1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * fs/f2fs/data.c
4  *
5  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6  *             http://www.samsung.com/
7  */
8 #include <linux/fs.h>
9 #include <linux/f2fs_fs.h>
10 #include <linux/buffer_head.h>
11 #include <linux/mpage.h>
12 #include <linux/writeback.h>
13 #include <linux/backing-dev.h>
14 #include <linux/pagevec.h>
15 #include <linux/blkdev.h>
16 #include <linux/bio.h>
17 #include <linux/blk-crypto.h>
18 #include <linux/swap.h>
19 #include <linux/prefetch.h>
20 #include <linux/uio.h>
21 #include <linux/cleancache.h>
22 #include <linux/sched/signal.h>
23 #include <linux/fiemap.h>
24 
25 #include "f2fs.h"
26 #include "node.h"
27 #include "segment.h"
28 #include "trace.h"
29 #include <trace/events/f2fs.h>
30 
31 #define NUM_PREALLOC_POST_READ_CTXS	128
32 
33 static struct kmem_cache *bio_post_read_ctx_cache;
34 static struct kmem_cache *bio_entry_slab;
35 static mempool_t *bio_post_read_ctx_pool;
36 static struct bio_set f2fs_bioset;
37 
38 #define	F2FS_BIO_POOL_SIZE	NR_CURSEG_TYPE
39 
f2fs_init_bioset(void)40 int __init f2fs_init_bioset(void)
41 {
42 	if (bioset_init(&f2fs_bioset, F2FS_BIO_POOL_SIZE,
43 					0, BIOSET_NEED_BVECS))
44 		return -ENOMEM;
45 	return 0;
46 }
47 
f2fs_destroy_bioset(void)48 void f2fs_destroy_bioset(void)
49 {
50 	bioset_exit(&f2fs_bioset);
51 }
52 
__f2fs_bio_alloc(gfp_t gfp_mask, unsigned int nr_iovecs)53 static inline struct bio *__f2fs_bio_alloc(gfp_t gfp_mask,
54 						unsigned int nr_iovecs)
55 {
56 	return bio_alloc_bioset(gfp_mask, nr_iovecs, &f2fs_bioset);
57 }
58 
f2fs_bio_alloc(struct f2fs_sb_info *sbi, int npages, bool noio)59 struct bio *f2fs_bio_alloc(struct f2fs_sb_info *sbi, int npages, bool noio)
60 {
61 	if (noio) {
62 		/* No failure on bio allocation */
63 		return __f2fs_bio_alloc(GFP_NOIO, npages);
64 	}
65 
66 	if (time_to_inject(sbi, FAULT_ALLOC_BIO)) {
67 		f2fs_show_injection_info(sbi, FAULT_ALLOC_BIO);
68 		return NULL;
69 	}
70 
71 	return __f2fs_bio_alloc(GFP_KERNEL, npages);
72 }
73 
__is_cp_guaranteed(struct page *page)74 static bool __is_cp_guaranteed(struct page *page)
75 {
76 	struct address_space *mapping = page->mapping;
77 	struct inode *inode;
78 	struct f2fs_sb_info *sbi;
79 
80 	if (!mapping)
81 		return false;
82 
83 	if (f2fs_is_compressed_page(page))
84 		return false;
85 
86 	inode = mapping->host;
87 	sbi = F2FS_I_SB(inode);
88 
89 	if (inode->i_ino == F2FS_META_INO(sbi) ||
90 			inode->i_ino == F2FS_NODE_INO(sbi) ||
91 			S_ISDIR(inode->i_mode) ||
92 			(S_ISREG(inode->i_mode) &&
93 			(f2fs_is_atomic_file(inode) || IS_NOQUOTA(inode))) ||
94 			is_cold_data(page))
95 		return true;
96 	return false;
97 }
98 
__read_io_type(struct page *page)99 static enum count_type __read_io_type(struct page *page)
100 {
101 	struct address_space *mapping = page_file_mapping(page);
102 
103 	if (mapping) {
104 		struct inode *inode = mapping->host;
105 		struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
106 
107 		if (inode->i_ino == F2FS_META_INO(sbi))
108 			return F2FS_RD_META;
109 
110 		if (inode->i_ino == F2FS_NODE_INO(sbi))
111 			return F2FS_RD_NODE;
112 	}
113 	return F2FS_RD_DATA;
114 }
115 
116 /* postprocessing steps for read bios */
117 enum bio_post_read_step {
118 	STEP_DECRYPT,
119 	STEP_DECOMPRESS_NOWQ,		/* handle normal cluster data inplace */
120 	STEP_DECOMPRESS,		/* handle compressed cluster data in workqueue */
121 	STEP_VERITY,
122 };
123 
124 struct bio_post_read_ctx {
125 	struct bio *bio;
126 	struct f2fs_sb_info *sbi;
127 	struct work_struct work;
128 	unsigned int enabled_steps;
129 };
130 
__read_end_io(struct bio *bio, bool compr, bool verity)131 static void __read_end_io(struct bio *bio, bool compr, bool verity)
132 {
133 	struct page *page;
134 	struct bio_vec *bv;
135 	struct bvec_iter_all iter_all;
136 
137 	bio_for_each_segment_all(bv, bio, iter_all) {
138 		page = bv->bv_page;
139 
140 #ifdef CONFIG_F2FS_FS_COMPRESSION
141 		if (compr && f2fs_is_compressed_page(page)) {
142 			f2fs_decompress_pages(bio, page, verity);
143 			continue;
144 		}
145 		if (verity)
146 			continue;
147 #endif
148 
149 		/* PG_error was set if any post_read step failed */
150 		if (bio->bi_status || PageError(page)) {
151 			ClearPageUptodate(page);
152 			/* will re-read again later */
153 			ClearPageError(page);
154 		} else {
155 			SetPageUptodate(page);
156 		}
157 		dec_page_count(F2FS_P_SB(page), __read_io_type(page));
158 		unlock_page(page);
159 	}
160 }
161 
162 static void f2fs_release_read_bio(struct bio *bio);
__f2fs_read_end_io(struct bio *bio, bool compr, bool verity)163 static void __f2fs_read_end_io(struct bio *bio, bool compr, bool verity)
164 {
165 	if (!compr)
166 		__read_end_io(bio, false, verity);
167 	f2fs_release_read_bio(bio);
168 }
169 
f2fs_decompress_bio(struct bio *bio, bool verity)170 static void f2fs_decompress_bio(struct bio *bio, bool verity)
171 {
172 	__read_end_io(bio, true, verity);
173 }
174 
175 static void bio_post_read_processing(struct bio_post_read_ctx *ctx);
176 
f2fs_decrypt_work(struct bio_post_read_ctx *ctx)177 static void f2fs_decrypt_work(struct bio_post_read_ctx *ctx)
178 {
179 	fscrypt_decrypt_bio(ctx->bio);
180 }
181 
f2fs_decompress_work(struct bio_post_read_ctx *ctx)182 static void f2fs_decompress_work(struct bio_post_read_ctx *ctx)
183 {
184 	f2fs_decompress_bio(ctx->bio, ctx->enabled_steps & (1 << STEP_VERITY));
185 }
186 
187 #ifdef CONFIG_F2FS_FS_COMPRESSION
f2fs_verify_pages(struct page **rpages, unsigned int cluster_size)188 static void f2fs_verify_pages(struct page **rpages, unsigned int cluster_size)
189 {
190 	f2fs_decompress_end_io(rpages, cluster_size, false, true);
191 }
192 
f2fs_verify_bio(struct bio *bio)193 static void f2fs_verify_bio(struct bio *bio)
194 {
195 	struct bio_vec *bv;
196 	struct bvec_iter_all iter_all;
197 
198 	bio_for_each_segment_all(bv, bio, iter_all) {
199 		struct page *page = bv->bv_page;
200 		struct decompress_io_ctx *dic;
201 
202 		dic = (struct decompress_io_ctx *)page_private(page);
203 
204 		if (dic) {
205 			if (atomic_dec_return(&dic->verity_pages))
206 				continue;
207 			f2fs_verify_pages(dic->rpages,
208 						dic->cluster_size);
209 			f2fs_free_dic(dic);
210 			continue;
211 		}
212 
213 		if (bio->bi_status || PageError(page))
214 			goto clear_uptodate;
215 
216 		if (fsverity_verify_page(page)) {
217 			SetPageUptodate(page);
218 			goto unlock;
219 		}
220 clear_uptodate:
221 		ClearPageUptodate(page);
222 		ClearPageError(page);
223 unlock:
224 		dec_page_count(F2FS_P_SB(page), __read_io_type(page));
225 		unlock_page(page);
226 	}
227 }
228 #endif
229 
f2fs_verity_work(struct work_struct *work)230 static void f2fs_verity_work(struct work_struct *work)
231 {
232 	struct bio_post_read_ctx *ctx =
233 		container_of(work, struct bio_post_read_ctx, work);
234 	struct bio *bio = ctx->bio;
235 #ifdef CONFIG_F2FS_FS_COMPRESSION
236 	unsigned int enabled_steps = ctx->enabled_steps;
237 #endif
238 
239 	/*
240 	 * fsverity_verify_bio() may call readpages() again, and while verity
241 	 * will be disabled for this, decryption may still be needed, resulting
242 	 * in another bio_post_read_ctx being allocated.  So to prevent
243 	 * deadlocks we need to release the current ctx to the mempool first.
244 	 * This assumes that verity is the last post-read step.
245 	 */
246 	mempool_free(ctx, bio_post_read_ctx_pool);
247 	bio->bi_private = NULL;
248 
249 #ifdef CONFIG_F2FS_FS_COMPRESSION
250 	/* previous step is decompression */
251 	if (enabled_steps & (1 << STEP_DECOMPRESS)) {
252 		f2fs_verify_bio(bio);
253 		f2fs_release_read_bio(bio);
254 		return;
255 	}
256 #endif
257 
258 	fsverity_verify_bio(bio);
259 	__f2fs_read_end_io(bio, false, false);
260 }
261 
f2fs_post_read_work(struct work_struct *work)262 static void f2fs_post_read_work(struct work_struct *work)
263 {
264 	struct bio_post_read_ctx *ctx =
265 		container_of(work, struct bio_post_read_ctx, work);
266 
267 	if (ctx->enabled_steps & (1 << STEP_DECRYPT))
268 		f2fs_decrypt_work(ctx);
269 
270 	if (ctx->enabled_steps & (1 << STEP_DECOMPRESS))
271 		f2fs_decompress_work(ctx);
272 
273 	if (ctx->enabled_steps & (1 << STEP_VERITY)) {
274 		INIT_WORK(&ctx->work, f2fs_verity_work);
275 		fsverity_enqueue_verify_work(&ctx->work);
276 		return;
277 	}
278 
279 	__f2fs_read_end_io(ctx->bio,
280 		ctx->enabled_steps & (1 << STEP_DECOMPRESS), false);
281 }
282 
f2fs_enqueue_post_read_work(struct f2fs_sb_info *sbi, struct work_struct *work)283 static void f2fs_enqueue_post_read_work(struct f2fs_sb_info *sbi,
284 						struct work_struct *work)
285 {
286 	queue_work(sbi->post_read_wq, work);
287 }
288 
bio_post_read_processing(struct bio_post_read_ctx *ctx)289 static void bio_post_read_processing(struct bio_post_read_ctx *ctx)
290 {
291 	/*
292 	 * We use different work queues for decryption and for verity because
293 	 * verity may require reading metadata pages that need decryption, and
294 	 * we shouldn't recurse to the same workqueue.
295 	 */
296 
297 	if (ctx->enabled_steps & (1 << STEP_DECRYPT) ||
298 		ctx->enabled_steps & (1 << STEP_DECOMPRESS)) {
299 		INIT_WORK(&ctx->work, f2fs_post_read_work);
300 		f2fs_enqueue_post_read_work(ctx->sbi, &ctx->work);
301 		return;
302 	}
303 
304 	if (ctx->enabled_steps & (1 << STEP_VERITY)) {
305 		INIT_WORK(&ctx->work, f2fs_verity_work);
306 		fsverity_enqueue_verify_work(&ctx->work);
307 		return;
308 	}
309 
310 	__f2fs_read_end_io(ctx->bio, false, false);
311 }
312 
f2fs_bio_post_read_required(struct bio *bio)313 static bool f2fs_bio_post_read_required(struct bio *bio)
314 {
315 	return bio->bi_private;
316 }
317 
f2fs_read_end_io(struct bio *bio)318 static void f2fs_read_end_io(struct bio *bio)
319 {
320 	struct f2fs_sb_info *sbi = F2FS_P_SB(bio_first_page_all(bio));
321 
322 	if (time_to_inject(sbi, FAULT_READ_IO)) {
323 		f2fs_show_injection_info(sbi, FAULT_READ_IO);
324 		bio->bi_status = BLK_STS_IOERR;
325 	}
326 
327 	if (f2fs_bio_post_read_required(bio)) {
328 		struct bio_post_read_ctx *ctx = bio->bi_private;
329 
330 		bio_post_read_processing(ctx);
331 		return;
332 	}
333 
334 	__f2fs_read_end_io(bio, false, false);
335 }
336 
f2fs_write_end_io(struct bio *bio)337 static void f2fs_write_end_io(struct bio *bio)
338 {
339 	struct f2fs_sb_info *sbi = bio->bi_private;
340 	struct bio_vec *bvec;
341 	struct bvec_iter_all iter_all;
342 
343 	if (time_to_inject(sbi, FAULT_WRITE_IO)) {
344 		f2fs_show_injection_info(sbi, FAULT_WRITE_IO);
345 		bio->bi_status = BLK_STS_IOERR;
346 	}
347 
348 	bio_for_each_segment_all(bvec, bio, iter_all) {
349 		struct page *page = bvec->bv_page;
350 		enum count_type type = WB_DATA_TYPE(page);
351 
352 		if (IS_DUMMY_WRITTEN_PAGE(page)) {
353 			set_page_private(page, (unsigned long)NULL);
354 			ClearPagePrivate(page);
355 			unlock_page(page);
356 			mempool_free(page, sbi->write_io_dummy);
357 
358 			if (unlikely(bio->bi_status))
359 				f2fs_stop_checkpoint(sbi, true);
360 			continue;
361 		}
362 
363 		fscrypt_finalize_bounce_page(&page);
364 
365 #ifdef CONFIG_F2FS_FS_COMPRESSION
366 		if (f2fs_is_compressed_page(page)) {
367 			f2fs_compress_write_end_io(bio, page);
368 			continue;
369 		}
370 #endif
371 
372 		if (unlikely(bio->bi_status)) {
373 			mapping_set_error(page->mapping, -EIO);
374 			if (type == F2FS_WB_CP_DATA)
375 				f2fs_stop_checkpoint(sbi, true);
376 		}
377 
378 		f2fs_bug_on(sbi, page->mapping == NODE_MAPPING(sbi) &&
379 					page->index != nid_of_node(page));
380 
381 		dec_page_count(sbi, type);
382 		if (f2fs_in_warm_node_list(sbi, page))
383 			f2fs_del_fsync_node_entry(sbi, page);
384 		clear_cold_data(page);
385 		end_page_writeback(page);
386 	}
387 	if (!get_pages(sbi, F2FS_WB_CP_DATA) &&
388 				wq_has_sleeper(&sbi->cp_wait))
389 		wake_up(&sbi->cp_wait);
390 
391 	bio_put(bio);
392 }
393 
f2fs_target_device(struct f2fs_sb_info *sbi, block_t blk_addr, struct bio *bio)394 struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi,
395 				block_t blk_addr, struct bio *bio)
396 {
397 	struct block_device *bdev = sbi->sb->s_bdev;
398 	int i;
399 
400 	if (f2fs_is_multi_device(sbi)) {
401 		for (i = 0; i < sbi->s_ndevs; i++) {
402 			if (FDEV(i).start_blk <= blk_addr &&
403 			    FDEV(i).end_blk >= blk_addr) {
404 				blk_addr -= FDEV(i).start_blk;
405 				bdev = FDEV(i).bdev;
406 				break;
407 			}
408 		}
409 	}
410 	if (bio) {
411 		bio_set_dev(bio, bdev);
412 		bio->bi_iter.bi_sector = SECTOR_FROM_BLOCK(blk_addr);
413 	}
414 	return bdev;
415 }
416 
f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr)417 int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr)
418 {
419 	int i;
420 
421 	if (!f2fs_is_multi_device(sbi))
422 		return 0;
423 
424 	for (i = 0; i < sbi->s_ndevs; i++)
425 		if (FDEV(i).start_blk <= blkaddr && FDEV(i).end_blk >= blkaddr)
426 			return i;
427 	return 0;
428 }
429 
430 /*
431  * Return true, if pre_bio's bdev is same as its target device.
