1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * linux/fs/hfs/bnode.c
4 *
5 * Copyright (C) 2001
6 * Brad Boyer (flar@allandria.com)
7 * (C) 2003 Ardis Technologies <roman@ardistech.com>
8 *
9 * Handle basic btree node operations
10 */
11
12 #include <linux/pagemap.h>
13 #include <linux/slab.h>
14 #include <linux/swap.h>
15
16 #include "btree.h"
17
hfs_bnode_read(struct hfs_bnode *node, void *buf, int off, int len)18 void hfs_bnode_read(struct hfs_bnode *node, void *buf, int off, int len)
19 {
20 struct page *page;
21 int pagenum;
22 int bytes_read;
23 int bytes_to_read;
24 void *vaddr;
25
26 off += node->page_offset;
27 pagenum = off >> PAGE_SHIFT;
28 off &= ~PAGE_MASK; /* compute page offset for the first page */
29
30 for (bytes_read = 0; bytes_read < len; bytes_read += bytes_to_read) {
31 if (pagenum >= node->tree->pages_per_bnode)
32 break;
33 page = node->page[pagenum];
34 bytes_to_read = min_t(int, len - bytes_read, PAGE_SIZE - off);
35
36 vaddr = kmap_atomic(page);
37 memcpy(buf + bytes_read, vaddr + off, bytes_to_read);
38 kunmap_atomic(vaddr);
39
40 pagenum++;
41 off = 0; /* page offset only applies to the first page */
42 }
43 }
44
hfs_bnode_read_u16(struct hfs_bnode *node, int off)45 u16 hfs_bnode_read_u16(struct hfs_bnode *node, int off)
46 {
47 __be16 data;
48 // optimize later...
49 hfs_bnode_read(node, &data, off, 2);
50 return be16_to_cpu(data);
51 }
52
hfs_bnode_read_u8(struct hfs_bnode *node, int off)53 u8 hfs_bnode_read_u8(struct hfs_bnode *node, int off)
54 {
55 u8 data;
56 // optimize later...
57 hfs_bnode_read(node, &data, off, 1);
58 return data;
59 }
60
hfs_bnode_read_key(struct hfs_bnode *node, void *key, int off)61 void hfs_bnode_read_key(struct hfs_bnode *node, void *key, int off)
62 {
63 struct hfs_btree *tree;
64 int key_len;
65
66 tree = node->tree;
67 if (node->type == HFS_NODE_LEAF ||
68 tree->attributes & HFS_TREE_VARIDXKEYS)
69 key_len = hfs_bnode_read_u8(node, off) + 1;
70 else
71 key_len = tree->max_key_len + 1;
72
73 hfs_bnode_read(node, key, off, key_len);
74 }
75
hfs_bnode_write(struct hfs_bnode *node, void *buf, int off, int len)76 void hfs_bnode_write(struct hfs_bnode *node, void *buf, int off, int len)
77 {
78 struct page *page;
79
80 off += node->page_offset;
81 page = node->page[0];
82
83 memcpy(kmap(page) + off, buf, len);
84 kunmap(page);
85 set_page_dirty(page);
86 }
87
hfs_bnode_write_u16(struct hfs_bnode *node, int off, u16 data)88 void hfs_bnode_write_u16(struct hfs_bnode *node, int off, u16 data)
89 {
90 __be16 v = cpu_to_be16(data);
91 // optimize later...
92 hfs_bnode_write(node, &v, off, 2);
93 }
94
hfs_bnode_write_u8(struct hfs_bnode *node, int off, u8 data)95 void hfs_bnode_write_u8(struct hfs_bnode *node, int off, u8 data)
96 {
97 // optimize later...
