1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * fs/f2fs/super.c
4  *
5  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6  *             http://www.samsung.com/
7  */
8 #include <linux/module.h>
9 #include <linux/init.h>
10 #include <linux/fs.h>
11 #include <linux/statfs.h>
12 #include <linux/buffer_head.h>
13 #include <linux/backing-dev.h>
14 #include <linux/kthread.h>
15 #include <linux/parser.h>
16 #include <linux/mount.h>
17 #include <linux/seq_file.h>
18 #include <linux/proc_fs.h>
19 #include <linux/random.h>
20 #include <linux/exportfs.h>
21 #include <linux/blkdev.h>
22 #include <linux/quotaops.h>
23 #include <linux/f2fs_fs.h>
24 #include <linux/sysfs.h>
25 #include <linux/quota.h>
26 #include <linux/unicode.h>
27 #include <linux/part_stat.h>
28 
29 #include "f2fs.h"
30 #include "node.h"
31 #include "segment.h"
32 #include "xattr.h"
33 #include "gc.h"
34 #include "trace.h"
35 
36 #define CREATE_TRACE_POINTS
37 #include <trace/events/f2fs.h>
38 
39 #ifdef CONFIG_F2FS_GRADING_SSR
40 #define SSR_DEFALT_SPACE_LIMIT      (5<<20) /* 5G default space limit */
41 #define SSR_DEFALT_WATERLINE        80      /* 80% default waterline */
42 #define SSR_HN_SAPCE_LIMIT_128G     (8<<20) /* 8G default sapce limit for 128G devices */
43 #define SSR_HN_WATERLINE_128G       80      /* 80% default hot node waterline for 128G devices */
44 #define SSR_WN_SAPCE_LIMIT_128G     (5<<20) /* 5G default warm node sapce limit for 128G devices */
45 #define SSR_WN_WATERLINE_128G       70      /* 70% default warm node waterline for 128G devices */
46 #define SSR_HD_SAPCE_LIMIT_128G     (8<<20) /* 8G default hot data sapce limit for 128G devices */
47 #define SSR_HD_WATERLINE_128G       65      /* 65% default hot data waterline for 128G devices */
48 #define SSR_WD_SAPCE_LIMIT_128G     (5<<20) /* 5G default warm data sapce limit for 128G devices */
49 #define SSR_WD_WATERLINE_128G       60      /* 60% default warm data waterline for 128G devices */
50 #endif
51 
52 static struct kmem_cache *f2fs_inode_cachep;
53 
54 #ifdef CONFIG_F2FS_FAULT_INJECTION
55 
56 const char *f2fs_fault_name[FAULT_MAX] = {
57 	[FAULT_KMALLOC]		= "kmalloc",
58 	[FAULT_KVMALLOC]	= "kvmalloc",
59 	[FAULT_PAGE_ALLOC]	= "page alloc",
60 	[FAULT_PAGE_GET]	= "page get",
61 	[FAULT_ALLOC_BIO]	= "alloc bio",
62 	[FAULT_ALLOC_NID]	= "alloc nid",
63 	[FAULT_ORPHAN]		= "orphan",
64 	[FAULT_BLOCK]		= "no more block",
65 	[FAULT_DIR_DEPTH]	= "too big dir depth",
66 	[FAULT_EVICT_INODE]	= "evict_inode fail",
67 	[FAULT_TRUNCATE]	= "truncate fail",
68 	[FAULT_READ_IO]		= "read IO error",
69 	[FAULT_CHECKPOINT]	= "checkpoint error",
70 	[FAULT_DISCARD]		= "discard error",
71 	[FAULT_WRITE_IO]	= "write IO error",
72 };
73 
f2fs_build_fault_attr(struct f2fs_sb_info *sbi, unsigned long rate, unsigned long type)74 int f2fs_build_fault_attr(struct f2fs_sb_info *sbi, unsigned long rate,
75 							unsigned long type)
76 {
77 	struct f2fs_fault_info *ffi = &F2FS_OPTION(sbi).fault_info;
78 
79 	if (rate) {
80 		if (rate > INT_MAX)
81 			return -EINVAL;
82 		atomic_set(&ffi->inject_ops, 0);
83 		ffi->inject_rate = (int)rate;
84 	}
85 
86 	if (type) {
87 		if (type >= BIT(FAULT_MAX))
88 			return -EINVAL;
89 		ffi->inject_type = (unsigned int)type;
90 	}
91 
92 	if (!rate && !type)
93 		memset(ffi, 0, sizeof(struct f2fs_fault_info));
94 	else
95 		f2fs_info(sbi,
96 			"build fault injection attr: rate: %lu, type: 0x%lx",
97 								rate, type);
98 	return 0;
99 }
100 #endif
101 
102 /* f2fs-wide shrinker description */
103 static struct shrinker f2fs_shrinker_info = {
104 	.scan_objects = f2fs_shrink_scan,
105 	.count_objects = f2fs_shrink_count,
106 	.seeks = DEFAULT_SEEKS,
107 };
108 
109 enum {
110 	Opt_gc_background,
111 	Opt_disable_roll_forward,
112 	Opt_norecovery,
113 	Opt_discard,
114 	Opt_nodiscard,
115 	Opt_noheap,
116 	Opt_heap,
117 	Opt_user_xattr,
118 	Opt_nouser_xattr,
119 	Opt_acl,
120 	Opt_noacl,
121 	Opt_active_logs,
122 	Opt_disable_ext_identify,
123 	Opt_inline_xattr,
124 	Opt_noinline_xattr,
125 	Opt_inline_xattr_size,
126 	Opt_inline_data,
127 	Opt_inline_dentry,
128 	Opt_noinline_dentry,
129 	Opt_flush_merge,
130 	Opt_noflush_merge,
131 	Opt_nobarrier,
132 	Opt_fastboot,
133 	Opt_extent_cache,
134 	Opt_noextent_cache,
135 	Opt_noinline_data,
136 	Opt_data_flush,
137 	Opt_reserve_root,
138 	Opt_resgid,
139 	Opt_resuid,
140 	Opt_mode,
141 	Opt_io_size_bits,
142 	Opt_fault_injection,
143 	Opt_fault_type,
144 	Opt_lazytime,
145 	Opt_nolazytime,
146 	Opt_quota,
147 	Opt_noquota,
148 	Opt_usrquota,
149 	Opt_grpquota,
150 	Opt_prjquota,
151 	Opt_usrjquota,
152 	Opt_grpjquota,
153 	Opt_prjjquota,
154 	Opt_offusrjquota,
155 	Opt_offgrpjquota,
156 	Opt_offprjjquota,
157 	Opt_jqfmt_vfsold,
158 	Opt_jqfmt_vfsv0,
159 	Opt_jqfmt_vfsv1,
160 	Opt_whint,
161 	Opt_alloc,
162 	Opt_fsync,
163 	Opt_test_dummy_encryption,
164 	Opt_inlinecrypt,
165 	Opt_checkpoint_disable,
166 	Opt_checkpoint_disable_cap,
167 	Opt_checkpoint_disable_cap_perc,
168 	Opt_checkpoint_enable,
169 	Opt_compress_algorithm,
170 	Opt_compress_log_size,
171 	Opt_compress_extension,
172 	Opt_atgc,
173 	Opt_gc_merge,
174 	Opt_nogc_merge,
175 	Opt_err,
176 };
177 
178 static match_table_t f2fs_tokens = {
179 	{Opt_gc_background, "background_gc=%s"},
180 	{Opt_disable_roll_forward, "disable_roll_forward"},
181 	{Opt_norecovery, "norecovery"},
182 	{Opt_discard, "discard"},
183 	{Opt_nodiscard, "nodiscard"},
184 	{Opt_noheap, "no_heap"},
185 	{Opt_heap, "heap"},
186 	{Opt_user_xattr, "user_xattr"},
187 	{Opt_nouser_xattr, "nouser_xattr"},
188 	{Opt_acl, "acl"},
189 	{Opt_noacl, "noacl"},
190 	{Opt_active_logs, "active_logs=%u"},
191 	{Opt_disable_ext_identify, "disable_ext_identify"},
192 	{Opt_inline_xattr, "inline_xattr"},
193 	{Opt_noinline_xattr, "noinline_xattr"},
194 	{Opt_inline_xattr_size, "inline_xattr_size=%u"},
195 	{Opt_inline_data, "inline_data"},
196 	{Opt_inline_dentry, "inline_dentry"},
197 	{Opt_noinline_dentry, "noinline_dentry"},
198 	{Opt_flush_merge, "flush_merge"},
199 	{Opt_noflush_merge, "noflush_merge"},
200 	{Opt_nobarrier, "nobarrier"},
201 	{Opt_fastboot, "fastboot"},
202 	{Opt_extent_cache, "extent_cache"},
203 	{Opt_noextent_cache, "noextent_cache"},
204 	{Opt_noinline_data, "noinline_data"},
205 	{Opt_data_flush, "data_flush"},
206 	{Opt_reserve_root, "reserve_root=%u"},
207 	{Opt_resgid, "resgid=%u"},
208 	{Opt_resuid, "resuid=%u"},
209 	{Opt_mode, "mode=%s"},
210 	{Opt_io_size_bits, "io_bits=%u"},
211 	{Opt_fault_injection, "fault_injection=%u"},
212 	{Opt_fault_type, "fault_type=%u"},
213 	{Opt_lazytime, "lazytime"},
214 	{Opt_nolazytime, "nolazytime"},
215 	{Opt_quota, "quota"},
216 	{Opt_noquota, "noquota"},
217 	{Opt_usrquota, "usrquota"},
218 	{Opt_grpquota, "grpquota"},
219 	{Opt_prjquota, "prjquota"},
220 	{Opt_usrjquota, "usrjquota=%s"},
221 	{Opt_grpjquota, "grpjquota=%s"},
222 	{Opt_prjjquota, "prjjquota=%s"},
223 	{Opt_offusrjquota, "usrjquota="},
224 	{Opt_offgrpjquota, "grpjquota="},
225 	{Opt_offprjjquota, "prjjquota="},
226 	{Opt_jqfmt_vfsold, "jqfmt=vfsold"},
227 	{Opt_jqfmt_vfsv0, "jqfmt=vfsv0"},
228 	{Opt_jqfmt_vfsv1, "jqfmt=vfsv1"},
229 	{Opt_whint, "whint_mode=%s"},
230 	{Opt_alloc, "alloc_mode=%s"},
231 	{Opt_fsync, "fsync_mode=%s"},
232 	{Opt_test_dummy_encryption, "test_dummy_encryption=%s"},
233 	{Opt_test_dummy_encryption, "test_dummy_encryption"},
234 	{Opt_inlinecrypt, "inlinecrypt"},
235 	{Opt_checkpoint_disable, "checkpoint=disable"},
236 	{Opt_checkpoint_disable_cap, "checkpoint=disable:%u"},
237 	{Opt_checkpoint_disable_cap_perc, "checkpoint=disable:%u%%"},
238 	{Opt_checkpoint_enable, "checkpoint=enable"},
239 	{Opt_compress_algorithm, "compress_algorithm=%s"},
240 	{Opt_compress_log_size, "compress_log_size=%u"},
241 	{Opt_compress_extension, "compress_extension=%s"},
242 	{Opt_atgc, "atgc"},
243 	{Opt_gc_merge, "gc_merge"},
244 	{Opt_nogc_merge, "nogc_merge"},
245 	{Opt_err, NULL},
246 };
247 
f2fs_printk(struct f2fs_sb_info *sbi, const char *fmt, ...)248 void f2fs_printk(struct f2fs_sb_info *sbi, const char *fmt, ...)
249 {
250 	struct va_format vaf;
251 	va_list args;
252 	int level;
253 
254 	va_start(args, fmt);
255 
256 	level = printk_get_level(fmt);
257 	vaf.fmt = printk_skip_level(fmt);
258 	vaf.va = &args;
259 	printk("%c%cF2FS-fs (%s): %pV\n",
260 	       KERN_SOH_ASCII, level, sbi->sb->s_id, &vaf);
261 
262 	va_end(args);
263 }
264 
265 #ifdef CONFIG_UNICODE
266 static const struct f2fs_sb_encodings {
267 	__u16 magic;
268 	char *name;
269 	char *version;
270 } f2fs_sb_encoding_map[] = {
271 	{F2FS_ENC_UTF8_12_1, "utf8", "12.1.0"},
272 };
273 
f2fs_sb_read_encoding(const struct f2fs_super_block *sb, const struct f2fs_sb_encodings **encoding, __u16 *flags)274 static int f2fs_sb_read_encoding(const struct f2fs_super_block *sb,
275 				 const struct f2fs_sb_encodings **encoding,
276 				 __u16 *flags)
277 {
278 	__u16 magic = le16_to_cpu(sb->s_encoding);
279 	int i;
280 
281 	for (i = 0; i < ARRAY_SIZE(f2fs_sb_encoding_map); i++)
282 		if (magic == f2fs_sb_encoding_map[i].magic)
283 			break;
284 
285 	if (i >= ARRAY_SIZE(f2fs_sb_encoding_map))
286 		return -EINVAL;
287 
288 	*encoding = &f2fs_sb_encoding_map[i];
289 	*flags = le16_to_cpu(sb->s_encoding_flags);
290 
291 	return 0;
292 }
293 #endif
294 
limit_reserve_root(struct f2fs_sb_info *sbi)295 static inline void limit_reserve_root(struct f2fs_sb_info *sbi)
296 {
297 	block_t limit = min((sbi->user_block_count >> 3),
298 			sbi->user_block_count - sbi->reserved_blocks);
299 
300 	/* limit is 12.5% */
301 	if (test_opt(sbi, RESERVE_ROOT) &&
302 			F2FS_OPTION(sbi).root_reserved_blocks > limit) {
303 		F2FS_OPTION(sbi).root_reserved_blocks = limit;
304 		f2fs_info(sbi, "Reduce reserved blocks for root = %u",
305 			  F2FS_OPTION(sbi).root_reserved_blocks);
306 	}
307 	if (!test_opt(sbi, RESERVE_ROOT) &&
308 		(!uid_eq(F2FS_OPTION(sbi).s_resuid,
309 				make_kuid(&init_user_ns, F2FS_DEF_RESUID)) ||
310 		!gid_eq(F2FS_OPTION(sbi).s_resgid,
311 				make_kgid(&init_user_ns, F2FS_DEF_RESGID))))
312 		f2fs_info(sbi, "Ignore s_resuid=%u, s_resgid=%u w/o reserve_root",
313 			  from_kuid_munged(&init_user_ns,
314 					   F2FS_OPTION(sbi).s_resuid),
315 			  from_kgid_munged(&init_user_ns,
316 					   F2FS_OPTION(sbi).s_resgid));
317 }
318 
adjust_reserved_segment(struct f2fs_sb_info *sbi)319 static inline int adjust_reserved_segment(struct f2fs_sb_info *sbi)
320 {
321 	unsigned int sec_blks = sbi->blocks_per_seg * sbi->segs_per_sec;
322 	unsigned int avg_vblocks;
323 	unsigned int wanted_reserved_segments;
324 	block_t avail_user_block_count;
325 
326 	if (!F2FS_IO_ALIGNED(sbi))
327 		return 0;
328 
329 	/* average valid block count in section in worst case */
330 	avg_vblocks = sec_blks / F2FS_IO_SIZE(sbi);
331 
332 	/*
333 	 * we need enough free space when migrating one section in worst case
334 	 */
335 	wanted_reserved_segments = (F2FS_IO_SIZE(sbi) / avg_vblocks) *
336 						reserved_segments(sbi);
337 	wanted_reserved_segments -= reserved_segments(sbi);
338 
339 	avail_user_block_count = sbi->user_block_count -
340 				sbi->current_reserved_blocks -
341 				F2FS_OPTION(sbi).root_reserved_blocks;
342 
343 	if (wanted_reserved_segments * sbi->blocks_per_seg >
344 					avail_user_block_count) {
345 		f2fs_err(sbi, "IO align feature can't grab additional reserved segment: %u, available segments: %u",
346 			wanted_reserved_segments,
347 			avail_user_block_count >> sbi->log_blocks_per_seg);
348 		return -ENOSPC;
349 	}
350 
351 	SM_I(sbi)->additional_reserved_segments = wanted_reserved_segments;
352 
353 	f2fs_info(sbi, "IO align feature needs additional reserved segment: %u",
354 			 wanted_reserved_segments);
355 
356 	return 0;
357 }
358 
adjust_unusable_cap_perc(struct f2fs_sb_info *sbi)359 static inline void adjust_unusable_cap_perc(struct f2fs_sb_info *sbi)
360 {
361 	if (!F2FS_OPTION(sbi).unusable_cap_perc)
362 		return;
363 
364 	if (F2FS_OPTION(sbi).unusable_cap_perc == 100)
365 		F2FS_OPTION(sbi).unusable_cap = sbi->user_block_count;
366 	else
367 		F2FS_OPTION(sbi).unusable_cap = (sbi->user_block_count / 100) *
368 					F2FS_OPTION(sbi).unusable_cap_perc;
369 
370 	f2fs_info(sbi, "Adjust unusable cap for checkpoint=disable = %u / %u%%",
371 			F2FS_OPTION(sbi).unusable_cap,
372 			F2FS_OPTION(sbi).unusable_cap_perc);
373 }
374 
init_once(void *foo)375 static void init_once(void *foo)
376 {
377 	struct f2fs_inode_info *fi = (struct f2fs_inode_info *) foo;
378 
379 	inode_init_once(&fi->vfs_inode);
380 }
381 
382 #ifdef CONFIG_QUOTA
383 static const char * const quotatypes[] = INITQFNAMES;
384 #define QTYPE2NAME(t) (quotatypes[t])
f2fs_set_qf_name(struct super_block *sb, int qtype, substring_t *args)385 static int f2fs_set_qf_name(struct super_block *sb, int qtype,
386 							substring_t *args)
387 {
388 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
389 	char *qname;
390 	int ret = -EINVAL;
391 
392 	if (sb_any_quota_loaded(sb) && !F2FS_OPTION(sbi).s_qf_names[qtype]) {
393 		f2fs_err(sbi, "Cannot change journaled quota options when quota turned on");
394 		return -EINVAL;
395 	}
396 	if (f2fs_sb_has_quota_ino(sbi)) {
397 		f2fs_info(sbi, "QUOTA feature is enabled, so ignore qf_name");
398 		return 0;
399 	}
400 
401 	qname = match_strdup(args);
402 	if (!qname) {
403 		f2fs_err(sbi, "Not enough memory for storing quotafile name");
404 		return -ENOMEM;
405 	}
406 	if (F2FS_OPTION(sbi).s_qf_names[qtype]) {
407 		if (strcmp(F2FS_OPTION(sbi).s_qf_names[qtype], qname) == 0)
408 			ret = 0;
409 		else
410 			f2fs_err(sbi, "%s quota file already specified",
411 				 QTYPE2NAME(qtype));
412 		goto errout;
413 	}
414 	if (strchr(qname, '/')) {
415 		f2fs_err(sbi, "quotafile must be on filesystem root");
416 		goto errout;
417 	}
418 	F2FS_OPTION(sbi).s_qf_names[qtype] = qname;
419 	set_opt(sbi, QUOTA);
420 	return 0;
421 errout:
422 	kfree(qname);
423 	return ret;
424 }
425 
f2fs_clear_qf_name(struct super_block *sb, int qtype)426 static int f2fs_clear_qf_name(struct super_block *sb, int qtype)
427 {
428 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
429 
430 	if (sb_any_quota_loaded(sb) && F2FS_OPTION(sbi).s_qf_names[qtype]) {
431 		f2fs_err(sbi, "Cannot change journaled quota options when quota turned on");
432 		return -EINVAL;
433 	}
434 	kfree(F2FS_OPTION(sbi).s_qf_names[qtype]);
435 	F2FS_OPTION(sbi).s_qf_names[qtype] = NULL;
436 	return 0;
437 }
438 
f2fs_check_quota_options(struct f2fs_sb_info *sbi)439 static int f2fs_check_quota_options(struct f2fs_sb_info *sbi)
440 {
441 	/*
442 	 * We do the test below only for project quotas. 'usrquota' and
443 	 * 'grpquota' mount options are allowed even without quota feature
444 	 * to support legacy quotas in quota files.
445 	 */
446 	if (test_opt(sbi, PRJQUOTA) && !f2fs_sb_has_project_quota(sbi)) {
447 		f2fs_err(sbi, "Project quota feature not enabled. Cannot enable project quota enforcement.");
448 		return -1;
449 	}
450 	if (F2FS_OPTION(sbi).s_qf_names[USRQUOTA] ||
451 			F2FS_OPTION(sbi).s_qf_names[GRPQUOTA] ||
452 			F2FS_OPTION(sbi).s_qf_names[PRJQUOTA]) {
453 		if (test_opt(sbi, USRQUOTA) &&
454 				F2FS_OPTION(sbi).s_qf_names[USRQUOTA])
455 			clear_opt(sbi, USRQUOTA);
456 
457 		if (test_opt(sbi, GRPQUOTA) &&
458 				F2FS_OPTION(sbi).s_qf_names[GRPQUOTA])
459 			clear_opt(sbi, GRPQUOTA);
460 
461 		if (test_opt(sbi, PRJQUOTA) &&
462 				F2FS_OPTION(sbi).s_qf_names[PRJQUOTA])
463 			clear_opt(sbi, PRJQUOTA);
464 
465 		if (test_opt(sbi, GRPQUOTA) || test_opt(sbi, USRQUOTA) ||
466 				test_opt(sbi, PRJQUOTA)) {
467 			f2fs_err(sbi, "old and new quota format mixing");
468 			return -1;
469 		}
470 
471 		if (!F2FS_OPTION(sbi).s_jquota_fmt) {
472 			f2fs_err(sbi, "journaled quota format not specified");
473 			return -1;
474 		}
475 	}
476 
477 	if (f2fs_sb_has_quota_ino(sbi) && F2FS_OPTION(sbi).s_jquota_fmt) {
478 		f2fs_info(sbi, "QUOTA feature is enabled, so ignore jquota_fmt");
479 		F2FS_OPTION(sbi).s_jquota_fmt = 0;
480 	}
481 	return 0;
482 }
483 #endif
484 
f2fs_set_test_dummy_encryption(struct super_block *sb, const char *opt, const substring_t *arg, bool is_remount)485 static int f2fs_set_test_dummy_encryption(struct super_block *sb,
486 					  const char *opt,
487 					  const substring_t *arg,
488 					  bool is_remount)
489 {
490 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
491 #ifdef CONFIG_FS_ENCRYPTION
492 	int err;
493 
494 	if (!f2fs_sb_has_encrypt(sbi)) {
495 		f2fs_err(sbi, "Encrypt feature is off");
496 		return -EINVAL;
497 	}
498 
499 	/*
500 	 * This mount option is just for testing, and it's not worthwhile to
501 	 * implement the extra complexity (e.g. RCU protection) that would be
502 	 * needed to allow it to be set or changed during remount.  We do allow
503 	 * it to be specified during remount, but only if there is no change.
504 	 */
505 	if (is_remount && !F2FS_OPTION(sbi).dummy_enc_policy.policy) {
506 		f2fs_warn(sbi, "Can't set test_dummy_encryption on remount");
507 		return -EINVAL;
508 	}
509 	err = fscrypt_set_test_dummy_encryption(
510 		sb, arg->from, &F2FS_OPTION(sbi).dummy_enc_policy);
511 	if (err) {
512 		if (err == -EEXIST)
513 			f2fs_warn(sbi,
514 				  "Can't change test_dummy_encryption on remount");
515 		else if (err == -EINVAL)
516 			f2fs_warn(sbi, "Value of option \"%s\" is unrecognized",
517 				  opt);
518 		else
519 			f2fs_warn(sbi, "Error processing option \"%s\" [%d]",
520 				  opt, err);
521 		return -EINVAL;
522 	}
523 	f2fs_warn(sbi, "Test dummy encryption mode enabled");
524 #else
525 	f2fs_warn(sbi, "Test dummy encryption mount option ignored");
526 #endif
527 	return 0;
528 }
529 
parse_options(struct super_block *sb, char *options, bool is_remount)530 static int parse_options(struct super_block *sb, char *options, bool is_remount)
531 {
532 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
533 	substring_t args[MAX_OPT_ARGS];
534 #ifdef CONFIG_F2FS_FS_COMPRESSION
535 	unsigned char (*ext)[F2FS_EXTENSION_LEN];
536 	int ext_cnt;
537 #endif
538 	char *p, *name;
539 	int arg = 0;
540 	kuid_t uid;
541 	kgid_t gid;
542 	int ret;
543 
544 	if (!options)
545 		return 0;
546 
547 	while ((p = strsep(&options, ",")) != NULL) {
548 		int token;
549 		if (!*p)
550 			continue;
551 		/*
552 		 * Initialize args struct so we know whether arg was
553 		 * found; some options take optional arguments.
