xref: /kernel/linux/linux-5.10/fs/hugetlbfs/inode.c (revision 8c2ecf20)
1/*
2 * hugetlbpage-backed filesystem.  Based on ramfs.
3 *
4 * Nadia Yvette Chambers, 2002
5 *
6 * Copyright (C) 2002 Linus Torvalds.
7 * License: GPL
8 */
9
10#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11
12#include <linux/thread_info.h>
13#include <asm/current.h>
14#include <linux/sched/signal.h>		/* remove ASAP */
15#include <linux/falloc.h>
16#include <linux/fs.h>
17#include <linux/mount.h>
18#include <linux/file.h>
19#include <linux/kernel.h>
20#include <linux/writeback.h>
21#include <linux/pagemap.h>
22#include <linux/highmem.h>
23#include <linux/init.h>
24#include <linux/string.h>
25#include <linux/capability.h>
26#include <linux/ctype.h>
27#include <linux/backing-dev.h>
28#include <linux/hugetlb.h>
29#include <linux/pagevec.h>
30#include <linux/fs_parser.h>
31#include <linux/mman.h>
32#include <linux/slab.h>
33#include <linux/dnotify.h>
34#include <linux/statfs.h>
35#include <linux/security.h>
36#include <linux/magic.h>
37#include <linux/migrate.h>
38#include <linux/uio.h>
39
40#include <linux/uaccess.h>
41#include <linux/sched/mm.h>
42
43static const struct super_operations hugetlbfs_ops;
44static const struct address_space_operations hugetlbfs_aops;
45const struct file_operations hugetlbfs_file_operations;
46static const struct inode_operations hugetlbfs_dir_inode_operations;
47static const struct inode_operations hugetlbfs_inode_operations;
48
49enum hugetlbfs_size_type { NO_SIZE, SIZE_STD, SIZE_PERCENT };
50
51struct hugetlbfs_fs_context {
52	struct hstate		*hstate;
53	unsigned long long	max_size_opt;
54	unsigned long long	min_size_opt;
55	long			max_hpages;
56	long			nr_inodes;
57	long			min_hpages;
58	enum hugetlbfs_size_type max_val_type;
59	enum hugetlbfs_size_type min_val_type;
60	kuid_t			uid;
61	kgid_t			gid;
62	umode_t			mode;
63};
64
65int sysctl_hugetlb_shm_group;
66
67enum hugetlb_param {
68	Opt_gid,
69	Opt_min_size,
70	Opt_mode,
71	Opt_nr_inodes,
72	Opt_pagesize,
73	Opt_size,
74	Opt_uid,
75};
76
77static const struct fs_parameter_spec hugetlb_fs_parameters[] = {
78	fsparam_u32   ("gid",		Opt_gid),
79	fsparam_string("min_size",	Opt_min_size),
80	fsparam_u32oct("mode",		Opt_mode),
81	fsparam_string("nr_inodes",	Opt_nr_inodes),
82	fsparam_string("pagesize",	Opt_pagesize),
83	fsparam_string("size",		Opt_size),
84	fsparam_u32   ("uid",		Opt_uid),
85	{}
86};
87
88#ifdef CONFIG_NUMA
89static inline void hugetlb_set_vma_policy(struct vm_area_struct *vma,
90					struct inode *inode, pgoff_t index)
91{
92	vma->vm_policy = mpol_shared_policy_lookup(&HUGETLBFS_I(inode)->policy,
93							index);
94}
95
96static inline void hugetlb_drop_vma_policy(struct vm_area_struct *vma)
97{
98	mpol_cond_put(vma->vm_policy);
99}
100#else
101static inline void hugetlb_set_vma_policy(struct vm_area_struct *vma,
102					struct inode *inode, pgoff_t index)
103{
104}
105
106static inline void hugetlb_drop_vma_policy(struct vm_area_struct *vma)
107{
108}
109#endif
110
111static void huge_pagevec_release(struct pagevec *pvec)
112{
113	int i;
114
115	for (i = 0; i < pagevec_count(pvec); ++i)
116		put_page(pvec->pages[i]);
117
118	pagevec_reinit(pvec);
119}
120
121/*
122 * Mask used when checking the page offset value passed in via system
123 * calls.  This value will be converted to a loff_t which is signed.
124 * Therefore, we want to check the upper PAGE_SHIFT + 1 bits of the
125 * value.  The extra bit (- 1 in the shift value) is to take the sign
126 * bit into account.
127 */
128#define PGOFF_LOFFT_MAX \
129	(((1UL << (PAGE_SHIFT + 1)) - 1) <<  (BITS_PER_LONG - (PAGE_SHIFT + 1)))
130
131static int hugetlbfs_file_mmap(struct file *file, struct vm_area_struct *vma)
132{
133	struct inode *inode = file_inode(file);
134	struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
135	loff_t len, vma_len;
136	int ret;
137	struct hstate *h = hstate_file(file);
138
139	/*
140	 * vma address alignment (but not the pgoff alignment) has
141	 * already been checked by prepare_hugepage_range.  If you add
142	 * any error returns here, do so after setting VM_HUGETLB, so
143	 * is_vm_hugetlb_page tests below unmap_region go the right
144	 * way when do_mmap unwinds (may be important on powerpc
145	 * and ia64).
146	 */
147	vma->vm_flags |= VM_HUGETLB | VM_DONTEXPAND;
148	vma->vm_ops = &hugetlb_vm_ops;
149
150	ret = seal_check_future_write(info->seals, vma);
151	if (ret)
152		return ret;
153
154	/*
155	 * page based offset in vm_pgoff could be sufficiently large to
156	 * overflow a loff_t when converted to byte offset.  This can
157	 * only happen on architectures where sizeof(loff_t) ==
158	 * sizeof(unsigned long).  So, only check in those instances.
159	 */
160	if (sizeof(unsigned long) == sizeof(loff_t)) {
161		if (vma->vm_pgoff & PGOFF_LOFFT_MAX)
162			return -EINVAL;
163	}
164
165	/* must be huge page aligned */
166	if (vma->vm_pgoff & (~huge_page_mask(h) >> PAGE_SHIFT))
167		return -EINVAL;
168
169	vma_len = (loff_t)(vma->vm_end - vma->vm_start);
170	len = vma_len + ((loff_t)vma->vm_pgoff << PAGE_SHIFT);
171	/* check for overflow */
172	if (len < vma_len)
173		return -EINVAL;
174
175	inode_lock(inode);
176	file_accessed(file);
177
178	ret = -ENOMEM;
179	if (hugetlb_reserve_pages(inode,
180				vma->vm_pgoff >> huge_page_order(h),
181				len >> huge_page_shift(h), vma,
182				vma->vm_flags))
183		goto out;
184
185	ret = 0;
186	if (vma->vm_flags & VM_WRITE && inode->i_size < len)
187		i_size_write(inode, len);
188out:
189	inode_unlock(inode);
190
191	return ret;
192}
193
194/*
195 * Called under mmap_write_lock(mm).