432  */
__same_bdev(struct f2fs_sb_info *sbi, block_t blk_addr, struct bio *bio)433 static bool __same_bdev(struct f2fs_sb_info *sbi,
434 				block_t blk_addr, struct bio *bio)
435 {
436 	struct block_device *b = f2fs_target_device(sbi, blk_addr, NULL);
437 	return bio->bi_disk == b->bd_disk && bio->bi_partno == b->bd_partno;
438 }
439 
__bio_alloc(struct f2fs_io_info *fio, int npages)440 static struct bio *__bio_alloc(struct f2fs_io_info *fio, int npages)
441 {
442 	struct f2fs_sb_info *sbi = fio->sbi;
443 	struct bio *bio;
444 
445 	bio = f2fs_bio_alloc(sbi, npages, true);
446 
447 	f2fs_target_device(sbi, fio->new_blkaddr, bio);
448 	if (is_read_io(fio->op)) {
449 		bio->bi_end_io = f2fs_read_end_io;
450 		bio->bi_private = NULL;
451 	} else {
452 		bio->bi_end_io = f2fs_write_end_io;
453 		bio->bi_private = sbi;
454 		bio->bi_write_hint = f2fs_io_type_to_rw_hint(sbi,
455 						fio->type, fio->temp);
456 	}
457 	if (fio->io_wbc)
458 		wbc_init_bio(fio->io_wbc, bio);
459 
460 	return bio;
461 }
462 
f2fs_set_bio_crypt_ctx(struct bio *bio, const struct inode *inode, pgoff_t first_idx, const struct f2fs_io_info *fio, gfp_t gfp_mask)463 static void f2fs_set_bio_crypt_ctx(struct bio *bio, const struct inode *inode,
464 				  pgoff_t first_idx,
465 				  const struct f2fs_io_info *fio,
466 				  gfp_t gfp_mask)
467 {
468 	/*
469 	 * The f2fs garbage collector sets ->encrypted_page when it wants to
470 	 * read/write raw data without encryption.
471 	 */
472 	if (!fio || !fio->encrypted_page)
473 		fscrypt_set_bio_crypt_ctx(bio, inode, first_idx, gfp_mask);
474 }
475 
f2fs_crypt_mergeable_bio(struct bio *bio, const struct inode *inode, pgoff_t next_idx, const struct f2fs_io_info *fio)476 static bool f2fs_crypt_mergeable_bio(struct bio *bio, const struct inode *inode,
477 				     pgoff_t next_idx,
478 				     const struct f2fs_io_info *fio)
479 {
480 	/*
481 	 * The f2fs garbage collector sets ->encrypted_page when it wants to
482 	 * read/write raw data without encryption.
483 	 */
484 	if (fio && fio->encrypted_page)
485 		return !bio_has_crypt_ctx(bio);
486 
487 	return fscrypt_mergeable_bio(bio, inode, next_idx);
488 }
489 
__submit_bio(struct f2fs_sb_info *sbi, struct bio *bio, enum page_type type)490 static inline void __submit_bio(struct f2fs_sb_info *sbi,
491 				struct bio *bio, enum page_type type)
492 {
493 	if (!is_read_io(bio_op(bio))) {
494 		unsigned int start;
495 
496 		if (type != DATA && type != NODE)
497 			goto submit_io;
498 
499 		if (f2fs_lfs_mode(sbi) && current->plug)
500 			blk_finish_plug(current->plug);
501 
502 		if (!F2FS_IO_ALIGNED(sbi))
503 			goto submit_io;
504 
505 		start = bio->bi_iter.bi_size >> F2FS_BLKSIZE_BITS;
506 		start %= F2FS_IO_SIZE(sbi);
507 
508 		if (start == 0)
509 			goto submit_io;
510 
511 		/* fill dummy pages */
512 		for (; start < F2FS_IO_SIZE(sbi); start++) {
513 			struct page *page =
514 				mempool_alloc(sbi->write_io_dummy,
515 					      GFP_NOIO | __GFP_NOFAIL);
516 			f2fs_bug_on(sbi, !page);
517 
518 			zero_user_segment(page, 0, PAGE_SIZE);
519 			SetPagePrivate(page);
520 			set_page_private(page, DUMMY_WRITTEN_PAGE);
521 			lock_page(page);
522 			if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE)
523 				f2fs_bug_on(sbi, 1);
524 		}
525 		/*
526 		 * In the NODE case, we lose next block address chain. So, we
527 		 * need to do checkpoint in f2fs_sync_file.
528 		 */
529 		if (type == NODE)
530 			set_sbi_flag(sbi, SBI_NEED_CP);
531 	}
532 submit_io:
533 	if (is_read_io(bio_op(bio)))
534 		trace_f2fs_submit_read_bio(sbi->sb, type, bio);
535 	else
536 		trace_f2fs_submit_write_bio(sbi->sb, type, bio);
537 	submit_bio(bio);
538 }
539 
f2fs_submit_bio(struct f2fs_sb_info *sbi, struct bio *bio, enum page_type type)540 void f2fs_submit_bio(struct f2fs_sb_info *sbi,
541 				struct bio *bio, enum page_type type)
542 {
543 	__submit_bio(sbi, bio, type);
544 }
545 
__attach_io_flag(struct f2fs_io_info *fio)546 static void __attach_io_flag(struct f2fs_io_info *fio)
547 {
548 	struct f2fs_sb_info *sbi = fio->sbi;
549 	unsigned int temp_mask = (1 << NR_TEMP_TYPE) - 1;
550 	unsigned int io_flag, fua_flag, meta_flag;
551 
552 	if (fio->type == DATA)
553 		io_flag = sbi->data_io_flag;
554 	else if (fio->type == NODE)
555 		io_flag = sbi->node_io_flag;
556 	else
557 		return;
558 
559 	fua_flag = io_flag & temp_mask;
560 	meta_flag = (io_flag >> NR_TEMP_TYPE) & temp_mask;
561 
562 	/*
563 	 * data/node io flag bits per temp:
564 	 *      REQ_META     |      REQ_FUA      |
565 	 *    5 |    4 |   3 |    2 |    1 |   0 |
566 	 * Cold | Warm | Hot | Cold | Warm | Hot |
567 	 */
568 	if ((1 << fio->temp) & meta_flag)
569 		fio->op_flags |= REQ_META;
570 	if ((1 << fio->temp) & fua_flag)
571 		fio->op_flags |= REQ_FUA;
572 }
573 
__submit_merged_bio(struct f2fs_bio_info *io)574 static void __submit_merged_bio(struct f2fs_bio_info *io)
575 {
576 	struct f2fs_io_info *fio = &io->fio;
577 
578 	if (!io->bio)
579 		return;
580 
581 	__attach_io_flag(fio);
582 	bio_set_op_attrs(io->bio, fio->op, fio->op_flags);
583 
584 	if (is_read_io(fio->op))
585 		trace_f2fs_prepare_read_bio(io->sbi->sb, fio->type, io->bio);
586 	else
587 		trace_f2fs_prepare_write_bio(io->sbi->sb, fio->type, io->bio);
588 
589 	__submit_bio(io->sbi, io->bio, fio->type);
590 	io->bio = NULL;
591 }
592 
__has_merged_page(struct bio *bio, struct inode *inode, struct page *page, nid_t ino)593 static bool __has_merged_page(struct bio *bio, struct inode *inode,
594 						struct page *page, nid_t ino)
595 {
596 	struct bio_vec *bvec;
597 	struct bvec_iter_all iter_all;
598 
599 	if (!bio)
600 		return false;
601 
602 	if (!inode && !page && !ino)
603 		return true;
604 
605 	bio_for_each_segment_all(bvec, bio, iter_all) {
606 		struct page *target = bvec->bv_page;
607 
608 		if (fscrypt_is_bounce_page(target)) {
609 			target = fscrypt_pagecache_page(target);
610 			if (IS_ERR(target))
611 				continue;
612 		}
613 		if (f2fs_is_compressed_page(target)) {
614 			target = f2fs_compress_control_page(target);
615 			if (IS_ERR(target))
616 				continue;
617 		}
618 
619 		if (inode && inode == target->mapping->host)
620 			return true;
621 		if (page && page == target)
622 			return true;
623 		if (ino && ino == ino_of_node(target))
624 			return true;
625 	}
626 
627 	return false;
628 }
629 
__f2fs_submit_merged_write(struct f2fs_sb_info *sbi, enum page_type type, enum temp_type temp)630 static void __f2fs_submit_merged_write(struct f2fs_sb_info *sbi,
631 				enum page_type type, enum temp_type temp)
632 {
633 	enum page_type btype = PAGE_TYPE_OF_BIO(type);
634 	struct f2fs_bio_info *io = sbi->write_io[btype] + temp;
635 
636 	down_write(&io->io_rwsem);
637 
638 	/* change META to META_FLUSH in the checkpoint procedure */
639 	if (type >= META_FLUSH) {
640 		io->fio.type = META_FLUSH;
641 		io->fio.op = REQ_OP_WRITE;
642 		io->fio.op_flags = REQ_META | REQ_PRIO | REQ_SYNC;
643 		if (!test_opt(sbi, NOBARRIER))
644 			io->fio.op_flags |= REQ_PREFLUSH | REQ_FUA;
645 	}
646 	__submit_merged_bio(io);
647 	up_write(&io->io_rwsem);
648 }
649 
__submit_merged_write_cond(struct f2fs_sb_info *sbi, struct inode *inode, struct page *page, nid_t ino, enum page_type type, bool force)650 static void __submit_merged_write_cond(struct f2fs_sb_info *sbi,
651 				struct inode *inode, struct page *page,
652 				nid_t ino, enum page_type type, bool force)
653 {
654 	enum temp_type temp;
655 	bool ret = true;
656 
657 	for (temp = HOT; temp < NR_TEMP_TYPE; temp++) {
658 		if (!force)	{
659 			enum page_type btype = PAGE_TYPE_OF_BIO(type);
660 			struct f2fs_bio_info *io = sbi->write_io[btype] + temp;
661 
662 			down_read(&io->io_rwsem);
663 			ret = __has_merged_page(io->bio, inode, page, ino);
664 			up_read(&io->io_rwsem);
665 		}
666 		if (ret)
667 			__f2fs_submit_merged_write(sbi, type, temp);
668 
669 		/* TODO: use HOT temp only for meta pages now. */
670 		if (type >= META)
671 			break;
672 	}
673 }
674 
f2fs_submit_merged_write(struct f2fs_sb_info *sbi, enum page_type type)675 void f2fs_submit_merged_write(struct f2fs_sb_info *sbi, enum page_type type)
676 {
677 	__submit_merged_write_cond(sbi, NULL, NULL, 0, type, true);
678 }
679 
f2fs_submit_merged_write_cond(struct f2fs_sb_info *sbi, struct inode *inode, struct page *page, nid_t ino, enum page_type type)680 void f2fs_submit_merged_write_cond(struct f2fs_sb_info *sbi,
681 				struct inode *inode, struct page *page,
682 				nid_t ino, enum page_type type)
683 {
684 	__submit_merged_write_cond(sbi, inode, page, ino, type, false);
685 }
686 
f2fs_flush_merged_writes(struct f2fs_sb_info *sbi)687 void f2fs_flush_merged_writes(struct f2fs_sb_info *sbi)
688 {
689 	f2fs_submit_merged_write(sbi, DATA);
690 	f2fs_submit_merged_write(sbi, NODE);
691 	f2fs_submit_merged_write(sbi, META);
692 }
693 
694 /*
695  * Fill the locked page with data located in the block address.
696  * A caller needs to unlock the page on failure.
697  */
f2fs_submit_page_bio(struct f2fs_io_info *fio)698 int f2fs_submit_page_bio(struct f2fs_io_info *fio)
699 {
700 	struct bio *bio;
701 	struct page *page = fio->encrypted_page ?
702 			fio->encrypted_page : fio->page;
703 
704 	if (!f2fs_is_valid_blkaddr(fio->sbi, fio->new_blkaddr,
705 			fio->is_por ? META_POR : (__is_meta_io(fio) ?
706 			META_GENERIC : DATA_GENERIC_ENHANCE)))
707 		return -EFSCORRUPTED;
708 
709 	trace_f2fs_submit_page_bio(page, fio);
710 	f2fs_trace_ios(fio, 0);
711 
712 	/* Allocate a new bio */
713 	bio = __bio_alloc(fio, 1);
714 
715 	f2fs_set_bio_crypt_ctx(bio, fio->page->mapping->host,
716 			       fio->page->index, fio, GFP_NOIO);
717 
718 	if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) {
719 		bio_put(bio);
720 		return -EFAULT;
721 	}
722 
723 	if (fio->io_wbc && !is_read_io(fio->op))
724 		wbc_account_cgroup_owner(fio->io_wbc, fio->page, PAGE_SIZE);
725 
726 	__attach_io_flag(fio);
727 	bio_set_op_attrs(bio, fio->op, fio->op_flags);
728 
729 	inc_page_count(fio->sbi, is_read_io(fio->op) ?