554 		 */
555 		args[0].to = args[0].from = NULL;
556 		token = match_token(p, f2fs_tokens, args);
557 
558 		switch (token) {
559 		case Opt_gc_background:
560 			name = match_strdup(&args[0]);
561 
562 			if (!name)
563 				return -ENOMEM;
564 			if (!strcmp(name, "on")) {
565 				F2FS_OPTION(sbi).bggc_mode = BGGC_MODE_ON;
566 			} else if (!strcmp(name, "off")) {
567 				F2FS_OPTION(sbi).bggc_mode = BGGC_MODE_OFF;
568 			} else if (!strcmp(name, "sync")) {
569 				F2FS_OPTION(sbi).bggc_mode = BGGC_MODE_SYNC;
570 			} else {
571 				kfree(name);
572 				return -EINVAL;
573 			}
574 			kfree(name);
575 			break;
576 		case Opt_disable_roll_forward:
577 			set_opt(sbi, DISABLE_ROLL_FORWARD);
578 			break;
579 		case Opt_norecovery:
580 			/* this option mounts f2fs with ro */
581 			set_opt(sbi, NORECOVERY);
582 			if (!f2fs_readonly(sb))
583 				return -EINVAL;
584 			break;
585 		case Opt_discard:
586 			set_opt(sbi, DISCARD);
587 			break;
588 		case Opt_nodiscard:
589 			if (f2fs_sb_has_blkzoned(sbi)) {
590 				f2fs_warn(sbi, "discard is required for zoned block devices");
591 				return -EINVAL;
592 			}
593 			clear_opt(sbi, DISCARD);
594 			break;
595 		case Opt_noheap:
596 			set_opt(sbi, NOHEAP);
597 			break;
598 		case Opt_heap:
599 			clear_opt(sbi, NOHEAP);
600 			break;
601 #ifdef CONFIG_F2FS_FS_XATTR
602 		case Opt_user_xattr:
603 			set_opt(sbi, XATTR_USER);
604 			break;
605 		case Opt_nouser_xattr:
606 			clear_opt(sbi, XATTR_USER);
607 			break;
608 		case Opt_inline_xattr:
609 			set_opt(sbi, INLINE_XATTR);
610 			break;
611 		case Opt_noinline_xattr:
612 			clear_opt(sbi, INLINE_XATTR);
613 			break;
614 		case Opt_inline_xattr_size:
615 			if (args->from && match_int(args, &arg))
616 				return -EINVAL;
617 			set_opt(sbi, INLINE_XATTR_SIZE);
618 			F2FS_OPTION(sbi).inline_xattr_size = arg;
619 			break;
620 #else
621 		case Opt_user_xattr:
622 			f2fs_info(sbi, "user_xattr options not supported");
623 			break;
624 		case Opt_nouser_xattr:
625 			f2fs_info(sbi, "nouser_xattr options not supported");
626 			break;
627 		case Opt_inline_xattr:
628 			f2fs_info(sbi, "inline_xattr options not supported");
629 			break;
630 		case Opt_noinline_xattr:
631 			f2fs_info(sbi, "noinline_xattr options not supported");
632 			break;
633 #endif
634 #ifdef CONFIG_F2FS_FS_POSIX_ACL
635 		case Opt_acl:
636 			set_opt(sbi, POSIX_ACL);
637 			break;
638 		case Opt_noacl:
639 			clear_opt(sbi, POSIX_ACL);
640 			break;
641 #else
642 		case Opt_acl:
643 			f2fs_info(sbi, "acl options not supported");
644 			break;
645 		case Opt_noacl:
646 			f2fs_info(sbi, "noacl options not supported");
647 			break;
648 #endif
649 		case Opt_active_logs:
650 			if (args->from && match_int(args, &arg))
651 				return -EINVAL;
652 			if (arg != 2 && arg != 4 &&
653 				arg != NR_CURSEG_PERSIST_TYPE)
654 				return -EINVAL;
655 			F2FS_OPTION(sbi).active_logs = arg;
656 			break;
657 		case Opt_disable_ext_identify:
658 			set_opt(sbi, DISABLE_EXT_IDENTIFY);
659 			break;
660 		case Opt_inline_data:
661 			set_opt(sbi, INLINE_DATA);
662 			break;
663 		case Opt_inline_dentry:
664 			set_opt(sbi, INLINE_DENTRY);
665 			break;
666 		case Opt_noinline_dentry:
667 			clear_opt(sbi, INLINE_DENTRY);
668 			break;
669 		case Opt_flush_merge:
670 			set_opt(sbi, FLUSH_MERGE);
671 			break;
672 		case Opt_noflush_merge:
673 			clear_opt(sbi, FLUSH_MERGE);
674 			break;
675 		case Opt_nobarrier:
676 			set_opt(sbi, NOBARRIER);
677 			break;
678 		case Opt_fastboot:
679 			set_opt(sbi, FASTBOOT);
680 			break;
681 		case Opt_extent_cache:
682 			set_opt(sbi, EXTENT_CACHE);
683 			break;
684 		case Opt_noextent_cache:
685 			clear_opt(sbi, EXTENT_CACHE);
686 			break;
687 		case Opt_noinline_data:
688 			clear_opt(sbi, INLINE_DATA);
689 			break;
690 		case Opt_data_flush:
691 			set_opt(sbi, DATA_FLUSH);
692 			break;
693 		case Opt_reserve_root:
694 			if (args->from && match_int(args, &arg))
695 				return -EINVAL;
696 			if (test_opt(sbi, RESERVE_ROOT)) {
697 				f2fs_info(sbi, "Preserve previous reserve_root=%u",
698 					  F2FS_OPTION(sbi).root_reserved_blocks);
699 			} else {
700 				F2FS_OPTION(sbi).root_reserved_blocks = arg;
701 				set_opt(sbi, RESERVE_ROOT);
702 			}
703 			break;
704 		case Opt_resuid:
705 			if (args->from && match_int(args, &arg))
706 				return -EINVAL;
707 			uid = make_kuid(current_user_ns(), arg);
708 			if (!uid_valid(uid)) {
709 				f2fs_err(sbi, "Invalid uid value %d", arg);
710 				return -EINVAL;
711 			}
712 			F2FS_OPTION(sbi).s_resuid = uid;
713 			break;
714 		case Opt_resgid:
715 			if (args->from && match_int(args, &arg))
716 				return -EINVAL;
717 			gid = make_kgid(current_user_ns(), arg);
718 			if (!gid_valid(gid)) {
719 				f2fs_err(sbi, "Invalid gid value %d", arg);
720 				return -EINVAL;
721 			}
722 			F2FS_OPTION(sbi).s_resgid = gid;
723 			break;
724 		case Opt_mode:
725 			name = match_strdup(&args[0]);
726 
727 			if (!name)
728 				return -ENOMEM;
729 			if (!strcmp(name, "adaptive")) {
730 				if (f2fs_sb_has_blkzoned(sbi)) {
731 					f2fs_warn(sbi, "adaptive mode is not allowed with zoned block device feature");
732 					kfree(name);
733 					return -EINVAL;
734 				}
735 				F2FS_OPTION(sbi).fs_mode = FS_MODE_ADAPTIVE;
736 			} else if (!strcmp(name, "lfs")) {
737 				F2FS_OPTION(sbi).fs_mode = FS_MODE_LFS;
738 			} else {
739 				kfree(name);
740 				return -EINVAL;
741 			}
742 			kfree(name);
743 			break;
744 		case Opt_io_size_bits:
745 			if (args->from && match_int(args, &arg))
746 				return -EINVAL;
747 			if (arg <= 0 || arg > __ilog2_u32(BIO_MAX_PAGES)) {
748 				f2fs_warn(sbi, "Not support %d, larger than %d",
749 					  1 << arg, BIO_MAX_PAGES);
750 				return -EINVAL;
751 			}
752 			F2FS_OPTION(sbi).write_io_size_bits = arg;
753 			break;
754 #ifdef CONFIG_F2FS_FAULT_INJECTION
755 		case Opt_fault_injection:
756 			if (args->from && match_int(args, &arg))
757 				return -EINVAL;
758 			if (f2fs_build_fault_attr(sbi, arg,
759 					F2FS_ALL_FAULT_TYPE))
760 				return -EINVAL;
761 			set_opt(sbi, FAULT_INJECTION);
762 			break;
763 
764 		case Opt_fault_type:
765 			if (args->from && match_int(args, &arg))
766 				return -EINVAL;
767 			if (f2fs_build_fault_attr(sbi, 0, arg))
768 				return -EINVAL;
769 			set_opt(sbi, FAULT_INJECTION);
770 			break;
771 #else
772 		case Opt_fault_injection:
773 			f2fs_info(sbi, "fault_injection options not supported");
774 			break;
775 
776 		case Opt_fault_type:
777 			f2fs_info(sbi, "fault_type options not supported");
778 			break;
779 #endif
780 		case Opt_lazytime:
781 			sb->s_flags |= SB_LAZYTIME;
782 			break;
783 		case Opt_nolazytime:
784 			sb->s_flags &= ~SB_LAZYTIME;
785 			break;
786 #ifdef CONFIG_QUOTA
787 		case Opt_quota:
788 		case Opt_usrquota:
789 			set_opt(sbi, USRQUOTA);
790 			break;
791 		case Opt_grpquota:
792 			set_opt(sbi, GRPQUOTA);
793 			break;
794 		case Opt_prjquota:
795 			set_opt(sbi, PRJQUOTA);
796 			break;
797 		case Opt_usrjquota:
798 			ret = f2fs_set_qf_name(sb, USRQUOTA, &args[0]);
799 			if (ret)
800 				return ret;
801 			break;
802 		case Opt_grpjquota:
803 			ret = f2fs_set_qf_name(sb, GRPQUOTA, &args[0]);
804 			if (ret)
805 				return ret;
806 			break;
807 		case Opt_prjjquota:
808 			ret = f2fs_set_qf_name(sb, PRJQUOTA, &args[0]);
809 			if (ret)
810 				return ret;
811 			break;
812 		case Opt_offusrjquota:
813 			ret = f2fs_clear_qf_name(sb, USRQUOTA);
814 			if (ret)
815 				return ret;
816 			break;
817 		case Opt_offgrpjquota:
818 			ret = f2fs_clear_qf_name(sb, GRPQUOTA);
819 			if (ret)
820 				return ret;
821 			break;
822 		case Opt_offprjjquota:
823 			ret = f2fs_clear_qf_name(sb, PRJQUOTA);
824 			if (ret)
825 				return ret;
826 			break;
827 		case Opt_jqfmt_vfsold:
828 			F2FS_OPTION(sbi).s_jquota_fmt = QFMT_VFS_OLD;
829 			break;
830 		case Opt_jqfmt_vfsv0:
831 			F2FS_OPTION(sbi).s_jquota_fmt = QFMT_VFS_V0;
832 			break;
833 		case Opt_jqfmt_vfsv1:
834 			F2FS_OPTION(sbi).s_jquota_fmt = QFMT_VFS_V1;
835 			break;
836 		case Opt_noquota:
837 			clear_opt(sbi, QUOTA);
838 			clear_opt(sbi, USRQUOTA);
839 			clear_opt(sbi, GRPQUOTA);
840 			clear_opt(sbi, PRJQUOTA);
841 			break;
842 #else
843 		case Opt_quota:
844 		case Opt_usrquota:
845 		case Opt_grpquota:
846 		case Opt_prjquota:
847 		case Opt_usrjquota:
848 		case Opt_grpjquota:
849 		case Opt_prjjquota:
850 		case Opt_offusrjquota:
851 		case Opt_offgrpjquota:
852 		case Opt_offprjjquota:
853 		case Opt_jqfmt_vfsold:
854 		case Opt_jqfmt_vfsv0:
855 		case Opt_jqfmt_vfsv1:
856 		case Opt_noquota:
857 			f2fs_info(sbi, "quota operations not supported");
858 			break;
859 #endif
860 		case Opt_whint:
861 			name = match_strdup(&args[0]);
862 			if (!name)
863 				return -ENOMEM;
864 			if (!strcmp(name, "user-based")) {
865 				F2FS_OPTION(sbi).whint_mode = WHINT_MODE_USER;
866 			} else if (!strcmp(name, "off")) {
867 				F2FS_OPTION(sbi).whint_mode = WHINT_MODE_OFF;
868 			} else if (!strcmp(name, "fs-based")) {
869 				F2FS_OPTION(sbi).whint_mode = WHINT_MODE_FS;
870 			} else {
871 				kfree(name);
872 				return -EINVAL;
873 			}
874 			kfree(name);
875 			break;
876 		case Opt_alloc:
877 			name = match_strdup(&args[0]);
878 			if (!name)
879 				return -ENOMEM;
880 
881 			if (!strcmp(name, "default")) {
882 				F2FS_OPTION(sbi).alloc_mode = ALLOC_MODE_DEFAULT;
883 			} else if (!strcmp(name, "reuse")) {
884 				F2FS_OPTION(sbi).alloc_mode = ALLOC_MODE_REUSE;
885 			} else {
886 				kfree(name);
887 				return -EINVAL;
888 			}
889 			kfree(name);
890 			break;
891 		case Opt_fsync:
892 			name = match_strdup(&args[0]);
893 			if (!name)
894 				return -ENOMEM;
895 			if (!strcmp(name, "posix")) {
896 				F2FS_OPTION(sbi).fsync_mode = FSYNC_MODE_POSIX;
897 			} else if (!strcmp(name, "strict")) {
898 				F2FS_OPTION(sbi).fsync_mode = FSYNC_MODE_STRICT;
899 			} else if (!strcmp(name, "nobarrier")) {
900 				F2FS_OPTION(sbi).fsync_mode =
901 							FSYNC_MODE_NOBARRIER;
902 			} else {
903 				kfree(name);
904 				return -EINVAL;
905 			}
906 			kfree(name);
907 			break;
908 		case Opt_test_dummy_encryption:
909 			ret = f2fs_set_test_dummy_encryption(sb, p, &args[0],
910 							     is_remount);
911 			if (ret)
912 				return ret;
913 			break;
914 		case Opt_inlinecrypt:
915 #ifdef CONFIG_FS_ENCRYPTION_INLINE_CRYPT
916 			sb->s_flags |= SB_INLINECRYPT;
917 #else
918 			f2fs_info(sbi, "inline encryption not supported");
919 #endif
920 			break;
921 		case Opt_checkpoint_disable_cap_perc:
922 			if (args->from && match_int(args, &arg))
923 				return -EINVAL;
924 			if (arg < 0 || arg > 100)
925 				return -EINVAL;
926 			F2FS_OPTION(sbi).unusable_cap_perc = arg;
927 			set_opt(sbi, DISABLE_CHECKPOINT);
928 			break;
929 		case Opt_checkpoint_disable_cap:
930 			if (args->from && match_int(args, &arg))
931 				return -EINVAL;
932 			F2FS_OPTION(sbi).unusable_cap = arg;
933 			set_opt(sbi, DISABLE_CHECKPOINT);
934 			break;
935 		case Opt_checkpoint_disable:
936 			set_opt(sbi, DISABLE_CHECKPOINT);
937 			break;
938 		case Opt_checkpoint_enable:
939 			clear_opt(sbi, DISABLE_CHECKPOINT);
940 			break;
941 #ifdef CONFIG_F2FS_FS_COMPRESSION
942 		case Opt_compress_algorithm:
943 			if (!f2fs_sb_has_compression(sbi)) {
944 				f2fs_info(sbi, "Image doesn't support compression");
945 				break;
946 			}
947 			name = match_strdup(&args[0]);
948 			if (!name)
949 				return -ENOMEM;
950 			if (!strcmp(name, "lzo")) {
951 				F2FS_OPTION(sbi).compress_algorithm =
952 								COMPRESS_LZO;
953 			} else if (!strcmp(name, "lz4")) {
954 				F2FS_OPTION(sbi).compress_algorithm =
955 								COMPRESS_LZ4;
956 			} else if (!strcmp(name, "zstd")) {
957 				F2FS_OPTION(sbi).compress_algorithm =
958 								COMPRESS_ZSTD;
959 			} else if (!strcmp(name, "lzo-rle")) {
960 				F2FS_OPTION(sbi).compress_algorithm =
961 								COMPRESS_LZORLE;
962 			} else {
963 				kfree(name);
964 				return -EINVAL;
965 			}
966 			kfree(name);
967 			break;
968 		case Opt_compress_log_size:
969 			if (!f2fs_sb_has_compression(sbi)) {
970 				f2fs_info(sbi, "Image doesn't support compression");
971 				break;
972 			}
973 			if (args->from && match_int(args, &arg))
974 				return -EINVAL;
975 			if (arg < MIN_COMPRESS_LOG_SIZE ||
976 				arg > MAX_COMPRESS_LOG_SIZE) {
977 				f2fs_err(sbi,
978 					"Compress cluster log size is out of range");
979 				return -EINVAL;
980 			}
981 			F2FS_OPTION(sbi).compress_log_size = arg;
982 			break;
983 		case Opt_compress_extension:
984 			if (!f2fs_sb_has_compression(sbi)) {
985 				f2fs_info(sbi, "Image doesn't support compression");
986 				break;
987 			}
988 			name = match_strdup(&args[0]);
989 			if (!name)
990 				return -ENOMEM;
991 
992 			ext = F2FS_OPTION(sbi).extensions;
993 			ext_cnt = F2FS_OPTION(sbi).compress_ext_cnt;
994 
995 			if (strlen(name) >= F2FS_EXTENSION_LEN ||
996 				ext_cnt >= COMPRESS_EXT_NUM) {
997 				f2fs_err(sbi,
998 					"invalid extension length/number");
999 				kfree(name);
1000 				return -EINVAL;
1001 			}
1002 
1003 			strcpy(ext[ext_cnt], name);
1004 			F2FS_OPTION(sbi).compress_ext_cnt++;
1005 			kfree(name);
1006 			break;
1007 #else
1008 		case Opt_compress_algorithm:
1009 		case Opt_compress_log_size:
1010 		case Opt_compress_extension:
1011 			f2fs_info(sbi, "compression options not supported");
1012 			break;
1013 #endif
1014 		case Opt_atgc:
1015 			set_opt(sbi, ATGC);
1016 			break;
1017 		case Opt_gc_merge:
1018 			set_opt(sbi, GC_MERGE);
1019 			break;
1020 		case Opt_nogc_merge:
1021 			clear_opt(sbi, GC_MERGE);
1022 			break;
1023 		default:
1024 			f2fs_err(sbi, "Unrecognized mount option \"%s\" or missing value",
1025 				 p);
1026 			return -EINVAL;
1027 		}
1028 	}
1029 #ifdef CONFIG_QUOTA
1030 	if (f2fs_check_quota_options(sbi))
1031 		return -EINVAL;
1032 #else
1033 	if (f2fs_sb_has_quota_ino(sbi) && !f2fs_readonly(sbi->sb)) {
1034 		f2fs_info(sbi, "Filesystem with quota feature cannot be mounted RDWR without CONFIG_QUOTA");
1035 		return -EINVAL;
1036 	}
1037 	if (f2fs_sb_has_project_quota(sbi) && !f2fs_readonly(sbi->sb)) {
1038 		f2fs_err(sbi, "Filesystem with project quota feature cannot be mounted RDWR without CONFIG_QUOTA");
1039 		return -EINVAL;
1040 	}
1041 #endif
1042 #ifndef CONFIG_UNICODE
1043 	if (f2fs_sb_has_casefold(sbi)) {
1044 		f2fs_err(sbi,
1045 			"Filesystem with casefold feature cannot be mounted without CONFIG_UNICODE");
1046 		return -EINVAL;
1047 	}
1048 #endif
1049 	/*
1050 	 * The BLKZONED feature indicates that the drive was formatted with
1051 	 * zone alignment optimization. This is optional for host-aware
1052 	 * devices, but mandatory for host-managed zoned block devices.
1053 	 */
1054 #ifndef CONFIG_BLK_DEV_ZONED
1055 	if (f2fs_sb_has_blkzoned(sbi)) {
1056 		f2fs_err(sbi, "Zoned block device support is not enabled");
1057 		return -EINVAL;
1058 	}
1059 #endif
1060 
1061 	if (F2FS_IO_SIZE_BITS(sbi) && !f2fs_lfs_mode(sbi)) {
1062 		f2fs_err(sbi, "Should set mode=lfs with %uKB-sized IO",
1063 			 F2FS_IO_SIZE_KB(sbi));
1064 		return -EINVAL;
1065 	}
1066 
1067 	if (test_opt(sbi, INLINE_XATTR_SIZE)) {
1068 		int min_size, max_size;
1069 
1070 		if (!f2fs_sb_has_extra_attr(sbi) ||
1071 			!f2fs_sb_has_flexible_inline_xattr(sbi)) {
1072 			f2fs_err(sbi, "extra_attr or flexible_inline_xattr feature is off");
1073 			return -EINVAL;
1074 		}
1075 		if (!test_opt(sbi, INLINE_XATTR)) {
1076 			f2fs_err(sbi, "inline_xattr_size option should be set with inline_xattr option");
1077 			return -EINVAL;
1078 		}
1079 
1080 		min_size = sizeof(struct f2fs_xattr_header) / sizeof(__le32);
1081 		max_size = MAX_INLINE_XATTR_SIZE;
1082 
1083 		if (F2FS_OPTION(sbi).inline_xattr_size < min_size ||
1084 				F2FS_OPTION(sbi).inline_xattr_size > max_size) {
1085 			f2fs_err(sbi, "inline xattr size is out of range: %d ~ %d",
1086 				 min_size, max_size);
1087 			return -EINVAL;
1088 		}
1089 	}
1090 
1091 	if (test_opt(sbi, DISABLE_CHECKPOINT) && f2fs_lfs_mode(sbi)) {
1092 		f2fs_err(sbi, "LFS not compatible with checkpoint=disable\n");
1093 		return -EINVAL;
1094 	}
1095 
1096 	/* Not pass down write hints if the number of active logs is lesser
1097 	 * than NR_CURSEG_PERSIST_TYPE.
1098 	 */
1099 	if (F2FS_OPTION(sbi).active_logs != NR_CURSEG_PERSIST_TYPE)
1100 		F2FS_OPTION(sbi).whint_mode = WHINT_MODE_OFF;
1101 	return 0;
1102 }
1103 
f2fs_alloc_inode(struct super_block *sb)1104 static struct inode *f2fs_alloc_inode(struct super_block *sb)
1105 {
1106 	struct f2fs_inode_info *fi;
1107 
1108 	fi = kmem_cache_alloc(f2fs_inode_cachep, GFP_F2FS_ZERO);
1109 	if (!fi)
1110 		return NULL;
1111 
1112 	init_once((void *) fi);
1113 
1114 	/* Initialize f2fs-specific inode info */
1115 	atomic_set(&fi->dirty_pages, 0);
1116 	atomic_set(&fi->i_compr_blocks, 0);
1117 	init_rwsem(&fi->i_sem);
1118 	spin_lock_init(&fi->i_size_lock);
1119 	INIT_LIST_HEAD(&fi->dirty_list);
1120 	INIT_LIST_HEAD(&fi->gdirty_list);
1121 	INIT_LIST_HEAD(&fi->inmem_ilist);
1122 	INIT_LIST_HEAD(&fi->inmem_pages);
1123 	mutex_init(&fi->inmem_lock);
1124 	init_rwsem(&fi->i_gc_rwsem[READ]);
1125 	init_rwsem(&fi->i_gc_rwsem[WRITE]);
1126 	init_rwsem(&fi->i_mmap_sem);
1127 	init_rwsem(&fi->i_xattr_sem);
1128 
1129 	/* Will be used by directory only */
1130 	fi->i_dir_level = F2FS_SB(sb)->dir_level;
1131 
1132 	fi->ra_offset = -1;
1133 
1134 	return &fi->vfs_inode;
1135 }
1136 
f2fs_drop_inode(struct inode *inode)1137 static int f2fs_drop_inode(struct inode *inode)
1138 {
1139 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1140 	int ret;
1141 
1142 	/*
1143 	 * during filesystem shutdown, if checkpoint is disabled,
1144 	 * drop useless meta/node dirty pages.
