xref: /kernel/linux/linux-5.10/fs/f2fs/data.c (revision 8c2ecf20)
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * fs/f2fs/data.c
4 *
5 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6 *             http://www.samsung.com/
7 */
8#include <linux/fs.h>
9#include <linux/f2fs_fs.h>
10#include <linux/buffer_head.h>
11#include <linux/mpage.h>
12#include <linux/writeback.h>
13#include <linux/backing-dev.h>
14#include <linux/pagevec.h>
15#include <linux/blkdev.h>
16#include <linux/bio.h>
17#include <linux/blk-crypto.h>
18#include <linux/swap.h>
19#include <linux/prefetch.h>
20#include <linux/uio.h>
21#include <linux/cleancache.h>
22#include <linux/sched/signal.h>
23#include <linux/fiemap.h>
24
25#include "f2fs.h"
26#include "node.h"
27#include "segment.h"
28#include "trace.h"
29#include <trace/events/f2fs.h>
30
31#define NUM_PREALLOC_POST_READ_CTXS	128
32
33static struct kmem_cache *bio_post_read_ctx_cache;
34static struct kmem_cache *bio_entry_slab;
35static mempool_t *bio_post_read_ctx_pool;
36static struct bio_set f2fs_bioset;
37
38#define	F2FS_BIO_POOL_SIZE	NR_CURSEG_TYPE
39
40int __init f2fs_init_bioset(void)
41{
42	if (bioset_init(&f2fs_bioset, F2FS_BIO_POOL_SIZE,
43					0, BIOSET_NEED_BVECS))
44		return -ENOMEM;
45	return 0;
46}
47
48void f2fs_destroy_bioset(void)
49{
50	bioset_exit(&f2fs_bioset);
51}
52
53static inline struct bio *__f2fs_bio_alloc(gfp_t gfp_mask,
54						unsigned int nr_iovecs)
55{
56	return bio_alloc_bioset(gfp_mask, nr_iovecs, &f2fs_bioset);
57}
58
59struct bio *f2fs_bio_alloc(struct f2fs_sb_info *sbi, int npages, bool noio)
60{
61	if (noio) {
62		/* No failure on bio allocation */
63		return __f2fs_bio_alloc(GFP_NOIO, npages);
64	}
65
66	if (time_to_inject(sbi, FAULT_ALLOC_BIO)) {
67		f2fs_show_injection_info(sbi, FAULT_ALLOC_BIO);
68		return NULL;
69	}
70
71	return __f2fs_bio_alloc(GFP_KERNEL, npages);
72}
73
74static bool __is_cp_guaranteed(struct page *page)
75{
76	struct address_space *mapping = page->mapping;
77	struct inode *inode;
78	struct f2fs_sb_info *sbi;
79
80	if (!mapping)
81		return false;
82
83	if (f2fs_is_compressed_page(page))
84		return false;
85
86	inode = mapping->host;
87	sbi = F2FS_I_SB(inode);
88
89	if (inode->i_ino == F2FS_META_INO(sbi) ||
90			inode->i_ino == F2FS_NODE_INO(sbi) ||
91			S_ISDIR(inode->i_mode) ||
92			(S_ISREG(inode->i_mode) &&
93			(f2fs_is_atomic_file(inode) || IS_NOQUOTA(inode))) ||
94			is_cold_data(page))
95		return true;
96	return false;
97}
98
99static enum count_type __read_io_type(struct page *page)
100{
101	struct address_space *mapping = page_file_mapping(page);
102
103	if (mapping) {
104		struct inode *inode = mapping->host;
105		struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
106
107		if (inode->i_ino == F2FS_META_INO(sbi))
108			return F2FS_RD_META;
109
110		if (inode->i_ino == F2FS_NODE_INO(sbi))
111			return F2FS_RD_NODE;
112	}
113	return F2FS_RD_DATA;
114}
115
116/* postprocessing steps for read bios */
117enum bio_post_read_step {
118	STEP_DECRYPT,
119	STEP_DECOMPRESS_NOWQ,		/* handle normal cluster data inplace */
120	STEP_DECOMPRESS,		/* handle compressed cluster data in workqueue */
121	STEP_VERITY,
122};
123
124struct bio_post_read_ctx {
125	struct bio *bio;
126	struct f2fs_sb_info *sbi;
127	struct work_struct work;
128	unsigned int enabled_steps;
129};
130
131static void __read_end_io(struct bio *bio, bool compr, bool verity)
132{
133	struct page *page;
134	struct bio_vec *bv;
135	struct bvec_iter_all iter_all;
136
137	bio_for_each_segment_all(bv, bio, iter_all) {
138		page = bv->bv_page;
139
140#ifdef CONFIG_F2FS_FS_COMPRESSION
141		if (compr && f2fs_is_compressed_page(page)) {
142			f2fs_decompress_pages(bio, page, verity);
143			continue;
144		}
145		if (verity)
146			continue;
147#endif
148
149		/* PG_error was set if any post_read step failed */
150		if (bio->bi_status || PageError(page)) {
151			ClearPageUptodate(page);
152			/* will re-read again later */
153			ClearPageError(page);
154		} else {
155			SetPageUptodate(page);
156		}
157		dec_page_count(F2FS_P_SB(page), __read_io_type(page));
158		unlock_page(page);
159	}
160}
161
162static void f2fs_release_read_bio(struct bio *bio);
163static void __f2fs_read_end_io(struct bio *bio, bool compr, bool verity)
164{
165	if (!compr)
166		__read_end_io(bio, false, verity);
167	f2fs_release_read_bio(bio);
168}
169
170static void f2fs_decompress_bio(struct bio *bio, bool verity)
171{
172	__read_end_io(bio, true, verity);
173}
174
175static void bio_post_read_processing(struct bio_post_read_ctx *ctx);
176
177static void f2fs_decrypt_work(struct bio_post_read_ctx *ctx)
178{
179	fscrypt_decrypt_bio(ctx->bio);
180}
181
182static void f2fs_decompress_work(struct bio_post_read_ctx *ctx)
183{
184	f2fs_decompress_bio(ctx->bio, ctx->enabled_steps & (1 << STEP_VERITY));
185}
186
187#ifdef CONFIG_F2FS_FS_COMPRESSION
188static void f2fs_verify_pages(struct page **rpages, unsigned int cluster_size)
189{
190	f2fs_decompress_end_io(rpages, cluster_size, false, true);
191}
192
193static void f2fs_verify_bio(struct bio *bio)
194{
195	struct bio_vec *bv;
196	struct bvec_iter_all iter_all;
197
198	bio_for_each_segment_all(bv, bio, iter_all) {
199		struct page *page = bv->bv_page;
200		struct decompress_io_ctx *dic;
201
202		dic = (struct decompress_io_ctx *)page_private(page);
203
204		if (dic) {
205			if (atomic_dec_return(&dic->verity_pages))
206				continue;
207			f2fs_verify_pages(dic->rpages,
208						dic->cluster_size);
209			f2fs_free_dic(dic);
210			continue;
211		}
212
213		if (bio->bi_status || PageError(page))
214			goto clear_uptodate;
215
216		if (fsverity_verify_page(page)) {
217			SetPageUptodate(page);
218			goto unlock;
219		}
220clear_uptodate:
221		ClearPageUptodate(page);
222		ClearPageError(page);
223unlock:
224		dec_page_count(F2FS_P_SB(page), __read_io_type(page));
225		unlock_page(page);
226	}
227}
228#endif
229
230static void f2fs_verity_work(struct work_struct *work)
231{
232	struct bio_post_read_ctx *ctx =
233		container_of(work, struct bio_post_read_ctx, work);
234	struct bio *bio = ctx->bio;
235#ifdef CONFIG_F2FS_FS_COMPRESSION
236	unsigned int enabled_steps = ctx->enabled_steps;
237#endif
238
239	/*
240	 * fsverity_verify_bio() may call readpages() again, and while verity
241	 * will be disabled for this, decryption may still be needed, resulting
242	 * in another bio_post_read_ctx being allocated.  So to prevent
243	 * deadlocks we need to release the current ctx to the mempool first.
244	 * This assumes that verity is the last post-read step.
245	 */
246	mempool_free(ctx, bio_post_read_ctx_pool);
247	bio->bi_private = NULL;
248
249#ifdef CONFIG_F2FS_FS_COMPRESSION
250	/* previous step is decompression */
251	if (enabled_steps & (1 << STEP_DECOMPRESS)) {
252		f2fs_verify_bio(bio);
253		f2fs_release_read_bio(bio);
254		return;
255	}
256#endif
257
258	fsverity_verify_bio(bio);
259	__f2fs_read_end_io(bio, false, false);
260}
261
262static void f2fs_post_read_work(struct work_struct *work)
263{
264	struct bio_post_read_ctx *ctx =
265		container_of(work, struct bio_post_read_ctx, work);
266
267	if (ctx->enabled_steps & (1 << STEP_DECRYPT))
268		f2fs_decrypt_work(ctx);
269
270	if (ctx->enabled_steps & (1 << STEP_DECOMPRESS))
271		f2fs_decompress_work(ctx);
272
273	if (ctx->enabled_steps & (1 << STEP_VERITY)) {
274		INIT_WORK(&ctx->work, f2fs_verity_work);
275		fsverity_enqueue_verify_work(&ctx->work);
276		return;
277	}
278
279	__f2fs_read_end_io(ctx->bio,
280		ctx->enabled_steps & (1 << STEP_DECOMPRESS), false);
281}
282
283static void f2fs_enqueue_post_read_work(struct f2fs_sb_info *sbi,
284						struct work_struct *work)
285{
286	queue_work(sbi->post_read_wq, work);
287}
288
289static void bio_post_read_processing(struct bio_post_read_ctx *ctx)
290{
291	/*
292	 * We use different work queues for decryption and for verity because
293	 * verity may require reading metadata pages that need decryption, and
294	 * we shouldn't recurse to the same workqueue.
295	 */
296
297	if (ctx->enabled_steps & (1 << STEP_DECRYPT) ||
298		ctx->enabled_steps & (1 << STEP_DECOMPRESS)) {
299		INIT_WORK(&ctx->work, f2fs_post_read_work);
300		f2fs_enqueue_post_read_work(ctx->sbi, &ctx->work);
301		return;
302	}
303
304	if (ctx->enabled_steps & (1 << STEP_VERITY)) {
305		INIT_WORK(&ctx->work, f2fs_verity_work);
306		fsverity_enqueue_verify_work(&ctx->work);
307		return;
308	}
309
310	__f2fs_read_end_io(ctx->bio, false, false);
311}
312
313static bool f2fs_bio_post_read_required(struct bio *bio)
314{
315	return bio->bi_private;
316}
317
318static void f2fs_read_end_io(struct bio *bio)
319{
320	struct f2fs_sb_info *sbi = F2FS_P_SB(bio_first_page_all(bio));
321
322	if (time_to_inject(sbi, FAULT_READ_IO)) {
323		f2fs_show_injection_info(sbi, FAULT_READ_IO);
324		bio->bi_status = BLK_STS_IOERR;
325	}
326
327	if (f2fs_bio_post_read_required(bio)) {
328		struct bio_post_read_ctx *ctx = bio->bi_private;
329
330		bio_post_read_processing(ctx);
331		return;
332	}
333
334	__f2fs_read_end_io(bio, false, false);
335}
336
337static void f2fs_write_end_io(struct bio *bio)
338{
339	struct f2fs_sb_info *sbi = bio->bi_private;
340	struct bio_vec *bvec;
341	struct bvec_iter_all iter_all;
342
343	if (time_to_inject(sbi, FAULT_WRITE_IO)) {
344		f2fs_show_injection_info(sbi, FAULT_WRITE_IO);
345		bio->bi_status = BLK_STS_IOERR;
346	}
347
348	bio_for_each_segment_all(bvec, bio, iter_all) {
349		struct page *page = bvec->bv_page;
350		enum count_type type = WB_DATA_TYPE(page);
351
352		if (IS_DUMMY_WRITTEN_PAGE(page)) {
353			set_page_private(page, (unsigned long)NULL);
354			ClearPagePrivate(page);
355			unlock_page(page);
356			mempool_free(page, sbi->write_io_dummy);
357
358			if (unlikely(bio->bi_status))
359				f2fs_stop_checkpoint(sbi, true);
360			continue;
361		}
362
363		fscrypt_finalize_bounce_page(&page);
364
365#ifdef CONFIG_F2FS_FS_COMPRESSION
366		if (f2fs_is_compressed_page(page)) {
367			f2fs_compress_write_end_io(bio, page);
368			continue;
369		}
370#endif
371
372		if (unlikely(bio->bi_status)) {
373			mapping_set_error(page->mapping, -EIO);
374			if (type == F2FS_WB_CP_DATA)
375				f2fs_stop_checkpoint(sbi, true);
376		}
377
378		f2fs_bug_on(sbi, page->mapping == NODE_MAPPING(sbi) &&
379					page->index != nid_of_node(page));
380
381		dec_page_count(sbi, type);
382		if (f2fs_in_warm_node_list(sbi, page))
383			f2fs_del_fsync_node_entry(sbi, page);
384		clear_cold_data(page);
385		end_page_writeback(page);
386	}
387	if (!get_pages(sbi, F2FS_WB_CP_DATA) &&
388				wq_has_sleeper(&sbi->cp_wait))
389		wake_up(&sbi->cp_wait);
390
391	bio_put(bio);
392}
393
394struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi,
395				block_t blk_addr, struct bio *bio)
396{
397	struct block_device *bdev = sbi->sb->s_bdev;
398	int i;
399
400	if (f2fs_is_multi_device(sbi)) {
401		for (i = 0; i < sbi->s_ndevs; i++) {
402			if (FDEV(i).start_blk <= blk_addr &&
403			    FDEV(i).end_blk >= blk_addr) {
404				blk_addr -= FDEV(i).start_blk;
405				bdev = FDEV(i).bdev;
406				break;
407			}
408		}
409	}
410	if (bio) {
411		bio_set_dev(bio, bdev);
412		bio->bi_iter.bi_sector = SECTOR_FROM_BLOCK(blk_addr);
413	}
414	return bdev;
415}
416
417int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr)
418{
419	int i;
420
421	if (!f2fs_is_multi_device(sbi))
422		return 0;
423
424	for (i = 0; i < sbi->s_ndevs; i++)
425		if (FDEV(i).start_blk <= blkaddr && FDEV(i).end_blk >= blkaddr)
426			return i;
427	return 0;
428}
429
430/*
431 * Return true, if pre_bio's bdev is same as its target device.
432 */
433static bool __same_bdev(struct f2fs_sb_info *sbi,
434				block_t blk_addr, struct bio *bio)
435{
436	struct block_device *b = f2fs_target_device(sbi, blk_addr, NULL);
437	return bio->bi_disk == b->bd_disk && bio->bi_partno == b->bd_partno;
438}
439
440static struct bio *__bio_alloc(struct f2fs_io_info *fio, int npages)
441{
442	struct f2fs_sb_info *sbi = fio->sbi;
443	struct bio *bio;
444
445	bio = f2fs_bio_alloc(sbi, npages, true);
446
447	f2fs_target_device(sbi, fio->new_blkaddr, bio);
448	if (is_read_io(fio->op)) {
449		bio->bi_end_io = f2fs_read_end_io;
450		bio->bi_private = NULL;
451	} else {
452		bio->bi_end_io = f2fs_write_end_io;
453		bio->bi_private = sbi;
454		bio->bi_write_hint = f2fs_io_type_to_rw_hint(sbi,
455						fio->type, fio->temp);
456	}
457	if (fio->io_wbc)
458		wbc_init_bio(fio->io_wbc, bio);
459
460	return bio;
461}
462
463static void f2fs_set_bio_crypt_ctx(struct bio *bio, const struct inode *inode,
464				  pgoff_t first_idx,
465				  const struct f2fs_io_info *fio,
466				  gfp_t gfp_mask)
467{
468	/*
469	 * The f2fs garbage collector sets ->encrypted_page when it wants to
470	 * read/write raw data without encryption.
471	 */
472	if (!fio || !fio->encrypted_page)
473		fscrypt_set_bio_crypt_ctx(bio, inode, first_idx, gfp_mask);
474}
475
476static bool f2fs_crypt_mergeable_bio(struct bio *bio, const struct inode *inode,
477				     pgoff_t next_idx,
478				     const struct f2fs_io_info *fio)
479{
480	/*
481	 * The f2fs garbage collector sets ->encrypted_page when it wants to
482	 * read/write raw data without encryption.
483	 */
484	if (fio && fio->encrypted_page)
485		return !bio_has_crypt_ctx(bio);
486
487	return fscrypt_mergeable_bio(bio, inode, next_idx);
488}
489
490static inline void __submit_bio(struct f2fs_sb_info *sbi,
491				struct bio *bio, enum page_type type)
492{
493	if (!is_read_io(bio_op(bio))) {
494		unsigned int start;
495
496		if (type != DATA && type != NODE)
497			goto submit_io;
498
499		if (f2fs_lfs_mode(sbi) && current->plug)
500			blk_finish_plug(current->plug);
501
502		if (!F2FS_IO_ALIGNED(sbi))
503			goto submit_io;
504
505		start = bio->bi_iter.bi_size >> F2FS_BLKSIZE_BITS;
506		start %= F2FS_IO_SIZE(sbi);
507
508		if (start == 0)
509			goto submit_io;
510
511		/* fill dummy pages */
512		for (; start < F2FS_IO_SIZE(sbi); start++) {
513			struct page *page =
514				mempool_alloc(sbi->write_io_dummy,
515					      GFP_NOIO | __GFP_NOFAIL);
516			f2fs_bug_on(sbi, !page);
517
518			zero_user_segment(page, 0, PAGE_SIZE);
519			SetPagePrivate(page);
520			set_page_private(page, DUMMY_WRITTEN_PAGE);
521			lock_page(page);
522			if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE)
523				f2fs_bug_on(sbi, 1);
524		}
525		/*
526		 * In the NODE case, we lose next block address chain. So, we
527		 * need to do checkpoint in f2fs_sync_file.
