1// SPDX-License-Identifier: GPL-2.0 2/* 3 * fs/f2fs/super.c 4 * 5 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 6 * http://www.samsung.com/ 7 */ 8#include <linux/module.h> 9#include <linux/init.h> 10#include <linux/fs.h> 11#include <linux/statfs.h> 12#include <linux/buffer_head.h> 13#include <linux/backing-dev.h> 14#include <linux/kthread.h> 15#include <linux/parser.h> 16#include <linux/mount.h> 17#include <linux/seq_file.h> 18#include <linux/proc_fs.h> 19#include <linux/random.h> 20#include <linux/exportfs.h> 21#include <linux/blkdev.h> 22#include <linux/quotaops.h> 23#include <linux/f2fs_fs.h> 24#include <linux/sysfs.h> 25#include <linux/quota.h> 26#include <linux/unicode.h> 27#include <linux/part_stat.h> 28 29#include "f2fs.h" 30#include "node.h" 31#include "segment.h" 32#include "xattr.h" 33#include "gc.h" 34#include "trace.h" 35 36#define CREATE_TRACE_POINTS 37#include <trace/events/f2fs.h> 38 39#ifdef CONFIG_F2FS_GRADING_SSR 40#define SSR_DEFALT_SPACE_LIMIT (5<<20) /* 5G default space limit */ 41#define SSR_DEFALT_WATERLINE 80 /* 80% default waterline */ 42#define SSR_HN_SAPCE_LIMIT_128G (8<<20) /* 8G default sapce limit for 128G devices */ 43#define SSR_HN_WATERLINE_128G 80 /* 80% default hot node waterline for 128G devices */ 44#define SSR_WN_SAPCE_LIMIT_128G (5<<20) /* 5G default warm node sapce limit for 128G devices */ 45#define SSR_WN_WATERLINE_128G 70 /* 70% default warm node waterline for 128G devices */ 46#define SSR_HD_SAPCE_LIMIT_128G (8<<20) /* 8G default hot data sapce limit for 128G devices */ 47#define SSR_HD_WATERLINE_128G 65 /* 65% default hot data waterline for 128G devices */ 48#define SSR_WD_SAPCE_LIMIT_128G (5<<20) /* 5G default warm data sapce limit for 128G devices */ 49#define SSR_WD_WATERLINE_128G 60 /* 60% default warm data waterline for 128G devices */ 50#endif 51 52static struct kmem_cache *f2fs_inode_cachep; 53 54#ifdef CONFIG_F2FS_FAULT_INJECTION 55 56const char *f2fs_fault_name[FAULT_MAX] = { 57 [FAULT_KMALLOC] = "kmalloc", 58 [FAULT_KVMALLOC] = "kvmalloc", 59 [FAULT_PAGE_ALLOC] = "page alloc", 60 [FAULT_PAGE_GET] = "page get", 61 [FAULT_ALLOC_BIO] = "alloc bio", 62 [FAULT_ALLOC_NID] = "alloc nid", 63 [FAULT_ORPHAN] = "orphan", 64 [FAULT_BLOCK] = "no more block", 65 [FAULT_DIR_DEPTH] = "too big dir depth", 66 [FAULT_EVICT_INODE] = "evict_inode fail", 67 [FAULT_TRUNCATE] = "truncate fail", 68 [FAULT_READ_IO] = "read IO error", 69 [FAULT_CHECKPOINT] = "checkpoint error", 70 [FAULT_DISCARD] = "discard error", 71 [FAULT_WRITE_IO] = "write IO error", 72}; 73 74int f2fs_build_fault_attr(struct f2fs_sb_info *sbi, unsigned long rate, 75 unsigned long type) 76{ 77 struct f2fs_fault_info *ffi = &F2FS_OPTION(sbi).fault_info; 78 79 if (rate) { 80 if (rate > INT_MAX) 81 return -EINVAL; 82 atomic_set(&ffi->inject_ops, 0); 83 ffi->inject_rate = (int)rate; 84 } 85 86 if (type) { 87 if (type >= BIT(FAULT_MAX)) 88 return -EINVAL; 89 ffi->inject_type = (unsigned int)type; 90 } 91 92 if (!rate && !type) 93 memset(ffi, 0, sizeof(struct f2fs_fault_info)); 94 else 95 f2fs_info(sbi, 96 "build fault injection attr: rate: %lu, type: 0x%lx", 97 rate, type); 98 return 0; 99} 100#endif 101 102/* f2fs-wide shrinker description */ 103static struct shrinker f2fs_shrinker_info = { 104 .scan_objects = f2fs_shrink_scan, 105 .count_objects = f2fs_shrink_count, 106 .seeks = DEFAULT_SEEKS, 107}; 108 109enum { 110 Opt_gc_background, 111 Opt_disable_roll_forward, 112 Opt_norecovery, 113 Opt_discard, 114 Opt_nodiscard, 115 Opt_noheap, 116 Opt_heap, 117 Opt_user_xattr, 118 Opt_nouser_xattr, 119 Opt_acl, 120 Opt_noacl, 121 Opt_active_logs, 122 Opt_disable_ext_identify, 123 Opt_inline_xattr, 124 Opt_noinline_xattr, 125 Opt_inline_xattr_size, 126 Opt_inline_data, 127 Opt_inline_dentry, 128 Opt_noinline_dentry, 129 Opt_flush_merge, 130 Opt_noflush_merge, 131 Opt_nobarrier, 132 Opt_fastboot, 133 Opt_extent_cache, 134 Opt_noextent_cache, 135 Opt_noinline_data, 136 Opt_data_flush, 137 Opt_reserve_root, 138 Opt_resgid, 139 Opt_resuid, 140 Opt_mode, 141 Opt_io_size_bits, 142 Opt_fault_injection, 143 Opt_fault_type, 144 Opt_lazytime, 145 Opt_nolazytime, 146 Opt_quota, 147 Opt_noquota, 148 Opt_usrquota, 149 Opt_grpquota, 150 Opt_prjquota, 151 Opt_usrjquota, 152 Opt_grpjquota, 153 Opt_prjjquota, 154 Opt_offusrjquota, 155 Opt_offgrpjquota, 156 Opt_offprjjquota, 157 Opt_jqfmt_vfsold, 158 Opt_jqfmt_vfsv0, 159 Opt_jqfmt_vfsv1, 160 Opt_whint, 161 Opt_alloc, 162 Opt_fsync, 163 Opt_test_dummy_encryption, 164 Opt_inlinecrypt, 165 Opt_checkpoint_disable, 166 Opt_checkpoint_disable_cap, 167 Opt_checkpoint_disable_cap_perc, 168 Opt_checkpoint_enable, 169 Opt_compress_algorithm, 170 Opt_compress_log_size, 171 Opt_compress_extension, 172 Opt_atgc, 173 Opt_gc_merge, 174 Opt_nogc_merge, 175 Opt_err, 176}; 177 178static match_table_t f2fs_tokens = { 179 {Opt_gc_background, "background_gc=%s"}, 180 {Opt_disable_roll_forward, "disable_roll_forward"}, 181 {Opt_norecovery, "norecovery"}, 182 {Opt_discard, "discard"}, 183 {Opt_nodiscard, "nodiscard"}, 184 {Opt_noheap, "no_heap"}, 185 {Opt_heap, "heap"}, 186 {Opt_user_xattr, "user_xattr"}, 187 {Opt_nouser_xattr, "nouser_xattr"}, 188 {Opt_acl, "acl"}, 189 {Opt_noacl, "noacl"}, 190 {Opt_active_logs, "active_logs=%u"}, 191 {Opt_disable_ext_identify, "disable_ext_identify"}, 192 {Opt_inline_xattr, "inline_xattr"}, 193 {Opt_noinline_xattr, "noinline_xattr"}, 194 {Opt_inline_xattr_size, "inline_xattr_size=%u"}, 195 {Opt_inline_data, "inline_data"}, 196 {Opt_inline_dentry, "inline_dentry"}, 197 {Opt_noinline_dentry, "noinline_dentry"}, 198 {Opt_flush_merge, "flush_merge"}, 199 {Opt_noflush_merge, "noflush_merge"}, 200 {Opt_nobarrier, "nobarrier"}, 201 {Opt_fastboot, "fastboot"}, 202 {Opt_extent_cache, "extent_cache"}, 203 {Opt_noextent_cache, "noextent_cache"}, 204 {Opt_noinline_data, "noinline_data"}, 205 {Opt_data_flush, "data_flush"}, 206 {Opt_reserve_root, "reserve_root=%u"}, 207 {Opt_resgid, "resgid=%u"}, 208 {Opt_resuid, "resuid=%u"}, 209 {Opt_mode, "mode=%s"}, 210 {Opt_io_size_bits, "io_bits=%u"}, 211 {Opt_fault_injection, "fault_injection=%u"}, 212 {Opt_fault_type, "fault_type=%u"}, 213 {Opt_lazytime, "lazytime"}, 214 {Opt_nolazytime, "nolazytime"}, 215 {Opt_quota, "quota"}, 216 {Opt_noquota, "noquota"}, 217 {Opt_usrquota, "usrquota"}, 218 {Opt_grpquota, "grpquota"}, 219 {Opt_prjquota, "prjquota"}, 220 {Opt_usrjquota, "usrjquota=%s"}, 221 {Opt_grpjquota, "grpjquota=%s"}, 222 {Opt_prjjquota, "prjjquota=%s"}, 223 {Opt_offusrjquota, "usrjquota="}, 224 {Opt_offgrpjquota, "grpjquota="}, 225 {Opt_offprjjquota, "prjjquota="}, 226 {Opt_jqfmt_vfsold, "jqfmt=vfsold"}, 227 {Opt_jqfmt_vfsv0, "jqfmt=vfsv0"}, 228 {Opt_jqfmt_vfsv1, "jqfmt=vfsv1"}, 229 {Opt_whint, "whint_mode=%s"}, 230 {Opt_alloc, "alloc_mode=%s"}, 231 {Opt_fsync, "fsync_mode=%s"}, 232 {Opt_test_dummy_encryption, "test_dummy_encryption=%s"}, 233 {Opt_test_dummy_encryption, "test_dummy_encryption"}, 234 {Opt_inlinecrypt, "inlinecrypt"}, 235 {Opt_checkpoint_disable, "checkpoint=disable"}, 236 {Opt_checkpoint_disable_cap, "checkpoint=disable:%u"}, 237 {Opt_checkpoint_disable_cap_perc, "checkpoint=disable:%u%%"}, 238 {Opt_checkpoint_enable, "checkpoint=enable"}, 239 {Opt_compress_algorithm, "compress_algorithm=%s"}, 240 {Opt_compress_log_size, "compress_log_size=%u"}, 241 {Opt_compress_extension, "compress_extension=%s"}, 242 {Opt_atgc, "atgc"}, 243 {Opt_gc_merge, "gc_merge"}, 244 {Opt_nogc_merge, "nogc_merge"}, 245 {Opt_err, NULL}, 246}; 247 248void f2fs_printk(struct f2fs_sb_info *sbi, const char *fmt, ...) 249{ 250 struct va_format vaf; 251 va_list args; 252 int level; 253 254 va_start(args, fmt); 255 256 level = printk_get_level(fmt); 257 vaf.fmt = printk_skip_level(fmt); 258 vaf.va = &args; 259 printk("%c%cF2FS-fs (%s): %pV\n", 260 KERN_SOH_ASCII, level, sbi->sb->s_id, &vaf); 261 262 va_end(args); 263} 264 265#ifdef CONFIG_UNICODE 266static const struct f2fs_sb_encodings { 267 __u16 magic; 268 char *name; 269 char *version; 270} f2fs_sb_encoding_map[] = { 271 {F2FS_ENC_UTF8_12_1, "utf8", "12.1.0"}, 272}; 273 274static int f2fs_sb_read_encoding(const struct f2fs_super_block *sb, 275 const struct f2fs_sb_encodings **encoding, 276 __u16 *flags) 277{ 278 __u16 magic = le16_to_cpu(sb->s_encoding); 279 int i; 280 281 for (i = 0; i < ARRAY_SIZE(f2fs_sb_encoding_map); i++) 282 if (magic == f2fs_sb_encoding_map[i].magic) 283 break; 284 285 if (i >= ARRAY_SIZE(f2fs_sb_encoding_map)) 286 return -EINVAL; 287 288 *encoding = &f2fs_sb_encoding_map[i]; 289 *flags = le16_to_cpu(sb->s_encoding_flags); 290 291 return 0; 292} 293#endif 294 295static inline void limit_reserve_root(struct f2fs_sb_info *sbi) 296{ 297 block_t limit = min((sbi->user_block_count >> 3), 298 sbi->user_block_count - sbi->reserved_blocks); 299 300 /* limit is 12.5% */ 301 if (test_opt(sbi, RESERVE_ROOT) && 302 F2FS_OPTION(sbi).root_reserved_blocks > limit) { 303 F2FS_OPTION(sbi).root_reserved_blocks = limit; 304 f2fs_info(sbi, "Reduce reserved blocks for root = %u", 305 F2FS_OPTION(sbi).root_reserved_blocks); 306 } 307 if (!test_opt(sbi, RESERVE_ROOT) && 308 (!uid_eq(F2FS_OPTION(sbi).s_resuid, 309 make_kuid(&init_user_ns, F2FS_DEF_RESUID)) || 310 !gid_eq(F2FS_OPTION(sbi).s_resgid, 311 make_kgid(&init_user_ns, F2FS_DEF_RESGID)))) 312 f2fs_info(sbi, "Ignore s_resuid=%u, s_resgid=%u w/o reserve_root", 313 from_kuid_munged(&init_user_ns, 314 F2FS_OPTION(sbi).s_resuid), 315 from_kgid_munged(&init_user_ns, 316 F2FS_OPTION(sbi).s_resgid)); 317} 318 319static inline int adjust_reserved_segment(struct f2fs_sb_info *sbi) 320{ 321 unsigned int sec_blks = sbi->blocks_per_seg * sbi->segs_per_sec; 322 unsigned int avg_vblocks; 323 unsigned int wanted_reserved_segments; 324 block_t avail_user_block_count; 325 326 if (!F2FS_IO_ALIGNED(sbi)) 327 return 0; 328 329 /* average valid block count in section in worst case */ 330 avg_vblocks = sec_blks / F2FS_IO_SIZE(sbi); 331 332 /* 333 * we need enough free space when migrating one section in worst case 334 */ 335 wanted_reserved_segments = (F2FS_IO_SIZE(sbi) / avg_vblocks) * 336 reserved_segments(sbi); 337 wanted_reserved_segments -= reserved_segments(sbi); 338 339 avail_user_block_count = sbi->user_block_count - 340 sbi->current_reserved_blocks - 341 F2FS_OPTION(sbi).root_reserved_blocks; 342 343 if (wanted_reserved_segments * sbi->blocks_per_seg > 344 avail_user_block_count) { 345 f2fs_err(sbi, "IO align feature can't grab additional reserved segment: %u, available segments: %u", 346 wanted_reserved_segments, 347 avail_user_block_count >> sbi->log_blocks_per_seg); 348 return -ENOSPC; 349 } 350 351 SM_I(sbi)->additional_reserved_segments = wanted_reserved_segments; 352 353 f2fs_info(sbi, "IO align feature needs additional reserved segment: %u", 354 wanted_reserved_segments); 355 356 return 0; 357} 358 359static inline void adjust_unusable_cap_perc(struct f2fs_sb_info *sbi) 360{ 361 if (!F2FS_OPTION(sbi).unusable_cap_perc) 362 return; 363 364 if (F2FS_OPTION(sbi).unusable_cap_perc == 100) 365 F2FS_OPTION(sbi).unusable_cap = sbi->user_block_count; 366 else 367 F2FS_OPTION(sbi).unusable_cap = (sbi->user_block_count / 100) * 368 F2FS_OPTION(sbi).unusable_cap_perc; 369 370 f2fs_info(sbi, "Adjust unusable cap for checkpoint=disable = %u / %u%%", 371 F2FS_OPTION(sbi).unusable_cap, 372 F2FS_OPTION(sbi).unusable_cap_perc); 373} 374 375static void init_once(void *foo) 376{ 377 struct f2fs_inode_info *fi = (struct f2fs_inode_info *) foo; 378 379 inode_init_once(&fi->vfs_inode); 380} 381 382#ifdef CONFIG_QUOTA 383static const char * const quotatypes[] = INITQFNAMES; 384#define QTYPE2NAME(t) (quotatypes[t]) 385static int f2fs_set_qf_name(struct super_block *sb, int qtype, 386 substring_t *args) 387{ 388 struct f2fs_sb_info *sbi = F2FS_SB(sb); 389 char *qname; 390 int ret = -EINVAL; 391 392 if (sb_any_quota_loaded(sb) && !F2FS_OPTION(sbi).s_qf_names[qtype]) { 393 f2fs_err(sbi, "Cannot change journaled quota options when quota turned on"); 394 return -EINVAL; 395 } 396 if (f2fs_sb_has_quota_ino(sbi)) { 397 f2fs_info(sbi, "QUOTA feature is enabled, so ignore qf_name"); 398 return 0; 399 } 400 401 qname = match_strdup(args); 402 if (!qname) { 403 f2fs_err(sbi, "Not enough memory for storing quotafile name"); 404 return -ENOMEM; 405 } 406 if (F2FS_OPTION(sbi).s_qf_names[qtype]) { 407 if (strcmp(F2FS_OPTION(sbi).s_qf_names[qtype], qname) == 0) 408 ret = 0; 409 else 410 f2fs_err(sbi, "%s quota file already specified", 411 QTYPE2NAME(qtype)); 412 goto errout; 413 } 414 if (strchr(qname, '/')) { 415 f2fs_err(sbi, "quotafile must be on filesystem root"); 416 goto errout; 417 } 418 F2FS_OPTION(sbi).s_qf_names[qtype] = qname; 419 set_opt(sbi, QUOTA); 420 return 0; 421errout: 422 kfree(qname); 423 return ret; 424} 425 426static int f2fs_clear_qf_name(struct super_block *sb, int qtype) 427{ 428 struct f2fs_sb_info *sbi = F2FS_SB(sb); 429 430 if (sb_any_quota_loaded(sb) && F2FS_OPTION(sbi).s_qf_names[qtype]) { 431 f2fs_err(sbi, "Cannot change journaled quota options when quota turned on"); 432 return -EINVAL; 433 } 434 kfree(F2FS_OPTION(sbi).s_qf_names[qtype]); 435 F2FS_OPTION(sbi).s_qf_names[qtype] = NULL; 436 return 0; 437} 438 439static int f2fs_check_quota_options(struct f2fs_sb_info *sbi) 440{ 441 /* 442 * We do the test below only for project quotas. 'usrquota' and 443 * 'grpquota' mount options are allowed even without quota feature 444 * to support legacy quotas in quota files. 445 */ 446 if (test_opt(sbi, PRJQUOTA) && !f2fs_sb_has_project_quota(sbi)) { 447 f2fs_err(sbi, "Project quota feature not enabled. Cannot enable project quota enforcement."); 448 return -1; 449 } 450 if (F2FS_OPTION(sbi).s_qf_names[USRQUOTA] || 451 F2FS_OPTION(sbi).s_qf_names[GRPQUOTA] || 452 F2FS_OPTION(sbi).s_qf_names[PRJQUOTA]) { 453 if (test_opt(sbi, USRQUOTA) && 454 F2FS_OPTION(sbi).s_qf_names[USRQUOTA]) 455 clear_opt(sbi, USRQUOTA); 456 457 if (test_opt(sbi, GRPQUOTA) && 458 F2FS_OPTION(sbi).s_qf_names[GRPQUOTA]) 459 clear_opt(sbi, GRPQUOTA); 460 461 if (test_opt(sbi, PRJQUOTA) && 462 F2FS_OPTION(sbi).s_qf_names[PRJQUOTA]) 463 clear_opt(sbi, PRJQUOTA); 464 465 if (test_opt(sbi, GRPQUOTA) || test_opt(sbi, USRQUOTA) || 466 test_opt(sbi, PRJQUOTA)) { 467 f2fs_err(sbi, "old and new quota format mixing"); 468 return -1; 469 } 470 471 if (!F2FS_OPTION(sbi).s_jquota_fmt) { 472 f2fs_err(sbi, "journaled quota format not specified"); 473 return -1; 474 } 475 } 476 477 if (f2fs_sb_has_quota_ino(sbi) && F2FS_OPTION(sbi).s_jquota_fmt) { 478 f2fs_info(sbi, "QUOTA feature is enabled, so ignore jquota_fmt"); 479 F2FS_OPTION(sbi).s_jquota_fmt = 0; 480 } 481 return 0; 482} 483#endif 484 485static int f2fs_set_test_dummy_encryption(struct super_block *sb, 486 const char *opt, 487 const substring_t *arg, 488 bool is_remount) 489{ 490 struct f2fs_sb_info *sbi = F2FS_SB(sb); 491#ifdef CONFIG_FS_ENCRYPTION 492 int err; 493 494 if (!f2fs_sb_has_encrypt(sbi)) { 495 f2fs_err(sbi, "Encrypt feature is off"); 496 return -EINVAL; 497 } 498 499 /* 500 * This mount option is just for testing, and it's not worthwhile to 501 * implement the extra complexity (e.g. RCU protection) that would be 502 * needed to allow it to be set or changed during remount. We do allow 503 * it to be specified during remount, but only if there is no change. 504 */ 505 if (is_remount && !F2FS_OPTION(sbi).dummy_enc_policy.policy) { 506 f2fs_warn(sbi, "Can't set test_dummy_encryption on remount"); 507 return -EINVAL; 508 } 509 err = fscrypt_set_test_dummy_encryption( 510 sb, arg->from, &F2FS_OPTION(sbi).dummy_enc_policy); 511 if (err) { 512 if (err == -EEXIST) 513 f2fs_warn(sbi, 514 "Can't change test_dummy_encryption on remount"); 515 else if (err == -EINVAL) 516 f2fs_warn(sbi, "Value of option \"%s\" is unrecognized", 517 opt); 518 else 519 f2fs_warn(sbi, "Error processing option \"%s\" [%d]", 520 opt, err); 521 return -EINVAL; 522 } 523 f2fs_warn(sbi, "Test dummy encryption mode enabled"); 524#else 525 f2fs_warn(sbi, "Test dummy encryption mount option ignored"); 526#endif 527 return 0; 528} 529 530static int parse_options(struct super_block *sb, char *options, bool is_remount) 531{ 532 struct f2fs_sb_info *sbi = F2FS_SB(sb); 533 substring_t args[MAX_OPT_ARGS]; 534#ifdef CONFIG_F2FS_FS_COMPRESSION 535 unsigned char (*ext)[F2FS_EXTENSION_LEN]; 536 int ext_cnt; 537#endif 538 char *p, *name; 539 int arg = 0; 540 kuid_t uid; 541 kgid_t gid; 542 int ret; 543 544 if (!options) 545 return 0; 546 547 while ((p = strsep(&options, ",")) != NULL) { 548 int token; 549 if (!