98 hfs_bnode_write(node, &data, off, 1);
99 }
100
hfs_bnode_clear(struct hfs_bnode *node, int off, int len)101 void hfs_bnode_clear(struct hfs_bnode *node, int off, int len)
102 {
103 struct page *page;
104
105 off += node->page_offset;
106 page = node->page[0];
107
108 memset(kmap(page) + off, 0, len);
109 kunmap(page);
110 set_page_dirty(page);
111 }
112
hfs_bnode_copy(struct hfs_bnode *dst_node, int dst, struct hfs_bnode *src_node, int src, int len)113 void hfs_bnode_copy(struct hfs_bnode *dst_node, int dst,
114 struct hfs_bnode *src_node, int src, int len)
115 {
116 struct page *src_page, *dst_page;
117
118 hfs_dbg(BNODE_MOD, "copybytes: %u,%u,%u\n", dst, src, len);
119 if (!len)
120 return;
121 src += src_node->page_offset;
122 dst += dst_node->page_offset;
123 src_page = src_node->page[0];
124 dst_page = dst_node->page[0];
125
126 memcpy(kmap(dst_page) + dst, kmap(src_page) + src, len);
127 kunmap(src_page);
128 kunmap(dst_page);
129 set_page_dirty(dst_page);
130 }
131
hfs_bnode_move(struct hfs_bnode *node, int dst, int src, int len)132 void hfs_bnode_move(struct hfs_bnode *node, int dst, int src, int len)
133 {
134 struct page *page;
135 void *ptr;
136
137 hfs_dbg(BNODE_MOD, "movebytes: %u,%u,%u\n", dst, src, len);
138 if (!len)
139 return;
140 src += node->page_offset;
141 dst += node->page_offset;
142 page = node->page[0];
143 ptr = kmap(page);
144 memmove(ptr + dst, ptr + src, len);
145 kunmap(page);
146 set_page_dirty(page);
147 }
148
hfs_bnode_dump(struct hfs_bnode *node)149 void hfs_bnode_dump(struct hfs_bnode *node)
150 {
151 struct hfs_bnode_desc desc;
152 __be32 cnid;
153 int i, off, key_off;
154
155 hfs_dbg(BNODE_MOD, "bnode: %d\n", node->this);
156 hfs_bnode_read(node, &desc, 0, sizeof(desc));
157 hfs_dbg(BNODE_MOD, "%d, %d, %d, %d, %d\n",
158 be32_to_cpu(desc.next), be32_to_cpu(desc.prev),
159 desc.type, desc.height, be16_to_cpu(desc.num_recs));
160
161 off = node->tree->node_size - 2;
162 for (i = be16_to_cpu(desc.num_recs); i >= 0; off -= 2, i--) {
163 key_off = hfs_bnode_read_u16(node, off);
164 hfs_dbg_cont(BNODE_MOD, " %d", key_off);
165 if (i && node->type == HFS_NODE_INDEX) {
166 int tmp;
167
168 if (node->tree->attributes & HFS_TREE_VARIDXKEYS)
169 tmp = (hfs_bnode_read_u8(node, key_off) | 1) + 1;
170 else
171 tmp = node->tree->max_key_len + 1;
172 hfs_dbg_cont(BNODE_MOD, " (%d,%d",
173 tmp, hfs_bnode_read_u8(node, key_off));
174 hfs_bnode_read(node, &cnid, key_off + tmp, 4);
175 hfs_dbg_cont(BNODE_MOD, ",%d)", be32_to_cpu(cnid));
176 } else if (i && node->type == HFS_NODE_LEAF) {
177 int tmp;
178
179 tmp = hfs_bnode_read_u8(node, key_off);
180 hfs_dbg_cont(BNODE_MOD, " (%d)", tmp);
181 }
182 }
183 hfs_dbg_cont(BNODE_MOD, "\n");
184 }
185
hfs_bnode_unlink(struct hfs_bnode *node)186 void hfs_bnode_unlink(struct hfs_bnode *node)
187 {
188 struct hfs_btree *tree;
189 struct hfs_bnode *tmp;
190 __be32 cnid;
191
192 tree = node->tree;
193 if (node->prev) {
194 tmp = hfs_bnode_find(tree, node->prev);
195 if (IS_ERR(tmp))
196 return;
197 tmp->next = node->next;
198 cnid = cpu_to_be32(tmp->next);
199 hfs_bnode_write(tmp, &cnid, offsetof(struct hfs_bnode_desc, next), 4);
200 hfs_bnode_put(tmp);
201 } else if (node->type == HFS_NODE_LEAF)
202 tree->leaf_head = node->next;
203
204 if (node->next) {
205 tmp = hfs_bnode_find(tree, node->next);
206 if (IS_ERR(tmp))
207 return;
208 tmp->prev = node->prev;
209 cnid = cpu_to_be32(tmp->prev);
210 hfs_bnode_write(tmp, &cnid, offsetof(struct hfs_bnode_desc, prev), 4);
211 hfs_bnode_put(tmp);
212 } else if (node->type == HFS_NODE_LEAF)
213 tree->leaf_tail = node->prev;
214
215 // move down?