528		 */
529		if (type == NODE)
530			set_sbi_flag(sbi, SBI_NEED_CP);
531	}
532submit_io:
533	if (is_read_io(bio_op(bio)))
534		trace_f2fs_submit_read_bio(sbi->sb, type, bio);
535	else
536		trace_f2fs_submit_write_bio(sbi->sb, type, bio);
537	submit_bio(bio);
538}
539
540void f2fs_submit_bio(struct f2fs_sb_info *sbi,
541				struct bio *bio, enum page_type type)
542{
543	__submit_bio(sbi, bio, type);
544}
545
546static void __attach_io_flag(struct f2fs_io_info *fio)
547{
548	struct f2fs_sb_info *sbi = fio->sbi;
549	unsigned int temp_mask = (1 << NR_TEMP_TYPE) - 1;
550	unsigned int io_flag, fua_flag, meta_flag;
551
552	if (fio->type == DATA)
553		io_flag = sbi->data_io_flag;
554	else if (fio->type == NODE)
555		io_flag = sbi->node_io_flag;
556	else
557		return;
558
559	fua_flag = io_flag & temp_mask;
560	meta_flag = (io_flag >> NR_TEMP_TYPE) & temp_mask;
561
562	/*
563	 * data/node io flag bits per temp:
564	 *      REQ_META     |      REQ_FUA      |
565	 *    5 |    4 |   3 |    2 |    1 |   0 |
566	 * Cold | Warm | Hot | Cold | Warm | Hot |
567	 */
568	if ((1 << fio->temp) & meta_flag)
569		fio->op_flags |= REQ_META;
570	if ((1 << fio->temp) & fua_flag)
571		fio->op_flags |= REQ_FUA;
572}
573
574static void __submit_merged_bio(struct f2fs_bio_info *io)
575{
576	struct f2fs_io_info *fio = &io->fio;
577
578	if (!io->bio)
579		return;
580
581	__attach_io_flag(fio);
582	bio_set_op_attrs(io->bio, fio->op, fio->op_flags);
583
584	if (is_read_io(fio->op))
585		trace_f2fs_prepare_read_bio(io->sbi->sb, fio->type, io->bio);
586	else
587		trace_f2fs_prepare_write_bio(io->sbi->sb, fio->type, io->bio);
588
589	__submit_bio(io->sbi, io->bio, fio->type);
590	io->bio = NULL;
591}
592
593static bool __has_merged_page(struct bio *bio, struct inode *inode,
594						struct page *page, nid_t ino)
595{
596	struct bio_vec *bvec;
597	struct bvec_iter_all iter_all;
598
599	if (!bio)
600		return false;
601
602	if (!inode && !page && !ino)
603		return true;
604
605	bio_for_each_segment_all(bvec, bio, iter_all) {
606		struct page *target = bvec->bv_page;
607
608		if (fscrypt_is_bounce_page(target)) {
609			target = fscrypt_pagecache_page(target);
610			if (IS_ERR(target))
611				continue;
612		}
613		if (f2fs_is_compressed_page(target)) {
614			target = f2fs_compress_control_page(target);
615			if (IS_ERR(target))
616				continue;
617		}
618
619		if (inode && inode == target->mapping->host)
620			return true;
621		if (page && page == target)
622			return true;
623		if (ino && ino == ino_of_node(target))
624			return true;
625	}
626
627	return false;
628}
629
630static void __f2fs_submit_merged_write(struct f2fs_sb_info *sbi,
631				enum page_type type, enum temp_type temp)
632{
633	enum page_type btype = PAGE_TYPE_OF_BIO(type);
634	struct f2fs_bio_info *io = sbi->write_io[btype] + temp;
635
636	down_write(&io->io_rwsem);
637
638	/* change META to META_FLUSH in the checkpoint procedure */
639	if (type >= META_FLUSH) {
640		io->fio.type = META_FLUSH;
641		io->fio.op = REQ_OP_WRITE;
642		io->fio.op_flags = REQ_META | REQ_PRIO | REQ_SYNC;
643		if (!test_opt(sbi, NOBARRIER))
644			io->fio.op_flags |= REQ_PREFLUSH | REQ_FUA;
645	}
646	__submit_merged_bio(io);
647	up_write(&io->io_rwsem);
648}
649
650static void __submit_merged_write_cond(struct f2fs_sb_info *sbi,
651				struct inode *inode, struct page *page,
652				nid_t ino, enum page_type type, bool force)
653{
654	enum temp_type temp;
655	bool ret = true;
656
657	for (temp = HOT; temp < NR_TEMP_TYPE; temp++) {
658		if (!force)	{
659			enum page_type btype = PAGE_TYPE_OF_BIO(type);
660			struct f2fs_bio_info *io = sbi->write_io[btype] + temp;
661
662			down_read(&io->io_rwsem);
663			ret = __has_merged_page(io->bio, inode, page, ino);
664			up_read(&io->io_rwsem);
665		}
666		if (ret)
667			__f2fs_submit_merged_write(sbi, type, temp);
668
669		/* TODO: use HOT temp only for meta pages now. */
670		if (type >= META)
671			break;
672	}
673}
674
675void f2fs_submit_merged_write(struct f2fs_sb_info *sbi, enum page_type type)
676{
677	__submit_merged_write_cond(sbi, NULL, NULL, 0, type, true);
678}
679
680void f2fs_submit_merged_write_cond(struct f2fs_sb_info *sbi,
681				struct inode *inode, struct page *page,
682				nid_t ino, enum page_type type)
683{
684	__submit_merged_write_cond(sbi, inode, page, ino, type, false);
685}
686
687void f2fs_flush_merged_writes(struct f2fs_sb_info *sbi)
688{
689	f2fs_submit_merged_write(sbi, DATA);
690	f2fs_submit_merged_write(sbi, NODE);
691	f2fs_submit_merged_write(sbi, META);
692}
693
694/*
695 * Fill the locked page with data located in the block address.
696 * A caller needs to unlock the page on failure.
697 */
698int f2fs_submit_page_bio(struct f2fs_io_info *fio)
699{
700	struct bio *bio;
701	struct page *page = fio->encrypted_page ?
702			fio->encrypted_page : fio->page;
703
704	if (!f2fs_is_valid_blkaddr(fio->sbi, fio->new_blkaddr,
705			fio->is_por ? META_POR : (__is_meta_io(fio) ?
706			META_GENERIC : DATA_GENERIC_ENHANCE)))
707		return -EFSCORRUPTED;
708
709	trace_f2fs_submit_page_bio(page, fio);
710	f2fs_trace_ios(fio, 0);
711
712	/* Allocate a new bio */
713	bio = __bio_alloc(fio, 1);
714
715	f2fs_set_bio_crypt_ctx(bio, fio->page->mapping->host,
716			       fio->page->index, fio, GFP_NOIO);
717
718	if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) {
719		bio_put(bio);
720		return -EFAULT;
721	}
722
723	if (fio->io_wbc && !is_read_io(fio->op))
724		wbc_account_cgroup_owner(fio->io_wbc, fio->page, PAGE_SIZE);
725
726	__attach_io_flag(fio);
727	bio_set_op_attrs(bio, fio->op, fio->op_flags);
728
729	inc_page_count(fio->sbi, is_read_io(fio->op) ?
730			__read_io_type(page): WB_DATA_TYPE(fio->page));
731
732	__submit_bio(fio->sbi, bio, fio->type);
733	return 0;
734}
735
736static bool page_is_mergeable(struct f2fs_sb_info *sbi, struct bio *bio,
737				block_t last_blkaddr, block_t cur_blkaddr)
738{
739	if (last_blkaddr + 1 != cur_blkaddr)
740		return false;
741	return __same_bdev(sbi, cur_blkaddr, bio);
742}
743
744static bool io_type_is_mergeable(struct f2fs_bio_info *io,
745						struct f2fs_io_info *fio)
746{
747	if (io->fio.op != fio->op)
748		return false;
749	return io->fio.op_flags == fio->op_flags;
750}
751
752static bool io_is_mergeable(struct f2fs_sb_info *sbi, struct bio *bio,
753					struct f2fs_bio_info *io,
754					struct f2fs_io_info *fio,
755					block_t last_blkaddr,
756					block_t cur_blkaddr)
757{
758	if (F2FS_IO_ALIGNED(sbi) && (fio->type == DATA || fio->type == NODE)) {
759		unsigned int filled_blocks =
760				F2FS_BYTES_TO_BLK(bio->bi_iter.bi_size);
761		unsigned int io_size = F2FS_IO_SIZE(sbi);
762		unsigned int left_vecs = bio->bi_max_vecs - bio->bi_vcnt;
763
764		/* IOs in bio is aligned and left space of vectors is not enough */
765		if (!(filled_blocks % io_size) && left_vecs < io_size)
766			return false;
767	}
768	if (!page_is_mergeable(sbi, bio, last_blkaddr, cur_blkaddr))
769		return false;
770	return io_type_is_mergeable(io, fio);
771}
772
773static void add_bio_entry(struct f2fs_sb_info *sbi, struct bio *bio,
774				struct page *page, enum temp_type temp)
775{
776	struct f2fs_bio_info *io = sbi->write_io[DATA] + temp;
777	struct bio_entry *be;
778
779	be = f2fs_kmem_cache_alloc(bio_entry_slab, GFP_NOFS);
780	be->bio = bio;
781	bio_get(bio);
782
783	if (bio_add_page(bio, page, PAGE_SIZE, 0) != PAGE_SIZE)
784		f2fs_bug_on(sbi, 1);
785
786	down_write(&io->bio_list_lock);
787	list_add_tail(&be->list, &io->bio_list);
788	up_write(&io->bio_list_lock);
789}
790
791static void del_bio_entry(struct bio_entry *be)
792{
793	list_del(&be->list);
794	kmem_cache_free(bio_entry_slab, be);
795}
796
797static int add_ipu_page(struct f2fs_io_info *fio, struct bio **bio,
798							struct page *page)
799{
800	struct f2fs_sb_info *sbi = fio->sbi;
801	enum temp_type temp;
802	bool found = false;
803	int ret = -EAGAIN;
804
805	for (temp = HOT; temp < NR_TEMP_TYPE && !found; temp++) {
806		struct f2fs_bio_info *io = sbi->write_io[DATA] + temp;
807		struct list_head *head = &io->bio_list;
808		struct bio_entry *be;
809
810		down_write(&io->bio_list_lock);
811		list_for_each_entry(be, head, list) {
812			if (be->bio != *bio)
813				continue;
814
815			found = true;
816
817			f2fs_bug_on(sbi, !page_is_mergeable(sbi, *bio,
818							    *fio->last_block,
819							    fio->new_blkaddr));
820			if (f2fs_crypt_mergeable_bio(*bio,
821					fio->page->mapping->host,
822					fio->page->index, fio) &&
823			    bio_add_page(*bio, page, PAGE_SIZE, 0) ==
824					PAGE_SIZE) {
825				ret = 0;
826				break;
827			}
828
829			/* page can't be merged into bio; submit the bio */
830			del_bio_entry(be);
831			__submit_bio(sbi, *bio, DATA);
832			break;
833		}
834		up_write(&io->bio_list_lock);
835	}
836
837	if (ret) {
838		bio_put(*bio);
839		*bio = NULL;
840	}
841
842	return ret;
843}
844
845void f2fs_submit_merged_ipu_write(struct f2fs_sb_info *sbi,
846					struct bio **bio, struct page *page)
847{
848	enum temp_type temp;
849	bool found = false;
850	struct bio *target = bio ? *bio : NULL;
851
852	f2fs_bug_on(sbi, !target && !page);
853
854	for (temp = HOT; temp < NR_TEMP_TYPE && !found; temp++) {
855		struct f2fs_bio_info *io = sbi->write_io[DATA] + temp;
856		struct list_head *head = &io->bio_list;
857		struct bio_entry *be;
858
859		if (list_empty(head))
860			continue;
861
862		down_read(&io->bio_list_lock);
863		list_for_each_entry(be, head, list) {
864			if (target)
865				found = (target == be->bio);
866			else
867				found = __has_merged_page(be->bio, NULL,
868								page, 0);
869			if (found)
870				break;
871		}
872		up_read(&io->bio_list_lock);
873
874		if (!found)
875			continue;
876
877		found = false;
878
879		down_write(&io->bio_list_lock);
880		list_for_each_entry(be, head, list) {
881			if (target)
882				found = (target == be->bio);
883			else
884				found = __has_merged_page(be->bio, NULL,
885								page, 0);
886			if (found) {
887				target = be->bio;
888				del_bio_entry(be);
889				break;
890			}
891		}
892		up_write(&io->bio_list_lock);
893	}
894
895	if (found)
896		__submit_bio(sbi, target, DATA);
897	if (bio && *bio) {
898		bio_put(*bio);
899		*bio = NULL;
900	}
901}
902
903int f2fs_merge_page_bio(struct f2fs_io_info *fio)
904{
905	struct bio *bio = *fio->bio;
906	struct page *page = fio->encrypted_page ?
907			fio->encrypted_page : fio->page;
908
909	if (!f2fs_is_valid_blkaddr(fio->sbi, fio->new_blkaddr,
910			__is_meta_io(fio) ? META_GENERIC : DATA_GENERIC))
911		return -EFSCORRUPTED;
912
913	trace_f2fs_submit_page_bio(page, fio);
914	f2fs_trace_ios(fio, 0);
915
916	if (bio && !page_is_mergeable(fio->sbi, bio, *fio->last_block,
917						fio->new_blkaddr))
918		f2fs_submit_merged_ipu_write(fio->sbi, &bio, NULL);
919alloc_new:
920	if (!bio) {
921		bio = __bio_alloc(fio, BIO_MAX_PAGES);
922		__attach_io_flag(fio);
923		f2fs_set_bio_crypt_ctx(bio, fio->page->mapping->host,
924				       fio->page->index, fio, GFP_NOIO);
925		bio_set_op_attrs(bio, fio->op, fio->op_flags);
926
927		add_bio_entry(fio->sbi, bio, page, fio->temp);
928	} else {
929		if (add_ipu_page(fio, &bio, page))
930			goto alloc_new;
931	}
932
933	if (fio->io_wbc)
934		wbc_account_cgroup_owner(fio->io_wbc, fio->page, PAGE_SIZE);
935
936	inc_page_count(fio->sbi, WB_DATA_TYPE(page));
937
938	*fio->last_block = fio->new_blkaddr;
939	*fio->bio = bio;
940
941	return 0;
942}
943
944void f2fs_submit_page_write(struct f2fs_io_info *fio)
945{
946	struct f2fs_sb_info *sbi = fio->sbi;
947	enum page_type btype = PAGE_TYPE_OF_BIO(fio->type);
948	struct f2fs_bio_info *io = sbi->write_io[btype] + fio->temp;
949	struct page *bio_page;
950
951	f2fs_bug_on(sbi, is_read_io(fio->op));
952
953	down_write(&io->io_rwsem);
954next:
955	if (fio->in_list) {
956		spin_lock(&io->io_lock);
957		if (list_empty(&io->io_list)) {
958			spin_unlock(&io->io_lock);
959			goto out;
960		}
961		fio = list_first_entry(&io->io_list,
962						struct f2fs_io_info, list);
963		list_del(&fio->list);
964		spin_unlock(&io->io_lock);
965	}
966
967	verify_fio_blkaddr(fio);
968
969	if (fio->encrypted_page)
970		bio_page = fio->encrypted_page;
971	else if (fio->compressed_page)
972		bio_page = fio->compressed_page;
973	else
974		bio_page = fio->page;
975
976	/* set submitted = true as a return value */
977	fio->submitted = true;
978
979	inc_page_count(sbi, WB_DATA_TYPE(bio_page));
980
981	if (io->bio &&
982	    (!io_is_mergeable(sbi, io->bio, io, fio, io->last_block_in_bio,
983			      fio->new_blkaddr) ||
984	     !f2fs_crypt_mergeable_bio(io->bio, fio->page->mapping->host,
985				       bio_page->index, fio)))
986		__submit_merged_bio(io);
987alloc_new:
988	if (io->bio == NULL) {
989		if (F2FS_IO_ALIGNED(sbi) &&
990				(fio->type == DATA || fio->type == NODE) &&
991				fio->new_blkaddr & F2FS_IO_SIZE_MASK(sbi)) {
992			dec_page_count(sbi, WB_DATA_TYPE(bio_page));
993			fio->retry = true;
994			goto skip;
995		}
996		io->bio = __bio_alloc(fio, BIO_MAX_PAGES);
997		f2fs_set_bio_crypt_ctx(io->bio, fio->page->mapping->host,
998				       bio_page->index, fio, GFP_NOIO);
999		io->fio = *fio;
1000	}
1001
1002	if (bio_add_page(io->bio, bio_page, PAGE_SIZE, 0) < PAGE_SIZE) {
1003		__submit_merged_bio(io);
1004		goto alloc_new;
1005	}
1006
1007	if (fio->io_wbc)
1008		wbc_account_cgroup_owner(fio->io_wbc, fio->page, PAGE_SIZE);
1009
1010	io->last_block_in_bio = fio->new_blkaddr;
1011	f2fs_trace_ios(fio, 0);
1012
1013	trace_f2fs_submit_page_write(fio->page, fio);
1014skip:
1015	if (fio->in_list)
1016		goto next;
1017out:
1018	if (is_sbi_flag_set(sbi, SBI_IS_SHUTDOWN) ||
1019				!f2fs_is_checkpoint_ready(sbi))
1020		__submit_merged_bio(io);
1021	up_write(&io->io_rwsem);
1022}
1023
1024static inline bool f2fs_need_verity(const struct inode *inode, pgoff_t idx)
1025{
1026	return fsverity_active(inode) && (idx <
1027		DIV_ROUND_UP(fsverity_get_verified_data_size(inode), PAGE_SIZE));
1028}
1029
1030static struct bio *f2fs_grab_read_bio(struct inode *inode, block_t blkaddr,
1031				      unsigned nr_pages, unsigned op_flag,
1032				      pgoff_t first_idx, bool for_write,
1033				      bool for_verity)
1034{
1035	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1036	struct bio *bio;
1037	struct bio_post_read_ctx *ctx;
1038	unsigned int post_read_steps = 0;
1039
1040	bio = f2fs_bio_alloc(sbi, min_t(int, nr_pages, BIO_MAX_PAGES),
1041								for_write);
1042	if (!bio)
1043		return ERR_PTR(-ENOMEM);
1044
1045	f2fs_set_bio_crypt_ctx(bio, inode, first_idx, NULL, GFP_NOFS);
1046
1047	f2fs_target_device(sbi, blkaddr, bio);
1048	bio->bi_end_io = f2fs_read_end_io;
1049	bio_set_op_attrs(bio, REQ_OP_READ, op_flag);
1050
1051	if (fscrypt_inode_uses_fs_layer_crypto(inode))
1052		post_read_steps |= 1 << STEP_DECRYPT;
1053	if (f2fs_compressed_file(inode))
1054		post_read_steps |= 1 << STEP_DECOMPRESS_NOWQ;
1055	if (for_verity && f2fs_need_verity(inode, first_idx))
1056		post_read_steps |= 1 << STEP_VERITY;
1057
1058	if (post_read_steps) {
1059		/* Due to the mempool, this never fails. */
1060		ctx = mempool_alloc(bio_post_read_ctx_pool, GFP_NOFS);
1061		ctx->bio = bio;
1062		ctx->sbi = sbi;
1063		ctx->enabled_steps = post_read_steps;
1064		bio->bi_private = ctx;
1065	}
1066
1067	return bio;
1068}
1069
1070static void f2fs_release_read_bio(struct bio *bio)
1071{
1072	if (bio->bi_private)
1073		mempool_free(bio->bi_private, bio_post_read_ctx_pool);
1074	bio_put(bio);
1075}
1076
1077/* This can handle encryption stuffs */
1078static int f2fs_submit_page_read(struct inode *inode, struct page *page,
1079				 block_t blkaddr, int op_flags, bool for_write)
1080{
1081	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1082	struct bio *bio;
1083
1084	bio = f2fs_grab_read_bio(inode, blkaddr, 1, op_flags,
1085					page->index, for_write, true);
1086	if (IS_ERR(bio))
1087		return PTR_ERR(bio);
1088
1089	/* wait for GCed page writeback via META_MAPPING */
1090	f2fs_wait_on_block_writeback(inode, blkaddr);
1091
1092	if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) {
1093		bio_put(bio);
1094		return -EFAULT;
1095	}
1096	ClearPageError(page);
1097	inc_page_count(sbi, F2FS_RD_DATA);
1098	f2fs_update_iostat(sbi, FS_DATA_READ_IO, F2FS_BLKSIZE);
1099	__submit_bio(sbi, bio, DATA);
1100	return 0;
1101}
1102
1103static void __set_data_blkaddr(struct dnode_of_data *dn)
1104{
1105	struct f2fs_node *rn = F2FS_NODE(dn->node_page);
1106	__le32 *addr_array;
1107	int base = 0;
1108
1109	if (IS_INODE(dn->node_page) && f2fs_has_extra_attr(dn->inode))
1110		base = get_extra_isize(dn->inode);
1111
1112	/* Get physical address of data block */
1113	addr_array = blkaddr_in_node(rn);
1114	addr_array[base + dn->ofs_in_node] = cpu_to_le32(dn->data_blkaddr);
1115}
1116
1117/*
1118 * Lock ordering for the change of data block address:
1119 * ->data_page
1120 *  ->node_page
1121 *    update block addresses in the node page
1122 */
1123void f2fs_set_data_blkaddr(struct dnode_of_data *dn)
1124{
1125	f2fs_wait_on_page_writeback(dn->node_page, NODE, true, true);
1126	__set_data_blkaddr(dn);
1127	if (set_page_dirty(dn->node_page))
1128		dn->node_changed = true;
1129}
1130
1131void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr)
1132{
1133	dn->data_blkaddr = blkaddr;
1134	f2fs_set_data_blkaddr(dn);
1135	f2fs_update_extent_cache(dn);
1136}
1137
1138/* dn->ofs_in_node will be returned with up-to-date last block pointer */
1139int f2fs_reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count)
1140{
1141	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1142	int err;
1143
1144	if (!count)
1145		return 0;
1146
1147	if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
1148		return -EPERM;
1149	if (unlikely((err = inc_valid_block_count(sbi, dn->inode, &count))))
1150		return err;
1151
1152	trace_f2fs_reserve_new_blocks(dn->inode, dn->nid,
1153						dn->ofs_in_node, count);
1154
1155	f2fs_wait_on_page_writeback(dn->node_page, NODE, true, true);
1156
1157	for (; count > 0; dn->ofs_in_node++) {
1158		block_t blkaddr = f2fs_data_blkaddr(dn);
1159		if (blkaddr == NULL_ADDR) {
1160			dn->data_blkaddr = NEW_ADDR;
1161			__set_data_blkaddr(dn);
1162			count--;
1163		}
1164	}
1165
1166	if (set_page_dirty(dn->node_page))
1167		dn->node_changed = true;
1168	return 0;
1169}
1170
1171/* Should keep dn->ofs_in_node unchanged */
1172int f2fs_reserve_new_block(struct dnode_of_data *dn)
1173{
1174	unsigned int ofs_in_node = dn->ofs_in_node;
1175	int ret;
1176
1177	ret = f2fs_reserve_new_blocks(dn, 1);
1178	dn->ofs_in_node = ofs_in_node;
1179	return ret;
1180}
1181
1182int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index)
1183{
1184	bool need_put = dn->inode_page ? false : true;
1185	int err;
1186
1187	err = f2fs_get_dnode_of_data(dn, index, ALLOC_NODE);
1188	if (err)
1189		return err;
1190
1191	if (dn->data_blkaddr == NULL_ADDR)
1192		err = f2fs_reserve_new_block(dn);
1193	if (err || need_put)
1194		f2fs_put_dnode(dn);
1195	return err;
1196}
1197
1198int f2fs_get_block(struct dnode_of_data *dn, pgoff_t index)
1199{
1200	struct extent_info ei = {0, 0, 0};
1201	struct inode *inode = dn->inode;
1202
1203	if (f2fs_lookup_extent_cache(inode, index, &ei)) {
1204		dn->data_blkaddr = ei.blk + index - ei.fofs;
1205		return 0;
1206	}
1207
1208	return f2fs_reserve_block(dn, index);
1209}
1210
1211struct page *f2fs_get_read_data_page(struct inode *inode, pgoff_t index,
1212						int op_flags, bool for_write)
1213{
1214	struct address_space *mapping = inode->i_mapping;
1215	struct dnode_of_data dn;
1216	struct page *page;
1217	struct extent_info ei = {0,0,0};
1218	int err;
1219
1220	page = f2fs_grab_cache_page(mapping, index, for_write);
1221	if (!page)
1222		return ERR_PTR(-ENOMEM);
1223
1224	if (f2fs_lookup_extent_cache(inode, index, &ei)) {
1225		dn.data_blkaddr = ei.blk + index - ei.fofs;
1226		if (!f2fs_is_valid_blkaddr(F2FS_I_SB(inode), dn.data_blkaddr,
1227						DATA_GENERIC_ENHANCE_READ)) {
1228			err = -EFSCORRUPTED;
1229			goto put_err;
1230		}
1231		goto got_it;
1232	}
1233
1234	set_new_dnode(&dn, inode, NULL, NULL, 0);
1235	err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE);
1236	if (err)
1237		goto put_err;
1238	f2fs_put_dnode(&dn);
1239
1240	if (unlikely(dn.data_blkaddr == NULL_ADDR)) {
1241		err = -ENOENT;
1242		goto put_err;
1243	}
1244	if (dn.data_blkaddr != NEW_ADDR &&
1245			!f2fs_is_valid_blkaddr(F2FS_I_SB(inode),
1246						dn.data_blkaddr,
1247						DATA_GENERIC_ENHANCE)) {
1248		err = -EFSCORRUPTED;
1249		goto put_err;
1250	}
1251got_it:
1252	if (PageUptodate(page)) {
1253		unlock_page(page);
1254		return page;
1255	}
1256
1257	/*
1258	 * A new dentry page is allocated but not able to be written, since its
1259	 * new inode page couldn't be allocated due to -ENOSPC.
