xref: /kernel/linux/linux-5.10/fs/hfs/bnode.c (revision 8c2ecf20)
1// SPDX-License-Identifier: GPL-2.0
2/*
3 *  linux/fs/hfs/bnode.c
4 *
5 * Copyright (C) 2001
6 * Brad Boyer (flar@allandria.com)
7 * (C) 2003 Ardis Technologies <roman@ardistech.com>
8 *
9 * Handle basic btree node operations
10 */
11
12#include <linux/pagemap.h>
13#include <linux/slab.h>
14#include <linux/swap.h>
15
16#include "btree.h"
17
18void hfs_bnode_read(struct hfs_bnode *node, void *buf, int off, int len)
19{
20	struct page *page;
21	int pagenum;
22	int bytes_read;
23	int bytes_to_read;
24	void *vaddr;
25
26	off += node->page_offset;
27	pagenum = off >> PAGE_SHIFT;
28	off &= ~PAGE_MASK; /* compute page offset for the first page */
29
30	for (bytes_read = 0; bytes_read < len; bytes_read += bytes_to_read) {
31		if (pagenum >= node->tree->pages_per_bnode)
32			break;
33		page = node->page[pagenum];
34		bytes_to_read = min_t(int, len - bytes_read, PAGE_SIZE - off);
35
36		vaddr = kmap_atomic(page);
37		memcpy(buf + bytes_read, vaddr + off, bytes_to_read);
38		kunmap_atomic(vaddr);
39
40		pagenum++;
41		off = 0; /* page offset only applies to the first page */
42	}
43}
44
45u16 hfs_bnode_read_u16(struct hfs_bnode *node, int off)
46{
47	__be16 data;
48	// optimize later...
49	hfs_bnode_read(node, &data, off, 2);
50	return be16_to_cpu(data);
51}
52
53u8 hfs_bnode_read_u8(struct hfs_bnode *node, int off)
54{
55	u8 data;
56	// optimize later...
57	hfs_bnode_read(node, &data, off, 1);
58	return data;
59}
60
61void hfs_bnode_read_key(struct hfs_bnode *node, void *key, int off)
62{
63	struct hfs_btree *tree;
64	int key_len;
65
66	tree = node->tree;
67	if (node->type == HFS_NODE_LEAF ||
68	    tree->attributes & HFS_TREE_VARIDXKEYS)
69		key_len = hfs_bnode_read_u8(node, off) + 1;
70	else
71		key_len = tree->max_key_len + 1;
72
73	hfs_bnode_read(node, key, off, key_len);
74}
75
76void hfs_bnode_write(struct hfs_bnode *node, void *buf, int off, int len)
77{
78	struct page *page;
79
80	off += node->page_offset;
81	page = node->page[0];
82
83	memcpy(kmap(page) + off, buf, len);
84	kunmap(page);
85	set_page_dirty(page);
86}
87
88void hfs_bnode_write_u16(struct hfs_bnode *node, int off, u16 data)
89{
90	__be16 v = cpu_to_be16(data);
91	// optimize later...
92	hfs_bnode_write(node, &v, off, 2);
93}
94
95void hfs_bnode_write_u8(struct hfs_bnode *node, int off, u8 data)
96{
97	// optimize later...