730 			__read_io_type(page): WB_DATA_TYPE(fio->page));
731 
732 	__submit_bio(fio->sbi, bio, fio->type);
733 	return 0;
734 }
735 
page_is_mergeable(struct f2fs_sb_info *sbi, struct bio *bio, block_t last_blkaddr, block_t cur_blkaddr)736 static bool page_is_mergeable(struct f2fs_sb_info *sbi, struct bio *bio,
737 				block_t last_blkaddr, block_t cur_blkaddr)
738 {
739 	if (last_blkaddr + 1 != cur_blkaddr)
740 		return false;
741 	return __same_bdev(sbi, cur_blkaddr, bio);
742 }
743 
io_type_is_mergeable(struct f2fs_bio_info *io, struct f2fs_io_info *fio)744 static bool io_type_is_mergeable(struct f2fs_bio_info *io,
745 						struct f2fs_io_info *fio)
746 {
747 	if (io->fio.op != fio->op)
748 		return false;
749 	return io->fio.op_flags == fio->op_flags;
750 }
751 
io_is_mergeable(struct f2fs_sb_info *sbi, struct bio *bio, struct f2fs_bio_info *io, struct f2fs_io_info *fio, block_t last_blkaddr, block_t cur_blkaddr)752 static bool io_is_mergeable(struct f2fs_sb_info *sbi, struct bio *bio,
753 					struct f2fs_bio_info *io,
754 					struct f2fs_io_info *fio,
755 					block_t last_blkaddr,
756 					block_t cur_blkaddr)
757 {
758 	if (F2FS_IO_ALIGNED(sbi) && (fio->type == DATA || fio->type == NODE)) {
759 		unsigned int filled_blocks =
760 				F2FS_BYTES_TO_BLK(bio->bi_iter.bi_size);
761 		unsigned int io_size = F2FS_IO_SIZE(sbi);
762 		unsigned int left_vecs = bio->bi_max_vecs - bio->bi_vcnt;
763 
764 		/* IOs in bio is aligned and left space of vectors is not enough */
765 		if (!(filled_blocks % io_size) && left_vecs < io_size)
766 			return false;
767 	}
768 	if (!page_is_mergeable(sbi, bio, last_blkaddr, cur_blkaddr))
769 		return false;
770 	return io_type_is_mergeable(io, fio);
771 }
772 
add_bio_entry(struct f2fs_sb_info *sbi, struct bio *bio, struct page *page, enum temp_type temp)773 static void add_bio_entry(struct f2fs_sb_info *sbi, struct bio *bio,
774 				struct page *page, enum temp_type temp)
775 {
776 	struct f2fs_bio_info *io = sbi->write_io[DATA] + temp;
777 	struct bio_entry *be;
778 
779 	be = f2fs_kmem_cache_alloc(bio_entry_slab, GFP_NOFS);
780 	be->bio = bio;
781 	bio_get(bio);
782 
783 	if (bio_add_page(bio, page, PAGE_SIZE, 0) != PAGE_SIZE)
784 		f2fs_bug_on(sbi, 1);
785 
786 	down_write(&io->bio_list_lock);
787 	list_add_tail(&be->list, &io->bio_list);
788 	up_write(&io->bio_list_lock);
789 }
790 
del_bio_entry(struct bio_entry *be)791 static void del_bio_entry(struct bio_entry *be)
792 {
793 	list_del(&be->list);
794 	kmem_cache_free(bio_entry_slab, be);
795 }
796 
add_ipu_page(struct f2fs_io_info *fio, struct bio **bio, struct page *page)797 static int add_ipu_page(struct f2fs_io_info *fio, struct bio **bio,
798 							struct page *page)
799 {
800 	struct f2fs_sb_info *sbi = fio->sbi;
801 	enum temp_type temp;
802 	bool found = false;
803 	int ret = -EAGAIN;
804 
805 	for (temp = HOT; temp < NR_TEMP_TYPE && !found; temp++) {
806 		struct f2fs_bio_info *io = sbi->write_io[DATA] + temp;
807 		struct list_head *head = &io->bio_list;
808 		struct bio_entry *be;
809 
810 		down_write(&io->bio_list_lock);
811 		list_for_each_entry(be, head, list) {
812 			if (be->bio != *bio)
813 				continue;
814 
815 			found = true;
816 
817 			f2fs_bug_on(sbi, !page_is_mergeable(sbi, *bio,
818 							    *fio->last_block,
819 							    fio->new_blkaddr));
820 			if (f2fs_crypt_mergeable_bio(*bio,
821 					fio->page->mapping->host,
822 					fio->page->index, fio) &&
823 			    bio_add_page(*bio, page, PAGE_SIZE, 0) ==
824 					PAGE_SIZE) {
825 				ret = 0;
826 				break;
827 			}
828 
829 			/* page can't be merged into bio; submit the bio */
830 			del_bio_entry(be);
831 			__submit_bio(sbi, *bio, DATA);
832 			break;
833 		}
834 		up_write(&io->bio_list_lock);
835 	}
836 
837 	if (ret) {
838 		bio_put(*bio);
839 		*bio = NULL;
840 	}
841 
842 	return ret;
843 }
844 
f2fs_submit_merged_ipu_write(struct f2fs_sb_info *sbi, struct bio **bio, struct page *page)845 void f2fs_submit_merged_ipu_write(struct f2fs_sb_info *sbi,
846 					struct bio **bio, struct page *page)
847 {
848 	enum temp_type temp;
849 	bool found = false;
850 	struct bio *target = bio ? *bio : NULL;
851 
852 	f2fs_bug_on(sbi, !target && !page);
853 
854 	for (temp = HOT; temp < NR_TEMP_TYPE && !found; temp++) {
855 		struct f2fs_bio_info *io = sbi->write_io[DATA] + temp;
856 		struct list_head *head = &io->bio_list;
857 		struct bio_entry *be;
858 
859 		if (list_empty(head))
860 			continue;
861 
862 		down_read(&io->bio_list_lock);
863 		list_for_each_entry(be, head, list) {
864 			if (target)
865 				found = (target == be->bio);
866 			else
867 				found = __has_merged_page(be->bio, NULL,
868 								page, 0);
869 			if (found)
870 				break;
871 		}
872 		up_read(&io->bio_list_lock);
873 
874 		if (!found)
875 			continue;
876 
877 		found = false;
878 
879 		down_write(&io->bio_list_lock);
880 		list_for_each_entry(be, head, list) {
881 			if (target)
882 				found = (target == be->bio);
883 			else
884 				found = __has_merged_page(be->bio, NULL,
885 								page, 0);
886 			if (found) {
887 				target = be->bio;
888 				del_bio_entry(be);
889 				break;
890 			}
891 		}
892 		up_write(&io->bio_list_lock);
893 	}
894 
895 	if (found)
896 		__submit_bio(sbi, target, DATA);
897 	if (bio && *bio) {
898 		bio_put(*bio);
899 		*bio = NULL;
900 	}
901 }
902 
f2fs_merge_page_bio(struct f2fs_io_info *fio)903 int f2fs_merge_page_bio(struct f2fs_io_info *fio)
904 {
905 	struct bio *bio = *fio->bio;
906 	struct page *page = fio->encrypted_page ?
907 			fio->encrypted_page : fio->page;
908 
909 	if (!f2fs_is_valid_blkaddr(fio->sbi, fio->new_blkaddr,
910 			__is_meta_io(fio) ? META_GENERIC : DATA_GENERIC))
911 		return -EFSCORRUPTED;
912 
913 	trace_f2fs_submit_page_bio(page, fio);
914 	f2fs_trace_ios(fio, 0);
915 
916 	if (bio && !page_is_mergeable(fio->sbi, bio, *fio->last_block,
917 						fio->new_blkaddr))
918 		f2fs_submit_merged_ipu_write(fio->sbi, &bio, NULL);
919 alloc_new:
920 	if (!bio) {
921 		bio = __bio_alloc(fio, BIO_MAX_PAGES);
922 		__attach_io_flag(fio);
923 		f2fs_set_bio_crypt_ctx(bio, fio->page->mapping->host,
924 				       fio->page->index, fio, GFP_NOIO);
925 		bio_set_op_attrs(bio, fio->op, fio->op_flags);
926 
927 		add_bio_entry(fio->sbi, bio, page, fio->temp);
928 	} else {
929 		if (add_ipu_page(fio, &bio, page))
930 			goto alloc_new;
931 	}
932 
933 	if (fio->io_wbc)
934 		wbc_account_cgroup_owner(fio->io_wbc, fio->page, PAGE_SIZE);
935 
936 	inc_page_count(fio->sbi, WB_DATA_TYPE(page));
937 
938 	*fio->last_block = fio->new_blkaddr;
939 	*fio->bio = bio;
940 
941 	return 0;
942 }
943 
f2fs_submit_page_write(struct f2fs_io_info *fio)944 void f2fs_submit_page_write(struct f2fs_io_info *fio)
945 {
946 	struct f2fs_sb_info *sbi = fio->sbi;
947 	enum page_type btype = PAGE_TYPE_OF_BIO(fio->type);
948 	struct f2fs_bio_info *io = sbi->write_io[btype] + fio->temp;
949 	struct page *bio_page;
950 
951 	f2fs_bug_on(sbi, is_read_io(fio->op));
952 
953 	down_write(&io->io_rwsem);
954 next:
955 	if (fio->in_list) {
956 		spin_lock(&io->io_lock);
957 		if (list_empty(&io->io_list)) {
958 			spin_unlock(&io->io_lock);
959 			goto out;
960 		}
961 		fio = list_first_entry(&io->io_list,
962 						struct f2fs_io_info, list);
963 		list_del(&fio->list);
964 		spin_unlock(&io->io_lock);
965 	}
966 
967 	verify_fio_blkaddr(fio);
968 
969 	if (fio->encrypted_page)
970 		bio_page = fio->encrypted_page;
971 	else if (fio->compressed_page)
972 		bio_page = fio->compressed_page;
973 	else
974 		bio_page = fio->page;
975 
976 	/* set submitted = true as a return value */
977 	fio->submitted = true;
978 
979 	inc_page_count(sbi, WB_DATA_TYPE(bio_page));
980 
981 	if (io->bio &&
982 	    (!io_is_mergeable(sbi, io->bio, io, fio, io->last_block_in_bio,
983 			      fio->new_blkaddr) ||
984 	     !f2fs_crypt_mergeable_bio(io->bio, fio->page->mapping->host,
985 				       bio_page->index, fio)))
986 		__submit_merged_bio(io);
987 alloc_new:
988 	if (io->bio == NULL) {
989 		if (F2FS_IO_ALIGNED(sbi) &&
990 				(fio->type == DATA || fio->type == NODE) &&
991 				fio->new_blkaddr & F2FS_IO_SIZE_MASK(sbi)) {
992 			dec_page_count(sbi, WB_DATA_TYPE(bio_page));
993 			fio->retry = true;
994 			goto skip;
995 		}
996 		io->bio = __bio_alloc(fio, BIO_MAX_PAGES);
997 		f2fs_set_bio_crypt_ctx(io->bio, fio->page->mapping->host,
998 				       bio_page->index, fio, GFP_NOIO);
999 		io->fio = *fio;
1000 	}
1001 
1002 	if (bio_add_page(io->bio, bio_page, PAGE_SIZE, 0) < PAGE_SIZE) {
1003 		__submit_merged_bio(io);
1004 		goto alloc_new;
1005 	}
1006 
1007 	if (fio->io_wbc)
1008 		wbc_account_cgroup_owner(fio->io_wbc, fio->page, PAGE_SIZE);
1009 
1010 	io->last_block_in_bio = fio->new_blkaddr;
1011 	f2fs_trace_ios(fio, 0);
1012 
1013 	trace_f2fs_submit_page_write(fio->page, fio);
1014 skip:
1015 	if (fio->in_list)
1016 		goto next;
1017 out:
1018 	if (is_sbi_flag_set(sbi, SBI_IS_SHUTDOWN) ||
1019 				!f2fs_is_checkpoint_ready(sbi))
1020 		__submit_merged_bio(io);
1021 	up_write(&io->io_rwsem);
1022 }
1023 
f2fs_need_verity(const struct inode *inode, pgoff_t idx)1024 static inline bool f2fs_need_verity(const struct inode *inode, pgoff_t idx)
1025 {
1026 	return fsverity_active(inode) && (idx <
1027 		DIV_ROUND_UP(fsverity_get_verified_data_size(inode), PAGE_SIZE));
1028 }
1029 
f2fs_grab_read_bio(struct inode *inode, block_t blkaddr, unsigned nr_pages, unsigned op_flag, pgoff_t first_idx, bool for_write, bool for_verity)1030 static struct bio *f2fs_grab_read_bio(struct inode *inode, block_t blkaddr,
1031 				      unsigned nr_pages, unsigned op_flag,
1032 				      pgoff_t first_idx, bool for_write,
1033 				      bool for_verity)
1034 {
1035 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1036 	struct bio *bio;
1037 	struct bio_post_read_ctx *ctx;
1038 	unsigned int post_read_steps = 0;
1039 
1040 	bio = f2fs_bio_alloc(sbi, min_t(int, nr_pages, BIO_MAX_PAGES),
1041 								for_write);
1042 	if (!bio)
1043 		return ERR_PTR(-ENOMEM);
1044 
1045 	f2fs_set_bio_crypt_ctx(bio, inode, first_idx, NULL, GFP_NOFS);
1046 
1047 	f2fs_target_device(sbi, blkaddr, bio);
1048 	bio->bi_end_io = f2fs_read_end_io;
1049 	bio_set_op_attrs(bio, REQ_OP_READ, op_flag);
1050 
1051 	if (fscrypt_inode_uses_fs_layer_crypto(inode))
1052 		post_read_steps |= 1 << STEP_DECRYPT;
1053 	if (f2fs_compressed_file(inode))
1054 		post_read_steps |= 1 << STEP_DECOMPRESS_NOWQ;
1055 	if (for_verity && f2fs_need_verity(inode, first_idx))
1056 		post_read_steps |= 1 << STEP_VERITY;
1057 
1058 	if (post_read_steps) {
1059 		/* Due to the mempool, this never fails. */
1060 		ctx = mempool_alloc(bio_post_read_ctx_pool, GFP_NOFS);
1061 		ctx->bio = bio;
1062 		ctx->sbi = sbi;
1063 		ctx->enabled_steps = post_read_steps;
1064 		bio->bi_private = ctx;
1065 	}
1066 
1067 	return bio;
1068 }
1069 
f2fs_release_read_bio(struct bio *bio)1070 static void f2fs_release_read_bio(struct bio *bio)
1071 {
1072 	if (bio->bi_private)
1073 		mempool_free(bio->bi_private, bio_post_read_ctx_pool);
1074 	bio_put(bio);
1075 }
1076 
1077 /* This can handle encryption stuffs */
f2fs_submit_page_read(struct inode *inode, struct page *page, block_t blkaddr, int op_flags, bool for_write)1078 static int f2fs_submit_page_read(struct inode *inode, struct page *page,
1079 				 block_t blkaddr, int op_flags, bool for_write)
1080 {
1081 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1082 	struct bio *bio;
1083 
1084 	bio = f2fs_grab_read_bio(inode, blkaddr, 1, op_flags,
1085 					page->index, for_write, true);
1086 	if (IS_ERR(bio))
1087 		return PTR_ERR(bio);
1088 
1089 	/* wait for GCed page writeback via META_MAPPING */
1090 	f2fs_wait_on_block_writeback(inode, blkaddr);
1091 
1092 	if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) {
1093 		bio_put(bio);
1094 		return -EFAULT;
1095 	}
1096 	ClearPageError(page);
1097 	inc_page_count(sbi, F2FS_RD_DATA);
1098 	f2fs_update_iostat(sbi, FS_DATA_READ_IO, F2FS_BLKSIZE);
1099 	__submit_bio(sbi, bio, DATA);
1100 	return 0;
1101 }
1102 
__set_data_blkaddr(struct dnode_of_data *dn)1103 static void __set_data_blkaddr(struct dnode_of_data *dn)
1104 {
1105 	struct f2fs_node *rn = F2FS_NODE(dn->node_page);
1106 	__le32 *addr_array;
1107 	int base = 0;
1108 
1109 	if (IS_INODE(dn->node_page) && f2fs_has_extra_attr(dn->inode))
1110 		base = get_extra_isize(dn->inode);
1111 
1112 	/* Get physical address of data block */
1113 	addr_array = blkaddr_in_node(rn);
1114 	addr_array[base + dn->ofs_in_node] = cpu_to_le32(dn->data_blkaddr);
1115 }
1116 
1117 /*
1118  * Lock ordering for the change of data block address:
1119  * ->data_page
1120  *  ->node_page
1121  *    update block addresses in the node page
1122  */
f2fs_set_data_blkaddr(struct dnode_of_data *dn)1123 void f2fs_set_data_blkaddr(struct dnode_of_data *dn)
1124 {
1125 	f2fs_wait_on_page_writeback(dn->node_page, NODE, true, true);
1126 	__set_data_blkaddr(dn);
1127 	if (set_page_dirty(dn->node_page))
1128 		dn->node_changed = true;
1129 }
1130 
f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr)1131 void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr)
1132 {
1133 	dn->data_blkaddr = blkaddr;
1134 	f2fs_set_data_blkaddr(dn);
1135 	f2fs_update_extent_cache(dn);
1136 }
1137 
1138 /* dn->ofs_in_node will be returned with up-to-date last block pointer */
f2fs_reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count)1139 int f2fs_reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count)
1140 {
1141 	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1142 	int err;
1143 
1144 	if (!count)
1145 		return 0;
1146 
1147 	if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
1148 		return -EPERM;
1149 	if (unlikely((err = inc_valid_block_count(sbi, dn->inode, &count))))
1150 		return err;
1151 
1152 	trace_f2fs_reserve_new_blocks(dn->inode, dn->nid,
1153 						dn->ofs_in_node, count);
1154 
1155 	f2fs_wait_on_page_writeback(dn->node_page, NODE, true, true);
1156 
1157 	for (; count > 0; dn->ofs_in_node++) {
1158 		block_t blkaddr = f2fs_data_blkaddr(dn);
1159 		if (blkaddr == NULL_ADDR) {
1160 			dn->data_blkaddr = NEW_ADDR;
1161 			__set_data_blkaddr(dn);
1162 			count--;
1163 		}
1164 	}
1165 
1166 	if (set_page_dirty(dn->node_page))
1167 		dn->node_changed = true;
1168 	return 0;
1169 }
1170 
1171 /* Should keep dn->ofs_in_node unchanged */
f2fs_reserve_new_block(struct dnode_of_data *dn)1172 int f2fs_reserve_new_block(struct dnode_of_data *dn)
1173 {
1174 	unsigned int ofs_in_node = dn->ofs_in_node;
1175 	int ret;
1176 
1177 	ret = f2fs_reserve_new_blocks(dn, 1);
1178 	dn->ofs_in_node = ofs_in_node;
1179 	return ret;
1180 }
1181 
f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index)1182 int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index)
1183 {
1184 	bool need_put = dn->inode_page ? false : true;
1185 	int err;
1186 
1187 	err = f2fs_get_dnode_of_data(dn, index, ALLOC_NODE);
1188 	if (err)
1189 		return err;
1190 
1191 	if (dn->data_blkaddr == NULL_ADDR)
1192 		err = f2fs_reserve_new_block(dn);
1193 	if (err || need_put)
1194 		f2fs_put_dnode(dn);
1195 	return err;
1196 }
1197 
f2fs_get_block(struct dnode_of_data *dn, pgoff_t index)1198 int f2fs_get_block(struct dnode_of_data *dn, pgoff_t index)
1199 {
1200 	struct extent_info ei = {0, 0, 0};
1201 	struct inode *inode = dn->inode;
1202 
1203 	if (f2fs_lookup_extent_cache(inode, index, &ei)) {
1204 		dn->data_blkaddr = ei.blk + index - ei.fofs;
1205 		return 0;
1206 	}
1207 
1208 	return f2fs_reserve_block(dn, index);
1209 }
1210 
f2fs_get_read_data_page(struct inode *inode, pgoff_t index, int op_flags, bool for_write)1211 struct page *f2fs_get_read_data_page(struct inode *inode, pgoff_t index,
1212 						int op_flags, bool for_write)
1213 {
1214 	struct address_space *mapping = inode->i_mapping;
1215 	struct dnode_of_data dn;
1216 	struct page *page;
1217 	struct extent_info ei = {0,0,0};
1218 	int err;
1219 
1220 	page = f2fs_grab_cache_page(mapping, index, for_write);
1221 	if (!page)
1222 		return ERR_PTR(-ENOMEM);
1223 
1224 	if (f2fs_lookup_extent_cache(inode, index, &ei)) {
1225 		dn.data_blkaddr = ei.blk + index - ei.fofs;
1226 		if (!f2fs_is_valid_blkaddr(F2FS_I_SB(inode), dn.data_blkaddr,
1227 						DATA_GENERIC_ENHANCE_READ)) {
1228 			err = -EFSCORRUPTED;
1229 			goto put_err;
1230 		}
1231 		goto got_it;
1232 	}
1233 
1234 	set_new_dnode(&dn, inode, NULL, NULL, 0);
1235 	err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE);
1236 	if (err)
1237 		goto put_err;
1238 	f2fs_put_dnode(&dn);
1239 
1240 	if (unlikely(dn.data_blkaddr == NULL_ADDR)) {
1241 		err = -ENOENT;
1242 		goto put_err;
1243 	}
1244 	if (dn.data_blkaddr != NEW_ADDR &&
1245 			!f2fs_is_valid_blkaddr(F2FS_I_SB(inode),
1246 						dn.data_blkaddr,
1247 						DATA_GENERIC_ENHANCE)) {
1248 		err = -EFSCORRUPTED;
1249 		goto put_err;
1250 	}
1251 got_it:
1252 	if (PageUptodate(page)) {
1253 		unlock_page(page);
1254 		return page;
1255 	}
1256 
1257 	/*
1258 	 * A new dentry page is allocated but not able to be written, since its
1259 	 * new inode page couldn't be allocated due to -ENOSPC.