*p) 550 continue; 551 /* 552 * Initialize args struct so we know whether arg was 553 * found; some options take optional arguments. 554 */ 555 args[0].to = args[0].from = NULL; 556 token = match_token(p, f2fs_tokens, args); 557 558 switch (token) { 559 case Opt_gc_background: 560 name = match_strdup(&args[0]); 561 562 if (!name) 563 return -ENOMEM; 564 if (!strcmp(name, "on")) { 565 F2FS_OPTION(sbi).bggc_mode = BGGC_MODE_ON; 566 } else if (!strcmp(name, "off")) { 567 F2FS_OPTION(sbi).bggc_mode = BGGC_MODE_OFF; 568 } else if (!strcmp(name, "sync")) { 569 F2FS_OPTION(sbi).bggc_mode = BGGC_MODE_SYNC; 570 } else { 571 kfree(name); 572 return -EINVAL; 573 } 574 kfree(name); 575 break; 576 case Opt_disable_roll_forward: 577 set_opt(sbi, DISABLE_ROLL_FORWARD); 578 break; 579 case Opt_norecovery: 580 /* this option mounts f2fs with ro */ 581 set_opt(sbi, NORECOVERY); 582 if (!f2fs_readonly(sb)) 583 return -EINVAL; 584 break; 585 case Opt_discard: 586 set_opt(sbi, DISCARD); 587 break; 588 case Opt_nodiscard: 589 if (f2fs_sb_has_blkzoned(sbi)) { 590 f2fs_warn(sbi, "discard is required for zoned block devices"); 591 return -EINVAL; 592 } 593 clear_opt(sbi, DISCARD); 594 break; 595 case Opt_noheap: 596 set_opt(sbi, NOHEAP); 597 break; 598 case Opt_heap: 599 clear_opt(sbi, NOHEAP); 600 break; 601#ifdef CONFIG_F2FS_FS_XATTR 602 case Opt_user_xattr: 603 set_opt(sbi, XATTR_USER); 604 break; 605 case Opt_nouser_xattr: 606 clear_opt(sbi, XATTR_USER); 607 break; 608 case Opt_inline_xattr: 609 set_opt(sbi, INLINE_XATTR); 610 break; 611 case Opt_noinline_xattr: 612 clear_opt(sbi, INLINE_XATTR); 613 break; 614 case Opt_inline_xattr_size: 615 if (args->from && match_int(args, &arg)) 616 return -EINVAL; 617 set_opt(sbi, INLINE_XATTR_SIZE); 618 F2FS_OPTION(sbi).inline_xattr_size = arg; 619 break; 620#else 621 case Opt_user_xattr: 622 f2fs_info(sbi, "user_xattr options not supported"); 623 break; 624 case Opt_nouser_xattr: 625 f2fs_info(sbi, "nouser_xattr options not supported"); 626 break; 627 case Opt_inline_xattr: 628 f2fs_info(sbi, "inline_xattr options not supported"); 629 break; 630 case Opt_noinline_xattr: 631 f2fs_info(sbi, "noinline_xattr options not supported"); 632 break; 633#endif 634#ifdef CONFIG_F2FS_FS_POSIX_ACL 635 case Opt_acl: 636 set_opt(sbi, POSIX_ACL); 637 break; 638 case Opt_noacl: 639 clear_opt(sbi, POSIX_ACL); 640 break; 641#else 642 case Opt_acl: 643 f2fs_info(sbi, "acl options not supported"); 644 break; 645 case Opt_noacl: 646 f2fs_info(sbi, "noacl options not supported"); 647 break; 648#endif 649 case Opt_active_logs: 650 if (args->from && match_int(args, &arg)) 651 return -EINVAL; 652 if (arg != 2 && arg != 4 && 653 arg != NR_CURSEG_PERSIST_TYPE) 654 return -EINVAL; 655 F2FS_OPTION(sbi).active_logs = arg; 656 break; 657 case Opt_disable_ext_identify: 658 set_opt(sbi, DISABLE_EXT_IDENTIFY); 659 break; 660 case Opt_inline_data: 661 set_opt(sbi, INLINE_DATA); 662 break; 663 case Opt_inline_dentry: 664 set_opt(sbi, INLINE_DENTRY); 665 break; 666 case Opt_noinline_dentry: 667 clear_opt(sbi, INLINE_DENTRY); 668 break; 669 case Opt_flush_merge: 670 set_opt(sbi, FLUSH_MERGE); 671 break; 672 case Opt_noflush_merge: 673 clear_opt(sbi, FLUSH_MERGE); 674 break; 675 case Opt_nobarrier: 676 set_opt(sbi, NOBARRIER); 677 break; 678 case Opt_fastboot: 679 set_opt(sbi, FASTBOOT); 680 break; 681 case Opt_extent_cache: 682 set_opt(sbi, EXTENT_CACHE); 683 break; 684 case Opt_noextent_cache: 685 clear_opt(sbi, EXTENT_CACHE); 686 break; 687 case Opt_noinline_data: 688 clear_opt(sbi, INLINE_DATA); 689 break; 690 case Opt_data_flush: 691 set_opt(sbi, DATA_FLUSH); 692 break; 693 case Opt_reserve_root: 694 if (args->from && match_int(args, &arg)) 695 return -EINVAL; 696 if (test_opt(sbi, RESERVE_ROOT)) { 697 f2fs_info(sbi, "Preserve previous reserve_root=%u", 698 F2FS_OPTION(sbi).root_reserved_blocks); 699 } else { 700 F2FS_OPTION(sbi).root_reserved_blocks = arg; 701 set_opt(sbi, RESERVE_ROOT); 702 } 703 break; 704 case Opt_resuid: 705 if (args->from && match_int(args, &arg)) 706 return -EINVAL; 707 uid = make_kuid(current_user_ns(), arg); 708 if (!uid_valid(uid)) { 709 f2fs_err(sbi, "Invalid uid value %d", arg); 710 return -EINVAL; 711 } 712 F2FS_OPTION(sbi).s_resuid = uid; 713 break; 714 case Opt_resgid: 715 if (args->from && match_int(args, &arg)) 716 return -EINVAL; 717 gid = make_kgid(current_user_ns(), arg); 718 if (!gid_valid(gid)) { 719 f2fs_err(sbi, "Invalid gid value %d", arg); 720 return -EINVAL; 721 } 722 F2FS_OPTION(sbi).s_resgid = gid; 723 break; 724 case Opt_mode: 725 name = match_strdup(&args[0]); 726 727 if (!name) 728 return -ENOMEM; 729 if (!strcmp(name, "adaptive")) { 730 if (f2fs_sb_has_blkzoned(sbi)) { 731 f2fs_warn(sbi, "adaptive mode is not allowed with zoned block device feature"); 732 kfree(name); 733 return -EINVAL; 734 } 735 F2FS_OPTION(sbi).fs_mode = FS_MODE_ADAPTIVE; 736 } else if (!strcmp(name, "lfs")) { 737 F2FS_OPTION(sbi).fs_mode = FS_MODE_LFS; 738 } else { 739 kfree(name); 740 return -EINVAL; 741 } 742 kfree(name); 743 break; 744 case Opt_io_size_bits: 745 if (args->from && match_int(args, &arg)) 746 return -EINVAL; 747 if (arg <= 0 || arg > __ilog2_u32(BIO_MAX_PAGES)) { 748 f2fs_warn(sbi, "Not support %d, larger than %d", 749 1 << arg, BIO_MAX_PAGES); 750 return -EINVAL; 751 } 752 F2FS_OPTION(sbi).write_io_size_bits = arg; 753 break; 754#ifdef CONFIG_F2FS_FAULT_INJECTION 755 case Opt_fault_injection: 756 if (args->from && match_int(args, &arg)) 757 return -EINVAL; 758 if (f2fs_build_fault_attr(sbi, arg, 759 F2FS_ALL_FAULT_TYPE)) 760 return -EINVAL; 761 set_opt(sbi, FAULT_INJECTION); 762 break; 763 764 case Opt_fault_type: 765 if (args->from && match_int(args, &arg)) 766 return -EINVAL; 767 if (f2fs_build_fault_attr(sbi, 0, arg)) 768 return -EINVAL; 769 set_opt(sbi, FAULT_INJECTION); 770 break; 771#else 772 case Opt_fault_injection: 773 f2fs_info(sbi, "fault_injection options not supported"); 774 break; 775 776 case Opt_fault_type: 777 f2fs_info(sbi, "fault_type options not supported"); 778 break; 779#endif 780 case Opt_lazytime: 781 sb->s_flags |= SB_LAZYTIME; 782 break; 783 case Opt_nolazytime: 784 sb->s_flags &= ~SB_LAZYTIME; 785 break; 786#ifdef CONFIG_QUOTA 787 case Opt_quota: 788 case Opt_usrquota: 789 set_opt(sbi, USRQUOTA); 790 break; 791 case Opt_grpquota: 792 set_opt(sbi, GRPQUOTA); 793 break; 794 case Opt_prjquota: 795 set_opt(sbi, PRJQUOTA); 796 break; 797 case Opt_usrjquota: 798 ret = f2fs_set_qf_name(sb, USRQUOTA, &args[0]); 799 if (ret) 800 return ret; 801 break; 802 case Opt_grpjquota: 803 ret = f2fs_set_qf_name(sb, GRPQUOTA, &args[0]); 804 if (ret) 805 return ret; 806 break; 807 case Opt_prjjquota: 808 ret = f2fs_set_qf_name(sb, PRJQUOTA, &args[0]); 809 if (ret) 810 return ret; 811 break; 812 case Opt_offusrjquota: 813 ret = f2fs_clear_qf_name(sb, USRQUOTA); 814 if (ret) 815 return ret; 816 break; 817 case Opt_offgrpjquota: 818 ret = f2fs_clear_qf_name(sb, GRPQUOTA); 819 if (ret) 820 return ret; 821 break; 822 case Opt_offprjjquota: 823 ret = f2fs_clear_qf_name(sb, PRJQUOTA); 824 if (ret) 825 return ret; 826 break; 827 case Opt_jqfmt_vfsold: 828 F2FS_OPTION(sbi).s_jquota_fmt = QFMT_VFS_OLD; 829 break; 830 case Opt_jqfmt_vfsv0: 831 F2FS_OPTION(sbi).s_jquota_fmt = QFMT_VFS_V0; 832 break; 833 case Opt_jqfmt_vfsv1: 834 F2FS_OPTION(sbi).s_jquota_fmt = QFMT_VFS_V1; 835 break; 836 case Opt_noquota: 837 clear_opt(sbi, QUOTA); 838 clear_opt(sbi, USRQUOTA); 839 clear_opt(sbi, GRPQUOTA); 840 clear_opt(sbi, PRJQUOTA); 841 break; 842#else 843 case Opt_quota: 844 case Opt_usrquota: 845 case Opt_grpquota: 846 case Opt_prjquota: 847 case Opt_usrjquota: 848 case Opt_grpjquota: 849 case Opt_prjjquota: 850 case Opt_offusrjquota: 851 case Opt_offgrpjquota: 852 case Opt_offprjjquota: 853 case Opt_jqfmt_vfsold: 854 case Opt_jqfmt_vfsv0: 855 case Opt_jqfmt_vfsv1: 856 case Opt_noquota: 857 f2fs_info(sbi, "quota operations not supported"); 858 break; 859#endif 860 case Opt_whint: 861 name = match_strdup(&args[0]); 862 if (!name) 863 return -ENOMEM; 864 if (!strcmp(name, "user-based")) { 865 F2FS_OPTION(sbi).whint_mode = WHINT_MODE_USER; 866 } else if (!strcmp(name, "off")) { 867 F2FS_OPTION(sbi).whint_mode = WHINT_MODE_OFF; 868 } else if (!strcmp(name, "fs-based")) { 869 F2FS_OPTION(sbi).whint_mode = WHINT_MODE_FS; 870 } else { 871 kfree(name); 872 return -EINVAL; 873 } 874 kfree(name); 875 break; 876 case Opt_alloc: 877 name = match_strdup(&args[0]); 878 if (!name) 879 return -ENOMEM; 880 881 if (!strcmp(name, "default")) { 882 F2FS_OPTION(sbi).alloc_mode = ALLOC_MODE_DEFAULT; 883 } else if (!strcmp(name, "reuse")) { 884 F2FS_OPTION(sbi).alloc_mode = ALLOC_MODE_REUSE; 885 } else { 886 kfree(name); 887 return -EINVAL; 888 } 889 kfree(name); 890 break; 891 case Opt_fsync: 892 name = match_strdup(&args[0]); 893 if (!name) 894 return -ENOMEM; 895 if (!strcmp(name, "posix")) { 896 F2FS_OPTION(sbi).fsync_mode = FSYNC_MODE_POSIX; 897 } else if (!strcmp(name, "strict")) { 898 F2FS_OPTION(sbi).fsync_mode = FSYNC_MODE_STRICT; 899 } else if (!strcmp(name, "nobarrier")) { 900 F2FS_OPTION(sbi).fsync_mode = 901 FSYNC_MODE_NOBARRIER; 902 } else { 903 kfree(name); 904 return -EINVAL; 905 } 906 kfree(name); 907 break; 908 case Opt_test_dummy_encryption: 909 ret = f2fs_set_test_dummy_encryption(sb, p, &args[0], 910 is_remount); 911 if (ret) 912 return ret; 913 break; 914 case Opt_inlinecrypt: 915#ifdef CONFIG_FS_ENCRYPTION_INLINE_CRYPT 916 sb->s_flags |= SB_INLINECRYPT; 917#else 918 f2fs_info(sbi, "inline encryption not supported"); 919#endif 920 break; 921 case Opt_checkpoint_disable_cap_perc: 922 if (args->from && match_int(args, &arg)) 923 return -EINVAL; 924 if (arg < 0 || arg > 100) 925 return -EINVAL; 926 F2FS_OPTION(sbi).unusable_cap_perc = arg; 927 set_opt(sbi, DISABLE_CHECKPOINT); 928 break; 929 case Opt_checkpoint_disable_cap: 930 if (args->from && match_int(args, &arg)) 931 return -EINVAL; 932 F2FS_OPTION(sbi).unusable_cap = arg; 933 set_opt(sbi, DISABLE_CHECKPOINT); 934 break; 935 case Opt_checkpoint_disable: 936 set_opt(sbi, DISABLE_CHECKPOINT); 937 break; 938 case Opt_checkpoint_enable: 939 clear_opt(sbi, DISABLE_CHECKPOINT); 940 break; 941#ifdef CONFIG_F2FS_FS_COMPRESSION 942 case Opt_compress_algorithm: 943 if (!f2fs_sb_has_compression(sbi)) { 944 f2fs_info(sbi, "Image doesn't support compression"); 945 break; 946 } 947 name = match_strdup(&args[0]); 948 if (!name) 949 return -ENOMEM; 950 if (!strcmp(name, "lzo")) { 951 F2FS_OPTION(sbi).compress_algorithm = 952 COMPRESS_LZO; 953 } else if (!strcmp(name, "lz4")) { 954 F2FS_OPTION(sbi).compress_algorithm = 955 COMPRESS_LZ4; 956 } else if (!strcmp(name, "zstd")) { 957 F2FS_OPTION(sbi).compress_algorithm = 958 COMPRESS_ZSTD; 959 } else if (!strcmp(name, "lzo-rle")) { 960 F2FS_OPTION(sbi).compress_algorithm = 961 COMPRESS_LZORLE; 962 } else { 963 kfree(name); 964 return -EINVAL; 965 } 966 kfree(name); 967 break; 968 case Opt_compress_log_size: 969 if (!f2fs_sb_has_compression(sbi)) { 970 f2fs_info(sbi, "Image doesn't support compression"); 971 break; 972 } 973 if (args->from && match_int(args, &arg)) 974 return -EINVAL; 975 if (arg < MIN_COMPRESS_LOG_SIZE || 976 arg > MAX_COMPRESS_LOG_SIZE) { 977 f2fs_err(sbi, 978 "Compress cluster log size is out of range"); 979 return -EINVAL; 980 } 981 F2FS_OPTION(sbi).compress_log_size = arg; 982 break; 983 case Opt_compress_extension: 984 if (!f2fs_sb_has_compression(sbi)) { 985 f2fs_info(sbi, "Image doesn't support compression"); 986 break; 987 } 988 name = match_strdup(&args[0]); 989 if (!name) 990 return -ENOMEM; 991 992 ext = F2FS_OPTION(sbi).extensions; 993 ext_cnt = F2FS_OPTION(sbi).compress_ext_cnt; 994 995 if (strlen(name) >= F2FS_EXTENSION_LEN || 996 ext_cnt >= COMPRESS_EXT_NUM) { 997 f2fs_err(sbi, 998 "invalid extension length/number"); 999 kfree(name); 1000 return -EINVAL; 1001 } 1002 1003 strcpy(ext[ext_cnt], name); 1004 F2FS_OPTION(sbi).compress_ext_cnt++; 1005 kfree(name); 1006 break; 1007#else 1008 case Opt_compress_algorithm: 1009 case Opt_compress_log_size: 1010 case Opt_compress_extension: 1011 f2fs_info(sbi, "compression options not supported"); 1012 break; 1013#endif 1014 case Opt_atgc: 1015 set_opt(sbi, ATGC); 1016 break; 1017 case Opt_gc_merge: 1018 set_opt(sbi, GC_MERGE); 1019 break; 1020 case Opt_nogc_merge: 1021 clear_opt(sbi, GC_MERGE); 1022 break; 1023 default: 1024 f2fs_err(sbi, "Unrecognized mount option \"%s\" or missing value", 1025 p); 1026 return -EINVAL; 1027 } 1028 } 1029#ifdef CONFIG_QUOTA 1030 if (f2fs_check_quota_options(sbi)) 1031 return -EINVAL; 1032#else 1033 if (f2fs_sb_has_quota_ino(sbi) && !f2fs_readonly(sbi->sb)) { 1034 f2fs_info(sbi, "Filesystem with quota feature cannot be mounted RDWR without CONFIG_QUOTA"); 1035 return -EINVAL; 1036 } 1037 if (f2fs_sb_has_project_quota(sbi) && !f2fs_readonly(sbi->sb)) { 1038 f2fs_err(sbi, "Filesystem with project quota feature cannot be mounted RDWR without CONFIG_QUOTA"); 1039 return -EINVAL; 1040 } 1041#endif 1042#ifndef CONFIG_UNICODE 1043 if (f2fs_sb_has_casefold(sbi)) { 1044 f2fs_err(sbi, 1045 "Filesystem with casefold feature cannot be mounted without CONFIG_UNICODE"); 1046 return -EINVAL; 1047 } 1048#endif 1049 /* 1050 * The BLKZONED feature indicates that the drive was formatted with 1051 * zone alignment optimization. This is optional for host-aware 1052 * devices, but mandatory for host-managed zoned block devices. 1053 */ 1054#ifndef CONFIG_BLK_DEV_ZONED 1055 if (f2fs_sb_has_blkzoned(sbi)) { 1056 f2fs_err(sbi, "Zoned block device support is not enabled"); 1057 return -EINVAL; 1058 } 1059#endif 1060 1061 if (F2FS_IO_SIZE_BITS(sbi) && !f2fs_lfs_mode(sbi)) { 1062 f2fs_err(sbi, "Should set mode=lfs with %uKB-sized IO", 1063 F2FS_IO_SIZE_KB(sbi)); 1064 return -EINVAL; 1065 } 1066 1067 if (test_opt(sbi, INLINE_XATTR_SIZE)) { 1068 int min_size, max_size; 1069 1070 if (!f2fs_sb_has_extra_attr(sbi) || 1071 !f2fs_sb_has_flexible_inline_xattr(sbi)) { 1072 f2fs_err(sbi, "extra_attr or flexible_inline_xattr feature is off"); 1073 return -EINVAL; 1074 } 1075 if (!test_opt(sbi, INLINE_XATTR)) { 1076 f2fs_err(sbi, "inline_xattr_size option should be set with inline_xattr option"); 1077 return -EINVAL; 1078 } 1079 1080 min_size = sizeof(struct f2fs_xattr_header) / sizeof(__le32); 1081 max_size = MAX_INLINE_XATTR_SIZE; 1082 1083 if (F2FS_OPTION(sbi).inline_xattr_size < min_size || 1084 F2FS_OPTION(sbi).inline_xattr_size > max_size) { 1085 f2fs_err(sbi, "inline xattr size is out of range: %d ~ %d", 1086 min_size, max_size); 1087 return -EINVAL; 1088 } 1089 } 1090 1091 if (test_opt(sbi, DISABLE_CHECKPOINT) && f2fs_lfs_mode(sbi)) { 1092 f2fs_err(sbi, "LFS not compatible with checkpoint=disable\n"); 1093 return -EINVAL; 1094 } 1095 1096 /* Not pass down write hints if the number of active logs is lesser 1097 * than NR_CURSEG_PERSIST_TYPE. 1098 */ 1099 if (F2FS_OPTION(sbi).active_logs != NR_CURSEG_PERSIST_TYPE) 1100 F2FS_OPTION(sbi).whint_mode = WHINT_MODE_OFF; 1101 return 0; 1102} 1103 1104static struct inode *f2fs_alloc_inode(struct super_block *sb) 1105{ 1106 struct f2fs_inode_info *fi; 1107 1108 fi = kmem_cache_alloc(f2fs_inode_cachep, GFP_F2FS_ZERO); 1109 if (!fi) 1110 return NULL; 1111 1112 init_once((void *) fi); 1113 1114 /* Initialize f2fs-specific inode info */ 1115 atomic_set(&fi->dirty_pages, 0); 1116 atomic_set(&fi->i_compr_blocks, 0); 1117 init_rwsem(&fi->i_sem); 1118 spin_lock_init(&fi->i_size_lock); 1119 INIT_LIST_HEAD(&fi->dirty_list); 1120 INIT_LIST_HEAD(&fi->gdirty_list); 1121 INIT_LIST_HEAD(&fi->inmem_ilist); 1122 INIT_LIST_HEAD(&fi->inmem_pages); 1123 mutex_init(&fi->inmem_lock); 1124 init_rwsem(&fi->i_gc_rwsem[READ]); 1125 init_rwsem(&fi->i_gc_rwsem[WRITE]); 1126 init_rwsem(&fi->i_mmap_sem); 1127 init_rwsem(&fi->i_xattr_sem); 1128 1129 /* Will be used by directory only */ 1130 fi->i_dir_level = F2FS_SB(sb)->dir_level; 1131 1132 fi->ra_offset = -1; 1133 1134 return &fi->vfs_inode; 1135} 1136 1137static int f2fs_drop_inode(struct inode *inode) 1138{ 1139 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1140 int ret; 1141 1142 /* 1143 * during filesystem shutdown, if checkpoint is disabled, 1144 * drop useless meta/node dirty pages. 