98	hfs_bnode_write(node, &data, off, 1);
99}
100
101void hfs_bnode_clear(struct hfs_bnode *node, int off, int len)
102{
103	struct page *page;
104
105	off += node->page_offset;
106	page = node->page[0];
107
108	memset(kmap(page) + off, 0, len);
109	kunmap(page);
110	set_page_dirty(page);
111}
112
113void hfs_bnode_copy(struct hfs_bnode *dst_node, int dst,
114		struct hfs_bnode *src_node, int src, int len)
115{
116	struct page *src_page, *dst_page;
117
118	hfs_dbg(BNODE_MOD, "copybytes: %u,%u,%u\n", dst, src, len);
119	if (!len)
120		return;
121	src += src_node->page_offset;
122	dst += dst_node->page_offset;
123	src_page = src_node->page[0];
124	dst_page = dst_node->page[0];
125
126	memcpy(kmap(dst_page) + dst, kmap(src_page) + src, len);
127	kunmap(src_page);
128	kunmap(dst_page);
129	set_page_dirty(dst_page);
130}
131
132void hfs_bnode_move(struct hfs_bnode *node, int dst, int src, int len)
133{
134	struct page *page;
135	void *ptr;
136
137	hfs_dbg(BNODE_MOD, "movebytes: %u,%u,%u\n", dst, src, len);
138	if (!len)
139		return;
140	src += node->page_offset;
141	dst += node->page_offset;
142	page = node->page[0];
143	ptr = kmap(page);
144	memmove(ptr + dst, ptr + src, len);
145	kunmap(page);
146	set_page_dirty(page);
147}
148
149void hfs_bnode_dump(struct hfs_bnode *node)
150{
151	struct hfs_bnode_desc desc;
152	__be32 cnid;
153	int i, off, key_off;
154
155	hfs_dbg(BNODE_MOD, "bnode: %d\n", node->this);
156	hfs_bnode_read(node, &desc, 0, sizeof(desc));
157	hfs_dbg(BNODE_MOD, "%d, %d, %d, %d, %d\n",
158		be32_to_cpu(desc.next), be32_to_cpu(desc.prev),
159		desc.type, desc.height, be16_to_cpu(desc.num_recs));
160
161	off = node->tree->node_size - 2;
162	for (i = be16_to_cpu(desc.num_recs); i >= 0; off -= 2, i--) {
163		key_off = hfs_bnode_read_u16(node, off);
164		hfs_dbg_cont(BNODE_MOD, " %d", key_off);
165		if (i && node->type == HFS_NODE_INDEX) {
166			int tmp;
167
168			if (node->tree->attributes & HFS_TREE_VARIDXKEYS)
169				tmp = (hfs_bnode_read_u8(node, key_off) | 1) + 1;
170			else
171				tmp = node->tree->max_key_len + 1;
172			hfs_dbg_cont(BNODE_MOD, " (%d,%d",
173				     tmp, hfs_bnode_read_u8(node, key_off));
174			hfs_bnode_read(node, &cnid, key_off + tmp, 4);
175			hfs_dbg_cont(BNODE_MOD, ",%d)", be32_to_cpu(cnid));
176		} else if (i && node->type == HFS_NODE_LEAF) {
177			int tmp;
178
179			tmp = hfs_bnode_read_u8(node, key_off);
180			hfs_dbg_cont(BNODE_MOD, " (%d)", tmp);
181		}
182	}
183	hfs_dbg_cont(BNODE_MOD, "\n");
184}
185
186void hfs_bnode_unlink(struct hfs_bnode *node)
187{
188	struct hfs_btree *tree;
189	struct hfs_bnode *tmp;
190	__be32 cnid;
191
192	tree = node->tree;
193	if (node->prev) {
194		tmp = hfs_bnode_find(tree, node->prev);
195		if (IS_ERR(tmp))
196			return;
197		tmp->next = node->next;
198		cnid = cpu_to_be32(tmp->next);
199		hfs_bnode_write(tmp, &cnid, offsetof(struct hfs_bnode_desc, next), 4);
200		hfs_bnode_put(tmp);
201	} else if (node->type == HFS_NODE_LEAF)
202		tree->leaf_head = node->next;
203
204	if (node->next) {
205		tmp = hfs_bnode_find(tree, node->next);
206		if (IS_ERR(tmp))
207			return;
208		tmp->prev = node->prev;
209		cnid = cpu_to_be32(tmp->prev);
210		hfs_bnode_write(tmp, &cnid, offsetof(struct hfs_bnode_desc, prev), 4);
211		hfs_bnode_put(tmp);
212	} else if (node->type == HFS_NODE_LEAF)
213		tree->leaf_tail = node->prev;
214
215	// move down?