1260	 * In such the case, its blkaddr can be remained as NEW_ADDR.
1261	 * see, f2fs_add_link -> f2fs_get_new_data_page ->
1262	 * f2fs_init_inode_metadata.
1263	 */
1264	if (dn.data_blkaddr == NEW_ADDR) {
1265		zero_user_segment(page, 0, PAGE_SIZE);
1266		if (!PageUptodate(page))
1267			SetPageUptodate(page);
1268		unlock_page(page);
1269		return page;
1270	}
1271
1272	err = f2fs_submit_page_read(inode, page, dn.data_blkaddr,
1273						op_flags, for_write);
1274	if (err)
1275		goto put_err;
1276	return page;
1277
1278put_err:
1279	f2fs_put_page(page, 1);
1280	return ERR_PTR(err);
1281}
1282
1283struct page *f2fs_find_data_page(struct inode *inode, pgoff_t index)
1284{
1285	struct address_space *mapping = inode->i_mapping;
1286	struct page *page;
1287
1288	page = find_get_page(mapping, index);
1289	if (page && PageUptodate(page))
1290		return page;
1291	f2fs_put_page(page, 0);
1292
1293	page = f2fs_get_read_data_page(inode, index, 0, false);
1294	if (IS_ERR(page))
1295		return page;
1296
1297	if (PageUptodate(page))
1298		return page;
1299
1300	wait_on_page_locked(page);
1301	if (unlikely(!PageUptodate(page))) {
1302		f2fs_put_page(page, 0);
1303		return ERR_PTR(-EIO);
1304	}
1305	return page;
1306}
1307
1308/*
1309 * If it tries to access a hole, return an error.
1310 * Because, the callers, functions in dir.c and GC, should be able to know
1311 * whether this page exists or not.
1312 */
1313struct page *f2fs_get_lock_data_page(struct inode *inode, pgoff_t index,
1314							bool for_write)
1315{
1316	struct address_space *mapping = inode->i_mapping;
1317	struct page *page;
1318repeat:
1319	page = f2fs_get_read_data_page(inode, index, 0, for_write);
1320	if (IS_ERR(page))
1321		return page;
1322
1323	/* wait for read completion */
1324	lock_page(page);
1325	if (unlikely(page->mapping != mapping)) {
1326		f2fs_put_page(page, 1);
1327		goto repeat;
1328	}
1329	if (unlikely(!PageUptodate(page))) {
1330		f2fs_put_page(page, 1);
1331		return ERR_PTR(-EIO);
1332	}
1333	return page;
1334}
1335
1336/*
1337 * Caller ensures that this data page is never allocated.
1338 * A new zero-filled data page is allocated in the page cache.
1339 *
1340 * Also, caller should grab and release a rwsem by calling f2fs_lock_op() and
1341 * f2fs_unlock_op().
1342 * Note that, ipage is set only by make_empty_dir, and if any error occur,
1343 * ipage should be released by this function.
1344 */
1345struct page *f2fs_get_new_data_page(struct inode *inode,
1346		struct page *ipage, pgoff_t index, bool new_i_size)
1347{
1348	struct address_space *mapping = inode->i_mapping;
1349	struct page *page;
1350	struct dnode_of_data dn;
1351	int err;
1352
1353	page = f2fs_grab_cache_page(mapping, index, true);
1354	if (!page) {
1355		/*
1356		 * before exiting, we should make sure ipage will be released
1357		 * if any error occur.
1358		 */
1359		f2fs_put_page(ipage, 1);
1360		return ERR_PTR(-ENOMEM);
1361	}
1362
1363	set_new_dnode(&dn, inode, ipage, NULL, 0);
1364	err = f2fs_reserve_block(&dn, index);
1365	if (err) {
1366		f2fs_put_page(page, 1);
1367		return ERR_PTR(err);
1368	}
1369	if (!ipage)
1370		f2fs_put_dnode(&dn);
1371
1372	if (PageUptodate(page))
1373		goto got_it;
1374
1375	if (dn.data_blkaddr == NEW_ADDR) {
1376		zero_user_segment(page, 0, PAGE_SIZE);
1377		if (!PageUptodate(page))
1378			SetPageUptodate(page);
1379	} else {
1380		f2fs_put_page(page, 1);
1381
1382		/* if ipage exists, blkaddr should be NEW_ADDR */
1383		f2fs_bug_on(F2FS_I_SB(inode), ipage);
1384		page = f2fs_get_lock_data_page(inode, index, true);
1385		if (IS_ERR(page))
1386			return page;
1387	}
1388got_it:
1389	if (new_i_size && i_size_read(inode) <
1390				((loff_t)(index + 1) << PAGE_SHIFT))
1391		f2fs_i_size_write(inode, ((loff_t)(index + 1) << PAGE_SHIFT));
1392	return page;
1393}
1394
1395static int __allocate_data_block(struct dnode_of_data *dn, int seg_type, int contig_level)
1396{
1397	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1398	struct f2fs_summary sum;
1399	struct node_info ni;
1400	block_t old_blkaddr;
1401	blkcnt_t count = 1;
1402	int err;
1403
1404	if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
1405		return -EPERM;
1406
1407	err = f2fs_get_node_info(sbi, dn->nid, &ni);
1408	if (err)
1409		return err;
1410
1411	dn->data_blkaddr = f2fs_data_blkaddr(dn);
1412	if (dn->data_blkaddr != NULL_ADDR)
1413		goto alloc;
1414
1415	if (unlikely((err = inc_valid_block_count(sbi, dn->inode, &count))))
1416		return err;
1417
1418alloc:
1419	set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version);
1420	old_blkaddr = dn->data_blkaddr;
1421	f2fs_allocate_data_block(sbi, NULL, old_blkaddr, &dn->data_blkaddr,
1422				&sum, seg_type, NULL, contig_level);
1423	if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO)
1424		invalidate_mapping_pages(META_MAPPING(sbi),
1425					old_blkaddr, old_blkaddr);
1426	f2fs_update_data_blkaddr(dn, dn->data_blkaddr);
1427
1428	/*
1429	 * i_size will be updated by direct_IO. Otherwise, we'll get stale
1430	 * data from unwritten block via dio_read.
1431	 */
1432	return 0;
1433}
1434
1435int f2fs_preallocate_blocks(struct kiocb *iocb, struct iov_iter *from)
1436{
1437	struct inode *inode = file_inode(iocb->ki_filp);
1438	struct f2fs_map_blocks map;
1439	int flag;
1440	int err = 0;
1441	bool direct_io = iocb->ki_flags & IOCB_DIRECT;
1442
1443	map.m_lblk = F2FS_BLK_ALIGN(iocb->ki_pos);
1444	map.m_len = F2FS_BYTES_TO_BLK(iocb->ki_pos + iov_iter_count(from));
1445	if (map.m_len > map.m_lblk)
1446		map.m_len -= map.m_lblk;
1447	else
1448		map.m_len = 0;
1449
1450	map.m_next_pgofs = NULL;
1451	map.m_next_extent = NULL;
1452	map.m_seg_type = NO_CHECK_TYPE;
1453	map.m_may_create = true;
1454
1455	if (direct_io) {
1456		map.m_seg_type = f2fs_rw_hint_to_seg_type(iocb->ki_hint);
1457		flag = f2fs_force_buffered_io(inode, iocb, from) ?
1458					F2FS_GET_BLOCK_PRE_AIO :
1459					F2FS_GET_BLOCK_PRE_DIO;
1460		goto map_blocks;
1461	}
1462	if (iocb->ki_pos + iov_iter_count(from) > MAX_INLINE_DATA(inode)) {
1463		err = f2fs_convert_inline_inode(inode);
1464		if (err)
1465			return err;
1466	}
1467	if (f2fs_has_inline_data(inode))
1468		return err;
1469
1470	flag = F2FS_GET_BLOCK_PRE_AIO;
1471
1472map_blocks:
1473	err = f2fs_map_blocks(inode, &map, 1, flag);
1474	if (map.m_len > 0 && err == -ENOSPC) {
1475		if (!direct_io)
1476			set_inode_flag(inode, FI_NO_PREALLOC);
1477		err = 0;
1478	}
1479	return err;
1480}
1481
1482void f2fs_do_map_lock(struct f2fs_sb_info *sbi, int flag, bool lock)
1483{
1484	if (flag == F2FS_GET_BLOCK_PRE_AIO) {
1485		if (lock)
1486			down_read(&sbi->node_change);
1487		else
1488			up_read(&sbi->node_change);
1489	} else {
1490		if (lock)
1491			f2fs_lock_op(sbi);
1492		else
1493			f2fs_unlock_op(sbi);
1494	}
1495}
1496
1497/*
1498 * f2fs_map_blocks() tries to find or build mapping relationship which
1499 * maps continuous logical blocks to physical blocks, and return such
1500 * info via f2fs_map_blocks structure.
1501 */
1502int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map,
1503						int create, int flag)
1504{
1505	unsigned int maxblocks = map->m_len;
1506	struct dnode_of_data dn;
1507	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1508	int mode = map->m_may_create ? ALLOC_NODE : LOOKUP_NODE;
1509	pgoff_t pgofs, end_offset, end;
1510	int err = 0, ofs = 1;
1511	unsigned int ofs_in_node, last_ofs_in_node;
1512	blkcnt_t prealloc;
1513	struct extent_info ei = {0,0,0};
1514	block_t blkaddr;
1515	unsigned int start_pgofs;
1516	int contig_level = SEQ_NONE;
1517#ifdef CONFIG_F2FS_GRADING_SSR
1518	contig_level = check_io_seq(maxblocks);
1519#endif
1520
1521	if (!maxblocks)
1522		return 0;
1523
1524	map->m_len = 0;
1525	map->m_flags = 0;
1526
1527	/* it only supports block size == page size */
1528	pgofs =	(pgoff_t)map->m_lblk;
1529	end = pgofs + maxblocks;
1530
1531	if (!create && f2fs_lookup_extent_cache(inode, pgofs, &ei)) {
1532		if (f2fs_lfs_mode(sbi) && flag == F2FS_GET_BLOCK_DIO &&
1533							map->m_may_create)
1534			goto next_dnode;
1535
1536		map->m_pblk = ei.blk + pgofs - ei.fofs;
1537		map->m_len = min((pgoff_t)maxblocks, ei.fofs + ei.len - pgofs);
1538		map->m_flags = F2FS_MAP_MAPPED;
1539		if (map->m_next_extent)
1540			*map->m_next_extent = pgofs + map->m_len;
1541
1542		/* for hardware encryption, but to avoid potential issue in future */
1543		if (flag == F2FS_GET_BLOCK_DIO)
1544			f2fs_wait_on_block_writeback_range(inode,
1545						map->m_pblk, map->m_len);
1546		goto out;
1547	}
1548
1549next_dnode:
1550	if (map->m_may_create)
1551		f2fs_do_map_lock(sbi, flag, true);
1552
1553	/* When reading holes, we need its node page */
1554	set_new_dnode(&dn, inode, NULL, NULL, 0);
1555	err = f2fs_get_dnode_of_data(&dn, pgofs, mode);
1556	if (err) {
1557		if (flag == F2FS_GET_BLOCK_BMAP)
1558			map->m_pblk = 0;
1559
1560		if (err == -ENOENT) {
1561			/*
1562			 * There is one exceptional case that read_node_page()
1563			 * may return -ENOENT due to filesystem has been
1564			 * shutdown or cp_error, so force to convert error
1565			 * number to EIO for such case.