1260 	 * In such the case, its blkaddr can be remained as NEW_ADDR.
1261 	 * see, f2fs_add_link -> f2fs_get_new_data_page ->
1262 	 * f2fs_init_inode_metadata.
1263 	 */
1264 	if (dn.data_blkaddr == NEW_ADDR) {
1265 		zero_user_segment(page, 0, PAGE_SIZE);
1266 		if (!PageUptodate(page))
1267 			SetPageUptodate(page);
1268 		unlock_page(page);
1269 		return page;
1270 	}
1271 
1272 	err = f2fs_submit_page_read(inode, page, dn.data_blkaddr,
1273 						op_flags, for_write);
1274 	if (err)
1275 		goto put_err;
1276 	return page;
1277 
1278 put_err:
1279 	f2fs_put_page(page, 1);
1280 	return ERR_PTR(err);
1281 }
1282 
f2fs_find_data_page(struct inode *inode, pgoff_t index)1283 struct page *f2fs_find_data_page(struct inode *inode, pgoff_t index)
1284 {
1285 	struct address_space *mapping = inode->i_mapping;
1286 	struct page *page;
1287 
1288 	page = find_get_page(mapping, index);
1289 	if (page && PageUptodate(page))
1290 		return page;
1291 	f2fs_put_page(page, 0);
1292 
1293 	page = f2fs_get_read_data_page(inode, index, 0, false);
1294 	if (IS_ERR(page))
1295 		return page;
1296 
1297 	if (PageUptodate(page))
1298 		return page;
1299 
1300 	wait_on_page_locked(page);
1301 	if (unlikely(!PageUptodate(page))) {
1302 		f2fs_put_page(page, 0);
1303 		return ERR_PTR(-EIO);
1304 	}
1305 	return page;
1306 }
1307 
1308 /*
1309  * If it tries to access a hole, return an error.
1310  * Because, the callers, functions in dir.c and GC, should be able to know
1311  * whether this page exists or not.
1312  */
f2fs_get_lock_data_page(struct inode *inode, pgoff_t index, bool for_write)1313 struct page *f2fs_get_lock_data_page(struct inode *inode, pgoff_t index,
1314 							bool for_write)
1315 {
1316 	struct address_space *mapping = inode->i_mapping;
1317 	struct page *page;
1318 repeat:
1319 	page = f2fs_get_read_data_page(inode, index, 0, for_write);
1320 	if (IS_ERR(page))
1321 		return page;
1322 
1323 	/* wait for read completion */
1324 	lock_page(page);
1325 	if (unlikely(page->mapping != mapping)) {
1326 		f2fs_put_page(page, 1);
1327 		goto repeat;
1328 	}
1329 	if (unlikely(!PageUptodate(page))) {
1330 		f2fs_put_page(page, 1);
1331 		return ERR_PTR(-EIO);
1332 	}
1333 	return page;
1334 }
1335 
1336 /*
1337  * Caller ensures that this data page is never allocated.
1338  * A new zero-filled data page is allocated in the page cache.
1339  *
1340  * Also, caller should grab and release a rwsem by calling f2fs_lock_op() and
1341  * f2fs_unlock_op().
1342  * Note that, ipage is set only by make_empty_dir, and if any error occur,
1343  * ipage should be released by this function.
1344  */
f2fs_get_new_data_page(struct inode *inode, struct page *ipage, pgoff_t index, bool new_i_size)1345 struct page *f2fs_get_new_data_page(struct inode *inode,
1346 		struct page *ipage, pgoff_t index, bool new_i_size)
1347 {
1348 	struct address_space *mapping = inode->i_mapping;
1349 	struct page *page;
1350 	struct dnode_of_data dn;
1351 	int err;
1352 
1353 	page = f2fs_grab_cache_page(mapping, index, true);
1354 	if (!page) {
1355 		/*
1356 		 * before exiting, we should make sure ipage will be released
1357 		 * if any error occur.
1358 		 */
1359 		f2fs_put_page(ipage, 1);
1360 		return ERR_PTR(-ENOMEM);
1361 	}
1362 
1363 	set_new_dnode(&dn, inode, ipage, NULL, 0);
1364 	err = f2fs_reserve_block(&dn, index);
1365 	if (err) {
1366 		f2fs_put_page(page, 1);
1367 		return ERR_PTR(err);
1368 	}
1369 	if (!ipage)
1370 		f2fs_put_dnode(&dn);
1371 
1372 	if (PageUptodate(page))
1373 		goto got_it;
1374 
1375 	if (dn.data_blkaddr == NEW_ADDR) {
1376 		zero_user_segment(page, 0, PAGE_SIZE);
1377 		if (!PageUptodate(page))
1378 			SetPageUptodate(page);
1379 	} else {
1380 		f2fs_put_page(page, 1);
1381 
1382 		/* if ipage exists, blkaddr should be NEW_ADDR */
1383 		f2fs_bug_on(F2FS_I_SB(inode), ipage);
1384 		page = f2fs_get_lock_data_page(inode, index, true);
1385 		if (IS_ERR(page))
1386 			return page;
1387 	}
1388 got_it:
1389 	if (new_i_size && i_size_read(inode) <
1390 				((loff_t)(index + 1) << PAGE_SHIFT))
1391 		f2fs_i_size_write(inode, ((loff_t)(index + 1) << PAGE_SHIFT));
1392 	return page;
1393 }
1394 
__allocate_data_block(struct dnode_of_data *dn, int seg_type, int contig_level)1395 static int __allocate_data_block(struct dnode_of_data *dn, int seg_type, int contig_level)
1396 {
1397 	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1398 	struct f2fs_summary sum;
1399 	struct node_info ni;
1400 	block_t old_blkaddr;
1401 	blkcnt_t count = 1;
1402 	int err;
1403 
1404 	if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
1405 		return -EPERM;
1406 
1407 	err = f2fs_get_node_info(sbi, dn->nid, &ni);
1408 	if (err)
1409 		return err;
1410 
1411 	dn->data_blkaddr = f2fs_data_blkaddr(dn);
1412 	if (dn->data_blkaddr != NULL_ADDR)
1413 		goto alloc;
1414 
1415 	if (unlikely((err = inc_valid_block_count(sbi, dn->inode, &count))))
1416 		return err;
1417 
1418 alloc:
1419 	set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version);
1420 	old_blkaddr = dn->data_blkaddr;
1421 	f2fs_allocate_data_block(sbi, NULL, old_blkaddr, &dn->data_blkaddr,
1422 				&sum, seg_type, NULL, contig_level);
1423 	if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO)
1424 		invalidate_mapping_pages(META_MAPPING(sbi),
1425 					old_blkaddr, old_blkaddr);
1426 	f2fs_update_data_blkaddr(dn, dn->data_blkaddr);
1427 
1428 	/*
1429 	 * i_size will be updated by direct_IO. Otherwise, we'll get stale
1430 	 * data from unwritten block via dio_read.
1431 	 */
1432 	return 0;
1433 }
1434 
f2fs_preallocate_blocks(struct kiocb *iocb, struct iov_iter *from)1435 int f2fs_preallocate_blocks(struct kiocb *iocb, struct iov_iter *from)
1436 {
1437 	struct inode *inode = file_inode(iocb->ki_filp);
1438 	struct f2fs_map_blocks map;
1439 	int flag;
1440 	int err = 0;
1441 	bool direct_io = iocb->ki_flags & IOCB_DIRECT;
1442 
1443 	map.m_lblk = F2FS_BLK_ALIGN(iocb->ki_pos);
1444 	map.m_len = F2FS_BYTES_TO_BLK(iocb->ki_pos + iov_iter_count(from));
1445 	if (map.m_len > map.m_lblk)
1446 		map.m_len -= map.m_lblk;
1447 	else
1448 		map.m_len = 0;
1449 
1450 	map.m_next_pgofs = NULL;
1451 	map.m_next_extent = NULL;
1452 	map.m_seg_type = NO_CHECK_TYPE;
1453 	map.m_may_create = true;
1454 
1455 	if (direct_io) {
1456 		map.m_seg_type = f2fs_rw_hint_to_seg_type(iocb->ki_hint);
1457 		flag = f2fs_force_buffered_io(inode, iocb, from) ?
1458 					F2FS_GET_BLOCK_PRE_AIO :
1459 					F2FS_GET_BLOCK_PRE_DIO;
1460 		goto map_blocks;
1461 	}
1462 	if (iocb->ki_pos + iov_iter_count(from) > MAX_INLINE_DATA(inode)) {
1463 		err = f2fs_convert_inline_inode(inode);
1464 		if (err)
1465 			return err;
1466 	}
1467 	if (f2fs_has_inline_data(inode))
1468 		return err;
1469 
1470 	flag = F2FS_GET_BLOCK_PRE_AIO;
1471 
1472 map_blocks:
1473 	err = f2fs_map_blocks(inode, &map, 1, flag);
1474 	if (map.m_len > 0 && err == -ENOSPC) {
1475 		if (!direct_io)
1476 			set_inode_flag(inode, FI_NO_PREALLOC);
1477 		err = 0;
1478 	}
1479 	return err;
1480 }
1481 
f2fs_do_map_lock(struct f2fs_sb_info *sbi, int flag, bool lock)1482 void f2fs_do_map_lock(struct f2fs_sb_info *sbi, int flag, bool lock)
1483 {
1484 	if (flag == F2FS_GET_BLOCK_PRE_AIO) {
1485 		if (lock)
1486 			down_read(&sbi->node_change);
1487 		else
1488 			up_read(&sbi->node_change);
1489 	} else {
1490 		if (lock)
1491 			f2fs_lock_op(sbi);
1492 		else
1493 			f2fs_unlock_op(sbi);
1494 	}
1495 }
1496 
1497 /*
1498  * f2fs_map_blocks() tries to find or build mapping relationship which
1499  * maps continuous logical blocks to physical blocks, and return such
1500  * info via f2fs_map_blocks structure.
1501  */
f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map, int create, int flag)1502 int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map,
1503 						int create, int flag)
1504 {
1505 	unsigned int maxblocks = map->m_len;
1506 	struct dnode_of_data dn;
1507 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1508 	int mode = map->m_may_create ? ALLOC_NODE : LOOKUP_NODE;
1509 	pgoff_t pgofs, end_offset, end;
1510 	int err = 0, ofs = 1;
1511 	unsigned int ofs_in_node, last_ofs_in_node;
1512 	blkcnt_t prealloc;
1513 	struct extent_info ei = {0,0,0};
1514 	block_t blkaddr;
1515 	unsigned int start_pgofs;
1516 	int contig_level = SEQ_NONE;
1517 #ifdef CONFIG_F2FS_GRADING_SSR
1518 	contig_level = check_io_seq(maxblocks);
1519 #endif
1520 
1521 	if (!maxblocks)
1522 		return 0;
1523 
1524 	map->m_len = 0;
1525 	map->m_flags = 0;
1526 
1527 	/* it only supports block size == page size */
1528 	pgofs =	(pgoff_t)map->m_lblk;
1529 	end = pgofs + maxblocks;
1530 
1531 	if (!create && f2fs_lookup_extent_cache(inode, pgofs, &ei)) {
1532 		if (f2fs_lfs_mode(sbi) && flag == F2FS_GET_BLOCK_DIO &&
1533 							map->m_may_create)
1534 			goto next_dnode;
1535 
1536 		map->m_pblk = ei.blk + pgofs - ei.fofs;
1537 		map->m_len = min((pgoff_t)maxblocks, ei.fofs + ei.len - pgofs);
1538 		map->m_flags = F2FS_MAP_MAPPED;
1539 		if (map->m_next_extent)
1540 			*map->m_next_extent = pgofs + map->m_len;
1541 
1542 		/* for hardware encryption, but to avoid potential issue in future */
1543 		if (flag == F2FS_GET_BLOCK_DIO)
1544 			f2fs_wait_on_block_writeback_range(inode,
1545 						map->m_pblk, map->m_len);
1546 		goto out;
1547 	}
1548 
1549 next_dnode:
1550 	if (map->m_may_create)
1551 		f2fs_do_map_lock(sbi, flag, true);
1552 
1553 	/* When reading holes, we need its node page */
1554 	set_new_dnode(&dn, inode, NULL, NULL, 0);
1555 	err = f2fs_get_dnode_of_data(&dn, pgofs, mode);
1556 	if (err) {
1557 		if (flag == F2FS_GET_BLOCK_BMAP)
1558 			map->m_pblk = 0;
1559 
1560 		if (err == -ENOENT) {
1561 			/*
1562 			 * There is one exceptional case that read_node_page()
1563 			 * may return -ENOENT due to filesystem has been
1564 			 * shutdown or cp_error, so force to convert error
1565 			 * number to EIO for such case.
