1 /*
2  * hugetlbpage-backed filesystem.  Based on ramfs.
3  *
4  * Nadia Yvette Chambers, 2002
5  *
6  * Copyright (C) 2002 Linus Torvalds.
7  * License: GPL
8  */
9 
10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11 
12 #include <linux/thread_info.h>
13 #include <asm/current.h>
14 #include <linux/sched/signal.h>		/* remove ASAP */
15 #include <linux/falloc.h>
16 #include <linux/fs.h>
17 #include <linux/mount.h>
18 #include <linux/file.h>
19 #include <linux/kernel.h>
20 #include <linux/writeback.h>
21 #include <linux/pagemap.h>
22 #include <linux/highmem.h>
23 #include <linux/init.h>
24 #include <linux/string.h>
25 #include <linux/capability.h>
26 #include <linux/ctype.h>
27 #include <linux/backing-dev.h>
28 #include <linux/hugetlb.h>
29 #include <linux/pagevec.h>
30 #include <linux/fs_parser.h>
31 #include <linux/mman.h>
32 #include <linux/slab.h>
33 #include <linux/dnotify.h>
34 #include <linux/statfs.h>
35 #include <linux/security.h>
36 #include <linux/magic.h>
37 #include <linux/migrate.h>
38 #include <linux/uio.h>
39 
40 #include <linux/uaccess.h>
41 #include <linux/sched/mm.h>
42 
43 static const struct super_operations hugetlbfs_ops;
44 static const struct address_space_operations hugetlbfs_aops;
45 const struct file_operations hugetlbfs_file_operations;
46 static const struct inode_operations hugetlbfs_dir_inode_operations;
47 static const struct inode_operations hugetlbfs_inode_operations;
48 
49 enum hugetlbfs_size_type { NO_SIZE, SIZE_STD, SIZE_PERCENT };
50 
51 struct hugetlbfs_fs_context {
52 	struct hstate		*hstate;
53 	unsigned long long	max_size_opt;
54 	unsigned long long	min_size_opt;
55 	long			max_hpages;
56 	long			nr_inodes;
57 	long			min_hpages;
58 	enum hugetlbfs_size_type max_val_type;
59 	enum hugetlbfs_size_type min_val_type;
60 	kuid_t			uid;
61 	kgid_t			gid;
62 	umode_t			mode;
63 };
64 
65 int sysctl_hugetlb_shm_group;
66 
67 enum hugetlb_param {
68 	Opt_gid,
69 	Opt_min_size,
70 	Opt_mode,
71 	Opt_nr_inodes,
72 	Opt_pagesize,
73 	Opt_size,
74 	Opt_uid,
75 };
76 
77 static const struct fs_parameter_spec hugetlb_fs_parameters[] = {
78 	fsparam_u32   ("gid",		Opt_gid),
79 	fsparam_string("min_size",	Opt_min_size),
80 	fsparam_u32oct("mode",		Opt_mode),
81 	fsparam_string("nr_inodes",	Opt_nr_inodes),
82 	fsparam_string("pagesize",	Opt_pagesize),
83 	fsparam_string("size",		Opt_size),
84 	fsparam_u32   ("uid",		Opt_uid),
85 	{}
86 };
87 
88 #ifdef CONFIG_NUMA
hugetlb_set_vma_policy(struct vm_area_struct *vma, struct inode *inode, pgoff_t index)89 static inline void hugetlb_set_vma_policy(struct vm_area_struct *vma,
90 					struct inode *inode, pgoff_t index)
91 {
92 	vma->vm_policy = mpol_shared_policy_lookup(&HUGETLBFS_I(inode)->policy,
93 							index);
94 }
95 
hugetlb_drop_vma_policy(struct vm_area_struct *vma)96 static inline void hugetlb_drop_vma_policy(struct vm_area_struct *vma)
97 {
98 	mpol_cond_put(vma->vm_policy);
99 }
100 #else
hugetlb_set_vma_policy(struct vm_area_struct *vma, struct inode *inode, pgoff_t index)101 static inline void hugetlb_set_vma_policy(struct vm_area_struct *vma,
102 					struct inode *inode, pgoff_t index)
103 {
104 }
105 
hugetlb_drop_vma_policy(struct vm_area_struct *vma)106 static inline void hugetlb_drop_vma_policy(struct vm_area_struct *vma)
107 {
108 }
109 #endif
110 
huge_pagevec_release(struct pagevec *pvec)111 static void huge_pagevec_release(struct pagevec *pvec)
112 {
113 	int i;
114 
115 	for (i = 0; i < pagevec_count(pvec); ++i)
116 		put_page(pvec->pages[i]);
117 
118 	pagevec_reinit(pvec);
119 }
120 
121 /*
122  * Mask used when checking the page offset value passed in via system
123  * calls.  This value will be converted to a loff_t which is signed.
124  * Therefore, we want to check the upper PAGE_SHIFT + 1 bits of the
125  * value.  The extra bit (- 1 in the shift value) is to take the sign
126  * bit into account.
127  */
128 #define PGOFF_LOFFT_MAX \
129 	(((1UL << (PAGE_SHIFT + 1)) - 1) <<  (BITS_PER_LONG - (PAGE_SHIFT + 1)))
130 
hugetlbfs_file_mmap(struct file *file, struct vm_area_struct *vma)131 static int hugetlbfs_file_mmap(struct file *file, struct vm_area_struct *vma)
132 {
133 	struct inode *inode = file_inode(file);
134 	struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
135 	loff_t len, vma_len;
136 	int ret;
137 	struct hstate *h = hstate_file(file);
138 
139 	/*
140 	 * vma address alignment (but not the pgoff alignment) has
141 	 * already been checked by prepare_hugepage_range.  If you add
142 	 * any error returns here, do so after setting VM_HUGETLB, so
143 	 * is_vm_hugetlb_page tests below unmap_region go the right
144 	 * way when do_mmap unwinds (may be important on powerpc
145 	 * and ia64).
146 	 */
147 	vma->vm_flags |= VM_HUGETLB | VM_DONTEXPAND;
148 	vma->vm_ops = &hugetlb_vm_ops;
149 
150 	ret = seal_check_future_write(info->seals, vma);
151 	if (ret)
152 		return ret;
153 
154 	/*
155 	 * page based offset in vm_pgoff could be sufficiently large to
156 	 * overflow a loff_t when converted to byte offset.  This can
157 	 * only happen on architectures where sizeof(loff_t) ==
158 	 * sizeof(unsigned long).  So, only check in those instances.
159 	 */
160 	if (sizeof(unsigned long) == sizeof(loff_t)) {
161 		if (vma->vm_pgoff & PGOFF_LOFFT_MAX)
162 			return -EINVAL;
163 	}
164 
165 	/* must be huge page aligned */
166 	if (vma->vm_pgoff & (~huge_page_mask(h) >> PAGE_SHIFT))
167 		return -EINVAL;
168 
169 	vma_len = (loff_t)(vma->vm_end - vma->vm_start);
170 	len = vma_len + ((loff_t)vma->vm_pgoff << PAGE_SHIFT);
171 	/* check for overflow */
172 	if (len < vma_len)
173 		return -EINVAL;
174 
175 	inode_lock(inode);
176 	file_accessed(file);
177 
178 	ret = -ENOMEM;
179 	if (hugetlb_reserve_pages(inode,
180 				vma->vm_pgoff >> huge_page_order(h),
181 				len >> huge_page_shift(h), vma,
182 				vma->vm_flags))
183 		goto out;
184 
185 	ret = 0;
186 	if (vma->vm_flags & VM_WRITE && inode->i_size < len)
187 		i_size_write(inode, len);
188 out:
189 	inode_unlock(inode);
190 
191 	return ret;
192 }
193 
194 /*
195  * Called under mmap_write_lock(mm).