216	if (!node->prev && !node->next) {
217		printk(KERN_DEBUG "hfs_btree_del_level\n");
218	}
219	if (!node->parent) {
220		tree->root = 0;
221		tree->depth = 0;
222	}
223	set_bit(HFS_BNODE_DELETED, &node->flags);
224}
225
226static inline int hfs_bnode_hash(u32 num)
227{
228	num = (num >> 16) + num;
229	num += num >> 8;
230	return num & (NODE_HASH_SIZE - 1);
231}
232
233struct hfs_bnode *hfs_bnode_findhash(struct hfs_btree *tree, u32 cnid)
234{
235	struct hfs_bnode *node;
236
237	if (cnid >= tree->node_count) {
238		pr_err("request for non-existent node %d in B*Tree\n", cnid);
239		return NULL;
240	}
241
242	for (node = tree->node_hash[hfs_bnode_hash(cnid)];
243	     node; node = node->next_hash) {
244		if (node->this == cnid) {
245			return node;
246		}
247	}
248	return NULL;
249}
250
251static struct hfs_bnode *__hfs_bnode_create(struct hfs_btree *tree, u32 cnid)
252{
253	struct hfs_bnode *node, *node2;
254	struct address_space *mapping;
255	struct page *page;
256	int size, block, i, hash;
257	loff_t off;
258
259	if (cnid >= tree->node_count) {
260		pr_err("request for non-existent node %d in B*Tree\n", cnid);
261		return NULL;
262	}
263
264	size = sizeof(struct hfs_bnode) + tree->pages_per_bnode *
265		sizeof(struct page *);
266	node = kzalloc(size, GFP_KERNEL);
267	if (!node)
268		return NULL;
269	node->tree = tree;
270	node->this = cnid;
271	set_bit(HFS_BNODE_NEW, &node->flags);
272	atomic_set(&node->refcnt, 1);
273	hfs_dbg(BNODE_REFS, "new_node(%d:%d): 1\n",
274		node->tree->cnid, node->this);
275	init_waitqueue_head(&node->lock_wq);
276	spin_lock(&tree->hash_lock);
277	node2 = hfs_bnode_findhash(tree, cnid);
278	if (!node2) {
279		hash = hfs_bnode_hash(cnid);
280		node->next_hash = tree->node_hash[hash];
281		tree->node_hash[hash] = node;
282		tree->node_hash_cnt++;
283	} else {
284		hfs_bnode_get(node2);
285		spin_unlock(&tree->hash_lock);
286		kfree(node);
287		wait_event(node2->lock_wq, !test_bit(HFS_BNODE_NEW, &node2->flags));
288		return node2;
289	}
290	spin_unlock(&tree->hash_lock);
291
292	mapping = tree->inode->i_mapping;
293	off = (loff_t)cnid * tree->node_size;
294	block = off >> PAGE_SHIFT;
295	node->page_offset = off & ~PAGE_MASK;
296	for (i = 0; i < tree->pages_per_bnode; i++) {
297		page = read_mapping_page(mapping, block++, NULL);
298		if (IS_ERR(page))
299			goto fail;
300		if (PageError(page)) {
301			put_page(page);
302			goto fail;
303		}
304		node->page[i] = page;
305	}
306
307	return node;
308fail:
309	set_bit(HFS_BNODE_ERROR, &node->flags);
310	return node;
311}
312
313void hfs_bnode_unhash(struct hfs_bnode *node)
314{
315	struct hfs_bnode **p;
316
317	hfs_dbg(BNODE_REFS, "remove_node(%d:%d): %d\n",
318		node->tree->cnid, node->this, atomic_read(&node->refcnt));
319	for (p = &node->tree->node_hash[hfs_bnode_hash(node->this)];
320	     *p && *p != node; p = &(*p)->next_hash)
321		;
322	BUG_ON(!*p);
323	*p = node->next_hash;
324	node->tree->node_hash_cnt--;
325}
326
327/* Load a particular node out of a tree */
328struct hfs_bnode *hfs_bnode_find(struct hfs_btree *tree, u32 num)
329{
330	struct hfs_bnode *node;
331	struct hfs_bnode_desc *desc;
332	int i, rec_off, off, next_off;
333	int entry_size, key_size;
334
335	spin_lock(&tree->hash_lock);
336	node = hfs_bnode_findhash(tree, num);
337	if (node) {
338		hfs_bnode_get(node);
339		spin_unlock(&tree->hash_lock);
340		wait_event(node->lock_wq, !test_bit(HFS_BNODE_NEW, &node->flags));
341		if (test_bit(HFS_BNODE_ERROR, &node->flags))
342			goto node_error;
343		return node;
344	}
345	spin_unlock(&tree->hash_lock);
346	node = __hfs_bnode_create(tree, num);
347	if (!node)
348		return ERR_PTR(-ENOMEM);
349	if (test_bit(HFS_BNODE_ERROR, &node->flags))
350		goto node_error;
351	if (!test_bit(HFS_BNODE_NEW, &node->flags))
352		return node;
353
354	desc = (struct hfs_bnode_desc *)(kmap(node->page[0]) + node->page_offset);