1566 			 */
1567 			if (map->m_may_create &&
1568 				(is_sbi_flag_set(sbi, SBI_IS_SHUTDOWN) ||
1569 				f2fs_cp_error(sbi))) {
1570 				err = -EIO;
1571 				goto unlock_out;
1572 			}
1573 
1574 			err = 0;
1575 			if (map->m_next_pgofs)
1576 				*map->m_next_pgofs =
1577 					f2fs_get_next_page_offset(&dn, pgofs);
1578 			if (map->m_next_extent)
1579 				*map->m_next_extent =
1580 					f2fs_get_next_page_offset(&dn, pgofs);
1581 		}
1582 		goto unlock_out;
1583 	}
1584 
1585 	start_pgofs = pgofs;
1586 	prealloc = 0;
1587 	last_ofs_in_node = ofs_in_node = dn.ofs_in_node;
1588 	end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
1589 
1590 next_block:
1591 	blkaddr = f2fs_data_blkaddr(&dn);
1592 
1593 	if (__is_valid_data_blkaddr(blkaddr) &&
1594 		!f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC_ENHANCE)) {
1595 		err = -EFSCORRUPTED;
1596 		goto sync_out;
1597 	}
1598 
1599 	if (__is_valid_data_blkaddr(blkaddr)) {
1600 		/* use out-place-update for driect IO under LFS mode */
1601 		if (f2fs_lfs_mode(sbi) && flag == F2FS_GET_BLOCK_DIO &&
1602 							map->m_may_create) {
1603 			err = __allocate_data_block(&dn, map->m_seg_type, contig_level);
1604 			if (err)
1605 				goto sync_out;
1606 			blkaddr = dn.data_blkaddr;
1607 			set_inode_flag(inode, FI_APPEND_WRITE);
1608 		}
1609 	} else {
1610 		if (create) {
1611 			if (unlikely(f2fs_cp_error(sbi))) {
1612 				err = -EIO;
1613 				goto sync_out;
1614 			}
1615 			if (flag == F2FS_GET_BLOCK_PRE_AIO) {
1616 				if (blkaddr == NULL_ADDR) {
1617 					prealloc++;
1618 					last_ofs_in_node = dn.ofs_in_node;
1619 				}
1620 			} else {
1621 				WARN_ON(flag != F2FS_GET_BLOCK_PRE_DIO &&
1622 					flag != F2FS_GET_BLOCK_DIO);
1623 				err = __allocate_data_block(&dn,
1624 					map->m_seg_type, contig_level);
1625 				if (!err)
1626 					set_inode_flag(inode, FI_APPEND_WRITE);
1627 			}
1628 			if (err)
1629 				goto sync_out;
1630 			map->m_flags |= F2FS_MAP_NEW;
1631 			blkaddr = dn.data_blkaddr;
1632 		} else {
1633 			if (flag == F2FS_GET_BLOCK_BMAP) {
1634 				map->m_pblk = 0;
1635 				goto sync_out;
1636 			}
1637 			if (flag == F2FS_GET_BLOCK_PRECACHE)
1638 				goto sync_out;
1639 			if (flag == F2FS_GET_BLOCK_FIEMAP &&
1640 						blkaddr == NULL_ADDR) {
1641 				if (map->m_next_pgofs)
1642 					*map->m_next_pgofs = pgofs + 1;
1643 				goto sync_out;
1644 			}
1645 			if (flag != F2FS_GET_BLOCK_FIEMAP) {
1646 				/* for defragment case */
1647 				if (map->m_next_pgofs)
1648 					*map->m_next_pgofs = pgofs + 1;
1649 				goto sync_out;
1650 			}
1651 		}
1652 	}
1653 
1654 	if (flag == F2FS_GET_BLOCK_PRE_AIO)
1655 		goto skip;
1656 
1657 	if (map->m_len == 0) {
1658 		/* preallocated unwritten block should be mapped for fiemap. */
1659 		if (blkaddr == NEW_ADDR)
1660 			map->m_flags |= F2FS_MAP_UNWRITTEN;
1661 		map->m_flags |= F2FS_MAP_MAPPED;
1662 
1663 		map->m_pblk = blkaddr;
1664 		map->m_len = 1;
1665 	} else if ((map->m_pblk != NEW_ADDR &&
1666 			blkaddr == (map->m_pblk + ofs)) ||
1667 			(map->m_pblk == NEW_ADDR && blkaddr == NEW_ADDR) ||
1668 			flag == F2FS_GET_BLOCK_PRE_DIO) {
1669 		ofs++;
1670 		map->m_len++;
1671 	} else {
1672 		goto sync_out;
1673 	}
1674 
1675 skip:
1676 	dn.ofs_in_node++;
1677 	pgofs++;
1678 
1679 	/* preallocate blocks in batch for one dnode page */
1680 	if (flag == F2FS_GET_BLOCK_PRE_AIO &&
1681 			(pgofs == end || dn.ofs_in_node == end_offset)) {
1682 
1683 		dn.ofs_in_node = ofs_in_node;
1684 		err = f2fs_reserve_new_blocks(&dn, prealloc);
1685 		if (err)
1686 			goto sync_out;
1687 
1688 		map->m_len += dn.ofs_in_node - ofs_in_node;
1689 		if (prealloc && dn.ofs_in_node != last_ofs_in_node + 1) {
1690 			err = -ENOSPC;
1691 			goto sync_out;
1692 		}
1693 		dn.ofs_in_node = end_offset;
1694 	}
1695 
1696 	if (pgofs >= end)
1697 		goto sync_out;
1698 	else if (dn.ofs_in_node < end_offset)
1699 		goto next_block;
1700 
1701 	if (flag == F2FS_GET_BLOCK_PRECACHE) {
1702 		if (map->m_flags & F2FS_MAP_MAPPED) {
1703 			unsigned int ofs = start_pgofs - map->m_lblk;
1704 
1705 			f2fs_update_extent_cache_range(&dn,
1706 				start_pgofs, map->m_pblk + ofs,
1707 				map->m_len - ofs);
1708 		}
1709 	}
1710 
1711 	f2fs_put_dnode(&dn);
1712 
1713 	if (map->m_may_create) {
1714 		f2fs_do_map_lock(sbi, flag, false);
1715 		f2fs_balance_fs(sbi, dn.node_changed);
1716 	}
1717 	goto next_dnode;
1718 
1719 sync_out:
1720 
1721 	/* for hardware encryption, but to avoid potential issue in future */
1722 	if (flag == F2FS_GET_BLOCK_DIO && map->m_flags & F2FS_MAP_MAPPED)
1723 		f2fs_wait_on_block_writeback_range(inode,
1724 						map->m_pblk, map->m_len);
1725 
1726 	if (flag == F2FS_GET_BLOCK_PRECACHE) {
1727 		if (map->m_flags & F2FS_MAP_MAPPED) {
1728 			unsigned int ofs = start_pgofs - map->m_lblk;
1729 
1730 			f2fs_update_extent_cache_range(&dn,
1731 				start_pgofs, map->m_pblk + ofs,
1732 				map->m_len - ofs);
1733 		}
1734 		if (map->m_next_extent)
1735 			*map->m_next_extent = pgofs + 1;
1736 	}
1737 	f2fs_put_dnode(&dn);
1738 unlock_out:
1739 	if (map->m_may_create) {
1740 		f2fs_do_map_lock(sbi, flag, false);
1741 		f2fs_balance_fs(sbi, dn.node_changed);
1742 	}
1743 out:
1744 	trace_f2fs_map_blocks(inode, map, err);
1745 	return err;
1746 }
1747 
f2fs_overwrite_io(struct inode *inode, loff_t pos, size_t len)1748 bool f2fs_overwrite_io(struct inode *inode, loff_t pos, size_t len)
1749 {
1750 	struct f2fs_map_blocks map;
1751 	block_t last_lblk;
1752 	int err;
1753 
1754 	if (pos + len > i_size_read(inode))
1755 		return false;
1756 
1757 	map.m_lblk = F2FS_BYTES_TO_BLK(pos);
1758 	map.m_next_pgofs = NULL;
1759 	map.m_next_extent = NULL;
1760 	map.m_seg_type = NO_CHECK_TYPE;
1761 	map.m_may_create = false;
1762 	last_lblk = F2FS_BLK_ALIGN(pos + len);
1763 
1764 	while (map.m_lblk < last_lblk) {
1765 		map.m_len = last_lblk - map.m_lblk;
1766 		err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_DEFAULT);
1767 		if (err || map.m_len == 0)
1768 			return false;
1769 		map.m_lblk += map.m_len;
1770 	}
1771 	return true;
1772 }
1773 
__get_data_block(struct inode *inode, sector_t iblock, struct buffer_head *bh, int create, int flag, pgoff_t *next_pgofs, int seg_type, bool may_write)1774 static int __get_data_block(struct inode *inode, sector_t iblock,
1775 			struct buffer_head *bh, int create, int flag,
1776 			pgoff_t *next_pgofs, int seg_type, bool may_write)
1777 {
1778 	struct f2fs_map_blocks map;
1779 	int err;
1780 
1781 	map.m_lblk = iblock;
1782 	map.m_len = bh->b_size >> inode->i_blkbits;
1783 	map.m_next_pgofs = next_pgofs;
1784 	map.m_next_extent = NULL;
1785 	map.m_seg_type = seg_type;
1786 	map.m_may_create = may_write;
1787 
1788 	err = f2fs_map_blocks(inode, &map, create, flag);
1789 	if (!err) {
1790 		map_bh(bh, inode->i_sb, map.m_pblk);
1791 		bh->b_state = (bh->b_state & ~F2FS_MAP_FLAGS) | map.m_flags;
1792 		bh->b_size = (u64)map.m_len << inode->i_blkbits;
1793 	}
1794 	return err;
1795 }
1796 
get_data_block(struct inode *inode, sector_t iblock, struct buffer_head *bh_result, int create, int flag, pgoff_t *next_pgofs)1797 static int get_data_block(struct inode *inode, sector_t iblock,
1798 			struct buffer_head *bh_result, int create, int flag,
1799 			pgoff_t *next_pgofs)
1800 {
1801 	return __get_data_block(inode, iblock, bh_result, create,
1802 							flag, next_pgofs,
1803 							NO_CHECK_TYPE, create);
1804 }
1805 
get_data_block_dio_write(struct inode *inode, sector_t iblock, struct buffer_head *bh_result, int create)1806 static int get_data_block_dio_write(struct inode *inode, sector_t iblock,
1807 			struct buffer_head *bh_result, int create)
1808 {
1809 	return __get_data_block(inode, iblock, bh_result, create,
1810 				F2FS_GET_BLOCK_DIO, NULL,
1811 				f2fs_rw_hint_to_seg_type(inode->i_write_hint),
1812 				IS_SWAPFILE(inode) ? false : true);
1813 }
1814 
get_data_block_dio(struct inode *inode, sector_t iblock, struct buffer_head *bh_result, int create)1815 static int get_data_block_dio(struct inode *inode, sector_t iblock,
1816 			struct buffer_head *bh_result, int create)
1817 {
1818 	return __get_data_block(inode, iblock, bh_result, create,
1819 				F2FS_GET_BLOCK_DIO, NULL,
1820 				f2fs_rw_hint_to_seg_type(inode->i_write_hint),
1821 				false);
1822 }
1823 
get_data_block_bmap(struct inode *inode, sector_t iblock, struct buffer_head *bh_result, int create)1824 static int get_data_block_bmap(struct inode *inode, sector_t iblock,
1825 			struct buffer_head *bh_result, int create)
1826 {
1827 	return __get_data_block(inode, iblock, bh_result, create,
1828 						F2FS_GET_BLOCK_BMAP, NULL,
1829 						NO_CHECK_TYPE, create);
1830 }
1831 
logical_to_blk(struct inode *inode, loff_t offset)1832 static inline sector_t logical_to_blk(struct inode *inode, loff_t offset)
1833 {
1834 	return (offset >> inode->i_blkbits);
1835 }
1836 
blk_to_logical(struct inode *inode, sector_t blk)1837 static inline loff_t blk_to_logical(struct inode *inode, sector_t blk)
1838 {
1839 	return (blk << inode->i_blkbits);
1840 }
1841 
f2fs_xattr_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo)1842 static int f2fs_xattr_fiemap(struct inode *inode,
1843 				struct fiemap_extent_info *fieinfo)
1844 {
1845 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1846 	struct page *page;
1847 	struct node_info ni;
1848 	__u64 phys = 0, len;
1849 	__u32 flags;
1850 	nid_t xnid = F2FS_I(inode)->i_xattr_nid;
1851 	int err = 0;
1852 
1853 	if (f2fs_has_inline_xattr(inode)) {
1854 		int offset;
1855 
1856 		page = f2fs_grab_cache_page(NODE_MAPPING(sbi),
1857 						inode->i_ino, false);
1858 		if (!page)
1859 			return -ENOMEM;
1860 
1861 		err = f2fs_get_node_info(sbi, inode->i_ino, &ni);
1862 		if (err) {
1863 			f2fs_put_page(page, 1);
1864 			return err;
1865 		}
1866 
1867 		phys = (__u64)blk_to_logical(inode, ni.blk_addr);
1868 		offset = offsetof(struct f2fs_inode, i_addr) +
1869 					sizeof(__le32) * (DEF_ADDRS_PER_INODE -
1870 					get_inline_xattr_addrs(inode));
1871 
1872 		phys += offset;
1873 		len = inline_xattr_size(inode);
1874 
1875 		f2fs_put_page(page, 1);
1876 
1877 		flags = FIEMAP_EXTENT_DATA_INLINE | FIEMAP_EXTENT_NOT_ALIGNED;
1878 
1879 		if (!xnid)
1880 			flags |= FIEMAP_EXTENT_LAST;
1881 
1882 		err = fiemap_fill_next_extent(fieinfo, 0, phys, len, flags);
1883 		trace_f2fs_fiemap(inode, 0, phys, len, flags, err);
1884 		if (err || err == 1)
1885 			return err;
1886 	}
1887 
1888 	if (xnid) {
1889 		page = f2fs_grab_cache_page(NODE_MAPPING(sbi), xnid, false);
1890 		if (!page)
1891 			return -ENOMEM;
1892 
1893 		err = f2fs_get_node_info(sbi, xnid, &ni);
1894 		if (err) {
1895 			f2fs_put_page(page, 1);
1896 			return err;
1897 		}
1898 
1899 		phys = (__u64)blk_to_logical(inode, ni.blk_addr);
1900 		len = inode->i_sb->s_blocksize;
1901 
1902 		f2fs_put_page(page, 1);
1903 
1904 		flags = FIEMAP_EXTENT_LAST;
1905 	}
1906 
1907 	if (phys) {
1908 		err = fiemap_fill_next_extent(fieinfo, 0, phys, len, flags);
1909 		trace_f2fs_fiemap(inode, 0, phys, len, flags, err);
1910 	}
1911 
1912 	return (err < 0 ? err : 0);
1913 }
1914 
max_inode_blocks(struct inode *inode)1915 static loff_t max_inode_blocks(struct inode *inode)
1916 {
1917 	loff_t result = ADDRS_PER_INODE(inode);
1918 	loff_t leaf_count = ADDRS_PER_BLOCK(inode);
1919 
1920 	/* two direct node blocks */
1921 	result += (leaf_count * 2);
1922 
1923 	/* two indirect node blocks */
1924 	leaf_count *= NIDS_PER_BLOCK;
1925 	result += (leaf_count * 2);
1926 
1927 	/* one double indirect node block */
1928 	leaf_count *= NIDS_PER_BLOCK;
1929 	result += leaf_count;
1930 
1931 	return result;
1932 }
1933 
f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo, u64 start, u64 len)1934 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
1935 		u64 start, u64 len)
1936 {
1937 	struct buffer_head map_bh;
1938 	sector_t start_blk, last_blk;
1939 	pgoff_t next_pgofs;
1940 	u64 logical = 0, phys = 0, size = 0;
1941 	u32 flags = 0;
1942 	int ret = 0;
1943 	bool compr_cluster = false;
1944 	unsigned int cluster_size = F2FS_I(inode)->i_cluster_size;
1945 
1946 	if (fieinfo->fi_flags & FIEMAP_FLAG_CACHE) {
1947 		ret = f2fs_precache_extents(inode);
1948 		if (ret)
1949 			return ret;
1950 	}
1951 
1952 	ret = fiemap_prep(inode, fieinfo, start, &len, FIEMAP_FLAG_XATTR);
1953 	if (ret)
1954 		return ret;
1955 
1956 	inode_lock(inode);
1957 