1145 */ 1146 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) { 1147 if (inode->i_ino == F2FS_NODE_INO(sbi) || 1148 inode->i_ino == F2FS_META_INO(sbi)) { 1149 trace_f2fs_drop_inode(inode, 1); 1150 return 1; 1151 } 1152 } 1153 1154 /* 1155 * This is to avoid a deadlock condition like below. 1156 * writeback_single_inode(inode) 1157 * - f2fs_write_data_page 1158 * - f2fs_gc -> iput -> evict 1159 * - inode_wait_for_writeback(inode) 1160 */ 1161 if ((!inode_unhashed(inode) && inode->i_state & I_SYNC)) { 1162 if (!inode->i_nlink && !is_bad_inode(inode)) { 1163 /* to avoid evict_inode call simultaneously */ 1164 atomic_inc(&inode->i_count); 1165 spin_unlock(&inode->i_lock); 1166 1167 /* some remained atomic pages should discarded */ 1168 if (f2fs_is_atomic_file(inode)) 1169 f2fs_drop_inmem_pages(inode); 1170 1171 /* should remain fi->extent_tree for writepage */ 1172 f2fs_destroy_extent_node(inode); 1173 1174 sb_start_intwrite(inode->i_sb); 1175 f2fs_i_size_write(inode, 0); 1176 1177 f2fs_submit_merged_write_cond(F2FS_I_SB(inode), 1178 inode, NULL, 0, DATA); 1179 truncate_inode_pages_final(inode->i_mapping); 1180 1181 if (F2FS_HAS_BLOCKS(inode)) 1182 f2fs_truncate(inode); 1183 1184 sb_end_intwrite(inode->i_sb); 1185 1186 spin_lock(&inode->i_lock); 1187 atomic_dec(&inode->i_count); 1188 } 1189 trace_f2fs_drop_inode(inode, 0); 1190 return 0; 1191 } 1192 ret = generic_drop_inode(inode); 1193 if (!ret) 1194 ret = fscrypt_drop_inode(inode); 1195 trace_f2fs_drop_inode(inode, ret); 1196 return ret; 1197} 1198 1199int f2fs_inode_dirtied(struct inode *inode, bool sync) 1200{ 1201 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1202 int ret = 0; 1203 1204 spin_lock(&sbi->inode_lock[DIRTY_META]); 1205 if (is_inode_flag_set(inode, FI_DIRTY_INODE)) { 1206 ret = 1; 1207 } else { 1208 set_inode_flag(inode, FI_DIRTY_INODE); 1209 stat_inc_dirty_inode(sbi, DIRTY_META); 1210 } 1211 if (sync && list_empty(&F2FS_I(inode)->gdirty_list)) { 1212 list_add_tail(&F2FS_I(inode)->gdirty_list, 1213 &sbi->inode_list[DIRTY_META]); 1214 inc_page_count(sbi, F2FS_DIRTY_IMETA); 1215 } 1216 spin_unlock(&sbi->inode_lock[DIRTY_META]); 1217 return ret; 1218} 1219 1220void f2fs_inode_synced(struct inode *inode) 1221{ 1222 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1223 1224 spin_lock(&sbi->inode_lock[DIRTY_META]); 1225 if (!is_inode_flag_set(inode, FI_DIRTY_INODE)) { 1226 spin_unlock(&sbi->inode_lock[DIRTY_META]); 1227 return; 1228 } 1229 if (!list_empty(&F2FS_I(inode)->gdirty_list)) { 1230 list_del_init(&F2FS_I(inode)->gdirty_list); 1231 dec_page_count(sbi, F2FS_DIRTY_IMETA); 1232 } 1233 clear_inode_flag(inode, FI_DIRTY_INODE); 1234 clear_inode_flag(inode, FI_AUTO_RECOVER); 1235 stat_dec_dirty_inode(F2FS_I_SB(inode), DIRTY_META); 1236 spin_unlock(&sbi->inode_lock[DIRTY_META]); 1237} 1238 1239/* 1240 * f2fs_dirty_inode() is called from __mark_inode_dirty() 1241 * 1242 * We should call set_dirty_inode to write the dirty inode through write_inode. 1243 */ 1244static void f2fs_dirty_inode(struct inode *inode, int flags) 1245{ 1246 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1247 1248 if (inode->i_ino == F2FS_NODE_INO(sbi) || 1249 inode->i_ino == F2FS_META_INO(sbi)) 1250 return; 1251 1252 if (flags == I_DIRTY_TIME) 1253 return; 1254 1255 if (is_inode_flag_set(inode, FI_AUTO_RECOVER)) 1256 clear_inode_flag(inode, FI_AUTO_RECOVER); 1257 1258 f2fs_inode_dirtied(inode, false); 1259} 1260 1261static void f2fs_free_inode(struct inode *inode) 1262{ 1263 fscrypt_free_inode(inode); 1264 kmem_cache_free(f2fs_inode_cachep, F2FS_I(inode)); 1265} 1266 1267static void destroy_percpu_info(struct f2fs_sb_info *sbi) 1268{ 1269 percpu_counter_destroy(&sbi->alloc_valid_block_count); 1270 percpu_counter_destroy(&sbi->total_valid_inode_count); 1271} 1272 1273static void destroy_device_list(struct f2fs_sb_info *sbi) 1274{ 1275 int i; 1276 1277 for (i = 0; i < sbi->s_ndevs; i++) { 1278 blkdev_put(FDEV(i).bdev, FMODE_EXCL); 1279#ifdef CONFIG_BLK_DEV_ZONED 1280 kvfree(FDEV(i).blkz_seq); 1281#endif 1282 } 1283 kvfree(sbi->devs); 1284} 1285 1286static void f2fs_put_super(struct super_block *sb) 1287{ 1288 struct f2fs_sb_info *sbi = F2FS_SB(sb); 1289 int i; 1290 bool dropped; 1291 1292 /* unregister procfs/sysfs entries in advance to avoid race case */ 1293 f2fs_unregister_sysfs(sbi); 1294 1295 f2fs_quota_off_umount(sb); 1296 1297 /* prevent remaining shrinker jobs */ 1298 mutex_lock(&sbi->umount_mutex); 1299 1300 /* 1301 * We don't need to do checkpoint when superblock is clean. 1302 * But, the previous checkpoint was not done by umount, it needs to do 1303 * clean checkpoint again. 1304 */ 1305 if ((is_sbi_flag_set(sbi, SBI_IS_DIRTY) || 1306 !is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG))) { 1307 struct cp_control cpc = { 1308 .reason = CP_UMOUNT, 1309 }; 1310 f2fs_write_checkpoint(sbi, &cpc); 1311 } 1312 1313 /* be sure to wait for any on-going discard commands */ 1314 dropped = f2fs_issue_discard_timeout(sbi); 1315 1316 if ((f2fs_hw_support_discard(sbi) || f2fs_hw_should_discard(sbi)) && 1317 !sbi->discard_blks && !dropped) { 1318 struct cp_control cpc = { 1319 .reason = CP_UMOUNT | CP_TRIMMED, 1320 }; 1321 f2fs_write_checkpoint(sbi, &cpc); 1322 } 1323 1324 /* 1325 * normally superblock is clean, so we need to release this. 1326 * In addition, EIO will skip do checkpoint, we need this as well. 1327 */ 1328 f2fs_release_ino_entry(sbi, true); 1329 1330 f2fs_leave_shrinker(sbi); 1331 mutex_unlock(&sbi->umount_mutex); 1332 1333 /* our cp_error case, we can wait for any writeback page */ 1334 f2fs_flush_merged_writes(sbi); 1335 1336 f2fs_wait_on_all_pages(sbi, F2FS_WB_CP_DATA); 1337 1338 f2fs_bug_on(sbi, sbi->fsync_node_num); 1339 1340 iput(sbi->node_inode); 1341 sbi->node_inode = NULL; 1342 1343 iput(sbi->meta_inode); 1344 sbi->meta_inode = NULL; 1345 1346 /* 1347 * iput() can update stat information, if f2fs_write_checkpoint() 1348 * above failed with error. 1349 */ 1350 f2fs_destroy_stats(sbi); 1351 1352 /* destroy f2fs internal modules */ 1353 f2fs_destroy_node_manager(sbi); 1354 f2fs_destroy_segment_manager(sbi); 1355 1356 f2fs_destroy_post_read_wq(sbi); 1357 1358 kvfree(sbi->ckpt); 1359 1360 sb->s_fs_info = NULL; 1361 if (sbi->s_chksum_driver) 1362 crypto_free_shash(sbi->s_chksum_driver); 1363 kfree(sbi->raw_super); 1364 1365 destroy_device_list(sbi); 1366 f2fs_destroy_page_array_cache(sbi); 1367 f2fs_destroy_xattr_caches(sbi); 1368 mempool_destroy(sbi->write_io_dummy); 1369#ifdef CONFIG_QUOTA 1370 for (i = 0; i < MAXQUOTAS; i++) 1371 kfree(F2FS_OPTION(sbi).s_qf_names[i]); 1372#endif 1373 fscrypt_free_dummy_policy(&F2FS_OPTION(sbi).dummy_enc_policy); 1374 destroy_percpu_info(sbi); 1375 for (i = 0; i < NR_PAGE_TYPE; i++) 1376 kvfree(sbi->write_io[i]); 1377#ifdef CONFIG_UNICODE 1378 utf8_unload(sb->s_encoding); 1379#endif 1380 kfree(sbi); 1381} 1382 1383int f2fs_sync_fs(struct super_block *sb, int sync) 1384{ 1385 struct f2fs_sb_info *sbi = F2FS_SB(sb); 1386 int err = 0; 1387 1388 if (unlikely(f2fs_cp_error(sbi))) 1389 return 0; 1390 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) 1391 return 0; 1392 1393 trace_f2fs_sync_fs(sb, sync); 1394 1395 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) 1396 return -EAGAIN; 1397 1398 if (sync) { 1399 struct cp_control cpc; 1400 1401 cpc.reason = __get_cp_reason(sbi); 1402 1403 down_write(&sbi->gc_lock); 1404 err = f2fs_write_checkpoint(sbi, &cpc); 1405 up_write(&sbi->gc_lock); 1406 } 1407 f2fs_trace_ios(NULL, 1); 1408 1409 return err; 1410} 1411 1412static int f2fs_freeze(struct super_block *sb) 1413{ 1414 if (f2fs_readonly(sb)) 1415 return 0; 1416 1417 /* IO error happened before */ 1418 if (unlikely(f2fs_cp_error(F2FS_SB(sb)))) 1419 return -EIO; 1420 1421 /* must be clean, since sync_filesystem() was already called */ 1422 if (is_sbi_flag_set(F2FS_SB(sb), SBI_IS_DIRTY)) 1423 return -EINVAL; 1424 return 0; 1425} 1426 1427static int f2fs_unfreeze(struct super_block *sb) 1428{ 1429 return 0; 1430} 1431 1432#ifdef CONFIG_QUOTA 1433static int f2fs_statfs_project(struct super_block *sb, 1434 kprojid_t projid, struct kstatfs *buf) 1435{ 1436 struct kqid qid; 1437 struct dquot *dquot; 1438 u64 limit; 1439 u64 curblock; 1440 1441 qid = make_kqid_projid(projid); 1442 dquot = dqget(sb, qid); 1443 if (IS_ERR(dquot)) 1444 return PTR_ERR(dquot); 1445 spin_lock(&dquot->dq_dqb_lock); 1446 1447 limit = min_not_zero(dquot->dq_dqb.dqb_bsoftlimit, 1448 dquot->dq_dqb.dqb_bhardlimit); 1449 if (limit) 1450 limit >>= sb->s_blocksize_bits; 1451 1452 if (limit && buf->f_blocks > limit) { 1453 curblock = (dquot->dq_dqb.dqb_curspace + 1454 dquot->dq_dqb.dqb_rsvspace) >> sb->s_blocksize_bits; 1455 buf->f_blocks = limit; 1456 buf->f_bfree = buf->f_bavail = 1457 (buf->f_blocks > curblock) ? 1458 (buf->f_blocks - curblock) : 0; 1459 } 1460 1461 limit = min_not_zero(dquot->dq_dqb.dqb_isoftlimit, 1462 dquot->dq_dqb.dqb_ihardlimit); 1463 1464 if (limit && buf->f_files > limit) { 1465 buf->f_files = limit; 1466 buf->f_ffree = 1467 (buf->f_files > dquot->dq_dqb.dqb_curinodes) ? 1468 (buf->f_files - dquot->dq_dqb.dqb_curinodes) : 0; 1469 } 1470 1471 spin_unlock(&dquot->dq_dqb_lock); 1472 dqput(dquot); 1473 return 0; 1474} 1475#endif 1476 1477static int f2fs_statfs(struct dentry *dentry, struct kstatfs *buf) 1478{ 1479 struct super_block *sb = dentry->d_sb; 1480 struct f2fs_sb_info *sbi = F2FS_SB(sb); 1481 u64 id = huge_encode_dev(sb->s_bdev->bd_dev); 1482 block_t total_count, user_block_count, start_count; 1483 u64 avail_node_count; 1484 1485 total_count = le64_to_cpu(sbi->raw_super->block_count); 1486 user_block_count = sbi->user_block_count; 1487 start_count = le32_to_cpu(sbi->raw_super->segment0_blkaddr); 1488 buf->f_type = F2FS_SUPER_MAGIC; 1489 buf->f_bsize = sbi->blocksize; 1490 1491 buf->f_blocks = total_count - start_count; 1492 buf->f_bfree = user_block_count - valid_user_blocks(sbi) - 1493 sbi->current_reserved_blocks; 1494 1495 spin_lock(&sbi->stat_lock); 1496 if (unlikely(buf->f_bfree <= sbi->unusable_block_count)) 1497 buf->f_bfree = 0; 1498 else 1499 buf->f_bfree -= sbi->unusable_block_count; 1500 spin_unlock(&sbi->stat_lock); 1501 1502 if (buf->f_bfree > F2FS_OPTION(sbi).root_reserved_blocks) 1503 buf->f_bavail = buf->f_bfree - 1504 F2FS_OPTION(sbi).root_reserved_blocks; 1505 else 1506 buf->f_bavail = 0; 1507 1508 avail_node_count = sbi->total_node_count - F2FS_RESERVED_NODE_NUM; 1509 1510 if (avail_node_count > user_block_count) { 1511 buf->f_files = user_block_count; 1512 buf->f_ffree = buf->f_bavail; 1513 } else { 1514 buf->f_files = avail_node_count; 1515 buf->f_ffree = min(avail_node_count - valid_node_count(sbi), 1516 buf->f_bavail); 1517 } 1518 1519 buf->f_namelen = F2FS_NAME_LEN; 1520 buf->f_fsid = u64_to_fsid(id); 1521 1522#ifdef CONFIG_QUOTA 1523 if (is_inode_flag_set(dentry->d_inode, FI_PROJ_INHERIT) && 1524 sb_has_quota_limits_enabled(sb, PRJQUOTA)) { 1525 f2fs_statfs_project(sb, F2FS_I(dentry->d_inode)->i_projid, buf); 1526 } 1527#endif 1528 return 0; 1529} 1530 1531static inline void f2fs_show_quota_options(struct seq_file *seq, 1532 struct super_block *sb) 1533{ 1534#ifdef CONFIG_QUOTA 1535 struct f2fs_sb_info *sbi = F2FS_SB(sb); 1536 1537 if (F2FS_OPTION(sbi).s_jquota_fmt) { 1538 char *fmtname = ""; 1539 1540 switch (F2FS_OPTION(sbi).s_jquota_fmt) { 1541 case QFMT_VFS_OLD: 1542 fmtname = "vfsold"; 1543 break; 1544 case QFMT_VFS_V0: 1545 fmtname = "vfsv0"; 1546 break; 1547 case QFMT_VFS_V1: 1548 fmtname = "vfsv1"; 1549 break; 1550 } 1551 seq_printf(seq, ",jqfmt=%s", fmtname); 1552 } 1553 1554 if (F2FS_OPTION(sbi).s_qf_names[USRQUOTA]) 1555 seq_show_option(seq, "usrjquota", 1556 F2FS_OPTION(sbi).s_qf_names[USRQUOTA]); 1557 1558 if (F2FS_OPTION(sbi).s_qf_names[GRPQUOTA]) 1559 seq_show_option(seq, "grpjquota", 1560 F2FS_OPTION(sbi).s_qf_names[GRPQUOTA]); 1561 1562 if (F2FS_OPTION(sbi).s_qf_names[PRJQUOTA]) 1563 seq_show_option(seq, "prjjquota", 1564 F2FS_OPTION(sbi).s_qf_names[PRJQUOTA]); 1565#endif 1566} 1567 1568static inline void f2fs_show_compress_options(struct seq_file *seq, 1569 struct super_block *sb) 1570{ 1571 struct f2fs_sb_info *sbi = F2FS_SB(sb); 1572 char *algtype = ""; 1573 int i; 1574 1575 if (!f2fs_sb_has_compression(sbi)) 1576 return; 1577 1578 switch (F2FS_OPTION(sbi).compress_algorithm) { 1579 case COMPRESS_LZO: 1580 algtype = "lzo"; 1581 break; 1582 case COMPRESS_LZ4: 1583 algtype = "lz4"; 1584 break; 1585 case COMPRESS_ZSTD: 1586 algtype = "zstd"; 1587 break; 1588 case COMPRESS_LZORLE: 1589 algtype = "lzo-rle"; 1590 break; 1591 } 1592 seq_printf(seq, ",compress_algorithm=%s", algtype); 1593 1594 seq_printf(seq, ",compress_log_size=%u", 1595 F2FS_OPTION(sbi).compress_log_size); 1596 1597 for (i = 0; i < F2FS_OPTION(sbi).compress_ext_cnt; i++) { 1598 seq_printf(seq, ",compress_extension=%s", 1599 F2FS_OPTION(sbi).extensions[i]); 1600 } 1601} 1602 1603static int f2fs_show_options(struct seq_file *seq, struct dentry *root) 1604{ 1605 struct f2fs_sb_info *sbi = F2FS_SB(root->d_sb); 1606 1607 if (F2FS_OPTION(sbi).bggc_mode == BGGC_MODE_SYNC) 1608 seq_printf(seq, ",background_gc=%s", "sync"); 1609 else if (F2FS_OPTION(sbi).bggc_mode == BGGC_MODE_ON) 1610 seq_printf(seq, ",background_gc=%s", "on"); 1611 else if (F2FS_OPTION(sbi).bggc_mode == BGGC_MODE_OFF) 1612 seq_printf(seq, ",background_gc=%s", "off"); 1613 1614 if (test_opt(sbi, GC_MERGE)) 1615 seq_puts(seq, ",gc_merge"); 1616 1617 if (test_opt(sbi, DISABLE_ROLL_FORWARD)) 1618 seq_puts(seq, ",disable_roll_forward"); 1619 if (test_opt(sbi, NORECOVERY)) 1620 seq_puts(seq, ",norecovery"); 1621 if (test_opt(sbi, DISCARD)) 1622 seq_puts(seq, ",discard"); 1623 else 1624 seq_puts(seq, ",nodiscard"); 1625 if (test_opt(sbi, NOHEAP)) 1626 seq_puts(seq, ",no_heap"); 1627 else 1628 seq_puts(seq, ",heap"); 1629#ifdef CONFIG_F2FS_FS_XATTR 1630 if (test_opt(sbi, XATTR_USER)) 1631 seq_puts(seq, ",user_xattr"); 1632 else 1633 seq_puts(seq, ",nouser_xattr"); 1634 if (test_opt(sbi, INLINE_XATTR)) 1635 seq_puts(seq, ",inline_xattr"); 1636 else 1637 seq_puts(seq, ",noinline_xattr"); 1638 if (test_opt(sbi, INLINE_XATTR_SIZE)) 1639 seq_printf(seq, ",inline_xattr_size=%u", 1640 F2FS_OPTION(sbi).inline_xattr_size); 1641#endif 1642#ifdef CONFIG_F2FS_FS_POSIX_ACL 1643 if (test_opt(sbi, POSIX_ACL)) 1644 seq_puts(seq, ",acl"); 1645 else 1646 seq_puts(seq, ",noacl"); 1647#endif 1648 if (test_opt(sbi, DISABLE_EXT_IDENTIFY)) 1649 seq_puts(seq, ",disable_ext_identify"); 1650 if (test_opt(sbi, INLINE_DATA)) 1651 seq_puts(seq, ",inline_data"); 1652 else 1653 seq_puts(seq, ",noinline_data"); 1654 if (test_opt(sbi, INLINE_DENTRY)) 1655 seq_puts(seq, ",inline_dentry"); 1656 else 1657 seq_puts(seq, ",noinline_dentry"); 1658 if (!f2fs_readonly(sbi->sb) && test_opt(sbi, FLUSH_MERGE)) 1659 seq_puts(seq, ",flush_merge"); 1660 if (test_opt(sbi, NOBARRIER)) 1661 seq_puts(seq, ",nobarrier"); 1662 if (test_opt(sbi, FASTBOOT)) 1663 seq_puts(seq, ",fastboot"); 1664 if (test_opt(sbi, EXTENT_CACHE)) 1665 seq_puts(seq, ",extent_cache"); 1666 else 1667 seq_puts(seq, ",noextent_cache"); 1668 if (test_opt(sbi, DATA_FLUSH)) 