196  */
197 
198 #ifndef HAVE_ARCH_HUGETLB_UNMAPPED_AREA
199 static unsigned long
hugetlb_get_unmapped_area_bottomup(struct file *file, unsigned long addr, unsigned long len, unsigned long pgoff, unsigned long flags)200 hugetlb_get_unmapped_area_bottomup(struct file *file, unsigned long addr,
201 		unsigned long len, unsigned long pgoff, unsigned long flags)
202 {
203 	struct hstate *h = hstate_file(file);
204 	struct vm_unmapped_area_info info;
205 
206 	info.flags = 0;
207 	info.length = len;
208 	info.low_limit = current->mm->mmap_base;
209 	info.high_limit = arch_get_mmap_end(addr);
210 	info.align_mask = PAGE_MASK & ~huge_page_mask(h);
211 	info.align_offset = 0;
212 	return vm_unmapped_area(&info);
213 }
214 
215 static unsigned long
hugetlb_get_unmapped_area_topdown(struct file *file, unsigned long addr, unsigned long len, unsigned long pgoff, unsigned long flags)216 hugetlb_get_unmapped_area_topdown(struct file *file, unsigned long addr,
217 		unsigned long len, unsigned long pgoff, unsigned long flags)
218 {
219 	struct hstate *h = hstate_file(file);
220 	struct vm_unmapped_area_info info;
221 
222 	info.flags = VM_UNMAPPED_AREA_TOPDOWN;
223 	info.length = len;
224 	info.low_limit = max(PAGE_SIZE, mmap_min_addr);
225 	info.high_limit = arch_get_mmap_base(addr, current->mm->mmap_base);
226 	info.align_mask = PAGE_MASK & ~huge_page_mask(h);
227 	info.align_offset = 0;
228 	addr = vm_unmapped_area(&info);
229 
230 	/*
231 	 * A failed mmap() very likely causes application failure,
232 	 * so fall back to the bottom-up function here. This scenario
233 	 * can happen with large stack limits and large mmap()
234 	 * allocations.
235 	 */
236 	if (unlikely(offset_in_page(addr))) {
237 		VM_BUG_ON(addr != -ENOMEM);
238 		info.flags = 0;
239 		info.low_limit = current->mm->mmap_base;
240 		info.high_limit = arch_get_mmap_end(addr);
241 		addr = vm_unmapped_area(&info);
242 	}
243 
244 	return addr;
245 }
246 
247 static unsigned long
hugetlb_get_unmapped_area(struct file *file, unsigned long addr, unsigned long len, unsigned long pgoff, unsigned long flags)248 hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
249 		unsigned long len, unsigned long pgoff, unsigned long flags)
250 {
251 	struct mm_struct *mm = current->mm;
252 	struct vm_area_struct *vma;
253 	struct hstate *h = hstate_file(file);
254 	const unsigned long mmap_end = arch_get_mmap_end(addr);
255 
256 	if (len & ~huge_page_mask(h))
257 		return -EINVAL;
258 	if (len > TASK_SIZE)
259 		return -ENOMEM;
260 
261 	if (flags & MAP_FIXED) {
262 		if (prepare_hugepage_range(file, addr, len))
263 			return -EINVAL;
264 		return addr;
265 	}
266 
267 	if (addr) {
268 		addr = ALIGN(addr, huge_page_size(h));
269 		vma = find_vma(mm, addr);
270 		if (mmap_end - len >= addr &&
271 		    (!vma || addr + len <= vm_start_gap(vma)))
272 			return addr;
273 	}
274 
275 	/*
276 	 * Use mm->get_unmapped_area value as a hint to use topdown routine.
277 	 * If architectures have special needs, they should define their own
278 	 * version of hugetlb_get_unmapped_area.
279 	 */
280 	if (mm->get_unmapped_area == arch_get_unmapped_area_topdown)
281 		return hugetlb_get_unmapped_area_topdown(file, addr, len,
282 				pgoff, flags);
283 	return hugetlb_get_unmapped_area_bottomup(file, addr, len,
284 			pgoff, flags);
285 }
286 #endif
287 
288 static size_t
hugetlbfs_read_actor(struct page *page, unsigned long offset, struct iov_iter *to, unsigned long size)289 hugetlbfs_read_actor(struct page *page, unsigned long offset,
290 			struct iov_iter *to, unsigned long size)
291 {
292 	size_t copied = 0;
293 	int i, chunksize;
294 
295 	/* Find which 4k chunk and offset with in that chunk */
296 	i = offset >> PAGE_SHIFT;
297 	offset = offset & ~PAGE_MASK;
298 
299 	while (size) {
300 		size_t n;
301 		chunksize = PAGE_SIZE;
302 		if (offset)
303 			chunksize -= offset;
304 		if (chunksize > size)
305 			chunksize = size;
306 		n = copy_page_to_iter(&page[i], offset, chunksize, to);
307 		copied += n;
308 		if (n != chunksize)
309 			return copied;
310 		offset = 0;
311 		size -= chunksize;
312 		i++;
313 	}
314 	return copied;
315 }
316 
317 /*
318  * Support for read() - Find the page attached to f_mapping and copy out the
319  * data. Its *very* similar to do_generic_mapping_read(), we can't use that
320  * since it has PAGE_SIZE assumptions.
321  */
hugetlbfs_read_iter(struct kiocb *iocb, struct iov_iter *to)322 static ssize_t hugetlbfs_read_iter(struct kiocb *iocb, struct iov_iter *to)
323 {
324 	struct file *file = iocb->ki_filp;
325 	struct hstate *h = hstate_file(file);
326 	struct address_space *mapping = file->f_mapping;
327 	struct inode *inode = mapping->host;
328 	unsigned long index = iocb->ki_pos >> huge_page_shift(h);
329 	unsigned long offset = iocb->ki_pos & ~huge_page_mask(h);
330 	unsigned long end_index;
331 	loff_t isize;
332 	ssize_t retval = 0;
333 
334 	while (iov_iter_count(to)) {
335 		struct page *page;
336 		size_t nr, copied;
337 
338 		/* nr is the maximum number of bytes to copy from this page */
339 		nr = huge_page_size(h);
340 		isize = i_size_read(inode);
341 		if (!isize)
342 			break;
343 		end_index = (isize - 1) >> huge_page_shift(h);
344 		if (index > end_index)
345 			break;
346 		if (index == end_index) {
347 			nr = ((isize - 1) & ~huge_page_mask(h)) + 1;
348 			if (nr <= offset)
349 				break;
350 		}
351 		nr = nr - offset;
352 
353 		/* Find the page */
354 		page = find_lock_page(mapping, index);
355 		if (unlikely(page == NULL)) {
356 			/*
357 			 * We have a HOLE, zero out the user-buffer for the
358 			 * length of the hole or request.
359 			 */
360 			copied = iov_iter_zero(nr, to);
361 		} else {
362 			unlock_page(page);
363 
364 			/*
365 			 * We have the page, copy it to user space buffer.
366 			 */
367 			copied = hugetlbfs_read_actor(page, offset, to, nr);
368 			put_page(page);
369 		}
370 		offset += copied;
371 		retval += copied;
372 		if (copied != nr && iov_iter_count(to)) {
373 			if (!retval)
374 				retval = -EFAULT;
375 			break;
376 		}
377 		index += offset >> huge_page_shift(h);
378 		offset &= ~huge_page_mask(h);
379 	}
380 	iocb->ki_pos = ((loff_t)index << huge_page_shift(h)) + offset;
381 	return retval;
382 }
383 
hugetlbfs_write_begin(struct file *file, struct address_space *mapping, loff_t pos, unsigned len, unsigned flags, struct page **pagep, void **fsdata)384 static int hugetlbfs_write_begin(struct file *file,
385 			struct address_space *mapping,
386 			loff_t pos, unsigned len, unsigned flags,
387 			struct page **pagep, void **fsdata)
388 {
389 	return -EINVAL;
390 }
391 
hugetlbfs_write_end(struct file *file, struct address_space *mapping, loff_t pos, unsigned len, unsigned copied, struct page *page, void *fsdata)392 static int hugetlbfs_write_end(struct file *file, struct address_space *mapping,
393 			loff_t pos, unsigned len, unsigned copied,
394 			struct page *page, void *fsdata)
395 {
396 	BUG();
397 	return -EINVAL;
398 }
399 
remove_huge_page(struct page *page)400 static void remove_huge_page(struct page *page)
401 {
402 	ClearPageDirty(page);
403 	ClearPageUptodate(page);
404 	delete_from_page_cache(page);
405 }
406 
407 static void
hugetlb_vmdelete_list(struct rb_root_cached *root, pgoff_t start, pgoff_t end)408 hugetlb_vmdelete_list(struct rb_root_cached *root, pgoff_t start, pgoff_t end)
409 {
410 	struct vm_area_struct *vma;
411 
412 	/*
413 	 * end == 0 indicates that the entire range after
414 	 * start should be unmapped.