1566			 */
1567			if (map->m_may_create &&
1568				(is_sbi_flag_set(sbi, SBI_IS_SHUTDOWN) ||
1569				f2fs_cp_error(sbi))) {
1570				err = -EIO;
1571				goto unlock_out;
1572			}
1573
1574			err = 0;
1575			if (map->m_next_pgofs)
1576				*map->m_next_pgofs =
1577					f2fs_get_next_page_offset(&dn, pgofs);
1578			if (map->m_next_extent)
1579				*map->m_next_extent =
1580					f2fs_get_next_page_offset(&dn, pgofs);
1581		}
1582		goto unlock_out;
1583	}
1584
1585	start_pgofs = pgofs;
1586	prealloc = 0;
1587	last_ofs_in_node = ofs_in_node = dn.ofs_in_node;
1588	end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
1589
1590next_block:
1591	blkaddr = f2fs_data_blkaddr(&dn);
1592
1593	if (__is_valid_data_blkaddr(blkaddr) &&
1594		!f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC_ENHANCE)) {
1595		err = -EFSCORRUPTED;
1596		goto sync_out;
1597	}
1598
1599	if (__is_valid_data_blkaddr(blkaddr)) {
1600		/* use out-place-update for driect IO under LFS mode */
1601		if (f2fs_lfs_mode(sbi) && flag == F2FS_GET_BLOCK_DIO &&
1602							map->m_may_create) {
1603			err = __allocate_data_block(&dn, map->m_seg_type, contig_level);
1604			if (err)
1605				goto sync_out;
1606			blkaddr = dn.data_blkaddr;
1607			set_inode_flag(inode, FI_APPEND_WRITE);
1608		}
1609	} else {
1610		if (create) {
1611			if (unlikely(f2fs_cp_error(sbi))) {
1612				err = -EIO;
1613				goto sync_out;
1614			}
1615			if (flag == F2FS_GET_BLOCK_PRE_AIO) {
1616				if (blkaddr == NULL_ADDR) {
1617					prealloc++;
1618					last_ofs_in_node = dn.ofs_in_node;
1619				}
1620			} else {
1621				WARN_ON(flag != F2FS_GET_BLOCK_PRE_DIO &&
1622					flag != F2FS_GET_BLOCK_DIO);
1623				err = __allocate_data_block(&dn,
1624					map->m_seg_type, contig_level);
1625				if (!err)
1626					set_inode_flag(inode, FI_APPEND_WRITE);
1627			}
1628			if (err)
1629				goto sync_out;
1630			map->m_flags |= F2FS_MAP_NEW;
1631			blkaddr = dn.data_blkaddr;
1632		} else {
1633			if (flag == F2FS_GET_BLOCK_BMAP) {
1634				map->m_pblk = 0;
1635				goto sync_out;
1636			}
1637			if (flag == F2FS_GET_BLOCK_PRECACHE)
1638				goto sync_out;
1639			if (flag == F2FS_GET_BLOCK_FIEMAP &&
1640						blkaddr == NULL_ADDR) {
1641				if (map->m_next_pgofs)
1642					*map->m_next_pgofs = pgofs + 1;
1643				goto sync_out;
1644			}
1645			if (flag != F2FS_GET_BLOCK_FIEMAP) {
1646				/* for defragment case */
1647				if (map->m_next_pgofs)
1648					*map->m_next_pgofs = pgofs + 1;
1649				goto sync_out;
1650			}
1651		}
1652	}
1653
1654	if (flag == F2FS_GET_BLOCK_PRE_AIO)
1655		goto skip;
1656
1657	if (map->m_len == 0) {
1658		/* preallocated unwritten block should be mapped for fiemap. */
1659		if (blkaddr == NEW_ADDR)
1660			map->m_flags |= F2FS_MAP_UNWRITTEN;
1661		map->m_flags |= F2FS_MAP_MAPPED;
1662
1663		map->m_pblk = blkaddr;
1664		map->m_len = 1;
1665	} else if ((map->m_pblk != NEW_ADDR &&
1666			blkaddr == (map->m_pblk + ofs)) ||
1667			(map->m_pblk == NEW_ADDR && blkaddr == NEW_ADDR) ||
1668			flag == F2FS_GET_BLOCK_PRE_DIO) {
1669		ofs++;
1670		map->m_len++;
1671	} else {
1672		goto sync_out;
1673	}
1674
1675skip:
1676	dn.ofs_in_node++;
1677	pgofs++;
1678
1679	/* preallocate blocks in batch for one dnode page */
1680	if (flag == F2FS_GET_BLOCK_PRE_AIO &&
1681			(pgofs == end || dn.ofs_in_node == end_offset)) {
1682
1683		dn.ofs_in_node = ofs_in_node;
1684		err = f2fs_reserve_new_blocks(&dn, prealloc);
1685		if (err)
1686			goto sync_out;
1687
1688		map->m_len += dn.ofs_in_node - ofs_in_node;
1689		if (prealloc && dn.ofs_in_node != last_ofs_in_node + 1) {
1690			err = -ENOSPC;
1691			goto sync_out;
1692		}
1693		dn.ofs_in_node = end_offset;
1694	}
1695
1696	if (pgofs >= end)
1697		goto sync_out;
1698	else if (dn.ofs_in_node < end_offset)
1699		goto next_block;
1700
1701	if (flag == F2FS_GET_BLOCK_PRECACHE) {
1702		if (map->m_flags & F2FS_MAP_MAPPED) {
1703			unsigned int ofs = start_pgofs - map->m_lblk;
1704
1705			f2fs_update_extent_cache_range(&dn,
1706				start_pgofs, map->m_pblk + ofs,
1707				map->m_len - ofs);
1708		}
1709	}
1710
1711	f2fs_put_dnode(&dn);
1712
1713	if (map->m_may_create) {
1714		f2fs_do_map_lock(sbi, flag, false);
1715		f2fs_balance_fs(sbi, dn.node_changed);
1716	}
1717	goto next_dnode;
1718
1719sync_out:
1720
1721	/* for hardware encryption, but to avoid potential issue in future */
1722	if (flag == F2FS_GET_BLOCK_DIO && map->m_flags & F2FS_MAP_MAPPED)
1723		f2fs_wait_on_block_writeback_range(inode,
1724						map->m_pblk, map->m_len);
1725
1726	if (flag == F2FS_GET_BLOCK_PRECACHE) {
1727		if (map->m_flags & F2FS_MAP_MAPPED) {
1728			unsigned int ofs = start_pgofs - map->m_lblk;
1729
1730			f2fs_update_extent_cache_range(&dn,
1731				start_pgofs, map->m_pblk + ofs,
1732				map->m_len - ofs);
1733		}
1734		if (map->m_next_extent)
1735			*map->m_next_extent = pgofs + 1;
1736	}
1737	f2fs_put_dnode(&dn);
1738unlock_out:
1739	if (map->m_may_create) {
1740		f2fs_do_map_lock(sbi, flag, false);
1741		f2fs_balance_fs(sbi, dn.node_changed);
1742	}
1743out:
1744	trace_f2fs_map_blocks(inode, map, err);
1745	return err;
1746}
1747
1748bool f2fs_overwrite_io(struct inode *inode, loff_t pos, size_t len)
1749{
1750	struct f2fs_map_blocks map;
1751	block_t last_lblk;
1752	int err;
1753
1754	if (pos + len > i_size_read(inode))
1755		return false;
1756
1757	map.m_lblk = F2FS_BYTES_TO_BLK(pos);
1758	map.m_next_pgofs = NULL;
1759	map.m_next_extent = NULL;
1760	map.m_seg_type = NO_CHECK_TYPE;
1761	map.m_may_create = false;
1762	last_lblk = F2FS_BLK_ALIGN(pos + len);
1763
1764	while (map.m_lblk < last_lblk) {
1765		map.m_len = last_lblk - map.m_lblk;
1766		err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_DEFAULT);
1767		if (err || map.m_len == 0)
1768			return false;
1769		map.m_lblk += map.m_len;
1770	}
1771	return true;
1772}
1773
1774static int __get_data_block(struct inode *inode, sector_t iblock,
1775			struct buffer_head *bh, int create, int flag,
1776			pgoff_t *next_pgofs, int seg_type, bool may_write)
1777{
1778	struct f2fs_map_blocks map;
1779	int err;
1780
1781	map.m_lblk = iblock;
1782	map.m_len = bh->b_size >> inode->i_blkbits;
1783	map.m_next_pgofs = next_pgofs;
1784	map.m_next_extent = NULL;
1785	map.m_seg_type = seg_type;
1786	map.m_may_create = may_write;
1787
1788	err = f2fs_map_blocks(inode, &map, create, flag);
1789	if (!err) {
1790		map_bh(bh, inode->i_sb, map.m_pblk);
1791		bh->b_state = (bh->b_state & ~F2FS_MAP_FLAGS) | map.m_flags;
1792		bh->b_size = (u64)map.m_len << inode->i_blkbits;
1793	}
1794	return err;
1795}
1796
1797static int get_data_block(struct inode *inode, sector_t iblock,
1798			struct buffer_head *bh_result, int create, int flag,
1799			pgoff_t *next_pgofs)
1800{
1801	return __get_data_block(inode, iblock, bh_result, create,
1802							flag, next_pgofs,
1803							NO_CHECK_TYPE, create);
1804}
1805
1806static int get_data_block_dio_write(struct inode *inode, sector_t iblock,
1807			struct buffer_head *bh_result, int create)
1808{
1809	return __get_data_block(inode, iblock, bh_result, create,
1810				F2FS_GET_BLOCK_DIO, NULL,
1811				f2fs_rw_hint_to_seg_type(inode->i_write_hint),
1812				IS_SWAPFILE(inode) ? false : true);
1813}
1814
1815static int get_data_block_dio(struct inode *inode, sector_t iblock,
1816			struct buffer_head *bh_result, int create)
1817{
1818	return __get_data_block(inode, iblock, bh_result, create,
1819				F2FS_GET_BLOCK_DIO, NULL,
1820				f2fs_rw_hint_to_seg_type(inode->i_write_hint),
1821				false);
1822}
1823
1824static int get_data_block_bmap(struct inode *inode, sector_t iblock,
1825			struct buffer_head *bh_result, int create)
1826{
1827	return __get_data_block(inode, iblock, bh_result, create,
1828						F2FS_GET_BLOCK_BMAP, NULL,
1829						NO_CHECK_TYPE, create);
1830}
1831
1832static inline sector_t logical_to_blk(struct inode *inode, loff_t offset)
1833{
1834	return (offset >> inode->i_blkbits);
1835}
1836
1837static inline loff_t blk_to_logical(struct inode *inode, sector_t blk)
1838{
1839	return (blk << inode->i_blkbits);
1840}
1841
1842static int f2fs_xattr_fiemap(struct inode *inode,
1843				struct fiemap_extent_info *fieinfo)
1844{
1845	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1846	struct page *page;
1847	struct node_info ni;
1848	__u64 phys = 0, len;
1849	__u32 flags;
1850	nid_t xnid = F2FS_I(inode)->i_xattr_nid;
1851	int err = 0;
1852
1853	if (f2fs_has_inline_xattr(inode)) {
1854		int offset;
1855
1856		page = f2fs_grab_cache_page(NODE_MAPPING(sbi),
1857						inode->i_ino, false);
1858		if (!page)
1859			return -ENOMEM;
1860
1861		err = f2fs_get_node_info(sbi, inode->i_ino, &ni);
1862		if (err) {
1863			f2fs_put_page(page, 1);
1864			return err;
1865		}
1866
1867		phys = (__u64)blk_to_logical(inode, ni.blk_addr);
1868		offset = offsetof(struct f2fs_inode, i_addr) +
1869					sizeof(__le32) * (DEF_ADDRS_PER_INODE -
1870					get_inline_xattr_addrs(inode));
1871
1872		phys += offset;
1873		len = inline_xattr_size(inode);
1874
1875		f2fs_put_page(page, 1);
1876
1877		flags = FIEMAP_EXTENT_DATA_INLINE | FIEMAP_EXTENT_NOT_ALIGNED;
1878
1879		if (!xnid)
1880			flags |= FIEMAP_EXTENT_LAST;
1881
1882		err = fiemap_fill_next_extent(fieinfo, 0, phys, len, flags);
1883		trace_f2fs_fiemap(inode, 0, phys, len, flags, err);
1884		if (err || err == 1)
1885			return err;
1886	}
1887
1888	if (xnid) {
1889		page = f2fs_grab_cache_page(NODE_MAPPING(sbi), xnid, false);
1890		if (!page)
1891			return -ENOMEM;
1892
1893		err = f2fs_get_node_info(sbi, xnid, &ni);
1894		if (err) {
1895			f2fs_put_page(page, 1);
1896			return err;
1897		}
1898
1899		phys = (__u64)blk_to_logical(inode, ni.blk_addr);
1900		len = inode->i_sb->s_blocksize;
1901
1902		f2fs_put_page(page, 1);
1903
1904		flags = FIEMAP_EXTENT_LAST;
1905	}
1906
1907	if (phys) {
1908		err = fiemap_fill_next_extent(fieinfo, 0, phys, len, flags);
1909		trace_f2fs_fiemap(inode, 0, phys, len, flags, err);
1910	}
1911
1912	return (err < 0 ? err : 0);
1913}
1914
1915static loff_t max_inode_blocks(struct inode *inode)
1916{
1917	loff_t result = ADDRS_PER_INODE(inode);
1918	loff_t leaf_count = ADDRS_PER_BLOCK(inode);
1919
1920	/* two direct node blocks */
1921	result += (leaf_count * 2);
1922
1923	/* two indirect node blocks */
1924	leaf_count *= NIDS_PER_BLOCK;
1925	result += (leaf_count * 2);
1926
1927	/* one double indirect node block */
1928	leaf_count *= NIDS_PER_BLOCK;
1929	result += leaf_count;
1930
1931	return result;
1932}
1933
1934int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
1935		u64 start, u64 len)
1936{
1937	struct buffer_head map_bh;
1938	sector_t start_blk, last_blk;
1939	pgoff_t next_pgofs;
1940	u64 logical = 0, phys = 0, size = 0;
1941	u32 flags = 0;
1942	int ret = 0;
1943	bool compr_cluster = false;
1944	unsigned int cluster_size = F2FS_I(inode)->i_cluster_size;
1945
1946	if (fieinfo->fi_flags & FIEMAP_FLAG_CACHE) {
1947		ret = f2fs_precache_extents(inode);
1948		if (ret)
1949			return ret;
1950	}
1951
1952	ret = fiemap_prep(inode, fieinfo, start, &len, FIEMAP_FLAG_XATTR);
1953	if (ret)
1954		return ret;
1955
1956	inode_lock(inode);
1957
1958	if (fieinfo->fi_flags & FIEMAP_FLAG_XATTR) {
1959		ret = f2fs_xattr_fiemap(inode, fieinfo);
1960		goto out;
1961	}
1962
1963	if (f2fs_has_inline_data(inode) || f2fs_has_inline_dentry(inode)) {
1964		ret = f2fs_inline_data_fiemap(inode, fieinfo, start, len);
1965		if (ret != -EAGAIN)
1966			goto out;
1967	}
1968
1969	if (logical_to_blk(inode, len) == 0)
1970		len = blk_to_logical(inode, 1);
1971
1972	start_blk = logical_to_blk(inode, start);
1973	last_blk = logical_to_blk(inode, start + len - 1);
1974
1975next:
1976	memset(&map_bh, 0, sizeof(struct buffer_head));
1977	map_bh.b_size = len;
1978
1979	if (compr_cluster)
1980		map_bh.b_size = blk_to_logical(inode, cluster_size - 1);
1981
1982	ret = get_data_block(inode, start_blk, &map_bh, 0,
1983					F2FS_GET_BLOCK_FIEMAP, &next_pgofs);
1984	if (ret)
1985		goto out;
1986
1987	/* HOLE */
1988	if (!buffer_mapped(&map_bh)) {
1989		start_blk = next_pgofs;
1990
1991		if (blk_to_logical(inode, start_blk) < blk_to_logical(inode,
1992						max_inode_blocks(inode)))
1993			goto prep_next;
1994
1995		flags |= FIEMAP_EXTENT_LAST;
1996	}
1997
1998	if (size) {
1999		if (IS_ENCRYPTED(inode))
2000			flags |= FIEMAP_EXTENT_DATA_ENCRYPTED;
2001
2002		ret = fiemap_fill_next_extent(fieinfo, logical,
2003				phys, size, flags);
2004		trace_f2fs_fiemap(inode, logical, phys, size, flags, ret);
2005		if (ret)
2006			goto out;
2007		size = 0;
2008	}
2009
2010	if (start_blk > last_blk)
2011		goto out;
2012
2013	if (compr_cluster) {
2014		compr_cluster = false;
2015
2016
2017		logical = blk_to_logical(inode, start_blk - 1);
2018		phys = blk_to_logical(inode, map_bh.b_blocknr);
2019		size = blk_to_logical(inode, cluster_size);
2020
2021		flags |= FIEMAP_EXTENT_ENCODED;
2022
2023		start_blk += cluster_size - 1;
2024
2025		if (start_blk > last_blk)
2026			goto out;
2027
2028		goto prep_next;
2029	}
2030
2031	if (map_bh.b_blocknr == COMPRESS_ADDR) {
2032		compr_cluster = true;
2033		start_blk++;
2034		goto prep_next;
2035	}
2036
2037	logical = blk_to_logical(inode, start_blk);
2038	phys = blk_to_logical(inode, map_bh.b_blocknr);
2039	size = map_bh.b_size;
2040	flags = 0;
2041	if (buffer_unwritten(&map_bh))
2042		flags = FIEMAP_EXTENT_UNWRITTEN;
2043
2044	start_blk += logical_to_blk(inode, size);
2045
2046prep_next:
2047	cond_resched();
2048	if (fatal_signal_pending(current))
2049		ret = -EINTR;
2050	else
2051		goto next;
2052out:
2053	if (ret == 1)
2054		ret = 0;
2055
2056	inode_unlock(inode);
2057	return ret;
2058}
2059
2060static inline loff_t f2fs_readpage_limit(struct inode *inode)
2061{
2062	if (IS_ENABLED(CONFIG_FS_VERITY) &&
2063	    (IS_VERITY(inode) || f2fs_verity_in_progress(inode)))
2064		return inode->i_sb->s_maxbytes;
2065
2066	return i_size_read(inode);
2067}
2068
2069static int f2fs_read_single_page(struct inode *inode, struct page *page,
2070					unsigned nr_pages,
2071					struct f2fs_map_blocks *map,
2072					struct bio **bio_ret,
2073					sector_t *last_block_in_bio,
2074					bool is_readahead)
2075{
2076	struct bio *bio = *bio_ret;
2077	const unsigned blkbits = inode->i_blkbits;
2078	const unsigned blocksize = 1 << blkbits;
2079	sector_t block_in_file;
2080	sector_t last_block;
2081	sector_t last_block_in_file;
2082	sector_t block_nr;
2083	int ret = 0;
2084
2085	block_in_file = (sector_t)page_index(page);
2086	last_block = block_in_file + nr_pages;
2087	last_block_in_file = (f2fs_readpage_limit(inode) + blocksize - 1) >>
2088							blkbits;
2089	if (last_block > last_block_in_file)
2090		last_block = last_block_in_file;
2091
2092	/* just zeroing out page which is beyond EOF */
2093	if (block_in_file >= last_block)
2094		goto zero_out;
2095	/*
2096	 * Map blocks using the previous result first.
2097	 */
2098	if ((map->m_flags & F2FS_MAP_MAPPED) &&
2099			block_in_file > map->m_lblk &&
2100			block_in_file < (map->m_lblk + map->m_len))
2101		goto got_it;
2102
2103	/*
2104	 * Then do more f2fs_map_blocks() calls until we are
2105	 * done with this page.
2106	 */
2107	map->m_lblk = block_in_file;
2108	map->m_len = last_block - block_in_file;
2109
2110	ret = f2fs_map_blocks(inode, map, 0, F2FS_GET_BLOCK_DEFAULT);
2111	if (ret)
2112		goto out;
2113got_it:
2114	if ((map->m_flags & F2FS_MAP_MAPPED)) {
2115		block_nr = map->m_pblk + block_in_file - map->m_lblk;
2116		SetPageMappedToDisk(page);
2117
2118		if (!PageUptodate(page) && (!PageSwapCache(page) &&
2119					!cleancache_get_page(page))) {
2120			SetPageUptodate(page);
2121			goto confused;
2122		}
2123
2124		if (!f2fs_is_valid_blkaddr(F2FS_I_SB(inode), block_nr,
2125						DATA_GENERIC_ENHANCE_READ)) {
2126			ret = -EFSCORRUPTED;
2127			goto out;
2128		}
2129	} else {
2130zero_out:
2131		zero_user_segment(page, 0, PAGE_SIZE);
2132		if (f2fs_need_verity(inode, page->index) &&
2133		    !fsverity_verify_page(page)) {
2134			ret = -EIO;
2135			goto out;
2136		}
2137		if (!PageUptodate(page))
2138			SetPageUptodate(page);
2139		unlock_page(page);
2140		goto out;
2141	}
2142
2143	/*
2144	 * This page will go to BIO.  Do we need to send this
2145	 * BIO off first?