1669 seq_puts(seq, ",data_flush"); 1670 1671 seq_puts(seq, ",mode="); 1672 if (F2FS_OPTION(sbi).fs_mode == FS_MODE_ADAPTIVE) 1673 seq_puts(seq, "adaptive"); 1674 else if (F2FS_OPTION(sbi).fs_mode == FS_MODE_LFS) 1675 seq_puts(seq, "lfs"); 1676 seq_printf(seq, ",active_logs=%u", F2FS_OPTION(sbi).active_logs); 1677 if (test_opt(sbi, RESERVE_ROOT)) 1678 seq_printf(seq, ",reserve_root=%u,resuid=%u,resgid=%u", 1679 F2FS_OPTION(sbi).root_reserved_blocks, 1680 from_kuid_munged(&init_user_ns, 1681 F2FS_OPTION(sbi).s_resuid), 1682 from_kgid_munged(&init_user_ns, 1683 F2FS_OPTION(sbi).s_resgid)); 1684 if (F2FS_IO_SIZE_BITS(sbi)) 1685 seq_printf(seq, ",io_bits=%u", 1686 F2FS_OPTION(sbi).write_io_size_bits); 1687#ifdef CONFIG_F2FS_FAULT_INJECTION 1688 if (test_opt(sbi, FAULT_INJECTION)) { 1689 seq_printf(seq, ",fault_injection=%u", 1690 F2FS_OPTION(sbi).fault_info.inject_rate); 1691 seq_printf(seq, ",fault_type=%u", 1692 F2FS_OPTION(sbi).fault_info.inject_type); 1693 } 1694#endif 1695#ifdef CONFIG_QUOTA 1696 if (test_opt(sbi, QUOTA)) 1697 seq_puts(seq, ",quota"); 1698 if (test_opt(sbi, USRQUOTA)) 1699 seq_puts(seq, ",usrquota"); 1700 if (test_opt(sbi, GRPQUOTA)) 1701 seq_puts(seq, ",grpquota"); 1702 if (test_opt(sbi, PRJQUOTA)) 1703 seq_puts(seq, ",prjquota"); 1704#endif 1705 f2fs_show_quota_options(seq, sbi->sb); 1706 if (F2FS_OPTION(sbi).whint_mode == WHINT_MODE_USER) 1707 seq_printf(seq, ",whint_mode=%s", "user-based"); 1708 else if (F2FS_OPTION(sbi).whint_mode == WHINT_MODE_FS) 1709 seq_printf(seq, ",whint_mode=%s", "fs-based"); 1710 1711 fscrypt_show_test_dummy_encryption(seq, ',', sbi->sb); 1712 1713 if (sbi->sb->s_flags & SB_INLINECRYPT) 1714 seq_puts(seq, ",inlinecrypt"); 1715 1716 if (F2FS_OPTION(sbi).alloc_mode == ALLOC_MODE_DEFAULT) 1717 seq_printf(seq, ",alloc_mode=%s", "default"); 1718 else if (F2FS_OPTION(sbi).alloc_mode == ALLOC_MODE_REUSE) 1719 seq_printf(seq, ",alloc_mode=%s", "reuse"); 1720 1721 if (test_opt(sbi, DISABLE_CHECKPOINT)) 1722 seq_printf(seq, ",checkpoint=disable:%u", 1723 F2FS_OPTION(sbi).unusable_cap); 1724 if (F2FS_OPTION(sbi).fsync_mode == FSYNC_MODE_POSIX) 1725 seq_printf(seq, ",fsync_mode=%s", "posix"); 1726 else if (F2FS_OPTION(sbi).fsync_mode == FSYNC_MODE_STRICT) 1727 seq_printf(seq, ",fsync_mode=%s", "strict"); 1728 else if (F2FS_OPTION(sbi).fsync_mode == FSYNC_MODE_NOBARRIER) 1729 seq_printf(seq, ",fsync_mode=%s", "nobarrier"); 1730 1731#ifdef CONFIG_F2FS_FS_COMPRESSION 1732 f2fs_show_compress_options(seq, sbi->sb); 1733#endif 1734 1735 if (test_opt(sbi, ATGC)) 1736 seq_puts(seq, ",atgc"); 1737 return 0; 1738} 1739 1740static void default_options(struct f2fs_sb_info *sbi) 1741{ 1742 /* init some FS parameters */ 1743 F2FS_OPTION(sbi).active_logs = NR_CURSEG_PERSIST_TYPE; 1744 F2FS_OPTION(sbi).inline_xattr_size = DEFAULT_INLINE_XATTR_ADDRS; 1745 F2FS_OPTION(sbi).whint_mode = WHINT_MODE_OFF; 1746 F2FS_OPTION(sbi).alloc_mode = ALLOC_MODE_DEFAULT; 1747 F2FS_OPTION(sbi).fsync_mode = FSYNC_MODE_POSIX; 1748 F2FS_OPTION(sbi).s_resuid = make_kuid(&init_user_ns, F2FS_DEF_RESUID); 1749 F2FS_OPTION(sbi).s_resgid = make_kgid(&init_user_ns, F2FS_DEF_RESGID); 1750 F2FS_OPTION(sbi).compress_algorithm = COMPRESS_LZ4; 1751 F2FS_OPTION(sbi).compress_log_size = MIN_COMPRESS_LOG_SIZE; 1752 F2FS_OPTION(sbi).compress_ext_cnt = 0; 1753 F2FS_OPTION(sbi).bggc_mode = BGGC_MODE_ON; 1754 1755 set_opt(sbi, INLINE_XATTR); 1756 set_opt(sbi, INLINE_DATA); 1757 set_opt(sbi, INLINE_DENTRY); 1758 set_opt(sbi, EXTENT_CACHE); 1759 set_opt(sbi, NOHEAP); 1760 clear_opt(sbi, DISABLE_CHECKPOINT); 1761 F2FS_OPTION(sbi).unusable_cap = 0; 1762 sbi->sb->s_flags |= SB_LAZYTIME; 1763 set_opt(sbi, FLUSH_MERGE); 1764 set_opt(sbi, DISCARD); 1765 if (f2fs_sb_has_blkzoned(sbi)) 1766 F2FS_OPTION(sbi).fs_mode = FS_MODE_LFS; 1767 else 1768 F2FS_OPTION(sbi).fs_mode = FS_MODE_ADAPTIVE; 1769 1770#ifdef CONFIG_F2FS_FS_XATTR 1771 set_opt(sbi, XATTR_USER); 1772#endif 1773#ifdef CONFIG_F2FS_FS_POSIX_ACL 1774 set_opt(sbi, POSIX_ACL); 1775#endif 1776 1777 f2fs_build_fault_attr(sbi, 0, 0); 1778} 1779 1780#ifdef CONFIG_QUOTA 1781static int f2fs_enable_quotas(struct super_block *sb); 1782#endif 1783 1784static int f2fs_disable_checkpoint(struct f2fs_sb_info *sbi) 1785{ 1786 unsigned int s_flags = sbi->sb->s_flags; 1787 struct cp_control cpc; 1788 int err = 0; 1789 int ret; 1790 block_t unusable; 1791 1792 if (s_flags & SB_RDONLY) { 1793 f2fs_err(sbi, "checkpoint=disable on readonly fs"); 1794 return -EINVAL; 1795 } 1796 sbi->sb->s_flags |= SB_ACTIVE; 1797 1798 f2fs_update_time(sbi, DISABLE_TIME); 1799 1800 while (!f2fs_time_over(sbi, DISABLE_TIME)) { 1801 down_write(&sbi->gc_lock); 1802 err = f2fs_gc(sbi, true, false, false, NULL_SEGNO); 1803 if (err == -ENODATA) { 1804 err = 0; 1805 break; 1806 } 1807 if (err && err != -EAGAIN) 1808 break; 1809 } 1810 1811 ret = sync_filesystem(sbi->sb); 1812 if (ret || err) { 1813 err = ret ? ret: err; 1814 goto restore_flag; 1815 } 1816 1817 unusable = f2fs_get_unusable_blocks(sbi); 1818 if (f2fs_disable_cp_again(sbi, unusable)) { 1819 err = -EAGAIN; 1820 goto restore_flag; 1821 } 1822 1823 down_write(&sbi->gc_lock); 1824 cpc.reason = CP_PAUSE; 1825 set_sbi_flag(sbi, SBI_CP_DISABLED); 1826 err = f2fs_write_checkpoint(sbi, &cpc); 1827 if (err) 1828 goto out_unlock; 1829 1830 spin_lock(&sbi->stat_lock); 1831 sbi->unusable_block_count = unusable; 1832 spin_unlock(&sbi->stat_lock); 1833 1834out_unlock: 1835 up_write(&sbi->gc_lock); 1836restore_flag: 1837 sbi->sb->s_flags = s_flags; /* Restore SB_RDONLY status */ 1838 return err; 1839} 1840 1841static void f2fs_enable_checkpoint(struct f2fs_sb_info *sbi) 1842{ 1843 int retry = DEFAULT_RETRY_IO_COUNT; 1844 1845 /* we should flush all the data to keep data consistency */ 1846 do { 1847 sync_inodes_sb(sbi->sb); 1848 cond_resched(); 1849 congestion_wait(BLK_RW_ASYNC, DEFAULT_IO_TIMEOUT); 1850 } while (get_pages(sbi, F2FS_DIRTY_DATA) && retry--); 1851 1852 if (unlikely(retry < 0)) 1853 f2fs_warn(sbi, "checkpoint=enable has some unwritten data."); 1854 1855 down_write(&sbi->gc_lock); 1856 f2fs_dirty_to_prefree(sbi); 1857 1858 clear_sbi_flag(sbi, SBI_CP_DISABLED); 1859 set_sbi_flag(sbi, SBI_IS_DIRTY); 1860 up_write(&sbi->gc_lock); 1861 1862 f2fs_sync_fs(sbi->sb, 1); 1863} 1864 1865static int f2fs_remount(struct super_block *sb, int *flags, char *data) 1866{ 1867 struct f2fs_sb_info *sbi = F2FS_SB(sb); 1868 struct f2fs_mount_info org_mount_opt; 1869 unsigned long old_sb_flags; 1870 int err; 1871 bool need_restart_gc = false; 1872 bool need_stop_gc = false; 1873 bool no_extent_cache = !test_opt(sbi, EXTENT_CACHE); 1874 bool disable_checkpoint = test_opt(sbi, DISABLE_CHECKPOINT); 1875 bool no_io_align = !F2FS_IO_ALIGNED(sbi); 1876 bool no_atgc = !test_opt(sbi, ATGC); 1877 bool checkpoint_changed; 1878#ifdef CONFIG_QUOTA 1879 int i, j; 1880#endif 1881 1882 /* 1883 * Save the old mount options in case we 1884 * need to restore them. 1885 */ 1886 org_mount_opt = sbi->mount_opt; 1887 old_sb_flags = sb->s_flags; 1888 1889#ifdef CONFIG_QUOTA 1890 org_mount_opt.s_jquota_fmt = F2FS_OPTION(sbi).s_jquota_fmt; 1891 for (i = 0; i < MAXQUOTAS; i++) { 1892 if (F2FS_OPTION(sbi).s_qf_names[i]) { 1893 org_mount_opt.s_qf_names[i] = 1894 kstrdup(F2FS_OPTION(sbi).s_qf_names[i], 1895 GFP_KERNEL); 1896 if (!org_mount_opt.s_qf_names[i]) { 1897 for (j = 0; j < i; j++) 1898 kfree(org_mount_opt.s_qf_names[j]); 1899 return -ENOMEM; 1900 } 1901 } else { 1902 org_mount_opt.s_qf_names[i] = NULL; 1903 } 1904 } 1905#endif 1906 1907 /* recover superblocks we couldn't write due to previous RO mount */ 1908 if (!(*flags & SB_RDONLY) && is_sbi_flag_set(sbi, SBI_NEED_SB_WRITE)) { 1909 err = f2fs_commit_super(sbi, false); 1910 f2fs_info(sbi, "Try to recover all the superblocks, ret: %d", 1911 err); 1912 if (!err) 1913 clear_sbi_flag(sbi, SBI_NEED_SB_WRITE); 1914 } 1915 1916 default_options(sbi); 1917 1918 /* parse mount options */ 1919 err = parse_options(sb, data, true); 1920 if (err) 1921 goto restore_opts; 1922 checkpoint_changed = 1923 disable_checkpoint != test_opt(sbi, DISABLE_CHECKPOINT); 1924 1925 /* 1926 * Previous and new state of filesystem is RO, 1927 * so skip checking GC and FLUSH_MERGE conditions. 1928 */ 1929 if (f2fs_readonly(sb) && (*flags & SB_RDONLY)) 1930 goto skip; 1931 1932#ifdef CONFIG_QUOTA 1933 if (!f2fs_readonly(sb) && (*flags & SB_RDONLY)) { 1934 err = dquot_suspend(sb, -1); 1935 if (err < 0) 1936 goto restore_opts; 1937 } else if (f2fs_readonly(sb) && !(*flags & SB_RDONLY)) { 1938 /* dquot_resume needs RW */ 1939 sb->s_flags &= ~SB_RDONLY; 1940 if (sb_any_quota_suspended(sb)) { 1941 dquot_resume(sb, -1); 1942 } else if (f2fs_sb_has_quota_ino(sbi)) { 1943 err = f2fs_enable_quotas(sb); 1944 if (err) 1945 goto restore_opts; 1946 } 1947 } 1948#endif 1949 /* disallow enable atgc dynamically */ 1950 if (no_atgc == !!test_opt(sbi, ATGC)) { 1951 err = -EINVAL; 1952 f2fs_warn(sbi, "switch atgc option is not allowed"); 1953 goto restore_opts; 1954 } 1955 1956 /* disallow enable/disable extent_cache dynamically */ 1957 if (no_extent_cache == !!test_opt(sbi, EXTENT_CACHE)) { 1958 err = -EINVAL; 1959 f2fs_warn(sbi, "switch extent_cache option is not allowed"); 1960 goto restore_opts; 1961 } 1962 1963 if (no_io_align == !!F2FS_IO_ALIGNED(sbi)) { 1964 err = -EINVAL; 1965 f2fs_warn(sbi, "switch io_bits option is not allowed"); 1966 goto restore_opts; 1967 } 1968 1969 if ((*flags & SB_RDONLY) && test_opt(sbi, DISABLE_CHECKPOINT)) { 1970 err = -EINVAL; 1971 f2fs_warn(sbi, "disabling checkpoint not compatible with read-only"); 1972 goto restore_opts; 1973 } 1974 1975 /* 1976 * We stop the GC thread if FS is mounted as RO 1977 * or if background_gc = off is passed in mount 1978 * option. Also sync the filesystem. 1979 */ 1980 if ((*flags & SB_RDONLY) || 1981 (F2FS_OPTION(sbi).bggc_mode == BGGC_MODE_OFF && 1982 !test_opt(sbi, GC_MERGE))) { 1983 if (sbi->gc_thread) { 1984 f2fs_stop_gc_thread(sbi); 1985 need_restart_gc = true; 1986 } 1987 } else if (!sbi->gc_thread) { 1988 err = f2fs_start_gc_thread(sbi); 1989 if (err) 1990 goto restore_opts; 1991 need_stop_gc = true; 1992 } 1993 1994 if (*flags & SB_RDONLY || 1995 F2FS_OPTION(sbi).whint_mode != org_mount_opt.whint_mode) { 1996 writeback_inodes_sb(sb, WB_REASON_SYNC); 1997 sync_inodes_sb(sb); 1998 1999 set_sbi_flag(sbi, SBI_IS_DIRTY); 2000 set_sbi_flag(sbi, SBI_IS_CLOSE); 2001 f2fs_sync_fs(sb, 1); 2002 clear_sbi_flag(sbi, SBI_IS_CLOSE); 2003 } 2004 2005 if (checkpoint_changed) { 2006 if (test_opt(sbi, DISABLE_CHECKPOINT)) { 2007 err = f2fs_disable_checkpoint(sbi); 2008 if (err) 2009 goto restore_gc; 2010 } else { 2011 f2fs_enable_checkpoint(sbi); 2012 } 2013 } 2014 2015 /* 2016 * We stop issue flush thread if FS is mounted as RO 2017 * or if flush_merge is not passed in mount option. 2018 */ 2019 if ((*flags & SB_RDONLY) || !test_opt(sbi, FLUSH_MERGE)) { 2020 clear_opt(sbi, FLUSH_MERGE); 2021 f2fs_destroy_flush_cmd_control(sbi, false); 2022 } else { 2023 err = f2fs_create_flush_cmd_control(sbi); 2024 if (err) 2025 goto restore_gc; 2026 } 2027skip: 2028#ifdef CONFIG_QUOTA 2029 /* Release old quota file names */ 2030 for (i = 0; i < MAXQUOTAS; i++) 2031 kfree(org_mount_opt.s_qf_names[i]); 2032#endif 2033 /* Update the POSIXACL Flag */ 2034 sb->s_flags = (sb->s_flags & ~SB_POSIXACL) | 2035 (test_opt(sbi, POSIX_ACL) ? SB_POSIXACL : 0); 2036 2037 limit_reserve_root(sbi); 2038 adjust_unusable_cap_perc(sbi); 2039 *flags = (*flags & ~SB_LAZYTIME) | (sb->s_flags & SB_LAZYTIME); 2040 return 0; 2041restore_gc: 2042 if (need_restart_gc) { 2043 if (f2fs_start_gc_thread(sbi)) 2044 f2fs_warn(sbi, "background gc thread has stopped"); 2045 } else if (need_stop_gc) { 2046 f2fs_stop_gc_thread(sbi); 2047 } 2048restore_opts: 2049#ifdef CONFIG_QUOTA 2050 F2FS_OPTION(sbi).s_jquota_fmt = org_mount_opt.s_jquota_fmt; 2051 for (i = 0; i < MAXQUOTAS; i++) { 2052 kfree(F2FS_OPTION(sbi).s_qf_names[i]); 2053 F2FS_OPTION(sbi).s_qf_names[i] = org_mount_opt.s_qf_names[i]; 2054 } 2055#endif 2056 sbi->mount_opt = org_mount_opt; 2057 sb->s_flags = old_sb_flags; 2058 return err; 2059} 2060 2061#ifdef CONFIG_QUOTA 2062/* Read data from quotafile */ 2063static ssize_t f2fs_quota_read(struct super_block *sb, int type, char *data, 2064 size_t len, loff_t off) 2065{ 2066 struct inode *inode = sb_dqopt(sb)->files[type]; 2067 struct address_space *mapping = inode->i_mapping; 2068 block_t blkidx = F2FS_BYTES_TO_BLK(off); 2069 int offset = off & (sb->s_blocksize - 1); 2070 int tocopy; 2071 size_t toread; 2072 loff_t i_size = i_size_read(inode); 2073 struct page *page; 2074 2075 if (off > i_size) 2076 return 0; 2077 2078 if (off + len > i_size) 2079 len = i_size - off; 2080 toread = len; 2081 while (toread > 0) { 2082 tocopy = min_t(unsigned long, sb->s_blocksize - offset, toread); 2083repeat: 2084 page = read_cache_page_gfp(mapping, blkidx, GFP_NOFS); 2085 if (IS_ERR(page)) { 2086 if (PTR_ERR(page) == -ENOMEM) { 2087 congestion_wait(BLK_RW_ASYNC, 2088 DEFAULT_IO_TIMEOUT); 2089 goto repeat; 2090 } 2091 set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR); 2092 return PTR_ERR(page); 2093 } 2094 2095 lock_page(page); 2096 2097 if (unlikely(page->mapping != mapping)) { 2098 f2fs_put_page(page, 1); 2099 goto repeat; 2100 } 2101 if (unlikely(!PageUptodate(page))) { 2102 f2fs_put_page(page, 1); 2103 set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR); 2104 return -EIO; 2105 } 2106 2107 memcpy_from_page(data, page, offset, tocopy); 2108 f2fs_put_page(page, 1); 2109 2110 offset = 0; 2111 toread -= tocopy; 2112 data += tocopy; 2113 blkidx++; 2114 } 2115 return len; 2116} 2117 2118/* Write to quotafile */ 2119static ssize_t f2fs_quota_write(struct super_block *sb, int type, 2120 const char *data, size_t len, loff_t off) 2121{ 2122 struct inode *inode = sb_dqopt(sb)->files[type]; 2123 struct address_space *mapping = inode->i_mapping; 2124 const struct address_space_operations *a_ops = mapping->a_ops; 2125 int offset = off & (sb->s_blocksize - 1); 2126 size_t towrite = len; 2127 struct page *page; 2128 void *fsdata = NULL; 2129 int err = 0; 2130 int tocopy; 2131 2132 while (towrite > 0) { 2133 tocopy = min_t(unsigned long, sb->s_blocksize - offset, 2134 towrite); 2135retry: 2136 err = a_ops->write_begin(NULL, mapping, off, tocopy, 0, 2137 &page, &fsdata); 2138 if (unlikely(err)) { 2139 if (err == -ENOMEM) { 2140 congestion_wait(BLK_RW_ASYNC, 2141 DEFAULT_IO_TIMEOUT); 2142 goto retry; 2143 } 2144 set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR); 2145 break; 2146 } 2147 2148 memcpy_to_page(page, offset, data, tocopy); 2149 2150 a_ops->write_end(NULL, mapping, off, tocopy, tocopy, 2151 page, fsdata); 2152 offset = 0; 2153 towrite -= tocopy; 2154 off += tocopy; 2155 data += tocopy; 2156 cond_resched(); 2157 } 2158 2159 if (len == towrite) 2160 return err; 2161 inode->i_mtime = inode->i_ctime = current_time(inode); 2162 f2fs_mark_inode_dirty_sync(inode, false); 2163 return len - towrite; 2164} 2165 2166static struct dquot **f2fs_get_dquots(struct inode *inode) 2167{ 2168 return F2FS_I(inode)->i_dquot; 2169} 2170 2171static qsize_t *f2fs_get_reserved_space(struct inode *inode) 2172{ 2173 return &F2FS_I(inode)->i_reserved_quota; 2174} 2175 2176static int f2fs_quota_on_mount(struct f2fs_sb_info *sbi, int type) 2177{ 2178 if (is_set_ckpt_flags(sbi, CP_QUOTA_NEED_FSCK_FLAG)) { 2179 f2fs_err(sbi, "quota sysfile may be corrupted, skip loading it"); 2180 return 0; 2181 } 2182 2183 return dquot_quota_on_mount(sbi->sb, F2FS_OPTION(sbi).s_qf_names[type], 2184 F2FS_OPTION(sbi).s_jquota_fmt, type); 2185} 2186 2187int f2fs_enable_quota_files(struct f2fs_sb_info *sbi, bool rdonly) 2188{ 2189 int enabled = 0; 2190 int i, err; 2191 2192 if (f2fs_sb_has_quota_ino(sbi) && rdonly) { 2193 err = f2fs_enable_quotas(sbi->sb); 2194 if (err) { 2195 f2fs_err(sbi, "Cannot turn on quota_ino: %d", err); 2196 return 0; 2197 } 2198 return 1; 2199 } 2200 2201 for (i = 0; i < MAXQUOTAS; i++) { 