1/* 2 * hugetlbpage-backed filesystem. Based on ramfs. 3 * 4 * Nadia Yvette Chambers, 2002 5 * 6 * Copyright (C) 2002 Linus Torvalds. 7 * License: GPL 8 */ 9 10#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 11 12#include <linux/thread_info.h> 13#include <asm/current.h> 14#include <linux/sched/signal.h> /* remove ASAP */ 15#include <linux/falloc.h> 16#include <linux/fs.h> 17#include <linux/mount.h> 18#include <linux/file.h> 19#include <linux/kernel.h> 20#include <linux/writeback.h> 21#include <linux/pagemap.h> 22#include <linux/highmem.h> 23#include <linux/init.h> 24#include <linux/string.h> 25#include <linux/capability.h> 26#include <linux/ctype.h> 27#include <linux/backing-dev.h> 28#include <linux/hugetlb.h> 29#include <linux/pagevec.h> 30#include <linux/fs_parser.h> 31#include <linux/mman.h> 32#include <linux/slab.h> 33#include <linux/dnotify.h> 34#include <linux/statfs.h> 35#include <linux/security.h> 36#include <linux/magic.h> 37#include <linux/migrate.h> 38#include <linux/uio.h> 39 40#include <linux/uaccess.h> 41#include <linux/sched/mm.h> 42 43static const struct super_operations hugetlbfs_ops; 44static const struct address_space_operations hugetlbfs_aops; 45const struct file_operations hugetlbfs_file_operations; 46static const struct inode_operations hugetlbfs_dir_inode_operations; 47static const struct inode_operations hugetlbfs_inode_operations; 48 49enum hugetlbfs_size_type { NO_SIZE, SIZE_STD, SIZE_PERCENT }; 50 51struct hugetlbfs_fs_context { 52 struct hstate *hstate; 53 unsigned long long max_size_opt; 54 unsigned long long min_size_opt; 55 long max_hpages; 56 long nr_inodes; 57 long min_hpages; 58 enum hugetlbfs_size_type max_val_type; 59 enum hugetlbfs_size_type min_val_type; 60 kuid_t uid; 61 kgid_t gid; 62 umode_t mode; 63}; 64 65int sysctl_hugetlb_shm_group; 66 67enum hugetlb_param { 68 Opt_gid, 69 Opt_min_size, 70 Opt_mode, 71 Opt_nr_inodes, 72 Opt_pagesize, 73 Opt_size, 74 Opt_uid, 75}; 76 77static const struct fs_parameter_spec hugetlb_fs_parameters[] = { 78 fsparam_u32 ("gid", Opt_gid), 79 fsparam_string("min_size", Opt_min_size), 80 fsparam_u32oct("mode", Opt_mode), 81 fsparam_string("nr_inodes", Opt_nr_inodes), 82 fsparam_string("pagesize", Opt_pagesize), 83 fsparam_string("size", Opt_size), 84 fsparam_u32 ("uid", Opt_uid), 85 {} 86}; 87 88#ifdef CONFIG_NUMA 89static inline void hugetlb_set_vma_policy(struct vm_area_struct *vma, 90 struct inode *inode, pgoff_t index) 91{ 92 vma->vm_policy = mpol_shared_policy_lookup(&HUGETLBFS_I(inode)->policy, 93 index); 94} 95 96static inline void hugetlb_drop_vma_policy(struct vm_area_struct *vma) 97{ 98 mpol_cond_put(vma->vm_policy); 99} 100#else 101static inline void hugetlb_set_vma_policy(struct vm_area_struct *vma, 102 struct inode *inode, pgoff_t index) 103{ 104} 105 106static inline void hugetlb_drop_vma_policy(struct vm_area_struct *vma) 107{ 108} 109#endif 110 111static void huge_pagevec_release(struct pagevec *pvec) 112{ 113 int i; 114 115 for (i = 0; i < pagevec_count(pvec); ++i) 116 put_page(pvec->pages[i]); 117 118 pagevec_reinit(pvec); 119} 120 121/* 122 * Mask used when checking the page offset value passed in via system 123 * calls. This value will be converted to a loff_t which is signed. 124 * Therefore, we want to check the upper PAGE_SHIFT + 1 bits of the 125 * value. The extra bit (- 1 in the shift value) is to take the sign 126 * bit into account. 127 */ 128#define PGOFF_LOFFT_MAX \ 129 (((1UL << (PAGE_SHIFT + 1)) - 1) << (BITS_PER_LONG - (PAGE_SHIFT + 1))) 130 131static int hugetlbfs_file_mmap(struct file *file, struct vm_area_struct *vma) 132{ 133 struct inode *inode = file_inode(file); 134 struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode); 135 loff_t len, vma_len; 136 int ret; 137 struct hstate *h = hstate_file(file); 138 139 /* 140 * vma address alignment (but not the pgoff alignment) has 141 * already been checked by prepare_hugepage_range. If you add 142 * any error returns here, do so after setting VM_HUGETLB, so 143 * is_vm_hugetlb_page tests below unmap_region go the right 144 * way when do_mmap unwinds (may be important on powerpc 145 * and ia64). 146 */ 147 vma->vm_flags |= VM_HUGETLB | VM_DONTEXPAND; 148 vma->vm_ops = &hugetlb_vm_ops; 149 150 ret = seal_check_future_write(info->seals, vma); 151 if (ret) 152 return ret; 153 154 /* 155 * page based offset in vm_pgoff could be sufficiently large to 156 * overflow a loff_t when converted to byte offset. This can 157 * only happen on architectures where sizeof(loff_t) == 158 * sizeof(unsigned long). So, only check in those instances. 159 */ 160 if (sizeof(unsigned long) == sizeof(loff_t)) { 161 if (vma->vm_pgoff & PGOFF_LOFFT_MAX) 162 return -EINVAL; 163 } 164 165 /* must be huge page aligned */ 166 if (vma->vm_pgoff & (~huge_page_mask(h) >> PAGE_SHIFT)) 167 return -EINVAL; 168 169 vma_len = (loff_t)(vma->vm_end - vma->vm_start); 170 len = vma_len + ((loff_t)vma->vm_pgoff << PAGE_SHIFT); 171 /* check for overflow */ 172 if (len < vma_len) 173 return -EINVAL; 174 175 inode_lock(inode); 176 file_accessed(file); 177 178 ret = -ENOMEM; 179 if (hugetlb_reserve_pages(inode, 180 vma->vm_pgoff >> huge_page_order(h), 181 len >> huge_page_shift(h), vma, 182 vma->vm_flags)) 183 goto out; 184 185 ret = 0; 186 if (vma->vm_flags & VM_WRITE && inode->i_size < len) 187 i_size_write(inode, len); 188out: 189 inode_unlock(inode); 190 191 return ret; 192} 193 194/* 195 * Called under mmap_write_lock(mm). 