196 */
197
198#ifndef HAVE_ARCH_HUGETLB_UNMAPPED_AREA
199static unsigned long
200hugetlb_get_unmapped_area_bottomup(struct file *file, unsigned long addr,
201		unsigned long len, unsigned long pgoff, unsigned long flags)
202{
203	struct hstate *h = hstate_file(file);
204	struct vm_unmapped_area_info info;
205
206	info.flags = 0;
207	info.length = len;
208	info.low_limit = current->mm->mmap_base;
209	info.high_limit = arch_get_mmap_end(addr);
210	info.align_mask = PAGE_MASK & ~huge_page_mask(h);
211	info.align_offset = 0;
212	return vm_unmapped_area(&info);
213}
214
215static unsigned long
216hugetlb_get_unmapped_area_topdown(struct file *file, unsigned long addr,
217		unsigned long len, unsigned long pgoff, unsigned long flags)
218{
219	struct hstate *h = hstate_file(file);
220	struct vm_unmapped_area_info info;
221
222	info.flags = VM_UNMAPPED_AREA_TOPDOWN;
223	info.length = len;
224	info.low_limit = max(PAGE_SIZE, mmap_min_addr);
225	info.high_limit = arch_get_mmap_base(addr, current->mm->mmap_base);
226	info.align_mask = PAGE_MASK & ~huge_page_mask(h);
227	info.align_offset = 0;
228	addr = vm_unmapped_area(&info);
229
230	/*
231	 * A failed mmap() very likely causes application failure,
232	 * so fall back to the bottom-up function here. This scenario
233	 * can happen with large stack limits and large mmap()
234	 * allocations.
235	 */
236	if (unlikely(offset_in_page(addr))) {
237		VM_BUG_ON(addr != -ENOMEM);
238		info.flags = 0;
239		info.low_limit = current->mm->mmap_base;
240		info.high_limit = arch_get_mmap_end(addr);
241		addr = vm_unmapped_area(&info);
242	}
243
244	return addr;
245}
246
247static unsigned long
248hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
249		unsigned long len, unsigned long pgoff, unsigned long flags)
250{
251	struct mm_struct *mm = current->mm;
252	struct vm_area_struct *vma;
253	struct hstate *h = hstate_file(file);
254	const unsigned long mmap_end = arch_get_mmap_end(addr);
255
256	if (len & ~huge_page_mask(h))
257		return -EINVAL;
258	if (len > TASK_SIZE)
259		return -ENOMEM;
260
261	if (flags & MAP_FIXED) {
262		if (prepare_hugepage_range(file, addr, len))
263			return -EINVAL;
264		return addr;
265	}
266
267	if (addr) {
268		addr = ALIGN(addr, huge_page_size(h));
269		vma = find_vma(mm, addr);
270		if (mmap_end - len >= addr &&
271		    (!vma || addr + len <= vm_start_gap(vma)))
272			return addr;
273	}
274
275	/*
276	 * Use mm->get_unmapped_area value as a hint to use topdown routine.
277	 * If architectures have special needs, they should define their own
278	 * version of hugetlb_get_unmapped_area.
279	 */
280	if (mm->get_unmapped_area == arch_get_unmapped_area_topdown)
281		return hugetlb_get_unmapped_area_topdown(file, addr, len,
282				pgoff, flags);
283	return hugetlb_get_unmapped_area_bottomup(file, addr, len,
284			pgoff, flags);
285}
286#endif
287
288static size_t
289hugetlbfs_read_actor(struct page *page, unsigned long offset,
290			struct iov_iter *to, unsigned long size)
291{
292	size_t copied = 0;
293	int i, chunksize;
294
295	/* Find which 4k chunk and offset with in that chunk */
296	i = offset >> PAGE_SHIFT;
297	offset = offset & ~PAGE_MASK;
298
299	while (size) {
300		size_t n;
301		chunksize = PAGE_SIZE;
302		if (offset)
303			chunksize -= offset;
304		if (chunksize > size)
305			chunksize = size;
306		n = copy_page_to_iter(&page[i], offset, chunksize, to);
307		copied += n;
308		if (n != chunksize)
309			return copied;
310		offset = 0;
311		size -= chunksize;
312		i++;
313	}
314	return copied;
315}
316
317/*
318 * Support for read() - Find the page attached to f_mapping and copy out the
319 * data. Its *very* similar to do_generic_mapping_read(), we can't use that
320 * since it has PAGE_SIZE assumptions.
321 */
322static ssize_t hugetlbfs_read_iter(struct kiocb *iocb, struct iov_iter *to)
323{
324	struct file *file = iocb->ki_filp;
325	struct hstate *h = hstate_file(file);
326	struct address_space *mapping = file->f_mapping;
327	struct inode *inode = mapping->host;
328	unsigned long index = iocb->ki_pos >> huge_page_shift(h);
329	unsigned long offset = iocb->ki_pos & ~huge_page_mask(h);
330	unsigned long end_index;
331	loff_t isize;
332	ssize_t retval = 0;
333
334	while (iov_iter_count(to)) {
335		struct page *page;
336		size_t nr, copied;
337
338		/* nr is the maximum number of bytes to copy from this page */
339		nr = huge_page_size(h);
340		isize = i_size_read(inode);
341		if (!isize)
342			break;
343		end_index = (isize - 1) >> huge_page_shift(h);
344		if (index > end_index)
345			break;
346		if (index == end_index) {
347			nr = ((isize - 1) & ~huge_page_mask(h)) + 1;
348			if (nr <= offset)
349				break;
350		}
351		nr = nr - offset;
352
353		/* Find the page */
354		page = find_lock_page(mapping, index);
355		if (unlikely(page == NULL)) {
356			/*
357			 * We have a HOLE, zero out the user-buffer for the
358			 * length of the hole or request.
359			 */
360			copied = iov_iter_zero(nr, to);
361		} else {
362			unlock_page(page);
363
364			/*
365			 * We have the page, copy it to user space buffer.
366			 */
367			copied = hugetlbfs_read_actor(page, offset, to, nr);
368			put_page(page);
369		}
370		offset += copied;
371		retval += copied;
372		if (copied != nr && iov_iter_count(to)) {
373			if (!retval)
374				retval = -EFAULT;
375			break;
376		}
377		index += offset >> huge_page_shift(h);
378		offset &= ~huge_page_mask(h);
379	}
380	iocb->ki_pos = ((loff_t)index << huge_page_shift(h)) + offset;
381	return retval;
382}
383
384static int hugetlbfs_write_begin(struct file *file,
385			struct address_space *mapping,
386			loff_t pos, unsigned len, unsigned flags,
387			struct page **pagep, void **fsdata)
388{
389	return -EINVAL;
390}
391
392static int hugetlbfs_write_end(struct file *file, struct address_space *mapping,
393			loff_t pos, unsigned len, unsigned copied,
394			struct page *page, void *fsdata)
395{
396	BUG();
397	return -EINVAL;
398}
399
400static void remove_huge_page(struct page *page)
401{
402	ClearPageDirty(page);
403	ClearPageUptodate(page);
404	delete_from_page_cache(page);
405}
406
407static void
408hugetlb_vmdelete_list(struct rb_root_cached *root, pgoff_t start, pgoff_t end)
409{
410	struct vm_area_struct *vma;
411
412	/*
413	 * end == 0 indicates that the entire range after
414	 * start should be unmapped.