1145 	 */
1146 	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
1147 		if (inode->i_ino == F2FS_NODE_INO(sbi) ||
1148 			inode->i_ino == F2FS_META_INO(sbi)) {
1149 			trace_f2fs_drop_inode(inode, 1);
1150 			return 1;
1151 		}
1152 	}
1153 
1154 	/*
1155 	 * This is to avoid a deadlock condition like below.
1156 	 * writeback_single_inode(inode)
1157 	 *  - f2fs_write_data_page
1158 	 *    - f2fs_gc -> iput -> evict
1159 	 *       - inode_wait_for_writeback(inode)
1160 	 */
1161 	if ((!inode_unhashed(inode) && inode->i_state & I_SYNC)) {
1162 		if (!inode->i_nlink && !is_bad_inode(inode)) {
1163 			/* to avoid evict_inode call simultaneously */
1164 			atomic_inc(&inode->i_count);
1165 			spin_unlock(&inode->i_lock);
1166 
1167 			/* some remained atomic pages should discarded */
1168 			if (f2fs_is_atomic_file(inode))
1169 				f2fs_drop_inmem_pages(inode);
1170 
1171 			/* should remain fi->extent_tree for writepage */
1172 			f2fs_destroy_extent_node(inode);
1173 
1174 			sb_start_intwrite(inode->i_sb);
1175 			f2fs_i_size_write(inode, 0);
1176 
1177 			f2fs_submit_merged_write_cond(F2FS_I_SB(inode),
1178 					inode, NULL, 0, DATA);
1179 			truncate_inode_pages_final(inode->i_mapping);
1180 
1181 			if (F2FS_HAS_BLOCKS(inode))
1182 				f2fs_truncate(inode);
1183 
1184 			sb_end_intwrite(inode->i_sb);
1185 
1186 			spin_lock(&inode->i_lock);
1187 			atomic_dec(&inode->i_count);
1188 		}
1189 		trace_f2fs_drop_inode(inode, 0);
1190 		return 0;
1191 	}
1192 	ret = generic_drop_inode(inode);
1193 	if (!ret)
1194 		ret = fscrypt_drop_inode(inode);
1195 	trace_f2fs_drop_inode(inode, ret);
1196 	return ret;
1197 }
1198 
f2fs_inode_dirtied(struct inode *inode, bool sync)1199 int f2fs_inode_dirtied(struct inode *inode, bool sync)
1200 {
1201 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1202 	int ret = 0;
1203 
1204 	spin_lock(&sbi->inode_lock[DIRTY_META]);
1205 	if (is_inode_flag_set(inode, FI_DIRTY_INODE)) {
1206 		ret = 1;
1207 	} else {
1208 		set_inode_flag(inode, FI_DIRTY_INODE);
1209 		stat_inc_dirty_inode(sbi, DIRTY_META);
1210 	}
1211 	if (sync && list_empty(&F2FS_I(inode)->gdirty_list)) {
1212 		list_add_tail(&F2FS_I(inode)->gdirty_list,
1213 				&sbi->inode_list[DIRTY_META]);
1214 		inc_page_count(sbi, F2FS_DIRTY_IMETA);
1215 	}
1216 	spin_unlock(&sbi->inode_lock[DIRTY_META]);
1217 	return ret;
1218 }
1219 
f2fs_inode_synced(struct inode *inode)1220 void f2fs_inode_synced(struct inode *inode)
1221 {
1222 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1223 
1224 	spin_lock(&sbi->inode_lock[DIRTY_META]);
1225 	if (!is_inode_flag_set(inode, FI_DIRTY_INODE)) {
1226 		spin_unlock(&sbi->inode_lock[DIRTY_META]);
1227 		return;
1228 	}
1229 	if (!list_empty(&F2FS_I(inode)->gdirty_list)) {
1230 		list_del_init(&F2FS_I(inode)->gdirty_list);
1231 		dec_page_count(sbi, F2FS_DIRTY_IMETA);
1232 	}
1233 	clear_inode_flag(inode, FI_DIRTY_INODE);
1234 	clear_inode_flag(inode, FI_AUTO_RECOVER);
1235 	stat_dec_dirty_inode(F2FS_I_SB(inode), DIRTY_META);
1236 	spin_unlock(&sbi->inode_lock[DIRTY_META]);
1237 }
1238 
1239 /*
1240  * f2fs_dirty_inode() is called from __mark_inode_dirty()
1241  *
1242  * We should call set_dirty_inode to write the dirty inode through write_inode.
1243  */
f2fs_dirty_inode(struct inode *inode, int flags)1244 static void f2fs_dirty_inode(struct inode *inode, int flags)
1245 {
1246 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1247 
1248 	if (inode->i_ino == F2FS_NODE_INO(sbi) ||
1249 			inode->i_ino == F2FS_META_INO(sbi))
1250 		return;
1251 
1252 	if (flags == I_DIRTY_TIME)
1253 		return;
1254 
1255 	if (is_inode_flag_set(inode, FI_AUTO_RECOVER))
1256 		clear_inode_flag(inode, FI_AUTO_RECOVER);
1257 
1258 	f2fs_inode_dirtied(inode, false);
1259 }
1260 
f2fs_free_inode(struct inode *inode)1261 static void f2fs_free_inode(struct inode *inode)
1262 {
1263 	fscrypt_free_inode(inode);
1264 	kmem_cache_free(f2fs_inode_cachep, F2FS_I(inode));
1265 }
1266 
destroy_percpu_info(struct f2fs_sb_info *sbi)1267 static void destroy_percpu_info(struct f2fs_sb_info *sbi)
1268 {
1269 	percpu_counter_destroy(&sbi->alloc_valid_block_count);
1270 	percpu_counter_destroy(&sbi->total_valid_inode_count);
1271 }
1272 
destroy_device_list(struct f2fs_sb_info *sbi)1273 static void destroy_device_list(struct f2fs_sb_info *sbi)
1274 {
1275 	int i;
1276 
1277 	for (i = 0; i < sbi->s_ndevs; i++) {
1278 		blkdev_put(FDEV(i).bdev, FMODE_EXCL);
1279 #ifdef CONFIG_BLK_DEV_ZONED
1280 		kvfree(FDEV(i).blkz_seq);
1281 #endif
1282 	}
1283 	kvfree(sbi->devs);
1284 }
1285 
f2fs_put_super(struct super_block *sb)1286 static void f2fs_put_super(struct super_block *sb)
1287 {
1288 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
1289 	int i;
1290 	bool dropped;
1291 
1292 	/* unregister procfs/sysfs entries in advance to avoid race case */
1293 	f2fs_unregister_sysfs(sbi);
1294 
1295 	f2fs_quota_off_umount(sb);
1296 
1297 	/* prevent remaining shrinker jobs */
1298 	mutex_lock(&sbi->umount_mutex);
1299 
1300 	/*
1301 	 * We don't need to do checkpoint when superblock is clean.
1302 	 * But, the previous checkpoint was not done by umount, it needs to do
1303 	 * clean checkpoint again.
1304 	 */
1305 	if ((is_sbi_flag_set(sbi, SBI_IS_DIRTY) ||
1306 			!is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG))) {
1307 		struct cp_control cpc = {
1308 			.reason = CP_UMOUNT,
1309 		};
1310 		f2fs_write_checkpoint(sbi, &cpc);
1311 	}
1312 
1313 	/* be sure to wait for any on-going discard commands */
1314 	dropped = f2fs_issue_discard_timeout(sbi);
1315 
1316 	if ((f2fs_hw_support_discard(sbi) || f2fs_hw_should_discard(sbi)) &&
1317 					!sbi->discard_blks && !dropped) {
1318 		struct cp_control cpc = {
1319 			.reason = CP_UMOUNT | CP_TRIMMED,
1320 		};
1321 		f2fs_write_checkpoint(sbi, &cpc);
1322 	}
1323 
1324 	/*
1325 	 * normally superblock is clean, so we need to release this.
1326 	 * In addition, EIO will skip do checkpoint, we need this as well.
1327 	 */
1328 	f2fs_release_ino_entry(sbi, true);
1329 
1330 	f2fs_leave_shrinker(sbi);
1331 	mutex_unlock(&sbi->umount_mutex);
1332 
1333 	/* our cp_error case, we can wait for any writeback page */
1334 	f2fs_flush_merged_writes(sbi);
1335 
1336 	f2fs_wait_on_all_pages(sbi, F2FS_WB_CP_DATA);
1337 
1338 	f2fs_bug_on(sbi, sbi->fsync_node_num);
1339 
1340 	iput(sbi->node_inode);
1341 	sbi->node_inode = NULL;
1342 
1343 	iput(sbi->meta_inode);
1344 	sbi->meta_inode = NULL;
1345 
1346 	/*
1347 	 * iput() can update stat information, if f2fs_write_checkpoint()
1348 	 * above failed with error.
1349 	 */
1350 	f2fs_destroy_stats(sbi);
1351 
1352 	/* destroy f2fs internal modules */
1353 	f2fs_destroy_node_manager(sbi);
1354 	f2fs_destroy_segment_manager(sbi);
1355 
1356 	f2fs_destroy_post_read_wq(sbi);
1357 
1358 	kvfree(sbi->ckpt);
1359 
1360 	sb->s_fs_info = NULL;
1361 	if (sbi->s_chksum_driver)
1362 		crypto_free_shash(sbi->s_chksum_driver);
1363 	kfree(sbi->raw_super);
1364 
1365 	destroy_device_list(sbi);
1366 	f2fs_destroy_page_array_cache(sbi);
1367 	f2fs_destroy_xattr_caches(sbi);
1368 	mempool_destroy(sbi->write_io_dummy);
1369 #ifdef CONFIG_QUOTA
1370 	for (i = 0; i < MAXQUOTAS; i++)
1371 		kfree(F2FS_OPTION(sbi).s_qf_names[i]);
1372 #endif
1373 	fscrypt_free_dummy_policy(&F2FS_OPTION(sbi).dummy_enc_policy);
1374 	destroy_percpu_info(sbi);
1375 	for (i = 0; i < NR_PAGE_TYPE; i++)
1376 		kvfree(sbi->write_io[i]);
1377 #ifdef CONFIG_UNICODE
1378 	utf8_unload(sb->s_encoding);
1379 #endif
1380 	kfree(sbi);
1381 }
1382 
f2fs_sync_fs(struct super_block *sb, int sync)1383 int f2fs_sync_fs(struct super_block *sb, int sync)
1384 {
1385 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
1386 	int err = 0;
1387 
1388 	if (unlikely(f2fs_cp_error(sbi)))
1389 		return 0;
1390 	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
1391 		return 0;
1392 
1393 	trace_f2fs_sync_fs(sb, sync);
1394 
1395 	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
1396 		return -EAGAIN;
1397 
1398 	if (sync) {
1399 		struct cp_control cpc;
1400 
1401 		cpc.reason = __get_cp_reason(sbi);
1402 
1403 		down_write(&sbi->gc_lock);
1404 		err = f2fs_write_checkpoint(sbi, &cpc);
1405 		up_write(&sbi->gc_lock);
1406 	}
1407 	f2fs_trace_ios(NULL, 1);
1408 
1409 	return err;
1410 }
1411 
f2fs_freeze(struct super_block *sb)1412 static int f2fs_freeze(struct super_block *sb)
1413 {
1414 	if (f2fs_readonly(sb))
1415 		return 0;
1416 
1417 	/* IO error happened before */
1418 	if (unlikely(f2fs_cp_error(F2FS_SB(sb))))
1419 		return -EIO;
1420 
1421 	/* must be clean, since sync_filesystem() was already called */
1422 	if (is_sbi_flag_set(F2FS_SB(sb), SBI_IS_DIRTY))
1423 		return -EINVAL;
1424 	return 0;
1425 }
1426 
f2fs_unfreeze(struct super_block *sb)1427 static int f2fs_unfreeze(struct super_block *sb)
1428 {
1429 	return 0;
1430 }
1431 
1432 #ifdef CONFIG_QUOTA
f2fs_statfs_project(struct super_block *sb, kprojid_t projid, struct kstatfs *buf)1433 static int f2fs_statfs_project(struct super_block *sb,
1434 				kprojid_t projid, struct kstatfs *buf)
1435 {
1436 	struct kqid qid;
1437 	struct dquot *dquot;
1438 	u64 limit;
1439 	u64 curblock;
1440 
1441 	qid = make_kqid_projid(projid);
1442 	dquot = dqget(sb, qid);
1443 	if (IS_ERR(dquot))
1444 		return PTR_ERR(dquot);
1445 	spin_lock(&dquot->dq_dqb_lock);
1446 
1447 	limit = min_not_zero(dquot->dq_dqb.dqb_bsoftlimit,
1448 					dquot->dq_dqb.dqb_bhardlimit);
1449 	if (limit)
1450 		limit >>= sb->s_blocksize_bits;
1451 
1452 	if (limit && buf->f_blocks > limit) {
1453 		curblock = (dquot->dq_dqb.dqb_curspace +
1454 			    dquot->dq_dqb.dqb_rsvspace) >> sb->s_blocksize_bits;
1455 		buf->f_blocks = limit;
1456 		buf->f_bfree = buf->f_bavail =
1457 			(buf->f_blocks > curblock) ?
1458 			 (buf->f_blocks - curblock) : 0;
1459 	}
1460 
1461 	limit = min_not_zero(dquot->dq_dqb.dqb_isoftlimit,
1462 					dquot->dq_dqb.dqb_ihardlimit);
1463 
1464 	if (limit && buf->f_files > limit) {
1465 		buf->f_files = limit;
1466 		buf->f_ffree =
1467 			(buf->f_files > dquot->dq_dqb.dqb_curinodes) ?
1468 			 (buf->f_files - dquot->dq_dqb.dqb_curinodes) : 0;
1469 	}
1470 
1471 	spin_unlock(&dquot->dq_dqb_lock);
1472 	dqput(dquot);
1473 	return 0;
1474 }
1475 #endif
1476 
f2fs_statfs(struct dentry *dentry, struct kstatfs *buf)1477 static int f2fs_statfs(struct dentry *dentry, struct kstatfs *buf)
1478 {
1479 	struct super_block *sb = dentry->d_sb;
1480 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
1481 	u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
1482 	block_t total_count, user_block_count, start_count;
1483 	u64 avail_node_count;
1484 
1485 	total_count = le64_to_cpu(sbi->raw_super->block_count);
1486 	user_block_count = sbi->user_block_count;
1487 	start_count = le32_to_cpu(sbi->raw_super->segment0_blkaddr);
1488 	buf->f_type = F2FS_SUPER_MAGIC;
1489 	buf->f_bsize = sbi->blocksize;
1490 
1491 	buf->f_blocks = total_count - start_count;
1492 	buf->f_bfree = user_block_count - valid_user_blocks(sbi) -
1493 						sbi->current_reserved_blocks;
1494 
1495 	spin_lock(&sbi->stat_lock);
1496 	if (unlikely(buf->f_bfree <= sbi->unusable_block_count))
1497 		buf->f_bfree = 0;
1498 	else
1499 		buf->f_bfree -= sbi->unusable_block_count;
1500 	spin_unlock(&sbi->stat_lock);
1501 
1502 	if (buf->f_bfree > F2FS_OPTION(sbi).root_reserved_blocks)
1503 		buf->f_bavail = buf->f_bfree -
1504 				F2FS_OPTION(sbi).root_reserved_blocks;
1505 	else
1506 		buf->f_bavail = 0;
1507 
1508 	avail_node_count = sbi->total_node_count - F2FS_RESERVED_NODE_NUM;
1509 
1510 	if (avail_node_count > user_block_count) {
1511 		buf->f_files = user_block_count;
1512 		buf->f_ffree = buf->f_bavail;
1513 	} else {
1514 		buf->f_files = avail_node_count;
1515 		buf->f_ffree = min(avail_node_count - valid_node_count(sbi),
1516 					buf->f_bavail);
1517 	}
1518 
1519 	buf->f_namelen = F2FS_NAME_LEN;
1520 	buf->f_fsid    = u64_to_fsid(id);
1521 
1522 #ifdef CONFIG_QUOTA
1523 	if (is_inode_flag_set(dentry->d_inode, FI_PROJ_INHERIT) &&
1524 			sb_has_quota_limits_enabled(sb, PRJQUOTA)) {
1525 		f2fs_statfs_project(sb, F2FS_I(dentry->d_inode)->i_projid, buf);
1526 	}
1527 #endif
1528 	return 0;
1529 }
1530 
f2fs_show_quota_options(struct seq_file *seq, struct super_block *sb)1531 static inline void f2fs_show_quota_options(struct seq_file *seq,
1532 					   struct super_block *sb)
1533 {
1534 #ifdef CONFIG_QUOTA
1535 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
1536 
1537 	if (F2FS_OPTION(sbi).s_jquota_fmt) {
1538 		char *fmtname = "";
1539 
1540 		switch (F2FS_OPTION(sbi).s_jquota_fmt) {
1541 		case QFMT_VFS_OLD:
1542 			fmtname = "vfsold";
1543 			break;
1544 		case QFMT_VFS_V0:
1545 			fmtname = "vfsv0";
1546 			break;
1547 		case QFMT_VFS_V1:
1548 			fmtname = "vfsv1";
1549 			break;
1550 		}
1551 		seq_printf(seq, ",jqfmt=%s", fmtname);
1552 	}
1553 
1554 	if (F2FS_OPTION(sbi).s_qf_names[USRQUOTA])
1555 		seq_show_option(seq, "usrjquota",
1556 			F2FS_OPTION(sbi).s_qf_names[USRQUOTA]);
1557 
1558 	if (F2FS_OPTION(sbi).s_qf_names[GRPQUOTA])
1559 		seq_show_option(seq, "grpjquota",
1560 			F2FS_OPTION(sbi).s_qf_names[GRPQUOTA]);
1561 
1562 	if (F2FS_OPTION(sbi).s_qf_names[PRJQUOTA])
1563 		seq_show_option(seq, "prjjquota",
1564 			F2FS_OPTION(sbi).s_qf_names[PRJQUOTA]);
1565 #endif
1566 }
1567 
f2fs_show_compress_options(struct seq_file *seq, struct super_block *sb)1568 static inline void f2fs_show_compress_options(struct seq_file *seq,
1569 							struct super_block *sb)
1570 {
1571 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
1572 	char *algtype = "";
1573 	int i;
1574 
1575 	if (!f2fs_sb_has_compression(sbi))
1576 		return;
1577 
1578 	switch (F2FS_OPTION(sbi).compress_algorithm) {
1579 	case COMPRESS_LZO:
1580 		algtype = "lzo";
1581 		break;
1582 	case COMPRESS_LZ4:
1583 		algtype = "lz4";
1584 		break;
1585 	case COMPRESS_ZSTD:
1586 		algtype = "zstd";
1587 		break;
1588 	case COMPRESS_LZORLE:
1589 		algtype = "lzo-rle";
1590 		break;
1591 	}
1592 	seq_printf(seq, ",compress_algorithm=%s", algtype);
1593 
1594 	seq_printf(seq, ",compress_log_size=%u",
1595 			F2FS_OPTION(sbi).compress_log_size);
1596 
1597 	for (i = 0; i < F2FS_OPTION(sbi).compress_ext_cnt; i++) {
1598 		seq_printf(seq, ",compress_extension=%s",
1599 			F2FS_OPTION(sbi).extensions[i]);
1600 	}
1601 }
1602 
f2fs_show_options(struct seq_file *seq, struct dentry *root)1603 static int f2fs_show_options(struct seq_file *seq, struct dentry *root)
1604 {
1605 	struct f2fs_sb_info *sbi = F2FS_SB(root->d_sb);
1606 
1607 	if (F2FS_OPTION(sbi).bggc_mode == BGGC_MODE_SYNC)
1608 		seq_printf(seq, ",background_gc=%s", "sync");
1609 	else if (F2FS_OPTION(sbi).bggc_mode == BGGC_MODE_ON)
1610 		seq_printf(seq, ",background_gc=%s", "on");
1611 	else if (F2FS_OPTION(sbi).bggc_mode == BGGC_MODE_OFF)
1612 		seq_printf(seq, ",background_gc=%s", "off");
1613 
1614 	if (test_opt(sbi, GC_MERGE))
1615 		seq_puts(seq, ",gc_merge");
1616 
1617 	if (test_opt(sbi, DISABLE_ROLL_FORWARD))
1618 		seq_puts(seq, ",disable_roll_forward");
1619 	if (test_opt(sbi, NORECOVERY))
1620 		seq_puts(seq, ",norecovery");
1621 	if (test_opt(sbi, DISCARD))
1622 		seq_puts(seq, ",discard");
1623 	else
1624 		seq_puts(seq, ",nodiscard");
1625 	if (test_opt(sbi, NOHEAP))
1626 		seq_puts(seq, ",no_heap");
1627 	else
1628 		seq_puts(seq, ",heap");
1629 #ifdef CONFIG_F2FS_FS_XATTR
1630 	if (test_opt(sbi, XATTR_USER))
1631 		seq_puts(seq, ",user_xattr");
1632 	else
1633 		seq_puts(seq, ",nouser_xattr");
1634 	if (test_opt(sbi, INLINE_XATTR))
1635 		seq_puts(seq, ",inline_xattr");
1636 	else
1637 		seq_puts(seq, ",noinline_xattr");
1638 	if (test_opt(sbi, INLINE_XATTR_SIZE))
1639 		seq_printf(seq, ",inline_xattr_size=%u",
1640 					F2FS_OPTION(sbi).inline_xattr_size);
1641 #endif
1642 #ifdef CONFIG_F2FS_FS_POSIX_ACL
1643 	if (test_opt(sbi, POSIX_ACL))
1644 		seq_puts(seq, ",acl");
1645 	else
1646 		seq_puts(seq, ",noacl");
1647 #endif
1648 	if (test_opt(sbi, DISABLE_EXT_IDENTIFY))
1649 		seq_puts(seq, ",disable_ext_identify");
1650 	if (test_opt(sbi, INLINE_DATA))
1651 		seq_puts(seq, ",inline_data");
1652 	else
1653 		seq_puts(seq, ",noinline_data");
1654 	if (test_opt(sbi, INLINE_DENTRY))
1655 		seq_puts(seq, ",inline_dentry");
1656 	else
1657 		seq_puts(seq, ",noinline_dentry");
1658 	if (!f2fs_readonly(sbi->sb) && test_opt(sbi, FLUSH_MERGE))
1659 		seq_puts(seq, ",flush_merge");
1660 	if (test_opt(sbi, NOBARRIER))
1661 		seq_puts(seq, ",nobarrier");
1662 	if (test_opt(sbi, FASTBOOT))
1663 		seq_puts(seq, ",fastboot");
1664 	if (test_opt(sbi, EXTENT_CACHE))
1665 		seq_puts(seq, ",extent_cache");
1666 	else
1667 		seq_puts(seq, ",noextent_cache");
1668 	if (test_opt(sbi, DATA_FLUSH))
1669 		seq_puts(seq, ",data_flush");
1670 
1671 	seq_puts(seq, ",mode=");
1672 	if (F2FS_OPTION(sbi).fs_mode == FS_MODE_ADAPTIVE)
1673 		seq_puts(seq, "adaptive");
1674 	else if (F2FS_OPTION(sbi).fs_mode == FS_MODE_LFS)
1675 		seq_puts(seq, "lfs");
1676 	seq_printf(seq, ",active_logs=%u", F2FS_OPTION(sbi).active_logs);
1677 	if (test_opt(sbi, RESERVE_ROOT))
1678 		seq_printf(seq, ",reserve_root=%u,resuid=%u,resgid=%u",
1679 				F2FS_OPTION(sbi).root_reserved_blocks,
1680 				from_kuid_munged(&init_user_ns,
1681 					F2FS_OPTION(sbi).s_resuid),
1682 				from_kgid_munged(&init_user_ns,
1683 					F2FS_OPTION(sbi).s_resgid));
1684 	if (F2FS_IO_SIZE_BITS(sbi))
1685 		seq_printf(seq, ",io_bits=%u",
1686 				F2FS_OPTION(sbi).write_io_size_bits);
1687 #ifdef CONFIG_F2FS_FAULT_INJECTION
1688 	if (test_opt(sbi, FAULT_INJECTION)) {
1689 		seq_printf(seq, ",fault_injection=%u",
1690 				F2FS_OPTION(sbi).fault_info.inject_rate);
1691 		seq_printf(seq, ",fault_type=%u",
1692 				F2FS_OPTION(sbi).fault_info.inject_type);
1693 	}
1694 #endif
1695 #ifdef CONFIG_QUOTA
1696 	if (test_opt(sbi, QUOTA))
1697 		seq_puts(seq, ",quota");
1698 	if (test_opt(sbi, USRQUOTA))
1699 		seq_puts(seq, ",usrquota");
1700 	if (test_opt(sbi, GRPQUOTA))
1701 		seq_puts(seq, ",grpquota");
1702 	if (test_opt(sbi, PRJQUOTA))
1703 		seq_puts(seq, ",prjquota");
1704 #endif
1705 	f2fs_show_quota_options(seq, sbi->sb);
1706 	if (F2FS_OPTION(sbi).whint_mode == WHINT_MODE_USER)
1707 		seq_printf(seq, ",whint_mode=%s", "user-based");
1708 	else if (F2FS_OPTION(sbi).whint_mode == WHINT_MODE_FS)
1709 		seq_printf(seq, ",whint_mode=%s", "fs-based");
1710 
1711 	fscrypt_show_test_dummy_encryption(seq, ',', sbi->sb);
1712 
1713 	if (sbi->sb->s_flags & SB_INLINECRYPT)
1714 		seq_puts(seq, ",inlinecrypt");
1715 
1716 	if (F2FS_OPTION(sbi).alloc_mode == ALLOC_MODE_DEFAULT)
1717 		seq_printf(seq, ",alloc_mode=%s", "default");
1718 	else if (F2FS_OPTION(sbi).alloc_mode == ALLOC_MODE_REUSE)
1719 		seq_printf(seq, ",alloc_mode=%s", "reuse");
1720 
1721 	if (test_opt(sbi, DISABLE_CHECKPOINT))
1722 		seq_printf(seq, ",checkpoint=disable:%u",
