1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * (C) 1997 Linus Torvalds
4  * (C) 1999 Andrea Arcangeli <andrea@suse.de> (dynamic inode allocation)
5  */
6 #include <linux/export.h>
7 #include <linux/fs.h>
8 #include <linux/mm.h>
9 #include <linux/backing-dev.h>
10 #include <linux/hash.h>
11 #include <linux/swap.h>
12 #include <linux/security.h>
13 #include <linux/cdev.h>
14 #include <linux/memblock.h>
15 #include <linux/fscrypt.h>
16 #include <linux/fsnotify.h>
17 #include <linux/mount.h>
18 #include <linux/posix_acl.h>
19 #include <linux/prefetch.h>
20 #include <linux/buffer_head.h> /* for inode_has_buffers */
21 #include <linux/ratelimit.h>
22 #include <linux/list_lru.h>
23 #include <linux/iversion.h>
24 #include <linux/xpm.h>
25 #include <trace/events/writeback.h>
26 #include "internal.h"
27 
28 /*
29  * Inode locking rules:
30  *
31  * inode->i_lock protects:
32  *   inode->i_state, inode->i_hash, __iget()
33  * Inode LRU list locks protect:
34  *   inode->i_sb->s_inode_lru, inode->i_lru
35  * inode->i_sb->s_inode_list_lock protects:
36  *   inode->i_sb->s_inodes, inode->i_sb_list
37  * bdi->wb.list_lock protects:
38  *   bdi->wb.b_{dirty,io,more_io,dirty_time}, inode->i_io_list
39  * inode_hash_lock protects:
40  *   inode_hashtable, inode->i_hash
41  *
42  * Lock ordering:
43  *
44  * inode->i_sb->s_inode_list_lock
45  *   inode->i_lock
46  *     Inode LRU list locks
47  *
48  * bdi->wb.list_lock
49  *   inode->i_lock
50  *
51  * inode_hash_lock
52  *   inode->i_sb->s_inode_list_lock
53  *   inode->i_lock
54  *
55  * iunique_lock
56  *   inode_hash_lock
57  */
58 
59 static unsigned int i_hash_mask __read_mostly;
60 static unsigned int i_hash_shift __read_mostly;
61 static struct hlist_head *inode_hashtable __read_mostly;
62 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(inode_hash_lock);
63 
64 /*
65  * Empty aops. Can be used for the cases where the user does not
66  * define any of the address_space operations.
67  */
68 const struct address_space_operations empty_aops = {
69 };
70 EXPORT_SYMBOL(empty_aops);
71 
72 /*
73  * Statistics gathering..
74  */
75 struct inodes_stat_t inodes_stat;
76 
77 static DEFINE_PER_CPU(unsigned long, nr_inodes);
78 static DEFINE_PER_CPU(unsigned long, nr_unused);
79 
80 static struct kmem_cache *inode_cachep __read_mostly;
81 
get_nr_inodes(void)82 static long get_nr_inodes(void)
83 {
84 	int i;
85 	long sum = 0;
86 	for_each_possible_cpu(i)
87 		sum += per_cpu(nr_inodes, i);
88 	return sum < 0 ? 0 : sum;
89 }
90 
get_nr_inodes_unused(void)91 static inline long get_nr_inodes_unused(void)
92 {
93 	int i;
94 	long sum = 0;
95 	for_each_possible_cpu(i)
96 		sum += per_cpu(nr_unused, i);
97 	return sum < 0 ? 0 : sum;
98 }
99 
get_nr_dirty_inodes(void)100 long get_nr_dirty_inodes(void)
101 {
102 	/* not actually dirty inodes, but a wild approximation */
103 	long nr_dirty = get_nr_inodes() - get_nr_inodes_unused();
104 	return nr_dirty > 0 ? nr_dirty : 0;
105 }
106 
107 /*
108  * Handle nr_inode sysctl
109  */
110 #ifdef CONFIG_SYSCTL
proc_nr_inodes(struct ctl_table *table, int write, void *buffer, size_t *lenp, loff_t *ppos)111 int proc_nr_inodes(struct ctl_table *table, int write,
112 		   void *buffer, size_t *lenp, loff_t *ppos)
113 {
114 	inodes_stat.nr_inodes = get_nr_inodes();
115 	inodes_stat.nr_unused = get_nr_inodes_unused();
116 	return proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
117 }
118 #endif
119 
no_open(struct inode *inode, struct file *file)120 static int no_open(struct inode *inode, struct file *file)
121 {
122 	return -ENXIO;
123 }
124 
125 /**
126  * inode_init_always - perform inode structure initialisation
127  * @sb: superblock inode belongs to
128  * @inode: inode to initialise
129  *
130  * These are initializations that need to be done on every inode
131  * allocation as the fields are not initialised by slab allocation.
132  */
inode_init_always(struct super_block *sb, struct inode *inode)133 int inode_init_always(struct super_block *sb, struct inode *inode)
134 {
135 	static const struct inode_operations empty_iops;
136 	static const struct file_operations no_open_fops = {.open = no_open};
137 	struct address_space *const mapping = &inode->i_data;
138 
139 	inode->i_sb = sb;
140 	inode->i_blkbits = sb->s_blocksize_bits;
141 	inode->i_flags = 0;
142 	atomic64_set(&inode->i_sequence, 0);
143 	atomic_set(&inode->i_count, 1);
144 	inode->i_op = &empty_iops;
145 	inode->i_fop = &no_open_fops;
146 	inode->__i_nlink = 1;
147 	inode->i_opflags = 0;
148 	if (sb->s_xattr)
149 		inode->i_opflags |= IOP_XATTR;
150 	i_uid_write(inode, 0);
151 	i_gid_write(inode, 0);
152 	atomic_set(&inode->i_writecount, 0);
153 	inode->i_size = 0;
154 	inode->i_write_hint = WRITE_LIFE_NOT_SET;
155 	inode->i_blocks = 0;
156 	inode->i_bytes = 0;
157 	inode->i_generation = 0;
158 	inode->i_pipe = NULL;
159 	inode->i_bdev = NULL;
160 	inode->i_cdev = NULL;
161 	inode->i_link = NULL;
162 	inode->i_dir_seq = 0;
163 	inode->i_rdev = 0;
164 	inode->dirtied_when = 0;
165 
166 #ifdef CONFIG_CGROUP_WRITEBACK
167 	inode->i_wb_frn_winner = 0;
168 	inode->i_wb_frn_avg_time = 0;
169 	inode->i_wb_frn_history = 0;
170 #endif
171 
172 	spin_lock_init(&inode->i_lock);
173 	lockdep_set_class(&inode->i_lock, &sb->s_type->i_lock_key);
174 
175 	init_rwsem(&inode->i_rwsem);
176 	lockdep_set_class(&inode->i_rwsem, &sb->s_type->i_mutex_key);
177 
178 	atomic_set(&inode->i_dio_count, 0);
179 
180 	mapping->a_ops = &empty_aops;
181 	mapping->host = inode;
182 	mapping->flags = 0;
183 	if (sb->s_type->fs_flags & FS_THP_SUPPORT)
184 		__set_bit(AS_THP_SUPPORT, &mapping->flags);
185 	mapping->wb_err = 0;
186 	atomic_set(&mapping->i_mmap_writable, 0);
187 #ifdef CONFIG_READ_ONLY_THP_FOR_FS
188 	atomic_set(&mapping->nr_thps, 0);
189 #endif
190 	mapping_set_gfp_mask(mapping, GFP_HIGHUSER_MOVABLE);
191 	mapping->private_data = NULL;
192 	mapping->writeback_index = 0;
193 	inode->i_private = NULL;
194 	inode->i_mapping = mapping;
195 	INIT_HLIST_HEAD(&inode->i_dentry);	/* buggered by rcu freeing */
196 #ifdef CONFIG_FS_POSIX_ACL
197 	inode->i_acl = inode->i_default_acl = ACL_NOT_CACHED;
198 #endif
199 
200 #ifdef CONFIG_FSNOTIFY
201 	inode->i_fsnotify_mask = 0;
202 #endif
203 	inode->i_flctx = NULL;
204 
205 	if (unlikely(security_inode_alloc(inode)))
206 		return -ENOMEM;
207 	this_cpu_inc(nr_inodes);
208 
209 	return 0;
210 }
211 EXPORT_SYMBOL(inode_init_always);
212 
free_inode_nonrcu(struct inode *inode)213 void free_inode_nonrcu(struct inode *inode)
214 {
215 	kmem_cache_free(inode_cachep, inode);
216 }
217 EXPORT_SYMBOL(free_inode_nonrcu);
218 
i_callback(struct rcu_head *head)219 static void i_callback(struct rcu_head *head)
220 {
221 	struct inode *inode = container_of(head, struct inode, i_rcu);
222 	if (inode->free_inode)
223 		inode->free_inode(inode);
224 	else
225 		free_inode_nonrcu(inode);
226 }
227 
alloc_inode(struct super_block *sb)228 static struct inode *alloc_inode(struct super_block *sb)
229 {
230 	const struct super_operations *ops = sb->s_op;
231 	struct inode *inode;
232 
233 	if (ops->alloc_inode)
234 		inode = ops->alloc_inode(sb);
235 	else
236 		inode = kmem_cache_alloc(inode_cachep, GFP_KERNEL);
237 
238 	if (!inode)
239 		return NULL;
240 
241 	if (unlikely(inode_init_always(sb, inode))) {
242 		if (ops->destroy_inode) {
243 			ops->destroy_inode(inode);
244 			if (!ops->free_inode)
245 				return NULL;
246 		}
247 		inode->free_inode = ops->free_inode;
248 		i_callback(&inode->i_rcu);
249 		return NULL;
250 	}
251 
252 	return inode;
253 }
254 
__destroy_inode(struct inode *inode)255 void __destroy_inode(struct inode *inode)
256 {
257 	BUG_ON(inode_has_buffers(inode));
258 	inode_detach_wb(inode);
259 	security_inode_free(inode);
260 	fsnotify_inode_delete(inode);
261 	locks_free_lock_context(inode);
262 	xpm_delete_cache_node_hook(inode);
263 	if (!inode->i_nlink) {
264 		WARN_ON(atomic_long_read(&inode->i_sb->s_remove_count) == 0);
265 		atomic_long_dec(&inode->i_sb->s_remove_count);
266 	}
267 
268 #ifdef CONFIG_FS_POSIX_ACL
269 	if (inode->i_acl && !is_uncached_acl(inode->i_acl))
270 		posix_acl_release(inode->i_acl);
271 	if (inode->i_default_acl && !is_uncached_acl(inode->i_default_acl))
272 		posix_acl_release(inode->i_default_acl);
273 #endif
274 	this_cpu_dec(nr_inodes);
275 }
276 EXPORT_SYMBOL(__destroy_inode);
277 
destroy_inode(struct inode *inode)278 static void destroy_inode(struct inode *inode)
279 {
280 	const struct super_operations *ops = inode->i_sb->s_op;
281 
282 	BUG_ON(!list_empty(&inode->i_lru));
283 	__destroy_inode(inode);
284 	if (ops->destroy_inode) {
285 		ops->destroy_inode(inode);
286 		if (!ops->free_inode)
287 			return;
288 	}
289 	inode->free_inode = ops->free_inode;
290 	call_rcu(&inode->i_rcu, i_callback);
291 }
292 
293 /**
294  * drop_nlink - directly drop an inode's link count
295  * @inode: inode
296  *
297  * This is a low-level filesystem helper to replace any
298  * direct filesystem manipulation of i_nlink.  In cases
299  * where we are attempting to track writes to the
300  * filesystem, a decrement to zero means an imminent
301  * write when the file is truncated and actually unlinked
302  * on the filesystem.
303  */
drop_nlink(struct inode *inode)304 void drop_nlink(struct inode *inode)
305 {
306 	WARN_ON(inode->i_nlink == 0);
307 	inode->__i_nlink--;
308 	if (!inode->i_nlink)
309 		atomic_long_inc(&inode->i_sb->s_remove_count);
310 }
311 EXPORT_SYMBOL(drop_nlink);
312 
313 /**
314  * clear_nlink - directly zero an inode's link count
315  * @inode: inode
316  *
317  * This is a low-level filesystem helper to replace any
318  * direct filesystem manipulation of i_nlink.  See
319  * drop_nlink() for why we care about i_nlink hitting zero.