415	 */
416	vma_interval_tree_foreach(vma, root, start, end ? end : ULONG_MAX) {
417		unsigned long v_offset;
418		unsigned long v_end;
419
420		/*
421		 * Can the expression below overflow on 32-bit arches?
422		 * No, because the interval tree returns us only those vmas
423		 * which overlap the truncated area starting at pgoff,
424		 * and no vma on a 32-bit arch can span beyond the 4GB.
425		 */
426		if (vma->vm_pgoff < start)
427			v_offset = (start - vma->vm_pgoff) << PAGE_SHIFT;
428		else
429			v_offset = 0;
430
431		if (!end)
432			v_end = vma->vm_end;
433		else {
434			v_end = ((end - vma->vm_pgoff) << PAGE_SHIFT)
435							+ vma->vm_start;
436			if (v_end > vma->vm_end)
437				v_end = vma->vm_end;
438		}
439
440		unmap_hugepage_range(vma, vma->vm_start + v_offset, v_end,
441									NULL);
442	}
443}
444
445/*
446 * remove_inode_hugepages handles two distinct cases: truncation and hole
447 * punch.  There are subtle differences in operation for each case.
448 *
449 * truncation is indicated by end of range being LLONG_MAX
450 *	In this case, we first scan the range and release found pages.
451 *	After releasing pages, hugetlb_unreserve_pages cleans up region/reserv
452 *	maps and global counts.  Page faults can not race with truncation
453 *	in this routine.  hugetlb_no_page() holds i_mmap_rwsem and prevents
454 *	page faults in the truncated range by checking i_size.  i_size is
455 *	modified while holding i_mmap_rwsem.
456 * hole punch is indicated if end is not LLONG_MAX
457 *	In the hole punch case we scan the range and release found pages.
458 *	Only when releasing a page is the associated region/reserv map
459 *	deleted.  The region/reserv map for ranges without associated
460 *	pages are not modified.  Page faults can race with hole punch.
461 *	This is indicated if we find a mapped page.
462 * Note: If the passed end of range value is beyond the end of file, but
463 * not LLONG_MAX this routine still performs a hole punch operation.
464 */
465static void remove_inode_hugepages(struct inode *inode, loff_t lstart,
466				   loff_t lend)
467{
468	struct hstate *h = hstate_inode(inode);
469	struct address_space *mapping = &inode->i_data;
470	const pgoff_t start = lstart >> huge_page_shift(h);
471	const pgoff_t end = lend >> huge_page_shift(h);
472	struct vm_area_struct pseudo_vma;
473	struct pagevec pvec;
474	pgoff_t next, index;
475	int i, freed = 0;
476	bool truncate_op = (lend == LLONG_MAX);
477
478	vma_init(&pseudo_vma, current->mm);
479	pseudo_vma.vm_flags = (VM_HUGETLB | VM_MAYSHARE | VM_SHARED);
480	pagevec_init(&pvec);
481	next = start;
482	while (next < end) {
483		/*
484		 * When no more pages are found, we are done.
485		 */
486		if (!pagevec_lookup_range(&pvec, mapping, &next, end - 1))
487			break;
488
489		for (i = 0; i < pagevec_count(&pvec); ++i) {
490			struct page *page = pvec.pages[i];
491			u32 hash;
492
493			index = page->index;
494			hash = hugetlb_fault_mutex_hash(mapping, index);
495			if (!truncate_op) {
496				/*
497				 * Only need to hold the fault mutex in the
498				 * hole punch case.  This prevents races with
499				 * page faults.  Races are not possible in the
500				 * case of truncation.
501				 */
502				mutex_lock(&hugetlb_fault_mutex_table[hash]);
503			}
504
505			/*
506			 * If page is mapped, it was faulted in after being
507			 * unmapped in caller.  Unmap (again) now after taking
508			 * the fault mutex.  The mutex will prevent faults
509			 * until we finish removing the page.
510			 *
511			 * This race can only happen in the hole punch case.
512			 * Getting here in a truncate operation is a bug.
513			 */
514			if (unlikely(page_mapped(page))) {
515				BUG_ON(truncate_op);
516
517				mutex_unlock(&hugetlb_fault_mutex_table[hash]);
518				i_mmap_lock_write(mapping);
519				mutex_lock(&hugetlb_fault_mutex_table[hash]);
520				hugetlb_vmdelete_list(&mapping->i_mmap,
521					index * pages_per_huge_page(h),
522					(index + 1) * pages_per_huge_page(h));
523				i_mmap_unlock_write(mapping);
524			}
525
526			lock_page(page);
527			/*
528			 * We must free the huge page and remove from page
529			 * cache (remove_huge_page) BEFORE removing the
530			 * region/reserve map (hugetlb_unreserve_pages).  In
531			 * rare out of memory conditions, removal of the
532			 * region/reserve map could fail. Correspondingly,
533			 * the subpool and global reserve usage count can need
534			 * to be adjusted.
535			 */
536			VM_BUG_ON(PagePrivate(page));
537			remove_huge_page(page);
538			freed++;
539			if (!truncate_op) {
540				if (unlikely(hugetlb_unreserve_pages(inode,
541							index, index + 1, 1)))
542					hugetlb_fix_reserve_counts(inode);
543			}
544
545			unlock_page(page);
546			if (!truncate_op)
547				mutex_unlock(&hugetlb_fault_mutex_table[hash]);
548		}
549		huge_pagevec_release(&pvec);
550		cond_resched();
551	}
552
553	if (truncate_op)
554		(void)hugetlb_unreserve_pages(inode, start, LONG_MAX, freed);
555}
556
557static void hugetlbfs_evict_inode(struct inode *inode)
558{
559	struct resv_map *resv_map;
560
561	remove_inode_hugepages(inode, 0, LLONG_MAX);
562
563	/*
564	 * Get the resv_map from the address space embedded in the inode.
565	 * This is the address space which points to any resv_map allocated
566	 * at inode creation time.  If this is a device special inode,
567	 * i_mapping may not point to the original address space.
568	 */
569	resv_map = (struct resv_map *)(&inode->i_data)->private_data;
570	/* Only regular and link inodes have associated reserve maps */
571	if (resv_map)
572		resv_map_release(&resv_map->refs);
573	clear_inode(inode);
574}
575
576static int hugetlb_vmtruncate(struct inode *inode, loff_t offset)
577{
578	pgoff_t pgoff;
579	struct address_space *mapping = inode->i_mapping;
580	struct hstate *h = hstate_inode(inode);
581
582	BUG_ON(offset & ~huge_page_mask(h));
583	pgoff = offset >> PAGE_SHIFT;
584
585	i_mmap_lock_write(mapping);
586	i_size_write(inode, offset);
587	if (!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root))
588		hugetlb_vmdelete_list(&mapping->i_mmap, pgoff, 0);
589	i_mmap_unlock_write(mapping);
590	remove_inode_hugepages(inode, offset, LLONG_MAX);
591	return 0;
592}
593
594static long hugetlbfs_punch_hole(struct inode *inode, loff_t offset, loff_t len)
595{
596	struct hstate *h = hstate_inode(inode);
597	loff_t hpage_size = huge_page_size(h);
598	loff_t hole_start, hole_end;
599
600	/*
601	 * For hole punch round up the beginning offset of the hole and
602	 * round down the end.
