10331 	}
10332 	fd_install(fd, file);
10333 	return fd;
10334 }
10335 
10336 /*
10337  * Allocate an anonymous fd, this is what constitutes the application
10338  * visible backing of an io_uring instance. The application mmaps this
10339  * fd to gain access to the SQ/CQ ring details. If UNIX sockets are enabled,
10340  * we have to tie this fd to a socket for file garbage collection purposes.
10341  */
io_uring_get_file(struct io_ring_ctx *ctx)10342 static struct file *io_uring_get_file(struct io_ring_ctx *ctx)
10343 {
10344 	struct file *file;
10345 #if defined(CONFIG_UNIX)
10346 	int ret;
10347 
10348 	ret = sock_create_kern(&init_net, PF_UNIX, SOCK_RAW, IPPROTO_IP,
10349 				&ctx->ring_sock);
10350 	if (ret)
10351 		return ERR_PTR(ret);
10352 #endif
10353 
10354 	file = anon_inode_getfile("[io_uring]", &io_uring_fops, ctx,
10355 					O_RDWR | O_CLOEXEC);
10356 #if defined(CONFIG_UNIX)
10357 	if (IS_ERR(file)) {
10358 		sock_release(ctx->ring_sock);
10359 		ctx->ring_sock = NULL;
10360 	} else {
10361 		ctx->ring_sock->file = file;
10362 	}
10363 #endif
10364 	return file;
10365 }
10366 
io_uring_create(unsigned entries, struct io_uring_params *p, struct io_uring_params __user *params)10367 static int io_uring_create(unsigned entries, struct io_uring_params *p,
10368 			   struct io_uring_params __user *params)
10369 {
10370 	struct io_ring_ctx *ctx;
10371 	struct file *file;
10372 	int ret;
10373 
10374 	if (!entries)
10375 		return -EINVAL;
10376 	if (entries > IORING_MAX_ENTRIES) {
10377 		if (!(p->flags & IORING_SETUP_CLAMP))
10378 			return -EINVAL;
10379 		entries = IORING_MAX_ENTRIES;
10380 	}
10381 
10382 	/*
10383 	 * Use twice as many entries for the CQ ring. It's possible for the
10384 	 * application to drive a higher depth than the size of the SQ ring,
10385 	 * since the sqes are only used at submission time. This allows for
10386 	 * some flexibility in overcommitting a bit. If the application has
10387 	 * set IORING_SETUP_CQSIZE, it will have passed in the desired number
10388 	 * of CQ ring entries manually.
10389 	 */
10390 	p->sq_entries = roundup_pow_of_two(entries);
10391 	if (p->flags & IORING_SETUP_CQSIZE) {
10392 		/*
10393 		 * If IORING_SETUP_CQSIZE is set, we do the same roundup
10394 		 * to a power-of-two, if it isn't already. We do NOT impose
10395 		 * any cq vs sq ring sizing.
10396 		 */
10397 		if (!p->cq_entries)
10398 			return -EINVAL;
10399 		if (p->cq_entries > IORING_MAX_CQ_ENTRIES) {
10400 			if (!(p->flags & IORING_SETUP_CLAMP))
10401 				return -EINVAL;
10402 			p->cq_entries = IORING_MAX_CQ_ENTRIES;
10403 		}
10404 		p->cq_entries = roundup_pow_of_two(p->cq_entries);
10405 		if (p->cq_entries < p->sq_entries)
10406 			return -EINVAL;
10407 	} else {
10408 		p->cq_entries = 2 * p->sq_entries;
10409 	}
10410 
10411 	ctx = io_ring_ctx_alloc(p);
10412 	if (!ctx)
10413 		return -ENOMEM;
10414 	ctx->compat = in_compat_syscall();
10415 	if (!ns_capable_noaudit(&init_user_ns, CAP_IPC_LOCK))
10416 		ctx->user = get_uid(current_user());
10417 
10418 	/*
10419 	 * This is just grabbed for accounting purposes. When a process exits,
10420 	 * the mm is exited and dropped before the files, hence we need to hang
10421 	 * on to this mm purely for the purposes of being able to unaccount
10422 	 * memory (locked/pinned vm). It's not used for anything else.