196 */ 197 198#ifndef HAVE_ARCH_HUGETLB_UNMAPPED_AREA 199static unsigned long 200hugetlb_get_unmapped_area_bottomup(struct file *file, unsigned long addr, 201 unsigned long len, unsigned long pgoff, unsigned long flags) 202{ 203 struct hstate *h = hstate_file(file); 204 struct vm_unmapped_area_info info; 205 206 info.flags = 0; 207 info.length = len; 208 info.low_limit = current->mm->mmap_base; 209 info.high_limit = arch_get_mmap_end(addr); 210 info.align_mask = PAGE_MASK & ~huge_page_mask(h); 211 info.align_offset = 0; 212 return vm_unmapped_area(&info); 213} 214 215static unsigned long 216hugetlb_get_unmapped_area_topdown(struct file *file, unsigned long addr, 217 unsigned long len, unsigned long pgoff, unsigned long flags) 218{ 219 struct hstate *h = hstate_file(file); 220 struct vm_unmapped_area_info info; 221 222 info.flags = VM_UNMAPPED_AREA_TOPDOWN; 223 info.length = len; 224 info.low_limit = max(PAGE_SIZE, mmap_min_addr); 225 info.high_limit = arch_get_mmap_base(addr, current->mm->mmap_base); 226 info.align_mask = PAGE_MASK & ~huge_page_mask(h); 227 info.align_offset = 0; 228 addr = vm_unmapped_area(&info); 229 230 /* 231 * A failed mmap() very likely causes application failure, 232 * so fall back to the bottom-up function here. This scenario 233 * can happen with large stack limits and large mmap() 234 * allocations. 235 */ 236 if (unlikely(offset_in_page(addr))) { 237 VM_BUG_ON(addr != -ENOMEM); 238 info.flags = 0; 239 info.low_limit = current->mm->mmap_base; 240 info.high_limit = arch_get_mmap_end(addr); 241 addr = vm_unmapped_area(&info); 242 } 243 244 return addr; 245} 246 247static unsigned long 248hugetlb_get_unmapped_area(struct file *file, unsigned long addr, 249 unsigned long len, unsigned long pgoff, unsigned long flags) 250{ 251 struct mm_struct *mm = current->mm; 252 struct vm_area_struct *vma; 253 struct hstate *h = hstate_file(file); 254 const unsigned long mmap_end = arch_get_mmap_end(addr); 255 256 if (len & ~huge_page_mask(h)) 257 return -EINVAL; 258 if (len > TASK_SIZE) 259 return -ENOMEM; 260 261 if (flags & MAP_FIXED) { 262 if (prepare_hugepage_range(file, addr, len)) 263 return -EINVAL; 264 return addr; 265 } 266 267 if (addr) { 268 addr = ALIGN(addr, huge_page_size(h)); 269 vma = find_vma(mm, addr); 270 if (mmap_end - len >= addr && 271 (!vma || addr + len <= vm_start_gap(vma))) 272 return addr; 273 } 274 275 /* 276 * Use mm->get_unmapped_area value as a hint to use topdown routine. 277 * If architectures have special needs, they should define their own 278 * version of hugetlb_get_unmapped_area. 279 */ 280 if (mm->get_unmapped_area == arch_get_unmapped_area_topdown) 281 return hugetlb_get_unmapped_area_topdown(file, addr, len, 282 pgoff, flags); 283 return hugetlb_get_unmapped_area_bottomup(file, addr, len, 284 pgoff, flags); 285} 286#endif 287 288static size_t 289hugetlbfs_read_actor(struct page *page, unsigned long offset, 290 struct iov_iter *to, unsigned long size) 291{ 292 size_t copied = 0; 293 int i, chunksize; 294 295 /* Find which 4k chunk and offset with in that chunk */ 296 i = offset >> PAGE_SHIFT; 297 offset = offset & ~PAGE_MASK; 298 299 while (size) { 300 size_t n; 301 chunksize = PAGE_SIZE; 302 if (offset) 303 chunksize -= offset; 304 if (chunksize > size) 305 chunksize = size; 306 n = copy_page_to_iter(&page[i], offset, chunksize, to); 307 copied += n; 308 if (n != chunksize) 309 return copied; 310 offset = 0; 311 size -= chunksize; 312 i++; 313 } 314 return copied; 315} 316 317/* 318 * Support for read() - Find the page attached to f_mapping and copy out the 319 * data. Its *very* similar to do_generic_mapping_read(), we can't use that 320 * since it has PAGE_SIZE assumptions. 321 */ 322static ssize_t hugetlbfs_read_iter(struct kiocb *iocb, struct iov_iter *to) 323{ 324 struct file *file = iocb->ki_filp; 325 struct hstate *h = hstate_file(file); 326 struct address_space *mapping = file->f_mapping; 327 struct inode *inode = mapping->host; 328 unsigned long index = iocb->ki_pos >> huge_page_shift(h); 329 unsigned long offset = iocb->ki_pos & ~huge_page_mask(h); 330 unsigned long end_index; 331 loff_t isize; 332 ssize_t retval = 0; 333 334 while (iov_iter_count(to)) { 335 struct page *page; 336 size_t nr, copied; 337 338 /* nr is the maximum number of bytes to copy from this page */ 339 nr = huge_page_size(h); 340 isize = i_size_read(inode); 341 if (!isize) 342 break; 343 end_index = (isize - 1) >> huge_page_shift(h); 344 if (index > end_index) 345 break; 346 if (index == end_index) { 347 nr = ((isize - 1) & ~huge_page_mask(h)) + 1; 348 if (nr <= offset) 349 break; 350 } 351 nr = nr - offset; 352 353 /* Find the page */ 354 page = find_lock_page(mapping, index); 355 if (unlikely(page == NULL)) { 356 /* 357 * We have a HOLE, zero out the user-buffer for the 358 * length of the hole or request. 359 */ 360 copied = iov_iter_zero(nr, to); 361 } else { 362 unlock_page(page); 363 364 /* 365 * We have the page, copy it to user space buffer. 366 */ 367 copied = hugetlbfs_read_actor(page, offset, to, nr); 368 put_page(page); 369 } 370 offset += copied; 371 retval += copied; 372 if (copied != nr && iov_iter_count(to)) { 373 if (!retval) 374 retval = -EFAULT; 375 break; 376 } 377 index += offset >> huge_page_shift(h); 378 offset &= ~huge_page_mask(h); 379 } 380 iocb->ki_pos = ((loff_t)index << huge_page_shift(h)) + offset; 381 return retval; 382} 383 384static int hugetlbfs_write_begin(struct file *file, 385 struct address_space *mapping, 386 loff_t pos, unsigned len, unsigned flags, 387 struct page **pagep, void **fsdata) 388{ 389 return -EINVAL; 390} 391 392static int hugetlbfs_write_end(struct file *file, struct address_space *mapping, 393 loff_t pos, unsigned len, unsigned copied, 394 struct page *page, void *fsdata) 395{ 396 BUG(); 397 return -EINVAL; 398} 399 400static void remove_huge_page(struct page *page) 401{ 402 ClearPageDirty(page); 403 ClearPageUptodate(page); 404 delete_from_page_cache(page); 405} 406 407static void 408hugetlb_vmdelete_list(struct rb_root_cached *root, pgoff_t start, pgoff_t end) 409{ 410 struct vm_area_struct *vma; 411 412 /* 413 * end == 0 indicates that the entire range after 414 * start should be unmapped. 