603	 */
604	hole_start = round_up(offset, hpage_size);
605	hole_end = round_down(offset + len, hpage_size);
606
607	if (hole_end > hole_start) {
608		struct address_space *mapping = inode->i_mapping;
609		struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
610
611		inode_lock(inode);
612
613		/* protected by i_mutex */
614		if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) {
615			inode_unlock(inode);
616			return -EPERM;
617		}
618
619		i_mmap_lock_write(mapping);
620		if (!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root))
621			hugetlb_vmdelete_list(&mapping->i_mmap,
622						hole_start >> PAGE_SHIFT,
623						hole_end  >> PAGE_SHIFT);
624		i_mmap_unlock_write(mapping);
625		remove_inode_hugepages(inode, hole_start, hole_end);
626		inode_unlock(inode);
627	}
628
629	return 0;
630}
631
632static long hugetlbfs_fallocate(struct file *file, int mode, loff_t offset,
633				loff_t len)
634{
635	struct inode *inode = file_inode(file);
636	struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
637	struct address_space *mapping = inode->i_mapping;
638	struct hstate *h = hstate_inode(inode);
639	struct vm_area_struct pseudo_vma;
640	struct mm_struct *mm = current->mm;
641	loff_t hpage_size = huge_page_size(h);
642	unsigned long hpage_shift = huge_page_shift(h);
643	pgoff_t start, index, end;
644	int error;
645	u32 hash;
646
647	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
648		return -EOPNOTSUPP;
649
650	if (mode & FALLOC_FL_PUNCH_HOLE)
651		return hugetlbfs_punch_hole(inode, offset, len);
652
653	/*
654	 * Default preallocate case.
655	 * For this range, start is rounded down and end is rounded up
656	 * as well as being converted to page offsets.
657	 */
658	start = offset >> hpage_shift;
659	end = DIV_ROUND_UP_ULL(offset + len, hpage_size);
660
661	inode_lock(inode);
662
663	/* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
664	error = inode_newsize_ok(inode, offset + len);
665	if (error)
666		goto out;
667
668	if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
669		error = -EPERM;
670		goto out;
671	}
672
673	/*
674	 * Initialize a pseudo vma as this is required by the huge page
675	 * allocation routines.  If NUMA is configured, use page index
676	 * as input to create an allocation policy.
677	 */
678	vma_init(&pseudo_vma, mm);
679	pseudo_vma.vm_flags = (VM_HUGETLB | VM_MAYSHARE | VM_SHARED);
680	pseudo_vma.vm_file = file;
681
682	for (index = start; index < end; index++) {
683		/*
684		 * This is supposed to be the vaddr where the page is being
685		 * faulted in, but we have no vaddr here.
686		 */
687		struct page *page;
688		unsigned long addr;
689		int avoid_reserve = 0;
690
691		cond_resched();
692
693		/*
694		 * fallocate(2) manpage permits EINTR; we may have been
695		 * interrupted because we are using up too much memory.
696		 */
697		if (signal_pending(current)) {
698			error = -EINTR;
699			break;
700		}
701
702		/* Set numa allocation policy based on index */
703		hugetlb_set_vma_policy(&pseudo_vma, inode, index);
704
705		/* addr is the offset within the file (zero based) */
706		addr = index * hpage_size;
707
708		/*
709		 * fault mutex taken here, protects against fault path
710		 * and hole punch.  inode_lock previously taken protects
711		 * against truncation.
712		 */
713		hash = hugetlb_fault_mutex_hash(mapping, index);
714		mutex_lock(&hugetlb_fault_mutex_table[hash]);
715
716		/* See if already present in mapping to avoid alloc/free */
717		page = find_get_page(mapping, index);
718		if (page) {
719			put_page(page);
720			mutex_unlock(&hugetlb_fault_mutex_table[hash]);
721			hugetlb_drop_vma_policy(&pseudo_vma);
722			continue;
723		}
724
725		/* Allocate page and add to page cache */
726		page = alloc_huge_page(&pseudo_vma, addr, avoid_reserve);
727		hugetlb_drop_vma_policy(&pseudo_vma);
728		if (IS_ERR(page)) {
729			mutex_unlock(&hugetlb_fault_mutex_table[hash]);
730			error = PTR_ERR(page);
731			goto out;
732		}
733		clear_huge_page(page, addr, pages_per_huge_page(h));
734		__SetPageUptodate(page);
735		error = huge_add_to_page_cache(page, mapping, index);
736		if (unlikely(error)) {
737			put_page(page);
738			mutex_unlock(&hugetlb_fault_mutex_table[hash]);
739			goto out;
740		}
741
742		mutex_unlock(&hugetlb_fault_mutex_table[hash]);
743
744		set_page_huge_active(page);
745		/*
746		 * unlock_page because locked by add_to_page_cache()
747		 * put_page() due to reference from alloc_huge_page()
748		 */
749		unlock_page(page);
750		put_page(page);
751	}
752
753	if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
754		i_size_write(inode, offset + len);
755	inode->i_ctime = current_time(inode);
756out:
757	inode_unlock(inode);
758	return error;
759}
760
761static int hugetlbfs_setattr(struct dentry *dentry, struct iattr *attr)
762{
763	struct inode *inode = d_inode(dentry);
764	struct hstate *h = hstate_inode(inode);
765	int error;
766	unsigned int ia_valid = attr->ia_valid;
767	struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
768
769	BUG_ON(!inode);
770
771	error = setattr_prepare(dentry, attr);
772	if (error)
773		return error;
774
775	if (ia_valid & ATTR_SIZE) {
776		loff_t oldsize = inode->i_size;
777		loff_t newsize = attr->ia_size;
778
779		if (newsize & ~huge_page_mask(h))
780			return -EINVAL;
781		/* protected by i_mutex */
782		if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
783		    (newsize > oldsize && (info->seals & F_SEAL_GROW)))
784			return -EPERM;
785		error = hugetlb_vmtruncate(inode, newsize);
786		if (error)
787			return error;
788	}
789
790	setattr_copy(inode, attr);
791	mark_inode_dirty(inode);
792	return 0;
793}
794
795static struct inode *hugetlbfs_get_root(struct super_block *sb,
796					struct hugetlbfs_fs_context *ctx)
797{
798	struct inode *inode;
799
800	inode = new_inode(sb);
801	if (inode) {
802		inode->i_ino = get_next_ino();
803		inode->i_mode = S_IFDIR | ctx->mode;
804		inode->i_uid = ctx->uid;
805		inode->i_gid = ctx->gid;
806		inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
807		inode->i_op = &hugetlbfs_dir_inode_operations;
808		inode->i_fop = &simple_dir_operations;
809		/* directory inodes start off with i_nlink == 2 (for "." entry) */
810		inc_nlink(inode);
811		lockdep_annotate_inode_mutex_key(inode);
812	}
813	return inode;
814}
815
816/*
817 * Hugetlbfs is not reclaimable; therefore its i_mmap_rwsem will never
818 * be taken from reclaim -- unlike regular filesystems. This needs an
819 * annotation because huge_pmd_share() does an allocation under hugetlb's
820 * i_mmap_rwsem.