10423 	 */
10424 	mmgrab(current->mm);
10425 	ctx->mm_account = current->mm;
10426 
10427 	ret = io_allocate_scq_urings(ctx, p);
10428 	if (ret)
10429 		goto err;
10430 
10431 	ret = io_sq_offload_create(ctx, p);
10432 	if (ret)
10433 		goto err;
10434 	/* always set a rsrc node */
10435 	ret = io_rsrc_node_switch_start(ctx);
10436 	if (ret)
10437 		goto err;
10438 	io_rsrc_node_switch(ctx, NULL);
10439 
10440 	memset(&p->sq_off, 0, sizeof(p->sq_off));
10441 	p->sq_off.head = offsetof(struct io_rings, sq.head);
10442 	p->sq_off.tail = offsetof(struct io_rings, sq.tail);
10443 	p->sq_off.ring_mask = offsetof(struct io_rings, sq_ring_mask);
10444 	p->sq_off.ring_entries = offsetof(struct io_rings, sq_ring_entries);
10445 	p->sq_off.flags = offsetof(struct io_rings, sq_flags);
10446 	p->sq_off.dropped = offsetof(struct io_rings, sq_dropped);
10447 	p->sq_off.array = (char *)ctx->sq_array - (char *)ctx->rings;
10448 
10449 	memset(&p->cq_off, 0, sizeof(p->cq_off));
10450 	p->cq_off.head = offsetof(struct io_rings, cq.head);
10451 	p->cq_off.tail = offsetof(struct io_rings, cq.tail);
10452 	p->cq_off.ring_mask = offsetof(struct io_rings, cq_ring_mask);
10453 	p->cq_off.ring_entries = offsetof(struct io_rings, cq_ring_entries);
10454 	p->cq_off.overflow = offsetof(struct io_rings, cq_overflow);
10455 	p->cq_off.cqes = offsetof(struct io_rings, cqes);
10456 	p->cq_off.flags = offsetof(struct io_rings, cq_flags);
10457 
10458 	p->features = IORING_FEAT_SINGLE_MMAP | IORING_FEAT_NODROP |
10459 			IORING_FEAT_SUBMIT_STABLE | IORING_FEAT_RW_CUR_POS |
10460 			IORING_FEAT_CUR_PERSONALITY | IORING_FEAT_FAST_POLL |
10461 			IORING_FEAT_POLL_32BITS | IORING_FEAT_SQPOLL_NONFIXED |
10462 			IORING_FEAT_EXT_ARG | IORING_FEAT_NATIVE_WORKERS |
10463 			IORING_FEAT_RSRC_TAGS;
10464 
10465 	if (copy_to_user(params, p, sizeof(*p))) {
10466 		ret = -EFAULT;
10467 		goto err;
10468 	}
10469 
10470 	file = io_uring_get_file(ctx);
10471 	if (IS_ERR(file)) {
10472 		ret = PTR_ERR(file);
10473 		goto err;
10474 	}
10475 
10476 	/*
10477 	 * Install ring fd as the very last thing, so we don't risk someone
10478 	 * having closed it before we finish setup
10479 	 */
10480 	ret = io_uring_install_fd(ctx, file);
10481 	if (ret < 0) {
10482 		/* fput will clean it up */
10483 		fput(file);
10484 		return ret;
10485 	}
10486 
10487 	trace_io_uring_create(ret, ctx, p->sq_entries, p->cq_entries, p->flags);
10488 	return ret;
10489 err:
10490 	io_ring_ctx_wait_and_kill(ctx);
10491 	return ret;
10492 }
10493 
10494 /*
10495  * Sets up an aio uring context, and returns the fd. Applications asks for a
10496  * ring size, we return the actual sq/cq ring sizes (among other things) in the
10497  * params structure passed in.
10498  */
io_uring_setup(u32 entries, struct io_uring_params __user *params)10499 static long io_uring_setup(u32 entries, struct io_uring_params __user *params)
10500 {
10501 	struct io_uring_params p;
10502 	int i;
10503 
10504 	if (copy_from_user(&p, params, sizeof(p)))
10505 		return -EFAULT;
10506 	for (i = 0; i < ARRAY_SIZE(p.resv); i++) {
10507 		if (p.resv[i])
10508 			return -EINVAL;
10509 	}
10510 
10511 	if (p.flags & ~(IORING_SETUP_IOPOLL | IORING_SETUP_SQPOLL |
10512 			IORING_SETUP_SQ_AFF | IORING_SETUP_CQSIZE |
10513 			IORING_SETUP_CLAMP | IORING_SETUP_ATTACH_WQ |
10514 			IORING_SETUP_R_DISABLED))
10515 		return -EINVAL;
10516 
10517 	return  io_uring_create(entries, &p, params);
10518 }
10519 