320  */
clear_nlink(struct inode *inode)321 void clear_nlink(struct inode *inode)
322 {
323 	if (inode->i_nlink) {
324 		inode->__i_nlink = 0;
325 		atomic_long_inc(&inode->i_sb->s_remove_count);
326 	}
327 }
328 EXPORT_SYMBOL(clear_nlink);
329 
330 /**
331  * set_nlink - directly set an inode's link count
332  * @inode: inode
333  * @nlink: new nlink (should be non-zero)
334  *
335  * This is a low-level filesystem helper to replace any
336  * direct filesystem manipulation of i_nlink.
337  */
set_nlink(struct inode *inode, unsigned int nlink)338 void set_nlink(struct inode *inode, unsigned int nlink)
339 {
340 	if (!nlink) {
341 		clear_nlink(inode);
342 	} else {
343 		/* Yes, some filesystems do change nlink from zero to one */
344 		if (inode->i_nlink == 0)
345 			atomic_long_dec(&inode->i_sb->s_remove_count);
346 
347 		inode->__i_nlink = nlink;
348 	}
349 }
350 EXPORT_SYMBOL(set_nlink);
351 
352 /**
353  * inc_nlink - directly increment an inode's link count
354  * @inode: inode
355  *
356  * This is a low-level filesystem helper to replace any
357  * direct filesystem manipulation of i_nlink.  Currently,
358  * it is only here for parity with dec_nlink().
359  */
inc_nlink(struct inode *inode)360 void inc_nlink(struct inode *inode)
361 {
362 	if (unlikely(inode->i_nlink == 0)) {
363 		WARN_ON(!(inode->i_state & I_LINKABLE));
364 		atomic_long_dec(&inode->i_sb->s_remove_count);
365 	}
366 
367 	inode->__i_nlink++;
368 }
369 EXPORT_SYMBOL(inc_nlink);
370 
__address_space_init_once(struct address_space *mapping)371 static void __address_space_init_once(struct address_space *mapping)
372 {
373 	xa_init_flags(&mapping->i_pages, XA_FLAGS_LOCK_IRQ | XA_FLAGS_ACCOUNT);
374 	init_rwsem(&mapping->i_mmap_rwsem);
375 	INIT_LIST_HEAD(&mapping->private_list);
376 	spin_lock_init(&mapping->private_lock);
377 	mapping->i_mmap = RB_ROOT_CACHED;
378 }
379 
address_space_init_once(struct address_space *mapping)380 void address_space_init_once(struct address_space *mapping)
381 {
382 	memset(mapping, 0, sizeof(*mapping));
383 	__address_space_init_once(mapping);
384 }
385 EXPORT_SYMBOL(address_space_init_once);
386 
387 /*
388  * These are initializations that only need to be done
389  * once, because the fields are idempotent across use
390  * of the inode, so let the slab aware of that.
391  */
inode_init_once(struct inode *inode)392 void inode_init_once(struct inode *inode)
393 {
394 	memset(inode, 0, sizeof(*inode));
395 	INIT_HLIST_NODE(&inode->i_hash);
396 	INIT_LIST_HEAD(&inode->i_devices);
397 	INIT_LIST_HEAD(&inode->i_io_list);
398 	INIT_LIST_HEAD(&inode->i_wb_list);
399 	INIT_LIST_HEAD(&inode->i_lru);
400 	__address_space_init_once(&inode->i_data);
401 	i_size_ordered_init(inode);
402 }
403 EXPORT_SYMBOL(inode_init_once);
404 
init_once(void *foo)405 static void init_once(void *foo)
406 {
407 	struct inode *inode = (struct inode *) foo;
408 
409 	inode_init_once(inode);
410 }
411 
412 /*
413  * inode->i_lock must be held
414  */
__iget(struct inode *inode)415 void __iget(struct inode *inode)
416 {
417 	atomic_inc(&inode->i_count);
418 }
419 
420 /*
421  * get additional reference to inode; caller must already hold one.
422  */
ihold(struct inode *inode)423 void ihold(struct inode *inode)
424 {
425 	WARN_ON(atomic_inc_return(&inode->i_count) < 2);
426 }
427 EXPORT_SYMBOL(ihold);
428 
inode_lru_list_add(struct inode *inode)429 static void inode_lru_list_add(struct inode *inode)
430 {
431 	if (list_lru_add(&inode->i_sb->s_inode_lru, &inode->i_lru))
432 		this_cpu_inc(nr_unused);
433 	else
434 		inode->i_state |= I_REFERENCED;
435 }
436 
437 /*
438  * Add inode to LRU if needed (inode is unused and clean).
439  *
440  * Needs inode->i_lock held.
441  */
inode_add_lru(struct inode *inode)442 void inode_add_lru(struct inode *inode)
443 {
444 	if (!(inode->i_state & (I_DIRTY_ALL | I_SYNC |
445 				I_FREEING | I_WILL_FREE)) &&
446 	    !atomic_read(&inode->i_count) && inode->i_sb->s_flags & SB_ACTIVE)
447 		inode_lru_list_add(inode);
448 }
449 
450 
inode_lru_list_del(struct inode *inode)451 static void inode_lru_list_del(struct inode *inode)
452 {
453 
454 	if (list_lru_del(&inode->i_sb->s_inode_lru, &inode->i_lru))
455 		this_cpu_dec(nr_unused);
456 }
457 
inode_pin_lru_isolating(struct inode *inode)458 static void inode_pin_lru_isolating(struct inode *inode)
459 {
460 	lockdep_assert_held(&inode->i_lock);
461 	WARN_ON(inode->i_state & (I_LRU_ISOLATING | I_FREEING | I_WILL_FREE));
462 	inode->i_state |= I_LRU_ISOLATING;
463 }
464 
inode_unpin_lru_isolating(struct inode *inode)465 static void inode_unpin_lru_isolating(struct inode *inode)
466 {
467 	spin_lock(&inode->i_lock);
468 	WARN_ON(!(inode->i_state & I_LRU_ISOLATING));
469 	inode->i_state &= ~I_LRU_ISOLATING;
470 	smp_mb();
471 	wake_up_bit(&inode->i_state, __I_LRU_ISOLATING);
472 	spin_unlock(&inode->i_lock);
473 }
474 
inode_wait_for_lru_isolating(struct inode *inode)475 static void inode_wait_for_lru_isolating(struct inode *inode)
476 {
477 	spin_lock(&inode->i_lock);
478 	if (inode->i_state & I_LRU_ISOLATING) {
479 		DEFINE_WAIT_BIT(wq, &inode->i_state, __I_LRU_ISOLATING);
480 		wait_queue_head_t *wqh;
481 
482 		wqh = bit_waitqueue(&inode->i_state, __I_LRU_ISOLATING);
483 		spin_unlock(&inode->i_lock);
484 		__wait_on_bit(wqh, &wq, bit_wait, TASK_UNINTERRUPTIBLE);
485 		spin_lock(&inode->i_lock);
486 		WARN_ON(inode->i_state & I_LRU_ISOLATING);
487 	}
488 	spin_unlock(&inode->i_lock);
489 }
490 
491 /**
492  * inode_sb_list_add - add inode to the superblock list of inodes
493  * @inode: inode to add
494  */
inode_sb_list_add(struct inode *inode)495 void inode_sb_list_add(struct inode *inode)
496 {
497 	spin_lock(&inode->i_sb->s_inode_list_lock);
498 	list_add(&inode->i_sb_list, &inode->i_sb->s_inodes);
499 	spin_unlock(&inode->i_sb->s_inode_list_lock);
500 }
501 EXPORT_SYMBOL_GPL(inode_sb_list_add);
502 
inode_sb_list_del(struct inode *inode)503 static inline void inode_sb_list_del(struct inode *inode)
504 {
505 	if (!list_empty(&inode->i_sb_list)) {
506 		spin_lock(&inode->i_sb->s_inode_list_lock);
507 		list_del_init(&inode->i_sb_list);
508 		spin_unlock(&inode->i_sb->s_inode_list_lock);
509 	}
510 }
511 
hash(struct super_block *sb, unsigned long hashval)512 static unsigned long hash(struct super_block *sb, unsigned long hashval)
513 {
514 	unsigned long tmp;
515 
516 	tmp = (hashval * (unsigned long)sb) ^ (GOLDEN_RATIO_PRIME + hashval) /
517 			L1_CACHE_BYTES;
518 	tmp = tmp ^ ((tmp ^ GOLDEN_RATIO_PRIME) >> i_hash_shift);
519 	return tmp & i_hash_mask;
520 }
521 
522 /**
523  *	__insert_inode_hash - hash an inode
524  *	@inode: unhashed inode
525  *	@hashval: unsigned long value used to locate this object in the
526  *		inode_hashtable.
527  *
528  *	Add an inode to the inode hash for this superblock.
529  */
__insert_inode_hash(struct inode *inode, unsigned long hashval)530 void __insert_inode_hash(struct inode *inode, unsigned long hashval)
531 {
532 	struct hlist_head *b = inode_hashtable + hash(inode->i_sb, hashval);
533 
534 	spin_lock(&inode_hash_lock);
535 	spin_lock(&inode->i_lock);
536 	hlist_add_head_rcu(&inode->i_hash, b);
537 	spin_unlock(&inode->i_lock);
538 	spin_unlock(&inode_hash_lock);
539 }
540 EXPORT_SYMBOL(__insert_inode_hash);
541 
542 /**
543  *	__remove_inode_hash - remove an inode from the hash
544  *	@inode: inode to unhash
545  *
546  *	Remove an inode from the superblock.
547  */
__remove_inode_hash(struct inode *inode)548 void __remove_inode_hash(struct inode *inode)
549 {
550 	spin_lock(&inode_hash_lock);
551 	spin_lock(&inode->i_lock);
552 	hlist_del_init_rcu(&inode->i_hash);
553 	spin_unlock(&inode->i_lock);
554 	spin_unlock(&inode_hash_lock);
555 }
556 EXPORT_SYMBOL(__remove_inode_hash);
557 
clear_inode(struct inode *inode)558 void clear_inode(struct inode *inode)
559 {
560 	/*
561 	 * We have to cycle the i_pages lock here because reclaim can be in the
562 	 * process of removing the last page (in __delete_from_page_cache())
563 	 * and we must not free the mapping under it.
564 	 */
565 	xa_lock_irq(&inode->i_data.i_pages);
566 	BUG_ON(inode->i_data.nrpages);
567 	BUG_ON(inode->i_data.nrexceptional);
568 	xa_unlock_irq(&inode->i_data.i_pages);
569 	BUG_ON(!list_empty(&inode->i_data.private_list));
570 	BUG_ON(!(inode->i_state & I_FREEING));
571 	BUG_ON(inode->i_state & I_CLEAR);
572 	BUG_ON(!list_empty(&inode->i_wb_list));
573 	/* don't need i_lock here, no concurrent mods to i_state */
574 	inode->i_state = I_FREEING | I_CLEAR;
575 }
576 EXPORT_SYMBOL(clear_inode);
577 
578 /*
579  * Free the inode passed in, removing it from the lists it is still connected
580  * to. We remove any pages still attached to the inode and wait for any IO that
581  * is still in progress before finally destroying the inode.
582  *
583  * An inode must already be marked I_FREEING so that we avoid the inode being
584  * moved back onto lists if we race with other code that manipulates the lists
585  * (e.g. writeback_single_inode). The caller is responsible for setting this.
586  *
587  * An inode must already be removed from the LRU list before being evicted from
588  * the cache. This should occur atomically with setting the I_FREEING state
589  * flag, so no inodes here should ever be on the LRU when being evicted.
590  */
evict(struct inode *inode)591 static void evict(struct inode *inode)
592 {
593 	const struct super_operations *op = inode->i_sb->s_op;
594 
595 	BUG_ON(!(inode->i_state & I_FREEING));
596 	BUG_ON(!list_empty(&inode->i_lru));
597 
598 	if (!list_empty(&inode->i_io_list))
599 		inode_io_list_del(inode);
600 
601 	inode_sb_list_del(inode);
602 
603 	inode_wait_for_lru_isolating(inode);
604 
605 	/*
606 	 * Wait for flusher thread to be done with the inode so that filesystem
607 	 * does not start destroying it while writeback is still running. Since
608 	 * the inode has I_FREEING set, flusher thread won't start new work on
609 	 * the inode.  We just have to wait for running writeback to finish.