355	node->prev = be32_to_cpu(desc->prev);
356	node->next = be32_to_cpu(desc->next);
357	node->num_recs = be16_to_cpu(desc->num_recs);
358	node->type = desc->type;
359	node->height = desc->height;
360	kunmap(node->page[0]);
361
362	switch (node->type) {
363	case HFS_NODE_HEADER:
364	case HFS_NODE_MAP:
365		if (node->height != 0)
366			goto node_error;
367		break;
368	case HFS_NODE_LEAF:
369		if (node->height != 1)
370			goto node_error;
371		break;
372	case HFS_NODE_INDEX:
373		if (node->height <= 1 || node->height > tree->depth)
374			goto node_error;
375		break;
376	default:
377		goto node_error;
378	}
379
380	rec_off = tree->node_size - 2;
381	off = hfs_bnode_read_u16(node, rec_off);
382	if (off != sizeof(struct hfs_bnode_desc))
383		goto node_error;
384	for (i = 1; i <= node->num_recs; off = next_off, i++) {
385		rec_off -= 2;
386		next_off = hfs_bnode_read_u16(node, rec_off);
387		if (next_off <= off ||
388		    next_off > tree->node_size ||
389		    next_off & 1)
390			goto node_error;
391		entry_size = next_off - off;
392		if (node->type != HFS_NODE_INDEX &&
393		    node->type != HFS_NODE_LEAF)
394			continue;
395		key_size = hfs_bnode_read_u8(node, off) + 1;
396		if (key_size >= entry_size /*|| key_size & 1*/)
397			goto node_error;
398	}
399	clear_bit(HFS_BNODE_NEW, &node->flags);
400	wake_up(&node->lock_wq);
401	return node;
402
403node_error:
404	set_bit(HFS_BNODE_ERROR, &node->flags);
405	clear_bit(HFS_BNODE_NEW, &node->flags);
406	wake_up(&node->lock_wq);
407	hfs_bnode_put(node);
408	return ERR_PTR(-EIO);
409}
410
411void hfs_bnode_free(struct hfs_bnode *node)
412{
413	int i;
414
415	for (i = 0; i < node->tree->pages_per_bnode; i++)
416		if (node->page[i])
417			put_page(node->page[i]);
418	kfree(node);
419}
420
421struct hfs_bnode *hfs_bnode_create(struct hfs_btree *tree, u32 num)
422{
423	struct hfs_bnode *node;
424	struct page **pagep;
425	int i;
426
427	spin_lock(&tree->hash_lock);
428	node = hfs_bnode_findhash(tree, num);
429	spin_unlock(&tree->hash_lock);
430	if (node) {
431		pr_crit("new node %u already hashed?\n", num);
432		WARN_ON(1);
433		return node;
434	}
435	node = __hfs_bnode_create(tree, num);
436	if (!node)
437		return ERR_PTR(-ENOMEM);
438	if (test_bit(HFS_BNODE_ERROR, &node->flags)) {
439		hfs_bnode_put(node);
440		return ERR_PTR(-EIO);
441	}
442
443	pagep = node->page;
444	memset(kmap(*pagep) + node->page_offset, 0,
445	       min((int)PAGE_SIZE, (int)tree->node_size));
446	set_page_dirty(*pagep);
447	kunmap(*pagep);
448	for (i = 1; i < tree->pages_per_bnode; i++) {
449		memset(kmap(*++pagep), 0, PAGE_SIZE);
450		set_page_dirty(*pagep);
451		kunmap(*pagep);
452	}
453	clear_bit(HFS_BNODE_NEW, &node->flags);
454	wake_up(&node->lock_wq);
455
456	return node;
457}
458
459void hfs_bnode_get(struct hfs_bnode *node)
460{
461	if (node) {
462		atomic_inc(&node->refcnt);
463		hfs_dbg(BNODE_REFS, "get_node(%d:%d): %d\n",
464			node->tree->cnid, node->this,
465			atomic_read(&node->refcnt));
466	}
467}
468
469/* Dispose of resources used by a node */
470void hfs_bnode_put(struct hfs_bnode *node)
471{
472	if (node) {
473		struct hfs_btree *tree = node->tree;
474		int i;
475
476		hfs_dbg(BNODE_REFS, "put_node(%d:%d): %d\n",
477			node->tree->cnid, node->this,
478			atomic_read(&node->refcnt));
479		BUG_ON(!atomic_read(&node->refcnt));
480		if (!atomic_dec_and_lock(&node->refcnt, &tree->hash_lock))
481			return;
482		for (i = 0; i < tree->pages_per_bnode; i++) {
483			if (!node->page[i])
484				continue;
485			mark_page_accessed(node->page[i]);
486		}
487
488		if (test_bit(HFS_BNODE_DELETED, &node->flags)) {
489			hfs_bnode_unhash(node);
490			spin_unlock(&tree->hash_lock);
491			hfs_bmap_free(node);
492			hfs_bnode_free(node);
493			return;
494		}
495		spin_unlock(&tree->hash_lock);
496	}
497}
498