SYSCALL_DEFINE2(io_uring_setup, u32, entries, struct io_uring_params __user *, params)10520 SYSCALL_DEFINE2(io_uring_setup, u32, entries,
10521 		struct io_uring_params __user *, params)
10522 {
10523 	return io_uring_setup(entries, params);
10524 }
10525 
io_probe(struct io_ring_ctx *ctx, void __user *arg, unsigned nr_args)10526 static int io_probe(struct io_ring_ctx *ctx, void __user *arg, unsigned nr_args)
10527 {
10528 	struct io_uring_probe *p;
10529 	size_t size;
10530 	int i, ret;
10531 
10532 	size = struct_size(p, ops, nr_args);
10533 	if (size == SIZE_MAX)
10534 		return -EOVERFLOW;
10535 	p = kzalloc(size, GFP_KERNEL);
10536 	if (!p)
10537 		return -ENOMEM;
10538 
10539 	ret = -EFAULT;
10540 	if (copy_from_user(p, arg, size))
10541 		goto out;
10542 	ret = -EINVAL;
10543 	if (memchr_inv(p, 0, size))
10544 		goto out;
10545 
10546 	p->last_op = IORING_OP_LAST - 1;
10547 	if (nr_args > IORING_OP_LAST)
10548 		nr_args = IORING_OP_LAST;
10549 
10550 	for (i = 0; i < nr_args; i++) {
10551 		p->ops[i].op = i;
10552 		if (!io_op_defs[i].not_supported)
10553 			p->ops[i].flags = IO_URING_OP_SUPPORTED;
10554 	}
10555 	p->ops_len = i;
10556 
10557 	ret = 0;
10558 	if (copy_to_user(arg, p, size))
10559 		ret = -EFAULT;
10560 out:
10561 	kfree(p);
10562 	return ret;
10563 }
10564 
io_register_personality(struct io_ring_ctx *ctx)10565 static int io_register_personality(struct io_ring_ctx *ctx)
10566 {
10567 	const struct cred *creds;
10568 	u32 id;
10569 	int ret;
10570 
10571 	creds = get_current_cred();
10572 
10573 	ret = xa_alloc_cyclic(&ctx->personalities, &id, (void *)creds,
10574 			XA_LIMIT(0, USHRT_MAX), &ctx->pers_next, GFP_KERNEL);
10575 	if (ret < 0) {
10576 		put_cred(creds);
10577 		return ret;
10578 	}
10579 	return id;
10580 }
10581 
io_register_restrictions(struct io_ring_ctx *ctx, void __user *arg, unsigned int nr_args)10582 static int io_register_restrictions(struct io_ring_ctx *ctx, void __user *arg,
10583 				    unsigned int nr_args)
10584 {
10585 	struct io_uring_restriction *res;
10586 	size_t size;
10587 	int i, ret;
10588 
10589 	/* Restrictions allowed only if rings started disabled */
10590 	if (!(ctx->flags & IORING_SETUP_R_DISABLED))
10591 		return -EBADFD;
10592 
10593 	/* We allow only a single restrictions registration */
10594 	if (ctx->restrictions.registered)
10595 		return -EBUSY;
10596 
10597 	if (!arg || nr_args > IORING_MAX_RESTRICTIONS)
10598 		return -EINVAL;
10599 
10600 	size = array_size(nr_args, sizeof(*res));
10601 	if (size == SIZE_MAX)
10602 		return -EOVERFLOW;
10603 
10604 	res = memdup_user(arg, size);
10605 	if (IS_ERR(res))
10606 		return PTR_ERR(res);
10607 
10608 	ret = 0;
10609 
10610 	for (i = 0; i < nr_args; i++) {
10611 		switch (res[i].opcode) {
10612 		case IORING_RESTRICTION_REGISTER_OP:
10613 			if (res[i].register_op >= IORING_REGISTER_LAST) {
10614 				ret = -EINVAL;
10615 				goto out;
10616 			}
10617 
10618 			__set_bit(res[i].register_op,
10619 				  ctx->restrictions.register_op);
10620 			break;
10621 		case IORING_RESTRICTION_SQE_OP:
10622 			if (res[i].sqe_op >= IORING_OP_LAST) {
10623 				ret = -EINVAL;
10624 				goto out;
10625 			}
10626 
10627 			__set_bit(res[i].sqe_op, ctx->restrictions.sqe_op);
10628 			break;
10629 		case IORING_RESTRICTION_SQE_FLAGS_ALLOWED:
10630 			ctx->restrictions.sqe_flags_allowed = res[i].sqe_flags;
10631 			break;
10632 		case IORING_RESTRICTION_SQE_FLAGS_REQUIRED:
10633 			ctx->restrictions.sqe_flags_required = res[i].sqe_flags;