610 	 */
611 	inode_wait_for_writeback(inode);
612 
613 	if (op->evict_inode) {
614 		op->evict_inode(inode);
615 	} else {
616 		truncate_inode_pages_final(&inode->i_data);
617 		clear_inode(inode);
618 	}
619 	if (S_ISBLK(inode->i_mode) && inode->i_bdev)
620 		bd_forget(inode);
621 	if (S_ISCHR(inode->i_mode) && inode->i_cdev)
622 		cd_forget(inode);
623 
624 	remove_inode_hash(inode);
625 
626 	spin_lock(&inode->i_lock);
627 	wake_up_bit(&inode->i_state, __I_NEW);
628 	BUG_ON(inode->i_state != (I_FREEING | I_CLEAR));
629 	spin_unlock(&inode->i_lock);
630 
631 	destroy_inode(inode);
632 }
633 
634 /*
635  * dispose_list - dispose of the contents of a local list
636  * @head: the head of the list to free
637  *
638  * Dispose-list gets a local list with local inodes in it, so it doesn't
639  * need to worry about list corruption and SMP locks.
640  */
dispose_list(struct list_head *head)641 static void dispose_list(struct list_head *head)
642 {
643 	while (!list_empty(head)) {
644 		struct inode *inode;
645 
646 		inode = list_first_entry(head, struct inode, i_lru);
647 		list_del_init(&inode->i_lru);
648 
649 		evict(inode);
650 		cond_resched();
651 	}
652 }
653 
654 /**
655  * evict_inodes	- evict all evictable inodes for a superblock
656  * @sb:		superblock to operate on
657  *
658  * Make sure that no inodes with zero refcount are retained.  This is
659  * called by superblock shutdown after having SB_ACTIVE flag removed,
660  * so any inode reaching zero refcount during or after that call will
661  * be immediately evicted.
662  */
evict_inodes(struct super_block *sb)663 void evict_inodes(struct super_block *sb)
664 {
665 	struct inode *inode, *next;
666 	LIST_HEAD(dispose);
667 
668 again:
669 	spin_lock(&sb->s_inode_list_lock);
670 	list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) {
671 		if (atomic_read(&inode->i_count))
672 			continue;
673 
674 		spin_lock(&inode->i_lock);
675 		if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
676 			spin_unlock(&inode->i_lock);
677 			continue;
678 		}
679 
680 		inode->i_state |= I_FREEING;
681 		inode_lru_list_del(inode);
682 		spin_unlock(&inode->i_lock);
683 		list_add(&inode->i_lru, &dispose);
684 
685 		/*
686 		 * We can have a ton of inodes to evict at unmount time given
687 		 * enough memory, check to see if we need to go to sleep for a
688 		 * bit so we don't livelock.
689 		 */
690 		if (need_resched()) {
691 			spin_unlock(&sb->s_inode_list_lock);
692 			cond_resched();
693 			dispose_list(&dispose);
694 			goto again;
695 		}
696 	}
697 	spin_unlock(&sb->s_inode_list_lock);
698 
699 	dispose_list(&dispose);
700 }
701 EXPORT_SYMBOL_GPL(evict_inodes);
702 
703 /**
704  * invalidate_inodes	- attempt to free all inodes on a superblock
705  * @sb:		superblock to operate on
706  * @kill_dirty: flag to guide handling of dirty inodes
707  *
708  * Attempts to free all inodes for a given superblock.  If there were any
709  * busy inodes return a non-zero value, else zero.
710  * If @kill_dirty is set, discard dirty inodes too, otherwise treat
711  * them as busy.
712  */
invalidate_inodes(struct super_block *sb, bool kill_dirty)713 int invalidate_inodes(struct super_block *sb, bool kill_dirty)
714 {
715 	int busy = 0;
716 	struct inode *inode, *next;
717 	LIST_HEAD(dispose);
718 
719 again:
720 	spin_lock(&sb->s_inode_list_lock);
721 	list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) {
722 		spin_lock(&inode->i_lock);
723 		if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
724 			spin_unlock(&inode->i_lock);
725 			continue;
726 		}
727 		if (inode->i_state & I_DIRTY_ALL && !kill_dirty) {
728 			spin_unlock(&inode->i_lock);
729 			busy = 1;
730 			continue;
731 		}
732 		if (atomic_read(&inode->i_count)) {
733 			spin_unlock(&inode->i_lock);
734 			busy = 1;
735 			continue;
736 		}
737 
738 		inode->i_state |= I_FREEING;
739 		inode_lru_list_del(inode);
740 		spin_unlock(&inode->i_lock);
741 		list_add(&inode->i_lru, &dispose);
742 		if (need_resched()) {
743 			spin_unlock(&sb->s_inode_list_lock);
744 			cond_resched();
745 			dispose_list(&dispose);
746 			goto again;
747 		}
748 	}
749 	spin_unlock(&sb->s_inode_list_lock);
750 
751 	dispose_list(&dispose);
752 
753 	return busy;
754 }
755 
756 /*
757  * Isolate the inode from the LRU in preparation for freeing it.
758  *
759  * Any inodes which are pinned purely because of attached pagecache have their
760  * pagecache removed.  If the inode has metadata buffers attached to
761  * mapping->private_list then try to remove them.
762  *
763  * If the inode has the I_REFERENCED flag set, then it means that it has been
764  * used recently - the flag is set in iput_final(). When we encounter such an
765  * inode, clear the flag and move it to the back of the LRU so it gets another
766  * pass through the LRU before it gets reclaimed. This is necessary because of
767  * the fact we are doing lazy LRU updates to minimise lock contention so the
768  * LRU does not have strict ordering. Hence we don't want to reclaim inodes
769  * with this flag set because they are the inodes that are out of order.
770  */
inode_lru_isolate(struct list_head *item, struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)771 static enum lru_status inode_lru_isolate(struct list_head *item,
772 		struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
773 {
774 	struct list_head *freeable = arg;
775 	struct inode	*inode = container_of(item, struct inode, i_lru);
776 
777 	/*
778 	 * we are inverting the lru lock/inode->i_lock here, so use a trylock.
779 	 * If we fail to get the lock, just skip it.
780 	 */
781 	if (!spin_trylock(&inode->i_lock))
782 		return LRU_SKIP;
783 
784 	/*
785 	 * Referenced or dirty inodes are still in use. Give them another pass
786 	 * through the LRU as we canot reclaim them now.
787 	 */
788 	if (atomic_read(&inode->i_count) ||
789 	    (inode->i_state & ~I_REFERENCED)) {
790 		list_lru_isolate(lru, &inode->i_lru);
791 		spin_unlock(&inode->i_lock);
792 		this_cpu_dec(nr_unused);
793 		return LRU_REMOVED;
794 	}
795 
796 	/* recently referenced inodes get one more pass */
797 	if (inode->i_state & I_REFERENCED) {
798 		inode->i_state &= ~I_REFERENCED;
799 		spin_unlock(&inode->i_lock);
800 		return LRU_ROTATE;
801 	}
802 
803 	if (inode_has_buffers(inode) || inode->i_data.nrpages) {
804 		inode_pin_lru_isolating(inode);
805 		spin_unlock(&inode->i_lock);
806 		spin_unlock(lru_lock);
807 		if (remove_inode_buffers(inode)) {
808 			unsigned long reap;
809 			reap = invalidate_mapping_pages(&inode->i_data, 0, -1);
810 			if (current_is_kswapd())
811 				__count_vm_events(KSWAPD_INODESTEAL, reap);
812 			else
813 				__count_vm_events(PGINODESTEAL, reap);
814 			if (current->reclaim_state)
815 				current->reclaim_state->reclaimed_slab += reap;
816 		}
817 		inode_unpin_lru_isolating(inode);
818 		spin_lock(lru_lock);
819 		return LRU_RETRY;
820 	}
821 
822 	WARN_ON(inode->i_state & I_NEW);
823 	inode->i_state |= I_FREEING;
824 	list_lru_isolate_move(lru, &inode->i_lru, freeable);
825 	spin_unlock(&inode->i_lock);
826 
827 	this_cpu_dec(nr_unused);
828 	return LRU_REMOVED;
829 }
830 
831 /*
832  * Walk the superblock inode LRU for freeable inodes and attempt to free them.
833  * This is called from the superblock shrinker function with a number of inodes
834  * to trim from the LRU. Inodes to be freed are moved to a temporary list and
835  * then are freed outside inode_lock by dispose_list().
836  */
prune_icache_sb(struct super_block *sb, struct shrink_control *sc)837 long prune_icache_sb(struct super_block *sb, struct shrink_control *sc)
838 {
839 	LIST_HEAD(freeable);
840 	long freed;
841 
842 	freed = list_lru_shrink_walk(&sb->s_inode_lru, sc,
843 				     inode_lru_isolate, &freeable);
844 	dispose_list(&freeable);
845 	return freed;
846 }
847 
848 static void __wait_on_freeing_inode(struct inode *inode);
849 /*
850  * Called with the inode lock held.
851  */
find_inode(struct super_block *sb, struct hlist_head *head, int (*test)(struct inode *, void *), void *data)852 static struct inode *find_inode(struct super_block *sb,
853 				struct hlist_head *head,
854 				int (*test)(struct inode *, void *),
855 				void *data)
856 {
857 	struct inode *inode = NULL;
858 
859 repeat:
860 	hlist_for_each_entry(inode, head, i_hash) {
861 		if (inode->i_sb != sb)
862 			continue;
863 		if (!test(inode, data))
864 			continue;
865 		spin_lock(&inode->i_lock);
866 		if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
867 			__wait_on_freeing_inode(inode);
868 			goto repeat;
869 		}
870 		if (unlikely(inode->i_state & I_CREATING)) {
871 			spin_unlock(&inode->i_lock);
872 			return ERR_PTR(-ESTALE);
873 		}
874 		__iget(inode);
875 		spin_unlock(&inode->i_lock);
876 		return inode;
877 	}
878 	return NULL;
879 }
880 
881 /*
882  * find_inode_fast is the fast path version of find_inode, see the comment at
883  * iget_locked for details.
884  */
find_inode_fast(struct super_block *sb, struct hlist_head *head, unsigned long ino)885 static struct inode *find_inode_fast(struct super_block *sb,
886 				struct hlist_head *head, unsigned long ino)
887 {
888 	struct inode *inode = NULL;
889 
890 repeat:
891 	hlist_for_each_entry(inode, head, i_hash) {
892 		if (inode->i_ino != ino)
893 			continue;
894 		if (inode->i_sb != sb)
895 			continue;
896 		spin_lock(&inode->i_lock);
897 		if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
898 			__wait_on_freeing_inode(inode);
899 			goto repeat;
900 		}
901 		if (unlikely(inode->i_state & I_CREATING)) {
902 			spin_unlock(&inode->i_lock);
903 			return ERR_PTR(-ESTALE);
904 		}
905 		__iget(inode);
906 		spin_unlock(&inode->i_lock);
907 		return inode;
908 	}
909 	return NULL;
910 }
911 
912 /*
913  * Each cpu owns a range of LAST_INO_BATCH numbers.
914  * 'shared_last_ino' is dirtied only once out of LAST_INO_BATCH allocations,
915  * to renew the exhausted range.
916  *
917  * This does not significantly increase overflow rate because every CPU can
918  * consume at most LAST_INO_BATCH-1 unused inode numbers. So there is
919  * NR_CPUS*(LAST_INO_BATCH-1) wastage. At 4096 and 1024, this is ~0.1% of the
920  * 2^32 range, and is a worst-case. Even a 50% wastage would only increase
921  * overflow rate by 2x, which does not seem too significant.
922  *
923  * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
924  * error if st_ino won't fit in target struct field. Use 32bit counter
925  * here to attempt to avoid that.
926  */
927 #define LAST_INO_BATCH 1024
928 static DEFINE_PER_CPU(unsigned int, last_ino);
929 
get_next_ino(void)930 unsigned int get_next_ino(void)
931 {
932 	unsigned int *p = &get_cpu_var(last_ino);
933 	unsigned int res = *p;
934 
935 #ifdef CONFIG_SMP
936 	if (unlikely((res & (LAST_INO_BATCH-1)) == 0)) {
937 		static atomic_t shared_last_ino;
938 		int next = atomic_add_return(LAST_INO_BATCH, &shared_last_ino);
939 
940 		res = next - LAST_INO_BATCH;
941 	}
942 #endif
943 
944 	res++;
945 	/* get_next_ino should not provide a 0 inode number */
946 	if (unlikely(!res))
947 		res++;
948 	*p = res;
949 	put_cpu_var(last_ino);
950 	return res;
951 }
952 EXPORT_SYMBOL(get_next_ino);
953 
954 /**
955  *	new_inode_pseudo 	- obtain an inode
956  *	@sb: superblock
957  *
958  *	Allocates a new inode for given superblock.