415 	 */
416 	vma_interval_tree_foreach(vma, root, start, end ? end : ULONG_MAX) {
417 		unsigned long v_offset;
418 		unsigned long v_end;
419 
420 		/*
421 		 * Can the expression below overflow on 32-bit arches?
422 		 * No, because the interval tree returns us only those vmas
423 		 * which overlap the truncated area starting at pgoff,
424 		 * and no vma on a 32-bit arch can span beyond the 4GB.
425 		 */
426 		if (vma->vm_pgoff < start)
427 			v_offset = (start - vma->vm_pgoff) << PAGE_SHIFT;
428 		else
429 			v_offset = 0;
430 
431 		if (!end)
432 			v_end = vma->vm_end;
433 		else {
434 			v_end = ((end - vma->vm_pgoff) << PAGE_SHIFT)
435 							+ vma->vm_start;
436 			if (v_end > vma->vm_end)
437 				v_end = vma->vm_end;
438 		}
439 
440 		unmap_hugepage_range(vma, vma->vm_start + v_offset, v_end,
441 									NULL);
442 	}
443 }
444 
445 /*
446  * remove_inode_hugepages handles two distinct cases: truncation and hole
447  * punch.  There are subtle differences in operation for each case.
448  *
449  * truncation is indicated by end of range being LLONG_MAX
450  *	In this case, we first scan the range and release found pages.
451  *	After releasing pages, hugetlb_unreserve_pages cleans up region/reserv
452  *	maps and global counts.  Page faults can not race with truncation
453  *	in this routine.  hugetlb_no_page() holds i_mmap_rwsem and prevents
454  *	page faults in the truncated range by checking i_size.  i_size is
455  *	modified while holding i_mmap_rwsem.
456  * hole punch is indicated if end is not LLONG_MAX
457  *	In the hole punch case we scan the range and release found pages.
458  *	Only when releasing a page is the associated region/reserv map
459  *	deleted.  The region/reserv map for ranges without associated
460  *	pages are not modified.  Page faults can race with hole punch.
461  *	This is indicated if we find a mapped page.
462  * Note: If the passed end of range value is beyond the end of file, but
463  * not LLONG_MAX this routine still performs a hole punch operation.
464  */
remove_inode_hugepages(struct inode *inode, loff_t lstart, loff_t lend)465 static void remove_inode_hugepages(struct inode *inode, loff_t lstart,
466 				   loff_t lend)
467 {
468 	struct hstate *h = hstate_inode(inode);
469 	struct address_space *mapping = &inode->i_data;
470 	const pgoff_t start = lstart >> huge_page_shift(h);
471 	const pgoff_t end = lend >> huge_page_shift(h);
472 	struct vm_area_struct pseudo_vma;
473 	struct pagevec pvec;
474 	pgoff_t next, index;
475 	int i, freed = 0;
476 	bool truncate_op = (lend == LLONG_MAX);
477 
478 	vma_init(&pseudo_vma, current->mm);
479 	pseudo_vma.vm_flags = (VM_HUGETLB | VM_MAYSHARE | VM_SHARED);
480 	pagevec_init(&pvec);
481 	next = start;
482 	while (next < end) {
483 		/*
484 		 * When no more pages are found, we are done.
485 		 */
486 		if (!pagevec_lookup_range(&pvec, mapping, &next, end - 1))
487 			break;
488 
489 		for (i = 0; i < pagevec_count(&pvec); ++i) {
490 			struct page *page = pvec.pages[i];
491 			u32 hash;
492 
493 			index = page->index;
494 			hash = hugetlb_fault_mutex_hash(mapping, index);
495 			if (!truncate_op) {
496 				/*
497 				 * Only need to hold the fault mutex in the
498 				 * hole punch case.  This prevents races with
499 				 * page faults.  Races are not possible in the
500 				 * case of truncation.
501 				 */
502 				mutex_lock(&hugetlb_fault_mutex_table[hash]);
503 			}
504 
505 			/*
506 			 * If page is mapped, it was faulted in after being
507 			 * unmapped in caller.  Unmap (again) now after taking
508 			 * the fault mutex.  The mutex will prevent faults
509 			 * until we finish removing the page.
510 			 *
511 			 * This race can only happen in the hole punch case.
512 			 * Getting here in a truncate operation is a bug.
513 			 */
514 			if (unlikely(page_mapped(page))) {
515 				BUG_ON(truncate_op);
516 
517 				mutex_unlock(&hugetlb_fault_mutex_table[hash]);
518 				i_mmap_lock_write(mapping);
519 				mutex_lock(&hugetlb_fault_mutex_table[hash]);
520 				hugetlb_vmdelete_list(&mapping->i_mmap,
521 					index * pages_per_huge_page(h),
522 					(index + 1) * pages_per_huge_page(h));
523 				i_mmap_unlock_write(mapping);
524 			}
525 
526 			lock_page(page);
527 			/*
528 			 * We must free the huge page and remove from page
529 			 * cache (remove_huge_page) BEFORE removing the
530 			 * region/reserve map (hugetlb_unreserve_pages).  In
531 			 * rare out of memory conditions, removal of the
532 			 * region/reserve map could fail. Correspondingly,
533 			 * the subpool and global reserve usage count can need
534 			 * to be adjusted.
535 			 */
536 			VM_BUG_ON(PagePrivate(page));
537 			remove_huge_page(page);
538 			freed++;
539 			if (!truncate_op) {
540 				if (unlikely(hugetlb_unreserve_pages(inode,
541 							index, index + 1, 1)))
542 					hugetlb_fix_reserve_counts(inode);
543 			}
544 
545 			unlock_page(page);
546 			if (!truncate_op)
547 				mutex_unlock(&hugetlb_fault_mutex_table[hash]);
548 		}
549 		huge_pagevec_release(&pvec);
550 		cond_resched();
551 	}
552 
553 	if (truncate_op)
554 		(void)hugetlb_unreserve_pages(inode, start, LONG_MAX, freed);
555 }
556 
hugetlbfs_evict_inode(struct inode *inode)557 static void hugetlbfs_evict_inode(struct inode *inode)
558 {
559 	struct resv_map *resv_map;
560 
561 	remove_inode_hugepages(inode, 0, LLONG_MAX);
562 
563 	/*
564 	 * Get the resv_map from the address space embedded in the inode.
565 	 * This is the address space which points to any resv_map allocated
566 	 * at inode creation time.  If this is a device special inode,
567 	 * i_mapping may not point to the original address space.
568 	 */
569 	resv_map = (struct resv_map *)(&inode->i_data)->private_data;
570 	/* Only regular and link inodes have associated reserve maps */
571 	if (resv_map)
572 		resv_map_release(&resv_map->refs);
573 	clear_inode(inode);
574 }
575 
hugetlb_vmtruncate(struct inode *inode, loff_t offset)576 static int hugetlb_vmtruncate(struct inode *inode, loff_t offset)
577 {
578 	pgoff_t pgoff;
579 	struct address_space *mapping = inode->i_mapping;
580 	struct hstate *h = hstate_inode(inode);
581 
582 	BUG_ON(offset & ~huge_page_mask(h));
583 	pgoff = offset >> PAGE_SHIFT;
584 
585 	i_mmap_lock_write(mapping);
586 	i_size_write(inode, offset);
587 	if (!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root))
588 		hugetlb_vmdelete_list(&mapping->i_mmap, pgoff, 0);
589 	i_mmap_unlock_write(mapping);
590 	remove_inode_hugepages(inode, offset, LLONG_MAX);
591 	return 0;
592 }
593 
hugetlbfs_punch_hole(struct inode *inode, loff_t offset, loff_t len)594 static long hugetlbfs_punch_hole(struct inode *inode, loff_t offset, loff_t len)
595 {
596 	struct hstate *h = hstate_inode(inode);
597 	loff_t hpage_size = huge_page_size(h);
598 	loff_t hole_start, hole_end;
599 
600 	/*
601 	 * For hole punch round up the beginning offset of the hole and
602 	 * round down the end.