1723 				F2FS_OPTION(sbi).unusable_cap);
1724 	if (F2FS_OPTION(sbi).fsync_mode == FSYNC_MODE_POSIX)
1725 		seq_printf(seq, ",fsync_mode=%s", "posix");
1726 	else if (F2FS_OPTION(sbi).fsync_mode == FSYNC_MODE_STRICT)
1727 		seq_printf(seq, ",fsync_mode=%s", "strict");
1728 	else if (F2FS_OPTION(sbi).fsync_mode == FSYNC_MODE_NOBARRIER)
1729 		seq_printf(seq, ",fsync_mode=%s", "nobarrier");
1730 
1731 #ifdef CONFIG_F2FS_FS_COMPRESSION
1732 	f2fs_show_compress_options(seq, sbi->sb);
1733 #endif
1734 
1735 	if (test_opt(sbi, ATGC))
1736 		seq_puts(seq, ",atgc");
1737 	return 0;
1738 }
1739 
default_options(struct f2fs_sb_info *sbi)1740 static void default_options(struct f2fs_sb_info *sbi)
1741 {
1742 	/* init some FS parameters */
1743 	F2FS_OPTION(sbi).active_logs = NR_CURSEG_PERSIST_TYPE;
1744 	F2FS_OPTION(sbi).inline_xattr_size = DEFAULT_INLINE_XATTR_ADDRS;
1745 	F2FS_OPTION(sbi).whint_mode = WHINT_MODE_OFF;
1746 	F2FS_OPTION(sbi).alloc_mode = ALLOC_MODE_DEFAULT;
1747 	F2FS_OPTION(sbi).fsync_mode = FSYNC_MODE_POSIX;
1748 	F2FS_OPTION(sbi).s_resuid = make_kuid(&init_user_ns, F2FS_DEF_RESUID);
1749 	F2FS_OPTION(sbi).s_resgid = make_kgid(&init_user_ns, F2FS_DEF_RESGID);
1750 	F2FS_OPTION(sbi).compress_algorithm = COMPRESS_LZ4;
1751 	F2FS_OPTION(sbi).compress_log_size = MIN_COMPRESS_LOG_SIZE;
1752 	F2FS_OPTION(sbi).compress_ext_cnt = 0;
1753 	F2FS_OPTION(sbi).bggc_mode = BGGC_MODE_ON;
1754 
1755 	set_opt(sbi, INLINE_XATTR);
1756 	set_opt(sbi, INLINE_DATA);
1757 	set_opt(sbi, INLINE_DENTRY);
1758 	set_opt(sbi, EXTENT_CACHE);
1759 	set_opt(sbi, NOHEAP);
1760 	clear_opt(sbi, DISABLE_CHECKPOINT);
1761 	F2FS_OPTION(sbi).unusable_cap = 0;
1762 	sbi->sb->s_flags |= SB_LAZYTIME;
1763 	set_opt(sbi, FLUSH_MERGE);
1764 	set_opt(sbi, DISCARD);
1765 	if (f2fs_sb_has_blkzoned(sbi))
1766 		F2FS_OPTION(sbi).fs_mode = FS_MODE_LFS;
1767 	else
1768 		F2FS_OPTION(sbi).fs_mode = FS_MODE_ADAPTIVE;
1769 
1770 #ifdef CONFIG_F2FS_FS_XATTR
1771 	set_opt(sbi, XATTR_USER);
1772 #endif
1773 #ifdef CONFIG_F2FS_FS_POSIX_ACL
1774 	set_opt(sbi, POSIX_ACL);
1775 #endif
1776 
1777 	f2fs_build_fault_attr(sbi, 0, 0);
1778 }
1779 
1780 #ifdef CONFIG_QUOTA
1781 static int f2fs_enable_quotas(struct super_block *sb);
1782 #endif
1783 
f2fs_disable_checkpoint(struct f2fs_sb_info *sbi)1784 static int f2fs_disable_checkpoint(struct f2fs_sb_info *sbi)
1785 {
1786 	unsigned int s_flags = sbi->sb->s_flags;
1787 	struct cp_control cpc;
1788 	int err = 0;
1789 	int ret;
1790 	block_t unusable;
1791 
1792 	if (s_flags & SB_RDONLY) {
1793 		f2fs_err(sbi, "checkpoint=disable on readonly fs");
1794 		return -EINVAL;
1795 	}
1796 	sbi->sb->s_flags |= SB_ACTIVE;
1797 
1798 	f2fs_update_time(sbi, DISABLE_TIME);
1799 
1800 	while (!f2fs_time_over(sbi, DISABLE_TIME)) {
1801 		down_write(&sbi->gc_lock);
1802 		err = f2fs_gc(sbi, true, false, false, NULL_SEGNO);
1803 		if (err == -ENODATA) {
1804 			err = 0;
1805 			break;
1806 		}
1807 		if (err && err != -EAGAIN)
1808 			break;
1809 	}
1810 
1811 	ret = sync_filesystem(sbi->sb);
1812 	if (ret || err) {
1813 		err = ret ? ret: err;
1814 		goto restore_flag;
1815 	}
1816 
1817 	unusable = f2fs_get_unusable_blocks(sbi);
1818 	if (f2fs_disable_cp_again(sbi, unusable)) {
1819 		err = -EAGAIN;
1820 		goto restore_flag;
1821 	}
1822 
1823 	down_write(&sbi->gc_lock);
1824 	cpc.reason = CP_PAUSE;
1825 	set_sbi_flag(sbi, SBI_CP_DISABLED);
1826 	err = f2fs_write_checkpoint(sbi, &cpc);
1827 	if (err)
1828 		goto out_unlock;
1829 
1830 	spin_lock(&sbi->stat_lock);
1831 	sbi->unusable_block_count = unusable;
1832 	spin_unlock(&sbi->stat_lock);
1833 
1834 out_unlock:
1835 	up_write(&sbi->gc_lock);
1836 restore_flag:
1837 	sbi->sb->s_flags = s_flags;	/* Restore SB_RDONLY status */
1838 	return err;
1839 }
1840 
f2fs_enable_checkpoint(struct f2fs_sb_info *sbi)1841 static void f2fs_enable_checkpoint(struct f2fs_sb_info *sbi)
1842 {
1843 	int retry = DEFAULT_RETRY_IO_COUNT;
1844 
1845 	/* we should flush all the data to keep data consistency */
1846 	do {
1847 		sync_inodes_sb(sbi->sb);
1848 		cond_resched();
1849 		congestion_wait(BLK_RW_ASYNC, DEFAULT_IO_TIMEOUT);
1850 	} while (get_pages(sbi, F2FS_DIRTY_DATA) && retry--);
1851 
1852 	if (unlikely(retry < 0))
1853 		f2fs_warn(sbi, "checkpoint=enable has some unwritten data.");
1854 
1855 	down_write(&sbi->gc_lock);
1856 	f2fs_dirty_to_prefree(sbi);
1857 
1858 	clear_sbi_flag(sbi, SBI_CP_DISABLED);
1859 	set_sbi_flag(sbi, SBI_IS_DIRTY);
1860 	up_write(&sbi->gc_lock);
1861 
1862 	f2fs_sync_fs(sbi->sb, 1);
1863 }
1864 
f2fs_remount(struct super_block *sb, int *flags, char *data)1865 static int f2fs_remount(struct super_block *sb, int *flags, char *data)
1866 {
1867 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
1868 	struct f2fs_mount_info org_mount_opt;
1869 	unsigned long old_sb_flags;
1870 	int err;
1871 	bool need_restart_gc = false;
1872 	bool need_stop_gc = false;
1873 	bool no_extent_cache = !test_opt(sbi, EXTENT_CACHE);
1874 	bool disable_checkpoint = test_opt(sbi, DISABLE_CHECKPOINT);
1875 	bool no_io_align = !F2FS_IO_ALIGNED(sbi);
1876 	bool no_atgc = !test_opt(sbi, ATGC);
1877 	bool checkpoint_changed;
1878 #ifdef CONFIG_QUOTA
1879 	int i, j;
1880 #endif
1881 
1882 	/*
1883 	 * Save the old mount options in case we
1884 	 * need to restore them.
1885 	 */
1886 	org_mount_opt = sbi->mount_opt;
1887 	old_sb_flags = sb->s_flags;
1888 
1889 #ifdef CONFIG_QUOTA
1890 	org_mount_opt.s_jquota_fmt = F2FS_OPTION(sbi).s_jquota_fmt;
1891 	for (i = 0; i < MAXQUOTAS; i++) {
1892 		if (F2FS_OPTION(sbi).s_qf_names[i]) {
1893 			org_mount_opt.s_qf_names[i] =
1894 				kstrdup(F2FS_OPTION(sbi).s_qf_names[i],
1895 				GFP_KERNEL);
1896 			if (!org_mount_opt.s_qf_names[i]) {
1897 				for (j = 0; j < i; j++)
1898 					kfree(org_mount_opt.s_qf_names[j]);
1899 				return -ENOMEM;
1900 			}
1901 		} else {
1902 			org_mount_opt.s_qf_names[i] = NULL;
1903 		}
1904 	}
1905 #endif
1906 
1907 	/* recover superblocks we couldn't write due to previous RO mount */
1908 	if (!(*flags & SB_RDONLY) && is_sbi_flag_set(sbi, SBI_NEED_SB_WRITE)) {
1909 		err = f2fs_commit_super(sbi, false);
1910 		f2fs_info(sbi, "Try to recover all the superblocks, ret: %d",
1911 			  err);
1912 		if (!err)
1913 			clear_sbi_flag(sbi, SBI_NEED_SB_WRITE);
1914 	}
1915 
1916 	default_options(sbi);
1917 
1918 	/* parse mount options */
1919 	err = parse_options(sb, data, true);
1920 	if (err)
1921 		goto restore_opts;
1922 	checkpoint_changed =
1923 			disable_checkpoint != test_opt(sbi, DISABLE_CHECKPOINT);
1924 
1925 	/*
1926 	 * Previous and new state of filesystem is RO,
1927 	 * so skip checking GC and FLUSH_MERGE conditions.
1928 	 */
1929 	if (f2fs_readonly(sb) && (*flags & SB_RDONLY))
1930 		goto skip;
1931 
1932 #ifdef CONFIG_QUOTA
1933 	if (!f2fs_readonly(sb) && (*flags & SB_RDONLY)) {
1934 		err = dquot_suspend(sb, -1);
1935 		if (err < 0)
1936 			goto restore_opts;
1937 	} else if (f2fs_readonly(sb) && !(*flags & SB_RDONLY)) {
1938 		/* dquot_resume needs RW */
1939 		sb->s_flags &= ~SB_RDONLY;
1940 		if (sb_any_quota_suspended(sb)) {
1941 			dquot_resume(sb, -1);
1942 		} else if (f2fs_sb_has_quota_ino(sbi)) {
1943 			err = f2fs_enable_quotas(sb);
1944 			if (err)
1945 				goto restore_opts;
1946 		}
1947 	}
1948 #endif
1949 	/* disallow enable atgc dynamically */
1950 	if (no_atgc == !!test_opt(sbi, ATGC)) {
1951 		err = -EINVAL;
1952 		f2fs_warn(sbi, "switch atgc option is not allowed");
1953 		goto restore_opts;
1954 	}
1955 
1956 	/* disallow enable/disable extent_cache dynamically */
1957 	if (no_extent_cache == !!test_opt(sbi, EXTENT_CACHE)) {
1958 		err = -EINVAL;
1959 		f2fs_warn(sbi, "switch extent_cache option is not allowed");
1960 		goto restore_opts;
1961 	}
1962 
1963 	if (no_io_align == !!F2FS_IO_ALIGNED(sbi)) {
1964 		err = -EINVAL;
1965 		f2fs_warn(sbi, "switch io_bits option is not allowed");
1966 		goto restore_opts;
1967 	}
1968 
1969 	if ((*flags & SB_RDONLY) && test_opt(sbi, DISABLE_CHECKPOINT)) {
1970 		err = -EINVAL;
1971 		f2fs_warn(sbi, "disabling checkpoint not compatible with read-only");
1972 		goto restore_opts;
1973 	}
1974 
1975 	/*
1976 	 * We stop the GC thread if FS is mounted as RO
1977 	 * or if background_gc = off is passed in mount
1978 	 * option. Also sync the filesystem.
1979 	 */
1980 	if ((*flags & SB_RDONLY) ||
1981 			(F2FS_OPTION(sbi).bggc_mode == BGGC_MODE_OFF &&
1982 			!test_opt(sbi, GC_MERGE))) {
1983 		if (sbi->gc_thread) {
1984 			f2fs_stop_gc_thread(sbi);
1985 			need_restart_gc = true;
1986 		}
1987 	} else if (!sbi->gc_thread) {
1988 		err = f2fs_start_gc_thread(sbi);
1989 		if (err)
1990 			goto restore_opts;
1991 		need_stop_gc = true;
1992 	}
1993 
1994 	if (*flags & SB_RDONLY ||
1995 		F2FS_OPTION(sbi).whint_mode != org_mount_opt.whint_mode) {
1996 		writeback_inodes_sb(sb, WB_REASON_SYNC);
1997 		sync_inodes_sb(sb);
1998 
1999 		set_sbi_flag(sbi, SBI_IS_DIRTY);
2000 		set_sbi_flag(sbi, SBI_IS_CLOSE);
2001 		f2fs_sync_fs(sb, 1);
2002 		clear_sbi_flag(sbi, SBI_IS_CLOSE);
2003 	}
2004 
2005 	if (checkpoint_changed) {
2006 		if (test_opt(sbi, DISABLE_CHECKPOINT)) {
2007 			err = f2fs_disable_checkpoint(sbi);
2008 			if (err)
2009 				goto restore_gc;
2010 		} else {
2011 			f2fs_enable_checkpoint(sbi);
2012 		}
2013 	}
2014 
2015 	/*
2016 	 * We stop issue flush thread if FS is mounted as RO
2017 	 * or if flush_merge is not passed in mount option.
2018 	 */
2019 	if ((*flags & SB_RDONLY) || !test_opt(sbi, FLUSH_MERGE)) {
2020 		clear_opt(sbi, FLUSH_MERGE);
2021 		f2fs_destroy_flush_cmd_control(sbi, false);
2022 	} else {
2023 		err = f2fs_create_flush_cmd_control(sbi);
2024 		if (err)
2025 			goto restore_gc;
2026 	}
2027 skip:
2028 #ifdef CONFIG_QUOTA
2029 	/* Release old quota file names */
2030 	for (i = 0; i < MAXQUOTAS; i++)
2031 		kfree(org_mount_opt.s_qf_names[i]);
2032 #endif
2033 	/* Update the POSIXACL Flag */
2034 	sb->s_flags = (sb->s_flags & ~SB_POSIXACL) |
2035 		(test_opt(sbi, POSIX_ACL) ? SB_POSIXACL : 0);
2036 
2037 	limit_reserve_root(sbi);
2038 	adjust_unusable_cap_perc(sbi);
2039 	*flags = (*flags & ~SB_LAZYTIME) | (sb->s_flags & SB_LAZYTIME);
2040 	return 0;
2041 restore_gc:
2042 	if (need_restart_gc) {
2043 		if (f2fs_start_gc_thread(sbi))
2044 			f2fs_warn(sbi, "background gc thread has stopped");
2045 	} else if (need_stop_gc) {
2046 		f2fs_stop_gc_thread(sbi);
2047 	}
2048 restore_opts:
2049 #ifdef CONFIG_QUOTA
2050 	F2FS_OPTION(sbi).s_jquota_fmt = org_mount_opt.s_jquota_fmt;
2051 	for (i = 0; i < MAXQUOTAS; i++) {
2052 		kfree(F2FS_OPTION(sbi).s_qf_names[i]);
2053 		F2FS_OPTION(sbi).s_qf_names[i] = org_mount_opt.s_qf_names[i];
2054 	}
2055 #endif
2056 	sbi->mount_opt = org_mount_opt;
2057 	sb->s_flags = old_sb_flags;
2058 	return err;
2059 }
2060 
2061 #ifdef CONFIG_QUOTA
2062 /* Read data from quotafile */
f2fs_quota_read(struct super_block *sb, int type, char *data, size_t len, loff_t off)2063 static ssize_t f2fs_quota_read(struct super_block *sb, int type, char *data,
2064 			       size_t len, loff_t off)
2065 {
2066 	struct inode *inode = sb_dqopt(sb)->files[type];
2067 	struct address_space *mapping = inode->i_mapping;
2068 	block_t blkidx = F2FS_BYTES_TO_BLK(off);
2069 	int offset = off & (sb->s_blocksize - 1);
2070 	int tocopy;
2071 	size_t toread;
2072 	loff_t i_size = i_size_read(inode);
2073 	struct page *page;
2074 
2075 	if (off > i_size)
2076 		return 0;
2077 
2078 	if (off + len > i_size)
2079 		len = i_size - off;
2080 	toread = len;
2081 	while (toread > 0) {
2082 		tocopy = min_t(unsigned long, sb->s_blocksize - offset, toread);
2083 repeat:
2084 		page = read_cache_page_gfp(mapping, blkidx, GFP_NOFS);
2085 		if (IS_ERR(page)) {
2086 			if (PTR_ERR(page) == -ENOMEM) {
2087 				congestion_wait(BLK_RW_ASYNC,
2088 						DEFAULT_IO_TIMEOUT);
2089 				goto repeat;
2090 			}
2091 			set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR);
2092 			return PTR_ERR(page);
2093 		}
2094 
2095 		lock_page(page);
2096 
2097 		if (unlikely(page->mapping != mapping)) {
2098 			f2fs_put_page(page, 1);
2099 			goto repeat;
2100 		}
2101 		if (unlikely(!PageUptodate(page))) {
2102 			f2fs_put_page(page, 1);
2103 			set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR);
2104 			return -EIO;
2105 		}
2106 
2107 		memcpy_from_page(data, page, offset, tocopy);
2108 		f2fs_put_page(page, 1);
2109 
2110 		offset = 0;
2111 		toread -= tocopy;
2112 		data += tocopy;
2113 		blkidx++;
2114 	}
2115 	return len;
2116 }
2117 
2118 /* Write to quotafile */
f2fs_quota_write(struct super_block *sb, int type, const char *data, size_t len, loff_t off)2119 static ssize_t f2fs_quota_write(struct super_block *sb, int type,
2120 				const char *data, size_t len, loff_t off)
2121 {
2122 	struct inode *inode = sb_dqopt(sb)->files[type];
2123 	struct address_space *mapping = inode->i_mapping;
2124 	const struct address_space_operations *a_ops = mapping->a_ops;
2125 	int offset = off & (sb->s_blocksize - 1);
2126 	size_t towrite = len;
2127 	struct page *page;
2128 	void *fsdata = NULL;
2129 	int err = 0;
2130 	int tocopy;
2131 
2132 	while (towrite > 0) {
2133 		tocopy = min_t(unsigned long, sb->s_blocksize - offset,
2134 								towrite);
2135 retry:
2136 		err = a_ops->write_begin(NULL, mapping, off, tocopy, 0,
2137 							&page, &fsdata);
2138 		if (unlikely(err)) {
2139 			if (err == -ENOMEM) {
2140 				congestion_wait(BLK_RW_ASYNC,
2141 						DEFAULT_IO_TIMEOUT);
2142 				goto retry;
2143 			}
2144 			set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR);
2145 			break;
2146 		}
2147 
2148 		memcpy_to_page(page, offset, data, tocopy);
2149 
2150 		a_ops->write_end(NULL, mapping, off, tocopy, tocopy,
2151 						page, fsdata);
2152 		offset = 0;
2153 		towrite -= tocopy;
2154 		off += tocopy;
2155 		data += tocopy;
2156 		cond_resched();
2157 	}
2158 
2159 	if (len == towrite)
2160 		return err;
2161 	inode->i_mtime = inode->i_ctime = current_time(inode);
2162 	f2fs_mark_inode_dirty_sync(inode, false);
2163 	return len - towrite;
2164 }
2165 
f2fs_get_dquots(struct inode *inode)2166 static struct dquot **f2fs_get_dquots(struct inode *inode)
2167 {
2168 	return F2FS_I(inode)->i_dquot;
2169 }
2170 
f2fs_get_reserved_space(struct inode *inode)2171 static qsize_t *f2fs_get_reserved_space(struct inode *inode)
2172 {
2173 	return &F2FS_I(inode)->i_reserved_quota;
2174 }
2175 
f2fs_quota_on_mount(struct f2fs_sb_info *sbi, int type)2176 static int f2fs_quota_on_mount(struct f2fs_sb_info *sbi, int type)
2177 {
2178 	if (is_set_ckpt_flags(sbi, CP_QUOTA_NEED_FSCK_FLAG)) {
2179 		f2fs_err(sbi, "quota sysfile may be corrupted, skip loading it");
2180 		return 0;
2181 	}
2182 
2183 	return dquot_quota_on_mount(sbi->sb, F2FS_OPTION(sbi).s_qf_names[type],
2184 					F2FS_OPTION(sbi).s_jquota_fmt, type);
2185 }
2186 
f2fs_enable_quota_files(struct f2fs_sb_info *sbi, bool rdonly)2187 int f2fs_enable_quota_files(struct f2fs_sb_info *sbi, bool rdonly)
2188 {
2189 	int enabled = 0;
2190 	int i, err;
2191 
2192 	if (f2fs_sb_has_quota_ino(sbi) && rdonly) {
2193 		err = f2fs_enable_quotas(sbi->sb);
2194 		if (err) {
2195 			f2fs_err(sbi, "Cannot turn on quota_ino: %d", err);
2196 			return 0;
2197 		}
2198 		return 1;
2199 	}
2200 
2201 	for (i = 0; i < MAXQUOTAS; i++) {
2202 		if (F2FS_OPTION(sbi).s_qf_names[i]) {
2203 			err = f2fs_quota_on_mount(sbi, i);
2204 			if (!err) {
2205 				enabled = 1;
2206 				continue;
2207 			}
2208 			f2fs_err(sbi, "Cannot turn on quotas: %d on %d",
2209 				 err, i);
2210 		}
2211 	}
2212 	return enabled;
2213 }
2214 
f2fs_quota_enable(struct super_block *sb, int type, int format_id, unsigned int flags)2215 static int f2fs_quota_enable(struct super_block *sb, int type, int format_id,
2216 			     unsigned int flags)
2217 {
2218 	struct inode *qf_inode;
2219 	unsigned long qf_inum;
2220 	int err;
2221 
2222 	BUG_ON(!f2fs_sb_has_quota_ino(F2FS_SB(sb)));
2223 
2224 	qf_inum = f2fs_qf_ino(sb, type);
2225 	if (!qf_inum)
2226 		return -EPERM;
2227 
2228 	qf_inode = f2fs_iget(sb, qf_inum);
2229 	if (IS_ERR(qf_inode)) {
2230 		f2fs_err(F2FS_SB(sb), "Bad quota inode %u:%lu", type, qf_inum);
2231 		return PTR_ERR(qf_inode);
2232 	}
2233 
2234 	/* Don't account quota for quota files to avoid recursion */
2235 	qf_inode->i_flags |= S_NOQUOTA;
2236 	err = dquot_load_quota_inode(qf_inode, type, format_id, flags);
2237 	iput(qf_inode);
2238 	return err;
2239 }
2240 
f2fs_enable_quotas(struct super_block *sb)2241 static int f2fs_enable_quotas(struct super_block *sb)
2242 {
2243 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
2244 	int type, err = 0;
2245 	unsigned long qf_inum;
2246 	bool quota_mopt[MAXQUOTAS] = {
2247 		test_opt(sbi, USRQUOTA),
2248 		test_opt(sbi, GRPQUOTA),
2249 		test_opt(sbi, PRJQUOTA),
2250 	};
2251 
2252 	if (is_set_ckpt_flags(F2FS_SB(sb), CP_QUOTA_NEED_FSCK_FLAG)) {
2253 		f2fs_err(sbi, "quota file may be corrupted, skip loading it");
2254 		return 0;
2255 	}
2256 
2257 	sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE;
2258 
2259 	for (type = 0; type < MAXQUOTAS; type++) {
2260 		qf_inum = f2fs_qf_ino(sb, type);
2261 		if (qf_inum) {
2262 			err = f2fs_quota_enable(sb, type, QFMT_VFS_V1,
2263 				DQUOT_USAGE_ENABLED |
2264 				(quota_mopt[type] ? DQUOT_LIMITS_ENABLED : 0));
2265 			if (err) {
2266 				f2fs_err(sbi, "Failed to enable quota tracking (type=%d, err=%d). Please run fsck to fix.",
2267 					 type, err);
2268 				for (type--; type >= 0; type--)
2269 					dquot_quota_off(sb, type);
2270 				set_sbi_flag(F2FS_SB(sb),
2271 						SBI_QUOTA_NEED_REPAIR);
2272 				return err;
2273 			}
2274 		}
2275 	}
2276 	return 0;
2277 }
2278 
f2fs_quota_sync_file(struct f2fs_sb_info *sbi, int type)2279 static int f2fs_quota_sync_file(struct f2fs_sb_info *sbi, int type)
2280 {
2281 	struct quota_info *dqopt = sb_dqopt(sbi->sb);
2282 	struct address_space *mapping = dqopt->files[type]->i_mapping;
2283 	int ret = 0;
2284 
2285 	ret = dquot_writeback_dquots(sbi->sb, type);
2286 	if (ret)
2287 		goto out;
2288 
2289 	ret = filemap_fdatawrite(mapping);
2290 	if (ret)
2291 		goto out;
2292 
2293 	/* if we are using journalled quota */
2294 	if (is_journalled_quota(sbi))
2295 		goto out;
2296 
2297 	ret = filemap_fdatawait(mapping);
2298 
2299 	truncate_inode_pages(&dqopt->files[type]->i_data, 0);
2300 out:
2301 	if (ret)
2302 		set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR);
2303 	return ret;
2304 }
2305 
f2fs_quota_sync(struct super_block *sb, int type)2306 int f2fs_quota_sync(struct super_block *sb, int type)
2307 {
2308 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
2309 	struct quota_info *dqopt = sb_dqopt(sb);
2310 	int cnt;
2311 	int ret = 0;
2312 
2313 	/*
2314 	 * Now when everything is written we can discard the pagecache so
2315 	 * that userspace sees the changes.