10634 			break;
10635 		default:
10636 			ret = -EINVAL;
10637 			goto out;
10638 		}
10639 	}
10640 
10641 out:
10642 	/* Reset all restrictions if an error happened */
10643 	if (ret != 0)
10644 		memset(&ctx->restrictions, 0, sizeof(ctx->restrictions));
10645 	else
10646 		ctx->restrictions.registered = true;
10647 
10648 	kfree(res);
10649 	return ret;
10650 }
10651 
io_register_enable_rings(struct io_ring_ctx *ctx)10652 static int io_register_enable_rings(struct io_ring_ctx *ctx)
10653 {
10654 	if (!(ctx->flags & IORING_SETUP_R_DISABLED))
10655 		return -EBADFD;
10656 
10657 	if (ctx->restrictions.registered)
10658 		ctx->restricted = 1;
10659 
10660 	ctx->flags &= ~IORING_SETUP_R_DISABLED;
10661 	if (ctx->sq_data && wq_has_sleeper(&ctx->sq_data->wait))
10662 		wake_up(&ctx->sq_data->wait);
10663 	return 0;
10664 }
10665 
__io_register_rsrc_update(struct io_ring_ctx *ctx, unsigned type, struct io_uring_rsrc_update2 *up, unsigned nr_args)10666 static int __io_register_rsrc_update(struct io_ring_ctx *ctx, unsigned type,
10667 				     struct io_uring_rsrc_update2 *up,
10668 				     unsigned nr_args)
10669 {
10670 	__u32 tmp;
10671 	int err;
10672 
10673 	if (check_add_overflow(up->offset, nr_args, &tmp))
10674 		return -EOVERFLOW;
10675 	err = io_rsrc_node_switch_start(ctx);
10676 	if (err)
10677 		return err;
10678 
10679 	switch (type) {
10680 	case IORING_RSRC_FILE:
10681 		return __io_sqe_files_update(ctx, up, nr_args);
10682 	case IORING_RSRC_BUFFER:
10683 		return __io_sqe_buffers_update(ctx, up, nr_args);
10684 	}
10685 	return -EINVAL;
10686 }
10687 
io_register_files_update(struct io_ring_ctx *ctx, void __user *arg, unsigned nr_args)10688 static int io_register_files_update(struct io_ring_ctx *ctx, void __user *arg,
10689 				    unsigned nr_args)
10690 {
10691 	struct io_uring_rsrc_update2 up;
10692 
10693 	if (!nr_args)
10694 		return -EINVAL;
10695 	memset(&up, 0, sizeof(up));
10696 	if (copy_from_user(&up, arg, sizeof(struct io_uring_rsrc_update)))
10697 		return -EFAULT;
10698 	if (up.resv || up.resv2)
10699 		return -EINVAL;
10700 	return __io_register_rsrc_update(ctx, IORING_RSRC_FILE, &up, nr_args);
10701 }
10702 
io_register_rsrc_update(struct io_ring_ctx *ctx, void __user *arg, unsigned size, unsigned type)10703 static int io_register_rsrc_update(struct io_ring_ctx *ctx, void __user *arg,
10704 				   unsigned size, unsigned type)
10705 {
10706 	struct io_uring_rsrc_update2 up;
10707 
10708 	if (size != sizeof(up))
10709 		return -EINVAL;
10710 	if (copy_from_user(&up, arg, sizeof(up)))
10711 		return -EFAULT;
10712 	if (!up.nr || up.resv || up.resv2)
10713 		return -EINVAL;
10714 	return __io_register_rsrc_update(ctx, type, &up, up.nr);
10715 }
10716 
io_register_rsrc(struct io_ring_ctx *ctx, void __user *arg, unsigned int size, unsigned int type)10717 static int io_register_rsrc(struct io_ring_ctx *ctx, void __user *arg,
10718 			    unsigned int size, unsigned int type)
10719 {
10720 	struct io_uring_rsrc_register rr;
10721 
10722 	/* keep it extendible */
10723 	if (size != sizeof(rr))
10724 		return -EINVAL;
10725 
10726 	memset(&rr, 0, sizeof(rr));
10727 	if (copy_from_user(&rr, arg, size))
10728 		return -EFAULT;
10729 	if (!rr.nr || rr.resv || rr.resv2)
10730 		return -EINVAL;
10731 
10732 	switch (type) {
10733 	case IORING_RSRC_FILE:
10734 		return io_sqe_files_register(ctx, u64_to_user_ptr(rr.data),
10735 					     rr.nr, u64_to_user_ptr(rr.tags));