603 	 */
604 	hole_start = round_up(offset, hpage_size);
605 	hole_end = round_down(offset + len, hpage_size);
606 
607 	if (hole_end > hole_start) {
608 		struct address_space *mapping = inode->i_mapping;
609 		struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
610 
611 		inode_lock(inode);
612 
613 		/* protected by i_mutex */
614 		if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) {
615 			inode_unlock(inode);
616 			return -EPERM;
617 		}
618 
619 		i_mmap_lock_write(mapping);
620 		if (!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root))
621 			hugetlb_vmdelete_list(&mapping->i_mmap,
622 						hole_start >> PAGE_SHIFT,
623 						hole_end  >> PAGE_SHIFT);
624 		i_mmap_unlock_write(mapping);
625 		remove_inode_hugepages(inode, hole_start, hole_end);
626 		inode_unlock(inode);
627 	}
628 
629 	return 0;
630 }
631 
hugetlbfs_fallocate(struct file *file, int mode, loff_t offset, loff_t len)632 static long hugetlbfs_fallocate(struct file *file, int mode, loff_t offset,
633 				loff_t len)
634 {
635 	struct inode *inode = file_inode(file);
636 	struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
637 	struct address_space *mapping = inode->i_mapping;
638 	struct hstate *h = hstate_inode(inode);
639 	struct vm_area_struct pseudo_vma;
640 	struct mm_struct *mm = current->mm;
641 	loff_t hpage_size = huge_page_size(h);
642 	unsigned long hpage_shift = huge_page_shift(h);
643 	pgoff_t start, index, end;
644 	int error;
645 	u32 hash;
646 
647 	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
648 		return -EOPNOTSUPP;
649 
650 	if (mode & FALLOC_FL_PUNCH_HOLE)
651 		return hugetlbfs_punch_hole(inode, offset, len);
652 
653 	/*
654 	 * Default preallocate case.
655 	 * For this range, start is rounded down and end is rounded up
656 	 * as well as being converted to page offsets.
657 	 */
658 	start = offset >> hpage_shift;
659 	end = DIV_ROUND_UP_ULL(offset + len, hpage_size);
660 
661 	inode_lock(inode);
662 
663 	/* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
664 	error = inode_newsize_ok(inode, offset + len);
665 	if (error)
666 		goto out;
667 
668 	if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
669 		error = -EPERM;
670 		goto out;
671 	}
672 
673 	/*
674 	 * Initialize a pseudo vma as this is required by the huge page
675 	 * allocation routines.  If NUMA is configured, use page index
676 	 * as input to create an allocation policy.
677 	 */
678 	vma_init(&pseudo_vma, mm);
679 	pseudo_vma.vm_flags = (VM_HUGETLB | VM_MAYSHARE | VM_SHARED);
680 	pseudo_vma.vm_file = file;
681 
682 	for (index = start; index < end; index++) {
683 		/*
684 		 * This is supposed to be the vaddr where the page is being
685 		 * faulted in, but we have no vaddr here.
686 		 */
687 		struct page *page;
688 		unsigned long addr;
689 		int avoid_reserve = 0;
690 
691 		cond_resched();
692 
693 		/*
694 		 * fallocate(2) manpage permits EINTR; we may have been
695 		 * interrupted because we are using up too much memory.
696 		 */
697 		if (signal_pending(current)) {
698 			error = -EINTR;
699 			break;
700 		}
701 
702 		/* Set numa allocation policy based on index */
703 		hugetlb_set_vma_policy(&pseudo_vma, inode, index);
704 
705 		/* addr is the offset within the file (zero based) */
706 		addr = index * hpage_size;
707 
708 		/*
709 		 * fault mutex taken here, protects against fault path
710 		 * and hole punch.  inode_lock previously taken protects
711 		 * against truncation.
712 		 */
713 		hash = hugetlb_fault_mutex_hash(mapping, index);
714 		mutex_lock(&hugetlb_fault_mutex_table[hash]);
715 
716 		/* See if already present in mapping to avoid alloc/free */
717 		page = find_get_page(mapping, index);
718 		if (page) {
719 			put_page(page);
720 			mutex_unlock(&hugetlb_fault_mutex_table[hash]);
721 			hugetlb_drop_vma_policy(&pseudo_vma);
722 			continue;
723 		}
724 
725 		/* Allocate page and add to page cache */
726 		page = alloc_huge_page(&pseudo_vma, addr, avoid_reserve);
727 		hugetlb_drop_vma_policy(&pseudo_vma);
728 		if (IS_ERR(page)) {
729 			mutex_unlock(&hugetlb_fault_mutex_table[hash]);
730 			error = PTR_ERR(page);
731 			goto out;
732 		}
733 		clear_huge_page(page, addr, pages_per_huge_page(h));
734 		__SetPageUptodate(page);
735 		error = huge_add_to_page_cache(page, mapping, index);
736 		if (unlikely(error)) {
737 			put_page(page);
738 			mutex_unlock(&hugetlb_fault_mutex_table[hash]);
739 			goto out;
740 		}
741 
742 		mutex_unlock(&hugetlb_fault_mutex_table[hash]);
743 
744 		set_page_huge_active(page);
745 		/*
746 		 * unlock_page because locked by add_to_page_cache()
747 		 * put_page() due to reference from alloc_huge_page()
748 		 */
749 		unlock_page(page);
750 		put_page(page);
751 	}
752 
753 	if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
754 		i_size_write(inode, offset + len);
755 	inode->i_ctime = current_time(inode);
756 out:
757 	inode_unlock(inode);
758 	return error;
759 }
760 
hugetlbfs_setattr(struct dentry *dentry, struct iattr *attr)761 static int hugetlbfs_setattr(struct dentry *dentry, struct iattr *attr)
762 {
763 	struct inode *inode = d_inode(dentry);
764 	struct hstate *h = hstate_inode(inode);
765 	int error;
766 	unsigned int ia_valid = attr->ia_valid;
767 	struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
768 
769 	BUG_ON(!inode);
770 
771 	error = setattr_prepare(dentry, attr);
772 	if (error)
773 		return error;
774 
775 	if (ia_valid & ATTR_SIZE) {
776 		loff_t oldsize = inode->i_size;
777 		loff_t newsize = attr->ia_size;
778 
779 		if (newsize & ~huge_page_mask(h))
780 			return -EINVAL;
781 		/* protected by i_mutex */
782 		if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
783 		    (newsize > oldsize && (info->seals & F_SEAL_GROW)))
784 			return -EPERM;
785 		error = hugetlb_vmtruncate(inode, newsize);
786 		if (error)
787 			return error;
788 	}
789 
790 	setattr_copy(inode, attr);
791 	mark_inode_dirty(inode);
792 	return 0;
793 }
794 
hugetlbfs_get_root(struct super_block *sb, struct hugetlbfs_fs_context *ctx)795 static struct inode *hugetlbfs_get_root(struct super_block *sb,
796 					struct hugetlbfs_fs_context *ctx)
797 {
798 	struct inode *inode;
799 
800 	inode = new_inode(sb);
801 	if (inode) {
802 		inode->i_ino = get_next_ino();
803 		inode->i_mode = S_IFDIR | ctx->mode;
804 		inode->i_uid = ctx->uid;
805 		inode->i_gid = ctx->gid;
806 		inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
807 		inode->i_op = &hugetlbfs_dir_inode_operations;
808 		inode->i_fop = &simple_dir_operations;
809 		/* directory inodes start off with i_nlink == 2 (for "." entry) */
810 		inc_nlink(inode);
811 		lockdep_annotate_inode_mutex_key(inode);
812 	}
813 	return inode;
814 }
815 
816 /*
817  * Hugetlbfs is not reclaimable; therefore its i_mmap_rwsem will never
818  * be taken from reclaim -- unlike regular filesystems. This needs an
819  * annotation because huge_pmd_share() does an allocation under hugetlb's
820  * i_mmap_rwsem.