2316 	 */
2317 	for (cnt = 0; cnt < MAXQUOTAS; cnt++) {
2318 
2319 		if (type != -1 && cnt != type)
2320 			continue;
2321 
2322 		if (!sb_has_quota_active(sb, cnt))
2323 			continue;
2324 
2325 		if (!f2fs_sb_has_quota_ino(sbi))
2326 			inode_lock(dqopt->files[cnt]);
2327 
2328 		/*
2329 		 * do_quotactl
2330 		 *  f2fs_quota_sync
2331 		 *  down_read(quota_sem)
2332 		 *  dquot_writeback_dquots()
2333 		 *  f2fs_dquot_commit
2334 		 *			      block_operation
2335 		 *			      down_read(quota_sem)
2336 		 */
2337 		f2fs_lock_op(sbi);
2338 		down_read(&sbi->quota_sem);
2339 
2340 		ret = f2fs_quota_sync_file(sbi, cnt);
2341 
2342 		up_read(&sbi->quota_sem);
2343 		f2fs_unlock_op(sbi);
2344 
2345 		if (!f2fs_sb_has_quota_ino(sbi))
2346 			inode_unlock(dqopt->files[cnt]);
2347 
2348 		if (ret)
2349 			break;
2350 	}
2351 	return ret;
2352 }
2353 
f2fs_quota_on(struct super_block *sb, int type, int format_id, const struct path *path)2354 static int f2fs_quota_on(struct super_block *sb, int type, int format_id,
2355 							const struct path *path)
2356 {
2357 	struct inode *inode;
2358 	int err;
2359 
2360 	/* if quota sysfile exists, deny enabling quota with specific file */
2361 	if (f2fs_sb_has_quota_ino(F2FS_SB(sb))) {
2362 		f2fs_err(F2FS_SB(sb), "quota sysfile already exists");
2363 		return -EBUSY;
2364 	}
2365 
2366 	err = f2fs_quota_sync(sb, type);
2367 	if (err)
2368 		return err;
2369 
2370 	err = dquot_quota_on(sb, type, format_id, path);
2371 	if (err)
2372 		return err;
2373 
2374 	inode = d_inode(path->dentry);
2375 
2376 	inode_lock(inode);
2377 	F2FS_I(inode)->i_flags |= F2FS_NOATIME_FL | F2FS_IMMUTABLE_FL;
2378 	f2fs_set_inode_flags(inode);
2379 	inode_unlock(inode);
2380 	f2fs_mark_inode_dirty_sync(inode, false);
2381 
2382 	return 0;
2383 }
2384 
__f2fs_quota_off(struct super_block *sb, int type)2385 static int __f2fs_quota_off(struct super_block *sb, int type)
2386 {
2387 	struct inode *inode = sb_dqopt(sb)->files[type];
2388 	int err;
2389 
2390 	if (!inode || !igrab(inode))
2391 		return dquot_quota_off(sb, type);
2392 
2393 	err = f2fs_quota_sync(sb, type);
2394 	if (err)
2395 		goto out_put;
2396 
2397 	err = dquot_quota_off(sb, type);
2398 	if (err || f2fs_sb_has_quota_ino(F2FS_SB(sb)))
2399 		goto out_put;
2400 
2401 	inode_lock(inode);
2402 	F2FS_I(inode)->i_flags &= ~(F2FS_NOATIME_FL | F2FS_IMMUTABLE_FL);
2403 	f2fs_set_inode_flags(inode);
2404 	inode_unlock(inode);
2405 	f2fs_mark_inode_dirty_sync(inode, false);
2406 out_put:
2407 	iput(inode);
2408 	return err;
2409 }
2410 
f2fs_quota_off(struct super_block *sb, int type)2411 static int f2fs_quota_off(struct super_block *sb, int type)
2412 {
2413 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
2414 	int err;
2415 
2416 	err = __f2fs_quota_off(sb, type);
2417 
2418 	/*
2419 	 * quotactl can shutdown journalled quota, result in inconsistence
2420 	 * between quota record and fs data by following updates, tag the
2421 	 * flag to let fsck be aware of it.
2422 	 */
2423 	if (is_journalled_quota(sbi))
2424 		set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR);
2425 	return err;
2426 }
2427 
f2fs_quota_off_umount(struct super_block *sb)2428 void f2fs_quota_off_umount(struct super_block *sb)
2429 {
2430 	int type;
2431 	int err;
2432 
2433 	for (type = 0; type < MAXQUOTAS; type++) {
2434 		err = __f2fs_quota_off(sb, type);
2435 		if (err) {
2436 			int ret = dquot_quota_off(sb, type);
2437 
2438 			f2fs_err(F2FS_SB(sb), "Fail to turn off disk quota (type: %d, err: %d, ret:%d), Please run fsck to fix it.",
2439 				 type, err, ret);
2440 			set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR);
2441 		}
2442 	}
2443 	/*
2444 	 * In case of checkpoint=disable, we must flush quota blocks.
2445 	 * This can cause NULL exception for node_inode in end_io, since
2446 	 * put_super already dropped it.
2447 	 */
2448 	sync_filesystem(sb);
2449 }
2450 
f2fs_truncate_quota_inode_pages(struct super_block *sb)2451 static void f2fs_truncate_quota_inode_pages(struct super_block *sb)
2452 {
2453 	struct quota_info *dqopt = sb_dqopt(sb);
2454 	int type;
2455 
2456 	for (type = 0; type < MAXQUOTAS; type++) {
2457 		if (!dqopt->files[type])
2458 			continue;
2459 		f2fs_inode_synced(dqopt->files[type]);
2460 	}
2461 }
2462 
f2fs_dquot_commit(struct dquot *dquot)2463 static int f2fs_dquot_commit(struct dquot *dquot)
2464 {
2465 	struct f2fs_sb_info *sbi = F2FS_SB(dquot->dq_sb);
2466 	int ret;
2467 
2468 	down_read_nested(&sbi->quota_sem, SINGLE_DEPTH_NESTING);
2469 	ret = dquot_commit(dquot);
2470 	if (ret < 0)
2471 		set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR);
2472 	up_read(&sbi->quota_sem);
2473 	return ret;
2474 }
2475 
f2fs_dquot_acquire(struct dquot *dquot)2476 static int f2fs_dquot_acquire(struct dquot *dquot)
2477 {
2478 	struct f2fs_sb_info *sbi = F2FS_SB(dquot->dq_sb);
2479 	int ret;
2480 
2481 	down_read(&sbi->quota_sem);
2482 	ret = dquot_acquire(dquot);
2483 	if (ret < 0)
2484 		set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR);
2485 	up_read(&sbi->quota_sem);
2486 	return ret;
2487 }
2488 
f2fs_dquot_release(struct dquot *dquot)2489 static int f2fs_dquot_release(struct dquot *dquot)
2490 {
2491 	struct f2fs_sb_info *sbi = F2FS_SB(dquot->dq_sb);
2492 	int ret = dquot_release(dquot);
2493 
2494 	if (ret < 0)
2495 		set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR);
2496 	return ret;
2497 }
2498 
f2fs_dquot_mark_dquot_dirty(struct dquot *dquot)2499 static int f2fs_dquot_mark_dquot_dirty(struct dquot *dquot)
2500 {
2501 	struct super_block *sb = dquot->dq_sb;
2502 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
2503 	int ret = dquot_mark_dquot_dirty(dquot);
2504 
2505 	/* if we are using journalled quota */
2506 	if (is_journalled_quota(sbi))
2507 		set_sbi_flag(sbi, SBI_QUOTA_NEED_FLUSH);
2508 
2509 	return ret;
2510 }
2511 
f2fs_dquot_commit_info(struct super_block *sb, int type)2512 static int f2fs_dquot_commit_info(struct super_block *sb, int type)
2513 {
2514 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
2515 	int ret = dquot_commit_info(sb, type);
2516 
2517 	if (ret < 0)
2518 		set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR);
2519 	return ret;
2520 }
2521 
f2fs_get_projid(struct inode *inode, kprojid_t *projid)2522 static int f2fs_get_projid(struct inode *inode, kprojid_t *projid)
2523 {
2524 	*projid = F2FS_I(inode)->i_projid;
2525 	return 0;
2526 }
2527 
2528 static const struct dquot_operations f2fs_quota_operations = {
2529 	.get_reserved_space = f2fs_get_reserved_space,
2530 	.write_dquot	= f2fs_dquot_commit,
2531 	.acquire_dquot	= f2fs_dquot_acquire,
2532 	.release_dquot	= f2fs_dquot_release,
2533 	.mark_dirty	= f2fs_dquot_mark_dquot_dirty,
2534 	.write_info	= f2fs_dquot_commit_info,
2535 	.alloc_dquot	= dquot_alloc,
2536 	.destroy_dquot	= dquot_destroy,
2537 	.get_projid	= f2fs_get_projid,
2538 	.get_next_id	= dquot_get_next_id,
2539 };
2540 
2541 static const struct quotactl_ops f2fs_quotactl_ops = {
2542 	.quota_on	= f2fs_quota_on,
2543 	.quota_off	= f2fs_quota_off,
2544 	.quota_sync	= f2fs_quota_sync,
2545 	.get_state	= dquot_get_state,
2546 	.set_info	= dquot_set_dqinfo,
2547 	.get_dqblk	= dquot_get_dqblk,
2548 	.set_dqblk	= dquot_set_dqblk,
2549 	.get_nextdqblk	= dquot_get_next_dqblk,
2550 };
2551 #else
f2fs_quota_sync(struct super_block *sb, int type)2552 int f2fs_quota_sync(struct super_block *sb, int type)
2553 {
2554 	return 0;
2555 }
2556 
f2fs_quota_off_umount(struct super_block *sb)2557 void f2fs_quota_off_umount(struct super_block *sb)
2558 {
2559 }
2560 #endif
2561 
2562 static const struct super_operations f2fs_sops = {
2563 	.alloc_inode	= f2fs_alloc_inode,
2564 	.free_inode	= f2fs_free_inode,
2565 	.drop_inode	= f2fs_drop_inode,
2566 	.write_inode	= f2fs_write_inode,
2567 	.dirty_inode	= f2fs_dirty_inode,
2568 	.show_options	= f2fs_show_options,
2569 #ifdef CONFIG_QUOTA
2570 	.quota_read	= f2fs_quota_read,
2571 	.quota_write	= f2fs_quota_write,
2572 	.get_dquots	= f2fs_get_dquots,
2573 #endif
2574 	.evict_inode	= f2fs_evict_inode,
2575 	.put_super	= f2fs_put_super,
2576 	.sync_fs	= f2fs_sync_fs,
2577 	.freeze_fs	= f2fs_freeze,
2578 	.unfreeze_fs	= f2fs_unfreeze,
2579 	.statfs		= f2fs_statfs,
2580 	.remount_fs	= f2fs_remount,
2581 };
2582 
2583 #ifdef CONFIG_FS_ENCRYPTION
f2fs_get_context(struct inode *inode, void *ctx, size_t len)2584 static int f2fs_get_context(struct inode *inode, void *ctx, size_t len)
2585 {
2586 	return f2fs_getxattr(inode, F2FS_XATTR_INDEX_ENCRYPTION,
2587 				F2FS_XATTR_NAME_ENCRYPTION_CONTEXT,
2588 				ctx, len, NULL);
2589 }
2590 
f2fs_set_context(struct inode *inode, const void *ctx, size_t len, void *fs_data)2591 static int f2fs_set_context(struct inode *inode, const void *ctx, size_t len,
2592 							void *fs_data)
2593 {
2594 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2595 
2596 	/*
2597 	 * Encrypting the root directory is not allowed because fsck
2598 	 * expects lost+found directory to exist and remain unencrypted
2599 	 * if LOST_FOUND feature is enabled.
2600 	 *
2601 	 */
2602 	if (f2fs_sb_has_lost_found(sbi) &&
2603 			inode->i_ino == F2FS_ROOT_INO(sbi))
2604 		return -EPERM;
2605 
2606 	return f2fs_setxattr(inode, F2FS_XATTR_INDEX_ENCRYPTION,
2607 				F2FS_XATTR_NAME_ENCRYPTION_CONTEXT,
2608 				ctx, len, fs_data, XATTR_CREATE);
2609 }
2610 
f2fs_get_dummy_policy(struct super_block *sb)2611 static const union fscrypt_policy *f2fs_get_dummy_policy(struct super_block *sb)
2612 {
2613 	return F2FS_OPTION(F2FS_SB(sb)).dummy_enc_policy.policy;
2614 }
2615 
f2fs_has_stable_inodes(struct super_block *sb)2616 static bool f2fs_has_stable_inodes(struct super_block *sb)
2617 {
2618 	return true;
2619 }
2620 
f2fs_get_ino_and_lblk_bits(struct super_block *sb, int *ino_bits_ret, int *lblk_bits_ret)2621 static void f2fs_get_ino_and_lblk_bits(struct super_block *sb,
2622 				       int *ino_bits_ret, int *lblk_bits_ret)
2623 {
2624 	*ino_bits_ret = 8 * sizeof(nid_t);
2625 	*lblk_bits_ret = 8 * sizeof(block_t);
2626 }
2627 
f2fs_get_num_devices(struct super_block *sb)2628 static int f2fs_get_num_devices(struct super_block *sb)
2629 {
2630 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
2631 
2632 	if (f2fs_is_multi_device(sbi))
2633 		return sbi->s_ndevs;
2634 	return 1;
2635 }
2636 
f2fs_get_devices(struct super_block *sb, struct request_queue **devs)2637 static void f2fs_get_devices(struct super_block *sb,
2638 			     struct request_queue **devs)
2639 {
2640 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
2641 	int i;
2642 
2643 	for (i = 0; i < sbi->s_ndevs; i++)
2644 		devs[i] = bdev_get_queue(FDEV(i).bdev);
2645 }
2646 
2647 static const struct fscrypt_operations f2fs_cryptops = {
2648 	.key_prefix		= "f2fs:",
2649 	.get_context		= f2fs_get_context,
2650 	.set_context		= f2fs_set_context,
2651 	.get_dummy_policy	= f2fs_get_dummy_policy,
2652 	.empty_dir		= f2fs_empty_dir,
2653 	.max_namelen		= F2FS_NAME_LEN,
2654 	.has_stable_inodes	= f2fs_has_stable_inodes,
2655 	.get_ino_and_lblk_bits	= f2fs_get_ino_and_lblk_bits,
2656 	.get_num_devices	= f2fs_get_num_devices,
2657 	.get_devices		= f2fs_get_devices,
2658 };
2659 #endif
2660 
f2fs_nfs_get_inode(struct super_block *sb, u64 ino, u32 generation)2661 static struct inode *f2fs_nfs_get_inode(struct super_block *sb,
2662 		u64 ino, u32 generation)
2663 {
2664 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
2665 	struct inode *inode;
2666 
2667 	if (f2fs_check_nid_range(sbi, ino))
2668 		return ERR_PTR(-ESTALE);
2669 
2670 	/*
2671 	 * f2fs_iget isn't quite right if the inode is currently unallocated!
2672 	 * However f2fs_iget currently does appropriate checks to handle stale
2673 	 * inodes so everything is OK.
2674 	 */
2675 	inode = f2fs_iget(sb, ino);
2676 	if (IS_ERR(inode))
2677 		return ERR_CAST(inode);
2678 	if (unlikely(generation && inode->i_generation != generation)) {
2679 		/* we didn't find the right inode.. */
2680 		iput(inode);
2681 		return ERR_PTR(-ESTALE);
2682 	}
2683 	return inode;
2684 }
2685 
f2fs_fh_to_dentry(struct super_block *sb, struct fid *fid, int fh_len, int fh_type)2686 static struct dentry *f2fs_fh_to_dentry(struct super_block *sb, struct fid *fid,
2687 		int fh_len, int fh_type)
2688 {
2689 	return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
2690 				    f2fs_nfs_get_inode);
2691 }
2692 
f2fs_fh_to_parent(struct super_block *sb, struct fid *fid, int fh_len, int fh_type)2693 static struct dentry *f2fs_fh_to_parent(struct super_block *sb, struct fid *fid,
2694 		int fh_len, int fh_type)
2695 {
2696 	return generic_fh_to_parent(sb, fid, fh_len, fh_type,
2697 				    f2fs_nfs_get_inode);
2698 }
2699 
2700 static const struct export_operations f2fs_export_ops = {
2701 	.fh_to_dentry = f2fs_fh_to_dentry,
2702 	.fh_to_parent = f2fs_fh_to_parent,
2703 	.get_parent = f2fs_get_parent,
2704 };
2705 
max_file_blocks(void)2706 static loff_t max_file_blocks(void)
2707 {
2708 	loff_t result = 0;
2709 	loff_t leaf_count = DEF_ADDRS_PER_BLOCK;
2710 
2711 	/*
2712 	 * note: previously, result is equal to (DEF_ADDRS_PER_INODE -
2713 	 * DEFAULT_INLINE_XATTR_ADDRS), but now f2fs try to reserve more
2714 	 * space in inode.i_addr, it will be more safe to reassign
2715 	 * result as zero.