10736 	case IORING_RSRC_BUFFER:
10737 		return io_sqe_buffers_register(ctx, u64_to_user_ptr(rr.data),
10738 					       rr.nr, u64_to_user_ptr(rr.tags));
10739 	}
10740 	return -EINVAL;
10741 }
10742 
io_register_iowq_aff(struct io_ring_ctx *ctx, void __user *arg, unsigned len)10743 static int io_register_iowq_aff(struct io_ring_ctx *ctx, void __user *arg,
10744 				unsigned len)
10745 {
10746 	struct io_uring_task *tctx = current->io_uring;
10747 	cpumask_var_t new_mask;
10748 	int ret;
10749 
10750 	if (!tctx || !tctx->io_wq)
10751 		return -EINVAL;
10752 
10753 	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
10754 		return -ENOMEM;
10755 
10756 	cpumask_clear(new_mask);
10757 	if (len > cpumask_size())
10758 		len = cpumask_size();
10759 
10760 #ifdef CONFIG_COMPAT
10761 	if (in_compat_syscall()) {
10762 		ret = compat_get_bitmap(cpumask_bits(new_mask),
10763 					(const compat_ulong_t __user *)arg,
10764 					len * 8 /* CHAR_BIT */);
10765 	} else {
10766 		ret = copy_from_user(new_mask, arg, len);
10767 	}
10768 #else
10769 	ret = copy_from_user(new_mask, arg, len);
10770 #endif
10771 
10772 	if (ret) {
10773 		free_cpumask_var(new_mask);
10774 		return -EFAULT;
10775 	}
10776 
10777 	ret = io_wq_cpu_affinity(tctx->io_wq, new_mask);
10778 	free_cpumask_var(new_mask);
10779 	return ret;
10780 }
10781 
io_unregister_iowq_aff(struct io_ring_ctx *ctx)10782 static int io_unregister_iowq_aff(struct io_ring_ctx *ctx)
10783 {
10784 	struct io_uring_task *tctx = current->io_uring;
10785 
10786 	if (!tctx || !tctx->io_wq)
10787 		return -EINVAL;
10788 
10789 	return io_wq_cpu_affinity(tctx->io_wq, NULL);
10790 }
10791 
10792 static int io_register_iowq_max_workers(struct io_ring_ctx *ctx,
10793 					void __user *arg)
10794 	__must_hold(&ctx->uring_lock)
10795 {
10796 	struct io_tctx_node *node;
10797 	struct io_uring_task *tctx = NULL;
10798 	struct io_sq_data *sqd = NULL;
10799 	__u32 new_count[2];
10800 	int i, ret;
10801 
10802 	if (copy_from_user(new_count, arg, sizeof(new_count)))
10803 		return -EFAULT;
10804 	for (i = 0; i < ARRAY_SIZE(new_count); i++)
10805 		if (new_count[i] > INT_MAX)
10806 			return -EINVAL;
10807 
10808 	if (ctx->flags & IORING_SETUP_SQPOLL) {
10809 		sqd = ctx->sq_data;
10810 		if (sqd) {
10811 			/*
10812 			 * Observe the correct sqd->lock -> ctx->uring_lock
10813 			 * ordering. Fine to drop uring_lock here, we hold
10814 			 * a ref to the ctx.
10815 			 */
10816 			refcount_inc(&sqd->refs);
10817 			mutex_unlock(&ctx->uring_lock);
10818 			mutex_lock(&sqd->lock);
10819 			mutex_lock(&ctx->uring_lock);
10820 			if (sqd->thread)
10821 				tctx = sqd->thread->io_uring;
10822 		}
10823 	} else {
10824 		tctx = current->io_uring;
10825 	}
10826 
10827 	BUILD_BUG_ON(sizeof(new_count) != sizeof(ctx->iowq_limits));
10828 
10829 	for (i = 0; i < ARRAY_SIZE(new_count); i++)
10830 		if (new_count[i])
10831 			ctx->iowq_limits[i] = new_count[i];
10832 	ctx->iowq_limits_set = true;
10833 
10834 	ret = -EINVAL;
10835 	if (tctx && tctx->io_wq) {
10836 		ret = io_wq_max_workers(tctx->io_wq, new_count);
10837 		if (ret)
10838 			goto err;
10839 	} else {
10840 		memset(new_count, 0, sizeof(new_count));
10841 	}
10842 
10843 	if (sqd) {
10844 		mutex_unlock(&sqd->lock);
10845 		io_put_sq_data(sqd);
10846 	}
10847 
10848 	if (copy_to_user(arg, new_count, sizeof(new_count)))
10849 		return -EFAULT;
10850 
10851 	/* that's it for SQPOLL, only the SQPOLL task creates requests */