821  */
822 static struct lock_class_key hugetlbfs_i_mmap_rwsem_key;
823 
hugetlbfs_get_inode(struct super_block *sb, struct inode *dir, umode_t mode, dev_t dev)824 static struct inode *hugetlbfs_get_inode(struct super_block *sb,
825 					struct inode *dir,
826 					umode_t mode, dev_t dev)
827 {
828 	struct inode *inode;
829 	struct resv_map *resv_map = NULL;
830 
831 	/*
832 	 * Reserve maps are only needed for inodes that can have associated
833 	 * page allocations.
834 	 */
835 	if (S_ISREG(mode) || S_ISLNK(mode)) {
836 		resv_map = resv_map_alloc();
837 		if (!resv_map)
838 			return NULL;
839 	}
840 
841 	inode = new_inode(sb);
842 	if (inode) {
843 		struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
844 
845 		inode->i_ino = get_next_ino();
846 		inode_init_owner(inode, dir, mode);
847 		lockdep_set_class(&inode->i_mapping->i_mmap_rwsem,
848 				&hugetlbfs_i_mmap_rwsem_key);
849 		inode->i_mapping->a_ops = &hugetlbfs_aops;
850 		inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
851 		inode->i_mapping->private_data = resv_map;
852 		info->seals = F_SEAL_SEAL;
853 		switch (mode & S_IFMT) {
854 		default:
855 			init_special_inode(inode, mode, dev);
856 			break;
857 		case S_IFREG:
858 			inode->i_op = &hugetlbfs_inode_operations;
859 			inode->i_fop = &hugetlbfs_file_operations;
860 			break;
861 		case S_IFDIR:
862 			inode->i_op = &hugetlbfs_dir_inode_operations;
863 			inode->i_fop = &simple_dir_operations;
864 
865 			/* directory inodes start off with i_nlink == 2 (for "." entry) */
866 			inc_nlink(inode);
867 			break;
868 		case S_IFLNK:
869 			inode->i_op = &page_symlink_inode_operations;
870 			inode_nohighmem(inode);
871 			break;
872 		}
873 		lockdep_annotate_inode_mutex_key(inode);
874 	} else {
875 		if (resv_map)
876 			kref_put(&resv_map->refs, resv_map_release);
877 	}
878 
879 	return inode;
880 }
881 
882 /*
883  * File creation. Allocate an inode, and we're done..
884  */
do_hugetlbfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev, bool tmpfile)885 static int do_hugetlbfs_mknod(struct inode *dir,
886 			struct dentry *dentry,
887 			umode_t mode,
888 			dev_t dev,
889 			bool tmpfile)
890 {
891 	struct inode *inode;
892 	int error = -ENOSPC;
893 
894 	inode = hugetlbfs_get_inode(dir->i_sb, dir, mode, dev);
895 	if (inode) {
896 		dir->i_ctime = dir->i_mtime = current_time(dir);
897 		if (tmpfile) {
898 			d_tmpfile(dentry, inode);
899 		} else {
900 			d_instantiate(dentry, inode);
901 			dget(dentry);/* Extra count - pin the dentry in core */
902 		}
903 		error = 0;
904 	}
905 	return error;
906 }
907 
hugetlbfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)908 static int hugetlbfs_mknod(struct inode *dir,
909 			struct dentry *dentry, umode_t mode, dev_t dev)
910 {
911 	return do_hugetlbfs_mknod(dir, dentry, mode, dev, false);
912 }
913 
hugetlbfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)914 static int hugetlbfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
915 {
916 	int retval = hugetlbfs_mknod(dir, dentry, mode | S_IFDIR, 0);
917 	if (!retval)
918 		inc_nlink(dir);
919 	return retval;
920 }
921 
hugetlbfs_create(struct inode *dir, struct dentry *dentry, umode_t mode, bool excl)922 static int hugetlbfs_create(struct inode *dir, struct dentry *dentry, umode_t mode, bool excl)
923 {
924 	return hugetlbfs_mknod(dir, dentry, mode | S_IFREG, 0);
925 }
926 
hugetlbfs_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)927 static int hugetlbfs_tmpfile(struct inode *dir,
928 			struct dentry *dentry, umode_t mode)
929 {
930 	return do_hugetlbfs_mknod(dir, dentry, mode | S_IFREG, 0, true);
931 }
932 
hugetlbfs_symlink(struct inode *dir, struct dentry *dentry, const char *symname)933 static int hugetlbfs_symlink(struct inode *dir,
934 			struct dentry *dentry, const char *symname)
935 {
936 	struct inode *inode;
937 	int error = -ENOSPC;
938 
939 	inode = hugetlbfs_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0);
940 	if (inode) {
941 		int l = strlen(symname)+1;
942 		error = page_symlink(inode, symname, l);
943 		if (!error) {
944 			d_instantiate(dentry, inode);
945 			dget(dentry);
946 		} else
947 			iput(inode);
948 	}
949 	dir->i_ctime = dir->i_mtime = current_time(dir);
950 
951 	return error;
952 }
953 
954 /*
955  * mark the head page dirty
956  */
hugetlbfs_set_page_dirty(struct page *page)957 static int hugetlbfs_set_page_dirty(struct page *page)
958 {
959 	struct page *head = compound_head(page);
960 
961 	SetPageDirty(head);
962 	return 0;
963 }
964 
hugetlbfs_migrate_page(struct address_space *mapping, struct page *newpage, struct page *page, enum migrate_mode mode)965 static int hugetlbfs_migrate_page(struct address_space *mapping,
966 				struct page *newpage, struct page *page,
967 				enum migrate_mode mode)
968 {
969 	int rc;
970 
971 	rc = migrate_huge_page_move_mapping(mapping, newpage, page);
972 	if (rc != MIGRATEPAGE_SUCCESS)
973 		return rc;
974 
975 	/*
976 	 * page_private is subpool pointer in hugetlb pages.  Transfer to
977 	 * new page.  PagePrivate is not associated with page_private for
978 	 * hugetlb pages and can not be set here as only page_huge_active
979 	 * pages can be migrated.
980 	 */
981 	if (page_private(page)) {
982 		set_page_private(newpage, page_private(page));
983 		set_page_private(page, 0);
984 	}
985 
986 	if (mode != MIGRATE_SYNC_NO_COPY)
987 		migrate_page_copy(newpage, page);
988 	else
989 		migrate_page_states(newpage, page);
990 
991 	return MIGRATEPAGE_SUCCESS;
992 }
993 
hugetlbfs_error_remove_page(struct address_space *mapping, struct page *page)994 static int hugetlbfs_error_remove_page(struct address_space *mapping,
995 				struct page *page)
996 {
997 	struct inode *inode = mapping->host;
998 	pgoff_t index = page->index;
999 
1000 	remove_huge_page(page);
1001 	if (unlikely(hugetlb_unreserve_pages(inode, index, index + 1, 1)))
1002 		hugetlb_fix_reserve_counts(inode);
1003 
1004 	return 0;
1005 }
1006 
1007 /*
1008  * Display the mount options in /proc/mounts.