2716 	 */
2717 
2718 	/* two direct node blocks */
2719 	result += (leaf_count * 2);
2720 
2721 	/* two indirect node blocks */
2722 	leaf_count *= NIDS_PER_BLOCK;
2723 	result += (leaf_count * 2);
2724 
2725 	/* one double indirect node block */
2726 	leaf_count *= NIDS_PER_BLOCK;
2727 	result += leaf_count;
2728 
2729 	return result;
2730 }
2731 
__f2fs_commit_super(struct buffer_head *bh, struct f2fs_super_block *super)2732 static int __f2fs_commit_super(struct buffer_head *bh,
2733 			struct f2fs_super_block *super)
2734 {
2735 	lock_buffer(bh);
2736 	if (super)
2737 		memcpy(bh->b_data + F2FS_SUPER_OFFSET, super, sizeof(*super));
2738 	set_buffer_dirty(bh);
2739 	unlock_buffer(bh);
2740 
2741 	/* it's rare case, we can do fua all the time */
2742 	return __sync_dirty_buffer(bh, REQ_SYNC | REQ_PREFLUSH | REQ_FUA);
2743 }
2744 
sanity_check_area_boundary(struct f2fs_sb_info *sbi, struct buffer_head *bh)2745 static inline bool sanity_check_area_boundary(struct f2fs_sb_info *sbi,
2746 					struct buffer_head *bh)
2747 {
2748 	struct f2fs_super_block *raw_super = (struct f2fs_super_block *)
2749 					(bh->b_data + F2FS_SUPER_OFFSET);
2750 	struct super_block *sb = sbi->sb;
2751 	u32 segment0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr);
2752 	u32 cp_blkaddr = le32_to_cpu(raw_super->cp_blkaddr);
2753 	u32 sit_blkaddr = le32_to_cpu(raw_super->sit_blkaddr);
2754 	u32 nat_blkaddr = le32_to_cpu(raw_super->nat_blkaddr);
2755 	u32 ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr);
2756 	u32 main_blkaddr = le32_to_cpu(raw_super->main_blkaddr);
2757 	u32 segment_count_ckpt = le32_to_cpu(raw_super->segment_count_ckpt);
2758 	u32 segment_count_sit = le32_to_cpu(raw_super->segment_count_sit);
2759 	u32 segment_count_nat = le32_to_cpu(raw_super->segment_count_nat);
2760 	u32 segment_count_ssa = le32_to_cpu(raw_super->segment_count_ssa);
2761 	u32 segment_count_main = le32_to_cpu(raw_super->segment_count_main);
2762 	u32 segment_count = le32_to_cpu(raw_super->segment_count);
2763 	u32 log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg);
2764 	u64 main_end_blkaddr = main_blkaddr +
2765 				(segment_count_main << log_blocks_per_seg);
2766 	u64 seg_end_blkaddr = segment0_blkaddr +
2767 				(segment_count << log_blocks_per_seg);
2768 
2769 	if (segment0_blkaddr != cp_blkaddr) {
2770 		f2fs_info(sbi, "Mismatch start address, segment0(%u) cp_blkaddr(%u)",
2771 			  segment0_blkaddr, cp_blkaddr);
2772 		return true;
2773 	}
2774 
2775 	if (cp_blkaddr + (segment_count_ckpt << log_blocks_per_seg) !=
2776 							sit_blkaddr) {
2777 		f2fs_info(sbi, "Wrong CP boundary, start(%u) end(%u) blocks(%u)",
2778 			  cp_blkaddr, sit_blkaddr,
2779 			  segment_count_ckpt << log_blocks_per_seg);
2780 		return true;
2781 	}
2782 
2783 	if (sit_blkaddr + (segment_count_sit << log_blocks_per_seg) !=
2784 							nat_blkaddr) {
2785 		f2fs_info(sbi, "Wrong SIT boundary, start(%u) end(%u) blocks(%u)",
2786 			  sit_blkaddr, nat_blkaddr,
2787 			  segment_count_sit << log_blocks_per_seg);
2788 		return true;
2789 	}
2790 
2791 	if (nat_blkaddr + (segment_count_nat << log_blocks_per_seg) !=
2792 							ssa_blkaddr) {
2793 		f2fs_info(sbi, "Wrong NAT boundary, start(%u) end(%u) blocks(%u)",
2794 			  nat_blkaddr, ssa_blkaddr,
2795 			  segment_count_nat << log_blocks_per_seg);
2796 		return true;
2797 	}
2798 
2799 	if (ssa_blkaddr + (segment_count_ssa << log_blocks_per_seg) !=
2800 							main_blkaddr) {
2801 		f2fs_info(sbi, "Wrong SSA boundary, start(%u) end(%u) blocks(%u)",
2802 			  ssa_blkaddr, main_blkaddr,
2803 			  segment_count_ssa << log_blocks_per_seg);
2804 		return true;
2805 	}
2806 
2807 	if (main_end_blkaddr > seg_end_blkaddr) {
2808 		f2fs_info(sbi, "Wrong MAIN_AREA boundary, start(%u) end(%llu) block(%u)",
2809 			  main_blkaddr, seg_end_blkaddr,
2810 			  segment_count_main << log_blocks_per_seg);
2811 		return true;
2812 	} else if (main_end_blkaddr < seg_end_blkaddr) {
2813 		int err = 0;
2814 		char *res;
2815 
2816 		/* fix in-memory information all the time */
2817 		raw_super->segment_count = cpu_to_le32((main_end_blkaddr -
2818 				segment0_blkaddr) >> log_blocks_per_seg);
2819 
2820 		if (f2fs_readonly(sb) || bdev_read_only(sb->s_bdev)) {
2821 			set_sbi_flag(sbi, SBI_NEED_SB_WRITE);
2822 			res = "internally";
2823 		} else {
2824 			err = __f2fs_commit_super(bh, NULL);
2825 			res = err ? "failed" : "done";
2826 		}
2827 		f2fs_info(sbi, "Fix alignment : %s, start(%u) end(%llu) block(%u)",
2828 			  res, main_blkaddr, seg_end_blkaddr,
2829 			  segment_count_main << log_blocks_per_seg);
2830 		if (err)
2831 			return true;
2832 	}
2833 	return false;
2834 }
2835 
sanity_check_raw_super(struct f2fs_sb_info *sbi, struct buffer_head *bh)2836 static int sanity_check_raw_super(struct f2fs_sb_info *sbi,
2837 				struct buffer_head *bh)
2838 {
2839 	block_t segment_count, segs_per_sec, secs_per_zone, segment_count_main;
2840 	block_t total_sections, blocks_per_seg;
2841 	struct f2fs_super_block *raw_super = (struct f2fs_super_block *)
2842 					(bh->b_data + F2FS_SUPER_OFFSET);
2843 	size_t crc_offset = 0;
2844 	__u32 crc = 0;
2845 
2846 	if (le32_to_cpu(raw_super->magic) != F2FS_SUPER_MAGIC) {
2847 		f2fs_info(sbi, "Magic Mismatch, valid(0x%x) - read(0x%x)",
2848 			  F2FS_SUPER_MAGIC, le32_to_cpu(raw_super->magic));
2849 		return -EINVAL;
2850 	}
2851 
2852 	/* Check checksum_offset and crc in superblock */
2853 	if (__F2FS_HAS_FEATURE(raw_super, F2FS_FEATURE_SB_CHKSUM)) {
2854 		crc_offset = le32_to_cpu(raw_super->checksum_offset);
2855 		if (crc_offset !=
2856 			offsetof(struct f2fs_super_block, crc)) {
2857 			f2fs_info(sbi, "Invalid SB checksum offset: %zu",
2858 				  crc_offset);
2859 			return -EFSCORRUPTED;
2860 		}
2861 		crc = le32_to_cpu(raw_super->crc);
2862 		if (!f2fs_crc_valid(sbi, crc, raw_super, crc_offset)) {
2863 			f2fs_info(sbi, "Invalid SB checksum value: %u", crc);
2864 			return -EFSCORRUPTED;
2865 		}
2866 	}
2867 
2868 	/* Currently, support only 4KB page cache size */
2869 	if (F2FS_BLKSIZE != PAGE_SIZE) {
2870 		f2fs_info(sbi, "Invalid page_cache_size (%lu), supports only 4KB",
2871 			  PAGE_SIZE);
2872 		return -EFSCORRUPTED;
2873 	}
2874 
2875 	/* Currently, support only 4KB block size */
2876 	if (le32_to_cpu(raw_super->log_blocksize) != F2FS_BLKSIZE_BITS) {
2877 		f2fs_info(sbi, "Invalid log_blocksize (%u), supports only %u",
2878 			  le32_to_cpu(raw_super->log_blocksize),
2879 			  F2FS_BLKSIZE_BITS);
2880 		return -EFSCORRUPTED;
2881 	}
2882 
2883 	/* check log blocks per segment */
2884 	if (le32_to_cpu(raw_super->log_blocks_per_seg) != 9) {
2885 		f2fs_info(sbi, "Invalid log blocks per segment (%u)",
2886 			  le32_to_cpu(raw_super->log_blocks_per_seg));
2887 		return -EFSCORRUPTED;
2888 	}
2889 
2890 	/* Currently, support 512/1024/2048/4096 bytes sector size */
2891 	if (le32_to_cpu(raw_super->log_sectorsize) >
2892 				F2FS_MAX_LOG_SECTOR_SIZE ||
2893 		le32_to_cpu(raw_super->log_sectorsize) <
2894 				F2FS_MIN_LOG_SECTOR_SIZE) {
2895 		f2fs_info(sbi, "Invalid log sectorsize (%u)",
2896 			  le32_to_cpu(raw_super->log_sectorsize));
2897 		return -EFSCORRUPTED;
2898 	}
2899 	if (le32_to_cpu(raw_super->log_sectors_per_block) +
2900 		le32_to_cpu(raw_super->log_sectorsize) !=
2901 			F2FS_MAX_LOG_SECTOR_SIZE) {
2902 		f2fs_info(sbi, "Invalid log sectors per block(%u) log sectorsize(%u)",
2903 			  le32_to_cpu(raw_super->log_sectors_per_block),
2904 			  le32_to_cpu(raw_super->log_sectorsize));
2905 		return -EFSCORRUPTED;
2906 	}
2907 
2908 	segment_count = le32_to_cpu(raw_super->segment_count);
2909 	segment_count_main = le32_to_cpu(raw_super->segment_count_main);
2910 	segs_per_sec = le32_to_cpu(raw_super->segs_per_sec);
2911 	secs_per_zone = le32_to_cpu(raw_super->secs_per_zone);
2912 	total_sections = le32_to_cpu(raw_super->section_count);
2913 
2914 	/* blocks_per_seg should be 512, given the above check */
2915 	blocks_per_seg = 1 << le32_to_cpu(raw_super->log_blocks_per_seg);
2916 
2917 	if (segment_count > F2FS_MAX_SEGMENT ||
2918 				segment_count < F2FS_MIN_SEGMENTS) {
2919 		f2fs_info(sbi, "Invalid segment count (%u)", segment_count);
2920 		return -EFSCORRUPTED;
2921 	}
2922 
2923 	if (total_sections > segment_count_main || total_sections < 1 ||
2924 			segs_per_sec > segment_count || !segs_per_sec) {
2925 		f2fs_info(sbi, "Invalid segment/section count (%u, %u x %u)",
2926 			  segment_count, total_sections, segs_per_sec);
2927 		return -EFSCORRUPTED;
2928 	}
2929 
2930 	if (segment_count_main != total_sections * segs_per_sec) {
2931 		f2fs_info(sbi, "Invalid segment/section count (%u != %u * %u)",
2932 			  segment_count_main, total_sections, segs_per_sec);
2933 		return -EFSCORRUPTED;
2934 	}
2935 
2936 	if ((segment_count / segs_per_sec) < total_sections) {
2937 		f2fs_info(sbi, "Small segment_count (%u < %u * %u)",
2938 			  segment_count, segs_per_sec, total_sections);
2939 		return -EFSCORRUPTED;
2940 	}
2941 
2942 	if (segment_count > (le64_to_cpu(raw_super->block_count) >> 9)) {
2943 		f2fs_info(sbi, "Wrong segment_count / block_count (%u > %llu)",
2944 			  segment_count, le64_to_cpu(raw_super->block_count));
2945 		return -EFSCORRUPTED;
2946 	}
2947 
2948 	if (RDEV(0).path[0]) {
2949 		block_t dev_seg_count = le32_to_cpu(RDEV(0).total_segments);
2950 		int i = 1;
2951 
2952 		while (i < MAX_DEVICES && RDEV(i).path[0]) {
2953 			dev_seg_count += le32_to_cpu(RDEV(i).total_segments);
2954 			i++;
2955 		}
2956 		if (segment_count != dev_seg_count) {
2957 			f2fs_info(sbi, "Segment count (%u) mismatch with total segments from devices (%u)",
2958 					segment_count, dev_seg_count);
2959 			return -EFSCORRUPTED;
2960 		}
2961 	} else {
2962 		if (__F2FS_HAS_FEATURE(raw_super, F2FS_FEATURE_BLKZONED) &&
2963 					!bdev_is_zoned(sbi->sb->s_bdev)) {
2964 			f2fs_info(sbi, "Zoned block device path is missing");
2965 			return -EFSCORRUPTED;
2966 		}
2967 	}
2968 
2969 	if (secs_per_zone > total_sections || !secs_per_zone) {
2970 		f2fs_info(sbi, "Wrong secs_per_zone / total_sections (%u, %u)",
2971 			  secs_per_zone, total_sections);
2972 		return -EFSCORRUPTED;
2973 	}
2974 	if (le32_to_cpu(raw_super->extension_count) > F2FS_MAX_EXTENSION ||
2975 			raw_super->hot_ext_count > F2FS_MAX_EXTENSION ||
2976 			(le32_to_cpu(raw_super->extension_count) +
2977 			raw_super->hot_ext_count) > F2FS_MAX_EXTENSION) {
2978 		f2fs_info(sbi, "Corrupted extension count (%u + %u > %u)",
2979 			  le32_to_cpu(raw_super->extension_count),
2980 			  raw_super->hot_ext_count,
2981 			  F2FS_MAX_EXTENSION);
2982 		return -EFSCORRUPTED;
2983 	}
2984 
2985 	if (le32_to_cpu(raw_super->cp_payload) >=
2986 				(blocks_per_seg - F2FS_CP_PACKS -
2987 				NR_CURSEG_PERSIST_TYPE)) {
2988 		f2fs_info(sbi, "Insane cp_payload (%u >= %u)",
2989 			  le32_to_cpu(raw_super->cp_payload),
2990 			  blocks_per_seg - F2FS_CP_PACKS -
2991 			  NR_CURSEG_PERSIST_TYPE);
2992 		return -EFSCORRUPTED;
2993 	}
2994 
2995 	/* check reserved ino info */
2996 	if (le32_to_cpu(raw_super->node_ino) != 1 ||
2997 		le32_to_cpu(raw_super->meta_ino) != 2 ||
2998 		le32_to_cpu(raw_super->root_ino) != 3) {
2999 		f2fs_info(sbi, "Invalid Fs Meta Ino: node(%u) meta(%u) root(%u)",
3000 			  le32_to_cpu(raw_super->node_ino),
3001 			  le32_to_cpu(raw_super->meta_ino),
3002 			  le32_to_cpu(raw_super->root_ino));
3003 		return -EFSCORRUPTED;
3004 	}
3005 
3006 	/* check CP/SIT/NAT/SSA/MAIN_AREA area boundary */
3007 	if (sanity_check_area_boundary(sbi, bh))
3008 		return -EFSCORRUPTED;
3009 
3010 	return 0;
3011 }
3012 
f2fs_sanity_check_ckpt(struct f2fs_sb_info *sbi)3013 int f2fs_sanity_check_ckpt(struct f2fs_sb_info *sbi)
3014 {
3015 	unsigned int total, fsmeta;
3016 	struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
3017 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
3018 	unsigned int ovp_segments, reserved_segments;
3019 	unsigned int main_segs, blocks_per_seg;
3020 	unsigned int sit_segs, nat_segs;
3021 	unsigned int sit_bitmap_size, nat_bitmap_size;
3022 	unsigned int log_blocks_per_seg;
3023 	unsigned int segment_count_main;
3024 	unsigned int cp_pack_start_sum, cp_payload;
3025 	block_t user_block_count, valid_user_blocks;
3026 	block_t avail_node_count, valid_node_count;
3027 	unsigned int nat_blocks, nat_bits_bytes, nat_bits_blocks;
3028 	int i, j;
3029 
3030 	total = le32_to_cpu(raw_super->segment_count);
3031 	fsmeta = le32_to_cpu(raw_super->segment_count_ckpt);
3032 	sit_segs = le32_to_cpu(raw_super->segment_count_sit);
3033 	fsmeta += sit_segs;
3034 	nat_segs = le32_to_cpu(raw_super->segment_count_nat);
3035 	fsmeta += nat_segs;
3036 	fsmeta += le32_to_cpu(ckpt->rsvd_segment_count);
3037 	fsmeta += le32_to_cpu(raw_super->segment_count_ssa);
3038 
3039 	if (unlikely(fsmeta >= total))
3040 		return 1;
3041 
3042 	ovp_segments = le32_to_cpu(ckpt->overprov_segment_count);
3043 	reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count);
3044 
3045 	if (unlikely(fsmeta < F2FS_MIN_META_SEGMENTS ||
3046 			ovp_segments == 0 || reserved_segments == 0)) {
3047 		f2fs_err(sbi, "Wrong layout: check mkfs.f2fs version");
3048 		return 1;
3049 	}
3050 
3051 	user_block_count = le64_to_cpu(ckpt->user_block_count);
3052 	segment_count_main = le32_to_cpu(raw_super->segment_count_main);
3053 	log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg);
3054 	if (!user_block_count || user_block_count >=
3055 			segment_count_main << log_blocks_per_seg) {
3056 		f2fs_err(sbi, "Wrong user_block_count: %u",
3057 			 user_block_count);
3058 		return 1;
3059 	}
3060 
3061 	valid_user_blocks = le64_to_cpu(ckpt->valid_block_count);
3062 	if (valid_user_blocks > user_block_count) {
3063 		f2fs_err(sbi, "Wrong valid_user_blocks: %u, user_block_count: %u",
3064 			 valid_user_blocks, user_block_count);
3065 		return 1;
3066 	}
3067 
3068 	valid_node_count = le32_to_cpu(ckpt->valid_node_count);
3069 	avail_node_count = sbi->total_node_count - F2FS_RESERVED_NODE_NUM;
3070 	if (valid_node_count > avail_node_count) {
3071 		f2fs_err(sbi, "Wrong valid_node_count: %u, avail_node_count: %u",
3072 			 valid_node_count, avail_node_count);
3073 		return 1;
3074 	}
3075 
3076 	main_segs = le32_to_cpu(raw_super->segment_count_main);
3077 	blocks_per_seg = sbi->blocks_per_seg;
3078 
3079 	for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) {
3080 		if (le32_to_cpu(ckpt->cur_node_segno[i]) >= main_segs ||
3081 			le16_to_cpu(ckpt->cur_node_blkoff[i]) >= blocks_per_seg)
3082 			return 1;
3083 		for (j = i + 1; j < NR_CURSEG_NODE_TYPE; j++) {
3084 			if (le32_to_cpu(ckpt->cur_node_segno[i]) ==
3085 				le32_to_cpu(ckpt->cur_node_segno[j])) {
3086 				f2fs_err(sbi, "Node segment (%u, %u) has the same segno: %u",
3087 					 i, j,
3088 					 le32_to_cpu(ckpt->cur_node_segno[i]));
3089 				return 1;
3090 			}
3091 		}
3092 	}
3093 	for (i = 0; i < NR_CURSEG_DATA_TYPE; i++) {
3094 		if (le32_to_cpu(ckpt->cur_data_segno[i]) >= main_segs ||
3095 			le16_to_cpu(ckpt->cur_data_blkoff[i]) >= blocks_per_seg)
3096 			return 1;
3097 		for (j = i + 1; j < NR_CURSEG_DATA_TYPE; j++) {
3098 			if (le32_to_cpu(ckpt->cur_data_segno[i]) ==
3099 				le32_to_cpu(ckpt->cur_data_segno[j])) {
3100 				f2fs_err(sbi, "Data segment (%u, %u) has the same segno: %u",
3101 					 i, j,
3102 					 le32_to_cpu(ckpt->cur_data_segno[i]));
3103 				return 1;
3104 			}
3105 		}
3106 	}
3107 	for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) {
3108 		for (j = 0; j < NR_CURSEG_DATA_TYPE; j++) {
3109 			if (le32_to_cpu(ckpt->cur_node_segno[i]) ==
3110 				le32_to_cpu(ckpt->cur_data_segno[j])) {
3111 				f2fs_err(sbi, "Node segment (%u) and Data segment (%u) has the same segno: %u",
3112 					 i, j,
3113 					 le32_to_cpu(ckpt->cur_node_segno[i]));
3114 				return 1;
3115 			}
3116 		}
3117 	}
3118 
3119 	sit_bitmap_size = le32_to_cpu(ckpt->sit_ver_bitmap_bytesize);
3120 	nat_bitmap_size = le32_to_cpu(ckpt->nat_ver_bitmap_bytesize);
3121 
3122 	if (sit_bitmap_size != ((sit_segs / 2) << log_blocks_per_seg) / 8 ||
3123 		nat_bitmap_size != ((nat_segs / 2) << log_blocks_per_seg) / 8) {
3124 		f2fs_err(sbi, "Wrong bitmap size: sit: %u, nat:%u",
3125 			 sit_bitmap_size, nat_bitmap_size);
3126 		return 1;
3127 	}
3128 
3129 	cp_pack_start_sum = __start_sum_addr(sbi);
3130 	cp_payload = __cp_payload(sbi);
3131 	if (cp_pack_start_sum < cp_payload + 1 ||
3132 		cp_pack_start_sum > blocks_per_seg - 1 -
3133 			NR_CURSEG_PERSIST_TYPE) {
3134 		f2fs_err(sbi, "Wrong cp_pack_start_sum: %u",
3135 			 cp_pack_start_sum);
3136 		return 1;
3137 	}
3138 
3139 	if (__is_set_ckpt_flags(ckpt, CP_LARGE_NAT_BITMAP_FLAG) &&
3140 		le32_to_cpu(ckpt->checksum_offset) != CP_MIN_CHKSUM_OFFSET) {
3141 		f2fs_warn(sbi, "using deprecated layout of large_nat_bitmap, "
3142 			  "please run fsck v1.13.0 or higher to repair, chksum_offset: %u, "
3143 			  "fixed with patch: \"f2fs-tools: relocate chksum_offset for large_nat_bitmap feature\"",
3144 			  le32_to_cpu(ckpt->checksum_offset));
3145 		return 1;
3146 	}
3147 
3148 	nat_blocks = nat_segs << log_blocks_per_seg;
3149 	nat_bits_bytes = nat_blocks / BITS_PER_BYTE;
3150 	nat_bits_blocks = F2FS_BLK_ALIGN((nat_bits_bytes << 1) + 8);
3151 	if (__is_set_ckpt_flags(ckpt, CP_NAT_BITS_FLAG) &&
3152 		(cp_payload + F2FS_CP_PACKS +
3153 		NR_CURSEG_PERSIST_TYPE + nat_bits_blocks >= blocks_per_seg)) {
3154 		f2fs_warn(sbi, "Insane cp_payload: %u, nat_bits_blocks: %u)",
3155 			  cp_payload, nat_bits_blocks);
3156 		return 1;
3157 	}
3158 
3159 	if (unlikely(f2fs_cp_error(sbi))) {
3160 		f2fs_err(sbi, "A bug case: need to run fsck");
3161 		return 1;
3162 	}
3163 	return 0;
3164 }
3165 
init_sb_info(struct f2fs_sb_info *sbi)3166 static void init_sb_info(struct f2fs_sb_info *sbi)
3167 {
3168 	struct f2fs_super_block *raw_super = sbi->raw_super;
3169 	int i;
3170 
3171 	sbi->log_sectors_per_block =
3172 		le32_to_cpu(raw_super->log_sectors_per_block);
3173 	sbi->log_blocksize = le32_to_cpu(raw_super->log_blocksize);
3174 	sbi->blocksize = 1 << sbi->log_blocksize;
3175 	sbi->log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg);
3176 	sbi->blocks_per_seg = 1 << sbi->log_blocks_per_seg;
3177 	sbi->segs_per_sec = le32_to_cpu(raw_super->segs_per_sec);
3178 	sbi->secs_per_zone = le32_to_cpu(raw_super->secs_per_zone);
3179 	sbi->total_sections = le32_to_cpu(raw_super->section_count);
3180 	sbi->total_node_count =
3181 		(le32_to_cpu(raw_super->segment_count_nat) / 2)
3182 			* sbi->blocks_per_seg * NAT_ENTRY_PER_BLOCK;
3183 	sbi->root_ino_num = le32_to_cpu(raw_super->root_ino);
3184 	sbi->node_ino_num = le32_to_cpu(raw_super->node_ino);
3185 	sbi->meta_ino_num = le32_to_cpu(raw_super->meta_ino);
3186 	sbi->cur_victim_sec = NULL_SECNO;
3187 	sbi->next_victim_seg[BG_GC] = NULL_SEGNO;
3188 	sbi->next_victim_seg[FG_GC] = NULL_SEGNO;
3189 	sbi->max_victim_search = DEF_MAX_VICTIM_SEARCH;
3190 	sbi->migration_granularity = sbi->segs_per_sec;
3191 
3192 	sbi->dir_level = DEF_DIR_LEVEL;
3193 	sbi->interval_time[CP_TIME] = DEF_CP_INTERVAL;
3194 	sbi->interval_time[REQ_TIME] = DEF_IDLE_INTERVAL;
3195 	sbi->interval_time[DISCARD_TIME] = DEF_IDLE_INTERVAL;
3196 	sbi->interval_time[GC_TIME] = DEF_IDLE_INTERVAL;
3197 	sbi->interval_time[DISABLE_TIME] = DEF_DISABLE_INTERVAL;
3198 	sbi->interval_time[UMOUNT_DISCARD_TIMEOUT] =
3199 				DEF_UMOUNT_DISCARD_TIMEOUT;
3200 	clear_sbi_flag(sbi, SBI_NEED_FSCK);
3201 
3202 	for (i = 0; i < NR_COUNT_TYPE; i++)
3203 		atomic_set(&sbi->nr_pages[i], 0);
3204 
3205 	for (i = 0; i < META; i++)
3206 		atomic_set(&sbi->wb_sync_req[i], 0);
3207 
3208 	INIT_LIST_HEAD(&sbi->s_list);
3209 	mutex_init(&sbi->umount_mutex);
3210 	init_rwsem(&sbi->io_order_lock);
3211 	spin_lock_init(&sbi->cp_lock);
3212 
3213 	sbi->dirty_device = 0;
3214 	spin_lock_init(&sbi->dev_lock);
3215 
3216 	init_rwsem(&sbi->sb_lock);
3217 	init_rwsem(&sbi->pin_sem);
3218 }
3219 
init_percpu_info(struct f2fs_sb_info *sbi)3220 static int init_percpu_info(struct f2fs_sb_info *sbi)
3221 {
3222 	int err;
3223 
3224 	err = percpu_counter_init(&sbi->alloc_valid_block_count, 0, GFP_KERNEL);
3225 	if (err)
3226 		return err;
3227 
3228 	err = percpu_counter_init(&sbi->total_valid_inode_count, 0,
3229 								GFP_KERNEL);
3230 	if (err)
3231 		percpu_counter_destroy(&sbi->alloc_valid_block_count);
3232 
3233 	return err;
3234 }
3235 
3236 #ifdef CONFIG_BLK_DEV_ZONED
3237 
3238 struct f2fs_report_zones_args {
3239 	struct f2fs_sb_info *sbi;
3240 	struct f2fs_dev_info *dev;
3241 };
3242 
f2fs_report_zone_cb(struct blk_zone *zone, unsigned int idx, void *data)3243 static int f2fs_report_zone_cb(struct blk_zone *zone, unsigned int idx,
3244 			      void *data)
3245 {
3246 	struct f2fs_report_zones_args *rz_args = data;
3247 	block_t unusable_blocks = (zone->len - zone->capacity) >>
3248 					F2FS_LOG_SECTORS_PER_BLOCK;
3249 
3250 	if (zone->type == BLK_ZONE_TYPE_CONVENTIONAL)
3251 		return 0;
3252 
3253 	set_bit(idx, rz_args->dev->blkz_seq);
3254 	if (!rz_args->sbi->unusable_blocks_per_sec) {
3255 		rz_args->sbi->unusable_blocks_per_sec = unusable_blocks;
3256 		return 0;
3257 	}
3258 	if (rz_args->sbi->unusable_blocks_per_sec != unusable_blocks) {
3259 		f2fs_err(rz_args->sbi, "F2FS supports single zone capacity\n");
3260 		return -EINVAL;
3261 	}
3262 	return 0;
3263 }
3264 
init_blkz_info(struct f2fs_sb_info *sbi, int devi)3265 static int init_blkz_info(struct f2fs_sb_info *sbi, int devi)
3266 {
3267 	struct block_device *bdev = FDEV(devi).bdev;
3268 	sector_t nr_sectors = bdev->bd_part->nr_sects;
3269 	struct f2fs_report_zones_args rep_zone_arg;
3270 	int ret;
3271 
3272 	if (!f2fs_sb_has_blkzoned(sbi))
3273 		return 0;
3274 
3275 	if (sbi->blocks_per_blkz && sbi->blocks_per_blkz !=
3276 				SECTOR_TO_BLOCK(bdev_zone_sectors(bdev)))
3277 		return -EINVAL;
3278 	sbi->blocks_per_blkz = SECTOR_TO_BLOCK(bdev_zone_sectors(bdev));
3279 	if (sbi->log_blocks_per_blkz && sbi->log_blocks_per_blkz !=
3280 				__ilog2_u32(sbi->blocks_per_blkz))
3281 		return -EINVAL;
3282 	sbi->log_blocks_per_blkz = __ilog2_u32(sbi->blocks_per_blkz);
3283 	FDEV(devi).nr_blkz = SECTOR_TO_BLOCK(nr_sectors) >>
3284 					sbi->log_blocks_per_blkz;
3285 	if (nr_sectors & (bdev_zone_sectors(bdev) - 1))
3286 		FDEV(devi).nr_blkz++;
3287 
3288 	FDEV(devi).blkz_seq = f2fs_kvzalloc(sbi,
3289 					BITS_TO_LONGS(FDEV(devi).nr_blkz)
3290 					* sizeof(unsigned long),
3291 					GFP_KERNEL);
3292 	if (!FDEV(devi).blkz_seq)
3293 		return -ENOMEM;
3294 
3295 	rep_zone_arg.sbi = sbi;
3296 	rep_zone_arg.dev = &FDEV(devi);
3297 
3298 	ret = blkdev_report_zones(bdev, 0, BLK_ALL_ZONES, f2fs_report_zone_cb,
3299 				  &rep_zone_arg);
3300 	if (ret < 0)
3301 		return ret;
3302 	return 0;
3303 }
3304 #endif
3305 
3306 /*
3307  * Read f2fs raw super block.