10852 	if (sqd)
10853 		return 0;
10854 
10855 	/* now propagate the restriction to all registered users */
10856 	list_for_each_entry(node, &ctx->tctx_list, ctx_node) {
10857 		struct io_uring_task *tctx = node->task->io_uring;
10858 
10859 		if (WARN_ON_ONCE(!tctx->io_wq))
10860 			continue;
10861 
10862 		for (i = 0; i < ARRAY_SIZE(new_count); i++)
10863 			new_count[i] = ctx->iowq_limits[i];
10864 		/* ignore errors, it always returns zero anyway */
10865 		(void)io_wq_max_workers(tctx->io_wq, new_count);
10866 	}
10867 	return 0;
10868 err:
10869 	if (sqd) {
10870 		mutex_unlock(&sqd->lock);
10871 		io_put_sq_data(sqd);
10872 	}
10873 	return ret;
10874 }
10875 
io_register_op_must_quiesce(int op)10876 static bool io_register_op_must_quiesce(int op)
10877 {
10878 	switch (op) {
10879 	case IORING_REGISTER_BUFFERS:
10880 	case IORING_UNREGISTER_BUFFERS:
10881 	case IORING_REGISTER_FILES:
10882 	case IORING_UNREGISTER_FILES:
10883 	case IORING_REGISTER_FILES_UPDATE:
10884 	case IORING_REGISTER_PROBE:
10885 	case IORING_REGISTER_PERSONALITY:
10886 	case IORING_UNREGISTER_PERSONALITY:
10887 	case IORING_REGISTER_FILES2:
10888 	case IORING_REGISTER_FILES_UPDATE2:
10889 	case IORING_REGISTER_BUFFERS2:
10890 	case IORING_REGISTER_BUFFERS_UPDATE:
10891 	case IORING_REGISTER_IOWQ_AFF:
10892 	case IORING_UNREGISTER_IOWQ_AFF:
10893 	case IORING_REGISTER_IOWQ_MAX_WORKERS:
10894 		return false;
10895 	default:
10896 		return true;
10897 	}
10898 }
10899 
io_ctx_quiesce(struct io_ring_ctx *ctx)10900 static int io_ctx_quiesce(struct io_ring_ctx *ctx)
10901 {
10902 	long ret;
10903 
10904 	percpu_ref_kill(&ctx->refs);
10905 
10906 	/*
10907 	 * Drop uring mutex before waiting for references to exit. If another
10908 	 * thread is currently inside io_uring_enter() it might need to grab the
10909 	 * uring_lock to make progress. If we hold it here across the drain
10910 	 * wait, then we can deadlock. It's safe to drop the mutex here, since
10911 	 * no new references will come in after we've killed the percpu ref.
10912 	 */
10913 	mutex_unlock(&ctx->uring_lock);
10914 	do {
10915 		ret = wait_for_completion_interruptible(&ctx->ref_comp);
10916 		if (!ret)
10917 			break;
10918 		ret = io_run_task_work_sig();
10919 	} while (ret >= 0);
10920 	mutex_lock(&ctx->uring_lock);
10921 
10922 	if (ret)
10923 		io_refs_resurrect(&ctx->refs, &ctx->ref_comp);
10924 	return ret;
10925 }
10926 
10927 static int __io_uring_register(struct io_ring_ctx *ctx, unsigned opcode,
10928 			       void __user *arg, unsigned nr_args)
10929 	__releases(ctx->uring_lock)
10930 	__acquires(ctx->uring_lock)
10931 {
10932 	int ret;
10933 
10934 	/*
10935 	 * We're inside the ring mutex, if the ref is already dying, then
10936 	 * someone else killed the ctx or is already going through
10937 	 * io_uring_register().
10938 	 */
10939 	if (percpu_ref_is_dying(&ctx->refs))
10940 		return -ENXIO;
10941 
10942 	if (ctx->restricted) {
10943 		opcode = array_index_nospec(opcode, IORING_REGISTER_LAST);
10944 		if (!test_bit(opcode, ctx->restrictions.register_op))
10945 			return -EACCES;
10946 	}
10947 
10948 	if (io_register_op_must_quiesce(opcode)) {
10949 		ret = io_ctx_quiesce(ctx);
10950 		if (ret)
10951 			return ret;
10952 	}
10953 
10954 	switch (opcode) {
10955 	case IORING_REGISTER_BUFFERS:
10956 		ret = io_sqe_buffers_register(ctx, arg, nr_args, NULL);
10957 		break;
10958 	case IORING_UNREGISTER_BUFFERS:
10959 		ret = -EINVAL;