1009  */
hugetlbfs_show_options(struct seq_file *m, struct dentry *root)1010 static int hugetlbfs_show_options(struct seq_file *m, struct dentry *root)
1011 {
1012 	struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(root->d_sb);
1013 	struct hugepage_subpool *spool = sbinfo->spool;
1014 	unsigned long hpage_size = huge_page_size(sbinfo->hstate);
1015 	unsigned hpage_shift = huge_page_shift(sbinfo->hstate);
1016 	char mod;
1017 
1018 	if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
1019 		seq_printf(m, ",uid=%u",
1020 			   from_kuid_munged(&init_user_ns, sbinfo->uid));
1021 	if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
1022 		seq_printf(m, ",gid=%u",
1023 			   from_kgid_munged(&init_user_ns, sbinfo->gid));
1024 	if (sbinfo->mode != 0755)
1025 		seq_printf(m, ",mode=%o", sbinfo->mode);
1026 	if (sbinfo->max_inodes != -1)
1027 		seq_printf(m, ",nr_inodes=%lu", sbinfo->max_inodes);
1028 
1029 	hpage_size /= 1024;
1030 	mod = 'K';
1031 	if (hpage_size >= 1024) {
1032 		hpage_size /= 1024;
1033 		mod = 'M';
1034 	}
1035 	seq_printf(m, ",pagesize=%lu%c", hpage_size, mod);
1036 	if (spool) {
1037 		if (spool->max_hpages != -1)
1038 			seq_printf(m, ",size=%llu",
1039 				   (unsigned long long)spool->max_hpages << hpage_shift);
1040 		if (spool->min_hpages != -1)
1041 			seq_printf(m, ",min_size=%llu",
1042 				   (unsigned long long)spool->min_hpages << hpage_shift);
1043 	}
1044 	return 0;
1045 }
1046 
hugetlbfs_statfs(struct dentry *dentry, struct kstatfs *buf)1047 static int hugetlbfs_statfs(struct dentry *dentry, struct kstatfs *buf)
1048 {
1049 	struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(dentry->d_sb);
1050 	struct hstate *h = hstate_inode(d_inode(dentry));
1051 
1052 	buf->f_type = HUGETLBFS_MAGIC;
1053 	buf->f_bsize = huge_page_size(h);
1054 	if (sbinfo) {
1055 		spin_lock(&sbinfo->stat_lock);
1056 		/* If no limits set, just report 0 for max/free/used
1057 		 * blocks, like simple_statfs() */
1058 		if (sbinfo->spool) {
1059 			long free_pages;
1060 
1061 			spin_lock(&sbinfo->spool->lock);
1062 			buf->f_blocks = sbinfo->spool->max_hpages;
1063 			free_pages = sbinfo->spool->max_hpages
1064 				- sbinfo->spool->used_hpages;
1065 			buf->f_bavail = buf->f_bfree = free_pages;
1066 			spin_unlock(&sbinfo->spool->lock);
1067 			buf->f_files = sbinfo->max_inodes;
1068 			buf->f_ffree = sbinfo->free_inodes;
1069 		}
1070 		spin_unlock(&sbinfo->stat_lock);
1071 	}
1072 	buf->f_namelen = NAME_MAX;
1073 	return 0;
1074 }
1075 
hugetlbfs_put_super(struct super_block *sb)1076 static void hugetlbfs_put_super(struct super_block *sb)
1077 {
1078 	struct hugetlbfs_sb_info *sbi = HUGETLBFS_SB(sb);
1079 
1080 	if (sbi) {
1081 		sb->s_fs_info = NULL;
1082 
1083 		if (sbi->spool)
1084 			hugepage_put_subpool(sbi->spool);
1085 
1086 		kfree(sbi);
1087 	}
1088 }
1089 
hugetlbfs_dec_free_inodes(struct hugetlbfs_sb_info *sbinfo)1090 static inline int hugetlbfs_dec_free_inodes(struct hugetlbfs_sb_info *sbinfo)
1091 {
1092 	if (sbinfo->free_inodes >= 0) {
1093 		spin_lock(&sbinfo->stat_lock);
1094 		if (unlikely(!sbinfo->free_inodes)) {
1095 			spin_unlock(&sbinfo->stat_lock);
1096 			return 0;
1097 		}
1098 		sbinfo->free_inodes--;
1099 		spin_unlock(&sbinfo->stat_lock);
1100 	}
1101 
1102 	return 1;
1103 }
1104 
hugetlbfs_inc_free_inodes(struct hugetlbfs_sb_info *sbinfo)1105 static void hugetlbfs_inc_free_inodes(struct hugetlbfs_sb_info *sbinfo)
1106 {
1107 	if (sbinfo->free_inodes >= 0) {
1108 		spin_lock(&sbinfo->stat_lock);
1109 		sbinfo->free_inodes++;
1110 		spin_unlock(&sbinfo->stat_lock);
1111 	}
1112 }
1113 
1114 
1115 static struct kmem_cache *hugetlbfs_inode_cachep;
1116 
hugetlbfs_alloc_inode(struct super_block *sb)1117 static struct inode *hugetlbfs_alloc_inode(struct super_block *sb)
1118 {
1119 	struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(sb);
1120 	struct hugetlbfs_inode_info *p;
1121 
1122 	if (unlikely(!hugetlbfs_dec_free_inodes(sbinfo)))
1123 		return NULL;
1124 	p = kmem_cache_alloc(hugetlbfs_inode_cachep, GFP_KERNEL);
1125 	if (unlikely(!p)) {
1126 		hugetlbfs_inc_free_inodes(sbinfo);
1127 		return NULL;
1128 	}
1129 
1130 	/*
1131 	 * Any time after allocation, hugetlbfs_destroy_inode can be called
1132 	 * for the inode.  mpol_free_shared_policy is unconditionally called
1133 	 * as part of hugetlbfs_destroy_inode.  So, initialize policy here
1134 	 * in case of a quick call to destroy.
1135 	 *
1136 	 * Note that the policy is initialized even if we are creating a
1137 	 * private inode.  This simplifies hugetlbfs_destroy_inode.
1138 	 */
1139 	mpol_shared_policy_init(&p->policy, NULL);
1140 
1141 	return &p->vfs_inode;
1142 }
1143 
hugetlbfs_free_inode(struct inode *inode)1144 static void hugetlbfs_free_inode(struct inode *inode)
1145 {
1146 	kmem_cache_free(hugetlbfs_inode_cachep, HUGETLBFS_I(inode));
1147 }
1148 
hugetlbfs_destroy_inode(struct inode *inode)1149 static void hugetlbfs_destroy_inode(struct inode *inode)
1150 {
1151 	hugetlbfs_inc_free_inodes(HUGETLBFS_SB(inode->i_sb));
1152 	mpol_free_shared_policy(&HUGETLBFS_I(inode)->policy);
1153 }
1154 
1155 static const struct address_space_operations hugetlbfs_aops = {
1156 	.write_begin	= hugetlbfs_write_begin,
1157 	.write_end	= hugetlbfs_write_end,
1158 	.set_page_dirty	= hugetlbfs_set_page_dirty,
1159 	.migratepage    = hugetlbfs_migrate_page,
1160 	.error_remove_page	= hugetlbfs_error_remove_page,
1161 };
1162 
1163 
init_once(void *foo)1164 static void init_once(void *foo)
1165 {
1166 	struct hugetlbfs_inode_info *ei = (struct hugetlbfs_inode_info *)foo;
1167 
1168 	inode_init_once(&ei->vfs_inode);
1169 }
1170 
1171 const struct file_operations hugetlbfs_file_operations = {
1172 	.read_iter		= hugetlbfs_read_iter,
1173 	.mmap			= hugetlbfs_file_mmap,
1174 	.fsync			= noop_fsync,
1175 	.get_unmapped_area	= hugetlb_get_unmapped_area,
1176 	.llseek			= default_llseek,
1177 	.fallocate		= hugetlbfs_fallocate,
1178 };
1179 
1180 static const struct inode_operations hugetlbfs_dir_inode_operations = {
1181 	.create		= hugetlbfs_create,
1182 	.lookup		= simple_lookup,
1183 	.link		= simple_link,
1184 	.unlink		= simple_unlink,
1185 	.symlink	= hugetlbfs_symlink,
1186 	.mkdir		= hugetlbfs_mkdir,
1187 	.rmdir		= simple_rmdir,
1188 	.mknod		= hugetlbfs_mknod,
1189 	.rename		= simple_rename,
1190 	.setattr	= hugetlbfs_setattr,
1191 	.tmpfile	= hugetlbfs_tmpfile,
1192 };
1193 
1194 static const struct inode_operations hugetlbfs_inode_operations = {
1195 	.setattr	= hugetlbfs_setattr,
1196 };
1197 
1198 static const struct super_operations hugetlbfs_ops = {
1199 	.alloc_inode    = hugetlbfs_alloc_inode,
1200 	.free_inode     = hugetlbfs_free_inode,
1201 	.destroy_inode  = hugetlbfs_destroy_inode,
1202 	.evict_inode	= hugetlbfs_evict_inode,
1203 	.statfs		= hugetlbfs_statfs,
1204 	.put_super	= hugetlbfs_put_super,
1205 	.show_options	= hugetlbfs_show_options,
1206 };
1207 
1208 /*
1209  * Convert size option passed from command line to number of huge pages
1210  * in the pool specified by hstate.  Size option could be in bytes
1211  * (val_type == SIZE_STD) or percentage of the pool (val_type == SIZE_PERCENT).