415 */ 416 vma_interval_tree_foreach(vma, root, start, end ? end : ULONG_MAX) { 417 unsigned long v_offset; 418 unsigned long v_end; 419 420 /* 421 * Can the expression below overflow on 32-bit arches? 422 * No, because the interval tree returns us only those vmas 423 * which overlap the truncated area starting at pgoff, 424 * and no vma on a 32-bit arch can span beyond the 4GB. 425 */ 426 if (vma->vm_pgoff < start) 427 v_offset = (start - vma->vm_pgoff) << PAGE_SHIFT; 428 else 429 v_offset = 0; 430 431 if (!end) 432 v_end = vma->vm_end; 433 else { 434 v_end = ((end - vma->vm_pgoff) << PAGE_SHIFT) 435 + vma->vm_start; 436 if (v_end > vma->vm_end) 437 v_end = vma->vm_end; 438 } 439 440 unmap_hugepage_range(vma, vma->vm_start + v_offset, v_end, 441 NULL); 442 } 443} 444 445/* 446 * remove_inode_hugepages handles two distinct cases: truncation and hole 447 * punch. There are subtle differences in operation for each case. 448 * 449 * truncation is indicated by end of range being LLONG_MAX 450 * In this case, we first scan the range and release found pages. 451 * After releasing pages, hugetlb_unreserve_pages cleans up region/reserv 452 * maps and global counts. Page faults can not race with truncation 453 * in this routine. hugetlb_no_page() holds i_mmap_rwsem and prevents 454 * page faults in the truncated range by checking i_size. i_size is 455 * modified while holding i_mmap_rwsem. 456 * hole punch is indicated if end is not LLONG_MAX 457 * In the hole punch case we scan the range and release found pages. 458 * Only when releasing a page is the associated region/reserv map 459 * deleted. The region/reserv map for ranges without associated 460 * pages are not modified. Page faults can race with hole punch. 461 * This is indicated if we find a mapped page. 462 * Note: If the passed end of range value is beyond the end of file, but 463 * not LLONG_MAX this routine still performs a hole punch operation. 464 */ 465static void remove_inode_hugepages(struct inode *inode, loff_t lstart, 466 loff_t lend) 467{ 468 struct hstate *h = hstate_inode(inode); 469 struct address_space *mapping = &inode->i_data; 470 const pgoff_t start = lstart >> huge_page_shift(h); 471 const pgoff_t end = lend >> huge_page_shift(h); 472 struct vm_area_struct pseudo_vma; 473 struct pagevec pvec; 474 pgoff_t next, index; 475 int i, freed = 0; 476 bool truncate_op = (lend == LLONG_MAX); 477 478 vma_init(&pseudo_vma, current->mm); 479 pseudo_vma.vm_flags = (VM_HUGETLB | VM_MAYSHARE | VM_SHARED); 480 pagevec_init(&pvec); 481 next = start; 482 while (next < end) { 483 /* 484 * When no more pages are found, we are done. 485 */ 486 if (!pagevec_lookup_range(&pvec, mapping, &next, end - 1)) 487 break; 488 489 for (i = 0; i < pagevec_count(&pvec); ++i) { 490 struct page *page = pvec.pages[i]; 491 u32 hash; 492 493 index = page->index; 494 hash = hugetlb_fault_mutex_hash(mapping, index); 495 if (!truncate_op) { 496 /* 497 * Only need to hold the fault mutex in the 498 * hole punch case. This prevents races with 499 * page faults. Races are not possible in the 500 * case of truncation. 501 */ 502 mutex_lock(&hugetlb_fault_mutex_table[hash]); 503 } 504 505 /* 506 * If page is mapped, it was faulted in after being 507 * unmapped in caller. Unmap (again) now after taking 508 * the fault mutex. The mutex will prevent faults 509 * until we finish removing the page. 510 * 511 * This race can only happen in the hole punch case. 512 * Getting here in a truncate operation is a bug. 513 */ 514 if (unlikely(page_mapped(page))) { 515 BUG_ON(truncate_op); 516 517 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 518 i_mmap_lock_write(mapping); 519 mutex_lock(&hugetlb_fault_mutex_table[hash]); 520 hugetlb_vmdelete_list(&mapping->i_mmap, 521 index * pages_per_huge_page(h), 522 (index + 1) * pages_per_huge_page(h)); 523 i_mmap_unlock_write(mapping); 524 } 525 526 lock_page(page); 527 /* 528 * We must free the huge page and remove from page 529 * cache (remove_huge_page) BEFORE removing the 530 * region/reserve map (hugetlb_unreserve_pages). In 531 * rare out of memory conditions, removal of the 532 * region/reserve map could fail. Correspondingly, 533 * the subpool and global reserve usage count can need 534 * to be adjusted. 535 */ 536 VM_BUG_ON(PagePrivate(page)); 537 remove_huge_page(page); 538 freed++; 539 if (!truncate_op) { 540 if (unlikely(hugetlb_unreserve_pages(inode, 541 index, index + 1, 1))) 542 hugetlb_fix_reserve_counts(inode); 543 } 544 545 unlock_page(page); 546 if (!truncate_op) 547 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 548 } 549 huge_pagevec_release(&pvec); 550 cond_resched(); 551 } 552 553 if (truncate_op) 554 (void)hugetlb_unreserve_pages(inode, start, LONG_MAX, freed); 555} 556 557static void hugetlbfs_evict_inode(struct inode *inode) 558{ 559 struct resv_map *resv_map; 560 561 remove_inode_hugepages(inode, 0, LLONG_MAX); 562 563 /* 564 * Get the resv_map from the address space embedded in the inode. 565 * This is the address space which points to any resv_map allocated 566 * at inode creation time. If this is a device special inode, 567 * i_mapping may not point to the original address space. 568 */ 569 resv_map = (struct resv_map *)(&inode->i_data)->private_data; 570 /* Only regular and link inodes have associated reserve maps */ 571 if (resv_map) 572 resv_map_release(&resv_map->refs); 573 clear_inode(inode); 574} 575 576static int hugetlb_vmtruncate(struct inode *inode, loff_t offset) 577{ 578 pgoff_t pgoff; 579 struct address_space *mapping = inode->i_mapping; 580 struct hstate *h = hstate_inode(inode); 581 582 BUG_ON(offset & ~huge_page_mask(h)); 583 pgoff = offset >> PAGE_SHIFT; 584 585 i_mmap_lock_write(mapping); 586 i_size_write(inode, offset); 587 if (!