2202 if (F2FS_OPTION(sbi).s_qf_names[i]) { 2203 err = f2fs_quota_on_mount(sbi, i); 2204 if (!err) { 2205 enabled = 1; 2206 continue; 2207 } 2208 f2fs_err(sbi, "Cannot turn on quotas: %d on %d", 2209 err, i); 2210 } 2211 } 2212 return enabled; 2213} 2214 2215static int f2fs_quota_enable(struct super_block *sb, int type, int format_id, 2216 unsigned int flags) 2217{ 2218 struct inode *qf_inode; 2219 unsigned long qf_inum; 2220 int err; 2221 2222 BUG_ON(!f2fs_sb_has_quota_ino(F2FS_SB(sb))); 2223 2224 qf_inum = f2fs_qf_ino(sb, type); 2225 if (!qf_inum) 2226 return -EPERM; 2227 2228 qf_inode = f2fs_iget(sb, qf_inum); 2229 if (IS_ERR(qf_inode)) { 2230 f2fs_err(F2FS_SB(sb), "Bad quota inode %u:%lu", type, qf_inum); 2231 return PTR_ERR(qf_inode); 2232 } 2233 2234 /* Don't account quota for quota files to avoid recursion */ 2235 qf_inode->i_flags |= S_NOQUOTA; 2236 err = dquot_load_quota_inode(qf_inode, type, format_id, flags); 2237 iput(qf_inode); 2238 return err; 2239} 2240 2241static int f2fs_enable_quotas(struct super_block *sb) 2242{ 2243 struct f2fs_sb_info *sbi = F2FS_SB(sb); 2244 int type, err = 0; 2245 unsigned long qf_inum; 2246 bool quota_mopt[MAXQUOTAS] = { 2247 test_opt(sbi, USRQUOTA), 2248 test_opt(sbi, GRPQUOTA), 2249 test_opt(sbi, PRJQUOTA), 2250 }; 2251 2252 if (is_set_ckpt_flags(F2FS_SB(sb), CP_QUOTA_NEED_FSCK_FLAG)) { 2253 f2fs_err(sbi, "quota file may be corrupted, skip loading it"); 2254 return 0; 2255 } 2256 2257 sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE; 2258 2259 for (type = 0; type < MAXQUOTAS; type++) { 2260 qf_inum = f2fs_qf_ino(sb, type); 2261 if (qf_inum) { 2262 err = f2fs_quota_enable(sb, type, QFMT_VFS_V1, 2263 DQUOT_USAGE_ENABLED | 2264 (quota_mopt[type] ? DQUOT_LIMITS_ENABLED : 0)); 2265 if (err) { 2266 f2fs_err(sbi, "Failed to enable quota tracking (type=%d, err=%d). Please run fsck to fix.", 2267 type, err); 2268 for (type--; type >= 0; type--) 2269 dquot_quota_off(sb, type); 2270 set_sbi_flag(F2FS_SB(sb), 2271 SBI_QUOTA_NEED_REPAIR); 2272 return err; 2273 } 2274 } 2275 } 2276 return 0; 2277} 2278 2279static int f2fs_quota_sync_file(struct f2fs_sb_info *sbi, int type) 2280{ 2281 struct quota_info *dqopt = sb_dqopt(sbi->sb); 2282 struct address_space *mapping = dqopt->files[type]->i_mapping; 2283 int ret = 0; 2284 2285 ret = dquot_writeback_dquots(sbi->sb, type); 2286 if (ret) 2287 goto out; 2288 2289 ret = filemap_fdatawrite(mapping); 2290 if (ret) 2291 goto out; 2292 2293 /* if we are using journalled quota */ 2294 if (is_journalled_quota(sbi)) 2295 goto out; 2296 2297 ret = filemap_fdatawait(mapping); 2298 2299 truncate_inode_pages(&dqopt->files[type]->i_data, 0); 2300out: 2301 if (ret) 2302 set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR); 2303 return ret; 2304} 2305 2306int f2fs_quota_sync(struct super_block *sb, int type) 2307{ 2308 struct f2fs_sb_info *sbi = F2FS_SB(sb); 2309 struct quota_info *dqopt = sb_dqopt(sb); 2310 int cnt; 2311 int ret = 0; 2312 2313 /* 2314 * Now when everything is written we can discard the pagecache so 2315 * that userspace sees the changes. 2316 */ 2317 for (cnt = 0; cnt < MAXQUOTAS; cnt++) { 2318 2319 if (type != -1 && cnt != type) 2320 continue; 2321 2322 if (!sb_has_quota_active(sb, cnt)) 2323 continue; 2324 2325 if (!f2fs_sb_has_quota_ino(sbi)) 2326 inode_lock(dqopt->files[cnt]); 2327 2328 /* 2329 * do_quotactl 2330 * f2fs_quota_sync 2331 * down_read(quota_sem) 2332 * dquot_writeback_dquots() 2333 * f2fs_dquot_commit 2334 * block_operation 2335 * down_read(quota_sem) 2336 */ 2337 f2fs_lock_op(sbi); 2338 down_read(&sbi->quota_sem); 2339 2340 ret = f2fs_quota_sync_file(sbi, cnt); 2341 2342 up_read(&sbi->quota_sem); 2343 f2fs_unlock_op(sbi); 2344 2345 if (!f2fs_sb_has_quota_ino(sbi)) 2346 inode_unlock(dqopt->files[cnt]); 2347 2348 if (ret) 2349 break; 2350 } 2351 return ret; 2352} 2353 2354static int f2fs_quota_on(struct super_block *sb, int type, int format_id, 2355 const struct path *path) 2356{ 2357 struct inode *inode; 2358 int err; 2359 2360 /* if quota sysfile exists, deny enabling quota with specific file */ 2361 if (f2fs_sb_has_quota_ino(F2FS_SB(sb))) { 2362 f2fs_err(F2FS_SB(sb), "quota sysfile already exists"); 2363 return -EBUSY; 2364 } 2365 2366 err = f2fs_quota_sync(sb, type); 2367 if (err) 2368 return err; 2369 2370 err = dquot_quota_on(sb, type, format_id, path); 2371 if (err) 2372 return err; 2373 2374 inode = d_inode(path->dentry); 2375 2376 inode_lock(inode); 2377 F2FS_I(inode)->i_flags |= F2FS_NOATIME_FL | F2FS_IMMUTABLE_FL; 2378 f2fs_set_inode_flags(inode); 2379 inode_unlock(inode); 2380 f2fs_mark_inode_dirty_sync(inode, false); 2381 2382 return 0; 2383} 2384 2385static int __f2fs_quota_off(struct super_block *sb, int type) 2386{ 2387 struct inode *inode = sb_dqopt(sb)->files[type]; 2388 int err; 2389 2390 if (!inode || !igrab(inode)) 2391 return dquot_quota_off(sb, type); 2392 2393 err = f2fs_quota_sync(sb, type); 2394 if (err) 2395 goto out_put; 2396 2397 err = dquot_quota_off(sb, type); 2398 if (err || f2fs_sb_has_quota_ino(F2FS_SB(sb))) 2399 goto out_put; 2400 2401 inode_lock(inode); 2402 F2FS_I(inode)->i_flags &= ~(F2FS_NOATIME_FL | F2FS_IMMUTABLE_FL); 2403 f2fs_set_inode_flags(inode); 2404 inode_unlock(inode); 2405 f2fs_mark_inode_dirty_sync(inode, false); 2406out_put: 2407 iput(inode); 2408 return err; 2409} 2410 2411static int f2fs_quota_off(struct super_block *sb, int type) 2412{ 2413 struct f2fs_sb_info *sbi = F2FS_SB(sb); 2414 int err; 2415 2416 err = __f2fs_quota_off(sb, type); 2417 2418 /* 2419 * quotactl can shutdown journalled quota, result in inconsistence 2420 * between quota record and fs data by following updates, tag the 2421 * flag to let fsck be aware of it. 2422 */ 2423 if (is_journalled_quota(sbi)) 2424 set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR); 2425 return err; 2426} 2427 2428void f2fs_quota_off_umount(struct super_block *sb) 2429{ 2430 int type; 2431 int err; 2432 2433 for (type = 0; type < MAXQUOTAS; type++) { 2434 err = __f2fs_quota_off(sb, type); 2435 if (err) { 2436 int ret = dquot_quota_off(sb, type); 2437 2438 f2fs_err(F2FS_SB(sb), "Fail to turn off disk quota (type: %d, err: %d, ret:%d), Please run fsck to fix it.", 2439 type, err, ret); 2440 set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR); 2441 } 2442 } 2443 /* 2444 * In case of checkpoint=disable, we must flush quota blocks. 2445 * This can cause NULL exception for node_inode in end_io, since 2446 * put_super already dropped it. 2447 */ 2448 sync_filesystem(sb); 2449} 2450 2451static void f2fs_truncate_quota_inode_pages(struct super_block *sb) 2452{ 2453 struct quota_info *dqopt = sb_dqopt(sb); 2454 int type; 2455 2456 for (type = 0; type < MAXQUOTAS; type++) { 2457 if (!dqopt->files[type]) 2458 continue; 2459 f2fs_inode_synced(dqopt->files[type]); 2460 } 2461} 2462 2463static int f2fs_dquot_commit(struct dquot *dquot) 2464{ 2465 struct f2fs_sb_info *sbi = F2FS_SB(dquot->dq_sb); 2466 int ret; 2467 2468 down_read_nested(&sbi->quota_sem, SINGLE_DEPTH_NESTING); 2469 ret = dquot_commit(dquot); 2470 if (ret < 0) 2471 set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR); 2472 up_read(&sbi->quota_sem); 2473 return ret; 2474} 2475 2476static int f2fs_dquot_acquire(struct dquot *dquot) 2477{ 2478 struct f2fs_sb_info *sbi = F2FS_SB(dquot->dq_sb); 2479 int ret; 2480 2481 down_read(&sbi->quota_sem); 2482 ret = dquot_acquire(dquot); 2483 if (ret < 0) 2484 set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR); 2485 up_read(&sbi->quota_sem); 2486 return ret; 2487} 2488 2489static int f2fs_dquot_release(struct dquot *dquot) 2490{ 2491 struct f2fs_sb_info *sbi = F2FS_SB(dquot->dq_sb); 2492 int ret = dquot_release(dquot); 2493 2494 if (ret < 0) 2495 set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR); 2496 return ret; 2497} 2498 2499static int f2fs_dquot_mark_dquot_dirty(struct dquot *dquot) 2500{ 2501 struct super_block *sb = dquot->dq_sb; 2502 struct f2fs_sb_info *sbi = F2FS_SB(sb); 2503 int ret = dquot_mark_dquot_dirty(dquot); 2504 2505 /* if we are using journalled quota */ 2506 if (is_journalled_quota(sbi)) 2507 set_sbi_flag(sbi, SBI_QUOTA_NEED_FLUSH); 2508 2509 return ret; 2510} 2511 2512static int f2fs_dquot_commit_info(struct super_block *sb, int type) 2513{ 2514 struct f2fs_sb_info *sbi = F2FS_SB(sb); 2515 int ret = dquot_commit_info(sb, type); 2516 2517 if (ret < 0) 2518 set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR); 2519 return ret; 2520} 2521 2522static int f2fs_get_projid(struct inode *inode, kprojid_t *projid) 2523{ 2524 *projid = F2FS_I(inode)->i_projid; 2525 return 0; 2526} 2527 2528static const struct dquot_operations f2fs_quota_operations = { 2529 .get_reserved_space = f2fs_get_reserved_space, 2530 .write_dquot = f2fs_dquot_commit, 2531 .acquire_dquot = f2fs_dquot_acquire, 2532 .release_dquot = f2fs_dquot_release, 2533 .mark_dirty = f2fs_dquot_mark_dquot_dirty, 2534 .write_info = f2fs_dquot_commit_info, 2535 .alloc_dquot = dquot_alloc, 2536 .destroy_dquot = dquot_destroy, 2537 .get_projid = f2fs_get_projid, 2538 .get_next_id = dquot_get_next_id, 2539}; 2540 2541static const struct quotactl_ops f2fs_quotactl_ops = { 2542 .quota_on = f2fs_quota_on, 2543 .quota_off = f2fs_quota_off, 2544 .quota_sync = f2fs_quota_sync, 2545 .get_state = dquot_get_state, 2546 .set_info = dquot_set_dqinfo, 2547 .get_dqblk = dquot_get_dqblk, 2548 .set_dqblk = dquot_set_dqblk, 2549 .get_nextdqblk = dquot_get_next_dqblk, 2550}; 2551#else 2552int f2fs_quota_sync(struct super_block *sb, int type) 2553{ 2554 return 0; 2555} 2556 2557void f2fs_quota_off_umount(struct super_block *sb) 2558{ 2559} 2560#endif 2561 2562static const struct super_operations f2fs_sops = { 2563 .alloc_inode = f2fs_alloc_inode, 2564 .free_inode = f2fs_free_inode, 2565 .drop_inode = f2fs_drop_inode, 2566 .write_inode = f2fs_write_inode, 2567 .dirty_inode = f2fs_dirty_inode, 2568 .show_options = f2fs_show_options, 2569#ifdef CONFIG_QUOTA 2570 .quota_read = f2fs_quota_read, 2571 .quota_write = f2fs_quota_write, 2572 .get_dquots = f2fs_get_dquots, 2573#endif 2574 .evict_inode = f2fs_evict_inode, 2575 .put_super = f2fs_put_super, 2576 .sync_fs = f2fs_sync_fs, 2577 .freeze_fs = f2fs_freeze, 2578 .unfreeze_fs = f2fs_unfreeze, 2579 .statfs = f2fs_statfs, 2580 .remount_fs = f2fs_remount, 2581}; 2582 2583#ifdef CONFIG_FS_ENCRYPTION 2584static int f2fs_get_context(struct inode *inode, void *ctx, size_t len) 2585{ 2586 return f2fs_getxattr(inode, F2FS_XATTR_INDEX_ENCRYPTION, 2587 F2FS_XATTR_NAME_ENCRYPTION_CONTEXT, 2588 ctx, len, NULL); 2589} 2590 2591static int f2fs_set_context(struct inode *inode, const void *ctx, size_t len, 2592 void *fs_data) 2593{ 2594 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2595 2596 /* 2597 * Encrypting the root directory is not allowed because fsck 2598 * expects lost+found directory to exist and remain unencrypted 2599 * if LOST_FOUND feature is enabled. 2600 * 2601 */ 2602 if (f2fs_sb_has_lost_found(sbi) && 2603 inode->i_ino == F2FS_ROOT_INO(sbi)) 2604 return -EPERM; 2605 2606 return f2fs_setxattr(inode, F2FS_XATTR_INDEX_ENCRYPTION, 2607 F2FS_XATTR_NAME_ENCRYPTION_CONTEXT, 2608 ctx, len, fs_data, XATTR_CREATE); 2609} 2610 2611static const union fscrypt_policy *f2fs_get_dummy_policy(struct super_block *sb) 2612{ 2613 return F2FS_OPTION(F2FS_SB(sb)).dummy_enc_policy.policy; 2614} 2615 2616static bool f2fs_has_stable_inodes(struct super_block *sb) 2617{ 2618 return true; 2619} 2620 2621static void f2fs_get_ino_and_lblk_bits(struct super_block *sb, 2622 int *ino_bits_ret, int *lblk_bits_ret) 2623{ 2624 *ino_bits_ret = 8 * sizeof(nid_t); 2625 *lblk_bits_ret = 8 * sizeof(block_t); 2626} 2627 2628static int f2fs_get_num_devices(struct super_block *sb) 2629{ 2630 struct f2fs_sb_info *sbi = F2FS_SB(sb); 2631 2632 if (f2fs_is_multi_device(sbi)) 2633 return sbi->s_ndevs; 2634 return 1; 2635} 2636 2637static void f2fs_get_devices(struct super_block *sb, 2638 struct request_queue **devs) 2639{ 2640 struct f2fs_sb_info *sbi = F2FS_SB(sb); 2641 int i; 2642 2643 for (i = 0; i < sbi->s_ndevs; i++) 2644 devs[i] = bdev_get_queue(FDEV(i).bdev); 2645} 2646 2647static const struct fscrypt_operations f2fs_cryptops = { 2648 .key_prefix = "f2fs:", 2649 .get_context = f2fs_get_context, 2650 .set_context = f2fs_set_context, 2651 .get_dummy_policy = f2fs_get_dummy_policy, 2652 .empty_dir = f2fs_empty_dir, 2653 .max_namelen = F2FS_NAME_LEN, 2654 .has_stable_inodes = f2fs_has_stable_inodes, 2655 .get_ino_and_lblk_bits = f2fs_get_ino_and_lblk_bits, 2656 .get_num_devices = f2fs_get_num_devices, 2657 .get_devices = f2fs_get_devices, 2658}; 2659#endif 2660 2661static struct inode *f2fs_nfs_get_inode(struct super_block *sb, 2662 u64 ino, u32 generation) 2663{ 2664 struct f2fs_sb_info *sbi = F2FS_SB(sb); 2665 struct inode *inode; 2666 2667 if (f2fs_check_nid_range(sbi, ino)) 2668 return ERR_PTR(-ESTALE); 2669 2670 /* 2671 * f2fs_iget isn't quite right if the inode is currently unallocated! 2672 * However f2fs_iget currently does appropriate checks to handle stale 2673 * inodes so everything is OK. 2674 */ 2675 inode = f2fs_iget(sb, ino); 2676 if (IS_ERR(inode)) 2677 return ERR_CAST(inode); 2678 if (unlikely(generation && inode->i_generation != generation)) { 2679 /* we didn't find the right inode.. */ 2680 iput(inode); 2681 return ERR_PTR(-ESTALE); 2682 } 2683 return inode; 2684} 2685 2686static struct dentry *f2fs_fh_to_dentry(struct super_block *sb, struct fid *fid, 2687 int fh_len, int fh_type) 2688{ 2689 return generic_fh_to_dentry(sb, fid, fh_len, fh_type, 2690 f2fs_nfs_get_inode); 2691} 2692 2693static struct dentry *f2fs_fh_to_parent(struct super_block *sb, struct fid *fid, 2694 int fh_len, int fh_type) 2695{ 2696 return generic_fh_to_parent(sb, fid, fh_len, fh_type, 2697 f2fs_nfs_get_inode); 2698} 2699 2700static const struct export_operations f2fs_export_ops = { 2701 .fh_to_dentry = f2fs_fh_to_dentry, 2702 .fh_to_parent = f2fs_fh_to_parent, 2703 .get_parent = f2fs_get_parent, 2704}; 2705 2706static loff_t max_file_blocks(void) 2707{ 2708 loff_t result = 0; 2709 loff_t leaf_count = DEF_ADDRS_PER_BLOCK; 2710 2711 /* 2712 * note: previously, result is equal to (DEF_ADDRS_PER_INODE - 2713 * DEFAULT_INLINE_XATTR_ADDRS), but now f2fs try to reserve more 2714 * space in inode.i_addr, it will be more safe to reassign 2715 * result as zero. 2716 */ 2717 2718 /* two direct node blocks */ 2719 result += (leaf_count * 2); 2720 2721 /* two indirect node blocks */ 2722 leaf_count *= NIDS_PER_BLOCK; 2723 result += (leaf_count * 2); 2724 2725 /* one double indirect node block */ 2726 leaf_count *= NIDS_PER_BLOCK; 2727 result += leaf_count; 2728 2729 return result; 2730} 2731 2732static int __f2fs_commit_super(struct buffer_head *bh, 2733 struct f2fs_super_block *super) 2734{ 2735 lock_buffer(bh); 2736 if (super) 2737 memcpy(bh->b_data + F2FS_SUPER_OFFSET, super, sizeof(*super)); 2738 set_buffer_dirty(bh); 2739 unlock_buffer(bh); 2740 2741 /* it's rare case, we can do fua all the time */ 2742 return __sync_dirty_buffer(bh, REQ_SYNC | REQ_PREFLUSH | REQ_FUA); 2743} 2744 2745static inline bool sanity_check_area_boundary(struct f2fs_sb_info *sbi, 2746 struct buffer_head *bh) 2747{ 2748 struct f2fs_super_block *raw_super = (struct f2fs_super_block *) 2749 (bh->b_data + F2FS_SUPER_OFFSET); 2750 struct super_block *sb = sbi->sb; 2751 u32 segment0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr); 2752 u32 cp_blkaddr = le32_to_cpu(raw_super->cp_blkaddr); 2753 u32 sit_blkaddr = le32_to_cpu(raw_super->sit_blkaddr); 2754 u32 nat_blkaddr = le32_to_cpu(raw_super->nat_blkaddr); 2755 u32 ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr); 2756 u32 main_blkaddr = le32_to_cpu(raw_super->main_blkaddr); 2757 u32 segment_count_ckpt = le32_to_cpu(raw_super->segment_count_ckpt); 2758 u32 segment_count_sit = le32_to_cpu(raw_super->segment_count_sit); 2759 u32 segment_count_nat = le32_to_cpu(raw_super->segment_count_nat); 2760 u32 segment_count_ssa = le32_to_cpu(raw_super->segment_count_ssa); 2761 u32 segment_count_main = le32_to_cpu(raw_super->segment_count_main); 2762 u32 segment_count = le32_to_cpu(raw_super->segment_count); 2763 u32 log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg); 2764 u64 main_end_blkaddr = main_blkaddr + 2765 (segment_count_main << log_blocks_per_seg); 2766 u64 seg_end_blkaddr = segment0_blkaddr + 2767 (segment_count << log_blocks_per_seg); 2768 2769 if (segment0_blkaddr != cp_blkaddr) { 2770 f2fs_info(sbi, "Mismatch start address, segment0(%u) cp_blkaddr(%u)", 2771 segment0_blkaddr, cp_blkaddr); 2772 return true; 2773 } 2774 2775 if (cp_blkaddr + (segment_count_ckpt << log_blocks_per_seg) != 2776 sit_blkaddr) { 2777 f2fs_info(sbi, "Wrong CP boundary, start(%u) end(%u) blocks(%u)", 2778 cp_blkaddr, sit_blkaddr, 2779 segment_count_ckpt << log_blocks_per_seg); 2780 return true; 2781 } 2782 2783 if (sit_blkaddr + (segment_count_sit << log_blocks_per_seg) != 2784 nat_blkaddr) { 2785 f2fs_info(sbi, "Wrong SIT boundary, start(%u) end(%u) blocks(%u)", 2786 sit_blkaddr, nat_blkaddr, 2787 segment_count_sit << log_blocks_per_seg); 2788 return true; 2789 } 2790 2791 if (nat_blkaddr + (segment_count_nat << log_blocks_per_seg) != 2792 ssa_blkaddr) { 2793 f2fs_info(sbi, "Wrong NAT boundary, start(%u) end(%u) blocks(%u)", 2794 nat_blkaddr, ssa_blkaddr, 2795 segment_count_nat << log_blocks_per_seg); 2796 return true; 2797 } 2798 2799 if (ssa_blkaddr + (segment_count_ssa << log_blocks_per_seg) != 2800 main_blkaddr) { 2801 f2fs_info(sbi, "Wrong SSA boundary, start(%u) end(%u) blocks(%u)", 2802 ssa_blkaddr, main_blkaddr, 2803 segment_count_ssa << log_blocks_per_seg); 2804 return true; 2805 } 2806 2807 if (main_end_blkaddr > seg_end_blkaddr) { 2808 f2fs_info(sbi, "Wrong MAIN_AREA boundary, start(%u) end(%llu) block(%u)", 2809 main_blkaddr, seg_end_blkaddr, 2810 segment_count_main << log_blocks_per_seg); 2811 return true; 2812 } else if (main_end_blkaddr < seg_end_blkaddr) { 2813 int err = 0; 2814 char *res; 2815 2816 /* fix in-memory information all the time */ 2817 raw_super->segment_count = cpu_to_le32((main_end_blkaddr - 2818 segment0_blkaddr) >> log_blocks_per_seg); 2819 2820 if (f2fs_readonly(sb) || bdev_read_only(sb->s_bdev)) { 2821 set_sbi_flag(sbi, SBI_NEED_SB_WRITE); 2822 res = "internally"; 2823 } else { 2824 err = __f2fs_commit_super(bh, NULL); 2825 res = err ? "failed" : "done"; 2826 } 2827 f2fs_info(sbi, "Fix alignment : %s, start(%u) end(%llu) block(%u)", 2828 res, main_blkaddr, seg_end_blkaddr, 2829 segment_count_main << log_blocks_per_seg); 2830 if (err) 2831 return true; 2832 } 2833 return false; 2834} 2835 2836static int sanity_check_raw_super(struct f2fs_sb_info *sbi, 2837 struct buffer_head *bh) 2838{ 2839 block_t segment_count, segs_per_sec, secs_per_zone, segment_count_main; 2840 block_t total_sections, blocks_per_seg; 2841 struct f2fs_super_block *raw_super = (struct f2fs_super_block *) 2842 (bh->b_data + F2FS_SUPER_OFFSET); 2843 size_t crc_offset = 0; 2844 __u32 crc = 0; 2845 2846 if (le32_to_cpu(raw_super->magic) != F2FS_SUPER_MAGIC) { 2847 f2fs_info(sbi, "Magic Mismatch, valid(0x%x) - read(0x%x)", 2848 F2FS_SUPER_MAGIC, le32_to_cpu(raw_super->magic)); 2849 return -EINVAL; 2850 } 2851 2852 /* Check checksum_offset and crc in superblock */ 2853 if (__F2FS_HAS_FEATURE(raw_super, F2FS_FEATURE_SB_CHKSUM)) { 2854 crc_offset = le32_to_cpu(raw_super->checksum_offset); 2855 if (crc_offset != 2856 offsetof(struct f2fs_super_block, crc)) { 2857 f2fs_info(sbi, "Invalid SB checksum offset: %zu", 2858 crc_offset); 2859 return -EFSCORRUPTED; 2860 } 2861 crc = le32_to_cpu(raw_super->crc); 2862 if (!f2fs_crc_valid(sbi, crc, raw_super, crc_offset)) { 2863 f2fs_info(sbi, "Invalid SB checksum value: %u", crc); 2864 return -EFSCORRUPTED; 2865 } 2866 } 2867 2868 /* Currently, support only 4KB page cache size */ 2869 if (F2FS_BLKSIZE != PAGE_SIZE) { 2870 f2fs_info(sbi, "Invalid page_cache_size (%lu), supports only 4KB", 2871 PAGE_SIZE); 2872 return -EFSCORRUPTED; 2873 } 2874 2875 /* Currently, support only 4KB block size */ 2876 if (le32_to_cpu(raw_super->log_blocksize) != F2FS_BLKSIZE_BITS) { 2877 f2fs_info(sbi, "Invalid log_blocksize (%u), supports only %u", 2878 le32_to_cpu(raw_super->log_blocksize), 2879 F2FS_BLKSIZE_BITS); 2880 return -EFSCORRUPTED; 2881 } 2882 2883 /* check log blocks per segment */ 2884 if (le32_to_cpu(raw_super->log_blocks_per_seg) != 9) { 2885 f2fs_info(sbi, "Invalid log blocks per segment (%u)", 2886 le32_to_cpu(raw_super->log_blocks_per_seg)); 2887 return -EFSCORRUPTED; 2888 } 2889 2890 /* Currently, support 512/1024/2048/4096 bytes sector size */ 2891 if (le32_to_cpu(raw_super->log_sectorsize) > 2892 F2FS_MAX_LOG_SECTOR_SIZE || 2893 le32_to_cpu(raw_super->log_sectorsize) < 2894 F2FS_MIN_LOG_SECTOR_SIZE) { 2895 f2fs_info(sbi, "Invalid log sectorsize (%u)", 2896 le32_to_cpu(raw_super->log_sectorsize)); 2897 return -EFSCORRUPTED; 2898 } 2899 if (le32_to_cpu(raw_super->log_sectors_per_block) + 2900 le32_to_cpu(raw_super->log_sectorsize) != 2901 F2FS_MAX_LOG_SECTOR_SIZE) { 2902 f2fs_info(sbi, "Invalid log sectors per block(%u) log sectorsize(%u)", 2903 le32_to_cpu(raw_super->log_sectors_per_block), 2904 le32_to_cpu(raw_super->log_sectorsize)); 2905 return -EFSCORRUPTED; 2906 } 2907 2908 segment_count = le32_to_cpu(raw_super->segment_count); 2909 segment_count_main = le32_to_cpu(raw_super->segment_count_main); 2910 segs_per_sec = le32_to_cpu(raw_super->segs_per_sec); 2911 secs_per_zone = le32_to_cpu(raw_super->secs_per_zone); 2912 total_sections = le32_to_cpu(raw_super->section_count); 2913 2914 /* blocks_per_seg should be 512, given the above check */ 2915 blocks_per_seg = 1 << le32_to_cpu(raw_super->log_blocks_per_seg); 2916 2917 if (segment_count > F2FS_MAX_SEGMENT || 2918 segment_count < F2FS_MIN_SEGMENTS) { 2919 f2fs_info(sbi, "Invalid segment count (%u)", segment_count); 2920 return -EFSCORRUPTED; 2921 } 2922 2923 if (total_sections > segment_count_main || total_sections < 1 || 2924 segs_per_sec > segment_count || !segs_per_sec) { 2925 f2fs_info(sbi, "Invalid segment/section count (%u, %u x %u)", 2926 segment_count, total_sections, segs_per_sec); 2927 return -EFSCORRUPTED; 2928 } 2929 2930 if (segment_count_main != total_sections * segs_per_sec) { 2931 f2fs_info(sbi, "Invalid segment/section count (%u != %u * %u)", 2932 segment_count_main, total_sections, segs_per_sec); 2933 return -EFSCORRUPTED; 2934 } 2935 2936 if ((segment_count / segs_per_sec) < total_sections) { 2937 f2fs_info(sbi, "Small segment_count (%u < %u * %u)", 2938 segment_count, segs_per_sec, total_sections); 2939 return -EFSCORRUPTED; 2940 } 2941 2942 if (segment_count > (le64_to_cpu(raw_super->block_count) >> 9)) { 2943 f2fs_info(sbi, "Wrong segment_count / block_count (%u > %llu)", 2944 segment_count, le64_to_cpu(raw_super->block_count)); 2945 return -EFSCORRUPTED; 2946 } 2947 2948 if (RDEV(0).path[0]) { 2949 block_t dev_seg_count = le32_to_cpu(RDEV(0).total_segments); 2950 int i = 1; 2951 2952 while (i < MAX_DEVICES && RDEV(i).path[0]) { 2953 dev_seg_count += le32_to_cpu(RDEV(i).total_segments); 2954 i++; 2955 } 2956 if (segment_count != dev_seg_count) { 2957 f2fs_info(sbi, "Segment count (%u) mismatch with total segments from devices (%u)", 2958 segment_count, dev_seg_count); 2959 return -EFSCORRUPTED; 2960 } 2961 } else { 2962 if (__F2FS_HAS_FEATURE(raw_super, F2FS_FEATURE_BLKZONED) && 2963 !bdev_is_zoned(sbi->sb->s_bdev)) { 2964 f2fs_info(sbi, "Zoned block device path is missing"); 2965 return -EFSCORRUPTED; 2966 } 2967 } 2968 2969 if (secs_per_zone > total_sections || !secs_per_zone) { 2970 f2fs_info(sbi, "Wrong secs_per_zone / total_sections (%u, %u)", 2971 secs_per_zone, total_sections); 2972 return -EFSCORRUPTED; 2973 } 2974 if (le32_to_cpu(raw_super->extension_count) > F2FS_MAX_EXTENSION || 2975 raw_super->hot_ext_count > F2FS_MAX_EXTENSION || 2976 (le32_to_cpu(raw_super->extension_count) + 2977 raw_super->hot_ext_count) > F2FS_MAX_EXTENSION) { 2978 f2fs_info(sbi, "Corrupted extension count (%u + %u > %u)", 2979 le32_to_cpu(raw_super->extension_count), 2980 raw_super->hot_ext_count, 2981 F2FS_MAX_EXTENSION); 2982 return -EFSCORRUPTED; 2983 } 2984 2985 if (le32_to_cpu(raw_super->cp_payload) >= 2986 (blocks_per_seg - F2FS_CP_PACKS - 2987 NR_CURSEG_PERSIST_TYPE)) { 2988 f2fs_info(sbi, "Insane cp_payload (%u >= %u)", 2989 le32_to_cpu(raw_super->cp_payload), 2990 blocks_per_seg - F2FS_CP_PACKS - 2991 NR_CURSEG_PERSIST_TYPE); 2992 return -EFSCORRUPTED; 2993 } 2994 2995 /* check reserved ino info */ 2996 if (le32_to_cpu(raw_super->node_ino) != 1 || 2997 le32_to_cpu(raw_super->meta_ino) != 2 || 2998 le32_to_cpu(raw_super->root_ino) != 3) { 2999 f2fs_info(sbi, "Invalid Fs Meta Ino: node(%u) meta(%u) root(%u)", 3000 le32_to_cpu(raw_super->node_ino), 3001 le32_to_cpu(raw_super->meta_ino), 3002 le32_to_cpu(raw_super->root_ino)); 3003 return -EFSCORRUPTED; 3004 } 3005 3006 /* check CP/SIT/NAT/SSA/MAIN_AREA area boundary */ 3007 if (sanity_check_area_boundary(sbi, bh)) 3008 return -EFSCORRUPTED; 3009 3010 return 0; 3011} 3012 3013int f2fs_sanity_check_ckpt(struct f2fs_sb_info *sbi) 3014{ 3015 unsigned int total, fsmeta; 3016 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi); 3017 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 3018 unsigned int ovp_segments, reserved_segments; 3019 unsigned int main_segs, blocks_per_seg; 3020 unsigned int sit_segs, nat_segs; 3021 unsigned int sit_bitmap_size, nat_bitmap_size; 3022 unsigned int log_blocks_per_seg; 3023 unsigned int segment_count_main; 3024 unsigned int cp_pack_start_sum, cp_payload; 3025 block_t user_block_count, valid_user_blocks; 3026 block_t avail_node_count, valid_node_count; 3027 unsigned int nat_blocks, nat_bits_bytes, nat_bits_blocks; 3028 int i, j; 3029 3030 total = le32_to_cpu(raw_super->segment_count); 3031 fsmeta = le32_to_cpu(raw_super->segment_count_ckpt); 3032 sit_segs = le32_to_cpu(raw_super->segment_count_sit); 3033 fsmeta += sit_segs; 3034 nat_segs = le32_to_cpu(raw_super->segment_count_nat); 3035 fsmeta += nat_segs; 3036 fsmeta += le32_to_cpu(ckpt->rsvd_segment_count); 3037 fsmeta += le32_to_cpu(raw_super->segment_count_ssa); 3038 3039 if (unlikely(fsmeta >= total)) 3040 return 1; 3041 3042 ovp_segments = le32_to_cpu(ckpt->overprov_segment_count); 3043 reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count); 3044 3045 if (unlikely(fsmeta < F2FS_MIN_META_SEGMENTS || 3046 ovp_segments == 0 || reserved_segments == 0)) { 3047 f2fs_err(sbi, "Wrong layout: check mkfs.f2fs version"); 3048 return 1; 3049 } 3050 3051 user_block_count = le64_to_cpu(ckpt->user_block_count); 3052 segment_count_main = le32_to_cpu(raw_super->segment_count_main); 3053 log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg); 3054 if (!user_block_count || user_block_count >= 3055 segment_count_main << log_blocks_per_seg) { 3056 f2fs_err(sbi, "Wrong user_block_count: %u", 3057 user_block_count); 3058 return 1; 3059 } 3060 3061 valid_user_blocks = le64_to_cpu(ckpt->valid_block_count); 3062 if (valid_user_blocks > user_block_count) { 3063 f2fs_err(sbi, "Wrong valid_user_blocks: %u, user_block_count: %u", 3064 valid_user_blocks, user_block_count); 3065 return 1; 3066 } 3067 3068 valid_node_count = le32_to_cpu(ckpt->valid_node_count); 3069 avail_node_count = sbi->total_node_count - F2FS_RESERVED_NODE_NUM; 3070 if (valid_node_count > avail_node_count) { 3071 f2fs_err(sbi, "Wrong valid_node_count: %u, avail_node_count: %u", 3072 valid_node_count, avail_node_count); 3073 return 1; 3074 } 3075 3076 main_segs = le32_to_cpu(raw_super->segment_count_main); 3077 blocks_per_seg = sbi->blocks_per_seg; 3078 3079 for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) { 3080 if (le32_to_cpu(ckpt->cur_node_segno[i]) >= main_segs || 3081 le16_to_cpu(ckpt->cur_node_blkoff[i]) >= blocks_per_seg) 3082 return 1; 3083 for (j = i + 1; j < NR_CURSEG_NODE_TYPE; j++) { 3084 if (le32_to_cpu(ckpt->cur_node_segno[i]) == 3085 le32_to_cpu(ckpt->cur_node_segno[j])) { 3086 f2fs_err(sbi, "Node segment (%u, %u) has the same segno: %u", 3087 i, j, 3088 le32_to_cpu(ckpt->cur_node_segno[i])); 3089 return 1; 3090 } 3091 } 3092 } 3093 for (i = 0; i < NR_CURSEG_DATA_TYPE; i++) { 3094 if (le32_to_cpu(ckpt->cur_data_segno[i]) >= main_segs || 3095 le16_to_cpu(ckpt->cur_data_blkoff[i]) >= blocks_per_seg) 3096 return 1; 3097 for (j = i + 1; j < NR_CURSEG_DATA_TYPE; j++) { 3098 if (le32_to_cpu(ckpt->cur_data_segno[i]) == 3099 le32_to_cpu(ckpt->cur_data_segno[j])) { 3100 f2fs_err(sbi, "Data segment (%u, %u) has the same segno: %u", 3101 i, j, 3102 le32_to_cpu(ckpt->cur_data_segno[i])); 3103 return 1; 3104 } 3105 } 3106 } 3107 for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) { 3108 for (j = 0; j < NR_CURSEG_DATA_TYPE; j++) { 3109 if (le32_to_cpu(ckpt->cur_node_segno[i]) == 3110 le32_to_cpu(ckpt->cur_data_segno[j])) { 3111 f2fs_err(sbi, "Node segment (%u) and Data segment (%u) has the same segno: %u", 3112 i, j, 3113 le32_to_cpu(ckpt->cur_node_segno[i])); 3114 return 1; 3115 } 3116 } 3117 } 3118 3119 sit_bitmap_size = le32_to_cpu(ckpt->sit_ver_bitmap_bytesize); 3120 nat_bitmap_size = le32_to_cpu(ckpt->nat_ver_bitmap_bytesize); 3121 3122 if (sit_bitmap_size != ((sit_segs / 2) << log_blocks_per_seg) / 8 || 3123 nat_bitmap_size != ((nat_segs / 2) << log_blocks_per_seg) / 8) { 3124 f2fs_err(sbi, "Wrong bitmap size: sit: %u, nat:%u", 3125 sit_bitmap_size, nat_bitmap_size); 3126 return 1; 3127 } 3128 3129 cp_pack_start_sum = __start_sum_addr(sbi); 3130 cp_payload = __cp_payload(sbi); 3131 if (cp_pack_start_sum < cp_payload + 1 || 3132 cp_pack_start_sum > blocks_per_seg - 1 - 3133 NR_CURSEG_PERSIST_TYPE) { 3134 f2fs_err(sbi, "Wrong cp_pack_start_sum: %u", 3135 cp_pack_start_sum); 3136 return 1; 3137 } 3138 3139 if (__is_set_ckpt_flags(ckpt, CP_LARGE_NAT_BITMAP_FLAG) && 3140 le32_to_cpu(ckpt->checksum_offset) != CP_MIN_CHKSUM_OFFSET) { 3141 f2fs_warn(sbi, "using deprecated layout of large_nat_bitmap, " 3142 "please run fsck v1.13.0 or higher to repair, chksum_offset: %u, " 3143 "fixed with patch: \"f2fs-tools: relocate chksum_offset for large_nat_bitmap feature\"", 3144 le32_to_cpu(ckpt->checksum_offset)); 3145 return 1; 3146 } 3147 3148 nat_blocks = nat_segs << log_blocks_per_seg; 3149 nat_bits_bytes = nat_blocks / BITS_PER_BYTE; 3150 nat_bits_blocks = F2FS_BLK_ALIGN((nat_bits_bytes << 1) + 8); 3151 if (__is_set_ckpt_flags(ckpt, CP_NAT_BITS_FLAG) && 3152 (cp_payload + F2FS_CP_PACKS + 3153 NR_CURSEG_PERSIST_TYPE + nat_bits_blocks >= blocks_per_seg)) { 3154 f2fs_warn(sbi, "Insane cp_payload: %u, nat_bits_blocks: %u)", 3155 cp_payload, nat_bits_blocks); 3156 return 1; 3157 } 3158 3159 if (unlikely(f2fs_cp_error(sbi))) { 3160 f2fs_err(sbi, "A bug case: need to run fsck"); 3161 return 1; 3162 } 3163 return 0; 3164} 3165 3166static void init_sb_info(struct f2fs_sb_info *sbi) 3167{ 3168 struct f2fs_super_block *raw_super = sbi->raw_super; 3169 int i; 3170 3171 sbi->log_sectors_per_block = 3172 le32_to_cpu(raw_super->log_sectors_per_block); 3173 sbi->log_blocksize = le32_to_cpu(raw_super->log_blocksize); 3174 sbi->blocksize = 1 << sbi->log_blocksize; 3175 sbi->log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg); 3176 sbi->blocks_per_seg = 1 << sbi->log_blocks_per_seg; 3177 sbi->segs_per_sec = le32_to_cpu(raw_super->segs_per_sec); 3178 sbi->secs_per_zone = le32_to_cpu(raw_super->secs_per_zone); 3179 sbi->total_sections = le32_to_cpu(raw_super->section_count); 3180 sbi->total_node_count = 3181 (le32_to_cpu(raw_super->segment_count_nat) / 2) 3182 * sbi->blocks_per_seg * NAT_ENTRY_PER_BLOCK; 3183 sbi->root_ino_num = le32_to_cpu(raw_super->root_ino); 3184 sbi->node_ino_num = le32_to_cpu(raw_super->node_ino); 3185 sbi->meta_ino_num = le32_to_cpu(raw_super->meta_ino); 3186 sbi->cur_victim_sec = NULL_SECNO; 3187 sbi->next_victim_seg[BG_GC] = NULL_SEGNO; 