3308  * Because we have two copies of super block, so read both of them
3309  * to get the first valid one. If any one of them is broken, we pass
3310  * them recovery flag back to the caller.
3311  */
read_raw_super_block(struct f2fs_sb_info *sbi, struct f2fs_super_block **raw_super, int *valid_super_block, int *recovery)3312 static int read_raw_super_block(struct f2fs_sb_info *sbi,
3313 			struct f2fs_super_block **raw_super,
3314 			int *valid_super_block, int *recovery)
3315 {
3316 	struct super_block *sb = sbi->sb;
3317 	int block;
3318 	struct buffer_head *bh;
3319 	struct f2fs_super_block *super;
3320 	int err = 0;
3321 
3322 	super = kzalloc(sizeof(struct f2fs_super_block), GFP_KERNEL);
3323 	if (!super)
3324 		return -ENOMEM;
3325 
3326 	for (block = 0; block < 2; block++) {
3327 		bh = sb_bread(sb, block);
3328 		if (!bh) {
3329 			f2fs_err(sbi, "Unable to read %dth superblock",
3330 				 block + 1);
3331 			err = -EIO;
3332 			*recovery = 1;
3333 			continue;
3334 		}
3335 
3336 		/* sanity checking of raw super */
3337 		err = sanity_check_raw_super(sbi, bh);
3338 		if (err) {
3339 			f2fs_err(sbi, "Can't find valid F2FS filesystem in %dth superblock",
3340 				 block + 1);
3341 			brelse(bh);
3342 			*recovery = 1;
3343 			continue;
3344 		}
3345 
3346 		if (!*raw_super) {
3347 			memcpy(super, bh->b_data + F2FS_SUPER_OFFSET,
3348 							sizeof(*super));
3349 			*valid_super_block = block;
3350 			*raw_super = super;
3351 		}
3352 		brelse(bh);
3353 	}
3354 
3355 	/* No valid superblock */
3356 	if (!*raw_super)
3357 		kfree(super);
3358 	else
3359 		err = 0;
3360 
3361 	return err;
3362 }
3363 
f2fs_commit_super(struct f2fs_sb_info *sbi, bool recover)3364 int f2fs_commit_super(struct f2fs_sb_info *sbi, bool recover)
3365 {
3366 	struct buffer_head *bh;
3367 	__u32 crc = 0;
3368 	int err;
3369 
3370 	if ((recover && f2fs_readonly(sbi->sb)) ||
3371 				bdev_read_only(sbi->sb->s_bdev)) {
3372 		set_sbi_flag(sbi, SBI_NEED_SB_WRITE);
3373 		return -EROFS;
3374 	}
3375 
3376 	/* we should update superblock crc here */
3377 	if (!recover && f2fs_sb_has_sb_chksum(sbi)) {
3378 		crc = f2fs_crc32(sbi, F2FS_RAW_SUPER(sbi),
3379 				offsetof(struct f2fs_super_block, crc));
3380 		F2FS_RAW_SUPER(sbi)->crc = cpu_to_le32(crc);
3381 	}
3382 
3383 	/* write back-up superblock first */
3384 	bh = sb_bread(sbi->sb, sbi->valid_super_block ? 0 : 1);
3385 	if (!bh)
3386 		return -EIO;
3387 	err = __f2fs_commit_super(bh, F2FS_RAW_SUPER(sbi));
3388 	brelse(bh);
3389 
3390 	/* if we are in recovery path, skip writing valid superblock */
3391 	if (recover || err)
3392 		return err;
3393 
3394 	/* write current valid superblock */
3395 	bh = sb_bread(sbi->sb, sbi->valid_super_block);
3396 	if (!bh)
3397 		return -EIO;
3398 	err = __f2fs_commit_super(bh, F2FS_RAW_SUPER(sbi));
3399 	brelse(bh);
3400 	return err;
3401 }
3402 
f2fs_scan_devices(struct f2fs_sb_info *sbi)3403 static int f2fs_scan_devices(struct f2fs_sb_info *sbi)
3404 {
3405 	struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
3406 	unsigned int max_devices = MAX_DEVICES;
3407 	int i;
3408 
3409 	/* Initialize single device information */
3410 	if (!RDEV(0).path[0]) {
3411 		if (!bdev_is_zoned(sbi->sb->s_bdev))
3412 			return 0;
3413 		max_devices = 1;
3414 	}
3415 
3416 	/*
3417 	 * Initialize multiple devices information, or single
3418 	 * zoned block device information.
3419 	 */
3420 	sbi->devs = f2fs_kzalloc(sbi,
3421 				 array_size(max_devices,
3422 					    sizeof(struct f2fs_dev_info)),
3423 				 GFP_KERNEL);
3424 	if (!sbi->devs)
3425 		return -ENOMEM;
3426 
3427 	for (i = 0; i < max_devices; i++) {
3428 
3429 		if (i > 0 && !RDEV(i).path[0])
3430 			break;
3431 
3432 		if (max_devices == 1) {
3433 			/* Single zoned block device mount */
3434 			FDEV(0).bdev =
3435 				blkdev_get_by_dev(sbi->sb->s_bdev->bd_dev,
3436 					sbi->sb->s_mode, sbi->sb->s_type);
3437 		} else {
3438 			/* Multi-device mount */
3439 			memcpy(FDEV(i).path, RDEV(i).path, MAX_PATH_LEN);
3440 			FDEV(i).total_segments =
3441 				le32_to_cpu(RDEV(i).total_segments);
3442 			if (i == 0) {
3443 				FDEV(i).start_blk = 0;
3444 				FDEV(i).end_blk = FDEV(i).start_blk +
3445 				    (FDEV(i).total_segments <<
3446 				    sbi->log_blocks_per_seg) - 1 +
3447 				    le32_to_cpu(raw_super->segment0_blkaddr);
3448 			} else {
3449 				FDEV(i).start_blk = FDEV(i - 1).end_blk + 1;
3450 				FDEV(i).end_blk = FDEV(i).start_blk +
3451 					(FDEV(i).total_segments <<
3452 					sbi->log_blocks_per_seg) - 1;
3453 			}
3454 			FDEV(i).bdev = blkdev_get_by_path(FDEV(i).path,
3455 					sbi->sb->s_mode, sbi->sb->s_type);
3456 		}
3457 		if (IS_ERR(FDEV(i).bdev))
3458 			return PTR_ERR(FDEV(i).bdev);
3459 
3460 		/* to release errored devices */
3461 		sbi->s_ndevs = i + 1;
3462 
3463 #ifdef CONFIG_BLK_DEV_ZONED
3464 		if (bdev_zoned_model(FDEV(i).bdev) == BLK_ZONED_HM &&
3465 				!f2fs_sb_has_blkzoned(sbi)) {
3466 			f2fs_err(sbi, "Zoned block device feature not enabled\n");
3467 			return -EINVAL;
3468 		}
3469 		if (bdev_zoned_model(FDEV(i).bdev) != BLK_ZONED_NONE) {
3470 			if (init_blkz_info(sbi, i)) {
3471 				f2fs_err(sbi, "Failed to initialize F2FS blkzone information");
3472 				return -EINVAL;
3473 			}
3474 			if (max_devices == 1)
3475 				break;
3476 			f2fs_info(sbi, "Mount Device [%2d]: %20s, %8u, %8x - %8x (zone: %s)",
3477 				  i, FDEV(i).path,
3478 				  FDEV(i).total_segments,
3479 				  FDEV(i).start_blk, FDEV(i).end_blk,
3480 				  bdev_zoned_model(FDEV(i).bdev) == BLK_ZONED_HA ?
3481 				  "Host-aware" : "Host-managed");
3482 			continue;
3483 		}
3484 #endif
3485 		f2fs_info(sbi, "Mount Device [%2d]: %20s, %8u, %8x - %8x",
3486 			  i, FDEV(i).path,
3487 			  FDEV(i).total_segments,
3488 			  FDEV(i).start_blk, FDEV(i).end_blk);
3489 	}
3490 	f2fs_info(sbi,
3491 		  "IO Block Size: %8d KB", F2FS_IO_SIZE_KB(sbi));
3492 	return 0;
3493 }
3494 
f2fs_setup_casefold(struct f2fs_sb_info *sbi)3495 static int f2fs_setup_casefold(struct f2fs_sb_info *sbi)
3496 {
3497 #ifdef CONFIG_UNICODE
3498 	if (f2fs_sb_has_casefold(sbi) && !sbi->sb->s_encoding) {
3499 		const struct f2fs_sb_encodings *encoding_info;
3500 		struct unicode_map *encoding;
3501 		__u16 encoding_flags;
3502 
3503 		if (f2fs_sb_has_encrypt(sbi)) {
3504 			f2fs_err(sbi,
3505 				"Can't mount with encoding and encryption");
3506 			return -EINVAL;
3507 		}
3508 
3509 		if (f2fs_sb_read_encoding(sbi->raw_super, &encoding_info,
3510 					  &encoding_flags)) {
3511 			f2fs_err(sbi,
3512 				 "Encoding requested by superblock is unknown");
3513 			return -EINVAL;
3514 		}
3515 
3516 		encoding = utf8_load(encoding_info->version);
3517 		if (IS_ERR(encoding)) {
3518 			f2fs_err(sbi,
3519 				 "can't mount with superblock charset: %s-%s "
3520 				 "not supported by the kernel. flags: 0x%x.",
3521 				 encoding_info->name, encoding_info->version,
3522 				 encoding_flags);
3523 			return PTR_ERR(encoding);
3524 		}
3525 		f2fs_info(sbi, "Using encoding defined by superblock: "
3526 			 "%s-%s with flags 0x%hx", encoding_info->name,
3527 			 encoding_info->version?:"\b", encoding_flags);
3528 
3529 		sbi->sb->s_encoding = encoding;
3530 		sbi->sb->s_encoding_flags = encoding_flags;
3531 		sbi->sb->s_d_op = &f2fs_dentry_ops;
3532 	}
3533 #else
3534 	if (f2fs_sb_has_casefold(sbi)) {
3535 		f2fs_err(sbi, "Filesystem with casefold feature cannot be mounted without CONFIG_UNICODE");
3536 		return -EINVAL;
3537 	}
3538 #endif
3539 	return 0;
3540 }
3541 
f2fs_tuning_parameters(struct f2fs_sb_info *sbi)3542 static void f2fs_tuning_parameters(struct f2fs_sb_info *sbi)
3543 {
3544 	struct f2fs_sm_info *sm_i = SM_I(sbi);
3545 
3546 	/* adjust parameters according to the volume size */
3547 	if (sm_i->main_segments <= SMALL_VOLUME_SEGMENTS) {
3548 		F2FS_OPTION(sbi).alloc_mode = ALLOC_MODE_REUSE;
3549 		sm_i->dcc_info->discard_granularity = 1;
3550 		sm_i->ipu_policy = 1 << F2FS_IPU_FORCE;
3551 	}
3552 
3553 	sbi->readdir_ra = 1;
3554 }
3555 
3556 #ifdef CONFIG_F2FS_GRADING_SSR
f2fs_init_grading_ssr(struct f2fs_sb_info *sbi)3557 static void f2fs_init_grading_ssr(struct f2fs_sb_info *sbi)
3558 {
3559 	u32 total_blocks = le64_to_cpu(sbi->raw_super->block_count) >> 18;
3560 
3561 	if (total_blocks > 64) { /* 64G */
3562 		sbi->hot_cold_params.hot_data_lower_limit = SSR_HD_SAPCE_LIMIT_128G;
3563 		sbi->hot_cold_params.hot_data_waterline = SSR_HD_WATERLINE_128G;
3564 		sbi->hot_cold_params.warm_data_lower_limit = SSR_WD_SAPCE_LIMIT_128G;
3565 		sbi->hot_cold_params.warm_data_waterline = SSR_WD_WATERLINE_128G;
3566 		sbi->hot_cold_params.hot_node_lower_limit = SSR_HD_SAPCE_LIMIT_128G;
3567 		sbi->hot_cold_params.hot_node_waterline = SSR_HN_WATERLINE_128G;
3568 		sbi->hot_cold_params.warm_node_lower_limit = SSR_WN_SAPCE_LIMIT_128G;
3569 		sbi->hot_cold_params.warm_node_waterline = SSR_WN_WATERLINE_128G;
3570 		sbi->hot_cold_params.enable = GRADING_SSR_OFF;
3571 	} else {
3572 		sbi->hot_cold_params.hot_data_lower_limit = SSR_DEFALT_SPACE_LIMIT;
3573 		sbi->hot_cold_params.hot_data_waterline = SSR_DEFALT_WATERLINE;
3574 		sbi->hot_cold_params.warm_data_lower_limit = SSR_DEFALT_SPACE_LIMIT;
3575 		sbi->hot_cold_params.warm_data_waterline = SSR_DEFALT_WATERLINE;
3576 		sbi->hot_cold_params.hot_node_lower_limit = SSR_DEFALT_SPACE_LIMIT;
3577 		sbi->hot_cold_params.hot_node_waterline = SSR_DEFALT_WATERLINE;
3578 		sbi->hot_cold_params.warm_node_lower_limit = SSR_DEFALT_SPACE_LIMIT;
3579 		sbi->hot_cold_params.warm_node_waterline = SSR_DEFALT_WATERLINE;
3580 		sbi->hot_cold_params.enable = GRADING_SSR_OFF;
3581 	}
3582 }
3583 #endif
3584 
f2fs_fill_super(struct super_block *sb, void *data, int silent)3585 static int f2fs_fill_super(struct super_block *sb, void *data, int silent)
3586 {
3587 	struct f2fs_sb_info *sbi;
3588 	struct f2fs_super_block *raw_super;
3589 	struct inode *root;
3590 	int err;
3591 	bool skip_recovery = false, need_fsck = false;
3592 	char *options = NULL;
3593 	int recovery, i, valid_super_block;
3594 	struct curseg_info *seg_i;
3595 	int retry_cnt = 1;
3596 
3597 try_onemore:
3598 	err = -EINVAL;
3599 	raw_super = NULL;
3600 	valid_super_block = -1;
3601 	recovery = 0;
3602 
3603 	/* allocate memory for f2fs-specific super block info */
3604 	sbi = kzalloc(sizeof(struct f2fs_sb_info), GFP_KERNEL);
3605 	if (!sbi)
3606 		return -ENOMEM;
3607 
3608 	sbi->sb = sb;
3609 
3610 	/* Load the checksum driver */
3611 	sbi->s_chksum_driver = crypto_alloc_shash("crc32", 0, 0);
3612 	if (IS_ERR(sbi->s_chksum_driver)) {
3613 		f2fs_err(sbi, "Cannot load crc32 driver.");
3614 		err = PTR_ERR(sbi->s_chksum_driver);
3615 		sbi->s_chksum_driver = NULL;
3616 		goto free_sbi;
3617 	}
3618 
3619 	/* set a block size */
3620 	if (unlikely(!sb_set_blocksize(sb, F2FS_BLKSIZE))) {
3621 		f2fs_err(sbi, "unable to set blocksize");
3622 		goto free_sbi;
3623 	}
3624 
3625 	err = read_raw_super_block(sbi, &raw_super, &valid_super_block,
3626 								&recovery);
3627 	if (err)
3628 		goto free_sbi;
3629 
3630 	sb->s_fs_info = sbi;
3631 	sbi->raw_super = raw_super;
3632 
3633 	/* precompute checksum seed for metadata */
3634 	if (f2fs_sb_has_inode_chksum(sbi))
3635 		sbi->s_chksum_seed = f2fs_chksum(sbi, ~0, raw_super->uuid,
3636 						sizeof(raw_super->uuid));
3637 
3638 	default_options(sbi);
3639 	/* parse mount options */
3640 	options = kstrdup((const char *)data, GFP_KERNEL);
3641 	if (data && !options) {
3642 		err = -ENOMEM;
3643 		goto free_sb_buf;
3644 	}
3645 
3646 	err = parse_options(sb, options, false);
3647 	if (err)
3648 		goto free_options;
3649 
3650 	sbi->max_file_blocks = max_file_blocks();
3651 	sb->s_maxbytes = sbi->max_file_blocks <<
3652 				le32_to_cpu(raw_super->log_blocksize);
3653 	sb->s_max_links = F2FS_LINK_MAX;
3654 
3655 	err = f2fs_setup_casefold(sbi);
3656 	if (err)
3657 		goto free_options;
3658 
3659 #ifdef CONFIG_QUOTA
3660 	sb->dq_op = &f2fs_quota_operations;
3661 	sb->s_qcop = &f2fs_quotactl_ops;
3662 	sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP | QTYPE_MASK_PRJ;
3663 
3664 	if (f2fs_sb_has_quota_ino(sbi)) {
3665 		for (i = 0; i < MAXQUOTAS; i++) {
3666 			if (f2fs_qf_ino(sbi->sb, i))
3667 				sbi->nquota_files++;
3668 		}
3669 	}
3670 #endif
3671 
3672 	sb->s_op = &f2fs_sops;
3673 #ifdef CONFIG_FS_ENCRYPTION
3674 	sb->s_cop = &f2fs_cryptops;
3675 #endif
3676 #ifdef CONFIG_FS_VERITY
3677 	sb->s_vop = &f2fs_verityops;
3678 #endif
3679 	sb->s_xattr = f2fs_xattr_handlers;
3680 	sb->s_export_op = &f2fs_export_ops;
3681 	sb->s_magic = F2FS_SUPER_MAGIC;
3682 	sb->s_time_gran = 1;
3683 	sb->s_flags = (sb->s_flags & ~SB_POSIXACL) |
3684 		(test_opt(sbi, POSIX_ACL) ? SB_POSIXACL : 0);
3685 	memcpy(&sb->s_uuid, raw_super->uuid, sizeof(raw_super->uuid));
3686 	sb->s_iflags |= SB_I_CGROUPWB;
3687 
3688 	/* init f2fs-specific super block info */
3689 	sbi->valid_super_block = valid_super_block;
3690 	init_rwsem(&sbi->gc_lock);
3691 	mutex_init(&sbi->writepages);
3692 	mutex_init(&sbi->cp_mutex);
3693 	init_rwsem(&sbi->node_write);
3694 	init_rwsem(&sbi->node_change);
3695 
3696 	/* disallow all the data/node/meta page writes */
3697 	set_sbi_flag(sbi, SBI_POR_DOING);
3698 	spin_lock_init(&sbi->stat_lock);
3699 
3700 	/* init iostat info */
3701 	spin_lock_init(&sbi->iostat_lock);
3702 	sbi->iostat_enable = false;
3703 	sbi->iostat_period_ms = DEFAULT_IOSTAT_PERIOD_MS;
3704 
3705 	for (i = 0; i < NR_PAGE_TYPE; i++) {
3706 		int n = (i == META) ? 1: NR_TEMP_TYPE;
3707 		int j;
3708 
3709 		sbi->write_io[i] =
3710 			f2fs_kmalloc(sbi,
3711 				     array_size(n,
3712 						sizeof(struct f2fs_bio_info)),
3713 				     GFP_KERNEL);
3714 		if (!sbi->write_io[i]) {
3715 			err = -ENOMEM;
3716 			goto free_bio_info;
3717 		}
3718 
3719 		for (j = HOT; j < n; j++) {
3720 			init_rwsem(&sbi->write_io[i][j].io_rwsem);
3721 			sbi->write_io[i][j].sbi = sbi;
3722 			sbi->write_io[i][j].bio = NULL;
3723 			spin_lock_init(&sbi->write_io[i][j].io_lock);
3724 			INIT_LIST_HEAD(&sbi->write_io[i][j].io_list);
3725 			INIT_LIST_HEAD(&sbi->write_io[i][j].bio_list);
3726 			init_rwsem(&sbi->write_io[i][j].bio_list_lock);
3727 		}
3728 	}
3729 
3730 	init_rwsem(&sbi->cp_rwsem);
3731 	init_rwsem(&sbi->quota_sem);
3732 	init_waitqueue_head(&sbi->cp_wait);
3733 	init_sb_info(sbi);
3734 
3735 	err = init_percpu_info(sbi);
3736 	if (err)
3737 		goto free_bio_info;
3738 
3739 	if (F2FS_IO_ALIGNED(sbi)) {
3740 		sbi->write_io_dummy =
3741 			mempool_create_page_pool(2 * (F2FS_IO_SIZE(sbi) - 1), 0);
3742 		if (!sbi->write_io_dummy) {
3743 			err = -ENOMEM;
3744 			goto free_percpu;
3745 		}
3746 	}
3747 
3748 	/* init per sbi slab cache */
3749 	err = f2fs_init_xattr_caches(sbi);
3750 	if (err)
3751 		goto free_io_dummy;
3752 	err = f2fs_init_page_array_cache(sbi);
3753 	if (err)
3754 		goto free_xattr_cache;
3755 
3756 	/* get an inode for meta space */
3757 	sbi->meta_inode = f2fs_iget(sb, F2FS_META_INO(sbi));
3758 	if (IS_ERR(sbi->meta_inode)) {
3759 		f2fs_err(sbi, "Failed to read F2FS meta data inode");
3760 		err = PTR_ERR(sbi->meta_inode);
3761 		goto free_page_array_cache;
3762 	}
3763 
3764 	err = f2fs_get_valid_checkpoint(sbi);
3765 	if (err) {
3766 		f2fs_err(sbi, "Failed to get valid F2FS checkpoint");