2146	 */
2147	if (bio && (!page_is_mergeable(F2FS_I_SB(inode), bio,
2148				       *last_block_in_bio, block_nr) ||
2149		    !f2fs_crypt_mergeable_bio(bio, inode, page->index, NULL))) {
2150submit_and_realloc:
2151		__submit_bio(F2FS_I_SB(inode), bio, DATA);
2152		bio = NULL;
2153	}
2154	if (bio == NULL) {
2155		bio = f2fs_grab_read_bio(inode, block_nr, nr_pages,
2156				is_readahead ? REQ_RAHEAD : 0, page->index,
2157				false, true);
2158		if (IS_ERR(bio)) {
2159			ret = PTR_ERR(bio);
2160			bio = NULL;
2161			goto out;
2162		}
2163	}
2164
2165	/*
2166	 * If the page is under writeback, we need to wait for
2167	 * its completion to see the correct decrypted data.
2168	 */
2169	f2fs_wait_on_block_writeback(inode, block_nr);
2170
2171	if (bio_add_page(bio, page, blocksize, 0) < blocksize)
2172		goto submit_and_realloc;
2173
2174	inc_page_count(F2FS_I_SB(inode), F2FS_RD_DATA);
2175	f2fs_update_iostat(F2FS_I_SB(inode), FS_DATA_READ_IO, F2FS_BLKSIZE);
2176	ClearPageError(page);
2177	*last_block_in_bio = block_nr;
2178	goto out;
2179confused:
2180	if (bio) {
2181		__submit_bio(F2FS_I_SB(inode), bio, DATA);
2182		bio = NULL;
2183	}
2184	unlock_page(page);
2185out:
2186	*bio_ret = bio;
2187	return ret;
2188}
2189
2190#ifdef CONFIG_F2FS_FS_COMPRESSION
2191int f2fs_read_multi_pages(struct compress_ctx *cc, struct bio **bio_ret,
2192				unsigned nr_pages, sector_t *last_block_in_bio,
2193				bool is_readahead, bool for_write)
2194{
2195	struct dnode_of_data dn;
2196	struct inode *inode = cc->inode;
2197	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2198	struct bio *bio = *bio_ret;
2199	unsigned int start_idx = cc->cluster_idx << cc->log_cluster_size;
2200	sector_t last_block_in_file;
2201	const unsigned blkbits = inode->i_blkbits;
2202	const unsigned blocksize = 1 << blkbits;
2203	struct decompress_io_ctx *dic = NULL;
2204	struct bio_post_read_ctx *ctx;
2205	bool for_verity = false;
2206	int i;
2207	int ret = 0;
2208
2209	f2fs_bug_on(sbi, f2fs_cluster_is_empty(cc));
2210
2211	last_block_in_file = (f2fs_readpage_limit(inode) +
2212					blocksize - 1) >> blkbits;
2213
2214	/* get rid of pages beyond EOF */
2215	for (i = 0; i < cc->cluster_size; i++) {
2216		struct page *page = cc->rpages[i];
2217
2218		if (!page)
2219			continue;
2220		if ((sector_t)page->index >= last_block_in_file) {
2221			zero_user_segment(page, 0, PAGE_SIZE);
2222			if (!PageUptodate(page))
2223				SetPageUptodate(page);
2224		} else if (!PageUptodate(page)) {
2225			continue;
2226		}
2227		unlock_page(page);
2228		if (for_write)
2229			put_page(page);
2230		cc->rpages[i] = NULL;
2231		cc->nr_rpages--;
2232	}
2233
2234	/* we are done since all pages are beyond EOF */
2235	if (f2fs_cluster_is_empty(cc))
2236		goto out;
2237
2238	set_new_dnode(&dn, inode, NULL, NULL, 0);
2239	ret = f2fs_get_dnode_of_data(&dn, start_idx, LOOKUP_NODE);
2240	if (ret)
2241		goto out;
2242
2243	f2fs_bug_on(sbi, dn.data_blkaddr != COMPRESS_ADDR);
2244
2245	for (i = 1; i < cc->cluster_size; i++) {
2246		block_t blkaddr;
2247
2248		blkaddr = data_blkaddr(dn.inode, dn.node_page,
2249						dn.ofs_in_node + i);
2250
2251		if (!__is_valid_data_blkaddr(blkaddr))
2252			break;
2253
2254		if (!f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC)) {
2255			ret = -EFAULT;
2256			goto out_put_dnode;
2257		}
2258		cc->nr_cpages++;
2259	}
2260
2261	/* nothing to decompress */
2262	if (cc->nr_cpages == 0) {
2263		ret = 0;
2264		goto out_put_dnode;
2265	}
2266
2267	dic = f2fs_alloc_dic(cc);
2268	if (IS_ERR(dic)) {
2269		ret = PTR_ERR(dic);
2270		goto out_put_dnode;
2271	}
2272
2273	/*
2274	 * It's possible to enable fsverity on the fly when handling a cluster,
2275	 * which requires complicated error handling. Instead of adding more
2276	 * complexity, let's give a rule where end_io post-processes fsverity
2277	 * per cluster. In order to do that, we need to submit bio, if previous
2278	 * bio sets a different post-process policy.
2279	 */
2280	if (fsverity_active(cc->inode)) {
2281		atomic_set(&dic->verity_pages, cc->nr_cpages);
2282		for_verity = true;
2283
2284		if (bio) {
2285			ctx = bio->bi_private;
2286			if (!(ctx->enabled_steps & (1 << STEP_VERITY))) {
2287				__submit_bio(sbi, bio, DATA);
2288				bio = NULL;
2289			}
2290		}
2291	}
2292
2293	for (i = 0; i < dic->nr_cpages; i++) {
2294		struct page *page = dic->cpages[i];
2295		block_t blkaddr;
2296
2297		blkaddr = data_blkaddr(dn.inode, dn.node_page,
2298						dn.ofs_in_node + i + 1);
2299
2300		if (bio && (!page_is_mergeable(sbi, bio,
2301					*last_block_in_bio, blkaddr) ||
2302		    !f2fs_crypt_mergeable_bio(bio, inode, page->index, NULL))) {
2303submit_and_realloc:
2304			__submit_bio(sbi, bio, DATA);
2305			bio = NULL;
2306		}
2307
2308		if (!bio) {
2309			bio = f2fs_grab_read_bio(inode, blkaddr, nr_pages,
2310					is_readahead ? REQ_RAHEAD : 0,
2311					page->index, for_write, for_verity);
2312			if (IS_ERR(bio)) {
2313				unsigned int remained = dic->nr_cpages - i;
2314				bool release = false;
2315
2316				ret = PTR_ERR(bio);
2317				dic->failed = true;
2318
2319				if (for_verity) {
2320					if (!atomic_sub_return(remained,
2321						&dic->verity_pages))
2322						release = true;
2323				} else {
2324					if (!atomic_sub_return(remained,
2325						&dic->pending_pages))
2326						release = true;
2327				}
2328
2329				if (release) {
2330					f2fs_decompress_end_io(dic->rpages,
2331						cc->cluster_size, true,
2332						false);
2333					f2fs_free_dic(dic);
2334				}
2335
2336				f2fs_put_dnode(&dn);
2337				*bio_ret = NULL;
2338				return ret;
2339			}
2340		}
2341
2342		f2fs_wait_on_block_writeback(inode, blkaddr);
2343
2344		if (bio_add_page(bio, page, blocksize, 0) < blocksize)
2345			goto submit_and_realloc;
2346
2347		/* tag STEP_DECOMPRESS to handle IO in wq */
2348		ctx = bio->bi_private;
2349		if (!(ctx->enabled_steps & (1 << STEP_DECOMPRESS)))
2350			ctx->enabled_steps |= 1 << STEP_DECOMPRESS;
2351
2352		inc_page_count(sbi, F2FS_RD_DATA);
2353		f2fs_update_iostat(sbi, FS_DATA_READ_IO, F2FS_BLKSIZE);
2354		f2fs_update_iostat(sbi, FS_CDATA_READ_IO, F2FS_BLKSIZE);
2355		ClearPageError(page);
2356		*last_block_in_bio = blkaddr;
2357	}
2358
2359	f2fs_put_dnode(&dn);
2360
2361	*bio_ret = bio;
2362	return 0;
2363
2364out_put_dnode:
2365	f2fs_put_dnode(&dn);
2366out:
2367	f2fs_decompress_end_io(cc->rpages, cc->cluster_size, true, false);
2368	*bio_ret = bio;
2369	return ret;
2370}
2371#endif
2372
2373/*
2374 * This function was originally taken from fs/mpage.c, and customized for f2fs.
2375 * Major change was from block_size == page_size in f2fs by default.
2376 *
2377 * Note that the aops->readpages() function is ONLY used for read-ahead. If
2378 * this function ever deviates from doing just read-ahead, it should either
2379 * use ->readpage() or do the necessary surgery to decouple ->readpages()
2380 * from read-ahead.
2381 */
2382static int f2fs_mpage_readpages(struct inode *inode,
2383		struct readahead_control *rac, struct page *page)
2384{
2385	struct bio *bio = NULL;
2386	sector_t last_block_in_bio = 0;
2387	struct f2fs_map_blocks map;
2388#ifdef CONFIG_F2FS_FS_COMPRESSION
2389	struct compress_ctx cc = {
2390		.inode = inode,
2391		.log_cluster_size = F2FS_I(inode)->i_log_cluster_size,
2392		.cluster_size = F2FS_I(inode)->i_cluster_size,
2393		.cluster_idx = NULL_CLUSTER,
2394		.rpages = NULL,
2395		.cpages = NULL,
2396		.nr_rpages = 0,
2397		.nr_cpages = 0,
2398	};
2399#endif
2400	unsigned nr_pages = rac ? readahead_count(rac) : 1;
2401	unsigned max_nr_pages = nr_pages;
2402	int ret = 0;
2403	bool drop_ra = false;
2404
2405	map.m_pblk = 0;
2406	map.m_lblk = 0;
2407	map.m_len = 0;
2408	map.m_flags = 0;
2409	map.m_next_pgofs = NULL;
2410	map.m_next_extent = NULL;
2411	map.m_seg_type = NO_CHECK_TYPE;
2412	map.m_may_create = false;
2413
2414	/*
2415	 * Two readahead threads for same address range can cause race condition
2416	 * which fragments sequential read IOs. So let's avoid each other.
2417	 */
2418	if (rac && readahead_count(rac)) {
2419		if (READ_ONCE(F2FS_I(inode)->ra_offset) == readahead_index(rac))
2420			drop_ra = true;
2421		else
2422			WRITE_ONCE(F2FS_I(inode)->ra_offset,
2423						readahead_index(rac));
2424	}
2425
2426	for (; nr_pages; nr_pages--) {
2427		if (rac) {
2428			page = readahead_page(rac);
2429			prefetchw(&page->flags);
2430			if (drop_ra) {
2431				f2fs_put_page(page, 1);
2432				continue;
2433			}
2434		}
2435
2436#ifdef CONFIG_F2FS_FS_COMPRESSION
2437		if (f2fs_compressed_file(inode)) {
2438			/* there are remained comressed pages, submit them */
2439			if (!f2fs_cluster_can_merge_page(&cc, page->index)) {
2440				ret = f2fs_read_multi_pages(&cc, &bio,
2441							max_nr_pages,
2442							&last_block_in_bio,
2443							rac != NULL, false);
2444				f2fs_destroy_compress_ctx(&cc, false);
2445				if (ret)
2446					goto set_error_page;
2447			}
2448			ret = f2fs_is_compressed_cluster(inode, page->index);
2449			if (ret < 0)
2450				goto set_error_page;
2451			else if (!ret)
2452				goto read_single_page;
2453
2454			ret = f2fs_init_compress_ctx(&cc);
2455			if (ret)
2456				goto set_error_page;
2457
2458			f2fs_compress_ctx_add_page(&cc, page);
2459
2460			goto next_page;
2461		}
2462read_single_page:
2463#endif
2464
2465		ret = f2fs_read_single_page(inode, page, max_nr_pages, &map,
2466					&bio, &last_block_in_bio, rac);
2467		if (ret) {
2468#ifdef CONFIG_F2FS_FS_COMPRESSION
2469set_error_page:
2470#endif
2471			SetPageError(page);
2472			zero_user_segment(page, 0, PAGE_SIZE);
2473			unlock_page(page);
2474		}
2475#ifdef CONFIG_F2FS_FS_COMPRESSION
2476next_page:
2477#endif
2478		if (rac)
2479			put_page(page);
2480
2481#ifdef CONFIG_F2FS_FS_COMPRESSION
2482		if (f2fs_compressed_file(inode)) {
2483			/* last page */
2484			if (nr_pages == 1 && !f2fs_cluster_is_empty(&cc)) {
2485				ret = f2fs_read_multi_pages(&cc, &bio,
2486							max_nr_pages,
2487							&last_block_in_bio,
2488							rac != NULL, false);
2489				f2fs_destroy_compress_ctx(&cc, false);
2490			}
2491		}
2492#endif
2493	}
2494	if (bio)
2495		__submit_bio(F2FS_I_SB(inode), bio, DATA);
2496
2497	if (rac && readahead_count(rac) && !drop_ra)
2498		WRITE_ONCE(F2FS_I(inode)->ra_offset, -1);
2499	return ret;
2500}
2501
2502static int f2fs_read_data_page(struct file *file, struct page *page)
2503{
2504	struct inode *inode = page_file_mapping(page)->host;
2505	int ret = -EAGAIN;
2506
2507	trace_f2fs_readpage(page, DATA);
2508
2509	if (!f2fs_is_compress_backend_ready(inode)) {
2510		unlock_page(page);
2511		return -EOPNOTSUPP;
2512	}
2513
2514	/* If the file has inline data, try to read it directly */
2515	if (f2fs_has_inline_data(inode))
2516		ret = f2fs_read_inline_data(inode, page);
2517	if (ret == -EAGAIN)
2518		ret = f2fs_mpage_readpages(inode, NULL, page);
2519	return ret;
2520}
2521
2522static void f2fs_readahead(struct readahead_control *rac)
2523{
2524	struct inode *inode = rac->mapping->host;
2525
2526	trace_f2fs_readpages(inode, readahead_index(rac), readahead_count(rac));
2527
2528	if (!f2fs_is_compress_backend_ready(inode))
2529		return;
2530
2531	/* If the file has inline data, skip readpages */
2532	if (f2fs_has_inline_data(inode))
2533		return;
2534
2535	f2fs_mpage_readpages(inode, rac, NULL);
2536}
2537
2538int f2fs_encrypt_one_page(struct f2fs_io_info *fio)
2539{
2540	struct inode *inode = fio->page->mapping->host;
2541	struct page *mpage, *page;
2542	gfp_t gfp_flags = GFP_NOFS;
2543
2544	if (!f2fs_encrypted_file(inode))
2545		return 0;
2546
2547	page = fio->compressed_page ? fio->compressed_page : fio->page;
2548
2549	/* wait for GCed page writeback via META_MAPPING */
2550	f2fs_wait_on_block_writeback(inode, fio->old_blkaddr);
2551
2552	if (fscrypt_inode_uses_inline_crypto(inode))
2553		return 0;
2554
2555retry_encrypt:
2556	fio->encrypted_page = fscrypt_encrypt_pagecache_blocks(page,
2557					PAGE_SIZE, 0, gfp_flags);
2558	if (IS_ERR(fio->encrypted_page)) {
2559		/* flush pending IOs and wait for a while in the ENOMEM case */
2560		if (PTR_ERR(fio->encrypted_page) == -ENOMEM) {
2561			f2fs_flush_merged_writes(fio->sbi);
2562			congestion_wait(BLK_RW_ASYNC, DEFAULT_IO_TIMEOUT);
2563			gfp_flags |= __GFP_NOFAIL;
2564			goto retry_encrypt;
2565		}
2566		return PTR_ERR(fio->encrypted_page);
2567	}
2568
2569	mpage = find_lock_page(META_MAPPING(fio->sbi), fio->old_blkaddr);
2570	if (mpage) {
2571		if (PageUptodate(mpage))
2572			memcpy(page_address(mpage),
2573				page_address(fio->encrypted_page), PAGE_SIZE);
2574		f2fs_put_page(mpage, 1);
2575	}
2576	return 0;
2577}
2578
2579static inline bool check_inplace_update_policy(struct inode *inode,
2580				struct f2fs_io_info *fio)
2581{
2582	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2583	unsigned int policy = SM_I(sbi)->ipu_policy;
2584
2585	if (policy & (0x1 << F2FS_IPU_FORCE))
2586		return true;
2587	if (policy & (0x1 << F2FS_IPU_SSR) && f2fs_need_SSR(sbi))
2588		return true;
2589	if (policy & (0x1 << F2FS_IPU_UTIL) &&
2590			utilization(sbi) > SM_I(sbi)->min_ipu_util)
2591		return true;
2592	if (policy & (0x1 << F2FS_IPU_SSR_UTIL) && f2fs_need_SSR(sbi) &&
2593			utilization(sbi) > SM_I(sbi)->min_ipu_util)
2594		return true;
2595
2596	/*
2597	 * IPU for rewrite async pages
2598	 */
2599	if (policy & (0x1 << F2FS_IPU_ASYNC) &&
2600			fio && fio->op == REQ_OP_WRITE &&
2601			!(fio->op_flags & REQ_SYNC) &&
2602			!IS_ENCRYPTED(inode))
2603		return true;
2604
2605	/* this is only set during fdatasync */
2606	if (policy & (0x1 << F2FS_IPU_FSYNC) &&
2607			is_inode_flag_set(inode, FI_NEED_IPU))
2608		return true;
2609
2610	if (unlikely(fio && is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
2611			!f2fs_is_checkpointed_data(sbi, fio->old_blkaddr)))
2612		return true;
2613
2614	return false;
2615}
2616
2617bool f2fs_should_update_inplace(struct inode *inode, struct f2fs_io_info *fio)
2618{
2619	if (f2fs_is_pinned_file(inode))
2620		return true;
2621
2622	/* if this is cold file, we should overwrite to avoid fragmentation */
2623	if (file_is_cold(inode))
2624		return true;
2625
2626	return check_inplace_update_policy(inode, fio);
2627}
2628
2629bool f2fs_should_update_outplace(struct inode *inode, struct f2fs_io_info *fio)
2630{
2631	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2632
2633	if (f2fs_lfs_mode(sbi))
2634		return true;
2635	if (S_ISDIR(inode->i_mode))
2636		return true;
2637	if (IS_NOQUOTA(inode))
2638		return true;
2639	if (f2fs_is_atomic_file(inode))
2640		return true;
2641	if (fio) {
2642		if (is_cold_data(fio->page))
2643			return true;
2644		if (IS_ATOMIC_WRITTEN_PAGE(fio->page))
2645			return true;
2646		if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
2647			f2fs_is_checkpointed_data(sbi, fio->old_blkaddr)))
2648			return true;
2649	}
2650	return false;
2651}
2652
2653static inline bool need_inplace_update(struct f2fs_io_info *fio)
2654{
2655	struct inode *inode = fio->page->mapping->host;
2656
2657	if (f2fs_should_update_outplace(inode, fio))
2658		return false;
2659
2660	return f2fs_should_update_inplace(inode, fio);
2661}
2662
2663int f2fs_do_write_data_page(struct f2fs_io_info *fio)
2664{
2665	struct page *page = fio->page;
2666	struct inode *inode = page->mapping->host;
2667	struct dnode_of_data dn;
2668	struct extent_info ei = {0,0,0};
2669	struct node_info ni;
2670	bool ipu_force = false;
2671	int err = 0;
2672
2673	set_new_dnode(&dn, inode, NULL, NULL, 0);
2674	if (need_inplace_update(fio) &&
2675			f2fs_lookup_extent_cache(inode, page->index, &ei)) {
2676		fio->old_blkaddr = ei.blk + page->index - ei.fofs;
2677
2678		if (!f2fs_is_valid_blkaddr(fio->sbi, fio->old_blkaddr,
2679						DATA_GENERIC_ENHANCE))
2680			return -EFSCORRUPTED;
2681
2682		ipu_force = true;
2683		fio->need_lock = LOCK_DONE;
2684		goto got_it;
2685	}
2686
2687	/* Deadlock due to between page->lock and f2fs_lock_op */
2688	if (fio->need_lock == LOCK_REQ && !f2fs_trylock_op(fio->sbi))
2689		return -EAGAIN;
2690
2691	err = f2fs_get_dnode_of_data(&dn, page->index, LOOKUP_NODE);
2692	if (err)
2693		goto out;
2694
2695	fio->old_blkaddr = dn.data_blkaddr;
2696
2697	/* This page is already truncated */
2698	if (fio->old_blkaddr == NULL_ADDR) {
2699		ClearPageUptodate(page);
2700		clear_cold_data(page);
2701		goto out_writepage;
2702	}
2703got_it:
2704	if (__is_valid_data_blkaddr(fio->old_blkaddr) &&
2705		!f2fs_is_valid_blkaddr(fio->sbi, fio->old_blkaddr,
2706						DATA_GENERIC_ENHANCE)) {
2707		err = -EFSCORRUPTED;
2708		goto out_writepage;
2709	}
2710	/*
2711	 * If current allocation needs SSR,
2712	 * it had better in-place writes for updated data.