1212  */
1213 static long
hugetlbfs_size_to_hpages(struct hstate *h, unsigned long long size_opt, enum hugetlbfs_size_type val_type)1214 hugetlbfs_size_to_hpages(struct hstate *h, unsigned long long size_opt,
1215 			 enum hugetlbfs_size_type val_type)
1216 {
1217 	if (val_type == NO_SIZE)
1218 		return -1;
1219 
1220 	if (val_type == SIZE_PERCENT) {
1221 		size_opt <<= huge_page_shift(h);
1222 		size_opt *= h->max_huge_pages;
1223 		do_div(size_opt, 100);
1224 	}
1225 
1226 	size_opt >>= huge_page_shift(h);
1227 	return size_opt;
1228 }
1229 
1230 /*
1231  * Parse one mount parameter.
1232  */
hugetlbfs_parse_param(struct fs_context *fc, struct fs_parameter *param)1233 static int hugetlbfs_parse_param(struct fs_context *fc, struct fs_parameter *param)
1234 {
1235 	struct hugetlbfs_fs_context *ctx = fc->fs_private;
1236 	struct fs_parse_result result;
1237 	char *rest;
1238 	unsigned long ps;
1239 	int opt;
1240 
1241 	opt = fs_parse(fc, hugetlb_fs_parameters, param, &result);
1242 	if (opt < 0)
1243 		return opt;
1244 
1245 	switch (opt) {
1246 	case Opt_uid:
1247 		ctx->uid = make_kuid(current_user_ns(), result.uint_32);
1248 		if (!uid_valid(ctx->uid))
1249 			goto bad_val;
1250 		return 0;
1251 
1252 	case Opt_gid:
1253 		ctx->gid = make_kgid(current_user_ns(), result.uint_32);
1254 		if (!gid_valid(ctx->gid))
1255 			goto bad_val;
1256 		return 0;
1257 
1258 	case Opt_mode:
1259 		ctx->mode = result.uint_32 & 01777U;
1260 		return 0;
1261 
1262 	case Opt_size:
1263 		/* memparse() will accept a K/M/G without a digit */
1264 		if (!param->string || !isdigit(param->string[0]))
1265 			goto bad_val;
1266 		ctx->max_size_opt = memparse(param->string, &rest);
1267 		ctx->max_val_type = SIZE_STD;
1268 		if (*rest == '%')
1269 			ctx->max_val_type = SIZE_PERCENT;
1270 		return 0;
1271 
1272 	case Opt_nr_inodes:
1273 		/* memparse() will accept a K/M/G without a digit */
1274 		if (!param->string || !isdigit(param->string[0]))
1275 			goto bad_val;
1276 		ctx->nr_inodes = memparse(param->string, &rest);
1277 		return 0;
1278 
1279 	case Opt_pagesize:
1280 		ps = memparse(param->string, &rest);
1281 		ctx->hstate = size_to_hstate(ps);
1282 		if (!ctx->hstate) {
1283 			pr_err("Unsupported page size %lu MB\n", ps >> 20);
1284 			return -EINVAL;
1285 		}
1286 		return 0;
1287 
1288 	case Opt_min_size:
1289 		/* memparse() will accept a K/M/G without a digit */
1290 		if (!param->string || !isdigit(param->string[0]))
1291 			goto bad_val;
1292 		ctx->min_size_opt = memparse(param->string, &rest);
1293 		ctx->min_val_type = SIZE_STD;
1294 		if (*rest == '%')
1295 			ctx->min_val_type = SIZE_PERCENT;
1296 		return 0;
1297 
1298 	default:
1299 		return -EINVAL;
1300 	}
1301 
1302 bad_val:
1303 	return invalfc(fc, "Bad value '%s' for mount option '%s'\n",
1304 		      param->string, param->key);
1305 }
1306 
1307 /*
1308  * Validate the parsed options.
1309  */
hugetlbfs_validate(struct fs_context *fc)1310 static int hugetlbfs_validate(struct fs_context *fc)
1311 {
1312 	struct hugetlbfs_fs_context *ctx = fc->fs_private;
1313 
1314 	/*
1315 	 * Use huge page pool size (in hstate) to convert the size
1316 	 * options to number of huge pages.  If NO_SIZE, -1 is returned.
1317 	 */
1318 	ctx->max_hpages = hugetlbfs_size_to_hpages(ctx->hstate,
1319 						   ctx->max_size_opt,
1320 						   ctx->max_val_type);
1321 	ctx->min_hpages = hugetlbfs_size_to_hpages(ctx->hstate,
1322 						   ctx->min_size_opt,
1323 						   ctx->min_val_type);
1324 
1325 	/*
1326 	 * If max_size was specified, then min_size must be smaller
1327 	 */
1328 	if (ctx->max_val_type > NO_SIZE &&
1329 	    ctx->min_hpages > ctx->max_hpages) {
1330 		pr_err("Minimum size can not be greater than maximum size\n");
1331 		return -EINVAL;
1332 	}
1333 
1334 	return 0;
1335 }
1336 
1337 static int
hugetlbfs_fill_super(struct super_block *sb, struct fs_context *fc)1338 hugetlbfs_fill_super(struct super_block *sb, struct fs_context *fc)
1339 {
1340 	struct hugetlbfs_fs_context *ctx = fc->fs_private;
1341 	struct hugetlbfs_sb_info *sbinfo;
1342 
1343 	sbinfo = kmalloc(sizeof(struct hugetlbfs_sb_info), GFP_KERNEL);
1344 	if (!sbinfo)
1345 		return -ENOMEM;
1346 	sb->s_fs_info = sbinfo;
1347 	spin_lock_init(&sbinfo->stat_lock);
1348 	sbinfo->hstate		= ctx->hstate;
1349 	sbinfo->max_inodes	= ctx->nr_inodes;
1350 	sbinfo->free_inodes	= ctx->nr_inodes;
1351 	sbinfo->spool		= NULL;
1352 	sbinfo->uid		= ctx->uid;
1353 	sbinfo->gid		= ctx->gid;
1354 	sbinfo->mode		= ctx->mode;
1355 
1356 	/*
1357 	 * Allocate and initialize subpool if maximum or minimum size is
1358 	 * specified.  Any needed reservations (for minimim size) are taken
1359 	 * taken when the subpool is created.
1360 	 */
1361 	if (ctx->max_hpages != -1 || ctx->min_hpages != -1) {
1362 		sbinfo->spool = hugepage_new_subpool(ctx->hstate,
1363 						     ctx->max_hpages,
1364 						     ctx->min_hpages);
1365 		if (!sbinfo->spool)
1366 			goto out_free;
1367 	}
1368 	sb->s_maxbytes = MAX_LFS_FILESIZE;
1369 	sb->s_blocksize = huge_page_size(ctx->hstate);
1370 	sb->s_blocksize_bits = huge_page_shift(ctx->hstate);
1371 	sb->s_magic = HUGETLBFS_MAGIC;
1372 	sb->s_op = &hugetlbfs_ops;
1373 	sb->s_time_gran = 1;
1374 
1375 	/*
1376 	 * Due to the special and limited functionality of hugetlbfs, it does
1377 	 * not work well as a stacking filesystem.