821 */
822static struct lock_class_key hugetlbfs_i_mmap_rwsem_key;
823
824static struct inode *hugetlbfs_get_inode(struct super_block *sb,
825					struct inode *dir,
826					umode_t mode, dev_t dev)
827{
828	struct inode *inode;
829	struct resv_map *resv_map = NULL;
830
831	/*
832	 * Reserve maps are only needed for inodes that can have associated
833	 * page allocations.
834	 */
835	if (S_ISREG(mode) || S_ISLNK(mode)) {
836		resv_map = resv_map_alloc();
837		if (!resv_map)
838			return NULL;
839	}
840
841	inode = new_inode(sb);
842	if (inode) {
843		struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
844
845		inode->i_ino = get_next_ino();
846		inode_init_owner(inode, dir, mode);
847		lockdep_set_class(&inode->i_mapping->i_mmap_rwsem,
848				&hugetlbfs_i_mmap_rwsem_key);
849		inode->i_mapping->a_ops = &hugetlbfs_aops;
850		inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
851		inode->i_mapping->private_data = resv_map;
852		info->seals = F_SEAL_SEAL;
853		switch (mode & S_IFMT) {
854		default:
855			init_special_inode(inode, mode, dev);
856			break;
857		case S_IFREG:
858			inode->i_op = &hugetlbfs_inode_operations;
859			inode->i_fop = &hugetlbfs_file_operations;
860			break;
861		case S_IFDIR:
862			inode->i_op = &hugetlbfs_dir_inode_operations;
863			inode->i_fop = &simple_dir_operations;
864
865			/* directory inodes start off with i_nlink == 2 (for "." entry) */
866			inc_nlink(inode);
867			break;
868		case S_IFLNK:
869			inode->i_op = &page_symlink_inode_operations;
870			inode_nohighmem(inode);
871			break;
872		}
873		lockdep_annotate_inode_mutex_key(inode);
874	} else {
875		if (resv_map)
876			kref_put(&resv_map->refs, resv_map_release);
877	}
878
879	return inode;
880}
881
882/*
883 * File creation. Allocate an inode, and we're done..
884 */
885static int do_hugetlbfs_mknod(struct inode *dir,
886			struct dentry *dentry,
887			umode_t mode,
888			dev_t dev,
889			bool tmpfile)
890{
891	struct inode *inode;
892	int error = -ENOSPC;
893
894	inode = hugetlbfs_get_inode(dir->i_sb, dir, mode, dev);
895	if (inode) {
896		dir->i_ctime = dir->i_mtime = current_time(dir);
897		if (tmpfile) {
898			d_tmpfile(dentry, inode);
899		} else {
900			d_instantiate(dentry, inode);
901			dget(dentry);/* Extra count - pin the dentry in core */
902		}
903		error = 0;
904	}
905	return error;
906}
907
908static int hugetlbfs_mknod(struct inode *dir,
909			struct dentry *dentry, umode_t mode, dev_t dev)
910{
911	return do_hugetlbfs_mknod(dir, dentry, mode, dev, false);
912}
913
914static int hugetlbfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
915{
916	int retval = hugetlbfs_mknod(dir, dentry, mode | S_IFDIR, 0);
917	if (!retval)
918		inc_nlink(dir);
919	return retval;
920}
921
922static int hugetlbfs_create(struct inode *dir, struct dentry *dentry, umode_t mode, bool excl)
923{
924	return hugetlbfs_mknod(dir, dentry, mode | S_IFREG, 0);
925}
926
927static int hugetlbfs_tmpfile(struct inode *dir,
928			struct dentry *dentry, umode_t mode)
929{
930	return do_hugetlbfs_mknod(dir, dentry, mode | S_IFREG, 0, true);
931}
932
933static int hugetlbfs_symlink(struct inode *dir,
934			struct dentry *dentry, const char *symname)
935{
936	struct inode *inode;
937	int error = -ENOSPC;
938
939	inode = hugetlbfs_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0);
940	if (inode) {
941		int l = strlen(symname)+1;
942		error = page_symlink(inode, symname, l);
943		if (!error) {
944			d_instantiate(dentry, inode);
945			dget(dentry);
946		} else
947			iput(inode);
948	}
949	dir->i_ctime = dir->i_mtime = current_time(dir);
950
951	return error;
952}
953
954/*
955 * mark the head page dirty
956 */
957static int hugetlbfs_set_page_dirty(struct page *page)
958{
959	struct page *head = compound_head(page);
960
961	SetPageDirty(head);
962	return 0;
963}
964
965static int hugetlbfs_migrate_page(struct address_space *mapping,
966				struct page *newpage, struct page *page,
967				enum migrate_mode mode)
968{
969	int rc;
970
971	rc = migrate_huge_page_move_mapping(mapping, newpage, page);
972	if (rc != MIGRATEPAGE_SUCCESS)
973		return rc;
974
975	/*
976	 * page_private is subpool pointer in hugetlb pages.  Transfer to
977	 * new page.  PagePrivate is not associated with page_private for
978	 * hugetlb pages and can not be set here as only page_huge_active
979	 * pages can be migrated.
980	 */
981	if (page_private(page)) {
982		set_page_private(newpage, page_private(page));
983		set_page_private(page, 0);
984	}
985
986	if (mode != MIGRATE_SYNC_NO_COPY)
987		migrate_page_copy(newpage, page);
988	else
989		migrate_page_states(newpage, page);
990
991	return MIGRATEPAGE_SUCCESS;
992}
993
994static int hugetlbfs_error_remove_page(struct address_space *mapping,
995				struct page *page)
996{
997	struct inode *inode = mapping->host;
998	pgoff_t index = page->index;
999
1000	remove_huge_page(page);
1001	if (unlikely(hugetlb_unreserve_pages(inode, index, index + 1, 1)))
1002		hugetlb_fix_reserve_counts(inode);
1003
1004	return 0;
1005}
1006
1007/*
1008 * Display the mount options in /proc/mounts.