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)) 588 hugetlb_vmdelete_list(&mapping->i_mmap, pgoff, 0); 589 i_mmap_unlock_write(mapping); 590 remove_inode_hugepages(inode, offset, LLONG_MAX); 591 return 0; 592} 593 594static long hugetlbfs_punch_hole(struct inode *inode, loff_t offset, loff_t len) 595{ 596 struct hstate *h = hstate_inode(inode); 597 loff_t hpage_size = huge_page_size(h); 598 loff_t hole_start, hole_end; 599 600 /* 601 * For hole punch round up the beginning offset of the hole and 602 * round down the end. 603 */ 604 hole_start = round_up(offset, hpage_size); 605 hole_end = round_down(offset + len, hpage_size); 606 607 if (hole_end > hole_start) { 608 struct address_space *mapping = inode->i_mapping; 609 struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode); 610 611 inode_lock(inode); 612 613 /* protected by i_mutex */ 614 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) { 615 inode_unlock(inode); 616 return -EPERM; 617 } 618 619 i_mmap_lock_write(mapping); 620 if (!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)) 621 hugetlb_vmdelete_list(&mapping->i_mmap, 622 hole_start >> PAGE_SHIFT, 623 hole_end >> PAGE_SHIFT); 624 i_mmap_unlock_write(mapping); 625 remove_inode_hugepages(inode, hole_start, hole_end); 626 inode_unlock(inode); 627 } 628 629 return 0; 630} 631 632static long hugetlbfs_fallocate(struct file *file, int mode, loff_t offset, 633 loff_t len) 634{ 635 struct inode *inode = file_inode(file); 636 struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode); 637 struct address_space *mapping = inode->i_mapping; 638 struct hstate *h = hstate_inode(inode); 639 struct vm_area_struct pseudo_vma; 640 struct mm_struct *mm = current->mm; 641 loff_t hpage_size = huge_page_size(h); 642 unsigned long hpage_shift = huge_page_shift(h); 643 pgoff_t start, index, end; 644 int error; 645 u32 hash; 646 647 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE)) 648 return -EOPNOTSUPP; 649 650 if (mode & FALLOC_FL_PUNCH_HOLE) 651 return hugetlbfs_punch_hole(inode, offset, len); 652 653 /* 654 * Default preallocate case. 655 * For this range, start is rounded down and end is rounded up 656 * as well as being converted to page offsets. 657 */ 658 start = offset >> hpage_shift; 659 end = DIV_ROUND_UP_ULL(offset + len, hpage_size); 660 661 inode_lock(inode); 662 663 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */ 664 error = inode_newsize_ok(inode, offset + len); 665 if (error) 666 goto out; 667 668 if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) { 669 error = -EPERM; 670 goto out; 671 } 672 673 /* 674 * Initialize a pseudo vma as this is required by the huge page 675 * allocation routines. If NUMA is configured, use page index 676 * as input to create an allocation policy. 677 */ 678 vma_init(&pseudo_vma, mm); 679 pseudo_vma.vm_flags = (VM_HUGETLB | VM_MAYSHARE | VM_SHARED); 680 pseudo_vma.vm_file = file; 681 682 for (index = start; index < end; index++) { 683 /* 684 * This is supposed to be the vaddr where the page is being 685 * faulted in, but we have no vaddr here. 686 */ 687 struct page *page; 688 unsigned long addr; 689 int avoid_reserve = 0; 690 691 cond_resched(); 692 693 /* 694 * fallocate(2) manpage permits EINTR; we may have been 695 * interrupted because we are using up too much memory. 696 */ 697 if (signal_pending(current)) { 698 error = -EINTR; 699 break; 700 } 701 702 /* Set numa allocation policy based on index */ 703 hugetlb_set_vma_policy(&pseudo_vma, inode, index); 704 705 /* addr is the offset within the file (zero based) */ 706 addr = index * hpage_size; 707 708 /* 709 * fault mutex taken here, protects against fault path 710 * and hole punch. inode_lock previously taken protects 711 * against truncation. 712 */ 713 hash = hugetlb_fault_mutex_hash(mapping, index); 714 mutex_lock(&hugetlb_fault_mutex_table[hash]); 715 716 /* See if already present in mapping to avoid alloc/free */ 717 page = find_get_page(mapping, index); 718 if (page) { 719 put_page(page); 720 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 721 hugetlb_drop_vma_policy(&pseudo_vma); 722 continue; 723 } 724 725 /* Allocate page and add to page cache */ 726 page = alloc_huge_page(&pseudo_vma, addr, avoid_reserve); 727 hugetlb_drop_vma_policy(&pseudo_vma); 728 if (IS_ERR(page)) { 729 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 730 error = PTR_ERR(page); 731 goto out; 732 } 733 clear_huge_page(page, addr, pages_per_huge_page(h)); 734 __SetPageUptodate(page); 735 error = huge_add_to_page_cache(page, mapping, index); 736 if (unlikely(error)) { 737 put_page(page); 738 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 739 goto out; 740 } 741 742 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 743 744 set_page_huge_active(page); 745 /* 746 * unlock_page because locked by add_to_page_cache() 747 * put_page() due to reference from alloc_huge_page() 748 */ 749 unlock_page(page); 750 put_page(page); 751 } 752 753 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size) 754 i_size_write(inode, offset + len); 755 inode->i_ctime = current_time(inode); 756out: 757 inode_unlock(inode); 758 return error; 759} 760 761static int hugetlbfs_setattr(struct dentry *dentry, struct iattr *attr) 762{ 763 struct inode *inode = d_inode(dentry); 764 struct hstate *h = hstate_inode(inode); 765 int error; 766 unsigned int ia_valid = attr->ia_valid; 767 struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode); 768 769 BUG_ON(!inode); 770 771 error = setattr_prepare(dentry, attr); 772 if (error) 773 return error; 774 775 if (ia_valid & ATTR_SIZE) { 776 loff_t oldsize = inode->i_size; 777 loff_t newsize = attr->ia_size; 778 779 if (newsize & ~huge_page_mask(h)) 780 return -EINVAL; 781 /* protected by i_mutex */ 782 