10960 		if (arg || nr_args)
10961 			break;
10962 		ret = io_sqe_buffers_unregister(ctx);
10963 		break;
10964 	case IORING_REGISTER_FILES:
10965 		ret = io_sqe_files_register(ctx, arg, nr_args, NULL);
10966 		break;
10967 	case IORING_UNREGISTER_FILES:
10968 		ret = -EINVAL;
10969 		if (arg || nr_args)
10970 			break;
10971 		ret = io_sqe_files_unregister(ctx);
10972 		break;
10973 	case IORING_REGISTER_FILES_UPDATE:
10974 		ret = io_register_files_update(ctx, arg, nr_args);
10975 		break;
10976 	case IORING_REGISTER_EVENTFD:
10977 	case IORING_REGISTER_EVENTFD_ASYNC:
10978 		ret = -EINVAL;
10979 		if (nr_args != 1)
10980 			break;
10981 		ret = io_eventfd_register(ctx, arg);
10982 		if (ret)
10983 			break;
10984 		if (opcode == IORING_REGISTER_EVENTFD_ASYNC)
10985 			ctx->eventfd_async = 1;
10986 		else
10987 			ctx->eventfd_async = 0;
10988 		break;
10989 	case IORING_UNREGISTER_EVENTFD:
10990 		ret = -EINVAL;
10991 		if (arg || nr_args)
10992 			break;
10993 		ret = io_eventfd_unregister(ctx);
10994 		break;
10995 	case IORING_REGISTER_PROBE:
10996 		ret = -EINVAL;
10997 		if (!arg || nr_args > 256)
10998 			break;
10999 		ret = io_probe(ctx, arg, nr_args);
11000 		break;
11001 	case IORING_REGISTER_PERSONALITY:
11002 		ret = -EINVAL;
11003 		if (arg || nr_args)
11004 			break;
11005 		ret = io_register_personality(ctx);
11006 		break;
11007 	case IORING_UNREGISTER_PERSONALITY:
11008 		ret = -EINVAL;
11009 		if (arg)
11010 			break;
11011 		ret = io_unregister_personality(ctx, nr_args);
11012 		break;
11013 	case IORING_REGISTER_ENABLE_RINGS:
11014 		ret = -EINVAL;
11015 		if (arg || nr_args)
11016 			break;
11017 		ret = io_register_enable_rings(ctx);
11018 		break;
11019 	case IORING_REGISTER_RESTRICTIONS:
11020 		ret = io_register_restrictions(ctx, arg, nr_args);
11021 		break;
11022 	case IORING_REGISTER_FILES2:
11023 		ret = io_register_rsrc(ctx, arg, nr_args, IORING_RSRC_FILE);
11024 		break;
11025 	case IORING_REGISTER_FILES_UPDATE2:
11026 		ret = io_register_rsrc_update(ctx, arg, nr_args,
11027 					      IORING_RSRC_FILE);
11028 		break;
11029 	case IORING_REGISTER_BUFFERS2:
11030 		ret = io_register_rsrc(ctx, arg, nr_args, IORING_RSRC_BUFFER);
11031 		break;
11032 	case IORING_REGISTER_BUFFERS_UPDATE:
11033 		ret = io_register_rsrc_update(ctx, arg, nr_args,
11034 					      IORING_RSRC_BUFFER);
11035 		break;
11036 	case IORING_REGISTER_IOWQ_AFF:
11037 		ret = -EINVAL;
11038 		if (!arg || !nr_args)
11039 			break;
11040 		ret = io_register_iowq_aff(ctx, arg, nr_args);
11041 		break;
11042 	case IORING_UNREGISTER_IOWQ_AFF:
11043 		ret = -EINVAL;
11044 		if (arg || nr_args)
11045 			break;
11046 		ret = io_unregister_iowq_aff(ctx);
11047 		break;
11048 	case IORING_REGISTER_IOWQ_MAX_WORKERS:
11049 		ret = -EINVAL;
11050 		if (!arg || nr_args != 2)
11051 			break;
11052 		ret = io_register_iowq_max_workers(ctx, arg);
11053 		break;
11054 	default:
11055 		ret = -EINVAL;
11056 		break;
11057 	}
11058 
11059 	if (io_register_op_must_quiesce(opcode)) {
11060 		/* bring the ctx back to life */
11061 		percpu_ref_reinit(&ctx->refs);
11062 		reinit_completion(&ctx->ref_comp);
11063 	}
11064 	return ret;
11065 }
11066 
SYSCALL_DEFINE4(io_uring_register, unsigned int, fd, unsigned int, opcode, void __user *, arg, unsigned int, nr_args)11067 SYSCALL_DEFINE4(io_uring_register, unsigned int, fd, unsigned int, opcode,
11068 		void __user *, arg, unsigned int, nr_args)
11069 {
11070 	struct io_ring_ctx *ctx;