1378 	 */
1379 	sb->s_stack_depth = FILESYSTEM_MAX_STACK_DEPTH;
1380 	sb->s_root = d_make_root(hugetlbfs_get_root(sb, ctx));
1381 	if (!sb->s_root)
1382 		goto out_free;
1383 	return 0;
1384 out_free:
1385 	kfree(sbinfo->spool);
1386 	kfree(sbinfo);
1387 	return -ENOMEM;
1388 }
1389 
hugetlbfs_get_tree(struct fs_context *fc)1390 static int hugetlbfs_get_tree(struct fs_context *fc)
1391 {
1392 	int err = hugetlbfs_validate(fc);
1393 	if (err)
1394 		return err;
1395 	return get_tree_nodev(fc, hugetlbfs_fill_super);
1396 }
1397 
hugetlbfs_fs_context_free(struct fs_context *fc)1398 static void hugetlbfs_fs_context_free(struct fs_context *fc)
1399 {
1400 	kfree(fc->fs_private);
1401 }
1402 
1403 static const struct fs_context_operations hugetlbfs_fs_context_ops = {
1404 	.free		= hugetlbfs_fs_context_free,
1405 	.parse_param	= hugetlbfs_parse_param,
1406 	.get_tree	= hugetlbfs_get_tree,
1407 };
1408 
hugetlbfs_init_fs_context(struct fs_context *fc)1409 static int hugetlbfs_init_fs_context(struct fs_context *fc)
1410 {
1411 	struct hugetlbfs_fs_context *ctx;
1412 
1413 	ctx = kzalloc(sizeof(struct hugetlbfs_fs_context), GFP_KERNEL);
1414 	if (!ctx)
1415 		return -ENOMEM;
1416 
1417 	ctx->max_hpages	= -1; /* No limit on size by default */
1418 	ctx->nr_inodes	= -1; /* No limit on number of inodes by default */
1419 	ctx->uid	= current_fsuid();
1420 	ctx->gid	= current_fsgid();
1421 	ctx->mode	= 0755;
1422 	ctx->hstate	= &default_hstate;
1423 	ctx->min_hpages	= -1; /* No default minimum size */
1424 	ctx->max_val_type = NO_SIZE;
1425 	ctx->min_val_type = NO_SIZE;
1426 	fc->fs_private = ctx;
1427 	fc->ops	= &hugetlbfs_fs_context_ops;
1428 	return 0;
1429 }
1430 
1431 static struct file_system_type hugetlbfs_fs_type = {
1432 	.name			= "hugetlbfs",
1433 	.init_fs_context	= hugetlbfs_init_fs_context,
1434 	.parameters		= hugetlb_fs_parameters,
1435 	.kill_sb		= kill_litter_super,
1436 };
1437 
1438 static struct vfsmount *hugetlbfs_vfsmount[HUGE_MAX_HSTATE];
1439 
can_do_hugetlb_shm(void)1440 static int can_do_hugetlb_shm(void)
1441 {
1442 	kgid_t shm_group;
1443 	shm_group = make_kgid(&init_user_ns, sysctl_hugetlb_shm_group);
1444 	return capable(CAP_IPC_LOCK) || in_group_p(shm_group);
1445 }
1446 
get_hstate_idx(int page_size_log)1447 static int get_hstate_idx(int page_size_log)
1448 {
1449 	struct hstate *h = hstate_sizelog(page_size_log);
1450 
1451 	if (!h)
1452 		return -1;
1453 	return h - hstates;
1454 }
1455 
1456 /*
1457  * Note that size should be aligned to proper hugepage size in caller side,
1458  * otherwise hugetlb_reserve_pages reserves one less hugepages than intended.
1459  */
hugetlb_file_setup(const char *name, size_t size, vm_flags_t acctflag, struct user_struct **user, int creat_flags, int page_size_log)1460 struct file *hugetlb_file_setup(const char *name, size_t size,
1461 				vm_flags_t acctflag, struct user_struct **user,
1462 				int creat_flags, int page_size_log)
1463 {
1464 	struct inode *inode;
1465 	struct vfsmount *mnt;
1466 	int hstate_idx;
1467 	struct file *file;
1468 
1469 	hstate_idx = get_hstate_idx(page_size_log);
1470 	if (hstate_idx < 0)
1471 		return ERR_PTR(-ENODEV);
1472 
1473 	*user = NULL;
1474 	mnt = hugetlbfs_vfsmount[hstate_idx];
1475 	if (!mnt)
1476 		return ERR_PTR(-ENOENT);
1477 
1478 	if (creat_flags == HUGETLB_SHMFS_INODE && !can_do_hugetlb_shm()) {
1479 		*user = current_user();
1480 		if (user_shm_lock(size, *user)) {
1481 			task_lock(current);
1482 			pr_warn_once("%s (%d): Using mlock ulimits for SHM_HUGETLB is deprecated\n",
1483 				current->comm, current->pid);
1484 			task_unlock(current);
1485 		} else {
1486 			*user = NULL;
1487 			return ERR_PTR(-EPERM);
1488 		}
1489 	}
1490 
1491 	file = ERR_PTR(-ENOSPC);
1492 	inode = hugetlbfs_get_inode(mnt->mnt_sb, NULL, S_IFREG | S_IRWXUGO, 0);
1493 	if (!inode)
1494 		goto out;
1495 	if (creat_flags == HUGETLB_SHMFS_INODE)
1496 		inode->i_flags |= S_PRIVATE;
1497 
1498 	inode->i_size = size;
1499 	clear_nlink(inode);
1500 
1501 	if (hugetlb_reserve_pages(inode, 0,
1502 			size >> huge_page_shift(hstate_inode(inode)), NULL,
1503 			acctflag))
1504 		file = ERR_PTR(-ENOMEM);
1505 	else
1506 		file = alloc_file_pseudo(inode, mnt, name, O_RDWR,
1507 					&hugetlbfs_file_operations);
1508 	if (!IS_ERR(file))
1509 		return file;
1510 
1511 	iput(inode);
1512 out:
1513 	if (*user) {
1514 		user_shm_unlock(size, *user);
1515 		*user = NULL;
1516 	}
1517 	return file;
1518 }
1519 
mount_one_hugetlbfs(struct hstate *h)1520 static struct vfsmount *__init mount_one_hugetlbfs(struct hstate *h)
1521 {
1522 	struct fs_context *fc;
1523 	struct vfsmount *mnt;
1524 
1525 	fc = fs_context_for_mount(&hugetlbfs_fs_type, SB_KERNMOUNT);
1526 	if (IS_ERR(fc)) {
1527 		mnt = ERR_CAST(fc);
1528 	} else {
1529 		struct hugetlbfs_fs_context *ctx = fc->fs_private;
1530 		ctx->hstate = h;
1531 		mnt = fc_mount(fc);
1532 		put_fs_context(fc);
1533 	}
1534 	if (IS_ERR(mnt))
1535 		pr_err("Cannot mount internal hugetlbfs for page size %uK",
1536 		       1U << (h->order + PAGE_SHIFT - 10));
1537 	return mnt;
1538 }
1539 
init_hugetlbfs_fs(void)1540 static int __init init_hugetlbfs_fs(void)
1541 {
1542 	struct vfsmount *mnt;
1543 	struct hstate *h;
1544 	int error;
1545 	int i;
1546 
1547 	if (!hugepages_supported()) {
1548 		pr_info("disabling because there are no supported hugepage sizes\n");
1549 		return -ENOTSUPP;
1550 	}
1551 
1552 	error = -ENOMEM;
1553 	hugetlbfs_inode_cachep = kmem_cache_create("hugetlbfs_inode_cache",
1554 					sizeof(struct hugetlbfs_inode_info),
1555 					0, SLAB_ACCOUNT, init_once);
1556 	if (hugetlbfs_inode_cachep == NULL)
1557 		goto out;
1558 
1559 	error = register_filesystem(&hugetlbfs_fs_type);
1560 	if (error)
1561 		goto out_free;
1562 
1563 	/* default hstate mount is required */
1564 	mnt = mount_one_hugetlbfs(&hstates[default_hstate_idx]);
1565 	if (IS_ERR(mnt)) {
1566 		error = PTR_ERR(mnt);
1567 		goto out_unreg;
1568 	}
1569 	hugetlbfs_vfsmount[default_hstate_idx] = mnt;
1570 
1571 	/* other hstates are optional */
1572 	i = 0;
1573 	for_each_hstate(h) {
1574 		if (i == default_hstate_idx) {
1575 			i++;
1576 			continue;
1577 		}
1578 
1579 		mnt = mount_one_hugetlbfs(h);
1580 		if (IS_ERR(mnt))
1581 			hugetlbfs_vfsmount[i] = NULL;
1582 		else
1583 			hugetlbfs_vfsmount[i] = mnt;
1584 		i++;
1585 	}
1586 
1587 	return 0;
1588 
1589  out_unreg:
1590 	(void)unregister_filesystem(&hugetlbfs_fs_type);
1591  out_free:
1592 	kmem_cache_destroy(hugetlbfs_inode_cachep);
1593  out:
1594 	return error;
1595 }
1596 fs_initcall(init_hugetlbfs_fs)
1597