1958 	if (fieinfo->fi_flags & FIEMAP_FLAG_XATTR) {
1959 		ret = f2fs_xattr_fiemap(inode, fieinfo);
1960 		goto out;
1961 	}
1962 
1963 	if (f2fs_has_inline_data(inode) || f2fs_has_inline_dentry(inode)) {
1964 		ret = f2fs_inline_data_fiemap(inode, fieinfo, start, len);
1965 		if (ret != -EAGAIN)
1966 			goto out;
1967 	}
1968 
1969 	if (logical_to_blk(inode, len) == 0)
1970 		len = blk_to_logical(inode, 1);
1971 
1972 	start_blk = logical_to_blk(inode, start);
1973 	last_blk = logical_to_blk(inode, start + len - 1);
1974 
1975 next:
1976 	memset(&map_bh, 0, sizeof(struct buffer_head));
1977 	map_bh.b_size = len;
1978 
1979 	if (compr_cluster)
1980 		map_bh.b_size = blk_to_logical(inode, cluster_size - 1);
1981 
1982 	ret = get_data_block(inode, start_blk, &map_bh, 0,
1983 					F2FS_GET_BLOCK_FIEMAP, &next_pgofs);
1984 	if (ret)
1985 		goto out;
1986 
1987 	/* HOLE */
1988 	if (!buffer_mapped(&map_bh)) {
1989 		start_blk = next_pgofs;
1990 
1991 		if (blk_to_logical(inode, start_blk) < blk_to_logical(inode,
1992 						max_inode_blocks(inode)))
1993 			goto prep_next;
1994 
1995 		flags |= FIEMAP_EXTENT_LAST;
1996 	}
1997 
1998 	if (size) {
1999 		if (IS_ENCRYPTED(inode))
2000 			flags |= FIEMAP_EXTENT_DATA_ENCRYPTED;
2001 
2002 		ret = fiemap_fill_next_extent(fieinfo, logical,
2003 				phys, size, flags);
2004 		trace_f2fs_fiemap(inode, logical, phys, size, flags, ret);
2005 		if (ret)
2006 			goto out;
2007 		size = 0;
2008 	}
2009 
2010 	if (start_blk > last_blk)
2011 		goto out;
2012 
2013 	if (compr_cluster) {
2014 		compr_cluster = false;
2015 
2016 
2017 		logical = blk_to_logical(inode, start_blk - 1);
2018 		phys = blk_to_logical(inode, map_bh.b_blocknr);
2019 		size = blk_to_logical(inode, cluster_size);
2020 
2021 		flags |= FIEMAP_EXTENT_ENCODED;
2022 
2023 		start_blk += cluster_size - 1;
2024 
2025 		if (start_blk > last_blk)
2026 			goto out;
2027 
2028 		goto prep_next;
2029 	}
2030 
2031 	if (map_bh.b_blocknr == COMPRESS_ADDR) {
2032 		compr_cluster = true;
2033 		start_blk++;
2034 		goto prep_next;
2035 	}
2036 
2037 	logical = blk_to_logical(inode, start_blk);
2038 	phys = blk_to_logical(inode, map_bh.b_blocknr);
2039 	size = map_bh.b_size;
2040 	flags = 0;
2041 	if (buffer_unwritten(&map_bh))
2042 		flags = FIEMAP_EXTENT_UNWRITTEN;
2043 
2044 	start_blk += logical_to_blk(inode, size);
2045 
2046 prep_next:
2047 	cond_resched();
2048 	if (fatal_signal_pending(current))
2049 		ret = -EINTR;
2050 	else
2051 		goto next;
2052 out:
2053 	if (ret == 1)
2054 		ret = 0;
2055 
2056 	inode_unlock(inode);
2057 	return ret;
2058 }
2059 
f2fs_readpage_limit(struct inode *inode)2060 static inline loff_t f2fs_readpage_limit(struct inode *inode)
2061 {
2062 	if (IS_ENABLED(CONFIG_FS_VERITY) &&
2063 	    (IS_VERITY(inode) || f2fs_verity_in_progress(inode)))
2064 		return inode->i_sb->s_maxbytes;
2065 
2066 	return i_size_read(inode);
2067 }
2068 
f2fs_read_single_page(struct inode *inode, struct page *page, unsigned nr_pages, struct f2fs_map_blocks *map, struct bio **bio_ret, sector_t *last_block_in_bio, bool is_readahead)2069 static int f2fs_read_single_page(struct inode *inode, struct page *page,
2070 					unsigned nr_pages,
2071 					struct f2fs_map_blocks *map,
2072 					struct bio **bio_ret,
2073 					sector_t *last_block_in_bio,
2074 					bool is_readahead)
2075 {
2076 	struct bio *bio = *bio_ret;
2077 	const unsigned blkbits = inode->i_blkbits;
2078 	const unsigned blocksize = 1 << blkbits;
2079 	sector_t block_in_file;
2080 	sector_t last_block;
2081 	sector_t last_block_in_file;
2082 	sector_t block_nr;
2083 	int ret = 0;
2084 
2085 	block_in_file = (sector_t)page_index(page);
2086 	last_block = block_in_file + nr_pages;
2087 	last_block_in_file = (f2fs_readpage_limit(inode) + blocksize - 1) >>
2088 							blkbits;
2089 	if (last_block > last_block_in_file)
2090 		last_block = last_block_in_file;
2091 
2092 	/* just zeroing out page which is beyond EOF */
2093 	if (block_in_file >= last_block)
2094 		goto zero_out;
2095 	/*
2096 	 * Map blocks using the previous result first.
2097 	 */
2098 	if ((map->m_flags & F2FS_MAP_MAPPED) &&
2099 			block_in_file > map->m_lblk &&
2100 			block_in_file < (map->m_lblk + map->m_len))
2101 		goto got_it;
2102 
2103 	/*
2104 	 * Then do more f2fs_map_blocks() calls until we are
2105 	 * done with this page.
2106 	 */
2107 	map->m_lblk = block_in_file;
2108 	map->m_len = last_block - block_in_file;
2109 
2110 	ret = f2fs_map_blocks(inode, map, 0, F2FS_GET_BLOCK_DEFAULT);
2111 	if (ret)
2112 		goto out;
2113 got_it:
2114 	if ((map->m_flags & F2FS_MAP_MAPPED)) {
2115 		block_nr = map->m_pblk + block_in_file - map->m_lblk;
2116 		SetPageMappedToDisk(page);
2117 
2118 		if (!PageUptodate(page) && (!PageSwapCache(page) &&
2119 					!cleancache_get_page(page))) {
2120 			SetPageUptodate(page);
2121 			goto confused;
2122 		}
2123 
2124 		if (!f2fs_is_valid_blkaddr(F2FS_I_SB(inode), block_nr,
2125 						DATA_GENERIC_ENHANCE_READ)) {
2126 			ret = -EFSCORRUPTED;
2127 			goto out;
2128 		}
2129 	} else {
2130 zero_out:
2131 		zero_user_segment(page, 0, PAGE_SIZE);
2132 		if (f2fs_need_verity(inode, page->index) &&
2133 		    !fsverity_verify_page(page)) {
2134 			ret = -EIO;
2135 			goto out;
2136 		}
2137 		if (!PageUptodate(page))
2138 			SetPageUptodate(page);
2139 		unlock_page(page);
2140 		goto out;
2141 	}
2142 
2143 	/*
2144 	 * This page will go to BIO.  Do we need to send this
2145 	 * BIO off first?
2146 	 */
2147 	if (bio && (!page_is_mergeable(F2FS_I_SB(inode), bio,
2148 				       *last_block_in_bio, block_nr) ||
2149 		    !f2fs_crypt_mergeable_bio(bio, inode, page->index, NULL))) {
2150 submit_and_realloc:
2151 		__submit_bio(F2FS_I_SB(inode), bio, DATA);
2152 		bio = NULL;
2153 	}
2154 	if (bio == NULL) {
2155 		bio = f2fs_grab_read_bio(inode, block_nr, nr_pages,
2156 				is_readahead ? REQ_RAHEAD : 0, page->index,
2157 				false, true);
2158 		if (IS_ERR(bio)) {
2159 			ret = PTR_ERR(bio);
2160 			bio = NULL;
2161 			goto out;
2162 		}
2163 	}
2164 
2165 	/*
2166 	 * If the page is under writeback, we need to wait for
2167 	 * its completion to see the correct decrypted data.
2168 	 */
2169 	f2fs_wait_on_block_writeback(inode, block_nr);
2170 
2171 	if (bio_add_page(bio, page, blocksize, 0) < blocksize)
2172 		goto submit_and_realloc;
2173 
2174 	inc_page_count(F2FS_I_SB(inode), F2FS_RD_DATA);
2175 	f2fs_update_iostat(F2FS_I_SB(inode), FS_DATA_READ_IO, F2FS_BLKSIZE);
2176 	ClearPageError(page);
2177 	*last_block_in_bio = block_nr;
2178 	goto out;
2179 confused:
2180 	if (bio) {
2181 		__submit_bio(F2FS_I_SB(inode), bio, DATA);
2182 		bio = NULL;
2183 	}
2184 	unlock_page(page);
2185 out:
2186 	*bio_ret = bio;
2187 	return ret;
2188 }
2189 
2190 #ifdef CONFIG_F2FS_FS_COMPRESSION
f2fs_read_multi_pages(struct compress_ctx *cc, struct bio **bio_ret, unsigned nr_pages, sector_t *last_block_in_bio, bool is_readahead, bool for_write)2191 int f2fs_read_multi_pages(struct compress_ctx *cc, struct bio **bio_ret,
2192 				unsigned nr_pages, sector_t *last_block_in_bio,
2193 				bool is_readahead, bool for_write)
2194 {
2195 	struct dnode_of_data dn;
2196 	struct inode *inode = cc->inode;
2197 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2198 	struct bio *bio = *bio_ret;
2199 	unsigned int start_idx = cc->cluster_idx << cc->log_cluster_size;
2200 	sector_t last_block_in_file;
2201 	const unsigned blkbits = inode->i_blkbits;
2202 	const unsigned blocksize = 1 << blkbits;
2203 	struct decompress_io_ctx *dic = NULL;
2204 	struct bio_post_read_ctx *ctx;
2205 	bool for_verity = false;
2206 	int i;
2207 	int ret = 0;
2208 
2209 	f2fs_bug_on(sbi, f2fs_cluster_is_empty(cc));
2210 
2211 	last_block_in_file = (f2fs_readpage_limit(inode) +
2212 					blocksize - 1) >> blkbits;
2213 
2214 	/* get rid of pages beyond EOF */
2215 	for (i = 0; i < cc->cluster_size; i++) {
2216 		struct page *page = cc->rpages[i];
2217 
2218 		if (!page)
2219 			continue;
2220 		if ((sector_t)page->index >= last_block_in_file) {
2221 			zero_user_segment(page, 0, PAGE_SIZE);
2222 			if (!PageUptodate(page))
2223 				SetPageUptodate(page);
2224 		} else if (!PageUptodate(page)) {
2225 			continue;
2226 		}
2227 		unlock_page(page);
2228 		if (for_write)
2229 			put_page(page);
2230 		cc->rpages[i] = NULL;
2231 		cc->nr_rpages--;
2232 	}
2233 
2234 	/* we are done since all pages are beyond EOF */
2235 	if (f2fs_cluster_is_empty(cc))
2236 		goto out;
2237 
2238 	set_new_dnode(&dn, inode, NULL, NULL, 0);
2239 	ret = f2fs_get_dnode_of_data(&dn, start_idx, LOOKUP_NODE);
2240 	if (ret)
2241 		goto out;
2242 
2243 	f2fs_bug_on(sbi, dn.data_blkaddr != COMPRESS_ADDR);
2244 
2245 	for (i = 1; i < cc->cluster_size; i++) {
2246 		block_t blkaddr;
2247 
2248 		blkaddr = data_blkaddr(dn.inode, dn.node_page,
2249 						dn.ofs_in_node + i);
2250 
2251 		if (!__is_valid_data_blkaddr(blkaddr))
2252 			break;
2253 
2254 		if (!f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC)) {
2255 			ret = -EFAULT;
2256 			goto out_put_dnode;
2257 		}
2258 		cc->nr_cpages++;
2259 	}
2260 
2261 	/* nothing to decompress */
2262 	if (cc->nr_cpages == 0) {
2263 		ret = 0;
2264 		goto out_put_dnode;
2265 	}
2266 
2267 	dic = f2fs_alloc_dic(cc);
2268 	if (IS_ERR(dic)) {
2269 		ret = PTR_ERR(dic);
2270 		goto out_put_dnode;
2271 	}
2272 
2273 	/*
2274 	 * It's possible to enable fsverity on the fly when handling a cluster,
2275 	 * which requires complicated error handling. Instead of adding more
2276 	 * complexity, let's give a rule where end_io post-processes fsverity
2277 	 * per cluster. In order to do that, we need to submit bio, if previous
2278 	 * bio sets a different post-process policy.
2279 	 */
2280 	if (fsverity_active(cc->inode)) {
2281 		atomic_set(&dic->verity_pages, cc->nr_cpages);
2282 		for_verity = true;
2283 
2284 		if (bio) {
2285 			ctx = bio->bi_private;
2286 			if (!(ctx->enabled_steps & (1 << STEP_VERITY))) {
2287 				__submit_bio(sbi, bio, DATA);
2288 				bio = NULL;
2289 			}
2290 		}
2291 	}
2292 
2293 	for (i = 0; i < dic->nr_cpages; i++) {
2294 		struct page *page = dic->cpages[i];
2295 		block_t blkaddr;
2296 
2297 		blkaddr = data_blkaddr(dn.inode, dn.node_page,
2298 						dn.ofs_in_node + i + 1);
2299 
2300 		if (bio && (!page_is_mergeable(sbi, bio,
2301 					*last_block_in_bio, blkaddr) ||
2302 		    !f2fs_crypt_mergeable_bio(bio, inode, page->index, NULL))) {
2303 submit_and_realloc:
2304 			__submit_bio(sbi, bio, DATA);
2305 			bio = NULL;
2306 		}
2307 
2308 		if (!bio) {
2309 			bio = f2fs_grab_read_bio(inode, blkaddr, nr_pages,
2310 					is_readahead ? REQ_RAHEAD : 0,
2311 					page->index, for_write, for_verity);
2312 			if (IS_ERR(bio)) {
2313 				unsigned int remained = dic->nr_cpages - i;
2314 				bool release = false;
2315 
2316 				ret = PTR_ERR(bio);
2317 				dic->failed = true;
2318 
2319 				if (for_verity) {
2320 					if (!atomic_sub_return(remained,
2321 						&dic->verity_pages))
2322 						release = true;
2323 				} else {
2324 					if (!atomic_sub_return(remained,
2325 						&dic->pending_pages))
2326 						release = true;
2327 				}
2328 
2329 				if (release) {
2330 					f2fs_decompress_end_io(dic->rpages,
2331 						cc->cluster_size, true,
2332 						false);
2333 					f2fs_free_dic(dic);
2334 				}
2335 
2336 				f2fs_put_dnode(&dn);
2337 				*bio_ret = NULL;
2338 				return ret;
2339 			}
2340 		}
2341 
2342 		f2fs_wait_on_block_writeback(inode, blkaddr);
2343 
2344 		if (bio_add_page(bio, page, blocksize, 0) < blocksize)
2345 			goto submit_and_realloc;
2346 
2347 		/* tag STEP_DECOMPRESS to handle IO in wq */
2348 		ctx = bio->bi_private;
2349 		if (!(ctx->enabled_steps & (1 << STEP_DECOMPRESS)))
2350 			ctx->enabled_steps |= 1 << STEP_DECOMPRESS;
2351 
2352 		inc_page_count(sbi, F2FS_RD_DATA);
2353 		f2fs_update_iostat(sbi, FS_DATA_READ_IO, F2FS_BLKSIZE);
2354 		f2fs_update_iostat(sbi, FS_CDATA_READ_IO, F2FS_BLKSIZE);
2355 		ClearPageError(page);
2356 		*last_block_in_bio = blkaddr;
2357 	}
2358 
2359 	f2fs_put_dnode(&dn);
2360 
2361 	*bio_ret = bio;
2362 	return 0;
2363 
2364 out_put_dnode:
2365 	f2fs_put_dnode(&dn);
2366 out:
2367 	f2fs_decompress_end_io(cc->rpages, cc->cluster_size, true, false);
2368 	*bio_ret = bio;
2369 	return ret;
2370 }
2371 #endif
2372 
2373 /*
2374  * This function was originally taken from fs/mpage.c, and customized for f2fs.