3188 sbi->next_victim_seg[FG_GC] = NULL_SEGNO; 3189 sbi->max_victim_search = DEF_MAX_VICTIM_SEARCH; 3190 sbi->migration_granularity = sbi->segs_per_sec; 3191 3192 sbi->dir_level = DEF_DIR_LEVEL; 3193 sbi->interval_time[CP_TIME] = DEF_CP_INTERVAL; 3194 sbi->interval_time[REQ_TIME] = DEF_IDLE_INTERVAL; 3195 sbi->interval_time[DISCARD_TIME] = DEF_IDLE_INTERVAL; 3196 sbi->interval_time[GC_TIME] = DEF_IDLE_INTERVAL; 3197 sbi->interval_time[DISABLE_TIME] = DEF_DISABLE_INTERVAL; 3198 sbi->interval_time[UMOUNT_DISCARD_TIMEOUT] = 3199 DEF_UMOUNT_DISCARD_TIMEOUT; 3200 clear_sbi_flag(sbi, SBI_NEED_FSCK); 3201 3202 for (i = 0; i < NR_COUNT_TYPE; i++) 3203 atomic_set(&sbi->nr_pages[i], 0); 3204 3205 for (i = 0; i < META; i++) 3206 atomic_set(&sbi->wb_sync_req[i], 0); 3207 3208 INIT_LIST_HEAD(&sbi->s_list); 3209 mutex_init(&sbi->umount_mutex); 3210 init_rwsem(&sbi->io_order_lock); 3211 spin_lock_init(&sbi->cp_lock); 3212 3213 sbi->dirty_device = 0; 3214 spin_lock_init(&sbi->dev_lock); 3215 3216 init_rwsem(&sbi->sb_lock); 3217 init_rwsem(&sbi->pin_sem); 3218} 3219 3220static int init_percpu_info(struct f2fs_sb_info *sbi) 3221{ 3222 int err; 3223 3224 err = percpu_counter_init(&sbi->alloc_valid_block_count, 0, GFP_KERNEL); 3225 if (err) 3226 return err; 3227 3228 err = percpu_counter_init(&sbi->total_valid_inode_count, 0, 3229 GFP_KERNEL); 3230 if (err) 3231 percpu_counter_destroy(&sbi->alloc_valid_block_count); 3232 3233 return err; 3234} 3235 3236#ifdef CONFIG_BLK_DEV_ZONED 3237 3238struct f2fs_report_zones_args { 3239 struct f2fs_sb_info *sbi; 3240 struct f2fs_dev_info *dev; 3241}; 3242 3243static int f2fs_report_zone_cb(struct blk_zone *zone, unsigned int idx, 3244 void *data) 3245{ 3246 struct f2fs_report_zones_args *rz_args = data; 3247 block_t unusable_blocks = (zone->len - zone->capacity) >> 3248 F2FS_LOG_SECTORS_PER_BLOCK; 3249 3250 if (zone->type == BLK_ZONE_TYPE_CONVENTIONAL) 3251 return 0; 3252 3253 set_bit(idx, rz_args->dev->blkz_seq); 3254 if (!rz_args->sbi->unusable_blocks_per_sec) { 3255 rz_args->sbi->unusable_blocks_per_sec = unusable_blocks; 3256 return 0; 3257 } 3258 if (rz_args->sbi->unusable_blocks_per_sec != unusable_blocks) { 3259 f2fs_err(rz_args->sbi, "F2FS supports single zone capacity\n"); 3260 return -EINVAL; 3261 } 3262 return 0; 3263} 3264 3265static int init_blkz_info(struct f2fs_sb_info *sbi, int devi) 3266{ 3267 struct block_device *bdev = FDEV(devi).bdev; 3268 sector_t nr_sectors = bdev->bd_part->nr_sects; 3269 struct f2fs_report_zones_args rep_zone_arg; 3270 int ret; 3271 3272 if (!f2fs_sb_has_blkzoned(sbi)) 3273 return 0; 3274 3275 if (sbi->blocks_per_blkz && sbi->blocks_per_blkz != 3276 SECTOR_TO_BLOCK(bdev_zone_sectors(bdev))) 3277 return -EINVAL; 3278 sbi->blocks_per_blkz = SECTOR_TO_BLOCK(bdev_zone_sectors(bdev)); 3279 if (sbi->log_blocks_per_blkz && sbi->log_blocks_per_blkz != 3280 __ilog2_u32(sbi->blocks_per_blkz)) 3281 return -EINVAL; 3282 sbi->log_blocks_per_blkz = __ilog2_u32(sbi->blocks_per_blkz); 3283 FDEV(devi).nr_blkz = SECTOR_TO_BLOCK(nr_sectors) >> 3284 sbi->log_blocks_per_blkz; 3285 if (nr_sectors & (bdev_zone_sectors(bdev) - 1)) 3286 FDEV(devi).nr_blkz++; 3287 3288 FDEV(devi).blkz_seq = f2fs_kvzalloc(sbi, 3289 BITS_TO_LONGS(FDEV(devi).nr_blkz) 3290 * sizeof(unsigned long), 3291 GFP_KERNEL); 3292 if (!FDEV(devi).blkz_seq) 3293 return -ENOMEM; 3294 3295 rep_zone_arg.sbi = sbi; 3296 rep_zone_arg.dev = &FDEV(devi); 3297 3298 ret = blkdev_report_zones(bdev, 0, BLK_ALL_ZONES, f2fs_report_zone_cb, 3299 &rep_zone_arg); 3300 if (ret < 0) 3301 return ret; 3302 return 0; 3303} 3304#endif 3305 3306/* 3307 * Read f2fs raw super block. 3308 * Because we have two copies of super block, so read both of them 3309 * to get the first valid one. If any one of them is broken, we pass 3310 * them recovery flag back to the caller. 3311 */ 3312static int read_raw_super_block(struct f2fs_sb_info *sbi, 3313 struct f2fs_super_block **raw_super, 3314 int *valid_super_block, int *recovery) 3315{ 3316 struct super_block *sb = sbi->sb; 3317 int block; 3318 struct buffer_head *bh; 3319 struct f2fs_super_block *super; 3320 int err = 0; 3321 3322 super = kzalloc(sizeof(struct f2fs_super_block), GFP_KERNEL); 3323 if (!super) 3324 return -ENOMEM; 3325 3326 for (block = 0; block < 2; block++) { 3327 bh = sb_bread(sb, block); 3328 if (!bh) { 3329 f2fs_err(sbi, "Unable to read %dth superblock", 3330 block + 1); 3331 err = -EIO; 3332 *recovery = 1; 3333 continue; 3334 } 3335 3336 /* sanity checking of raw super */ 3337 err = sanity_check_raw_super(sbi, bh); 3338 if (err) { 3339 f2fs_err(sbi, "Can't find valid F2FS filesystem in %dth superblock", 3340 block + 1); 3341 brelse(bh); 3342 *recovery = 1; 3343 continue; 3344 } 3345 3346 if (!*raw_super) { 3347 memcpy(super, bh->b_data + F2FS_SUPER_OFFSET, 3348 sizeof(*super)); 3349 *valid_super_block = block; 3350 *raw_super = super; 3351 } 3352 brelse(bh); 3353 } 3354 3355 /* No valid superblock */ 3356 if (!*raw_super) 3357 kfree(super); 3358 else 3359 err = 0; 3360 3361 return err; 3362} 3363 3364int f2fs_commit_super(struct f2fs_sb_info *sbi, bool recover) 3365{ 3366 struct buffer_head *bh; 3367 __u32 crc = 0; 3368 int err; 3369 3370 if ((recover && f2fs_readonly(sbi->sb)) || 3371 bdev_read_only(sbi->sb->s_bdev)) { 3372 set_sbi_flag(sbi, SBI_NEED_SB_WRITE); 3373 return -EROFS; 3374 } 3375 3376 /* we should update superblock crc here */ 3377 if (!recover && f2fs_sb_has_sb_chksum(sbi)) { 3378 crc = f2fs_crc32(sbi, F2FS_RAW_SUPER(sbi), 3379 offsetof(struct f2fs_super_block, crc)); 3380 F2FS_RAW_SUPER(sbi)->crc = cpu_to_le32(crc); 3381 } 3382 3383 /* write back-up superblock first */ 3384 bh = sb_bread(sbi->sb, sbi->valid_super_block ? 0 : 1); 3385 if (!bh) 3386 return -EIO; 3387 err = __f2fs_commit_super(bh, F2FS_RAW_SUPER(sbi)); 3388 brelse(bh); 3389 3390 /* if we are in recovery path, skip writing valid superblock */ 3391 if (recover || err) 3392 return err; 3393 3394 /* write current valid superblock */ 3395 bh = sb_bread(sbi->sb, sbi->valid_super_block); 3396 if (!bh) 3397 return -EIO; 3398 err = __f2fs_commit_super(bh, F2FS_RAW_SUPER(sbi)); 3399 brelse(bh); 3400 return err; 3401} 3402 3403static int f2fs_scan_devices(struct f2fs_sb_info *sbi) 3404{ 3405 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi); 3406 unsigned int max_devices = MAX_DEVICES; 3407 int i; 3408 3409 /* Initialize single device information */ 3410 if (!RDEV(0).path[0]) { 3411 if (!bdev_is_zoned(sbi->sb->s_bdev)) 3412 return 0; 3413 max_devices = 1; 3414 } 3415 3416 /* 3417 * Initialize multiple devices information, or single 3418 * zoned block device information. 3419 */ 3420 sbi->devs = f2fs_kzalloc(sbi, 3421 array_size(max_devices, 3422 sizeof(struct f2fs_dev_info)), 3423 GFP_KERNEL); 3424 if (!sbi->devs) 3425 return -ENOMEM; 3426 3427 for (i = 0; i < max_devices; i++) { 3428 3429 if (i > 0 && !RDEV(i).path[0]) 3430 break; 3431 3432 if (max_devices == 1) { 3433 /* Single zoned block device mount */ 3434 FDEV(0).bdev = 3435 blkdev_get_by_dev(sbi->sb->s_bdev->bd_dev, 3436 sbi->sb->s_mode, sbi->sb->s_type); 3437 } else { 3438 /* Multi-device mount */ 3439 memcpy(FDEV(i).path, RDEV(i).path, MAX_PATH_LEN); 3440 FDEV(i).total_segments = 3441 le32_to_cpu(RDEV(i).total_segments); 3442 if (i == 0) { 3443 FDEV(i).start_blk = 0; 3444 FDEV(i).end_blk = FDEV(i).start_blk + 3445 (FDEV(i).total_segments << 3446 sbi->log_blocks_per_seg) - 1 + 3447 le32_to_cpu(raw_super->segment0_blkaddr); 3448 } else { 3449 FDEV(i).start_blk = FDEV(i - 1).end_blk + 1; 3450 FDEV(i).end_blk = FDEV(i).start_blk + 3451 (FDEV(i).total_segments << 3452 sbi->log_blocks_per_seg) - 1; 3453 } 3454 FDEV(i).bdev = blkdev_get_by_path(FDEV(i).path, 3455 sbi->sb->s_mode, sbi->sb->s_type); 3456 } 3457 if (IS_ERR(FDEV(i).bdev)) 3458 return PTR_ERR(FDEV(i).bdev); 3459 3460 /* to release errored devices */ 3461 sbi->s_ndevs = i + 1; 3462 3463#ifdef CONFIG_BLK_DEV_ZONED 3464 if (bdev_zoned_model(FDEV(i).bdev) == BLK_ZONED_HM && 3465 !f2fs_sb_has_blkzoned(sbi)) { 3466 f2fs_err(sbi, "Zoned block device feature not enabled\n"); 3467 return -EINVAL; 3468 } 3469 if (bdev_zoned_model(FDEV(i).bdev) != BLK_ZONED_NONE) { 3470 if (init_blkz_info(sbi, i)) { 3471 f2fs_err(sbi, "Failed to initialize F2FS blkzone information"); 3472 return -EINVAL; 3473 } 3474 if (max_devices == 1) 3475 break; 3476 f2fs_info(sbi, "Mount Device [%2d]: %20s, %8u, %8x - %8x (zone: %s)", 3477 i, FDEV(i).path, 3478 FDEV(i).total_segments, 3479 FDEV(i).start_blk, FDEV(i).end_blk, 3480 bdev_zoned_model(FDEV(i).bdev) == BLK_ZONED_HA ? 3481 "Host-aware" : "Host-managed"); 3482 continue; 3483 } 3484#endif 3485 f2fs_info(sbi, "Mount Device [%2d]: %20s, %8u, %8x - %8x", 3486 i, FDEV(i).path, 3487 FDEV(i).total_segments, 3488 FDEV(i).start_blk, FDEV(i).end_blk); 3489 } 3490 f2fs_info(sbi, 3491 "IO Block Size: %8d KB", F2FS_IO_SIZE_KB(sbi)); 3492 return 0; 3493} 3494 3495static int f2fs_setup_casefold(struct f2fs_sb_info *sbi) 3496{ 3497#ifdef CONFIG_UNICODE 3498 if (f2fs_sb_has_casefold(sbi) && !sbi->sb->s_encoding) { 3499 const struct f2fs_sb_encodings *encoding_info; 3500 struct unicode_map *encoding; 3501 __u16 encoding_flags; 3502 3503 if (f2fs_sb_has_encrypt(sbi)) { 3504 f2fs_err(sbi, 3505 "Can't mount with encoding and encryption"); 3506 return -EINVAL; 3507 } 3508 3509 if (f2fs_sb_read_encoding(sbi->raw_super, &encoding_info, 3510 &encoding_flags)) { 3511 f2fs_err(sbi, 3512 "Encoding requested by superblock is unknown"); 3513 return -EINVAL; 3514 } 3515 3516 encoding = utf8_load(encoding_info->version); 3517 if (IS_ERR(encoding)) { 3518 f2fs_err(sbi, 3519 "can't mount with superblock charset: %s-%s " 3520 "not supported by the kernel. flags: 0x%x.", 3521 encoding_info->name, encoding_info->version, 3522 encoding_flags); 3523 return PTR_ERR(encoding); 3524 } 3525 f2fs_info(sbi, "Using encoding defined by superblock: " 3526 "%s-%s with flags 0x%hx", encoding_info->name, 3527 encoding_info->version?:"\b", encoding_flags); 3528 3529 sbi->sb->s_encoding = encoding; 3530 sbi->sb->s_encoding_flags = encoding_flags; 3531 sbi->sb->s_d_op = &f2fs_dentry_ops; 3532 } 3533#else 3534 if (f2fs_sb_has_casefold(sbi)) { 3535 f2fs_err(sbi, "Filesystem with casefold feature cannot be mounted without CONFIG_UNICODE"); 3536 return -EINVAL; 3537 } 3538#endif 3539 return 0; 3540} 3541 3542static void f2fs_tuning_parameters(struct f2fs_sb_info *sbi) 3543{ 3544 struct f2fs_sm_info *sm_i = SM_I(sbi); 3545 3546 /* adjust parameters according to the volume size */ 3547 if (sm_i->main_segments <= SMALL_VOLUME_SEGMENTS) { 3548 F2FS_OPTION(sbi).alloc_mode = ALLOC_MODE_REUSE; 3549 sm_i->dcc_info->discard_granularity = 1; 3550 sm_i->ipu_policy = 1 << F2FS_IPU_FORCE; 3551 } 3552 3553 sbi->readdir_ra = 1; 3554} 3555 3556#ifdef CONFIG_F2FS_GRADING_SSR 3557static void f2fs_init_grading_ssr(struct f2fs_sb_info *sbi) 3558{ 3559 u32 total_blocks = le64_to_cpu(sbi->raw_super->block_count) >> 18; 3560 3561 if (total_blocks > 64) { /* 64G */ 3562 sbi->hot_cold_params.hot_data_lower_limit = SSR_HD_SAPCE_LIMIT_128G; 3563 sbi->hot_cold_params.hot_data_waterline = SSR_HD_WATERLINE_128G; 3564 sbi->hot_cold_params.warm_data_lower_limit = SSR_WD_SAPCE_LIMIT_128G; 3565 sbi->hot_cold_params.warm_data_waterline = SSR_WD_WATERLINE_128G; 3566 sbi->hot_cold_params.hot_node_lower_limit = SSR_HD_SAPCE_LIMIT_128G; 3567 sbi->hot_cold_params.hot_node_waterline = SSR_HN_WATERLINE_128G; 3568 sbi->hot_cold_params.warm_node_lower_limit = SSR_WN_SAPCE_LIMIT_128G; 3569 sbi->hot_cold_params.warm_node_waterline = SSR_WN_WATERLINE_128G; 3570 sbi->hot_cold_params.enable = GRADING_SSR_OFF; 3571 } else { 3572 sbi->hot_cold_params.hot_data_lower_limit = SSR_DEFALT_SPACE_LIMIT; 3573 sbi->hot_cold_params.hot_data_waterline = SSR_DEFALT_WATERLINE; 3574 sbi->hot_cold_params.warm_data_lower_limit = SSR_DEFALT_SPACE_LIMIT; 3575 sbi->hot_cold_params.warm_data_waterline = SSR_DEFALT_WATERLINE; 3576 sbi->hot_cold_params.hot_node_lower_limit = SSR_DEFALT_SPACE_LIMIT; 3577 sbi->hot_cold_params.hot_node_waterline = SSR_DEFALT_WATERLINE; 3578 sbi->hot_cold_params.warm_node_lower_limit = SSR_DEFALT_SPACE_LIMIT; 3579 sbi->hot_cold_params.warm_node_waterline = SSR_DEFALT_WATERLINE; 3580 sbi->hot_cold_params.enable = GRADING_SSR_OFF; 3581 } 3582} 3583#endif 3584 3585static int f2fs_fill_super(struct super_block *sb, void *data, int silent) 3586{ 3587 struct f2fs_sb_info *sbi; 3588 struct f2fs_super_block *raw_super; 3589 struct inode *root; 3590 int err; 3591 bool skip_recovery = false, need_fsck = false; 3592 char *options = NULL; 3593 int recovery, i, valid_super_block; 3594 struct curseg_info *seg_i; 3595 int retry_cnt = 1; 3596 3597try_onemore: 3598 err = -EINVAL; 3599 raw_super = NULL; 3600 valid_super_block = -1; 3601 recovery = 0; 3602 3603 /* allocate memory for f2fs-specific super block info */ 3604 sbi = kzalloc(sizeof(struct f2fs_sb_info), GFP_KERNEL); 3605 if (!sbi) 3606 return -ENOMEM; 3607 3608 sbi->sb = sb; 3609 3610 /* Load the checksum driver */ 3611 sbi->s_chksum_driver = crypto_alloc_shash("crc32", 0, 0); 3612 if (IS_ERR(sbi->s_chksum_driver)) { 3613 f2fs_err(sbi, "Cannot load crc32 driver."); 3614 err = PTR_ERR(sbi->s_chksum_driver); 3615 sbi->s_chksum_driver = NULL; 3616 goto free_sbi; 3617 } 3618 3619 /* set a block size */ 3620 if (unlikely(!sb_set_blocksize(sb, F2FS_BLKSIZE))) { 3621 f2fs_err(sbi, "unable to set blocksize"); 3622 goto free_sbi; 3623 } 3624 3625 err = read_raw_super_block(sbi, &raw_super, &valid_super_block, 3626 &recovery); 3627 if (err) 3628 goto free_sbi; 3629 3630 sb->s_fs_info = sbi; 3631 sbi->raw_super = raw_super; 3632 3633 /* precompute checksum seed for metadata */ 3634 if (f2fs_sb_has_inode_chksum(sbi)) 3635 sbi->s_chksum_seed = f2fs_chksum(sbi, ~0, raw_super->uuid, 3636 sizeof(raw_super->uuid)); 3637 3638 default_options(sbi); 3639 /* parse mount options */ 3640 options = kstrdup((const char *)data, GFP_KERNEL); 3641 if (data && !options) { 3642 err = -ENOMEM; 3643 goto free_sb_buf; 3644 } 3645 3646 err = parse_options(sb, options, false); 3647 if (err) 3648 goto free_options; 3649 3650 sbi->max_file_blocks = max_file_blocks(); 3651 sb->s_maxbytes = sbi->max_file_blocks << 3652 le32_to_cpu(raw_super->log_blocksize); 3653 sb->s_max_links = F2FS_LINK_MAX; 3654 3655 err = f2fs_setup_casefold(sbi); 3656 if (err) 3657 goto free_options; 3658 3659#ifdef CONFIG_QUOTA 3660 sb->dq_op = &f2fs_quota_operations; 3661 sb->s_qcop = &f2fs_quotactl_ops; 3662 sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP | QTYPE_MASK_PRJ; 3663 3664 if (f2fs_sb_has_quota_ino(sbi)) { 3665 for (i = 0; i < MAXQUOTAS; i++) { 3666 if (f2fs_qf_ino(sbi->sb, i)) 3667 sbi->nquota_files++; 3668 } 3669 } 3670#endif 3671 3672 sb->s_op = &f2fs_sops; 3673#ifdef CONFIG_FS_ENCRYPTION 3674 sb->s_cop = &f2fs_cryptops; 3675#endif 3676#ifdef CONFIG_FS_VERITY 3677 sb->s_vop = &f2fs_verityops; 3678#endif 3679 sb->s_xattr = f2fs_xattr_handlers; 3680 sb->s_export_op = &f2fs_export_ops; 3681 sb->s_magic = F2FS_SUPER_MAGIC; 3682 sb->s_time_gran = 1; 3683 sb->s_flags = (sb->s_flags & ~SB_POSIXACL) | 3684 (test_opt(sbi, POSIX_ACL) ? SB_POSIXACL : 0); 3685 memcpy(&sb->s_uuid, raw_super->uuid, sizeof(raw_super->uuid)); 3686 sb->s_iflags |= SB_I_CGROUPWB; 3687 3688 /* init f2fs-specific super block info */ 3689 sbi->valid_super_block = valid_super_block; 3690 init_rwsem(&sbi->gc_lock); 3691 mutex_init(&sbi->writepages); 3692 mutex_init(&sbi->cp_mutex); 3693 init_rwsem(&sbi->node_write); 3694 init_rwsem(&sbi->node_change); 3695 3696 /* disallow all the data/node/meta page writes */ 3697 set_sbi_flag(sbi, SBI_POR_DOING); 3698 spin_lock_init(&sbi->stat_lock); 3699 3700 /* init iostat info */ 3701 spin_lock_init(&sbi->iostat_lock); 3702 sbi->iostat_enable = false; 3703 sbi->iostat_period_ms = DEFAULT_IOSTAT_PERIOD_MS; 3704 3705 for (i = 0; i < NR_PAGE_TYPE; i++) { 3706 int n = (i == META) ? 