959  *	Inode wont be chained in superblock s_inodes list
960  *	This means :
961  *	- fs can't be unmount
962  *	- quotas, fsnotify, writeback can't work
963  */
new_inode_pseudo(struct super_block *sb)964 struct inode *new_inode_pseudo(struct super_block *sb)
965 {
966 	struct inode *inode = alloc_inode(sb);
967 
968 	if (inode) {
969 		spin_lock(&inode->i_lock);
970 		inode->i_state = 0;
971 		spin_unlock(&inode->i_lock);
972 		INIT_LIST_HEAD(&inode->i_sb_list);
973 	}
974 	return inode;
975 }
976 
977 /**
978  *	new_inode 	- obtain an inode
979  *	@sb: superblock
980  *
981  *	Allocates a new inode for given superblock. The default gfp_mask
982  *	for allocations related to inode->i_mapping is GFP_HIGHUSER_MOVABLE.
983  *	If HIGHMEM pages are unsuitable or it is known that pages allocated
984  *	for the page cache are not reclaimable or migratable,
985  *	mapping_set_gfp_mask() must be called with suitable flags on the
986  *	newly created inode's mapping
987  *
988  */
new_inode(struct super_block *sb)989 struct inode *new_inode(struct super_block *sb)
990 {
991 	struct inode *inode;
992 
993 	spin_lock_prefetch(&sb->s_inode_list_lock);
994 
995 	inode = new_inode_pseudo(sb);
996 	if (inode)
997 		inode_sb_list_add(inode);
998 	return inode;
999 }
1000 EXPORT_SYMBOL(new_inode);
1001 
1002 #ifdef CONFIG_DEBUG_LOCK_ALLOC
lockdep_annotate_inode_mutex_key(struct inode *inode)1003 void lockdep_annotate_inode_mutex_key(struct inode *inode)
1004 {
1005 	if (S_ISDIR(inode->i_mode)) {
1006 		struct file_system_type *type = inode->i_sb->s_type;
1007 
1008 		/* Set new key only if filesystem hasn't already changed it */
1009 		if (lockdep_match_class(&inode->i_rwsem, &type->i_mutex_key)) {
1010 			/*
1011 			 * ensure nobody is actually holding i_mutex
1012 			 */
1013 			// mutex_destroy(&inode->i_mutex);
1014 			init_rwsem(&inode->i_rwsem);
1015 			lockdep_set_class(&inode->i_rwsem,
1016 					  &type->i_mutex_dir_key);
1017 		}
1018 	}
1019 }
1020 EXPORT_SYMBOL(lockdep_annotate_inode_mutex_key);
1021 #endif
1022 
1023 /**
1024  * unlock_new_inode - clear the I_NEW state and wake up any waiters
1025  * @inode:	new inode to unlock
1026  *
1027  * Called when the inode is fully initialised to clear the new state of the
1028  * inode and wake up anyone waiting for the inode to finish initialisation.
1029  */
unlock_new_inode(struct inode *inode)1030 void unlock_new_inode(struct inode *inode)
1031 {
1032 	lockdep_annotate_inode_mutex_key(inode);
1033 	spin_lock(&inode->i_lock);
1034 	WARN_ON(!(inode->i_state & I_NEW));
1035 	inode->i_state &= ~I_NEW & ~I_CREATING;
1036 	smp_mb();
1037 	wake_up_bit(&inode->i_state, __I_NEW);
1038 	spin_unlock(&inode->i_lock);
1039 }
1040 EXPORT_SYMBOL(unlock_new_inode);
1041 
discard_new_inode(struct inode *inode)1042 void discard_new_inode(struct inode *inode)
1043 {
1044 	lockdep_annotate_inode_mutex_key(inode);
1045 	spin_lock(&inode->i_lock);
1046 	WARN_ON(!(inode->i_state & I_NEW));
1047 	inode->i_state &= ~I_NEW;
1048 	smp_mb();
1049 	wake_up_bit(&inode->i_state, __I_NEW);
1050 	spin_unlock(&inode->i_lock);
1051 	iput(inode);
1052 }
1053 EXPORT_SYMBOL(discard_new_inode);
1054 
1055 /**
1056  * lock_two_inodes - lock two inodes (may be regular files but also dirs)
1057  *
1058  * Lock any non-NULL argument. The caller must make sure that if he is passing
1059  * in two directories, one is not ancestor of the other.  Zero, one or two
1060  * objects may be locked by this function.
1061  *
1062  * @inode1: first inode to lock
1063  * @inode2: second inode to lock
1064  * @subclass1: inode lock subclass for the first lock obtained
1065  * @subclass2: inode lock subclass for the second lock obtained
1066  */
lock_two_inodes(struct inode *inode1, struct inode *inode2, unsigned subclass1, unsigned subclass2)1067 void lock_two_inodes(struct inode *inode1, struct inode *inode2,
1068 		     unsigned subclass1, unsigned subclass2)
1069 {
1070 	if (!inode1 || !inode2) {
1071 		/*
1072 		 * Make sure @subclass1 will be used for the acquired lock.
1073 		 * This is not strictly necessary (no current caller cares) but
1074 		 * let's keep things consistent.
1075 		 */
1076 		if (!inode1)
1077 			swap(inode1, inode2);
1078 		goto lock;
1079 	}
1080 
1081 	/*
1082 	 * If one object is directory and the other is not, we must make sure
1083 	 * to lock directory first as the other object may be its child.
1084 	 */
1085 	if (S_ISDIR(inode2->i_mode) == S_ISDIR(inode1->i_mode)) {
1086 		if (inode1 > inode2)
1087 			swap(inode1, inode2);
1088 	} else if (!S_ISDIR(inode1->i_mode))
1089 		swap(inode1, inode2);
1090 lock:
1091 	if (inode1)
1092 		inode_lock_nested(inode1, subclass1);
1093 	if (inode2 && inode2 != inode1)
1094 		inode_lock_nested(inode2, subclass2);
1095 }
1096 
1097 /**
1098  * lock_two_nondirectories - take two i_mutexes on non-directory objects
1099  *
1100  * Lock any non-NULL argument that is not a directory.
1101  * Zero, one or two objects may be locked by this function.
1102  *
1103  * @inode1: first inode to lock
1104  * @inode2: second inode to lock
1105  */
lock_two_nondirectories(struct inode *inode1, struct inode *inode2)1106 void lock_two_nondirectories(struct inode *inode1, struct inode *inode2)
1107 {
1108 	if (inode1 > inode2)
1109 		swap(inode1, inode2);
1110 
1111 	if (inode1 && !S_ISDIR(inode1->i_mode))
1112 		inode_lock(inode1);
1113 	if (inode2 && !S_ISDIR(inode2->i_mode) && inode2 != inode1)
1114 		inode_lock_nested(inode2, I_MUTEX_NONDIR2);
1115 }
1116 EXPORT_SYMBOL(lock_two_nondirectories);
1117 
1118 /**
1119  * unlock_two_nondirectories - release locks from lock_two_nondirectories()
1120  * @inode1: first inode to unlock
1121  * @inode2: second inode to unlock
1122  */
unlock_two_nondirectories(struct inode *inode1, struct inode *inode2)1123 void unlock_two_nondirectories(struct inode *inode1, struct inode *inode2)
1124 {
1125 	if (inode1 && !S_ISDIR(inode1->i_mode))
1126 		inode_unlock(inode1);
1127 	if (inode2 && !S_ISDIR(inode2->i_mode) && inode2 != inode1)
1128 		inode_unlock(inode2);
1129 }
1130 EXPORT_SYMBOL(unlock_two_nondirectories);
1131 
1132 /**
1133  * inode_insert5 - obtain an inode from a mounted file system
1134  * @inode:	pre-allocated inode to use for insert to cache
1135  * @hashval:	hash value (usually inode number) to get
1136  * @test:	callback used for comparisons between inodes
1137  * @set:	callback used to initialize a new struct inode
1138  * @data:	opaque data pointer to pass to @test and @set
1139  *
1140  * Search for the inode specified by @hashval and @data in the inode cache,
1141  * and if present it is return it with an increased reference count. This is
1142  * a variant of iget5_locked() for callers that don't want to fail on memory
1143  * allocation of inode.
1144  *
1145  * If the inode is not in cache, insert the pre-allocated inode to cache and
1146  * return it locked, hashed, and with the I_NEW flag set. The file system gets
1147  * to fill it in before unlocking it via unlock_new_inode().
1148  *
1149  * Note both @test and @set are called with the inode_hash_lock held, so can't
1150  * sleep.
1151  */
inode_insert5(struct inode *inode, unsigned long hashval, int (*test)(struct inode *, void *), int (*set)(struct inode *, void *), void *data)1152 struct inode *inode_insert5(struct inode *inode, unsigned long hashval,
1153 			    int (*test)(struct inode *, void *),
1154 			    int (*set)(struct inode *, void *), void *data)
1155 {
1156 	struct hlist_head *head = inode_hashtable + hash(inode->i_sb, hashval);
1157 	struct inode *old;
1158 	bool creating = inode->i_state & I_CREATING;
1159 
1160 again:
1161 	spin_lock(&inode_hash_lock);
1162 	old = find_inode(inode->i_sb, head, test, data);
1163 	if (unlikely(old)) {
1164 		/*
1165 		 * Uhhuh, somebody else created the same inode under us.
1166 		 * Use the old inode instead of the preallocated one.
1167 		 */
1168 		spin_unlock(&inode_hash_lock);
1169 		if (IS_ERR(old))
1170 			return NULL;
1171 		wait_on_inode(old);
1172 		if (unlikely(inode_unhashed(old))) {
1173 			iput(old);
1174 			goto again;
1175 		}
1176 		return old;
1177 	}
1178 
1179 	if (set && unlikely(set(inode, data))) {
1180 		inode = NULL;
1181 		goto unlock;
1182 	}
1183 
1184 	/*
1185 	 * Return the locked inode with I_NEW set, the
1186 	 * caller is responsible for filling in the contents
1187 	 */
1188 	spin_lock(&inode->i_lock);
1189 	inode->i_state |= I_NEW;
1190 	hlist_add_head_rcu(&inode->i_hash, head);
1191 	spin_unlock(&inode->i_lock);
1192 	if (!creating)
1193 		inode_sb_list_add(inode);
1194 unlock:
1195 	spin_unlock(&inode_hash_lock);
1196 
1197 	return inode;
1198 }
1199 EXPORT_SYMBOL(inode_insert5);
1200 
1201 /**
1202  * iget5_locked - obtain an inode from a mounted file system
1203  * @sb:		super block of file system
1204  * @hashval:	hash value (usually inode number) to get
1205  * @test:	callback used for comparisons between inodes
1206  * @set:	callback used to initialize a new struct inode
1207  * @data:	opaque data pointer to pass to @test and @set
1208  *
1209  * Search for the inode specified by @hashval and @data in the inode cache,
1210  * and if present it is return it with an increased reference count. This is
1211  * a generalized version of iget_locked() for file systems where the inode
1212  * number is not sufficient for unique identification of an inode.
1213  *
1214  * If the inode is not in cache, allocate a new inode and return it locked,
1215  * hashed, and with the I_NEW flag set. The file system gets to fill it in
1216  * before unlocking it via unlock_new_inode().
1217  *
1218  * Note both @test and @set are called with the inode_hash_lock held, so can't
1219  * sleep.
1220  */
iget5_locked(struct super_block *sb, unsigned long hashval, int (*test)(struct inode *, void *), int (*set)(struct inode *, void *), void *data)1221 struct inode *iget5_locked(struct super_block *sb, unsigned long hashval,
1222 		int (*test)(struct inode *, void *),
1223 		int (*set)(struct inode *, void *), void *data)
1224 {
1225 	struct inode *inode = ilookup5(sb, hashval, test, data);
1226 
1227 	if (!inode) {
1228 		struct inode *new = alloc_inode(sb);
1229 
1230 		if (new) {
1231 			new->i_state = 0;
1232 			inode = inode_insert5(new, hashval, test, set, data);
1233 			if (unlikely(inode != new))
1234 				destroy_inode(new);
1235 		}
1236 	}
1237 	return inode;
1238 }
1239 EXPORT_SYMBOL(iget5_locked);
1240 
1241 /**
1242  * iget_locked - obtain an inode from a mounted file system
1243  * @sb:		super block of file system
1244  * @ino:	inode number to get
1245  *
1246  * Search for the inode specified by @ino in the inode cache and if present
1247  * return it with an increased reference count. This is for file systems
1248  * where the inode number is sufficient for unique identification of an inode.
1249  *
1250  * If the inode is not in cache, allocate a new inode and return it locked,
1251  * hashed, and with the I_NEW flag set.  The file system gets to fill it in
1252  * before unlocking it via unlock_new_inode().