216 if (!node->prev && !node->next) {
217 printk(KERN_DEBUG "hfs_btree_del_level\n");
218 }
219 if (!node->parent) {
220 tree->root = 0;
221 tree->depth = 0;
222 }
223 set_bit(HFS_BNODE_DELETED, &node->flags);
224 }
225
hfs_bnode_hash(u32 num)226 static inline int hfs_bnode_hash(u32 num)
227 {
228 num = (num >> 16) + num;
229 num += num >> 8;
230 return num & (NODE_HASH_SIZE - 1);
231 }
232
hfs_bnode_findhash(struct hfs_btree *tree, u32 cnid)233 struct hfs_bnode *hfs_bnode_findhash(struct hfs_btree *tree, u32 cnid)
234 {
235 struct hfs_bnode *node;
236
237 if (cnid >= tree->node_count) {
238 pr_err("request for non-existent node %d in B*Tree\n", cnid);
239 return NULL;
240 }
241
242 for (node = tree->node_hash[hfs_bnode_hash(cnid)];
243 node; node = node->next_hash) {
244 if (node->this == cnid) {
245 return node;
246 }
247 }
248 return NULL;
249 }
250
__hfs_bnode_create(struct hfs_btree *tree, u32 cnid)251 static struct hfs_bnode *__hfs_bnode_create(struct hfs_btree *tree, u32 cnid)
252 {
253 struct hfs_bnode *node, *node2;
254 struct address_space *mapping;
255 struct page *page;
256 int size, block, i, hash;
257 loff_t off;
258
259 if (cnid >= tree->node_count) {
260 pr_err("request for non-existent node %d in B*Tree\n", cnid);
261 return NULL;
262 }
263
264 size = sizeof(struct hfs_bnode) + tree->pages_per_bnode *
265 sizeof(struct page *);
266 node = kzalloc(size, GFP_KERNEL);
267 if (!node)
268 return NULL;
269 node->tree = tree;
270 node->this = cnid;
271 set_bit(HFS_BNODE_NEW, &node->flags);
272 atomic_set(&node->refcnt, 1);
273 hfs_dbg(BNODE_REFS, "new_node(%d:%d): 1\n",
274 node->tree->cnid, node->this);
275 init_waitqueue_head(&node->lock_wq);
276 spin_lock(&tree->hash_lock);
277 node2 = hfs_bnode_findhash(tree, cnid);
278 if (!node2) {
279 hash = hfs_bnode_hash(cnid);
280 node->next_hash = tree->node_hash[hash];
281 tree->node_hash[hash] = node;
282 tree->node_hash_cnt++;
283 } else {
284 hfs_bnode_get(node2);
285 spin_unlock(&tree->hash_lock);
286 kfree(node);
287 wait_event(node2->lock_wq, !test_bit(HFS_BNODE_NEW, &node2->flags));
288 return node2;
289 }
290 spin_unlock(&tree->hash_lock);
291
292 mapping = tree->inode->i_mapping;
293 off = (loff_t)cnid * tree->node_size;
294 block = off >> PAGE_SHIFT;
295 node->page_offset = off & ~PAGE_MASK;
296 for (i = 0; i < tree->pages_per_bnode; i++) {
297 page = read_mapping_page(mapping, block++, NULL);
298 if (IS_ERR(page))
299 goto fail;
300 if (PageError(page)) {
301 put_page(page);
302 goto fail;
303 }
304 node->page[i] = page;
305 }
306
307 return node;
308 fail:
309 set_bit(HFS_BNODE_ERROR, &node->flags);
310 return node;