if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) || 783 (newsize > oldsize && (info->seals & F_SEAL_GROW))) 784 return -EPERM; 785 error = hugetlb_vmtruncate(inode, newsize); 786 if (error) 787 return error; 788 } 789 790 setattr_copy(inode, attr); 791 mark_inode_dirty(inode); 792 return 0; 793} 794 795static struct inode *hugetlbfs_get_root(struct super_block *sb, 796 struct hugetlbfs_fs_context *ctx) 797{ 798 struct inode *inode; 799 800 inode = new_inode(sb); 801 if (inode) { 802 inode->i_ino = get_next_ino(); 803 inode->i_mode = S_IFDIR | ctx->mode; 804 inode->i_uid = ctx->uid; 805 inode->i_gid = ctx->gid; 806 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode); 807 inode->i_op = &hugetlbfs_dir_inode_operations; 808 inode->i_fop = &simple_dir_operations; 809 /* directory inodes start off with i_nlink == 2 (for "." entry) */ 810 inc_nlink(inode); 811 lockdep_annotate_inode_mutex_key(inode); 812 } 813 return inode; 814} 815 816/* 817 * Hugetlbfs is not reclaimable; therefore its i_mmap_rwsem will never 818 * be taken from reclaim -- unlike regular filesystems. This needs an 819 * annotation because huge_pmd_share() does an allocation under hugetlb's 820 * i_mmap_rwsem. 821 */ 822static struct lock_class_key hugetlbfs_i_mmap_rwsem_key; 823 824static struct inode *hugetlbfs_get_inode(struct super_block *sb, 825 struct inode *dir, 826 umode_t mode, dev_t dev) 827{ 828 struct inode *inode; 829 struct resv_map *resv_map = NULL; 830 831 /* 832 * Reserve maps are only needed for inodes that can have associated 833 * page allocations. 834 */ 835 if (S_ISREG(mode) || S_ISLNK(mode)) { 836 resv_map = resv_map_alloc(); 837 if (!resv_map) 838 return NULL; 839 } 840 841 inode = new_inode(sb); 842 if (inode) { 843 struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode); 844 845 inode->i_ino = get_next_ino(); 846 inode_init_owner(inode, dir, mode); 847 lockdep_set_class(&inode->i_mapping->i_mmap_rwsem, 848 &hugetlbfs_i_mmap_rwsem_key); 849 inode->i_mapping->a_ops = &hugetlbfs_aops; 850 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode); 851 inode->i_mapping->private_data = resv_map; 852 info->seals = F_SEAL_SEAL; 853 switch (mode & S_IFMT) { 854 default: 855 init_special_inode(inode, mode, dev); 856 break; 857 case S_IFREG: 858 inode->i_op = &hugetlbfs_inode_operations; 859 inode->i_fop = &hugetlbfs_file_operations; 860 break; 861 case S_IFDIR: 862 inode->i_op = &hugetlbfs_dir_inode_operations; 863 inode->i_fop = &simple_dir_operations; 864 865 /* directory inodes start off with i_nlink == 2 (for "." entry) */ 866 inc_nlink(inode); 867 break; 868 case S_IFLNK: 869 inode->i_op = &page_symlink_inode_operations; 870 inode_nohighmem(inode); 871 break; 872 } 873 lockdep_annotate_inode_mutex_key(inode); 874 } else { 875 if (resv_map) 876 kref_put(&resv_map->refs, resv_map_release); 877 } 878 879 return inode; 880} 881 882/* 883 * File creation. Allocate an inode, and we're done.. 884 */ 885static int do_hugetlbfs_mknod(struct inode *dir, 886 struct dentry *dentry, 887 umode_t mode, 888 dev_t dev, 889 bool tmpfile) 890{ 891 struct inode *inode; 892 int error = -ENOSPC; 893 894 inode = hugetlbfs_get_inode(dir->i_sb, dir, mode, dev); 895 if (inode) { 896 dir->i_ctime = dir->i_mtime = current_time(dir); 897 if (tmpfile) { 898 d_tmpfile(dentry, inode); 899 } else { 900 d_instantiate(dentry, inode); 901 dget(dentry);/* Extra count - pin the dentry in core */ 902 } 903 error = 0; 904 } 905 return error; 906} 907 908static int hugetlbfs_mknod(struct inode *dir, 909 struct dentry *dentry, umode_t mode, dev_t dev) 910{ 911 return do_hugetlbfs_mknod(dir, dentry, mode, dev, false); 912} 913 914static int hugetlbfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode) 915{ 916 int retval = hugetlbfs_mknod(dir, dentry, mode | S_IFDIR, 0); 917 if (!retval) 918 inc_nlink(dir); 919 return retval; 920} 921 922static int hugetlbfs_create(struct inode *dir, struct dentry *dentry, umode_t mode, bool excl) 923{ 924 return hugetlbfs_mknod(dir, dentry, mode | S_IFREG, 0); 925} 926 927static int hugetlbfs_tmpfile(struct inode *dir, 928 struct dentry *dentry, umode_t mode) 929{ 930 return do_hugetlbfs_mknod(dir, dentry, mode | S_IFREG, 0, true); 931} 932 933static int hugetlbfs_symlink(struct inode *dir, 934 struct dentry *dentry, const char *symname) 935{ 936 struct inode *inode; 937 int error = -ENOSPC; 938 939 inode = hugetlbfs_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0); 940 if (inode) { 941 int l = strlen(symname)+1; 942 error = page_symlink(inode, symname, l); 943 if (!error) { 944 d_instantiate(dentry, inode); 945 dget(dentry); 946 } else 947 iput(inode); 948 } 949 dir->i_ctime = dir->i_mtime = current_time(dir); 950 951 return error; 952} 953 954/* 955 * mark the head page dirty 956 */ 957static int hugetlbfs_set_page_dirty(struct page *page) 958{ 959 struct page *head = compound_head(page); 960 961 SetPageDirty(head); 962 return 0; 963} 964 965static int hugetlbfs_migrate_page(struct address_space *mapping, 966 struct page *newpage, struct page *page, 967 enum migrate_mode mode) 968{ 969 int rc; 970 971 rc = migrate_huge_page_move_mapping(mapping, newpage, page); 972 if (rc != MIGRATEPAGE_SUCCESS) 973 return rc; 974 975 /* 976 * page_private is subpool pointer in hugetlb pages. Transfer to 977 * new page. PagePrivate is not associated with page_private for 978 * hugetlb pages and can not be set here as only page_huge_active 979 * pages can be migrated. 980 */ 981 if (page_private(page)) { 982 set_page_private(newpage, page_private(page)); 983 set_page_private(page, 0); 984 } 985 986 if (mode != MIGRATE_SYNC_NO_COPY) 987 migrate_page_copy(newpage, page); 988 else 989 migrate_page_states(newpage, page); 990 991 return MIGRATEPAGE_SUCCESS; 992} 993 994static int hugetlbfs_error_remove_page(struct address_space *mapping, 995 struct page *page) 996{ 997 struct inode *inode = mapping->host; 998 pgoff_t index = page->index; 999 1000 remove_huge_page(page); 1001 if (unlikely(hugetlb_unreserve_pages(inode, index, index + 1, 1))) 1002 hugetlb_fix_reserve_counts(inode); 1003 1004 return 0; 1005} 1006 1007/* 1008 * Display the mount options in /proc/mounts. 