1009 */
1010static int hugetlbfs_show_options(struct seq_file *m, struct dentry *root)
1011{
1012	struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(root->d_sb);
1013	struct hugepage_subpool *spool = sbinfo->spool;
1014	unsigned long hpage_size = huge_page_size(sbinfo->hstate);
1015	unsigned hpage_shift = huge_page_shift(sbinfo->hstate);
1016	char mod;
1017
1018	if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
1019		seq_printf(m, ",uid=%u",
1020			   from_kuid_munged(&init_user_ns, sbinfo->uid));
1021	if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
1022		seq_printf(m, ",gid=%u",
1023			   from_kgid_munged(&init_user_ns, sbinfo->gid));
1024	if (sbinfo->mode != 0755)
1025		seq_printf(m, ",mode=%o", sbinfo->mode);
1026	if (sbinfo->max_inodes != -1)
1027		seq_printf(m, ",nr_inodes=%lu", sbinfo->max_inodes);
1028
1029	hpage_size /= 1024;
1030	mod = 'K';
1031	if (hpage_size >= 1024) {
1032		hpage_size /= 1024;
1033		mod = 'M';
1034	}
1035	seq_printf(m, ",pagesize=%lu%c", hpage_size, mod);
1036	if (spool) {
1037		if (spool->max_hpages != -1)
1038			seq_printf(m, ",size=%llu",
1039				   (unsigned long long)spool->max_hpages << hpage_shift);
1040		if (spool->min_hpages != -1)
1041			seq_printf(m, ",min_size=%llu",
1042				   (unsigned long long)spool->min_hpages << hpage_shift);
1043	}
1044	return 0;
1045}
1046
1047static int hugetlbfs_statfs(struct dentry *dentry, struct kstatfs *buf)
1048{
1049	struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(dentry->d_sb);
1050	struct hstate *h = hstate_inode(d_inode(dentry));
1051
1052	buf->f_type = HUGETLBFS_MAGIC;
1053	buf->f_bsize = huge_page_size(h);
1054	if (sbinfo) {
1055		spin_lock(&sbinfo->stat_lock);
1056		/* If no limits set, just report 0 for max/free/used
1057		 * blocks, like simple_statfs() */
1058		if (sbinfo->spool) {
1059			long free_pages;
1060
1061			spin_lock(&sbinfo->spool->lock);
1062			buf->f_blocks = sbinfo->spool->max_hpages;
1063			free_pages = sbinfo->spool->max_hpages
1064				- sbinfo->spool->used_hpages;
1065			buf->f_bavail = buf->f_bfree = free_pages;
1066			spin_unlock(&sbinfo->spool->lock);
1067			buf->f_files = sbinfo->max_inodes;
1068			buf->f_ffree = sbinfo->free_inodes;
1069		}
1070		spin_unlock(&sbinfo->stat_lock);
1071	}
1072	buf->f_namelen = NAME_MAX;
1073	return 0;
1074}
1075
1076static void hugetlbfs_put_super(struct super_block *sb)
1077{
1078	struct hugetlbfs_sb_info *sbi = HUGETLBFS_SB(sb);
1079
1080	if (sbi) {
1081		sb->s_fs_info = NULL;
1082
1083		if (sbi->spool)
1084			hugepage_put_subpool(sbi->spool);
1085
1086		kfree(sbi);
1087	}
1088}
1089
1090static inline int hugetlbfs_dec_free_inodes(struct hugetlbfs_sb_info *sbinfo)
1091{
1092	if (sbinfo->free_inodes >= 0) {
1093		spin_lock(&sbinfo->stat_lock);
1094		if (unlikely(!sbinfo->free_inodes)) {
1095			spin_unlock(&sbinfo->stat_lock);
1096			return 0;
1097		}
1098		sbinfo->free_inodes--;
1099		spin_unlock(&sbinfo->stat_lock);
1100	}
1101
1102	return 1;
1103}
1104
1105static void hugetlbfs_inc_free_inodes(struct hugetlbfs_sb_info *sbinfo)
1106{
1107	if (sbinfo->free_inodes >= 0) {
1108		spin_lock(&sbinfo->stat_lock);
1109		sbinfo->free_inodes++;
1110		spin_unlock(&sbinfo->stat_lock);
1111	}
1112}
1113
1114
1115static struct kmem_cache *hugetlbfs_inode_cachep;
1116
1117static struct inode *hugetlbfs_alloc_inode(struct super_block *sb)
1118{
1119	struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(sb);
1120	struct hugetlbfs_inode_info *p;
1121
1122	if (unlikely(!hugetlbfs_dec_free_inodes(sbinfo)))
1123		return NULL;
1124	p = kmem_cache_alloc(hugetlbfs_inode_cachep, GFP_KERNEL);
1125	if (unlikely(!p)) {
1126		hugetlbfs_inc_free_inodes(sbinfo);
1127		return NULL;
1128	}
1129
1130	/*
1131	 * Any time after allocation, hugetlbfs_destroy_inode can be called
1132	 * for the inode.  mpol_free_shared_policy is unconditionally called
1133	 * as part of hugetlbfs_destroy_inode.  So, initialize policy here
1134	 * in case of a quick call to destroy.
1135	 *
1136	 * Note that the policy is initialized even if we are creating a
1137	 * private inode.  This simplifies hugetlbfs_destroy_inode.
1138	 */
1139	mpol_shared_policy_init(&p->policy, NULL);
1140
1141	return &p->vfs_inode;
1142}
1143
1144static void hugetlbfs_free_inode(struct inode *inode)
1145{
1146	kmem_cache_free(hugetlbfs_inode_cachep, HUGETLBFS_I(inode));
1147}
1148
1149static void hugetlbfs_destroy_inode(struct inode *inode)
1150{
1151	hugetlbfs_inc_free_inodes(HUGETLBFS_SB(inode->i_sb));
1152	mpol_free_shared_policy(&HUGETLBFS_I(inode)->policy);
1153}
1154
1155static const struct address_space_operations hugetlbfs_aops = {
1156	.write_begin	= hugetlbfs_write_begin,
1157	.write_end	= hugetlbfs_write_end,
1158	.set_page_dirty	= hugetlbfs_set_page_dirty,
1159	.migratepage    = hugetlbfs_migrate_page,
1160	.error_remove_page	= hugetlbfs_error_remove_page,
1161};
1162
1163
1164static void init_once(void *foo)
1165{
1166	struct hugetlbfs_inode_info *ei = (struct hugetlbfs_inode_info *)foo;
1167
1168	inode_init_once(&ei->vfs_inode);
1169}
1170
1171const struct file_operations hugetlbfs_file_operations = {
1172	.read_iter		= hugetlbfs_read_iter,
1173	.mmap			= hugetlbfs_file_mmap,
1174	.fsync			= noop_fsync,
1175	.get_unmapped_area	= hugetlb_get_unmapped_area,
1176	.llseek			= default_llseek,
1177	.fallocate		= hugetlbfs_fallocate,
1178};
1179
1180static const struct inode_operations hugetlbfs_dir_inode_operations = {
1181	.create		= hugetlbfs_create,
1182	.lookup		= simple_lookup,
1183	.link		= simple_link,
1184	.unlink		= simple_unlink,
1185	.symlink	= hugetlbfs_symlink,
1186	.mkdir		= hugetlbfs_mkdir,
1187	.rmdir		= simple_rmdir,
1188	.mknod		= hugetlbfs_mknod,
1189	.rename		= simple_rename,
1190	.setattr	= hugetlbfs_setattr,
1191	.tmpfile	= hugetlbfs_tmpfile,
1192};
1193
1194static const struct inode_operations hugetlbfs_inode_operations = {
1195	.setattr	= hugetlbfs_setattr,
1196};
1197
1198static const struct super_operations hugetlbfs_ops = {
1199	.alloc_inode    = hugetlbfs_alloc_inode,
1200	.free_inode     = hugetlbfs_free_inode,
1201	.destroy_inode  = hugetlbfs_destroy_inode,
1202	.evict_inode	= hugetlbfs_evict_inode,
1203	.statfs		= hugetlbfs_statfs,
1204	.put_super	= hugetlbfs_put_super,
1205	.show_options	= hugetlbfs_show_options,
1206};
1207
1208/*
1209 * Convert size option passed from command line to number of huge pages
1210 * in the pool specified by hstate.  Size option could be in bytes
1211 * (val_type == SIZE_STD) or percentage of the pool (val_type == SIZE_PERCENT).