1253  */
iget_locked(struct super_block *sb, unsigned long ino)1254 struct inode *iget_locked(struct super_block *sb, unsigned long ino)
1255 {
1256 	struct hlist_head *head = inode_hashtable + hash(sb, ino);
1257 	struct inode *inode;
1258 again:
1259 	spin_lock(&inode_hash_lock);
1260 	inode = find_inode_fast(sb, head, ino);
1261 	spin_unlock(&inode_hash_lock);
1262 	if (inode) {
1263 		if (IS_ERR(inode))
1264 			return NULL;
1265 		wait_on_inode(inode);
1266 		if (unlikely(inode_unhashed(inode))) {
1267 			iput(inode);
1268 			goto again;
1269 		}
1270 		return inode;
1271 	}
1272 
1273 	inode = alloc_inode(sb);
1274 	if (inode) {
1275 		struct inode *old;
1276 
1277 		spin_lock(&inode_hash_lock);
1278 		/* We released the lock, so.. */
1279 		old = find_inode_fast(sb, head, ino);
1280 		if (!old) {
1281 			inode->i_ino = ino;
1282 			spin_lock(&inode->i_lock);
1283 			inode->i_state = I_NEW;
1284 			hlist_add_head_rcu(&inode->i_hash, head);
1285 			spin_unlock(&inode->i_lock);
1286 			inode_sb_list_add(inode);
1287 			spin_unlock(&inode_hash_lock);
1288 
1289 			/* Return the locked inode with I_NEW set, the
1290 			 * caller is responsible for filling in the contents
1291 			 */
1292 			return inode;
1293 		}
1294 
1295 		/*
1296 		 * Uhhuh, somebody else created the same inode under
1297 		 * us. Use the old inode instead of the one we just
1298 		 * allocated.
1299 		 */
1300 		spin_unlock(&inode_hash_lock);
1301 		destroy_inode(inode);
1302 		if (IS_ERR(old))
1303 			return NULL;
1304 		inode = old;
1305 		wait_on_inode(inode);
1306 		if (unlikely(inode_unhashed(inode))) {
1307 			iput(inode);
1308 			goto again;
1309 		}
1310 	}
1311 	return inode;
1312 }
1313 EXPORT_SYMBOL(iget_locked);
1314 
1315 /*
1316  * search the inode cache for a matching inode number.
1317  * If we find one, then the inode number we are trying to
1318  * allocate is not unique and so we should not use it.
1319  *
1320  * Returns 1 if the inode number is unique, 0 if it is not.
1321  */
test_inode_iunique(struct super_block *sb, unsigned long ino)1322 static int test_inode_iunique(struct super_block *sb, unsigned long ino)
1323 {
1324 	struct hlist_head *b = inode_hashtable + hash(sb, ino);
1325 	struct inode *inode;
1326 
1327 	hlist_for_each_entry_rcu(inode, b, i_hash) {
1328 		if (inode->i_ino == ino && inode->i_sb == sb)
1329 			return 0;
1330 	}
1331 	return 1;
1332 }
1333 
1334 /**
1335  *	iunique - get a unique inode number
1336  *	@sb: superblock
1337  *	@max_reserved: highest reserved inode number
1338  *
1339  *	Obtain an inode number that is unique on the system for a given
1340  *	superblock. This is used by file systems that have no natural
1341  *	permanent inode numbering system. An inode number is returned that
1342  *	is higher than the reserved limit but unique.
1343  *
1344  *	BUGS:
1345  *	With a large number of inodes live on the file system this function
1346  *	currently becomes quite slow.
1347  */
iunique(struct super_block *sb, ino_t max_reserved)1348 ino_t iunique(struct super_block *sb, ino_t max_reserved)
1349 {
1350 	/*
1351 	 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
1352 	 * error if st_ino won't fit in target struct field. Use 32bit counter
1353 	 * here to attempt to avoid that.
1354 	 */
1355 	static DEFINE_SPINLOCK(iunique_lock);
1356 	static unsigned int counter;
1357 	ino_t res;
1358 
1359 	rcu_read_lock();
1360 	spin_lock(&iunique_lock);
1361 	do {
1362 		if (counter <= max_reserved)
1363 			counter = max_reserved + 1;
1364 		res = counter++;
1365 	} while (!test_inode_iunique(sb, res));
1366 	spin_unlock(&iunique_lock);
1367 	rcu_read_unlock();
1368 
1369 	return res;
1370 }
1371 EXPORT_SYMBOL(iunique);
1372 
igrab(struct inode *inode)1373 struct inode *igrab(struct inode *inode)
1374 {
1375 	spin_lock(&inode->i_lock);
1376 	if (!(inode->i_state & (I_FREEING|I_WILL_FREE))) {
1377 		__iget(inode);
1378 		spin_unlock(&inode->i_lock);
1379 	} else {
1380 		spin_unlock(&inode->i_lock);
1381 		/*
1382 		 * Handle the case where s_op->clear_inode is not been
1383 		 * called yet, and somebody is calling igrab
1384 		 * while the inode is getting freed.
1385 		 */
1386 		inode = NULL;
1387 	}
1388 	return inode;
1389 }
1390 EXPORT_SYMBOL(igrab);
1391 
1392 /**
1393  * ilookup5_nowait - search for an inode in the inode cache
1394  * @sb:		super block of file system to search
1395  * @hashval:	hash value (usually inode number) to search for
1396  * @test:	callback used for comparisons between inodes
1397  * @data:	opaque data pointer to pass to @test
1398  *
1399  * Search for the inode specified by @hashval and @data in the inode cache.
1400  * If the inode is in the cache, the inode is returned with an incremented
1401  * reference count.
1402  *
1403  * Note: I_NEW is not waited upon so you have to be very careful what you do
1404  * with the returned inode.  You probably should be using ilookup5() instead.
1405  *
1406  * Note2: @test is called with the inode_hash_lock held, so can't sleep.
1407  */
ilookup5_nowait(struct super_block *sb, unsigned long hashval, int (*test)(struct inode *, void *), void *data)1408 struct inode *ilookup5_nowait(struct super_block *sb, unsigned long hashval,
1409 		int (*test)(struct inode *, void *), void *data)
1410 {
1411 	struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1412 	struct inode *inode;
1413 
1414 	spin_lock(&inode_hash_lock);
1415 	inode = find_inode(sb, head, test, data);
1416 	spin_unlock(&inode_hash_lock);
1417 
1418 	return IS_ERR(inode) ? NULL : inode;
1419 }
1420 EXPORT_SYMBOL(ilookup5_nowait);
1421 
1422 /**
1423  * ilookup5 - search for an inode in the inode cache
1424  * @sb:		super block of file system to search
1425  * @hashval:	hash value (usually inode number) to search for
1426  * @test:	callback used for comparisons between inodes
1427  * @data:	opaque data pointer to pass to @test
1428  *
1429  * Search for the inode specified by @hashval and @data in the inode cache,
1430  * and if the inode is in the cache, return the inode with an incremented
1431  * reference count.  Waits on I_NEW before returning the inode.
1432  * returned with an incremented reference count.
1433  *
1434  * This is a generalized version of ilookup() for file systems where the
1435  * inode number is not sufficient for unique identification of an inode.
1436  *
1437  * Note: @test is called with the inode_hash_lock held, so can't sleep.
1438  */
ilookup5(struct super_block *sb, unsigned long hashval, int (*test)(struct inode *, void *), void *data)1439 struct inode *ilookup5(struct super_block *sb, unsigned long hashval,
1440 		int (*test)(struct inode *, void *), void *data)
1441 {
1442 	struct inode *inode;
1443 again:
1444 	inode = ilookup5_nowait(sb, hashval, test, data);
1445 	if (inode) {
1446 		wait_on_inode(inode);
1447 		if (unlikely(inode_unhashed(inode))) {
1448 			iput(inode);
1449 			goto again;
1450 		}
1451 	}
1452 	return inode;
1453 }
1454 EXPORT_SYMBOL(ilookup5);
1455 
1456 /**
1457  * ilookup - search for an inode in the inode cache
1458  * @sb:		super block of file system to search
1459  * @ino:	inode number to search for
1460  *
1461  * Search for the inode @ino in the inode cache, and if the inode is in the
1462  * cache, the inode is returned with an incremented reference count.
1463  */
ilookup(struct super_block *sb, unsigned long ino)1464 struct inode *ilookup(struct super_block *sb, unsigned long ino)
1465 {
1466 	struct hlist_head *head = inode_hashtable + hash(sb, ino);
1467 	struct inode *inode;
1468 again:
1469 	spin_lock(&inode_hash_lock);
1470 	inode = find_inode_fast(sb, head, ino);
1471 	spin_unlock(&inode_hash_lock);
1472 
1473 	if (inode) {
1474 		if (IS_ERR(inode))
1475 			return NULL;
1476 		wait_on_inode(inode);
1477 		if (unlikely(inode_unhashed(inode))) {
1478 			iput(inode);
1479 			goto again;
1480 		}
1481 	}
1482 	return inode;
1483 }
1484 EXPORT_SYMBOL(ilookup);
1485 
1486 /**
1487  * find_inode_nowait - find an inode in the inode cache
1488  * @sb:		super block of file system to search
1489  * @hashval:	hash value (usually inode number) to search for
1490  * @match:	callback used for comparisons between inodes
1491  * @data:	opaque data pointer to pass to @match
1492  *
1493  * Search for the inode specified by @hashval and @data in the inode
1494  * cache, where the helper function @match will return 0 if the inode
1495  * does not match, 1 if the inode does match, and -1 if the search
1496  * should be stopped.  The @match function must be responsible for
1497  * taking the i_lock spin_lock and checking i_state for an inode being
1498  * freed or being initialized, and incrementing the reference count
1499  * before returning 1.  It also must not sleep, since it is called with
1500  * the inode_hash_lock spinlock held.
1501  *
1502  * This is a even more generalized version of ilookup5() when the
1503  * function must never block --- find_inode() can block in
1504  * __wait_on_freeing_inode() --- or when the caller can not increment
1505  * the reference count because the resulting iput() might cause an
1506  * inode eviction.  The tradeoff is that the @match funtion must be
1507  * very carefully implemented.
1508  */
find_inode_nowait(struct super_block *sb, unsigned long hashval, int (*match)(struct inode *, unsigned long, void *), void *data)1509 struct inode *find_inode_nowait(struct super_block *sb,
1510 				unsigned long hashval,
1511 				int (*match)(struct inode *, unsigned long,
1512 					     void *),
1513 				void *data)
1514 {
1515 	struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1516 	struct inode *inode, *ret_inode = NULL;
1517 	int mval;
1518 
1519 	spin_lock(&inode_hash_lock);
1520 	hlist_for_each_entry(inode, head, i_hash) {
1521 		if (inode->i_sb != sb)
1522 			continue;
1523 		mval = match(inode, hashval, data);
1524 		if (mval == 0)
1525 			continue;
1526 		if (mval == 1)
1527 			ret_inode = inode;
1528 		goto out;
1529 	}
1530 out:
1531 	spin_unlock(&inode_hash_lock);
1532 	return ret_inode;
1533 }
1534 EXPORT_SYMBOL(find_inode_nowait);
1535 
1536 /**
1537  * find_inode_rcu - find an inode in the inode cache
1538  * @sb:		Super block of file system to search
1539  * @hashval:	Key to hash
1540  * @test:	Function to test match on an inode
1541  * @data:	Data for test function
1542  *
1543  * Search for the inode specified by @hashval and @data in the inode cache,
1544  * where the helper function @test will return 0 if the inode does not match
1545  * and 1 if it does.  The @test function must be responsible for taking the
1546  * i_lock spin_lock and checking i_state for an inode being freed or being
1547  * initialized.
1548  *
1549  * If successful, this will return the inode for which the @test function
1550  * returned 1 and NULL otherwise.
1551  *
1552  * The @test function is not permitted to take a ref on any inode presented.
1553  * It is also not permitted to sleep.
1554  *
1555  * The caller must hold the RCU read lock.