2375  * Major change was from block_size == page_size in f2fs by default.
2376  *
2377  * Note that the aops->readpages() function is ONLY used for read-ahead. If
2378  * this function ever deviates from doing just read-ahead, it should either
2379  * use ->readpage() or do the necessary surgery to decouple ->readpages()
2380  * from read-ahead.
2381  */
f2fs_mpage_readpages(struct inode *inode, struct readahead_control *rac, struct page *page)2382 static int f2fs_mpage_readpages(struct inode *inode,
2383 		struct readahead_control *rac, struct page *page)
2384 {
2385 	struct bio *bio = NULL;
2386 	sector_t last_block_in_bio = 0;
2387 	struct f2fs_map_blocks map;
2388 #ifdef CONFIG_F2FS_FS_COMPRESSION
2389 	struct compress_ctx cc = {
2390 		.inode = inode,
2391 		.log_cluster_size = F2FS_I(inode)->i_log_cluster_size,
2392 		.cluster_size = F2FS_I(inode)->i_cluster_size,
2393 		.cluster_idx = NULL_CLUSTER,
2394 		.rpages = NULL,
2395 		.cpages = NULL,
2396 		.nr_rpages = 0,
2397 		.nr_cpages = 0,
2398 	};
2399 #endif
2400 	unsigned nr_pages = rac ? readahead_count(rac) : 1;
2401 	unsigned max_nr_pages = nr_pages;
2402 	int ret = 0;
2403 	bool drop_ra = false;
2404 
2405 	map.m_pblk = 0;
2406 	map.m_lblk = 0;
2407 	map.m_len = 0;
2408 	map.m_flags = 0;
2409 	map.m_next_pgofs = NULL;
2410 	map.m_next_extent = NULL;
2411 	map.m_seg_type = NO_CHECK_TYPE;
2412 	map.m_may_create = false;
2413 
2414 	/*
2415 	 * Two readahead threads for same address range can cause race condition
2416 	 * which fragments sequential read IOs. So let's avoid each other.
2417 	 */
2418 	if (rac && readahead_count(rac)) {
2419 		if (READ_ONCE(F2FS_I(inode)->ra_offset) == readahead_index(rac))
2420 			drop_ra = true;
2421 		else
2422 			WRITE_ONCE(F2FS_I(inode)->ra_offset,
2423 						readahead_index(rac));
2424 	}
2425 
2426 	for (; nr_pages; nr_pages--) {
2427 		if (rac) {
2428 			page = readahead_page(rac);
2429 			prefetchw(&page->flags);
2430 			if (drop_ra) {
2431 				f2fs_put_page(page, 1);
2432 				continue;
2433 			}
2434 		}
2435 
2436 #ifdef CONFIG_F2FS_FS_COMPRESSION
2437 		if (f2fs_compressed_file(inode)) {
2438 			/* there are remained comressed pages, submit them */
2439 			if (!f2fs_cluster_can_merge_page(&cc, page->index)) {
2440 				ret = f2fs_read_multi_pages(&cc, &bio,
2441 							max_nr_pages,
2442 							&last_block_in_bio,
2443 							rac != NULL, false);
2444 				f2fs_destroy_compress_ctx(&cc, false);
2445 				if (ret)
2446 					goto set_error_page;
2447 			}
2448 			ret = f2fs_is_compressed_cluster(inode, page->index);
2449 			if (ret < 0)
2450 				goto set_error_page;
2451 			else if (!ret)
2452 				goto read_single_page;
2453 
2454 			ret = f2fs_init_compress_ctx(&cc);
2455 			if (ret)
2456 				goto set_error_page;
2457 
2458 			f2fs_compress_ctx_add_page(&cc, page);
2459 
2460 			goto next_page;
2461 		}
2462 read_single_page:
2463 #endif
2464 
2465 		ret = f2fs_read_single_page(inode, page, max_nr_pages, &map,
2466 					&bio, &last_block_in_bio, rac);
2467 		if (ret) {
2468 #ifdef CONFIG_F2FS_FS_COMPRESSION
2469 set_error_page:
2470 #endif
2471 			SetPageError(page);
2472 			zero_user_segment(page, 0, PAGE_SIZE);
2473 			unlock_page(page);
2474 		}
2475 #ifdef CONFIG_F2FS_FS_COMPRESSION
2476 next_page:
2477 #endif
2478 		if (rac)
2479 			put_page(page);
2480 
2481 #ifdef CONFIG_F2FS_FS_COMPRESSION
2482 		if (f2fs_compressed_file(inode)) {
2483 			/* last page */
2484 			if (nr_pages == 1 && !f2fs_cluster_is_empty(&cc)) {
2485 				ret = f2fs_read_multi_pages(&cc, &bio,
2486 							max_nr_pages,
2487 							&last_block_in_bio,
2488 							rac != NULL, false);
2489 				f2fs_destroy_compress_ctx(&cc, false);
2490 			}
2491 		}
2492 #endif
2493 	}
2494 	if (bio)
2495 		__submit_bio(F2FS_I_SB(inode), bio, DATA);
2496 
2497 	if (rac && readahead_count(rac) && !drop_ra)
2498 		WRITE_ONCE(F2FS_I(inode)->ra_offset, -1);
2499 	return ret;
2500 }
2501 
f2fs_read_data_page(struct file *file, struct page *page)2502 static int f2fs_read_data_page(struct file *file, struct page *page)
2503 {
2504 	struct inode *inode = page_file_mapping(page)->host;
2505 	int ret = -EAGAIN;
2506 
2507 	trace_f2fs_readpage(page, DATA);
2508 
2509 	if (!f2fs_is_compress_backend_ready(inode)) {
2510 		unlock_page(page);
2511 		return -EOPNOTSUPP;
2512 	}
2513 
2514 	/* If the file has inline data, try to read it directly */
2515 	if (f2fs_has_inline_data(inode))
2516 		ret = f2fs_read_inline_data(inode, page);
2517 	if (ret == -EAGAIN)
2518 		ret = f2fs_mpage_readpages(inode, NULL, page);
2519 	return ret;
2520 }
2521 
f2fs_readahead(struct readahead_control *rac)2522 static void f2fs_readahead(struct readahead_control *rac)
2523 {
2524 	struct inode *inode = rac->mapping->host;
2525 
2526 	trace_f2fs_readpages(inode, readahead_index(rac), readahead_count(rac));
2527 
2528 	if (!f2fs_is_compress_backend_ready(inode))
2529 		return;
2530 
2531 	/* If the file has inline data, skip readpages */
2532 	if (f2fs_has_inline_data(inode))
2533 		return;
2534 
2535 	f2fs_mpage_readpages(inode, rac, NULL);
2536 }
2537 
f2fs_encrypt_one_page(struct f2fs_io_info *fio)2538 int f2fs_encrypt_one_page(struct f2fs_io_info *fio)
2539 {
2540 	struct inode *inode = fio->page->mapping->host;
2541 	struct page *mpage, *page;
2542 	gfp_t gfp_flags = GFP_NOFS;
2543 
2544 	if (!f2fs_encrypted_file(inode))
2545 		return 0;
2546 
2547 	page = fio->compressed_page ? fio->compressed_page : fio->page;
2548 
2549 	/* wait for GCed page writeback via META_MAPPING */
2550 	f2fs_wait_on_block_writeback(inode, fio->old_blkaddr);
2551 
2552 	if (fscrypt_inode_uses_inline_crypto(inode))
2553 		return 0;
2554 
2555 retry_encrypt:
2556 	fio->encrypted_page = fscrypt_encrypt_pagecache_blocks(page,
2557 					PAGE_SIZE, 0, gfp_flags);
2558 	if (IS_ERR(fio->encrypted_page)) {
2559 		/* flush pending IOs and wait for a while in the ENOMEM case */
2560 		if (PTR_ERR(fio->encrypted_page) == -ENOMEM) {
2561 			f2fs_flush_merged_writes(fio->sbi);
2562 			congestion_wait(BLK_RW_ASYNC, DEFAULT_IO_TIMEOUT);
2563 			gfp_flags |= __GFP_NOFAIL;
2564 			goto retry_encrypt;
2565 		}
2566 		return PTR_ERR(fio->encrypted_page);
2567 	}
2568 
2569 	mpage = find_lock_page(META_MAPPING(fio->sbi), fio->old_blkaddr);
2570 	if (mpage) {
2571 		if (PageUptodate(mpage))
2572 			memcpy(page_address(mpage),
2573 				page_address(fio->encrypted_page), PAGE_SIZE);
2574 		f2fs_put_page(mpage, 1);
2575 	}
2576 	return 0;
2577 }
2578 
check_inplace_update_policy(struct inode *inode, struct f2fs_io_info *fio)2579 static inline bool check_inplace_update_policy(struct inode *inode,
2580 				struct f2fs_io_info *fio)
2581 {
2582 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2583 	unsigned int policy = SM_I(sbi)->ipu_policy;
2584 
2585 	if (policy & (0x1 << F2FS_IPU_FORCE))
2586 		return true;
2587 	if (policy & (0x1 << F2FS_IPU_SSR) && f2fs_need_SSR(sbi))
2588 		return true;
2589 	if (policy & (0x1 << F2FS_IPU_UTIL) &&
2590 			utilization(sbi) > SM_I(sbi)->min_ipu_util)
2591 		return true;
2592 	if (policy & (0x1 << F2FS_IPU_SSR_UTIL) && f2fs_need_SSR(sbi) &&
2593 			utilization(sbi) > SM_I(sbi)->min_ipu_util)
2594 		return true;
2595 
2596 	/*
2597 	 * IPU for rewrite async pages
2598 	 */
2599 	if (policy & (0x1 << F2FS_IPU_ASYNC) &&
2600 			fio && fio->op == REQ_OP_WRITE &&
2601 			!(fio->op_flags & REQ_SYNC) &&
2602 			!IS_ENCRYPTED(inode))
2603 		return true;
2604 
2605 	/* this is only set during fdatasync */
2606 	if (policy & (0x1 << F2FS_IPU_FSYNC) &&
2607 			is_inode_flag_set(inode, FI_NEED_IPU))
2608 		return true;
2609 
2610 	if (unlikely(fio && is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
2611 			!f2fs_is_checkpointed_data(sbi, fio->old_blkaddr)))
2612 		return true;
2613 
2614 	return false;
2615 }
2616 
f2fs_should_update_inplace(struct inode *inode, struct f2fs_io_info *fio)2617 bool f2fs_should_update_inplace(struct inode *inode, struct f2fs_io_info *fio)
2618 {
2619 	if (f2fs_is_pinned_file(inode))
2620 		return true;
2621 
2622 	/* if this is cold file, we should overwrite to avoid fragmentation */
2623 	if (file_is_cold(inode))
2624 		return true;
2625 
2626 	return check_inplace_update_policy(inode, fio);
2627 }
2628 
f2fs_should_update_outplace(struct inode *inode, struct f2fs_io_info *fio)2629 bool f2fs_should_update_outplace(struct inode *inode, struct f2fs_io_info *fio)
2630 {
2631 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2632 
2633 	if (f2fs_lfs_mode(sbi))
2634 		return true;
2635 	if (S_ISDIR(inode->i_mode))
2636 		return true;
2637 	if (IS_NOQUOTA(inode))
2638 		return true;
2639 	if (f2fs_is_atomic_file(inode))
2640 		return true;
2641 	if (fio) {
2642 		if (is_cold_data(fio->page))
2643 			return true;
2644 		if (IS_ATOMIC_WRITTEN_PAGE(fio->page))
2645 			return true;
2646 		if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
2647 			f2fs_is_checkpointed_data(sbi, fio->old_blkaddr)))
2648 			return true;
2649 	}
2650 	return false;
2651 }
2652 
need_inplace_update(struct f2fs_io_info *fio)2653 static inline bool need_inplace_update(struct f2fs_io_info *fio)
2654 {
2655 	struct inode *inode = fio->page->mapping->host;
2656 
2657 	if (f2fs_should_update_outplace(inode, fio))
2658 		return false;
2659 
2660 	return f2fs_should_update_inplace(inode, fio);
2661 }
2662 
f2fs_do_write_data_page(struct f2fs_io_info *fio)2663 int f2fs_do_write_data_page(struct f2fs_io_info *fio)
2664 {
2665 	struct page *page = fio->page;
2666 	struct inode *inode = page->mapping->host;
2667 	struct dnode_of_data dn;
2668 	struct extent_info ei = {0,0,0};
2669 	struct node_info ni;
2670 	bool ipu_force = false;
2671 	int err = 0;
2672 
2673 	set_new_dnode(&dn, inode, NULL, NULL, 0);
2674 	if (need_inplace_update(fio) &&
2675 			f2fs_lookup_extent_cache(inode, page->index, &ei)) {
2676 		fio->old_blkaddr = ei.blk + page->index - ei.fofs;
2677 
2678 		if (!f2fs_is_valid_blkaddr(fio->sbi, fio->old_blkaddr,
2679 						DATA_GENERIC_ENHANCE))
2680 			return -EFSCORRUPTED;
2681 
2682 		ipu_force = true;
2683 		fio->need_lock = LOCK_DONE;
2684 		goto got_it;
2685 	}
2686 
2687 	/* Deadlock due to between page->lock and f2fs_lock_op */
2688 	if (fio->need_lock == LOCK_REQ && !f2fs_trylock_op(fio->sbi))
2689 		return -EAGAIN;
2690 
2691 	err = f2fs_get_dnode_of_data(&dn, page->index, LOOKUP_NODE);
2692 	if (err)
2693 		goto out;
2694 
2695 	fio->old_blkaddr = dn.data_blkaddr;
2696 
2697 	/* This page is already truncated */
2698 	if (fio->old_blkaddr == NULL_ADDR) {
2699 		ClearPageUptodate(page);
2700 		clear_cold_data(page);
2701 		goto out_writepage;
2702 	}
2703 got_it:
2704 	if (__is_valid_data_blkaddr(fio->old_blkaddr) &&
2705 		!f2fs_is_valid_blkaddr(fio->sbi, fio->old_blkaddr,
2706 						DATA_GENERIC_ENHANCE)) {
2707 		err = -EFSCORRUPTED;
2708 		goto out_writepage;
2709 	}
2710 	/*
2711 	 * If current allocation needs SSR,
2712 	 * it had better in-place writes for updated data.