11071 	long ret = -EBADF;
11072 	struct fd f;
11073 
11074 	if (opcode >= IORING_REGISTER_LAST)
11075 		return -EINVAL;
11076 
11077 	f = fdget(fd);
11078 	if (!f.file)
11079 		return -EBADF;
11080 
11081 	ret = -EOPNOTSUPP;
11082 	if (f.file->f_op != &io_uring_fops)
11083 		goto out_fput;
11084 
11085 	ctx = f.file->private_data;
11086 
11087 	io_run_task_work();
11088 
11089 	mutex_lock(&ctx->uring_lock);
11090 	ret = __io_uring_register(ctx, opcode, arg, nr_args);
11091 	mutex_unlock(&ctx->uring_lock);
11092 	trace_io_uring_register(ctx, opcode, ctx->nr_user_files, ctx->nr_user_bufs,
11093 							ctx->cq_ev_fd != NULL, ret);
11094 out_fput:
11095 	fdput(f);
11096 	return ret;
11097 }
11098 
io_uring_init(void)11099 static int __init io_uring_init(void)
11100 {
11101 #define __BUILD_BUG_VERIFY_ELEMENT(stype, eoffset, etype, ename) do { \
11102 	BUILD_BUG_ON(offsetof(stype, ename) != eoffset); \
11103 	BUILD_BUG_ON(sizeof(etype) != sizeof_field(stype, ename)); \
11104 } while (0)
11105 
11106 #define BUILD_BUG_SQE_ELEM(eoffset, etype, ename) \
11107 	__BUILD_BUG_VERIFY_ELEMENT(struct io_uring_sqe, eoffset, etype, ename)
11108 	BUILD_BUG_ON(sizeof(struct io_uring_sqe) != 64);
11109 	BUILD_BUG_SQE_ELEM(0,  __u8,   opcode);
11110 	BUILD_BUG_SQE_ELEM(1,  __u8,   flags);
11111 	BUILD_BUG_SQE_ELEM(2,  __u16,  ioprio);
11112 	BUILD_BUG_SQE_ELEM(4,  __s32,  fd);
11113 	BUILD_BUG_SQE_ELEM(8,  __u64,  off);
11114 	BUILD_BUG_SQE_ELEM(8,  __u64,  addr2);
11115 	BUILD_BUG_SQE_ELEM(16, __u64,  addr);
11116 	BUILD_BUG_SQE_ELEM(16, __u64,  splice_off_in);
11117 	BUILD_BUG_SQE_ELEM(24, __u32,  len);
11118 	BUILD_BUG_SQE_ELEM(28,     __kernel_rwf_t, rw_flags);
11119 	BUILD_BUG_SQE_ELEM(28, /* compat */   int, rw_flags);
11120 	BUILD_BUG_SQE_ELEM(28, /* compat */ __u32, rw_flags);
11121 	BUILD_BUG_SQE_ELEM(28, __u32,  fsync_flags);
11122 	BUILD_BUG_SQE_ELEM(28, /* compat */ __u16,  poll_events);
11123 	BUILD_BUG_SQE_ELEM(28, __u32,  poll32_events);
11124 	BUILD_BUG_SQE_ELEM(28, __u32,  sync_range_flags);
11125 	BUILD_BUG_SQE_ELEM(28, __u32,  msg_flags);
11126 	BUILD_BUG_SQE_ELEM(28, __u32,  timeout_flags);
11127 	BUILD_BUG_SQE_ELEM(28, __u32,  accept_flags);
11128 	BUILD_BUG_SQE_ELEM(28, __u32,  cancel_flags);
11129 	BUILD_BUG_SQE_ELEM(28, __u32,  open_flags);
11130 	BUILD_BUG_SQE_ELEM(28, __u32,  statx_flags);
11131 	BUILD_BUG_SQE_ELEM(28, __u32,  fadvise_advice);
11132 	BUILD_BUG_SQE_ELEM(28, __u32,  splice_flags);
11133 	BUILD_BUG_SQE_ELEM(32, __u64,  user_data);
11134 	BUILD_BUG_SQE_ELEM(40, __u16,  buf_index);
11135 	BUILD_BUG_SQE_ELEM(40, __u16,  buf_group);
11136 	BUILD_BUG_SQE_ELEM(42, __u16,  personality);
11137 	BUILD_BUG_SQE_ELEM(44, __s32,  splice_fd_in);
11138 	BUILD_BUG_SQE_ELEM(44, __u32,  file_index);
11139 
11140 	BUILD_BUG_ON(sizeof(struct io_uring_files_update) !=
11141 		     sizeof(struct io_uring_rsrc_update));
11142 	BUILD_BUG_ON(sizeof(struct io_uring_rsrc_update) >
11143 		     sizeof(struct io_uring_rsrc_update2));
11144 
11145 	/* ->buf_index is u16 */
11146 	BUILD_BUG_ON(IORING_MAX_REG_BUFFERS >= (1u << 16));
11147 
11148 	/* should fit into one byte */
11149 	BUILD_BUG_ON(SQE_VALID_FLAGS >= (1 << 8));
11150 
11151 	BUILD_BUG_ON(ARRAY_SIZE(io_op_defs) != IORING_OP_LAST);
11152 	BUILD_BUG_ON(__REQ_F_LAST_BIT > 8 * sizeof(int));
11153 
11154 	req_cachep = KMEM_CACHE(io_kiocb, SLAB_HWCACHE_ALIGN | SLAB_PANIC |
11155 				SLAB_ACCOUNT);
11156 	return 0;
11157 };
11158 __initcall(io_uring_init);
11159