1009 */ 1010static int hugetlbfs_show_options(struct seq_file *m, struct dentry *root) 1011{ 1012 struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(root->d_sb); 1013 struct hugepage_subpool *spool = sbinfo->spool; 1014 unsigned long hpage_size = huge_page_size(sbinfo->hstate); 1015 unsigned hpage_shift = huge_page_shift(sbinfo->hstate); 1016 char mod; 1017 1018 if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID)) 1019 seq_printf(m, ",uid=%u", 1020 from_kuid_munged(&init_user_ns, sbinfo->uid)); 1021 if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID)) 1022 seq_printf(m, ",gid=%u", 1023 from_kgid_munged(&init_user_ns, sbinfo->gid)); 1024 if (sbinfo->mode != 0755) 1025 seq_printf(m, ",mode=%o", sbinfo->mode); 1026 if (sbinfo->max_inodes != -1) 1027 seq_printf(m, ",nr_inodes=%lu", sbinfo->max_inodes); 1028 1029 hpage_size /= 1024; 1030 mod = 'K'; 1031 if (hpage_size >= 1024) { 1032 hpage_size /= 1024; 1033 mod = 'M'; 1034 } 1035 seq_printf(m, ",pagesize=%lu%c", hpage_size, mod); 1036 if (spool) { 1037 if (spool->max_hpages != -1) 1038 seq_printf(m, ",size=%llu", 1039 (unsigned long long)spool->max_hpages << hpage_shift); 1040 if (spool->min_hpages != -1) 1041 seq_printf(m, ",min_size=%llu", 1042 (unsigned long long)spool->min_hpages << hpage_shift); 1043 } 1044 return 0; 1045} 1046 1047static int hugetlbfs_statfs(struct dentry *dentry, struct kstatfs *buf) 1048{ 1049 struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(dentry->d_sb); 1050 struct hstate *h = hstate_inode(d_inode(dentry)); 1051 1052 buf->f_type = HUGETLBFS_MAGIC; 1053 buf->f_bsize = huge_page_size(h); 1054 if (sbinfo) { 1055 spin_lock(&sbinfo->stat_lock); 1056 /* If no limits set, just report 0 for max/free/used 1057 * blocks, like simple_statfs() */ 1058 if (sbinfo->spool) { 1059 long free_pages; 1060 1061 spin_lock(&sbinfo->spool->lock); 1062 buf->f_blocks = sbinfo->spool->max_hpages; 1063 free_pages = sbinfo->spool->max_hpages 1064 - sbinfo->spool->used_hpages; 1065 buf->f_bavail = buf->f_bfree = free_pages; 1066 spin_unlock(&sbinfo->spool->lock); 1067 buf->f_files = sbinfo->max_inodes; 1068 buf->f_ffree = sbinfo->free_inodes; 1069 } 1070 spin_unlock(&sbinfo->stat_lock); 1071 } 1072 buf->f_namelen = NAME_MAX; 1073 return 0; 1074} 1075 1076static void hugetlbfs_put_super(struct super_block *sb) 1077{ 1078 struct hugetlbfs_sb_info *sbi = HUGETLBFS_SB(sb); 1079 1080 if (sbi) { 1081 sb->s_fs_info = NULL; 1082 1083 if (sbi->spool) 1084 hugepage_put_subpool(sbi->spool); 1085 1086 kfree(sbi); 1087 } 1088} 1089 1090static inline int hugetlbfs_dec_free_inodes(struct hugetlbfs_sb_info *sbinfo) 1091{ 1092 if (sbinfo->free_inodes >= 0) { 1093 spin_lock(&sbinfo->stat_lock); 1094 if (unlikely(!sbinfo->free_inodes)) { 1095 spin_unlock(&sbinfo->stat_lock); 1096 return 0; 1097 } 1098 sbinfo->free_inodes--; 1099 spin_unlock(&sbinfo->stat_lock); 1100 } 1101 1102 return 1; 1103} 1104 1105static void hugetlbfs_inc_free_inodes(struct hugetlbfs_sb_info *sbinfo) 1106{ 1107 if (sbinfo->free_inodes >= 0) { 1108 spin_lock(&sbinfo->stat_lock); 1109 sbinfo->free_inodes++; 1110 spin_unlock(&sbinfo->stat_lock); 1111 } 1112} 1113 1114 1115static struct kmem_cache *hugetlbfs_inode_cachep; 1116 1117static struct inode *hugetlbfs_alloc_inode(struct super_block *sb) 1118{ 1119 struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(sb); 1120 struct hugetlbfs_inode_info *p; 1121 1122 if (unlikely(!hugetlbfs_dec_free_inodes(sbinfo))) 1123 return NULL; 1124 p = kmem_cache_alloc(hugetlbfs_inode_cachep, GFP_KERNEL); 1125 if (unlikely(!p)) { 1126 hugetlbfs_inc_free_inodes(sbinfo); 1127 return NULL; 1128 } 1129 1130 /* 1131 * Any time after allocation, hugetlbfs_destroy_inode can be called 1132 * for the inode. mpol_free_shared_policy is unconditionally called 1133 * as part of hugetlbfs_destroy_inode. So, initialize policy here 1134 * in case of a quick call to destroy. 1135 * 1136 * Note that the policy is initialized even if we are creating a 1137 * private inode. This simplifies hugetlbfs_destroy_inode. 1138 */ 1139 mpol_shared_policy_init(&p->policy, NULL); 1140 1141 return &p->vfs_inode; 1142} 1143 1144static void hugetlbfs_free_inode(struct inode *inode) 1145{ 1146 kmem_cache_free(hugetlbfs_inode_cachep, HUGETLBFS_I(inode)); 1147} 1148 1149static void hugetlbfs_destroy_inode(struct inode *inode) 1150{ 1151 hugetlbfs_inc_free_inodes(HUGETLBFS_SB(inode->i_sb)); 1152 mpol_free_shared_policy(&HUGETLBFS_I(inode)->policy); 1153} 1154 1155static const struct address_space_operations hugetlbfs_aops = { 1156 .write_begin = hugetlbfs_write_begin, 1157 .write_end = hugetlbfs_write_end, 1158 .set_page_dirty = hugetlbfs_set_page_dirty, 1159 .migratepage = hugetlbfs_migrate_page, 1160 .error_remove_page = hugetlbfs_error_remove_page, 1161}; 1162 1163 1164static void init_once(void *foo) 1165{ 1166 struct hugetlbfs_inode_info *ei = (struct hugetlbfs_inode_info *)foo; 1167 1168 inode_init_once(&ei->vfs_inode); 1169} 1170 1171const struct file_operations hugetlbfs_file_operations = { 1172 .read_iter = hugetlbfs_read_iter, 1173 .mmap = hugetlbfs_file_mmap, 1174 .fsync = noop_fsync, 1175 .get_unmapped_area = hugetlb_get_unmapped_area, 1176 .llseek = default_llseek, 1177 .fallocate = hugetlbfs_fallocate, 1178}; 1179 1180static const struct inode_operations hugetlbfs_dir_inode_operations = { 1181 .create = hugetlbfs_create, 1182 .lookup = simple_lookup, 1183 .link = simple_link, 1184 .unlink = simple_unlink, 