1212 */
1213static long
1214hugetlbfs_size_to_hpages(struct hstate *h, unsigned long long size_opt,
1215			 enum hugetlbfs_size_type val_type)
1216{
1217	if (val_type == NO_SIZE)
1218		return -1;
1219
1220	if (val_type == SIZE_PERCENT) {
1221		size_opt <<= huge_page_shift(h);
1222		size_opt *= h->max_huge_pages;
1223		do_div(size_opt, 100);
1224	}
1225
1226	size_opt >>= huge_page_shift(h);
1227	return size_opt;
1228}
1229
1230/*
1231 * Parse one mount parameter.
1232 */
1233static int hugetlbfs_parse_param(struct fs_context *fc, struct fs_parameter *param)
1234{
1235	struct hugetlbfs_fs_context *ctx = fc->fs_private;
1236	struct fs_parse_result result;
1237	char *rest;
1238	unsigned long ps;
1239	int opt;
1240
1241	opt = fs_parse(fc, hugetlb_fs_parameters, param, &result);
1242	if (opt < 0)
1243		return opt;
1244
1245	switch (opt) {
1246	case Opt_uid:
1247		ctx->uid = make_kuid(current_user_ns(), result.uint_32);
1248		if (!uid_valid(ctx->uid))
1249			goto bad_val;
1250		return 0;
1251
1252	case Opt_gid:
1253		ctx->gid = make_kgid(current_user_ns(), result.uint_32);
1254		if (!gid_valid(ctx->gid))
1255			goto bad_val;
1256		return 0;
1257
1258	case Opt_mode:
1259		ctx->mode = result.uint_32 & 01777U;
1260		return 0;
1261
1262	case Opt_size:
1263		/* memparse() will accept a K/M/G without a digit */
1264		if (!param->string || !isdigit(param->string[0]))
1265			goto bad_val;
1266		ctx->max_size_opt = memparse(param->string, &rest);
1267		ctx->max_val_type = SIZE_STD;
1268		if (*rest == '%')
1269			ctx->max_val_type = SIZE_PERCENT;
1270		return 0;
1271
1272	case Opt_nr_inodes:
1273		/* memparse() will accept a K/M/G without a digit */
1274		if (!param->string || !isdigit(param->string[0]))
1275			goto bad_val;
1276		ctx->nr_inodes = memparse(param->string, &rest);
1277		return 0;
1278
1279	case Opt_pagesize:
1280		ps = memparse(param->string, &rest);
1281		ctx->hstate = size_to_hstate(ps);
1282		if (!ctx->hstate) {
1283			pr_err("Unsupported page size %lu MB\n", ps >> 20);
1284			return -EINVAL;
1285		}
1286		return 0;
1287
1288	case Opt_min_size:
1289		/* memparse() will accept a K/M/G without a digit */
1290		if (!param->string || !isdigit(param->string[0]))
1291			goto bad_val;
1292		ctx->min_size_opt = memparse(param->string, &rest);
1293		ctx->min_val_type = SIZE_STD;
1294		if (*rest == '%')
1295			ctx->min_val_type = SIZE_PERCENT;
1296		return 0;
1297
1298	default:
1299		return -EINVAL;
1300	}
1301
1302bad_val:
1303	return invalfc(fc, "Bad value '%s' for mount option '%s'\n",
1304		      param->string, param->key);
1305}
1306
1307/*
1308 * Validate the parsed options.
1309 */
1310static int hugetlbfs_validate(struct fs_context *fc)
1311{
1312	struct hugetlbfs_fs_context *ctx = fc->fs_private;
1313
1314	/*
1315	 * Use huge page pool size (in hstate) to convert the size
1316	 * options to number of huge pages.  If NO_SIZE, -1 is returned.
1317	 */
1318	ctx->max_hpages = hugetlbfs_size_to_hpages(ctx->hstate,
1319						   ctx->max_size_opt,
1320						   ctx->max_val_type);
1321	ctx->min_hpages = hugetlbfs_size_to_hpages(ctx->hstate,
1322						   ctx->min_size_opt,
1323						   ctx->min_val_type);
1324
1325	/*
1326	 * If max_size was specified, then min_size must be smaller
1327	 */
1328	if (ctx->max_val_type > NO_SIZE &&
1329	    ctx->min_hpages > ctx->max_hpages) {
1330		pr_err("Minimum size can not be greater than maximum size\n");
1331		return -EINVAL;
1332	}
1333
1334	return 0;
1335}
1336
1337static int
1338hugetlbfs_fill_super(struct super_block *sb, struct fs_context *fc)
1339{
1340	struct hugetlbfs_fs_context *ctx = fc->fs_private;
1341	struct hugetlbfs_sb_info *sbinfo;
1342
1343	sbinfo = kmalloc(sizeof(struct hugetlbfs_sb_info), GFP_KERNEL);
1344	if (!sbinfo)
1345		return -ENOMEM;
1346	sb->s_fs_info = sbinfo;
1347	spin_lock_init(&sbinfo->stat_lock);
1348	sbinfo->hstate		= ctx->hstate;
1349	sbinfo->max_inodes	= ctx->nr_inodes;
1350	sbinfo->free_inodes	= ctx->nr_inodes;
1351	sbinfo->spool		= NULL;
1352	sbinfo->uid		= ctx->uid;
1353	sbinfo->gid		= ctx->gid;
1354	sbinfo->mode		= ctx->mode;
1355
1356	/*
1357	 * Allocate and initialize subpool if maximum or minimum size is
1358	 * specified.  Any needed reservations (for minimim size) are taken
1359	 * taken when the subpool is created.
1360	 */
1361	if (ctx->max_hpages != -1 || ctx->min_hpages != -1) {
1362		sbinfo->spool = hugepage_new_subpool(ctx->hstate,
1363						     ctx->max_hpages,
1364						     ctx->min_hpages);
1365		if (!sbinfo->spool)
1366			goto out_free;
1367	}
1368	sb->s_maxbytes = MAX_LFS_FILESIZE;
1369	sb->s_blocksize = huge_page_size(ctx->hstate);
1370	sb->s_blocksize_bits = huge_page_shift(ctx->hstate);
1371	sb->s_magic = HUGETLBFS_MAGIC;
1372	sb->s_op = &hugetlbfs_ops;
1373	sb->s_time_gran = 1;
1374
1375	/*
1376	 * Due to the special and limited functionality of hugetlbfs, it does
1377	 * not work well as a stacking filesystem.