1556  */
find_inode_rcu(struct super_block *sb, unsigned long hashval, int (*test)(struct inode *, void *), void *data)1557 struct inode *find_inode_rcu(struct super_block *sb, unsigned long hashval,
1558 			     int (*test)(struct inode *, void *), void *data)
1559 {
1560 	struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1561 	struct inode *inode;
1562 
1563 	RCU_LOCKDEP_WARN(!rcu_read_lock_held(),
1564 			 "suspicious find_inode_rcu() usage");
1565 
1566 	hlist_for_each_entry_rcu(inode, head, i_hash) {
1567 		if (inode->i_sb == sb &&
1568 		    !(READ_ONCE(inode->i_state) & (I_FREEING | I_WILL_FREE)) &&
1569 		    test(inode, data))
1570 			return inode;
1571 	}
1572 	return NULL;
1573 }
1574 EXPORT_SYMBOL(find_inode_rcu);
1575 
1576 /**
1577  * find_inode_by_rcu - Find an inode in the inode cache
1578  * @sb:		Super block of file system to search
1579  * @ino:	The inode number to match
1580  *
1581  * Search for the inode specified by @hashval and @data in the inode cache,
1582  * where the helper function @test will return 0 if the inode does not match
1583  * and 1 if it does.  The @test function must be responsible for taking the
1584  * i_lock spin_lock and checking i_state for an inode being freed or being
1585  * initialized.
1586  *
1587  * If successful, this will return the inode for which the @test function
1588  * returned 1 and NULL otherwise.
1589  *
1590  * The @test function is not permitted to take a ref on any inode presented.
1591  * It is also not permitted to sleep.
1592  *
1593  * The caller must hold the RCU read lock.
1594  */
find_inode_by_ino_rcu(struct super_block *sb, unsigned long ino)1595 struct inode *find_inode_by_ino_rcu(struct super_block *sb,
1596 				    unsigned long ino)
1597 {
1598 	struct hlist_head *head = inode_hashtable + hash(sb, ino);
1599 	struct inode *inode;
1600 
1601 	RCU_LOCKDEP_WARN(!rcu_read_lock_held(),
1602 			 "suspicious find_inode_by_ino_rcu() usage");
1603 
1604 	hlist_for_each_entry_rcu(inode, head, i_hash) {
1605 		if (inode->i_ino == ino &&
1606 		    inode->i_sb == sb &&
1607 		    !(READ_ONCE(inode->i_state) & (I_FREEING | I_WILL_FREE)))
1608 		    return inode;
1609 	}
1610 	return NULL;
1611 }
1612 EXPORT_SYMBOL(find_inode_by_ino_rcu);
1613 
insert_inode_locked(struct inode *inode)1614 int insert_inode_locked(struct inode *inode)
1615 {
1616 	struct super_block *sb = inode->i_sb;
1617 	ino_t ino = inode->i_ino;
1618 	struct hlist_head *head = inode_hashtable + hash(sb, ino);
1619 
1620 	while (1) {
1621 		struct inode *old = NULL;
1622 		spin_lock(&inode_hash_lock);
1623 		hlist_for_each_entry(old, head, i_hash) {
1624 			if (old->i_ino != ino)
1625 				continue;
1626 			if (old->i_sb != sb)
1627 				continue;
1628 			spin_lock(&old->i_lock);
1629 			if (old->i_state & (I_FREEING|I_WILL_FREE)) {
1630 				spin_unlock(&old->i_lock);
1631 				continue;
1632 			}
1633 			break;
1634 		}
1635 		if (likely(!old)) {
1636 			spin_lock(&inode->i_lock);
1637 			inode->i_state |= I_NEW | I_CREATING;
1638 			hlist_add_head_rcu(&inode->i_hash, head);
1639 			spin_unlock(&inode->i_lock);
1640 			spin_unlock(&inode_hash_lock);
1641 			return 0;
1642 		}
1643 		if (unlikely(old->i_state & I_CREATING)) {
1644 			spin_unlock(&old->i_lock);
1645 			spin_unlock(&inode_hash_lock);
1646 			return -EBUSY;
1647 		}
1648 		__iget(old);
1649 		spin_unlock(&old->i_lock);
1650 		spin_unlock(&inode_hash_lock);
1651 		wait_on_inode(old);
1652 		if (unlikely(!inode_unhashed(old))) {
1653 			iput(old);
1654 			return -EBUSY;
1655 		}
1656 		iput(old);
1657 	}
1658 }
1659 EXPORT_SYMBOL(insert_inode_locked);
1660 
insert_inode_locked4(struct inode *inode, unsigned long hashval, int (*test)(struct inode *, void *), void *data)1661 int insert_inode_locked4(struct inode *inode, unsigned long hashval,
1662 		int (*test)(struct inode *, void *), void *data)
1663 {
1664 	struct inode *old;
1665 
1666 	inode->i_state |= I_CREATING;
1667 	old = inode_insert5(inode, hashval, test, NULL, data);
1668 
1669 	if (old != inode) {
1670 		iput(old);
1671 		return -EBUSY;
1672 	}
1673 	return 0;
1674 }
1675 EXPORT_SYMBOL(insert_inode_locked4);
1676 
1677 
generic_delete_inode(struct inode *inode)1678 int generic_delete_inode(struct inode *inode)
1679 {
1680 	return 1;
1681 }
1682 EXPORT_SYMBOL(generic_delete_inode);
1683 
1684 /*
1685  * Called when we're dropping the last reference
1686  * to an inode.
1687  *
1688  * Call the FS "drop_inode()" function, defaulting to
1689  * the legacy UNIX filesystem behaviour.  If it tells
1690  * us to evict inode, do so.  Otherwise, retain inode
1691  * in cache if fs is alive, sync and evict if fs is
1692  * shutting down.
1693  */
iput_final(struct inode *inode)1694 static void iput_final(struct inode *inode)
1695 {
1696 	struct super_block *sb = inode->i_sb;
1697 	const struct super_operations *op = inode->i_sb->s_op;
1698 	unsigned long state;
1699 	int drop;
1700 
1701 	WARN_ON(inode->i_state & I_NEW);
1702 
1703 	if (op->drop_inode)
1704 		drop = op->drop_inode(inode);
1705 	else
1706 		drop = generic_drop_inode(inode);
1707 
1708 	if (!drop &&
1709 	    !(inode->i_state & I_DONTCACHE) &&
1710 	    (sb->s_flags & SB_ACTIVE)) {
1711 		inode_add_lru(inode);
1712 		spin_unlock(&inode->i_lock);
1713 		return;
1714 	}
1715 
1716 	state = inode->i_state;
1717 	if (!drop) {
1718 		WRITE_ONCE(inode->i_state, state | I_WILL_FREE);
1719 		spin_unlock(&inode->i_lock);
1720 
1721 		write_inode_now(inode, 1);
1722 
1723 		spin_lock(&inode->i_lock);
1724 		state = inode->i_state;
1725 		WARN_ON(state & I_NEW);
1726 		state &= ~I_WILL_FREE;
1727 	}
1728 
1729 	WRITE_ONCE(inode->i_state, state | I_FREEING);
1730 	if (!list_empty(&inode->i_lru))
1731 		inode_lru_list_del(inode);
1732 	spin_unlock(&inode->i_lock);
1733 
1734 	evict(inode);
1735 }
1736 
1737 /**
1738  *	iput	- put an inode
1739  *	@inode: inode to put
1740  *
1741  *	Puts an inode, dropping its usage count. If the inode use count hits
1742  *	zero, the inode is then freed and may also be destroyed.
1743  *
1744  *	Consequently, iput() can sleep.
1745  */
iput(struct inode *inode)1746 void iput(struct inode *inode)
1747 {
1748 	if (!inode)
1749 		return;
1750 	BUG_ON(inode->i_state & I_CLEAR);
1751 retry:
1752 	if (atomic_dec_and_lock(&inode->i_count, &inode->i_lock)) {
1753 		if (inode->i_nlink && (inode->i_state & I_DIRTY_TIME)) {
1754 			atomic_inc(&inode->i_count);
1755 			spin_unlock(&inode->i_lock);
1756 			trace_writeback_lazytime_iput(inode);
1757 			mark_inode_dirty_sync(inode);
1758 			goto retry;
1759 		}
1760 		iput_final(inode);
1761 	}
1762 }
1763 EXPORT_SYMBOL(iput);
1764 
1765 #ifdef CONFIG_BLOCK
1766 /**
1767  *	bmap	- find a block number in a file
1768  *	@inode:  inode owning the block number being requested
1769  *	@block: pointer containing the block to find
1770  *
1771  *	Replaces the value in ``*block`` with the block number on the device holding
1772  *	corresponding to the requested block number in the file.
1773  *	That is, asked for block 4 of inode 1 the function will replace the
1774  *	4 in ``*block``, with disk block relative to the disk start that holds that
1775  *	block of the file.
1776  *
1777  *	Returns -EINVAL in case of error, 0 otherwise. If mapping falls into a
1778  *	hole, returns 0 and ``*block`` is also set to 0.
1779  */
bmap(struct inode *inode, sector_t *block)1780 int bmap(struct inode *inode, sector_t *block)
1781 {
1782 	if (!inode->i_mapping->a_ops->bmap)
1783 		return -EINVAL;
1784 
1785 	*block = inode->i_mapping->a_ops->bmap(inode->i_mapping, *block);
1786 	return 0;
1787 }
1788 EXPORT_SYMBOL(bmap);
1789 #endif
1790 
1791 /*
1792  * With relative atime, only update atime if the previous atime is
1793  * earlier than either the ctime or mtime or if at least a day has
1794  * passed since the last atime update.
1795  */
relatime_need_update(struct vfsmount *mnt, struct inode *inode, struct timespec64 now)1796 static int relatime_need_update(struct vfsmount *mnt, struct inode *inode,
1797 			     struct timespec64 now)
1798 {
1799 
1800 	if (!(mnt->mnt_flags & MNT_RELATIME))
1801 		return 1;
1802 	/*
1803 	 * Is mtime younger than atime? If yes, update atime:
1804 	 */
1805 	if (timespec64_compare(&inode->i_mtime, &inode->i_atime) >= 0)
1806 		return 1;
1807 	/*
1808 	 * Is ctime younger than atime? If yes, update atime:
1809 	 */
1810 	if (timespec64_compare(&inode->i_ctime, &inode->i_atime) >= 0)
1811 		return 1;
1812 
1813 	/*
1814 	 * Is the previous atime value older than a day? If yes,
1815 	 * update atime:
1816 	 */
1817 	if ((long)(now.tv_sec - inode->i_atime.tv_sec) >= 24*60*60)
1818 		return 1;
1819 	/*
1820 	 * Good, we can skip the atime update:
1821 	 */
1822 	return 0;
1823 }
1824 
generic_update_time(struct inode *inode, struct timespec64 *time, int flags)1825 int generic_update_time(struct inode *inode, struct timespec64 *time, int flags)
1826 {
1827 	int iflags = I_DIRTY_TIME;
1828 	bool dirty = false;
1829 
1830 	if (flags & S_ATIME)
1831 		inode->i_atime = *time;
1832 	if (flags & S_VERSION)
1833 		dirty = inode_maybe_inc_iversion(inode, false);
1834 	if (flags & S_CTIME)
1835 		inode->i_ctime = *time;
1836 	if (flags & S_MTIME)
1837 		inode->i_mtime = *time;
1838 	if ((flags & (S_ATIME | S_CTIME | S_MTIME)) &&
1839 	    !(inode->i_sb->s_flags & SB_LAZYTIME))
1840 		dirty = true;
1841 
1842 	if (dirty)
1843 		iflags |= I_DIRTY_SYNC;
1844 	__mark_inode_dirty(inode, iflags);
1845 	return 0;
1846 }
1847 EXPORT_SYMBOL(generic_update_time);
1848 
1849 /*
1850  * This does the actual work of updating an inodes time or version.  Must have
1851  * had called mnt_want_write() before calling this.
1852  */
inode_update_time(struct inode *inode, struct timespec64 *time, int flags)1853 int inode_update_time(struct inode *inode, struct timespec64 *time, int flags)
1854 {
1855 	if (inode->i_op->update_time)
1856 		return inode->i_op->update_time(inode, time, flags);
1857 	return generic_update_time(inode, time, flags);
1858 }
1859 EXPORT_SYMBOL(inode_update_time);
1860 
1861 /**
1862  *	touch_atime	-	update the access time
1863  *	@path: the &struct path to update
1864  *	@inode: inode to update
1865  *
1866  *	Update the accessed time on an inode and mark it for writeback.
1867  *	This function automatically handles read only file systems and media,
1868  *	as well as the "noatime" flag and inode specific "noatime" markers.
1869  */
atime_needs_update(const struct path *path, struct inode *inode)1870 bool atime_needs_update(const struct path *path, struct inode *inode)
1871 {
1872 	struct vfsmount *mnt = path->mnt;
1873 	struct timespec64 now;
1874 
1875 	if (inode->i_flags & S_NOATIME)
1876 		return false;
1877 
1878 	/* Atime updates will likely cause i_uid and i_gid to be written
1879 	 * back improprely if their true value is unknown to the vfs.