2713	 */
2714	if (ipu_force ||
2715		(__is_valid_data_blkaddr(fio->old_blkaddr) &&
2716					need_inplace_update(fio))) {
2717		err = f2fs_encrypt_one_page(fio);
2718		if (err)
2719			goto out_writepage;
2720
2721		set_page_writeback(page);
2722		ClearPageError(page);
2723		f2fs_put_dnode(&dn);
2724		if (fio->need_lock == LOCK_REQ)
2725			f2fs_unlock_op(fio->sbi);
2726		err = f2fs_inplace_write_data(fio);
2727		if (err) {
2728			if (fscrypt_inode_uses_fs_layer_crypto(inode))
2729				fscrypt_finalize_bounce_page(&fio->encrypted_page);
2730			if (PageWriteback(page))
2731				end_page_writeback(page);
2732		} else {
2733			set_inode_flag(inode, FI_UPDATE_WRITE);
2734		}
2735		trace_f2fs_do_write_data_page(fio->page, IPU);
2736		return err;
2737	}
2738
2739	if (fio->need_lock == LOCK_RETRY) {
2740		if (!f2fs_trylock_op(fio->sbi)) {
2741			err = -EAGAIN;
2742			goto out_writepage;
2743		}
2744		fio->need_lock = LOCK_REQ;
2745	}
2746
2747	err = f2fs_get_node_info(fio->sbi, dn.nid, &ni);
2748	if (err)
2749		goto out_writepage;
2750
2751	fio->version = ni.version;
2752
2753	err = f2fs_encrypt_one_page(fio);
2754	if (err)
2755		goto out_writepage;
2756
2757	set_page_writeback(page);
2758	ClearPageError(page);
2759
2760	if (fio->compr_blocks && fio->old_blkaddr == COMPRESS_ADDR)
2761		f2fs_i_compr_blocks_update(inode, fio->compr_blocks - 1, false);
2762
2763	/* LFS mode write path */
2764	f2fs_outplace_write_data(&dn, fio);
2765	trace_f2fs_do_write_data_page(page, OPU);
2766	set_inode_flag(inode, FI_APPEND_WRITE);
2767	if (page->index == 0)
2768		set_inode_flag(inode, FI_FIRST_BLOCK_WRITTEN);
2769out_writepage:
2770	f2fs_put_dnode(&dn);
2771out:
2772	if (fio->need_lock == LOCK_REQ)
2773		f2fs_unlock_op(fio->sbi);
2774	return err;
2775}
2776
2777int f2fs_write_single_data_page(struct page *page, int *submitted,
2778				struct bio **bio,
2779				sector_t *last_block,
2780				struct writeback_control *wbc,
2781				enum iostat_type io_type,
2782				int compr_blocks,
2783				bool allow_balance)
2784{
2785	struct inode *inode = page->mapping->host;
2786	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2787	loff_t i_size = i_size_read(inode);
2788	const pgoff_t end_index = ((unsigned long long)i_size)
2789							>> PAGE_SHIFT;
2790	loff_t psize = (loff_t)(page->index + 1) << PAGE_SHIFT;
2791	unsigned offset = 0;
2792	bool need_balance_fs = false;
2793	int err = 0;
2794	struct f2fs_io_info fio = {
2795		.sbi = sbi,
2796		.ino = inode->i_ino,
2797		.type = DATA,
2798		.op = REQ_OP_WRITE,
2799		.op_flags = wbc_to_write_flags(wbc),
2800		.old_blkaddr = NULL_ADDR,
2801		.page = page,
2802		.encrypted_page = NULL,
2803		.submitted = false,
2804		.compr_blocks = compr_blocks,
2805		.need_lock = LOCK_RETRY,
2806		.io_type = io_type,
2807		.io_wbc = wbc,
2808		.bio = bio,
2809		.last_block = last_block,
2810	};
2811
2812	trace_f2fs_writepage(page, DATA);
2813
2814	/* we should bypass data pages to proceed the kworkder jobs */
2815	if (unlikely(f2fs_cp_error(sbi))) {
2816		mapping_set_error(page->mapping, -EIO);
2817		/*
2818		 * don't drop any dirty dentry pages for keeping lastest
2819		 * directory structure.
2820		 */
2821		if (S_ISDIR(inode->i_mode) &&
2822				!is_sbi_flag_set(sbi, SBI_IS_CLOSE))
2823			goto redirty_out;
2824		goto out;
2825	}
2826
2827	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
2828		goto redirty_out;
2829
2830	if (page->index < end_index ||
2831			f2fs_verity_in_progress(inode) ||
2832			compr_blocks)
2833		goto write;
2834
2835	/*
2836	 * If the offset is out-of-range of file size,
2837	 * this page does not have to be written to disk.
2838	 */
2839	offset = i_size & (PAGE_SIZE - 1);
2840	if ((page->index >= end_index + 1) || !offset)
2841		goto out;
2842
2843	zero_user_segment(page, offset, PAGE_SIZE);
2844write:
2845	if (f2fs_is_drop_cache(inode))
2846		goto out;
2847	/* we should not write 0'th page having journal header */
2848	if (f2fs_is_volatile_file(inode) && (!page->index ||
2849			(!wbc->for_reclaim &&
2850			f2fs_available_free_memory(sbi, BASE_CHECK))))
2851		goto redirty_out;
2852
2853	/* Dentry/quota blocks are controlled by checkpoint */
2854	if (S_ISDIR(inode->i_mode) || IS_NOQUOTA(inode)) {
2855		/*
2856		 * We need to wait for node_write to avoid block allocation during
2857		 * checkpoint. This can only happen to quota writes which can cause
2858		 * the below discard race condition.
2859		 */
2860		if (IS_NOQUOTA(inode))
2861			down_read(&sbi->node_write);
2862
2863		fio.need_lock = LOCK_DONE;
2864		err = f2fs_do_write_data_page(&fio);
2865
2866		if (IS_NOQUOTA(inode))
2867			up_read(&sbi->node_write);
2868
2869		goto done;
2870	}
2871
2872	if (!wbc->for_reclaim)
2873		need_balance_fs = true;
2874	else if (has_not_enough_free_secs(sbi, 0, 0))
2875		goto redirty_out;
2876	else
2877		set_inode_flag(inode, FI_HOT_DATA);
2878
2879	err = -EAGAIN;
2880	if (f2fs_has_inline_data(inode)) {
2881		err = f2fs_write_inline_data(inode, page);
2882		if (!err)
2883			goto out;
2884	}
2885
2886	if (err == -EAGAIN) {
2887		err = f2fs_do_write_data_page(&fio);
2888		if (err == -EAGAIN) {
2889			fio.need_lock = LOCK_REQ;
2890			err = f2fs_do_write_data_page(&fio);
2891		}
2892	}
2893
2894	if (err) {
2895		file_set_keep_isize(inode);
2896	} else {
2897		spin_lock(&F2FS_I(inode)->i_size_lock);
2898		if (F2FS_I(inode)->last_disk_size < psize)
2899			F2FS_I(inode)->last_disk_size = psize;
2900		spin_unlock(&F2FS_I(inode)->i_size_lock);
2901	}
2902
2903done:
2904	if (err && err != -ENOENT)
2905		goto redirty_out;
2906
2907out:
2908	inode_dec_dirty_pages(inode);
2909	if (err) {
2910		ClearPageUptodate(page);
2911		clear_cold_data(page);
2912	}
2913
2914	if (wbc->for_reclaim) {
2915		f2fs_submit_merged_write_cond(sbi, NULL, page, 0, DATA);
2916		clear_inode_flag(inode, FI_HOT_DATA);
2917		f2fs_remove_dirty_inode(inode);
2918		submitted = NULL;
2919	}
2920	unlock_page(page);
2921	if (!S_ISDIR(inode->i_mode) && !IS_NOQUOTA(inode) &&
2922			!F2FS_I(inode)->wb_task && allow_balance)
2923		f2fs_balance_fs(sbi, need_balance_fs);
2924
2925	if (unlikely(f2fs_cp_error(sbi))) {
2926		f2fs_submit_merged_write(sbi, DATA);
2927		if (bio && *bio)
2928			f2fs_submit_merged_ipu_write(sbi, bio, NULL);
2929		submitted = NULL;
2930	}
2931
2932	if (submitted)
2933		*submitted = fio.submitted ? 1 : 0;
2934
2935	return 0;
2936
2937redirty_out:
2938	redirty_page_for_writepage(wbc, page);
2939	/*
2940	 * pageout() in MM traslates EAGAIN, so calls handle_write_error()
2941	 * -> mapping_set_error() -> set_bit(AS_EIO, ...).
2942	 * file_write_and_wait_range() will see EIO error, which is critical
2943	 * to return value of fsync() followed by atomic_write failure to user.
2944	 */
2945	if (!err || wbc->for_reclaim)
2946		return AOP_WRITEPAGE_ACTIVATE;
2947	unlock_page(page);
2948	return err;
2949}
2950
2951static int f2fs_write_data_page(struct page *page,
2952					struct writeback_control *wbc)
2953{
2954#ifdef CONFIG_F2FS_FS_COMPRESSION
2955	struct inode *inode = page->mapping->host;
2956
2957	if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
2958		goto out;
2959
2960	if (f2fs_compressed_file(inode)) {
2961		if (f2fs_is_compressed_cluster(inode, page->index)) {
2962			redirty_page_for_writepage(wbc, page);
2963			return AOP_WRITEPAGE_ACTIVATE;
2964		}
2965	}
2966out:
2967#endif
2968
2969	return f2fs_write_single_data_page(page, NULL, NULL, NULL,
2970						wbc, FS_DATA_IO, 0, true);
2971}
2972
2973/*
2974 * This function was copied from write_cche_pages from mm/page-writeback.c.
2975 * The major change is making write step of cold data page separately from
2976 * warm/hot data page.
2977 */
2978static int f2fs_write_cache_pages(struct address_space *mapping,
2979					struct writeback_control *wbc,
2980					enum iostat_type io_type)
2981{
2982	int ret = 0;
2983	int done = 0, retry = 0;
2984	struct pagevec pvec;
2985	struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
2986	struct bio *bio = NULL;
2987	sector_t last_block;
2988#ifdef CONFIG_F2FS_FS_COMPRESSION
2989	struct inode *inode = mapping->host;
2990	struct compress_ctx cc = {
2991		.inode = inode,
2992		.log_cluster_size = F2FS_I(inode)->i_log_cluster_size,
2993		.cluster_size = F2FS_I(inode)->i_cluster_size,
2994		.cluster_idx = NULL_CLUSTER,
2995		.rpages = NULL,
2996		.nr_rpages = 0,
2997		.cpages = NULL,
2998		.rbuf = NULL,
2999		.cbuf = NULL,
3000		.rlen = PAGE_SIZE * F2FS_I(inode)->i_cluster_size,
3001		.private = NULL,
3002	};
3003#endif
3004	int nr_pages;
3005	pgoff_t index;
3006	pgoff_t end;		/* Inclusive */
3007	pgoff_t done_index;
3008	int range_whole = 0;
3009	xa_mark_t tag;
3010	int nwritten = 0;
3011	int submitted = 0;
3012	int i;
3013
3014	pagevec_init(&pvec);
3015
3016	if (get_dirty_pages(mapping->host) <=
3017				SM_I(F2FS_M_SB(mapping))->min_hot_blocks)
3018		set_inode_flag(mapping->host, FI_HOT_DATA);
3019	else
3020		clear_inode_flag(mapping->host, FI_HOT_DATA);
3021
3022	if (wbc->range_cyclic) {
3023		index = mapping->writeback_index; /* prev offset */
3024		end = -1;
3025	} else {
3026		index = wbc->range_start >> PAGE_SHIFT;
3027		end = wbc->range_end >> PAGE_SHIFT;
3028		if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
3029			range_whole = 1;
3030	}
3031	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
3032		tag = PAGECACHE_TAG_TOWRITE;
3033	else
3034		tag = PAGECACHE_TAG_DIRTY;
3035retry:
3036	retry = 0;
3037	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
3038		tag_pages_for_writeback(mapping, index, end);
3039	done_index = index;
3040	while (!done && !retry && (index <= end)) {
3041		nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
3042				tag);
3043		if (nr_pages == 0)
3044			break;
3045
3046		for (i = 0; i < nr_pages; i++) {
3047			struct page *page = pvec.pages[i];
3048			bool need_readd;
3049readd:
3050			need_readd = false;
3051#ifdef CONFIG_F2FS_FS_COMPRESSION
3052			if (f2fs_compressed_file(inode)) {
3053				ret = f2fs_init_compress_ctx(&cc);
3054				if (ret) {
3055					done = 1;
3056					break;
3057				}
3058
3059				if (!f2fs_cluster_can_merge_page(&cc,
3060								page->index)) {
3061					ret = f2fs_write_multi_pages(&cc,
3062						&submitted, wbc, io_type);
3063					if (!ret)
3064						need_readd = true;
3065					goto result;
3066				}
3067
3068				if (unlikely(f2fs_cp_error(sbi)))
3069					goto lock_page;
3070
3071				if (f2fs_cluster_is_empty(&cc)) {
3072					void *fsdata = NULL;
3073					struct page *pagep;
3074					int ret2;
3075
3076					ret2 = f2fs_prepare_compress_overwrite(
3077							inode, &pagep,
3078							page->index, &fsdata);
3079					if (ret2 < 0) {
3080						ret = ret2;
3081						done = 1;
3082						break;
3083					} else if (ret2 &&
3084						!f2fs_compress_write_end(inode,
3085								fsdata, page->index,
3086								1)) {
3087						retry = 1;
3088						break;
3089					}
3090				} else {
3091					goto lock_page;
3092				}
3093			}
3094#endif
3095			/* give a priority to WB_SYNC threads */
3096			if (atomic_read(&sbi->wb_sync_req[DATA]) &&
3097					wbc->sync_mode == WB_SYNC_NONE) {
3098				done = 1;
3099				break;
3100			}
3101#ifdef CONFIG_F2FS_FS_COMPRESSION
3102lock_page:
3103#endif
3104			done_index = page->index;
3105retry_write:
3106			lock_page(page);
3107
3108			if (unlikely(page->mapping != mapping)) {
3109continue_unlock:
3110				unlock_page(page);
3111				continue;
3112			}
3113
3114			if (!PageDirty(page)) {
3115				/* someone wrote it for us */
3116				goto continue_unlock;
3117			}
3118
3119			if (PageWriteback(page)) {
3120				if (wbc->sync_mode != WB_SYNC_NONE)
3121					f2fs_wait_on_page_writeback(page,
3122							DATA, true, true);
3123				else
3124					goto continue_unlock;
3125			}
3126
3127			if (!clear_page_dirty_for_io(page))
3128				goto continue_unlock;
3129
3130#ifdef CONFIG_F2FS_FS_COMPRESSION
3131			if (f2fs_compressed_file(inode)) {
3132				get_page(page);
3133				f2fs_compress_ctx_add_page(&cc, page);
3134				continue;
3135			}
3136#endif
3137			ret = f2fs_write_single_data_page(page, &submitted,
3138					&bio, &last_block, wbc, io_type,
3139					0, true);
3140			if (ret == AOP_WRITEPAGE_ACTIVATE)
3141				unlock_page(page);
3142#ifdef CONFIG_F2FS_FS_COMPRESSION
3143result:
3144#endif
3145			nwritten += submitted;
3146			wbc->nr_to_write -= submitted;
3147
3148			if (unlikely(ret)) {
3149				/*
3150				 * keep nr_to_write, since vfs uses this to
3151				 * get # of written pages.