1: NR_TEMP_TYPE; 3707 int j; 3708 3709 sbi->write_io[i] = 3710 f2fs_kmalloc(sbi, 3711 array_size(n, 3712 sizeof(struct f2fs_bio_info)), 3713 GFP_KERNEL); 3714 if (!sbi->write_io[i]) { 3715 err = -ENOMEM; 3716 goto free_bio_info; 3717 } 3718 3719 for (j = HOT; j < n; j++) { 3720 init_rwsem(&sbi->write_io[i][j].io_rwsem); 3721 sbi->write_io[i][j].sbi = sbi; 3722 sbi->write_io[i][j].bio = NULL; 3723 spin_lock_init(&sbi->write_io[i][j].io_lock); 3724 INIT_LIST_HEAD(&sbi->write_io[i][j].io_list); 3725 INIT_LIST_HEAD(&sbi->write_io[i][j].bio_list); 3726 init_rwsem(&sbi->write_io[i][j].bio_list_lock); 3727 } 3728 } 3729 3730 init_rwsem(&sbi->cp_rwsem); 3731 init_rwsem(&sbi->quota_sem); 3732 init_waitqueue_head(&sbi->cp_wait); 3733 init_sb_info(sbi); 3734 3735 err = init_percpu_info(sbi); 3736 if (err) 3737 goto free_bio_info; 3738 3739 if (F2FS_IO_ALIGNED(sbi)) { 3740 sbi->write_io_dummy = 3741 mempool_create_page_pool(2 * (F2FS_IO_SIZE(sbi) - 1), 0); 3742 if (!sbi->write_io_dummy) { 3743 err = -ENOMEM; 3744 goto free_percpu; 3745 } 3746 } 3747 3748 /* init per sbi slab cache */ 3749 err = f2fs_init_xattr_caches(sbi); 3750 if (err) 3751 goto free_io_dummy; 3752 err = f2fs_init_page_array_cache(sbi); 3753 if (err) 3754 goto free_xattr_cache; 3755 3756 /* get an inode for meta space */ 3757 sbi->meta_inode = f2fs_iget(sb, F2FS_META_INO(sbi)); 3758 if (IS_ERR(sbi->meta_inode)) { 3759 f2fs_err(sbi, "Failed to read F2FS meta data inode"); 3760 err = PTR_ERR(sbi->meta_inode); 3761 goto free_page_array_cache; 3762 } 3763 3764 err = f2fs_get_valid_checkpoint(sbi); 3765 if (err) { 3766 f2fs_err(sbi, "Failed to get valid F2FS checkpoint"); 3767 goto free_meta_inode; 3768 } 3769 3770 if (__is_set_ckpt_flags(F2FS_CKPT(sbi), CP_QUOTA_NEED_FSCK_FLAG)) 3771 set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR); 3772 if (__is_set_ckpt_flags(F2FS_CKPT(sbi), CP_DISABLED_QUICK_FLAG)) { 3773 set_sbi_flag(sbi, SBI_CP_DISABLED_QUICK); 3774 sbi->interval_time[DISABLE_TIME] = DEF_DISABLE_QUICK_INTERVAL; 3775 } 3776 3777 if (__is_set_ckpt_flags(F2FS_CKPT(sbi), CP_FSCK_FLAG)) 3778 set_sbi_flag(sbi, SBI_NEED_FSCK); 3779 3780 /* Initialize device list */ 3781 err = f2fs_scan_devices(sbi); 3782 if (err) { 3783 f2fs_err(sbi, "Failed to find devices"); 3784 goto free_devices; 3785 } 3786 3787 err = f2fs_init_post_read_wq(sbi); 3788 if (err) { 3789 f2fs_err(sbi, "Failed to initialize post read workqueue"); 3790 goto free_devices; 3791 } 3792 3793 sbi->total_valid_node_count = 3794 le32_to_cpu(sbi->ckpt->valid_node_count); 3795 percpu_counter_set(&sbi->total_valid_inode_count, 3796 le32_to_cpu(sbi->ckpt->valid_inode_count)); 3797 sbi->user_block_count = le64_to_cpu(sbi->ckpt->user_block_count); 3798 sbi->total_valid_block_count = 3799 le64_to_cpu(sbi->ckpt->valid_block_count); 3800 sbi->last_valid_block_count = sbi->total_valid_block_count; 3801 sbi->reserved_blocks = 0; 3802 sbi->current_reserved_blocks = 0; 3803 limit_reserve_root(sbi); 3804 adjust_unusable_cap_perc(sbi); 3805 3806 for (i = 0; i < NR_INODE_TYPE; i++) { 3807 INIT_LIST_HEAD(&sbi->inode_list[i]); 3808 spin_lock_init(&sbi->inode_lock[i]); 3809 } 3810 mutex_init(&sbi->flush_lock); 3811 3812 f2fs_init_extent_cache_info(sbi); 3813 3814 f2fs_init_ino_entry_info(sbi); 3815 3816 f2fs_init_fsync_node_info(sbi); 3817 3818 /* setup f2fs internal modules */ 3819 err = f2fs_build_segment_manager(sbi); 3820 if (err) { 3821 f2fs_err(sbi, "Failed to initialize F2FS segment manager (%d)", 3822 err); 3823 goto free_sm; 3824 } 3825 err = f2fs_build_node_manager(sbi); 3826 if (err) { 3827 f2fs_err(sbi, "Failed to initialize F2FS node manager (%d)", 3828 err); 3829 goto free_nm; 3830 } 3831 3832 err = adjust_reserved_segment(sbi); 3833 if (err) 3834 goto free_nm; 3835 3836 /* For write statistics */ 3837 if (sb->s_bdev->bd_part) 3838 sbi->sectors_written_start = 3839 (u64)part_stat_read(sb->s_bdev->bd_part, 3840 sectors[STAT_WRITE]); 3841 3842 /* Read accumulated write IO statistics if exists */ 3843 seg_i = CURSEG_I(sbi, CURSEG_HOT_NODE); 3844 if (__exist_node_summaries(sbi)) 3845 sbi->kbytes_written = 3846 le64_to_cpu(seg_i->journal->info.kbytes_written); 3847 3848 f2fs_build_gc_manager(sbi); 3849 3850 err = f2fs_build_stats(sbi); 3851 if (err) 3852 goto free_nm; 3853 3854 /* get an inode for node space */ 3855 sbi->node_inode = f2fs_iget(sb, F2FS_NODE_INO(sbi)); 3856 if (IS_ERR(sbi->node_inode)) { 3857 f2fs_err(sbi, "Failed to read node inode"); 3858 err = PTR_ERR(sbi->node_inode); 3859 goto free_stats; 3860 } 3861 3862 /* read root inode and dentry */ 3863 root = f2fs_iget(sb, F2FS_ROOT_INO(sbi)); 3864 if (IS_ERR(root)) { 3865 f2fs_err(sbi, "Failed to read root inode"); 3866 err = PTR_ERR(root); 3867 goto free_node_inode; 3868 } 3869 if (!S_ISDIR(root->i_mode) || !root->i_blocks || 3870 !root->i_size || !root->i_nlink) { 3871 iput(root); 3872 err = -EINVAL; 3873 goto free_node_inode; 3874 } 3875 3876 sb->s_root = d_make_root(root); /* allocate root dentry */ 3877 if (!sb->s_root) { 3878 err = -ENOMEM; 3879 goto free_node_inode; 3880 } 3881#ifdef CONFIG_F2FS_GRADING_SSR 3882 f2fs_init_grading_ssr(sbi); 3883#endif 3884 err = f2fs_register_sysfs(sbi); 3885 if (err) 3886 goto free_root_inode; 3887 3888#ifdef CONFIG_QUOTA 3889 /* Enable quota usage during mount */ 3890 if (f2fs_sb_has_quota_ino(sbi) && !f2fs_readonly(sb)) { 3891 err = f2fs_enable_quotas(sb); 3892 if (err) 3893 f2fs_err(sbi, "Cannot turn on quotas: error %d", err); 3894 } 3895#endif 3896 /* if there are any orphan inodes, free them */ 3897 err = f2fs_recover_orphan_inodes(sbi); 3898 if (err) 3899 goto free_meta; 3900 3901 if (unlikely(is_set_ckpt_flags(sbi, CP_DISABLED_FLAG))) 3902 goto reset_checkpoint; 3903 3904 /* recover fsynced data */ 3905 if (!test_opt(sbi, DISABLE_ROLL_FORWARD) && 3906 !test_opt(sbi, NORECOVERY)) { 3907 /* 3908 * mount should be failed, when device has readonly mode, and 3909 * previous checkpoint was not done by clean system shutdown. 3910 */ 3911 if (f2fs_hw_is_readonly(sbi)) { 3912 if (!is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG)) { 3913 err = -EROFS; 3914 f2fs_err(sbi, "Need to recover fsync data, but write access unavailable"); 3915 goto free_meta; 3916 } 3917 f2fs_info(sbi, "write access unavailable, skipping recovery"); 3918 goto reset_checkpoint; 3919 } 3920 3921 if (need_fsck) 3922 set_sbi_flag(sbi, SBI_NEED_FSCK); 3923 3924 if (skip_recovery) 3925 goto reset_checkpoint; 3926 3927 err = f2fs_recover_fsync_data(sbi, false); 3928 if (err < 0) { 3929 if (err != -ENOMEM) 3930 skip_recovery = true; 3931 need_fsck = true; 3932 f2fs_err(sbi, "Cannot recover all fsync data errno=%d", 3933 err); 3934 goto free_meta; 3935 } 3936 } else { 3937 err = f2fs_recover_fsync_data(sbi, true); 3938 3939 if (!f2fs_readonly(sb) && err > 0) { 3940 err = -EINVAL; 3941 f2fs_err(sbi, "Need to recover fsync data"); 3942 goto free_meta; 3943 } 3944 } 3945 3946 /* 3947 * If the f2fs is not readonly and fsync data recovery succeeds, 3948 * check zoned block devices' write pointer consistency. 3949 */ 3950 if (!err && !f2fs_readonly(sb) && f2fs_sb_has_blkzoned(sbi)) { 3951 err = f2fs_check_write_pointer(sbi); 3952 if (err) 3953 goto free_meta; 3954 } 3955 3956reset_checkpoint: 3957 f2fs_init_inmem_curseg(sbi); 3958 3959 /* f2fs_recover_fsync_data() cleared this already */ 3960 clear_sbi_flag(sbi, SBI_POR_DOING); 3961 3962 if (test_opt(sbi, DISABLE_CHECKPOINT)) { 3963 err = f2fs_disable_checkpoint(sbi); 3964 if (err) 3965 goto sync_free_meta; 3966 } else if (is_set_ckpt_flags(sbi, CP_DISABLED_FLAG)) { 3967 f2fs_enable_checkpoint(sbi); 3968 } 3969 3970 /* 3971 * If filesystem is not mounted as read-only then 3972 * do start the gc_thread. 3973 */ 3974 if ((F2FS_OPTION(sbi).bggc_mode != BGGC_MODE_OFF || 3975 test_opt(sbi, GC_MERGE)) && !f2fs_readonly(sb)) { 3976 /* After POR, we can run background GC thread.*/ 3977 err = f2fs_start_gc_thread(sbi); 3978 if (err) 3979 goto sync_free_meta; 3980 } 3981 kvfree(options); 3982 3983 /* recover broken superblock */ 3984 if (recovery) { 3985 err = f2fs_commit_super(sbi, true); 3986 f2fs_info(sbi, "Try to recover %dth superblock, ret: %d", 3987 sbi->valid_super_block ? 1 : 2, err); 3988 } 3989 3990 f2fs_join_shrinker(sbi); 3991 3992 f2fs_tuning_parameters(sbi); 3993 3994 f2fs_notice(sbi, "Mounted with checkpoint version = %llx", 3995 cur_cp_version(F2FS_CKPT(sbi))); 3996 f2fs_update_time(sbi, CP_TIME); 3997 f2fs_update_time(sbi, REQ_TIME); 3998 clear_sbi_flag(sbi, SBI_CP_DISABLED_QUICK); 3999 return 0; 4000 4001sync_free_meta: 4002 /* safe to flush all the data */ 4003 sync_filesystem(sbi->sb); 4004 retry_cnt = 0; 4005 4006free_meta: 4007#ifdef CONFIG_QUOTA 4008 f2fs_truncate_quota_inode_pages(sb); 4009 if (f2fs_sb_has_quota_ino(sbi) && !f2fs_readonly(sb)) 4010 f2fs_quota_off_umount(sbi->sb); 4011#endif 4012 /* 4013 * Some dirty meta pages can be produced by f2fs_recover_orphan_inodes() 4014 * failed by EIO. Then, iput(node_inode) can trigger balance_fs_bg() 4015 * followed by f2fs_write_checkpoint() through f2fs_write_node_pages(), which 4016 * falls into an infinite loop in f2fs_sync_meta_pages(). 4017 */ 4018 truncate_inode_pages_final(META_MAPPING(sbi)); 4019 /* evict some inodes being cached by GC */ 4020 evict_inodes(sb); 4021 f2fs_unregister_sysfs(sbi); 4022free_root_inode: 4023 dput(sb->s_root); 4024 sb->s_root = NULL; 4025free_node_inode: 4026 f2fs_release_ino_entry(sbi, true); 4027 truncate_inode_pages_final(NODE_MAPPING(sbi)); 4028 iput(sbi->node_inode); 4029 sbi->node_inode = NULL; 4030free_stats: 4031 f2fs_destroy_stats(sbi); 4032free_nm: 4033 f2fs_destroy_node_manager(sbi); 4034free_sm: 4035 f2fs_destroy_segment_manager(sbi); 4036 f2fs_destroy_post_read_wq(sbi); 4037free_devices: 4038 destroy_device_list(sbi); 4039 kvfree(sbi->ckpt); 4040free_meta_inode: 4041 make_bad_inode(sbi->meta_inode); 4042 iput(sbi->meta_inode); 4043 sbi->meta_inode = NULL; 4044free_page_array_cache: 4045 f2fs_destroy_page_array_cache(sbi); 4046free_xattr_cache: 4047 f2fs_destroy_xattr_caches(sbi); 4048free_io_dummy: 4049 mempool_destroy(sbi->write_io_dummy); 4050free_percpu: 4051 destroy_percpu_info(sbi); 4052free_bio_info: 4053 for (i = 0; i < NR_PAGE_TYPE; i++) 4054 kvfree(sbi->write_io[i]); 4055 4056#ifdef CONFIG_UNICODE 4057 utf8_unload(sb->s_encoding); 4058 sb->s_encoding = NULL; 4059#endif 4060free_options: 4061#ifdef CONFIG_QUOTA 4062 for (i = 0; i < MAXQUOTAS; i++) 4063 kfree(F2FS_OPTION(sbi).s_qf_names[i]); 4064#endif 4065 fscrypt_free_dummy_policy(&F2FS_OPTION(sbi).dummy_enc_policy); 4066 kvfree(options); 4067free_sb_buf: 4068 kfree(raw_super); 4069free_sbi: 4070 if (sbi->s_chksum_driver) 4071 crypto_free_shash(sbi->s_chksum_driver); 4072 kfree(sbi); 4073 4074 /* give only one another chance */ 4075 if (retry_cnt > 0 && skip_recovery) { 4076 retry_cnt--; 4077 shrink_dcache_sb(sb); 4078 goto try_onemore; 4079 } 4080 return err; 4081} 4082 4083static struct dentry *f2fs_mount(struct file_system_type *fs_type, int flags, 4084 const char *dev_name, void *data) 4085{ 4086 return mount_bdev(fs_type, flags, dev_name, data, f2fs_fill_super); 4087} 4088 4089static void kill_f2fs_super(struct super_block *sb) 4090{ 4091 if (sb->s_root) { 4092 struct f2fs_sb_info *sbi = F2FS_SB(sb); 4093 4094 set_sbi_flag(sbi, SBI_IS_CLOSE); 4095 f2fs_stop_gc_thread(sbi); 4096 f2fs_stop_discard_thread(sbi); 4097 4098 if (is_sbi_flag_set(sbi, SBI_IS_DIRTY) || 4099 !is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG)) { 4100 struct cp_control cpc = { 4101 .reason = CP_UMOUNT, 4102 }; 4103 f2fs_write_checkpoint(sbi, &cpc); 4104 } 4105 4106 if (is_sbi_flag_set(sbi, SBI_IS_RECOVERED) && f2fs_readonly(sb)) 4107 sb->s_flags &= ~SB_RDONLY; 4108 } 4109 kill_block_super(sb); 4110} 4111 4112static struct file_system_type f2fs_fs_type = { 4113 .owner = THIS_MODULE, 4114 .name = "f2fs", 4115 .mount = f2fs_mount, 4116 .kill_sb = kill_f2fs_super, 4117 .fs_flags = FS_REQUIRES_DEV, 4118}; 4119MODULE_ALIAS_FS("f2fs"); 4120 4121static int __init init_inodecache(void) 4122{ 4123 f2fs_inode_cachep = kmem_cache_create("f2fs_inode_cache", 4124 sizeof(struct f2fs_inode_info), 0, 4125 SLAB_RECLAIM_ACCOUNT|SLAB_ACCOUNT, NULL); 4126 if (!f2fs_inode_cachep) 4127 return -ENOMEM; 4128 return 0; 4129} 4130 4131static void destroy_inodecache(void) 4132{ 4133 /* 4134 * Make sure all delayed rcu free inodes are flushed before we 4135 * destroy cache. 4136 */ 4137 rcu_barrier(); 4138 kmem_cache_destroy(f2fs_inode_cachep); 4139} 4140 4141static int __init init_f2fs_fs(void) 4142{ 4143 int err; 4144 4145 if (PAGE_SIZE != F2FS_BLKSIZE) { 4146 printk("F2FS not supported on PAGE_SIZE(%lu) != %d\n", 4147 PAGE_SIZE, F2FS_BLKSIZE); 4148 return -EINVAL; 4149 } 4150 4151 f2fs_build_trace_ios(); 4152 4153 err = init_inodecache(); 4154 if (err) 4155 goto fail; 4156 err = f2fs_create_node_manager_caches(); 4157 if (err) 4158 goto free_inodecache; 4159 err = f2fs_create_segment_manager_caches(); 4160 if (err) 4161 goto free_node_manager_caches; 4162 err = f2fs_create_checkpoint_caches(); 4163 if (err) 4164 goto free_segment_manager_caches; 4165 err = f2fs_create_recovery_cache(); 4166 if (err) 4167 goto free_checkpoint_caches; 4168 err = f2fs_create_extent_cache(); 4169 if (err) 4170 goto free_recovery_cache; 4171 err = f2fs_create_garbage_collection_cache(); 4172 if (err) 4173 goto free_extent_cache; 4174 err = f2fs_init_sysfs(); 4175 if (err) 4176 goto free_garbage_collection_cache; 4177 err = register_shrinker(&f2fs_shrinker_info); 4178 if (err) 4179 goto free_sysfs; 4180 err = register_filesystem(&f2fs_fs_type); 4181 if (err) 4182 goto free_shrinker; 4183 f2fs_create_root_stats(); 4184 err = f2fs_init_post_read_processing(); 4185 if (err) 4186 goto free_root_stats; 4187 err = f2fs_init_bio_entry_cache(); 4188 if (err) 4189 goto free_post_read; 4190 err = f2fs_init_bioset(); 4191 if (err) 4192 goto free_bio_enrty_cache; 4193 err = f2fs_init_compress_mempool(); 4194 if (err) 4195 goto free_bioset; 4196 err = f2fs_init_compress_cache(); 4197 if (err) 4198 goto free_compress_mempool; 4199 return 0; 4200free_compress_mempool: 4201 f2fs_destroy_compress_mempool(); 4202free_bioset: 4203 f2fs_destroy_bioset(); 4204free_bio_enrty_cache: 4205 f2fs_destroy_bio_entry_cache(); 4206free_post_read: 4207 f2fs_destroy_post_read_processing(); 4208free_root_stats: 4209 f2fs_destroy_root_stats(); 4210 unregister_filesystem(&f2fs_fs_type); 4211free_shrinker: 4212 unregister_shrinker(&f2fs_shrinker_info); 4213free_sysfs: 4214 f2fs_exit_sysfs(); 4215free_garbage_collection_cache: 4216 f2fs_destroy_garbage_collection_cache(); 4217free_extent_cache: 4218 f2fs_destroy_extent_cache(); 4219free_recovery_cache: 4220 f2fs_destroy_recovery_cache(); 4221free_checkpoint_caches: 4222 f2fs_destroy_checkpoint_caches(); 4223free_segment_manager_caches: 4224 f2fs_destroy_segment_manager_caches(); 4225free_node_manager_caches: 4226 f2fs_destroy_node_manager_caches(); 4227free_inodecache: 4228 destroy_inodecache(); 4229fail: 4230 return err; 4231} 4232 4233static void __exit exit_f2fs_fs(void) 4234{ 4235 f2fs_destroy_compress_cache(); 4236 f2fs_destroy_compress_mempool(); 4237 f2fs_destroy_bioset(); 4238 f2fs_destroy_bio_entry_cache(); 4239 f2fs_destroy_post_read_processing(); 4240 f2fs_destroy_root_stats(); 4241 unregister_filesystem(&f2fs_fs_type); 4242 unregister_shrinker(&f2fs_shrinker_info); 4243 f2fs_exit_sysfs(); 4244 f2fs_destroy_garbage_collection_cache(); 4245 f2fs_destroy_extent_cache(); 4246 f2fs_destroy_recovery_cache(); 4247 f2fs_destroy_checkpoint_caches(); 4248 f2fs_destroy_segment_manager_caches(); 4249 f2fs_destroy_node_manager_caches(); 4250 destroy_inodecache(); 4251 f2fs_destroy_trace_ios(); 4252} 4253 4254module_init(init_f2fs_fs) 4255module_exit(exit_f2fs_fs) 4256 4257MODULE_AUTHOR("Samsung Electronics's Praesto Team"); 4258MODULE_DESCRIPTION("Flash Friendly File System"); 4259MODULE_LICENSE("GPL"); 4260MODULE_SOFTDEP("pre: crc32"); 4261 4262