3767 		goto free_meta_inode;
3768 	}
3769 
3770 	if (__is_set_ckpt_flags(F2FS_CKPT(sbi), CP_QUOTA_NEED_FSCK_FLAG))
3771 		set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR);
3772 	if (__is_set_ckpt_flags(F2FS_CKPT(sbi), CP_DISABLED_QUICK_FLAG)) {
3773 		set_sbi_flag(sbi, SBI_CP_DISABLED_QUICK);
3774 		sbi->interval_time[DISABLE_TIME] = DEF_DISABLE_QUICK_INTERVAL;
3775 	}
3776 
3777 	if (__is_set_ckpt_flags(F2FS_CKPT(sbi), CP_FSCK_FLAG))
3778 		set_sbi_flag(sbi, SBI_NEED_FSCK);
3779 
3780 	/* Initialize device list */
3781 	err = f2fs_scan_devices(sbi);
3782 	if (err) {
3783 		f2fs_err(sbi, "Failed to find devices");
3784 		goto free_devices;
3785 	}
3786 
3787 	err = f2fs_init_post_read_wq(sbi);
3788 	if (err) {
3789 		f2fs_err(sbi, "Failed to initialize post read workqueue");
3790 		goto free_devices;
3791 	}
3792 
3793 	sbi->total_valid_node_count =
3794 				le32_to_cpu(sbi->ckpt->valid_node_count);
3795 	percpu_counter_set(&sbi->total_valid_inode_count,
3796 				le32_to_cpu(sbi->ckpt->valid_inode_count));
3797 	sbi->user_block_count = le64_to_cpu(sbi->ckpt->user_block_count);
3798 	sbi->total_valid_block_count =
3799 				le64_to_cpu(sbi->ckpt->valid_block_count);
3800 	sbi->last_valid_block_count = sbi->total_valid_block_count;
3801 	sbi->reserved_blocks = 0;
3802 	sbi->current_reserved_blocks = 0;
3803 	limit_reserve_root(sbi);
3804 	adjust_unusable_cap_perc(sbi);
3805 
3806 	for (i = 0; i < NR_INODE_TYPE; i++) {
3807 		INIT_LIST_HEAD(&sbi->inode_list[i]);
3808 		spin_lock_init(&sbi->inode_lock[i]);
3809 	}
3810 	mutex_init(&sbi->flush_lock);
3811 
3812 	f2fs_init_extent_cache_info(sbi);
3813 
3814 	f2fs_init_ino_entry_info(sbi);
3815 
3816 	f2fs_init_fsync_node_info(sbi);
3817 
3818 	/* setup f2fs internal modules */
3819 	err = f2fs_build_segment_manager(sbi);
3820 	if (err) {
3821 		f2fs_err(sbi, "Failed to initialize F2FS segment manager (%d)",
3822 			 err);
3823 		goto free_sm;
3824 	}
3825 	err = f2fs_build_node_manager(sbi);
3826 	if (err) {
3827 		f2fs_err(sbi, "Failed to initialize F2FS node manager (%d)",
3828 			 err);
3829 		goto free_nm;
3830 	}
3831 
3832 	err = adjust_reserved_segment(sbi);
3833 	if (err)
3834 		goto free_nm;
3835 
3836 	/* For write statistics */
3837 	if (sb->s_bdev->bd_part)
3838 		sbi->sectors_written_start =
3839 			(u64)part_stat_read(sb->s_bdev->bd_part,
3840 					    sectors[STAT_WRITE]);
3841 
3842 	/* Read accumulated write IO statistics if exists */
3843 	seg_i = CURSEG_I(sbi, CURSEG_HOT_NODE);
3844 	if (__exist_node_summaries(sbi))
3845 		sbi->kbytes_written =
3846 			le64_to_cpu(seg_i->journal->info.kbytes_written);
3847 
3848 	f2fs_build_gc_manager(sbi);
3849 
3850 	err = f2fs_build_stats(sbi);
3851 	if (err)
3852 		goto free_nm;
3853 
3854 	/* get an inode for node space */
3855 	sbi->node_inode = f2fs_iget(sb, F2FS_NODE_INO(sbi));
3856 	if (IS_ERR(sbi->node_inode)) {
3857 		f2fs_err(sbi, "Failed to read node inode");
3858 		err = PTR_ERR(sbi->node_inode);
3859 		goto free_stats;
3860 	}
3861 
3862 	/* read root inode and dentry */
3863 	root = f2fs_iget(sb, F2FS_ROOT_INO(sbi));
3864 	if (IS_ERR(root)) {
3865 		f2fs_err(sbi, "Failed to read root inode");
3866 		err = PTR_ERR(root);
3867 		goto free_node_inode;
3868 	}
3869 	if (!S_ISDIR(root->i_mode) || !root->i_blocks ||
3870 			!root->i_size || !root->i_nlink) {
3871 		iput(root);
3872 		err = -EINVAL;
3873 		goto free_node_inode;
3874 	}
3875 
3876 	sb->s_root = d_make_root(root); /* allocate root dentry */
3877 	if (!sb->s_root) {
3878 		err = -ENOMEM;
3879 		goto free_node_inode;
3880 	}
3881 #ifdef CONFIG_F2FS_GRADING_SSR
3882 	f2fs_init_grading_ssr(sbi);
3883 #endif
3884 	err = f2fs_register_sysfs(sbi);
3885 	if (err)
3886 		goto free_root_inode;
3887 
3888 #ifdef CONFIG_QUOTA
3889 	/* Enable quota usage during mount */
3890 	if (f2fs_sb_has_quota_ino(sbi) && !f2fs_readonly(sb)) {
3891 		err = f2fs_enable_quotas(sb);
3892 		if (err)
3893 			f2fs_err(sbi, "Cannot turn on quotas: error %d", err);
3894 	}
3895 #endif
3896 	/* if there are any orphan inodes, free them */
3897 	err = f2fs_recover_orphan_inodes(sbi);
3898 	if (err)
3899 		goto free_meta;
3900 
3901 	if (unlikely(is_set_ckpt_flags(sbi, CP_DISABLED_FLAG)))
3902 		goto reset_checkpoint;
3903 
3904 	/* recover fsynced data */
3905 	if (!test_opt(sbi, DISABLE_ROLL_FORWARD) &&
3906 			!test_opt(sbi, NORECOVERY)) {
3907 		/*
3908 		 * mount should be failed, when device has readonly mode, and
3909 		 * previous checkpoint was not done by clean system shutdown.
3910 		 */
3911 		if (f2fs_hw_is_readonly(sbi)) {
3912 			if (!is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG)) {
3913 				err = -EROFS;
3914 				f2fs_err(sbi, "Need to recover fsync data, but write access unavailable");
3915 				goto free_meta;
3916 			}
3917 			f2fs_info(sbi, "write access unavailable, skipping recovery");
3918 			goto reset_checkpoint;
3919 		}
3920 
3921 		if (need_fsck)
3922 			set_sbi_flag(sbi, SBI_NEED_FSCK);
3923 
3924 		if (skip_recovery)
3925 			goto reset_checkpoint;
3926 
3927 		err = f2fs_recover_fsync_data(sbi, false);
3928 		if (err < 0) {
3929 			if (err != -ENOMEM)
3930 				skip_recovery = true;
3931 			need_fsck = true;
3932 			f2fs_err(sbi, "Cannot recover all fsync data errno=%d",
3933 				 err);
3934 			goto free_meta;
3935 		}
3936 	} else {
3937 		err = f2fs_recover_fsync_data(sbi, true);
3938 
3939 		if (!f2fs_readonly(sb) && err > 0) {
3940 			err = -EINVAL;
3941 			f2fs_err(sbi, "Need to recover fsync data");
3942 			goto free_meta;
3943 		}
3944 	}
3945 
3946 	/*
3947 	 * If the f2fs is not readonly and fsync data recovery succeeds,
3948 	 * check zoned block devices' write pointer consistency.
3949 	 */
3950 	if (!err && !f2fs_readonly(sb) && f2fs_sb_has_blkzoned(sbi)) {
3951 		err = f2fs_check_write_pointer(sbi);
3952 		if (err)
3953 			goto free_meta;
3954 	}
3955 
3956 reset_checkpoint:
3957 	f2fs_init_inmem_curseg(sbi);
3958 
3959 	/* f2fs_recover_fsync_data() cleared this already */
3960 	clear_sbi_flag(sbi, SBI_POR_DOING);
3961 
3962 	if (test_opt(sbi, DISABLE_CHECKPOINT)) {
3963 		err = f2fs_disable_checkpoint(sbi);
3964 		if (err)
3965 			goto sync_free_meta;
3966 	} else if (is_set_ckpt_flags(sbi, CP_DISABLED_FLAG)) {
3967 		f2fs_enable_checkpoint(sbi);
3968 	}
3969 
3970 	/*
3971 	 * If filesystem is not mounted as read-only then
3972 	 * do start the gc_thread.
3973 	 */
3974 	if ((F2FS_OPTION(sbi).bggc_mode != BGGC_MODE_OFF ||
3975 		test_opt(sbi, GC_MERGE)) && !f2fs_readonly(sb)) {
3976 		/* After POR, we can run background GC thread.*/
3977 		err = f2fs_start_gc_thread(sbi);
3978 		if (err)
3979 			goto sync_free_meta;
3980 	}
3981 	kvfree(options);
3982 
3983 	/* recover broken superblock */
3984 	if (recovery) {
3985 		err = f2fs_commit_super(sbi, true);
3986 		f2fs_info(sbi, "Try to recover %dth superblock, ret: %d",
3987 			  sbi->valid_super_block ? 1 : 2, err);
3988 	}
3989 
3990 	f2fs_join_shrinker(sbi);
3991 
3992 	f2fs_tuning_parameters(sbi);
3993 
3994 	f2fs_notice(sbi, "Mounted with checkpoint version = %llx",
3995 		    cur_cp_version(F2FS_CKPT(sbi)));
3996 	f2fs_update_time(sbi, CP_TIME);
3997 	f2fs_update_time(sbi, REQ_TIME);
3998 	clear_sbi_flag(sbi, SBI_CP_DISABLED_QUICK);
3999 	return 0;
4000 
4001 sync_free_meta:
4002 	/* safe to flush all the data */
4003 	sync_filesystem(sbi->sb);
4004 	retry_cnt = 0;
4005 
4006 free_meta:
4007 #ifdef CONFIG_QUOTA
4008 	f2fs_truncate_quota_inode_pages(sb);
4009 	if (f2fs_sb_has_quota_ino(sbi) && !f2fs_readonly(sb))
4010 		f2fs_quota_off_umount(sbi->sb);
4011 #endif
4012 	/*
4013 	 * Some dirty meta pages can be produced by f2fs_recover_orphan_inodes()
4014 	 * failed by EIO. Then, iput(node_inode) can trigger balance_fs_bg()
4015 	 * followed by f2fs_write_checkpoint() through f2fs_write_node_pages(), which
4016 	 * falls into an infinite loop in f2fs_sync_meta_pages().
4017 	 */
4018 	truncate_inode_pages_final(META_MAPPING(sbi));
4019 	/* evict some inodes being cached by GC */
4020 	evict_inodes(sb);
4021 	f2fs_unregister_sysfs(sbi);
4022 free_root_inode:
4023 	dput(sb->s_root);
4024 	sb->s_root = NULL;
4025 free_node_inode:
4026 	f2fs_release_ino_entry(sbi, true);
4027 	truncate_inode_pages_final(NODE_MAPPING(sbi));
4028 	iput(sbi->node_inode);
4029 	sbi->node_inode = NULL;
4030 free_stats:
4031 	f2fs_destroy_stats(sbi);
4032 free_nm:
4033 	f2fs_destroy_node_manager(sbi);
4034 free_sm:
4035 	f2fs_destroy_segment_manager(sbi);
4036 	f2fs_destroy_post_read_wq(sbi);
4037 free_devices:
4038 	destroy_device_list(sbi);
4039 	kvfree(sbi->ckpt);
4040 free_meta_inode:
4041 	make_bad_inode(sbi->meta_inode);
4042 	iput(sbi->meta_inode);
4043 	sbi->meta_inode = NULL;
4044 free_page_array_cache:
4045 	f2fs_destroy_page_array_cache(sbi);
4046 free_xattr_cache:
4047 	f2fs_destroy_xattr_caches(sbi);
4048 free_io_dummy:
4049 	mempool_destroy(sbi->write_io_dummy);
4050 free_percpu:
4051 	destroy_percpu_info(sbi);
4052 free_bio_info:
4053 	for (i = 0; i < NR_PAGE_TYPE; i++)
4054 		kvfree(sbi->write_io[i]);
4055 
4056 #ifdef CONFIG_UNICODE
4057 	utf8_unload(sb->s_encoding);
4058 	sb->s_encoding = NULL;
4059 #endif
4060 free_options:
4061 #ifdef CONFIG_QUOTA
4062 	for (i = 0; i < MAXQUOTAS; i++)
4063 		kfree(F2FS_OPTION(sbi).s_qf_names[i]);
4064 #endif
4065 	fscrypt_free_dummy_policy(&F2FS_OPTION(sbi).dummy_enc_policy);
4066 	kvfree(options);
4067 free_sb_buf:
4068 	kfree(raw_super);
4069 free_sbi:
4070 	if (sbi->s_chksum_driver)
4071 		crypto_free_shash(sbi->s_chksum_driver);
4072 	kfree(sbi);
4073 
4074 	/* give only one another chance */
4075 	if (retry_cnt > 0 && skip_recovery) {
4076 		retry_cnt--;
4077 		shrink_dcache_sb(sb);
4078 		goto try_onemore;
4079 	}
4080 	return err;
4081 }
4082 
f2fs_mount(struct file_system_type *fs_type, int flags, const char *dev_name, void *data)4083 static struct dentry *f2fs_mount(struct file_system_type *fs_type, int flags,
4084 			const char *dev_name, void *data)
4085 {
4086 	return mount_bdev(fs_type, flags, dev_name, data, f2fs_fill_super);
4087 }
4088 
kill_f2fs_super(struct super_block *sb)4089 static void kill_f2fs_super(struct super_block *sb)
4090 {
4091 	if (sb->s_root) {
4092 		struct f2fs_sb_info *sbi = F2FS_SB(sb);
4093 
4094 		set_sbi_flag(sbi, SBI_IS_CLOSE);
4095 		f2fs_stop_gc_thread(sbi);
4096 		f2fs_stop_discard_thread(sbi);
4097 
4098 		if (is_sbi_flag_set(sbi, SBI_IS_DIRTY) ||
4099 				!is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG)) {
4100 			struct cp_control cpc = {
4101 				.reason = CP_UMOUNT,
4102 			};
4103 			f2fs_write_checkpoint(sbi, &cpc);
4104 		}
4105 
4106 		if (is_sbi_flag_set(sbi, SBI_IS_RECOVERED) && f2fs_readonly(sb))
4107 			sb->s_flags &= ~SB_RDONLY;
4108 	}
4109 	kill_block_super(sb);
4110 }
4111 
4112 static struct file_system_type f2fs_fs_type = {
4113 	.owner		= THIS_MODULE,
4114 	.name		= "f2fs",
4115 	.mount		= f2fs_mount,
4116 	.kill_sb	= kill_f2fs_super,
4117 	.fs_flags	= FS_REQUIRES_DEV,
4118 };
4119 MODULE_ALIAS_FS("f2fs");
4120 
init_inodecache(void)4121 static int __init init_inodecache(void)
4122 {
4123 	f2fs_inode_cachep = kmem_cache_create("f2fs_inode_cache",
4124 			sizeof(struct f2fs_inode_info), 0,
4125 			SLAB_RECLAIM_ACCOUNT|SLAB_ACCOUNT, NULL);
4126 	if (!f2fs_inode_cachep)
4127 		return -ENOMEM;
4128 	return 0;
4129 }
4130 
destroy_inodecache(void)4131 static void destroy_inodecache(void)
4132 {
4133 	/*
4134 	 * Make sure all delayed rcu free inodes are flushed before we
4135 	 * destroy cache.
4136 	 */
4137 	rcu_barrier();
4138 	kmem_cache_destroy(f2fs_inode_cachep);
4139 }
4140 
init_f2fs_fs(void)4141 static int __init init_f2fs_fs(void)
4142 {
4143 	int err;
4144 
4145 	if (PAGE_SIZE != F2FS_BLKSIZE) {
4146 		printk("F2FS not supported on PAGE_SIZE(%lu) != %d\n",
4147 				PAGE_SIZE, F2FS_BLKSIZE);
4148 		return -EINVAL;
4149 	}
4150 
4151 	f2fs_build_trace_ios();
4152 
4153 	err = init_inodecache();
4154 	if (err)
4155 		goto fail;
4156 	err = f2fs_create_node_manager_caches();
4157 	if (err)
4158 		goto free_inodecache;
4159 	err = f2fs_create_segment_manager_caches();
4160 	if (err)
4161 		goto free_node_manager_caches;
4162 	err = f2fs_create_checkpoint_caches();
4163 	if (err)
4164 		goto free_segment_manager_caches;
4165 	err = f2fs_create_recovery_cache();
4166 	if (err)
4167 		goto free_checkpoint_caches;
4168 	err = f2fs_create_extent_cache();
4169 	if (err)
4170 		goto free_recovery_cache;
4171 	err = f2fs_create_garbage_collection_cache();
4172 	if (err)
4173 		goto free_extent_cache;
4174 	err = f2fs_init_sysfs();
4175 	if (err)
4176 		goto free_garbage_collection_cache;
4177 	err = register_shrinker(&f2fs_shrinker_info);
4178 	if (err)
4179 		goto free_sysfs;
4180 	err = register_filesystem(&f2fs_fs_type);
4181 	if (err)
4182 		goto free_shrinker;
4183 	f2fs_create_root_stats();
4184 	err = f2fs_init_post_read_processing();
4185 	if (err)
4186 		goto free_root_stats;
4187 	err = f2fs_init_bio_entry_cache();
4188 	if (err)
4189 		goto free_post_read;
4190 	err = f2fs_init_bioset();
4191 	if (err)
4192 		goto free_bio_enrty_cache;
4193 	err = f2fs_init_compress_mempool();
4194 	if (err)
4195 		goto free_bioset;
4196 	err = f2fs_init_compress_cache();
4197 	if (err)
4198 		goto free_compress_mempool;
4199 	return 0;
4200 free_compress_mempool:
4201 	f2fs_destroy_compress_mempool();
4202 free_bioset:
4203 	f2fs_destroy_bioset();
4204 free_bio_enrty_cache:
4205 	f2fs_destroy_bio_entry_cache();
4206 free_post_read:
4207 	f2fs_destroy_post_read_processing();
4208 free_root_stats:
4209 	f2fs_destroy_root_stats();
4210 	unregister_filesystem(&f2fs_fs_type);
4211 free_shrinker:
4212 	unregister_shrinker(&f2fs_shrinker_info);
4213 free_sysfs:
4214 	f2fs_exit_sysfs();
4215 free_garbage_collection_cache:
4216 	f2fs_destroy_garbage_collection_cache();
4217 free_extent_cache:
4218 	f2fs_destroy_extent_cache();
4219 free_recovery_cache:
4220 	f2fs_destroy_recovery_cache();
4221 free_checkpoint_caches:
4222 	f2fs_destroy_checkpoint_caches();
4223 free_segment_manager_caches:
4224 	f2fs_destroy_segment_manager_caches();
4225 free_node_manager_caches:
4226 	f2fs_destroy_node_manager_caches();
4227 free_inodecache:
4228 	destroy_inodecache();
4229 fail:
4230 	return err;
4231 }
4232 
exit_f2fs_fs(void)4233 static void __exit exit_f2fs_fs(void)
4234 {
4235 	f2fs_destroy_compress_cache();
4236 	f2fs_destroy_compress_mempool();
4237 	f2fs_destroy_bioset();
4238 	f2fs_destroy_bio_entry_cache();
4239 	f2fs_destroy_post_read_processing();
4240 	f2fs_destroy_root_stats();
4241 	unregister_filesystem(&f2fs_fs_type);
4242 	unregister_shrinker(&f2fs_shrinker_info);
4243 	f2fs_exit_sysfs();
4244 	f2fs_destroy_garbage_collection_cache();
4245 	f2fs_destroy_extent_cache();
4246 	f2fs_destroy_recovery_cache();
4247 	f2fs_destroy_checkpoint_caches();
4248 	f2fs_destroy_segment_manager_caches();
4249 	f2fs_destroy_node_manager_caches();
4250 	destroy_inodecache();
4251 	f2fs_destroy_trace_ios();
4252 }
4253 
4254 module_init(init_f2fs_fs)
4255 module_exit(exit_f2fs_fs)
4256 
4257 MODULE_AUTHOR("Samsung Electronics's Praesto Team");
4258 MODULE_DESCRIPTION("Flash Friendly File System");
4259 MODULE_LICENSE("GPL");
4260 MODULE_SOFTDEP("pre: crc32");
4261 
4262