3152				 */
3153				if (ret == AOP_WRITEPAGE_ACTIVATE) {
3154					ret = 0;
3155					goto next;
3156				} else if (ret == -EAGAIN) {
3157					ret = 0;
3158					if (wbc->sync_mode == WB_SYNC_ALL) {
3159						cond_resched();
3160						congestion_wait(BLK_RW_ASYNC,
3161							DEFAULT_IO_TIMEOUT);
3162						goto retry_write;
3163					}
3164					goto next;
3165				}
3166				done_index = page->index + 1;
3167				done = 1;
3168				break;
3169			}
3170
3171			if (wbc->nr_to_write <= 0 &&
3172					wbc->sync_mode == WB_SYNC_NONE) {
3173				done = 1;
3174				break;
3175			}
3176next:
3177			if (need_readd)
3178				goto readd;
3179		}
3180		pagevec_release(&pvec);
3181		cond_resched();
3182	}
3183#ifdef CONFIG_F2FS_FS_COMPRESSION
3184	/* flush remained pages in compress cluster */
3185	if (f2fs_compressed_file(inode) && !f2fs_cluster_is_empty(&cc)) {
3186		ret = f2fs_write_multi_pages(&cc, &submitted, wbc, io_type);
3187		nwritten += submitted;
3188		wbc->nr_to_write -= submitted;
3189		if (ret) {
3190			done = 1;
3191			retry = 0;
3192		}
3193	}
3194	if (f2fs_compressed_file(inode))
3195		f2fs_destroy_compress_ctx(&cc, false);
3196#endif
3197	if (retry) {
3198		index = 0;
3199		end = -1;
3200		goto retry;
3201	}
3202	if (wbc->range_cyclic && !done)
3203		done_index = 0;
3204	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
3205		mapping->writeback_index = done_index;
3206
3207	if (nwritten)
3208		f2fs_submit_merged_write_cond(F2FS_M_SB(mapping), mapping->host,
3209								NULL, 0, DATA);
3210	/* submit cached bio of IPU write */
3211	if (bio)
3212		f2fs_submit_merged_ipu_write(sbi, &bio, NULL);
3213
3214	return ret;
3215}
3216
3217static inline bool __should_serialize_io(struct inode *inode,
3218					struct writeback_control *wbc)
3219{
3220	/* to avoid deadlock in path of data flush */
3221	if (F2FS_I(inode)->wb_task)
3222		return false;
3223
3224	if (!S_ISREG(inode->i_mode))
3225		return false;
3226	if (IS_NOQUOTA(inode))
3227		return false;
3228
3229	if (f2fs_compressed_file(inode))
3230		return true;
3231	if (wbc->sync_mode != WB_SYNC_ALL)
3232		return true;
3233	if (get_dirty_pages(inode) >= SM_I(F2FS_I_SB(inode))->min_seq_blocks)
3234		return true;
3235	return false;
3236}
3237
3238static int __f2fs_write_data_pages(struct address_space *mapping,
3239						struct writeback_control *wbc,
3240						enum iostat_type io_type)
3241{
3242	struct inode *inode = mapping->host;
3243	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3244	struct blk_plug plug;
3245	int ret;
3246	bool locked = false;
3247
3248	/* deal with chardevs and other special file */
3249	if (!mapping->a_ops->writepage)
3250		return 0;
3251
3252	/* skip writing if there is no dirty page in this inode */
3253	if (!get_dirty_pages(inode) && wbc->sync_mode == WB_SYNC_NONE)
3254		return 0;
3255
3256	/* during POR, we don't need to trigger writepage at all. */
3257	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
3258		goto skip_write;
3259
3260	if ((S_ISDIR(inode->i_mode) || IS_NOQUOTA(inode)) &&
3261			wbc->sync_mode == WB_SYNC_NONE &&
3262			get_dirty_pages(inode) < nr_pages_to_skip(sbi, DATA) &&
3263			f2fs_available_free_memory(sbi, DIRTY_DENTS))
3264		goto skip_write;
3265
3266	/* skip writing during file defragment */
3267	if (is_inode_flag_set(inode, FI_DO_DEFRAG))
3268		goto skip_write;
3269
3270	trace_f2fs_writepages(mapping->host, wbc, DATA);
3271
3272	/* to avoid spliting IOs due to mixed WB_SYNC_ALL and WB_SYNC_NONE */
3273	if (wbc->sync_mode == WB_SYNC_ALL)
3274		atomic_inc(&sbi->wb_sync_req[DATA]);
3275	else if (atomic_read(&sbi->wb_sync_req[DATA])) {
3276		/* to avoid potential deadlock */
3277		if (current->plug)
3278			blk_finish_plug(current->plug);
3279		goto skip_write;
3280	}
3281
3282	if (__should_serialize_io(inode, wbc)) {
3283		mutex_lock(&sbi->writepages);
3284		locked = true;
3285	}
3286
3287	blk_start_plug(&plug);
3288	ret = f2fs_write_cache_pages(mapping, wbc, io_type);
3289	blk_finish_plug(&plug);
3290
3291	if (locked)
3292		mutex_unlock(&sbi->writepages);
3293
3294	if (wbc->sync_mode == WB_SYNC_ALL)
3295		atomic_dec(&sbi->wb_sync_req[DATA]);
3296	/*
3297	 * if some pages were truncated, we cannot guarantee its mapping->host
3298	 * to detect pending bios.
3299	 */
3300
3301	f2fs_remove_dirty_inode(inode);
3302	return ret;
3303
3304skip_write:
3305	wbc->pages_skipped += get_dirty_pages(inode);
3306	trace_f2fs_writepages(mapping->host, wbc, DATA);
3307	return 0;
3308}
3309
3310static int f2fs_write_data_pages(struct address_space *mapping,
3311			    struct writeback_control *wbc)
3312{
3313	struct inode *inode = mapping->host;
3314
3315	return __f2fs_write_data_pages(mapping, wbc,
3316			F2FS_I(inode)->cp_task == current ?
3317			FS_CP_DATA_IO : FS_DATA_IO);
3318}
3319
3320static void f2fs_write_failed(struct address_space *mapping, loff_t to)
3321{
3322	struct inode *inode = mapping->host;
3323	loff_t i_size = i_size_read(inode);
3324
3325	if (IS_NOQUOTA(inode))
3326		return;
3327
3328	/* In the fs-verity case, f2fs_end_enable_verity() does the truncate */
3329	if (to > i_size && !f2fs_verity_in_progress(inode)) {
3330		down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3331		down_write(&F2FS_I(inode)->i_mmap_sem);
3332
3333		truncate_pagecache(inode, i_size);
3334		f2fs_truncate_blocks(inode, i_size, true);
3335
3336		up_write(&F2FS_I(inode)->i_mmap_sem);
3337		up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3338	}
3339}
3340
3341static int prepare_write_begin(struct f2fs_sb_info *sbi,
3342			struct page *page, loff_t pos, unsigned len,
3343			block_t *blk_addr, bool *node_changed)
3344{
3345	struct inode *inode = page->mapping->host;
3346	pgoff_t index = page->index;
3347	struct dnode_of_data dn;
3348	struct page *ipage;
3349	bool locked = false;
3350	struct extent_info ei = {0,0,0};
3351	int err = 0;
3352	int flag;
3353
3354	/*
3355	 * we already allocated all the blocks, so we don't need to get
3356	 * the block addresses when there is no need to fill the page.
3357	 */
3358	if (!f2fs_has_inline_data(inode) && len == PAGE_SIZE &&
3359	    !is_inode_flag_set(inode, FI_NO_PREALLOC) &&
3360	    !f2fs_verity_in_progress(inode))
3361		return 0;
3362
3363	/* f2fs_lock_op avoids race between write CP and convert_inline_page */
3364	if (f2fs_has_inline_data(inode) && pos + len > MAX_INLINE_DATA(inode))
3365		flag = F2FS_GET_BLOCK_DEFAULT;
3366	else
3367		flag = F2FS_GET_BLOCK_PRE_AIO;
3368
3369	if (f2fs_has_inline_data(inode) ||
3370			(pos & PAGE_MASK) >= i_size_read(inode)) {
3371		f2fs_do_map_lock(sbi, flag, true);
3372		locked = true;
3373	}
3374
3375restart:
3376	/* check inline_data */
3377	ipage = f2fs_get_node_page(sbi, inode->i_ino);
3378	if (IS_ERR(ipage)) {
3379		err = PTR_ERR(ipage);
3380		goto unlock_out;
3381	}
3382
3383	set_new_dnode(&dn, inode, ipage, ipage, 0);
3384
3385	if (f2fs_has_inline_data(inode)) {
3386		if (pos + len <= MAX_INLINE_DATA(inode)) {
3387			f2fs_do_read_inline_data(page, ipage);
3388			set_inode_flag(inode, FI_DATA_EXIST);
3389			if (inode->i_nlink)
3390				set_inline_node(ipage);
3391		} else {
3392			err = f2fs_convert_inline_page(&dn, page);
3393			if (err)
3394				goto out;
3395			if (dn.data_blkaddr == NULL_ADDR)
3396				err = f2fs_get_block(&dn, index);
3397		}
3398	} else if (locked) {
3399		err = f2fs_get_block(&dn, index);
3400	} else {
3401		if (f2fs_lookup_extent_cache(inode, index, &ei)) {
3402			dn.data_blkaddr = ei.blk + index - ei.fofs;
3403		} else {
3404			/* hole case */
3405			err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE);
3406			if (err || dn.data_blkaddr == NULL_ADDR) {
3407				f2fs_put_dnode(&dn);
3408				f2fs_do_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO,
3409								true);
3410				WARN_ON(flag != F2FS_GET_BLOCK_PRE_AIO);
3411				locked = true;
3412				goto restart;
3413			}
3414		}
3415	}
3416
3417	/* convert_inline_page can make node_changed */
3418	*blk_addr = dn.data_blkaddr;
3419	*node_changed = dn.node_changed;
3420out:
3421	f2fs_put_dnode(&dn);
3422unlock_out:
3423	if (locked)
3424		f2fs_do_map_lock(sbi, flag, false);
3425	return err;
3426}
3427
3428static int f2fs_write_begin(struct file *file, struct address_space *mapping,
3429		loff_t pos, unsigned len, unsigned flags,
3430		struct page **pagep, void **fsdata)
3431{
3432	struct inode *inode = mapping->host;
3433	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3434	struct page *page = NULL;
3435	pgoff_t index = ((unsigned long long) pos) >> PAGE_SHIFT;
3436	bool need_balance = false, drop_atomic = false;
3437	block_t blkaddr = NULL_ADDR;
3438	int err = 0;
3439
3440	trace_f2fs_write_begin(inode, pos, len, flags);
3441
3442	if (!f2fs_is_checkpoint_ready(sbi)) {
3443		err = -ENOSPC;
3444		goto fail;
3445	}
3446
3447	if ((f2fs_is_atomic_file(inode) &&
3448			!f2fs_available_free_memory(sbi, INMEM_PAGES)) ||
3449			is_inode_flag_set(inode, FI_ATOMIC_REVOKE_REQUEST)) {
3450		err = -ENOMEM;
3451		drop_atomic = true;
3452		goto fail;
3453	}
3454
3455	/*
3456	 * We should check this at this moment to avoid deadlock on inode page
3457	 * and #0 page. The locking rule for inline_data conversion should be:
3458	 * lock_page(page #0) -> lock_page(inode_page)
3459	 */
3460	if (index != 0) {
3461		err = f2fs_convert_inline_inode(inode);
3462		if (err)
3463			goto fail;
3464	}
3465
3466#ifdef CONFIG_F2FS_FS_COMPRESSION
3467	if (f2fs_compressed_file(inode)) {
3468		int ret;
3469
3470		*fsdata = NULL;
3471
3472		if (len == PAGE_SIZE && !(f2fs_is_atomic_file(inode)))
3473			goto repeat;
3474
3475		ret = f2fs_prepare_compress_overwrite(inode, pagep,
3476							index, fsdata);
3477		if (ret < 0) {
3478			err = ret;
3479			goto fail;
3480		} else if (ret) {
3481			return 0;
3482		}
3483	}
3484#endif
3485
3486repeat:
3487	/*
3488	 * Do not use grab_cache_page_write_begin() to avoid deadlock due to
3489	 * wait_for_stable_page. Will wait that below with our IO control.
3490	 */
3491	page = f2fs_pagecache_get_page(mapping, index,
3492				FGP_LOCK | FGP_WRITE | FGP_CREAT, GFP_NOFS);
3493	if (!page) {
3494		err = -ENOMEM;
3495		goto fail;
3496	}
3497
3498	/* TODO: cluster can be compressed due to race with .writepage */
3499
3500	*pagep = page;
3501
3502	err = prepare_write_begin(sbi, page, pos, len,
3503					&blkaddr, &need_balance);
3504	if (err)
3505		goto fail;
3506
3507	if (need_balance && !IS_NOQUOTA(inode) &&
3508			has_not_enough_free_secs(sbi, 0, 0)) {
3509		unlock_page(page);
3510		f2fs_balance_fs(sbi, true);
3511		lock_page(page);
3512		if (page->mapping != mapping) {
3513			/* The page got truncated from under us */
3514			f2fs_put_page(page, 1);
3515			goto repeat;
3516		}
3517	}
3518
3519	f2fs_wait_on_page_writeback(page, DATA, false, true);
3520
3521	if (len == PAGE_SIZE || PageUptodate(page))
3522		return 0;
3523
3524	if (!(pos & (PAGE_SIZE - 1)) && (pos + len) >= i_size_read(inode) &&
3525	    !f2fs_verity_in_progress(inode)) {
3526		zero_user_segment(page, len, PAGE_SIZE);
3527		return 0;
3528	}
3529
3530	if (blkaddr == NEW_ADDR) {
3531		zero_user_segment(page, 0, PAGE_SIZE);
3532		SetPageUptodate(page);
3533	} else {
3534		if (!f2fs_is_valid_blkaddr(sbi, blkaddr,
3535				DATA_GENERIC_ENHANCE_READ)) {
3536			err = -EFSCORRUPTED;
3537			goto fail;
3538		}
3539		err = f2fs_submit_page_read(inode, page, blkaddr, 0, true);
3540		if (err)
3541			goto fail;
3542
3543		lock_page(page);
3544		if (unlikely(page->mapping != mapping)) {
3545			f2fs_put_page(page, 1);
3546			goto repeat;
3547		}
3548		if (unlikely(!PageUptodate(page))) {
3549			err = -EIO;
3550			goto fail;
3551		}
3552	}
3553	return 0;
3554
3555fail:
3556	f2fs_put_page(page, 1);
3557	f2fs_write_failed(mapping, pos + len);
3558	if (drop_atomic)
3559		f2fs_drop_inmem_pages_all(sbi, false);
3560	return err;
3561}
3562
3563static int f2fs_write_end(struct file *file,
3564			struct address_space *mapping,
3565			loff_t pos, unsigned len, unsigned copied,
3566			struct page *page, void *fsdata)
3567{
3568	struct inode *inode = page->mapping->host;
3569
3570	trace_f2fs_write_end(inode, pos, len, copied);
3571
3572	/*
3573	 * This should be come from len == PAGE_SIZE, and we expect copied
3574	 * should be PAGE_SIZE. Otherwise, we treat it with zero copied and
3575	 * let generic_perform_write() try to copy data again through copied=0.
3576	 */
3577	if (!PageUptodate(page)) {
3578		if (unlikely(copied != len))
3579			copied = 0;
3580		else
3581			SetPageUptodate(page);
3582	}
3583
3584#ifdef CONFIG_F2FS_FS_COMPRESSION
3585	/* overwrite compressed file */
3586	if (f2fs_compressed_file(inode) && fsdata) {
3587		f2fs_compress_write_end(inode, fsdata, page->index, copied);
3588		f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
3589
3590		if (pos + copied > i_size_read(inode) &&
3591				!f2fs_verity_in_progress(inode))
3592			f2fs_i_size_write(inode, pos + copied);
3593		return copied;
3594	}
3595#endif
3596
3597	if (!copied)
3598		goto unlock_out;
3599
3600	set_page_dirty(page);
3601
3602	if (pos + copied > i_size_read(inode) &&
3603	    !f2fs_verity_in_progress(inode))
3604		f2fs_i_size_write(inode, pos + copied);
3605unlock_out:
3606	f2fs_put_page(page, 1);
3607	f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
3608	return copied;
3609}
3610
3611static int check_direct_IO(struct inode *inode, struct iov_iter *iter,
3612			   loff_t offset)
3613{
3614	unsigned i_blkbits = READ_ONCE(inode->i_blkbits);
3615	unsigned blkbits = i_blkbits;
3616	unsigned blocksize_mask = (1 << blkbits) - 1;
3617	unsigned long align = offset | iov_iter_alignment(iter);
3618	struct block_device *bdev = inode->i_sb->s_bdev;
3619
3620	if (iov_iter_rw(iter) == READ && offset >= i_size_read(inode))
3621		return 1;
3622
3623	if (align & blocksize_mask) {
3624		if (bdev)
3625			blkbits = blksize_bits(bdev_logical_block_size(bdev));
3626		blocksize_mask = (1 << blkbits) - 1;
3627		if (align & blocksize_mask)
3628			return -EINVAL;
3629		return 1;
3630	}
3631	return 0;
3632}
3633
3634static void f2fs_dio_end_io(struct bio *bio)
3635{
3636	struct f2fs_private_dio *dio = bio->bi_private;
3637
3638	dec_page_count(F2FS_I_SB(dio->inode),
3639			dio->write ? F2FS_DIO_WRITE : F2FS_DIO_READ);
3640
3641	bio->bi_private = dio->orig_private;
3642	bio->bi_end_io = dio->orig_end_io;
3643
3644	kfree(dio);
3645
3646	bio_endio(bio);
3647}
3648
3649static void f2fs_dio_submit_bio(struct bio *bio, struct inode *inode,
3650							loff_t file_offset)
3651{
3652	struct f2fs_private_dio *dio;
3653	bool write = (bio_op(bio) == REQ_OP_WRITE);
3654
3655	dio = f2fs_kzalloc(F2FS_I_SB(inode),
3656			sizeof(struct f2fs_private_dio), GFP_NOFS);
3657	if (!dio)
3658		goto out;
3659
3660	dio->inode = inode;
3661	dio->orig_end_io = bio->bi_end_io;
3662	dio->orig_private = bio->bi_private;
3663	dio->write = write;
3664
3665	bio->bi_end_io = f2fs_dio_end_io;
3666	bio->bi_private = dio;
3667
3668	inc_page_count(F2FS_I_SB(inode),
3669			write ? F2FS_DIO_WRITE : F2FS_DIO_READ);
3670
3671	submit_bio(bio);
3672	return;
3673out:
3674	bio->bi_status = BLK_STS_IOERR;
3675	bio_endio(bio);
3676}
3677
3678static ssize_t f2fs_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
3679{
3680	struct address_space *mapping = iocb->ki_filp->f_mapping;
3681	struct inode *inode = mapping->host;
3682	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3683	struct f2fs_inode_info *fi = F2FS_I(inode);
3684	size_t count = iov_iter_count(iter);
3685	loff_t offset = iocb->ki_pos;
3686	int rw = iov_iter_rw(iter);
3687	int err;
3688	enum rw_hint hint = iocb->ki_hint;
3689	int whint_mode = F2FS_OPTION(sbi).whint_mode;
3690	bool do_opu;
3691
3692	err = check_direct_IO(inode, iter, offset);
3693	if (err)
3694		return err < 0 ? err : 0;
3695
3696	if (f2fs_force_buffered_io(inode, iocb, iter))
3697		return 0;
3698
3699	do_opu = allow_outplace_dio(inode, iocb, iter);
3700
3701	trace_f2fs_direct_IO_enter(inode, offset, count, rw);
3702
3703	if (rw == WRITE && whint_mode == WHINT_MODE_OFF)
3704		iocb->ki_hint = WRITE_LIFE_NOT_SET;
3705
3706	if (iocb->ki_flags & IOCB_NOWAIT) {
3707		if (!down_read_trylock(&fi->i_gc_rwsem[rw])) {
3708			iocb->ki_hint = hint;
3709			err = -EAGAIN;
3710			goto out;
3711		}
3712		if (do_opu && !down_read_trylock(&fi->i_gc_rwsem[READ])) {
3713			up_read(&fi->i_gc_rwsem[rw]);
3714			iocb->ki_hint = hint;
3715			err = -EAGAIN;
3716			goto out;
3717		}
3718	} else {
3719		down_read(&fi->i_gc_rwsem[rw]);
3720		if (do_opu)
3721			down_read(&fi->i_gc_rwsem[READ]);
3722	}
3723
3724	err = __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev,
3725			iter, rw == WRITE ? get_data_block_dio_write :
3726			get_data_block_dio, NULL, f2fs_dio_submit_bio,
3727			rw == WRITE ? DIO_LOCKING | DIO_SKIP_HOLES :
3728			DIO_SKIP_HOLES);
3729
3730	if (do_opu)
3731		up_read(&fi->i_gc_rwsem[READ]);
3732
3733	up_read(&fi->i_gc_rwsem[rw]);
3734
3735	if (rw == WRITE) {
3736		if (whint_mode == WHINT_MODE_OFF)
3737			iocb->ki_hint = hint;
3738		if (err > 0) {
3739			f2fs_update_iostat(F2FS_I_SB(inode), APP_DIRECT_IO,
3740									err);
3741			if (!do_opu)
3742				set_inode_flag(inode, FI_UPDATE_WRITE);
3743		} else if (err == -EIOCBQUEUED) {
3744			f2fs_update_iostat(F2FS_I_SB(inode), APP_DIRECT_IO,
3745						count - iov_iter_count(iter));
3746		} else if (err < 0) {
3747			f2fs_write_failed(mapping, offset + count);
3748		}
3749	} else {
3750		if (err > 0)
3751			f2fs_update_iostat(sbi, APP_DIRECT_READ_IO, err);
3752		else if (err == -EIOCBQUEUED)
3753			f2fs_update_iostat(F2FS_I_SB(inode), APP_DIRECT_READ_IO,
3754						count - iov_iter_count(iter));
3755	}
3756
3757out:
3758	trace_f2fs_direct_IO_exit(inode, offset, count, rw, err);
3759
3760	return err;
3761}
3762
3763void f2fs_invalidate_page(struct page *page, unsigned int offset,
3764							unsigned int length)
3765{
3766	struct inode *inode = page->mapping->host;
3767	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3768
3769	if (inode->i_ino >= F2FS_ROOT_INO(sbi) &&
3770		(offset % PAGE_SIZE || length != PAGE_SIZE))
3771		return;
3772
3773	if (PageDirty(page)) {
3774		if (inode->i_ino == F2FS_META_INO(sbi)) {
3775			dec_page_count(sbi, F2FS_DIRTY_META);
3776		} else if (inode->i_ino == F2FS_NODE_INO(sbi)) {
3777			dec_page_count(sbi, F2FS_DIRTY_NODES);
3778		} else {
3779			inode_dec_dirty_pages(inode);
3780			f2fs_remove_dirty_inode(inode);
3781		}
3782	}
3783
3784	clear_cold_data(page);
3785
3786	if (IS_ATOMIC_WRITTEN_PAGE(page))
3787		return f2fs_drop_inmem_page(inode, page);
3788
3789	f2fs_clear_page_private(page);
3790}
3791
3792int f2fs_release_page(struct page *page, gfp_t wait)
3793{
3794	/* If this is dirty page, keep PagePrivate */
3795	if (PageDirty(page))
3796		return 0;
3797
3798	/* This is atomic written page, keep Private */
3799	if (IS_ATOMIC_WRITTEN_PAGE(page))
3800		return 0;
3801
3802	clear_cold_data(page);
3803	f2fs_clear_page_private(page);
3804	return 1;
3805}
3806
3807static int f2fs_set_data_page_dirty(struct page *page)
3808{
3809	struct inode *inode = page_file_mapping(page)->host;
3810
3811	trace_f2fs_set_page_dirty(page, DATA);
3812
3813	if (!PageUptodate(page))
3814		SetPageUptodate(page);
3815	if (PageSwapCache(page))
3816		return __set_page_dirty_nobuffers(page);
3817
3818	if (f2fs_is_atomic_file(inode) && !f2fs_is_commit_atomic_write(inode)) {
3819		if (!IS_ATOMIC_WRITTEN_PAGE(page)) {
3820			f2fs_register_inmem_page(inode, page);
3821			return 1;
3822		}
3823		/*
3824		 * Previously, this page has been registered, we just
3825		 * return here.