1880 	 */
1881 	if (HAS_UNMAPPED_ID(inode))
1882 		return false;
1883 
1884 	if (IS_NOATIME(inode))
1885 		return false;
1886 	if ((inode->i_sb->s_flags & SB_NODIRATIME) && S_ISDIR(inode->i_mode))
1887 		return false;
1888 
1889 	if (mnt->mnt_flags & MNT_NOATIME)
1890 		return false;
1891 	if ((mnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode))
1892 		return false;
1893 
1894 	now = current_time(inode);
1895 
1896 	if (!relatime_need_update(mnt, inode, now))
1897 		return false;
1898 
1899 	if (timespec64_equal(&inode->i_atime, &now))
1900 		return false;
1901 
1902 	return true;
1903 }
1904 
touch_atime(const struct path *path)1905 void touch_atime(const struct path *path)
1906 {
1907 	struct vfsmount *mnt = path->mnt;
1908 	struct inode *inode = d_inode(path->dentry);
1909 	struct timespec64 now;
1910 
1911 	if (!atime_needs_update(path, inode))
1912 		return;
1913 
1914 	if (!sb_start_write_trylock(inode->i_sb))
1915 		return;
1916 
1917 	if (__mnt_want_write(mnt) != 0)
1918 		goto skip_update;
1919 	/*
1920 	 * File systems can error out when updating inodes if they need to
1921 	 * allocate new space to modify an inode (such is the case for
1922 	 * Btrfs), but since we touch atime while walking down the path we
1923 	 * really don't care if we failed to update the atime of the file,
1924 	 * so just ignore the return value.
1925 	 * We may also fail on filesystems that have the ability to make parts
1926 	 * of the fs read only, e.g. subvolumes in Btrfs.
1927 	 */
1928 	now = current_time(inode);
1929 	inode_update_time(inode, &now, S_ATIME);
1930 	__mnt_drop_write(mnt);
1931 skip_update:
1932 	sb_end_write(inode->i_sb);
1933 }
1934 EXPORT_SYMBOL(touch_atime);
1935 
1936 /*
1937  * Return mask of changes for notify_change() that need to be done as a
1938  * response to write or truncate. Return 0 if nothing has to be changed.
1939  * Negative value on error (change should be denied).
1940  */
dentry_needs_remove_privs(struct dentry *dentry)1941 int dentry_needs_remove_privs(struct dentry *dentry)
1942 {
1943 	struct inode *inode = d_inode(dentry);
1944 	int mask = 0;
1945 	int ret;
1946 
1947 	if (IS_NOSEC(inode))
1948 		return 0;
1949 
1950 	mask = setattr_should_drop_suidgid(inode);
1951 	ret = security_inode_need_killpriv(dentry);
1952 	if (ret < 0)
1953 		return ret;
1954 	if (ret)
1955 		mask |= ATTR_KILL_PRIV;
1956 	return mask;
1957 }
1958 
__remove_privs(struct dentry *dentry, int kill)1959 static int __remove_privs(struct dentry *dentry, int kill)
1960 {
1961 	struct iattr newattrs;
1962 
1963 	newattrs.ia_valid = ATTR_FORCE | kill;
1964 	/*
1965 	 * Note we call this on write, so notify_change will not
1966 	 * encounter any conflicting delegations:
1967 	 */
1968 	return notify_change(dentry, &newattrs, NULL);
1969 }
1970 
1971 /*
1972  * Remove special file priviledges (suid, capabilities) when file is written
1973  * to or truncated.
1974  */
file_remove_privs(struct file *file)1975 int file_remove_privs(struct file *file)
1976 {
1977 	struct dentry *dentry = file_dentry(file);
1978 	struct inode *inode = file_inode(file);
1979 	int kill;
1980 	int error = 0;
1981 
1982 	/*
1983 	 * Fast path for nothing security related.
1984 	 * As well for non-regular files, e.g. blkdev inodes.
1985 	 * For example, blkdev_write_iter() might get here
1986 	 * trying to remove privs which it is not allowed to.
1987 	 */
1988 	if (IS_NOSEC(inode) || !S_ISREG(inode->i_mode))
1989 		return 0;
1990 
1991 	kill = dentry_needs_remove_privs(dentry);
1992 	if (kill < 0)
1993 		return kill;
1994 	if (kill)
1995 		error = __remove_privs(dentry, kill);
1996 	if (!error)
1997 		inode_has_no_xattr(inode);
1998 
1999 	return error;
2000 }
2001 EXPORT_SYMBOL(file_remove_privs);
2002 
2003 /**
2004  *	file_update_time	-	update mtime and ctime time
2005  *	@file: file accessed
2006  *
2007  *	Update the mtime and ctime members of an inode and mark the inode
2008  *	for writeback.  Note that this function is meant exclusively for
2009  *	usage in the file write path of filesystems, and filesystems may
2010  *	choose to explicitly ignore update via this function with the
2011  *	S_NOCMTIME inode flag, e.g. for network filesystem where these
2012  *	timestamps are handled by the server.  This can return an error for
2013  *	file systems who need to allocate space in order to update an inode.
2014  */
2015 
file_update_time(struct file *file)2016 int file_update_time(struct file *file)
2017 {
2018 	struct inode *inode = file_inode(file);
2019 	struct timespec64 now;
2020 	int sync_it = 0;
2021 	int ret;
2022 
2023 	/* First try to exhaust all avenues to not sync */
2024 	if (IS_NOCMTIME(inode))
2025 		return 0;
2026 
2027 	now = current_time(inode);
2028 	if (!timespec64_equal(&inode->i_mtime, &now))
2029 		sync_it = S_MTIME;
2030 
2031 	if (!timespec64_equal(&inode->i_ctime, &now))
2032 		sync_it |= S_CTIME;
2033 
2034 	if (IS_I_VERSION(inode) && inode_iversion_need_inc(inode))
2035 		sync_it |= S_VERSION;
2036 
2037 	if (!sync_it)
2038 		return 0;
2039 
2040 	/* Finally allowed to write? Takes lock. */
2041 	if (__mnt_want_write_file(file))
2042 		return 0;
2043 
2044 	ret = inode_update_time(inode, &now, sync_it);
2045 	__mnt_drop_write_file(file);
2046 
2047 	return ret;
2048 }
2049 EXPORT_SYMBOL(file_update_time);
2050 
2051 /* Caller must hold the file's inode lock */
file_modified(struct file *file)2052 int file_modified(struct file *file)
2053 {
2054 	int err;
2055 
2056 	/*
2057 	 * Clear the security bits if the process is not being run by root.
2058 	 * This keeps people from modifying setuid and setgid binaries.
2059 	 */
2060 	err = file_remove_privs(file);
2061 	if (err)
2062 		return err;
2063 
2064 	if (unlikely(file->f_mode & FMODE_NOCMTIME))
2065 		return 0;
2066 
2067 	return file_update_time(file);
2068 }
2069 EXPORT_SYMBOL(file_modified);
2070 
inode_needs_sync(struct inode *inode)2071 int inode_needs_sync(struct inode *inode)
2072 {
2073 	if (IS_SYNC(inode))
2074 		return 1;
2075 	if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode))
2076 		return 1;
2077 	return 0;
2078 }
2079 EXPORT_SYMBOL(inode_needs_sync);
2080 
2081 /*
2082  * If we try to find an inode in the inode hash while it is being
2083  * deleted, we have to wait until the filesystem completes its
2084  * deletion before reporting that it isn't found.  This function waits
2085  * until the deletion _might_ have completed.  Callers are responsible
2086  * to recheck inode state.
2087  *
2088  * It doesn't matter if I_NEW is not set initially, a call to
2089  * wake_up_bit(&inode->i_state, __I_NEW) after removing from the hash list
2090  * will DTRT.
2091  */
__wait_on_freeing_inode(struct inode *inode)2092 static void __wait_on_freeing_inode(struct inode *inode)
2093 {
2094 	wait_queue_head_t *wq;
2095 	DEFINE_WAIT_BIT(wait, &inode->i_state, __I_NEW);
2096 	wq = bit_waitqueue(&inode->i_state, __I_NEW);
2097 	prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
2098 	spin_unlock(&inode->i_lock);
2099 	spin_unlock(&inode_hash_lock);
2100 	schedule();
2101 	finish_wait(wq, &wait.wq_entry);
2102 	spin_lock(&inode_hash_lock);
2103 }
2104 
2105 static __initdata unsigned long ihash_entries;
set_ihash_entries(char *str)2106 static int __init set_ihash_entries(char *str)
2107 {
2108 	if (!str)
2109 		return 0;
2110 	ihash_entries = simple_strtoul(str, &str, 0);
2111 	return 1;
2112 }
2113 __setup("ihash_entries=", set_ihash_entries);
2114 
2115 /*
2116  * Initialize the waitqueues and inode hash table.
2117  */
inode_init_early(void)2118 void __init inode_init_early(void)
2119 {
2120 	/* If hashes are distributed across NUMA nodes, defer
2121 	 * hash allocation until vmalloc space is available.
2122 	 */
2123 	if (hashdist)
2124 		return;
2125 
2126 	inode_hashtable =
2127 		alloc_large_system_hash("Inode-cache",
2128 					sizeof(struct hlist_head),
2129 					ihash_entries,
2130 					14,
2131 					HASH_EARLY | HASH_ZERO,
2132 					&i_hash_shift,
2133 					&i_hash_mask,
2134 					0,
2135 					0);
2136 }
2137 
inode_init(void)2138 void __init inode_init(void)
2139 {
2140 	/* inode slab cache */
2141 	inode_cachep = kmem_cache_create("inode_cache",
2142 					 sizeof(struct inode),
2143 					 0,
2144 					 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
2145 					 SLAB_MEM_SPREAD|SLAB_ACCOUNT),
2146 					 init_once);
2147 
2148 	/* Hash may have been set up in inode_init_early */
2149 	if (!hashdist)
2150 		return;
2151 
2152 	inode_hashtable =
2153 		alloc_large_system_hash("Inode-cache",
2154 					sizeof(struct hlist_head),
2155 					ihash_entries,
2156 					14,
2157 					HASH_ZERO,
2158 					&i_hash_shift,
2159 					&i_hash_mask,
2160 					0,
2161 					0);
2162 }
2163 
init_special_inode(struct inode *inode, umode_t mode, dev_t rdev)2164 void init_special_inode(struct inode *inode, umode_t mode, dev_t rdev)
2165 {
2166 	inode->i_mode = mode;
2167 	if (S_ISCHR(mode)) {
2168 		inode->i_fop = &def_chr_fops;
2169 		inode->i_rdev = rdev;
2170 	} else if (S_ISBLK(mode)) {
2171 		inode->i_fop = &def_blk_fops;
2172 		inode->i_rdev = rdev;
2173 	} else if (S_ISFIFO(mode))
2174 		inode->i_fop = &pipefifo_fops;
2175 	else if (S_ISSOCK(mode))
2176 		;	/* leave it no_open_fops */
2177 	else
2178 		printk(KERN_DEBUG "init_special_inode: bogus i_mode (%o) for"
2179 				  " inode %s:%lu\n", mode, inode->i_sb->s_id,
2180 				  inode->i_ino);
2181 }
2182 EXPORT_SYMBOL(init_special_inode);
2183 
2184 /**
2185  * inode_init_owner - Init uid,gid,mode for new inode according to posix standards
2186  * @inode: New inode
2187  * @dir: Directory inode
2188  * @mode: mode of the new inode
2189  */
inode_init_owner(struct inode *inode, const struct inode *dir, umode_t mode)2190 void inode_init_owner(struct inode *inode, const struct inode *dir,
2191 			umode_t mode)
2192 {
2193 	inode->i_uid = current_fsuid();
2194 	if (dir && dir->i_mode & S_ISGID) {
2195 		inode->i_gid = dir->i_gid;
2196 
2197 		/* Directories are special, and always inherit S_ISGID */
2198 		if (S_ISDIR(mode))
2199 			mode |= S_ISGID;
2200 	} else
2201 		inode->i_gid = current_fsgid();
2202 	inode->i_mode = mode;
2203 }
2204 EXPORT_SYMBOL(inode_init_owner);
2205 
2206 /**
2207  * inode_owner_or_capable - check current task permissions to inode
2208  * @inode: inode being checked
2209  *
2210  * Return true if current either has CAP_FOWNER in a namespace with the
2211  * inode owner uid mapped, or owns the file.