311 }
312
hfs_bnode_unhash(struct hfs_bnode *node)313 void hfs_bnode_unhash(struct hfs_bnode *node)
314 {
315 struct hfs_bnode **p;
316
317 hfs_dbg(BNODE_REFS, "remove_node(%d:%d): %d\n",
318 node->tree->cnid, node->this, atomic_read(&node->refcnt));
319 for (p = &node->tree->node_hash[hfs_bnode_hash(node->this)];
320 *p && *p != node; p = &(*p)->next_hash)
321 ;
322 BUG_ON(!*p);
323 *p = node->next_hash;
324 node->tree->node_hash_cnt--;
325 }
326
327 /* Load a particular node out of a tree */
hfs_bnode_find(struct hfs_btree *tree, u32 num)328 struct hfs_bnode *hfs_bnode_find(struct hfs_btree *tree, u32 num)
329 {
330 struct hfs_bnode *node;
331 struct hfs_bnode_desc *desc;
332 int i, rec_off, off, next_off;
333 int entry_size, key_size;
334
335 spin_lock(&tree->hash_lock);
336 node = hfs_bnode_findhash(tree, num);
337 if (node) {
338 hfs_bnode_get(node);
339 spin_unlock(&tree->hash_lock);
340 wait_event(node->lock_wq, !test_bit(HFS_BNODE_NEW, &node->flags));
341 if (test_bit(HFS_BNODE_ERROR, &node->flags))
342 goto node_error;
343 return node;
344 }
345 spin_unlock(&tree->hash_lock);
346 node = __hfs_bnode_create(tree, num);
347 if (!node)
348 return ERR_PTR(-ENOMEM);
349 if (test_bit(HFS_BNODE_ERROR, &node->flags))
350 goto node_error;
351 if (!test_bit(HFS_BNODE_NEW, &node->flags))
352 return node;
353
354 desc = (struct hfs_bnode_desc *)(kmap(node->page[0]) + node->page_offset);
355 node->prev = be32_to_cpu(desc->prev);
356 node->next = be32_to_cpu(desc->next);
357 node->num_recs = be16_to_cpu(desc->num_recs);
358 node->type = desc->type;
359 node->height = desc->height;
360 kunmap(node->page[0]);
361
362 switch (node->type) {
363 case HFS_NODE_HEADER:
364 case HFS_NODE_MAP:
365 if (node->height != 0)
366 goto node_error;
367 break;
368 case HFS_NODE_LEAF:
369 if (node->height != 1)
370 goto node_error;
371 break;
372 case HFS_NODE_INDEX:
373 if (node->height <= 1 || node->height > tree->depth)
374 goto node_error;
375 break;
376 default:
377 goto node_error;
378 }
379
380 rec_off = tree->node_size - 2;
381 off = hfs_bnode_read_u16(node, rec_off);
382 if (off != sizeof(struct hfs_bnode_desc))
383 goto node_error;
384 for (i = 1; i <= node->num_recs; off = next_off, i++) {
385 rec_off -= 2;
386 next_off = hfs_bnode_read_u16(node, rec_off);
387 if (next_off <= off ||
388 next_off > tree->node_size ||
389 next_off & 1)
390 goto node_error;
391 entry_size = next_off - off;
392 if (node->type != HFS_NODE_INDEX &&
393 node->type != HFS_NODE_LEAF)
394 continue;
395 key_size = hfs_bnode_read_u8(node, off) + 1;
396 if (key_size >= entry_size /*|| key_size & 1*/)
397 goto node_error;
398 }