1185 .symlink = hugetlbfs_symlink, 1186 .mkdir = hugetlbfs_mkdir, 1187 .rmdir = simple_rmdir, 1188 .mknod = hugetlbfs_mknod, 1189 .rename = simple_rename, 1190 .setattr = hugetlbfs_setattr, 1191 .tmpfile = hugetlbfs_tmpfile, 1192}; 1193 1194static const struct inode_operations hugetlbfs_inode_operations = { 1195 .setattr = hugetlbfs_setattr, 1196}; 1197 1198static const struct super_operations hugetlbfs_ops = { 1199 .alloc_inode = hugetlbfs_alloc_inode, 1200 .free_inode = hugetlbfs_free_inode, 1201 .destroy_inode = hugetlbfs_destroy_inode, 1202 .evict_inode = hugetlbfs_evict_inode, 1203 .statfs = hugetlbfs_statfs, 1204 .put_super = hugetlbfs_put_super, 1205 .show_options = hugetlbfs_show_options, 1206}; 1207 1208/* 1209 * Convert size option passed from command line to number of huge pages 1210 * in the pool specified by hstate. Size option could be in bytes 1211 * (val_type == SIZE_STD) or percentage of the pool (val_type == SIZE_PERCENT). 1212 */ 1213static long 1214hugetlbfs_size_to_hpages(struct hstate *h, unsigned long long size_opt, 1215 enum hugetlbfs_size_type val_type) 1216{ 1217 if (val_type == NO_SIZE) 1218 return -1; 1219 1220 if (val_type == SIZE_PERCENT) { 1221 size_opt <<= huge_page_shift(h); 1222 size_opt *= h->max_huge_pages; 1223 do_div(size_opt, 100); 1224 } 1225 1226 size_opt >>= huge_page_shift(h); 1227 return size_opt; 1228} 1229 1230/* 1231 * Parse one mount parameter. 1232 */ 1233static int hugetlbfs_parse_param(struct fs_context *fc, struct fs_parameter *param) 1234{ 1235 struct hugetlbfs_fs_context *ctx = fc->fs_private; 1236 struct fs_parse_result result; 1237 char *rest; 1238 unsigned long ps; 1239 int opt; 1240 1241 opt = fs_parse(fc, hugetlb_fs_parameters, param, &result); 1242 if (opt < 0) 1243 return opt; 1244 1245 switch (opt) { 1246 case Opt_uid: 1247 ctx->uid = make_kuid(current_user_ns(), result.uint_32); 1248 if (!uid_valid(ctx->uid)) 1249 goto bad_val; 1250 return 0; 1251 1252 case Opt_gid: 1253 ctx->gid = make_kgid(current_user_ns(), result.uint_32); 1254 if (!gid_valid(ctx->gid)) 1255 goto bad_val; 1256 return 0; 1257 1258 case Opt_mode: 1259 ctx->mode = result.uint_32 & 01777U; 1260 return 0; 1261 1262 case Opt_size: 1263 /* memparse() will accept a K/M/G without a digit */ 1264 if (!param->string || !isdigit(param->string[0])) 1265 goto bad_val; 1266 ctx->max_size_opt = memparse(param->string, &rest); 1267 ctx->max_val_type = SIZE_STD; 1268 if (*rest == '%') 1269 ctx->max_val_type = SIZE_PERCENT; 1270 return 0; 1271 1272 case Opt_nr_inodes: 1273 /* memparse() will accept a K/M/G without a digit */ 1274 if (!param->string || !isdigit(param->string[0])) 1275 goto bad_val; 1276 ctx->nr_inodes = memparse(param->string, &rest); 1277 return 0; 1278 1279 case Opt_pagesize: 1280 ps = memparse(param->string, &rest); 1281 ctx->hstate = size_to_hstate(ps); 1282 if (!ctx->hstate) { 1283 pr_err("Unsupported page size %lu MB\n", ps >> 20); 1284 return -EINVAL; 1285 } 1286 return 0; 1287 1288 case Opt_min_size: 1289 /* memparse() will accept a K/M/G without a digit */ 1290 if (!param->string || !isdigit(param->string[0])) 1291 goto bad_val; 1292 ctx->min_size_opt = memparse(param->string, &rest); 1293 ctx->min_val_type = SIZE_STD; 1294 if (*rest == '%') 1295 ctx->min_val_type = SIZE_PERCENT; 1296 return 0; 1297 1298 default: 1299 return -EINVAL; 1300 } 1301 1302bad_val: 1303 return invalfc(fc, "Bad value '%s' for mount option '%s'\n", 1304 param->string, param->key); 1305} 1306 1307/* 1308 * Validate the parsed options. 1309 */ 1310static int hugetlbfs_validate(struct fs_context *fc) 1311{ 1312 struct hugetlbfs_fs_context *ctx = fc->fs_private; 1313 1314 /* 1315 * Use huge page pool size (in hstate) to convert the size 1316 * options to number of huge pages. If NO_SIZE, -1 is returned. 1317 */ 1318 ctx->max_hpages = hugetlbfs_size_to_hpages(ctx->hstate, 1319 ctx->max_size_opt, 1320 ctx->max_val_type); 1321 ctx->min_hpages = hugetlbfs_size_to_hpages(ctx->hstate, 1322 ctx->min_size_opt, 1323 ctx->min_val_type); 1324 1325 /* 1326 * If max_size was specified, then min_size must be smaller 1327 */ 1328 if (ctx->max_val_type > NO_SIZE && 1329 ctx->min_hpages > ctx->max_hpages) { 1330 pr_err("Minimum size can not be greater than maximum size\n"); 1331 return -EINVAL; 1332 } 1333 1334 return 0; 1335} 1336 1337static int 1338hugetlbfs_fill_super(struct super_block *sb, struct fs_context *fc) 1339{ 1340 struct hugetlbfs_fs_context *ctx = fc->fs_private; 1341 struct hugetlbfs_sb_info *sbinfo; 1342 1343 sbinfo = kmalloc(sizeof(struct hugetlbfs_sb_info), GFP_KERNEL); 1344 if (!sbinfo) 1345 return -ENOMEM; 1346 sb->s_fs_info = sbinfo; 1347 spin_lock_init(&sbinfo->stat_lock); 1348 sbinfo->hstate = ctx->hstate; 1349 sbinfo->max_inodes = ctx->nr_inodes; 1350 sbinfo->free_inodes = ctx->nr_inodes; 1351 sbinfo->spool = NULL; 1352 sbinfo->uid = ctx->uid; 1353 sbinfo->gid = ctx->gid; 1354 sbinfo->mode = ctx->mode; 1355 1356 /* 1357 * Allocate and initialize subpool if maximum or minimum size is 1358 * specified. Any needed reservations (for minimim size) are taken 1359 * taken when the subpool is created. 1360 */ 1361 if (ctx->max_hpages != -1 || ctx->min_hpages != -1) { 1362 sbinfo->spool = hugepage_new_subpool(ctx->hstate, 1363 ctx->max_hpages, 1364 ctx->min_hpages); 1365 if (!sbinfo->spool) 1366 goto out_free; 1367 } 1368 sb->s_maxbytes = MAX_LFS_FILESIZE; 1369 sb->s_blocksize = huge_page_size(ctx->hstate); 1370 sb->s_blocksize_bits = huge_page_shift(ctx->hstate); 1371 sb->s_magic = HUGETLBFS_MAGIC; 1372 sb->s_op = &hugetlbfs_ops; 1373 sb->s_time_gran = 1; 1374 1375 /* 1376 * Due to the special and limited functionality of hugetlbfs, it does 1377 * not work well as a stacking filesystem. 