2212  */
inode_owner_or_capable(const struct inode *inode)2213 bool inode_owner_or_capable(const struct inode *inode)
2214 {
2215 	struct user_namespace *ns;
2216 
2217 	if (uid_eq(current_fsuid(), inode->i_uid))
2218 		return true;
2219 
2220 	ns = current_user_ns();
2221 	if (kuid_has_mapping(ns, inode->i_uid) && ns_capable(ns, CAP_FOWNER))
2222 		return true;
2223 	return false;
2224 }
2225 EXPORT_SYMBOL(inode_owner_or_capable);
2226 
2227 /*
2228  * Direct i/o helper functions
2229  */
__inode_dio_wait(struct inode *inode)2230 static void __inode_dio_wait(struct inode *inode)
2231 {
2232 	wait_queue_head_t *wq = bit_waitqueue(&inode->i_state, __I_DIO_WAKEUP);
2233 	DEFINE_WAIT_BIT(q, &inode->i_state, __I_DIO_WAKEUP);
2234 
2235 	do {
2236 		prepare_to_wait(wq, &q.wq_entry, TASK_UNINTERRUPTIBLE);
2237 		if (atomic_read(&inode->i_dio_count))
2238 			schedule();
2239 	} while (atomic_read(&inode->i_dio_count));
2240 	finish_wait(wq, &q.wq_entry);
2241 }
2242 
2243 /**
2244  * inode_dio_wait - wait for outstanding DIO requests to finish
2245  * @inode: inode to wait for
2246  *
2247  * Waits for all pending direct I/O requests to finish so that we can
2248  * proceed with a truncate or equivalent operation.
2249  *
2250  * Must be called under a lock that serializes taking new references
2251  * to i_dio_count, usually by inode->i_mutex.
2252  */
inode_dio_wait(struct inode *inode)2253 void inode_dio_wait(struct inode *inode)
2254 {
2255 	if (atomic_read(&inode->i_dio_count))
2256 		__inode_dio_wait(inode);
2257 }
2258 EXPORT_SYMBOL(inode_dio_wait);
2259 
2260 /*
2261  * inode_set_flags - atomically set some inode flags
2262  *
2263  * Note: the caller should be holding i_mutex, or else be sure that
2264  * they have exclusive access to the inode structure (i.e., while the
2265  * inode is being instantiated).  The reason for the cmpxchg() loop
2266  * --- which wouldn't be necessary if all code paths which modify
2267  * i_flags actually followed this rule, is that there is at least one
2268  * code path which doesn't today so we use cmpxchg() out of an abundance
2269  * of caution.
2270  *
2271  * In the long run, i_mutex is overkill, and we should probably look
2272  * at using the i_lock spinlock to protect i_flags, and then make sure
2273  * it is so documented in include/linux/fs.h and that all code follows
2274  * the locking convention!!
2275  */
inode_set_flags(struct inode *inode, unsigned int flags, unsigned int mask)2276 void inode_set_flags(struct inode *inode, unsigned int flags,
2277 		     unsigned int mask)
2278 {
2279 	WARN_ON_ONCE(flags & ~mask);
2280 	set_mask_bits(&inode->i_flags, mask, flags);
2281 }
2282 EXPORT_SYMBOL(inode_set_flags);
2283 
inode_nohighmem(struct inode *inode)2284 void inode_nohighmem(struct inode *inode)
2285 {
2286 	mapping_set_gfp_mask(inode->i_mapping, GFP_USER);
2287 }
2288 EXPORT_SYMBOL(inode_nohighmem);
2289 
2290 /**
2291  * timestamp_truncate - Truncate timespec to a granularity
2292  * @t: Timespec
2293  * @inode: inode being updated
2294  *
2295  * Truncate a timespec to the granularity supported by the fs
2296  * containing the inode. Always rounds down. gran must
2297  * not be 0 nor greater than a second (NSEC_PER_SEC, or 10^9 ns).
2298  */
timestamp_truncate(struct timespec64 t, struct inode *inode)2299 struct timespec64 timestamp_truncate(struct timespec64 t, struct inode *inode)
2300 {
2301 	struct super_block *sb = inode->i_sb;
2302 	unsigned int gran = sb->s_time_gran;
2303 
2304 	t.tv_sec = clamp(t.tv_sec, sb->s_time_min, sb->s_time_max);
2305 	if (unlikely(t.tv_sec == sb->s_time_max || t.tv_sec == sb->s_time_min))
2306 		t.tv_nsec = 0;
2307 
2308 	/* Avoid division in the common cases 1 ns and 1 s. */
2309 	if (gran == 1)
2310 		; /* nothing */
2311 	else if (gran == NSEC_PER_SEC)
2312 		t.tv_nsec = 0;
2313 	else if (gran > 1 && gran < NSEC_PER_SEC)
2314 		t.tv_nsec -= t.tv_nsec % gran;
2315 	else
2316 		WARN(1, "invalid file time granularity: %u", gran);
2317 	return t;
2318 }
2319 EXPORT_SYMBOL(timestamp_truncate);
2320 
2321 /**
2322  * current_time - Return FS time
2323  * @inode: inode.
2324  *
2325  * Return the current time truncated to the time granularity supported by
2326  * the fs.
2327  *
2328  * Note that inode and inode->sb cannot be NULL.
2329  * Otherwise, the function warns and returns time without truncation.
2330  */
current_time(struct inode *inode)2331 struct timespec64 current_time(struct inode *inode)
2332 {
2333 	struct timespec64 now;
2334 
2335 	ktime_get_coarse_real_ts64(&now);
2336 
2337 	if (unlikely(!inode->i_sb)) {
2338 		WARN(1, "current_time() called with uninitialized super_block in the inode");
2339 		return now;
2340 	}
2341 
2342 	return timestamp_truncate(now, inode);
2343 }
2344 EXPORT_SYMBOL(current_time);
2345 
2346 /*
2347  * Generic function to check FS_IOC_SETFLAGS values and reject any invalid
2348  * configurations.
2349  *
2350  * Note: the caller should be holding i_mutex, or else be sure that they have
2351  * exclusive access to the inode structure.
2352  */
vfs_ioc_setflags_prepare(struct inode *inode, unsigned int oldflags, unsigned int flags)2353 int vfs_ioc_setflags_prepare(struct inode *inode, unsigned int oldflags,
2354 			     unsigned int flags)
2355 {
2356 	/*
2357 	 * The IMMUTABLE and APPEND_ONLY flags can only be changed by
2358 	 * the relevant capability.
2359 	 *
2360 	 * This test looks nicer. Thanks to Pauline Middelink
2361 	 */
2362 	if ((flags ^ oldflags) & (FS_APPEND_FL | FS_IMMUTABLE_FL) &&
2363 	    !capable(CAP_LINUX_IMMUTABLE))
2364 		return -EPERM;
2365 
2366 	return fscrypt_prepare_setflags(inode, oldflags, flags);
2367 }
2368 EXPORT_SYMBOL(vfs_ioc_setflags_prepare);
2369 
2370 /*
2371  * Generic function to check FS_IOC_FSSETXATTR values and reject any invalid
2372  * configurations.
2373  *
2374  * Note: the caller should be holding i_mutex, or else be sure that they have
2375  * exclusive access to the inode structure.
2376  */
vfs_ioc_fssetxattr_check(struct inode *inode, const struct fsxattr *old_fa, struct fsxattr *fa)2377 int vfs_ioc_fssetxattr_check(struct inode *inode, const struct fsxattr *old_fa,
2378 			     struct fsxattr *fa)
2379 {
2380 	/*
2381 	 * Can't modify an immutable/append-only file unless we have
2382 	 * appropriate permission.
2383 	 */
2384 	if ((old_fa->fsx_xflags ^ fa->fsx_xflags) &
2385 			(FS_XFLAG_IMMUTABLE | FS_XFLAG_APPEND) &&
2386 	    !capable(CAP_LINUX_IMMUTABLE))
2387 		return -EPERM;
2388 
2389 	/*
2390 	 * Project Quota ID state is only allowed to change from within the init
2391 	 * namespace. Enforce that restriction only if we are trying to change
2392 	 * the quota ID state. Everything else is allowed in user namespaces.
2393 	 */
2394 	if (current_user_ns() != &init_user_ns) {
2395 		if (old_fa->fsx_projid != fa->fsx_projid)
2396 			return -EINVAL;
2397 		if ((old_fa->fsx_xflags ^ fa->fsx_xflags) &
2398 				FS_XFLAG_PROJINHERIT)
2399 			return -EINVAL;
2400 	}
2401 
2402 	/* Check extent size hints. */
2403 	if ((fa->fsx_xflags & FS_XFLAG_EXTSIZE) && !S_ISREG(inode->i_mode))
2404 		return -EINVAL;
2405 
2406 	if ((fa->fsx_xflags & FS_XFLAG_EXTSZINHERIT) &&
2407 			!S_ISDIR(inode->i_mode))
2408 		return -EINVAL;
2409 
2410 	if ((fa->fsx_xflags & FS_XFLAG_COWEXTSIZE) &&
2411 	    !S_ISREG(inode->i_mode) && !S_ISDIR(inode->i_mode))
2412 		return -EINVAL;
2413 
2414 	/*
2415 	 * It is only valid to set the DAX flag on regular files and
2416 	 * directories on filesystems.
2417 	 */
2418 	if ((fa->fsx_xflags & FS_XFLAG_DAX) &&
2419 	    !(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode)))
2420 		return -EINVAL;
2421 
2422 	/* Extent size hints of zero turn off the flags. */
2423 	if (fa->fsx_extsize == 0)
2424 		fa->fsx_xflags &= ~(FS_XFLAG_EXTSIZE | FS_XFLAG_EXTSZINHERIT);
2425 	if (fa->fsx_cowextsize == 0)
2426 		fa->fsx_xflags &= ~FS_XFLAG_COWEXTSIZE;
2427 
2428 	return 0;
2429 }
2430 EXPORT_SYMBOL(vfs_ioc_fssetxattr_check);
2431 
2432 /**
2433  * inode_set_ctime_current - set the ctime to current_time
2434  * @inode: inode
2435  *
2436  * Set the inode->i_ctime to the current value for the inode. Returns
2437  * the current value that was assigned to i_ctime.
2438  */
inode_set_ctime_current(struct inode *inode)2439 struct timespec64 inode_set_ctime_current(struct inode *inode)
2440 {
2441 	struct timespec64 now = current_time(inode);
2442 
2443 	inode_set_ctime(inode, now.tv_sec, now.tv_nsec);
2444 	return now;
2445 }
2446 EXPORT_SYMBOL(inode_set_ctime_current);
2447 
2448 /**
2449  * in_group_or_capable - check whether caller is CAP_FSETID privileged
2450  * @inode:	inode to check
2451  * @gid:	the new/current gid of @inode
2452  *
2453  * Check wether @gid is in the caller's group list or if the caller is
2454  * privileged with CAP_FSETID over @inode. This can be used to determine
2455  * whether the setgid bit can be kept or must be dropped.
2456  *
2457  * Return: true if the caller is sufficiently privileged, false if not.
2458  */
in_group_or_capable(const struct inode *inode, kgid_t gid)2459 bool in_group_or_capable(const struct inode *inode, kgid_t gid)
2460 {
2461 	if (in_group_p(gid))
2462 		return true;
2463 	if (capable_wrt_inode_uidgid(inode, CAP_FSETID))
2464 		return true;
2465 	return false;
2466 }
2467 
2468 /**
2469  * mode_strip_sgid - handle the sgid bit for non-directories
2470  * @dir: parent directory inode
2471  * @mode: mode of the file to be created in @dir
2472  *
2473  * If the @mode of the new file has both the S_ISGID and S_IXGRP bit
2474  * raised and @dir has the S_ISGID bit raised ensure that the caller is
2475  * either in the group of the parent directory or they have CAP_FSETID
2476  * in their user namespace and are privileged over the parent directory.
2477  * In all other cases, strip the S_ISGID bit from @mode.
2478  *
2479  * Return: the new mode to use for the file
2480  */
mode_strip_sgid(const struct inode *dir, umode_t mode)2481 umode_t mode_strip_sgid(const struct inode *dir, umode_t mode)
2482 {
2483 	if ((mode & (S_ISGID | S_IXGRP)) != (S_ISGID | S_IXGRP))
2484 		return mode;
2485 	if (S_ISDIR(mode) || !dir || !(dir->i_mode & S_ISGID))
2486 		return mode;
2487 	if (in_group_or_capable(dir, dir->i_gid))
2488 		return mode;
2489 	return mode & ~S_ISGID;
2490 }
2491 EXPORT_SYMBOL(mode_strip_sgid);
2492