1378	 */
1379	sb->s_stack_depth = FILESYSTEM_MAX_STACK_DEPTH;
1380	sb->s_root = d_make_root(hugetlbfs_get_root(sb, ctx));
1381	if (!sb->s_root)
1382		goto out_free;
1383	return 0;
1384out_free:
1385	kfree(sbinfo->spool);
1386	kfree(sbinfo);
1387	return -ENOMEM;
1388}
1389
1390static int hugetlbfs_get_tree(struct fs_context *fc)
1391{
1392	int err = hugetlbfs_validate(fc);
1393	if (err)
1394		return err;
1395	return get_tree_nodev(fc, hugetlbfs_fill_super);
1396}
1397
1398static void hugetlbfs_fs_context_free(struct fs_context *fc)
1399{
1400	kfree(fc->fs_private);
1401}
1402
1403static const struct fs_context_operations hugetlbfs_fs_context_ops = {
1404	.free		= hugetlbfs_fs_context_free,
1405	.parse_param	= hugetlbfs_parse_param,
1406	.get_tree	= hugetlbfs_get_tree,
1407};
1408
1409static int hugetlbfs_init_fs_context(struct fs_context *fc)
1410{
1411	struct hugetlbfs_fs_context *ctx;
1412
1413	ctx = kzalloc(sizeof(struct hugetlbfs_fs_context), GFP_KERNEL);
1414	if (!ctx)
1415		return -ENOMEM;
1416
1417	ctx->max_hpages	= -1; /* No limit on size by default */
1418	ctx->nr_inodes	= -1; /* No limit on number of inodes by default */
1419	ctx->uid	= current_fsuid();
1420	ctx->gid	= current_fsgid();
1421	ctx->mode	= 0755;
1422	ctx->hstate	= &default_hstate;
1423	ctx->min_hpages	= -1; /* No default minimum size */
1424	ctx->max_val_type = NO_SIZE;
1425	ctx->min_val_type = NO_SIZE;
1426	fc->fs_private = ctx;
1427	fc->ops	= &hugetlbfs_fs_context_ops;
1428	return 0;
1429}
1430
1431static struct file_system_type hugetlbfs_fs_type = {
1432	.name			= "hugetlbfs",
1433	.init_fs_context	= hugetlbfs_init_fs_context,
1434	.parameters		= hugetlb_fs_parameters,
1435	.kill_sb		= kill_litter_super,
1436};
1437
1438static struct vfsmount *hugetlbfs_vfsmount[HUGE_MAX_HSTATE];
1439
1440static int can_do_hugetlb_shm(void)
1441{
1442	kgid_t shm_group;
1443	shm_group = make_kgid(&init_user_ns, sysctl_hugetlb_shm_group);
1444	return capable(CAP_IPC_LOCK) || in_group_p(shm_group);
1445}
1446
1447static int get_hstate_idx(int page_size_log)
1448{
1449	struct hstate *h = hstate_sizelog(page_size_log);
1450
1451	if (!h)
1452		return -1;
1453	return h - hstates;
1454}
1455
1456/*
1457 * Note that size should be aligned to proper hugepage size in caller side,
1458 * otherwise hugetlb_reserve_pages reserves one less hugepages than intended.
1459 */
1460struct file *hugetlb_file_setup(const char *name, size_t size,
1461				vm_flags_t acctflag, struct user_struct **user,
1462				int creat_flags, int page_size_log)
1463{
1464	struct inode *inode;
1465	struct vfsmount *mnt;
1466	int hstate_idx;
1467	struct file *file;
1468
1469	hstate_idx = get_hstate_idx(page_size_log);
1470	if (hstate_idx < 0)
1471		return ERR_PTR(-ENODEV);
1472
1473	*user = NULL;
1474	mnt = hugetlbfs_vfsmount[hstate_idx];
1475	if (!mnt)
1476		return ERR_PTR(-ENOENT);
1477
1478	if (creat_flags == HUGETLB_SHMFS_INODE && !can_do_hugetlb_shm()) {
1479		*user = current_user();
1480		if (user_shm_lock(size, *user)) {
1481			task_lock(current);
1482			pr_warn_once("%s (%d): Using mlock ulimits for SHM_HUGETLB is deprecated\n",
1483				current->comm, current->pid);
1484			task_unlock(current);
1485		} else {
1486			*user = NULL;
1487			return ERR_PTR(-EPERM);
1488		}
1489	}
1490
1491	file = ERR_PTR(-ENOSPC);
1492	inode = hugetlbfs_get_inode(mnt->mnt_sb, NULL, S_IFREG | S_IRWXUGO, 0);
1493	if (!inode)
1494		goto out;
1495	if (creat_flags == HUGETLB_SHMFS_INODE)
1496		inode->i_flags |= S_PRIVATE;
1497
1498	inode->i_size = size;
1499	clear_nlink(inode);
1500
1501	if (hugetlb_reserve_pages(inode, 0,
1502			size >> huge_page_shift(hstate_inode(inode)), NULL,
1503			acctflag))
1504		file = ERR_PTR(-ENOMEM);
1505	else
1506		file = alloc_file_pseudo(inode, mnt, name, O_RDWR,
1507					&hugetlbfs_file_operations);
1508	if (!IS_ERR(file))
1509		return file;
1510
1511	iput(inode);
1512out:
1513	if (*user) {
1514		user_shm_unlock(size, *user);
1515		*user = NULL;
1516	}
1517	return file;
1518}
1519
1520static struct vfsmount *__init mount_one_hugetlbfs(struct hstate *h)
1521{
1522	struct fs_context *fc;
1523	struct vfsmount *mnt;
1524
1525	fc = fs_context_for_mount(&hugetlbfs_fs_type, SB_KERNMOUNT);
1526	if (IS_ERR(fc)) {
1527		mnt = ERR_CAST(fc);
1528	} else {
1529		struct hugetlbfs_fs_context *ctx = fc->fs_private;
1530		ctx->hstate = h;
1531		mnt = fc_mount(fc);
1532		put_fs_context(fc);
1533	}
1534	if (IS_ERR(mnt))
1535		pr_err("Cannot mount internal hugetlbfs for page size %uK",
1536		       1U << (h->order + PAGE_SHIFT - 10));
1537	return mnt;
1538}
1539
1540static int __init init_hugetlbfs_fs(void)
1541{
1542	struct vfsmount *mnt;
1543	struct hstate *h;
1544	int error;
1545	int i;
1546
1547	if (!hugepages_supported()) {
1548		pr_info("disabling because there are no supported hugepage sizes\n");
1549		return -ENOTSUPP;
1550	}
1551
1552	error = -ENOMEM;
1553	hugetlbfs_inode_cachep = kmem_cache_create("hugetlbfs_inode_cache",
1554					sizeof(struct hugetlbfs_inode_info),
1555					0, SLAB_ACCOUNT, init_once);
1556	if (hugetlbfs_inode_cachep == NULL)
1557		goto out;
1558
1559	error = register_filesystem(&hugetlbfs_fs_type);
1560	if (error)
1561		goto out_free;
1562
1563	/* default hstate mount is required */
1564	mnt = mount_one_hugetlbfs(&hstates[default_hstate_idx]);
1565	if (IS_ERR(mnt)) {
1566		error = PTR_ERR(mnt);
1567		goto out_unreg;
1568	}
1569	hugetlbfs_vfsmount[default_hstate_idx] = mnt;
1570
1571	/* other hstates are optional */
1572	i = 0;
1573	for_each_hstate(h) {
1574		if (i == default_hstate_idx) {
1575			i++;
1576			continue;
1577		}
1578
1579		mnt = mount_one_hugetlbfs(h);
1580		if (IS_ERR(mnt))
1581			hugetlbfs_vfsmount[i] = NULL;
1582		else
1583			hugetlbfs_vfsmount[i] = mnt;
1584		i++;
1585	}
1586
1587	return 0;
1588
1589 out_unreg:
1590	(void)unregister_filesystem(&hugetlbfs_fs_type);
1591 out_free:
1592	kmem_cache_destroy(hugetlbfs_inode_cachep);
1593 out:
1594	return error;
1595}
1596fs_initcall(init_hugetlbfs_fs)
1597