1378 */ 1379 sb->s_stack_depth = FILESYSTEM_MAX_STACK_DEPTH; 1380 sb->s_root = d_make_root(hugetlbfs_get_root(sb, ctx)); 1381 if (!sb->s_root) 1382 goto out_free; 1383 return 0; 1384out_free: 1385 kfree(sbinfo->spool); 1386 kfree(sbinfo); 1387 return -ENOMEM; 1388} 1389 1390static int hugetlbfs_get_tree(struct fs_context *fc) 1391{ 1392 int err = hugetlbfs_validate(fc); 1393 if (err) 1394 return err; 1395 return get_tree_nodev(fc, hugetlbfs_fill_super); 1396} 1397 1398static void hugetlbfs_fs_context_free(struct fs_context *fc) 1399{ 1400 kfree(fc->fs_private); 1401} 1402 1403static const struct fs_context_operations hugetlbfs_fs_context_ops = { 1404 .free = hugetlbfs_fs_context_free, 1405 .parse_param = hugetlbfs_parse_param, 1406 .get_tree = hugetlbfs_get_tree, 1407}; 1408 1409static int hugetlbfs_init_fs_context(struct fs_context *fc) 1410{ 1411 struct hugetlbfs_fs_context *ctx; 1412 1413 ctx = kzalloc(sizeof(struct hugetlbfs_fs_context), GFP_KERNEL); 1414 if (!ctx) 1415 return -ENOMEM; 1416 1417 ctx->max_hpages = -1; /* No limit on size by default */ 1418 ctx->nr_inodes = -1; /* No limit on number of inodes by default */ 1419 ctx->uid = current_fsuid(); 1420 ctx->gid = current_fsgid(); 1421 ctx->mode = 0755; 1422 ctx->hstate = &default_hstate; 1423 ctx->min_hpages = -1; /* No default minimum size */ 1424 ctx->max_val_type = NO_SIZE; 1425 ctx->min_val_type = NO_SIZE; 1426 fc->fs_private = ctx; 1427 fc->ops = &hugetlbfs_fs_context_ops; 1428 return 0; 1429} 1430 1431static struct file_system_type hugetlbfs_fs_type = { 1432 .name = "hugetlbfs", 1433 .init_fs_context = hugetlbfs_init_fs_context, 1434 .parameters = hugetlb_fs_parameters, 1435 .kill_sb = kill_litter_super, 1436}; 1437 1438static struct vfsmount *hugetlbfs_vfsmount[HUGE_MAX_HSTATE]; 1439 1440static int can_do_hugetlb_shm(void) 1441{ 1442 kgid_t shm_group; 1443 shm_group = make_kgid(&init_user_ns, sysctl_hugetlb_shm_group); 1444 return capable(CAP_IPC_LOCK) || in_group_p(shm_group); 1445} 1446 1447static int get_hstate_idx(int page_size_log) 1448{ 1449 struct hstate *h = hstate_sizelog(page_size_log); 1450 1451 if (!h) 1452 return -1; 1453 return h - hstates; 1454} 1455 1456/* 1457 * Note that size should be aligned to proper hugepage size in caller side, 1458 * otherwise hugetlb_reserve_pages reserves one less hugepages than intended. 1459 */ 1460struct file *hugetlb_file_setup(const char *name, size_t size, 1461 vm_flags_t acctflag, struct user_struct **user, 1462 int creat_flags, int page_size_log) 1463{ 1464 struct inode *inode; 1465 struct vfsmount *mnt; 1466 int hstate_idx; 1467 struct file *file; 1468 1469 hstate_idx = get_hstate_idx(page_size_log); 1470 if (hstate_idx < 0) 1471 return ERR_PTR(-ENODEV); 1472 1473 *user = NULL; 1474 mnt = hugetlbfs_vfsmount[hstate_idx]; 1475 if (!mnt) 1476 return ERR_PTR(-ENOENT); 1477 1478 if (creat_flags == HUGETLB_SHMFS_INODE && !can_do_hugetlb_shm()) { 1479 *user = current_user(); 1480 if (user_shm_lock(size, *user)) { 1481 task_lock(current); 1482 pr_warn_once("%s (%d): Using mlock ulimits for SHM_HUGETLB is deprecated\n", 1483 current->comm, current->pid); 1484 task_unlock(current); 1485 } else { 1486 *user = NULL; 1487 return ERR_PTR(-EPERM); 1488 } 1489 } 1490 1491 file = ERR_PTR(-ENOSPC); 1492 inode = hugetlbfs_get_inode(mnt->mnt_sb, NULL, S_IFREG | S_IRWXUGO, 0); 1493 if (!inode) 1494 goto out; 1495 if (creat_flags == HUGETLB_SHMFS_INODE) 1496 inode->i_flags |= S_PRIVATE; 1497 1498 inode->i_size = size; 1499 clear_nlink(inode); 1500 1501 if (hugetlb_reserve_pages(inode, 0, 1502 size >> huge_page_shift(hstate_inode(inode)), NULL, 1503 acctflag)) 1504 file = ERR_PTR(-ENOMEM); 1505 else 1506 file = alloc_file_pseudo(inode, mnt, name, O_RDWR, 1507 &hugetlbfs_file_operations); 1508 if (!IS_ERR(file)) 1509 return file; 1510 1511 iput(inode); 1512out: 1513 if (*user) { 1514 user_shm_unlock(size, *user); 1515 *user = NULL; 1516 } 1517 return file; 1518} 1519 1520static struct vfsmount *__init mount_one_hugetlbfs(struct hstate *h) 1521{ 1522 struct fs_context *fc; 1523 struct vfsmount *mnt; 1524 1525 fc = fs_context_for_mount(&hugetlbfs_fs_type, SB_KERNMOUNT); 1526 if (IS_ERR(fc)) { 1527 mnt = ERR_CAST(fc); 1528 } else { 1529 struct hugetlbfs_fs_context *ctx = fc->fs_private; 1530 ctx->hstate = h; 1531 mnt = fc_mount(fc); 1532 put_fs_context(fc); 1533 } 1534 if (IS_ERR(mnt)) 1535 pr_err("Cannot mount internal hugetlbfs for page size %uK", 1536 1U << (h->order + PAGE_SHIFT - 10)); 1537 return mnt; 1538} 1539 1540static int __init init_hugetlbfs_fs(void) 1541{ 1542 struct vfsmount *mnt; 1543 struct hstate *h; 1544 int error; 1545 int i; 1546 1547 if (!hugepages_supported()) { 1548 pr_info("disabling because there are no supported hugepage sizes\n"); 1549 return -ENOTSUPP; 1550 } 1551 1552 error = -ENOMEM; 1553 hugetlbfs_inode_cachep = kmem_cache_create("hugetlbfs_inode_cache", 1554 sizeof(struct hugetlbfs_inode_info), 1555 0, SLAB_ACCOUNT, init_once); 1556 if (hugetlbfs_inode_cachep == NULL) 1557 goto out; 1558 1559 error = register_filesystem(&hugetlbfs_fs_type); 1560 if (error) 1561 goto out_free; 1562 1563 /* default hstate mount is required */ 1564 mnt = mount_one_hugetlbfs(&hstates[default_hstate_idx]); 1565 if (IS_ERR(mnt)) { 1566 error = PTR_ERR(mnt); 1567 goto out_unreg; 1568 } 1569 hugetlbfs_vfsmount[default_hstate_idx] = mnt; 1570 1571 /* other hstates are optional */ 1572 i = 0; 1573 for_each_hstate(h) { 1574 if (i == default_hstate_idx) { 1575 i++; 1576 continue; 1577 } 1578 1579 mnt = mount_one_hugetlbfs(h); 1580 if (IS_ERR(mnt)) 1581 hugetlbfs_vfsmount[i] = NULL; 1582 else 1583 hugetlbfs_vfsmount[i] = mnt; 1584 i++; 1585 } 1586 1587 return 0; 1588 1589 out_unreg: 1590 (void)unregister_filesystem(&hugetlbfs_fs_type); 1591 out_free: 1592 kmem_cache_destroy(hugetlbfs_inode_cachep); 1593 out: 1594 return error; 1595} 1596fs_initcall(init_hugetlbfs_fs) 1597