3826		 */
3827		return 0;
3828	}
3829
3830	if (!PageDirty(page)) {
3831		__set_page_dirty_nobuffers(page);
3832		f2fs_update_dirty_page(inode, page);
3833		return 1;
3834	}
3835	return 0;
3836}
3837
3838
3839static sector_t f2fs_bmap_compress(struct inode *inode, sector_t block)
3840{
3841#ifdef CONFIG_F2FS_FS_COMPRESSION
3842	struct dnode_of_data dn;
3843	sector_t start_idx, blknr = 0;
3844	int ret;
3845
3846	start_idx = round_down(block, F2FS_I(inode)->i_cluster_size);
3847
3848	set_new_dnode(&dn, inode, NULL, NULL, 0);
3849	ret = f2fs_get_dnode_of_data(&dn, start_idx, LOOKUP_NODE);
3850	if (ret)
3851		return 0;
3852
3853	if (dn.data_blkaddr != COMPRESS_ADDR) {
3854		dn.ofs_in_node += block - start_idx;
3855		blknr = f2fs_data_blkaddr(&dn);
3856		if (!__is_valid_data_blkaddr(blknr))
3857			blknr = 0;
3858	}
3859
3860	f2fs_put_dnode(&dn);
3861	return blknr;
3862#else
3863	return 0;
3864#endif
3865}
3866
3867
3868static sector_t f2fs_bmap(struct address_space *mapping, sector_t block)
3869{
3870	struct inode *inode = mapping->host;
3871	struct buffer_head tmp = {
3872		.b_size = i_blocksize(inode),
3873	};
3874	sector_t blknr = 0;
3875
3876	if (f2fs_has_inline_data(inode))
3877		goto out;
3878
3879	/* make sure allocating whole blocks */
3880	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
3881		filemap_write_and_wait(mapping);
3882
3883	/* Block number less than F2FS MAX BLOCKS */
3884	if (unlikely(block >= F2FS_I_SB(inode)->max_file_blocks))
3885		goto out;
3886
3887	if (f2fs_compressed_file(inode)) {
3888		blknr = f2fs_bmap_compress(inode, block);
3889	} else {
3890		if (!get_data_block_bmap(inode, block, &tmp, 0))
3891			blknr = tmp.b_blocknr;
3892	}
3893out:
3894	trace_f2fs_bmap(inode, block, blknr);
3895	return blknr;
3896}
3897
3898#ifdef CONFIG_MIGRATION
3899#include <linux/migrate.h>
3900
3901int f2fs_migrate_page(struct address_space *mapping,
3902		struct page *newpage, struct page *page, enum migrate_mode mode)
3903{
3904	int rc, extra_count;
3905	struct f2fs_inode_info *fi = F2FS_I(mapping->host);
3906	bool atomic_written = IS_ATOMIC_WRITTEN_PAGE(page);
3907
3908	BUG_ON(PageWriteback(page));
3909
3910	/* migrating an atomic written page is safe with the inmem_lock hold */
3911	if (atomic_written) {
3912		if (mode != MIGRATE_SYNC)
3913			return -EBUSY;
3914		if (!mutex_trylock(&fi->inmem_lock))
3915			return -EAGAIN;
3916	}
3917
3918	/* one extra reference was held for atomic_write page */
3919	extra_count = atomic_written ? 1 : 0;
3920	rc = migrate_page_move_mapping(mapping, newpage,
3921				page, extra_count);
3922	if (rc != MIGRATEPAGE_SUCCESS) {
3923		if (atomic_written)
3924			mutex_unlock(&fi->inmem_lock);
3925		return rc;
3926	}
3927
3928	if (atomic_written) {
3929		struct inmem_pages *cur;
3930		list_for_each_entry(cur, &fi->inmem_pages, list)
3931			if (cur->page == page) {
3932				cur->page = newpage;
3933				break;
3934			}
3935		mutex_unlock(&fi->inmem_lock);
3936		put_page(page);
3937		get_page(newpage);
3938	}
3939
3940	if (PagePrivate(page)) {
3941		f2fs_set_page_private(newpage, page_private(page));
3942		f2fs_clear_page_private(page);
3943	}
3944
3945	if (mode != MIGRATE_SYNC_NO_COPY)
3946		migrate_page_copy(newpage, page);
3947	else
3948		migrate_page_states(newpage, page);
3949
3950	return MIGRATEPAGE_SUCCESS;
3951}
3952#endif
3953
3954#ifdef CONFIG_SWAP
3955static int check_swap_activate_fast(struct swap_info_struct *sis,
3956				struct file *swap_file, sector_t *span)
3957{
3958	struct address_space *mapping = swap_file->f_mapping;
3959	struct inode *inode = mapping->host;
3960	sector_t cur_lblock;
3961	sector_t last_lblock;
3962	sector_t pblock;
3963	sector_t lowest_pblock = -1;
3964	sector_t highest_pblock = 0;
3965	int nr_extents = 0;
3966	unsigned long nr_pblocks;
3967	unsigned long len;
3968	int ret;
3969
3970	/*
3971	 * Map all the blocks into the extent list.  This code doesn't try
3972	 * to be very smart.
3973	 */
3974	cur_lblock = 0;
3975	last_lblock = logical_to_blk(inode, i_size_read(inode));
3976	len = i_size_read(inode);
3977
3978	while (cur_lblock <= last_lblock && cur_lblock < sis->max) {
3979		struct buffer_head map_bh;
3980		pgoff_t next_pgofs;
3981
3982		cond_resched();
3983
3984		memset(&map_bh, 0, sizeof(struct buffer_head));
3985		map_bh.b_size = len - cur_lblock;
3986
3987		ret = get_data_block(inode, cur_lblock, &map_bh, 0,
3988					F2FS_GET_BLOCK_FIEMAP, &next_pgofs);
3989		if (ret)
3990			goto err_out;
3991
3992		/* hole */
3993		if (!buffer_mapped(&map_bh))
3994			goto err_out;
3995
3996		pblock = map_bh.b_blocknr;
3997		nr_pblocks = logical_to_blk(inode, map_bh.b_size);
3998
3999		if (cur_lblock + nr_pblocks >= sis->max)
4000			nr_pblocks = sis->max - cur_lblock;
4001
4002		if (cur_lblock) {	/* exclude the header page */
4003			if (pblock < lowest_pblock)
4004				lowest_pblock = pblock;
4005			if (pblock + nr_pblocks - 1 > highest_pblock)
4006				highest_pblock = pblock + nr_pblocks - 1;
4007		}
4008
4009		/*
4010		 * We found a PAGE_SIZE-length, PAGE_SIZE-aligned run of blocks
4011		 */
4012		ret = add_swap_extent(sis, cur_lblock, nr_pblocks, pblock);
4013		if (ret < 0)
4014			goto out;
4015		nr_extents += ret;
4016		cur_lblock += nr_pblocks;
4017	}
4018	ret = nr_extents;
4019	*span = 1 + highest_pblock - lowest_pblock;
4020	if (cur_lblock == 0)
4021		cur_lblock = 1;	/* force Empty message */
4022	sis->max = cur_lblock;
4023	sis->pages = cur_lblock - 1;
4024	sis->highest_bit = cur_lblock - 1;
4025out:
4026	return ret;
4027err_out:
4028	pr_err("swapon: swapfile has holes\n");
4029	return -EINVAL;
4030}
4031
4032/* Copied from generic_swapfile_activate() to check any holes */
4033static int check_swap_activate(struct swap_info_struct *sis,
4034				struct file *swap_file, sector_t *span)
4035{
4036	struct address_space *mapping = swap_file->f_mapping;
4037	struct inode *inode = mapping->host;
4038	unsigned blocks_per_page;
4039	unsigned long page_no;
4040	unsigned blkbits;
4041	sector_t probe_block;
4042	sector_t last_block;
4043	sector_t lowest_block = -1;
4044	sector_t highest_block = 0;
4045	int nr_extents = 0;
4046	int ret;
4047
4048	if (PAGE_SIZE == F2FS_BLKSIZE)
4049		return check_swap_activate_fast(sis, swap_file, span);
4050
4051	blkbits = inode->i_blkbits;
4052	blocks_per_page = PAGE_SIZE >> blkbits;
4053
4054	/*
4055	 * Map all the blocks into the extent list.  This code doesn't try
4056	 * to be very smart.
4057	 */
4058	probe_block = 0;
4059	page_no = 0;
4060	last_block = i_size_read(inode) >> blkbits;
4061	while ((probe_block + blocks_per_page) <= last_block &&
4062			page_no < sis->max) {
4063		unsigned block_in_page;
4064		sector_t first_block;
4065		sector_t block = 0;
4066		int	 err = 0;
4067
4068		cond_resched();
4069
4070		block = probe_block;
4071		err = bmap(inode, &block);
4072		if (err || !block)
4073			goto bad_bmap;
4074		first_block = block;
4075
4076		/*
4077		 * It must be PAGE_SIZE aligned on-disk
4078		 */
4079		if (first_block & (blocks_per_page - 1)) {
4080			probe_block++;
4081			goto reprobe;
4082		}
4083
4084		for (block_in_page = 1; block_in_page < blocks_per_page;
4085					block_in_page++) {
4086
4087			block = probe_block + block_in_page;
4088			err = bmap(inode, &block);
4089
4090			if (err || !block)
4091				goto bad_bmap;
4092
4093			if (block != first_block + block_in_page) {
4094				/* Discontiguity */
4095				probe_block++;
4096				goto reprobe;
4097			}
4098		}
4099
4100		first_block >>= (PAGE_SHIFT - blkbits);
4101		if (page_no) {	/* exclude the header page */
4102			if (first_block < lowest_block)
4103				lowest_block = first_block;
4104			if (first_block > highest_block)
4105				highest_block = first_block;
4106		}
4107
4108		/*
4109		 * We found a PAGE_SIZE-length, PAGE_SIZE-aligned run of blocks
4110		 */
4111		ret = add_swap_extent(sis, page_no, 1, first_block);
4112		if (ret < 0)
4113			goto out;
4114		nr_extents += ret;
4115		page_no++;
4116		probe_block += blocks_per_page;
4117reprobe:
4118		continue;
4119	}
4120	ret = nr_extents;
4121	*span = 1 + highest_block - lowest_block;
4122	if (page_no == 0)
4123		page_no = 1;	/* force Empty message */
4124	sis->max = page_no;
4125	sis->pages = page_no - 1;
4126	sis->highest_bit = page_no - 1;
4127out:
4128	return ret;
4129bad_bmap:
4130	pr_err("swapon: swapfile has holes\n");
4131	return -EINVAL;
4132}
4133
4134static int f2fs_swap_activate(struct swap_info_struct *sis, struct file *file,
4135				sector_t *span)
4136{
4137	struct inode *inode = file_inode(file);
4138	int ret;
4139
4140	if (!S_ISREG(inode->i_mode))
4141		return -EINVAL;
4142
4143	if (f2fs_readonly(F2FS_I_SB(inode)->sb))
4144		return -EROFS;
4145
4146	if (f2fs_lfs_mode(F2FS_I_SB(inode))) {
4147		f2fs_err(F2FS_I_SB(inode),
4148			"Swapfile not supported in LFS mode");
4149		return -EINVAL;
4150	}
4151
4152	ret = f2fs_convert_inline_inode(inode);
4153	if (ret)
4154		return ret;
4155
4156	if (!f2fs_disable_compressed_file(inode))
4157		return -EINVAL;
4158
4159	ret = check_swap_activate(sis, file, span);
4160	if (ret < 0)
4161		return ret;
4162
4163	set_inode_flag(inode, FI_PIN_FILE);
4164	f2fs_precache_extents(inode);
4165	f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
4166	return ret;
4167}
4168
4169static void f2fs_swap_deactivate(struct file *file)
4170{
4171	struct inode *inode = file_inode(file);
4172
4173	clear_inode_flag(inode, FI_PIN_FILE);
4174}
4175#else
4176static int f2fs_swap_activate(struct swap_info_struct *sis, struct file *file,
4177				sector_t *span)
4178{
4179	return -EOPNOTSUPP;
4180}
4181
4182static void f2fs_swap_deactivate(struct file *file)
4183{
4184}
4185#endif
4186
4187const struct address_space_operations f2fs_dblock_aops = {
4188	.readpage	= f2fs_read_data_page,
4189	.readahead	= f2fs_readahead,
4190	.writepage	= f2fs_write_data_page,
4191	.writepages	= f2fs_write_data_pages,
4192	.write_begin	= f2fs_write_begin,
4193	.write_end	= f2fs_write_end,
4194	.set_page_dirty	= f2fs_set_data_page_dirty,
4195	.invalidatepage	= f2fs_invalidate_page,
4196	.releasepage	= f2fs_release_page,
4197	.direct_IO	= f2fs_direct_IO,
4198	.bmap		= f2fs_bmap,
4199	.swap_activate  = f2fs_swap_activate,
4200	.swap_deactivate = f2fs_swap_deactivate,
4201#ifdef CONFIG_MIGRATION
4202	.migratepage    = f2fs_migrate_page,
4203#endif
4204};
4205
4206void f2fs_clear_page_cache_dirty_tag(struct page *page)
4207{
4208	struct address_space *mapping = page_mapping(page);
4209	unsigned long flags;
4210
4211	xa_lock_irqsave(&mapping->i_pages, flags);
4212	__xa_clear_mark(&mapping->i_pages, page_index(page),
4213						PAGECACHE_TAG_DIRTY);
4214	xa_unlock_irqrestore(&mapping->i_pages, flags);
4215}
4216
4217int __init f2fs_init_post_read_processing(void)
4218{
4219	bio_post_read_ctx_cache =
4220		kmem_cache_create("f2fs_bio_post_read_ctx",
4221				  sizeof(struct bio_post_read_ctx), 0, 0, NULL);
4222	if (!bio_post_read_ctx_cache)
4223		goto fail;
4224	bio_post_read_ctx_pool =
4225		mempool_create_slab_pool(NUM_PREALLOC_POST_READ_CTXS,
4226					 bio_post_read_ctx_cache);
4227	if (!bio_post_read_ctx_pool)
4228		goto fail_free_cache;
4229	return 0;
4230
4231fail_free_cache:
4232	kmem_cache_destroy(bio_post_read_ctx_cache);
4233fail:
4234	return -ENOMEM;
4235}
4236
4237void f2fs_destroy_post_read_processing(void)
4238{
4239	mempool_destroy(bio_post_read_ctx_pool);
4240	kmem_cache_destroy(bio_post_read_ctx_cache);
4241}
4242
4243int f2fs_init_post_read_wq(struct f2fs_sb_info *sbi)
4244{
4245	if (!f2fs_sb_has_encrypt(sbi) &&
4246		!f2fs_sb_has_verity(sbi) &&
4247		!f2fs_sb_has_compression(sbi))
4248		return 0;
4249
4250	sbi->post_read_wq = alloc_workqueue("f2fs_post_read_wq",
4251						 WQ_UNBOUND | WQ_HIGHPRI,
4252						 num_online_cpus());
4253	if (!sbi->post_read_wq)
4254		return -ENOMEM;
4255	return 0;
4256}
4257
4258void f2fs_destroy_post_read_wq(struct f2fs_sb_info *sbi)
4259{
4260	if (sbi->post_read_wq)
4261		destroy_workqueue(sbi->post_read_wq);
4262}
4263
4264int __init f2fs_init_bio_entry_cache(void)
4265{
4266	bio_entry_slab = f2fs_kmem_cache_create("f2fs_bio_entry_slab",
4267			sizeof(struct bio_entry));
4268	if (!bio_entry_slab)
4269		return -ENOMEM;
4270	return 0;
4271}
4272
4273void f2fs_destroy_bio_entry_cache(void)
4274{
4275	kmem_cache_destroy(bio_entry_slab);
4276}
4277