399 clear_bit(HFS_BNODE_NEW, &node->flags);
400 wake_up(&node->lock_wq);
401 return node;
402
403 node_error:
404 set_bit(HFS_BNODE_ERROR, &node->flags);
405 clear_bit(HFS_BNODE_NEW, &node->flags);
406 wake_up(&node->lock_wq);
407 hfs_bnode_put(node);
408 return ERR_PTR(-EIO);
409 }
410
hfs_bnode_free(struct hfs_bnode *node)411 void hfs_bnode_free(struct hfs_bnode *node)
412 {
413 int i;
414
415 for (i = 0; i < node->tree->pages_per_bnode; i++)
416 if (node->page[i])
417 put_page(node->page[i]);
418 kfree(node);
419 }
420
hfs_bnode_create(struct hfs_btree *tree, u32 num)421 struct hfs_bnode *hfs_bnode_create(struct hfs_btree *tree, u32 num)
422 {
423 struct hfs_bnode *node;
424 struct page **pagep;
425 int i;
426
427 spin_lock(&tree->hash_lock);
428 node = hfs_bnode_findhash(tree, num);
429 spin_unlock(&tree->hash_lock);
430 if (node) {
431 pr_crit("new node %u already hashed?\n", num);
432 WARN_ON(1);
433 return node;
434 }
435 node = __hfs_bnode_create(tree, num);
436 if (!node)
437 return ERR_PTR(-ENOMEM);
438 if (test_bit(HFS_BNODE_ERROR, &node->flags)) {
439 hfs_bnode_put(node);
440 return ERR_PTR(-EIO);
441 }
442
443 pagep = node->page;
444 memset(kmap(*pagep) + node->page_offset, 0,
445 min((int)PAGE_SIZE, (int)tree->node_size));
446 set_page_dirty(*pagep);
447 kunmap(*pagep);
448 for (i = 1; i < tree->pages_per_bnode; i++) {
449 memset(kmap(*++pagep), 0, PAGE_SIZE);
450 set_page_dirty(*pagep);
451 kunmap(*pagep);
452 }
453 clear_bit(HFS_BNODE_NEW, &node->flags);
454 wake_up(&node->lock_wq);
455
456 return node;
457 }
458
hfs_bnode_get(struct hfs_bnode *node)459 void hfs_bnode_get(struct hfs_bnode *node)
460 {
461 if (node) {
462 atomic_inc(&node->refcnt);
463 hfs_dbg(BNODE_REFS, "get_node(%d:%d): %d\n",
464 node->tree->cnid, node->this,
465 atomic_read(&node->refcnt));
466 }
467 }
468
469 /* Dispose of resources used by a node */
hfs_bnode_put(struct hfs_bnode *node)470 void hfs_bnode_put(struct hfs_bnode *node)
471 {
472 if (node) {
473 struct hfs_btree *tree = node->tree;
474 int i;
475
476 hfs_dbg(BNODE_REFS, "put_node(%d:%d): %d\n",
477 node->tree->cnid, node->this,
478 atomic_read(&node->refcnt));
479 BUG_ON(!atomic_read(&node->refcnt));
480 if (!atomic_dec_and_lock(&node->refcnt, &tree->hash_lock))
481 return;
482 for (i = 0; i < tree->pages_per_bnode; i++) {
483 if (!node->page[i])
484 continue;
485 mark_page_accessed(node->page[i]);
486 }
487
488 if (test_bit(HFS_BNODE_DELETED, &node->flags)) {
489 hfs_bnode_unhash(node);
490 spin_unlock(&tree->hash_lock);
491 hfs_bmap_free(node);
492 hfs_bnode_free(node);
493 return;
494 }
495 spin_unlock(&tree->hash_lock);
496 }
497 }
498