2713 	 */
2714 	if (ipu_force ||
2715 		(__is_valid_data_blkaddr(fio->old_blkaddr) &&
2716 					need_inplace_update(fio))) {
2717 		err = f2fs_encrypt_one_page(fio);
2718 		if (err)
2719 			goto out_writepage;
2720 
2721 		set_page_writeback(page);
2722 		ClearPageError(page);
2723 		f2fs_put_dnode(&dn);
2724 		if (fio->need_lock == LOCK_REQ)
2725 			f2fs_unlock_op(fio->sbi);
2726 		err = f2fs_inplace_write_data(fio);
2727 		if (err) {
2728 			if (fscrypt_inode_uses_fs_layer_crypto(inode))
2729 				fscrypt_finalize_bounce_page(&fio->encrypted_page);
2730 			if (PageWriteback(page))
2731 				end_page_writeback(page);
2732 		} else {
2733 			set_inode_flag(inode, FI_UPDATE_WRITE);
2734 		}
2735 		trace_f2fs_do_write_data_page(fio->page, IPU);
2736 		return err;
2737 	}
2738 
2739 	if (fio->need_lock == LOCK_RETRY) {
2740 		if (!f2fs_trylock_op(fio->sbi)) {
2741 			err = -EAGAIN;
2742 			goto out_writepage;
2743 		}
2744 		fio->need_lock = LOCK_REQ;
2745 	}
2746 
2747 	err = f2fs_get_node_info(fio->sbi, dn.nid, &ni);
2748 	if (err)
2749 		goto out_writepage;
2750 
2751 	fio->version = ni.version;
2752 
2753 	err = f2fs_encrypt_one_page(fio);
2754 	if (err)
2755 		goto out_writepage;
2756 
2757 	set_page_writeback(page);
2758 	ClearPageError(page);
2759 
2760 	if (fio->compr_blocks && fio->old_blkaddr == COMPRESS_ADDR)
2761 		f2fs_i_compr_blocks_update(inode, fio->compr_blocks - 1, false);
2762 
2763 	/* LFS mode write path */
2764 	f2fs_outplace_write_data(&dn, fio);
2765 	trace_f2fs_do_write_data_page(page, OPU);
2766 	set_inode_flag(inode, FI_APPEND_WRITE);
2767 	if (page->index == 0)
2768 		set_inode_flag(inode, FI_FIRST_BLOCK_WRITTEN);
2769 out_writepage:
2770 	f2fs_put_dnode(&dn);
2771 out:
2772 	if (fio->need_lock == LOCK_REQ)
2773 		f2fs_unlock_op(fio->sbi);
2774 	return err;
2775 }
2776 
f2fs_write_single_data_page(struct page *page, int *submitted, struct bio **bio, sector_t *last_block, struct writeback_control *wbc, enum iostat_type io_type, int compr_blocks, bool allow_balance)2777 int f2fs_write_single_data_page(struct page *page, int *submitted,
2778 				struct bio **bio,
2779 				sector_t *last_block,
2780 				struct writeback_control *wbc,
2781 				enum iostat_type io_type,
2782 				int compr_blocks,
2783 				bool allow_balance)
2784 {
2785 	struct inode *inode = page->mapping->host;
2786 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2787 	loff_t i_size = i_size_read(inode);
2788 	const pgoff_t end_index = ((unsigned long long)i_size)
2789 							>> PAGE_SHIFT;
2790 	loff_t psize = (loff_t)(page->index + 1) << PAGE_SHIFT;
2791 	unsigned offset = 0;
2792 	bool need_balance_fs = false;
2793 	int err = 0;
2794 	struct f2fs_io_info fio = {
2795 		.sbi = sbi,
2796 		.ino = inode->i_ino,
2797 		.type = DATA,
2798 		.op = REQ_OP_WRITE,
2799 		.op_flags = wbc_to_write_flags(wbc),
2800 		.old_blkaddr = NULL_ADDR,
2801 		.page = page,
2802 		.encrypted_page = NULL,
2803 		.submitted = false,
2804 		.compr_blocks = compr_blocks,
2805 		.need_lock = LOCK_RETRY,
2806 		.io_type = io_type,
2807 		.io_wbc = wbc,
2808 		.bio = bio,
2809 		.last_block = last_block,
2810 	};
2811 
2812 	trace_f2fs_writepage(page, DATA);
2813 
2814 	/* we should bypass data pages to proceed the kworkder jobs */
2815 	if (unlikely(f2fs_cp_error(sbi))) {
2816 		mapping_set_error(page->mapping, -EIO);
2817 		/*
2818 		 * don't drop any dirty dentry pages for keeping lastest
2819 		 * directory structure.
2820 		 */
2821 		if (S_ISDIR(inode->i_mode) &&
2822 				!is_sbi_flag_set(sbi, SBI_IS_CLOSE))
2823 			goto redirty_out;
2824 		goto out;
2825 	}
2826 
2827 	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
2828 		goto redirty_out;
2829 
2830 	if (page->index < end_index ||
2831 			f2fs_verity_in_progress(inode) ||
2832 			compr_blocks)
2833 		goto write;
2834 
2835 	/*
2836 	 * If the offset is out-of-range of file size,
2837 	 * this page does not have to be written to disk.
2838 	 */
2839 	offset = i_size & (PAGE_SIZE - 1);
2840 	if ((page->index >= end_index + 1) || !offset)
2841 		goto out;
2842 
2843 	zero_user_segment(page, offset, PAGE_SIZE);
2844 write:
2845 	if (f2fs_is_drop_cache(inode))
2846 		goto out;
2847 	/* we should not write 0'th page having journal header */
2848 	if (f2fs_is_volatile_file(inode) && (!page->index ||
2849 			(!wbc->for_reclaim &&
2850 			f2fs_available_free_memory(sbi, BASE_CHECK))))
2851 		goto redirty_out;
2852 
2853 	/* Dentry/quota blocks are controlled by checkpoint */
2854 	if (S_ISDIR(inode->i_mode) || IS_NOQUOTA(inode)) {
2855 		/*
2856 		 * We need to wait for node_write to avoid block allocation during
2857 		 * checkpoint. This can only happen to quota writes which can cause
2858 		 * the below discard race condition.
2859 		 */
2860 		if (IS_NOQUOTA(inode))
2861 			down_read(&sbi->node_write);
2862 
2863 		fio.need_lock = LOCK_DONE;
2864 		err = f2fs_do_write_data_page(&fio);
2865 
2866 		if (IS_NOQUOTA(inode))
2867 			up_read(&sbi->node_write);
2868 
2869 		goto done;
2870 	}
2871 
2872 	if (!wbc->for_reclaim)
2873 		need_balance_fs = true;
2874 	else if (has_not_enough_free_secs(sbi, 0, 0))
2875 		goto redirty_out;
2876 	else
2877 		set_inode_flag(inode, FI_HOT_DATA);
2878 
2879 	err = -EAGAIN;
2880 	if (f2fs_has_inline_data(inode)) {
2881 		err = f2fs_write_inline_data(inode, page);
2882 		if (!err)
2883 			goto out;
2884 	}
2885 
2886 	if (err == -EAGAIN) {
2887 		err = f2fs_do_write_data_page(&fio);
2888 		if (err == -EAGAIN) {
2889 			fio.need_lock = LOCK_REQ;
2890 			err = f2fs_do_write_data_page(&fio);
2891 		}
2892 	}
2893 
2894 	if (err) {
2895 		file_set_keep_isize(inode);
2896 	} else {
2897 		spin_lock(&F2FS_I(inode)->i_size_lock);
2898 		if (F2FS_I(inode)->last_disk_size < psize)
2899 			F2FS_I(inode)->last_disk_size = psize;
2900 		spin_unlock(&F2FS_I(inode)->i_size_lock);
2901 	}
2902 
2903 done:
2904 	if (err && err != -ENOENT)
2905 		goto redirty_out;
2906 
2907 out:
2908 	inode_dec_dirty_pages(inode);
2909 	if (err) {
2910 		ClearPageUptodate(page);
2911 		clear_cold_data(page);
2912 	}
2913 
2914 	if (wbc->for_reclaim) {
2915 		f2fs_submit_merged_write_cond(sbi, NULL, page, 0, DATA);
2916 		clear_inode_flag(inode, FI_HOT_DATA);
2917 		f2fs_remove_dirty_inode(inode);
2918 		submitted = NULL;
2919 	}
2920 	unlock_page(page);
2921 	if (!S_ISDIR(inode->i_mode) && !IS_NOQUOTA(inode) &&
2922 			!F2FS_I(inode)->wb_task && allow_balance)
2923 		f2fs_balance_fs(sbi, need_balance_fs);
2924 
2925 	if (unlikely(f2fs_cp_error(sbi))) {
2926 		f2fs_submit_merged_write(sbi, DATA);
2927 		if (bio && *bio)
2928 			f2fs_submit_merged_ipu_write(sbi, bio, NULL);
2929 		submitted = NULL;
2930 	}
2931 
2932 	if (submitted)
2933 		*submitted = fio.submitted ? 1 : 0;
2934 
2935 	return 0;
2936 
2937 redirty_out:
2938 	redirty_page_for_writepage(wbc, page);
2939 	/*
2940 	 * pageout() in MM traslates EAGAIN, so calls handle_write_error()
2941 	 * -> mapping_set_error() -> set_bit(AS_EIO, ...).
2942 	 * file_write_and_wait_range() will see EIO error, which is critical
2943 	 * to return value of fsync() followed by atomic_write failure to user.
2944 	 */
2945 	if (!err || wbc->for_reclaim)
2946 		return AOP_WRITEPAGE_ACTIVATE;
2947 	unlock_page(page);
2948 	return err;
2949 }
2950 
f2fs_write_data_page(struct page *page, struct writeback_control *wbc)2951 static int f2fs_write_data_page(struct page *page,
2952 					struct writeback_control *wbc)
2953 {
2954 #ifdef CONFIG_F2FS_FS_COMPRESSION
2955 	struct inode *inode = page->mapping->host;
2956 
2957 	if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
2958 		goto out;
2959 
2960 	if (f2fs_compressed_file(inode)) {
2961 		if (f2fs_is_compressed_cluster(inode, page->index)) {
2962 			redirty_page_for_writepage(wbc, page);
2963 			return AOP_WRITEPAGE_ACTIVATE;
2964 		}
2965 	}
2966 out:
2967 #endif
2968 
2969 	return f2fs_write_single_data_page(page, NULL, NULL, NULL,
2970 						wbc, FS_DATA_IO, 0, true);
2971 }
2972 
2973 /*
2974  * This function was copied from write_cche_pages from mm/page-writeback.c.
2975  * The major change is making write step of cold data page separately from
2976  * warm/hot data page.
2977  */
f2fs_write_cache_pages(struct address_space *mapping, struct writeback_control *wbc, enum iostat_type io_type)2978 static int f2fs_write_cache_pages(struct address_space *mapping,
2979 					struct writeback_control *wbc,
2980 					enum iostat_type io_type)
2981 {
2982 	int ret = 0;
2983 	int done = 0, retry = 0;
2984 	struct pagevec pvec;
2985 	struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
2986 	struct bio *bio = NULL;
2987 	sector_t last_block;
2988 #ifdef CONFIG_F2FS_FS_COMPRESSION
2989 	struct inode *inode = mapping->host;
2990 	struct compress_ctx cc = {
2991 		.inode = inode,
2992 		.log_cluster_size = F2FS_I(inode)->i_log_cluster_size,
2993 		.cluster_size = F2FS_I(inode)->i_cluster_size,
2994 		.cluster_idx = NULL_CLUSTER,
2995 		.rpages = NULL,
2996 		.nr_rpages = 0,
2997 		.cpages = NULL,
2998 		.rbuf = NULL,
2999 		.cbuf = NULL,
3000 		.rlen = PAGE_SIZE * F2FS_I(inode)->i_cluster_size,
3001 		.private = NULL,
3002 	};
3003 #endif
3004 	int nr_pages;
3005 	pgoff_t index;
3006 	pgoff_t end;		/* Inclusive */
3007 	pgoff_t done_index;
3008 	int range_whole = 0;
3009 	xa_mark_t tag;
3010 	int nwritten = 0;
3011 	int submitted = 0;
3012 	int i;
3013 
3014 	pagevec_init(&pvec);
3015 
3016 	if (get_dirty_pages(mapping->host) <=
3017 				SM_I(F2FS_M_SB(mapping))->min_hot_blocks)
3018 		set_inode_flag(mapping->host, FI_HOT_DATA);
3019 	else
3020 		clear_inode_flag(mapping->host, FI_HOT_DATA);
3021 
3022 	if (wbc->range_cyclic) {
3023 		index = mapping->writeback_index; /* prev offset */
3024 		end = -1;
3025 	} else {
3026 		index = wbc->range_start >> PAGE_SHIFT;
3027 		end = wbc->range_end >> PAGE_SHIFT;
3028 		if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
3029 			range_whole = 1;
3030 	}
3031 	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
3032 		tag = PAGECACHE_TAG_TOWRITE;
3033 	else
3034 		tag = PAGECACHE_TAG_DIRTY;
3035 retry:
3036 	retry = 0;
3037 	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
3038 		tag_pages_for_writeback(mapping, index, end);
3039 	done_index = index;
3040 	while (!done && !retry && (index <= end)) {
3041 		nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
3042 				tag);
3043 		if (nr_pages == 0)
3044 			break;
3045 
3046 		for (i = 0; i < nr_pages; i++) {
3047 			struct page *page = pvec.pages[i];
3048 			bool need_readd;
3049 readd:
3050 			need_readd = false;
3051 #ifdef CONFIG_F2FS_FS_COMPRESSION
3052 			if (f2fs_compressed_file(inode)) {
3053 				ret = f2fs_init_compress_ctx(&cc);
3054 				if (ret) {
3055 					done = 1;
3056 					break;
3057 				}
3058 
3059 				if (!f2fs_cluster_can_merge_page(&cc,
3060 								page->index)) {
3061 					ret = f2fs_write_multi_pages(&cc,
3062 						&submitted, wbc, io_type);
3063 					if (!ret)
3064 						need_readd = true;
3065 					goto result;
3066 				}
3067 
3068 				if (unlikely(f2fs_cp_error(sbi)))
3069 					goto lock_page;
3070 
3071 				if (f2fs_cluster_is_empty(&cc)) {
3072 					void *fsdata = NULL;
3073 					struct page *pagep;
3074 					int ret2;
3075 
3076 					ret2 = f2fs_prepare_compress_overwrite(
3077 							inode, &pagep,
3078 							page->index, &fsdata);
3079 					if (ret2 < 0) {
3080 						ret = ret2;
3081 						done = 1;
3082 						break;
3083 					} else if (ret2 &&
3084 						!f2fs_compress_write_end(inode,
3085 								fsdata, page->index,
3086 								1)) {
3087 						retry = 1;
3088 						break;
3089 					}
3090 				} else {
3091 					goto lock_page;
3092 				}
3093 			}
3094 #endif
3095 			/* give a priority to WB_SYNC threads */
3096 			if (atomic_read(&sbi->wb_sync_req[DATA]) &&
3097 					wbc->sync_mode == WB_SYNC_NONE) {
3098 				done = 1;
3099 				break;
3100 			}
3101 #ifdef CONFIG_F2FS_FS_COMPRESSION
3102 lock_page:
3103 #endif
3104 			done_index = page->index;
3105 retry_write:
3106 			lock_page(page);
3107 
3108 			if (unlikely(page->mapping != mapping)) {
3109 continue_unlock:
3110 				unlock_page(page);
3111 				continue;
3112 			}
3113 
3114 			if (!PageDirty(page)) {
3115 				/* someone wrote it for us */
3116 				goto continue_unlock;
3117 			}
3118 
3119 			if (PageWriteback(page)) {
3120 				if (wbc->sync_mode != WB_SYNC_NONE)
3121 					f2fs_wait_on_page_writeback(page,
3122 							DATA, true, true);
3123 				else
3124 					goto continue_unlock;
3125 			}
3126 
3127 			if (!clear_page_dirty_for_io(page))
3128 				goto continue_unlock;
3129 
3130 #ifdef CONFIG_F2FS_FS_COMPRESSION
3131 			if (f2fs_compressed_file(inode)) {
3132 				get_page(page);
3133 				f2fs_compress_ctx_add_page(&cc, page);
3134 				continue;
3135 			}
3136 #endif
3137 			ret = f2fs_write_single_data_page(page, &submitted,
3138 					&bio, &last_block, wbc, io_type,
3139 					0, true);
3140 			if (ret == AOP_WRITEPAGE_ACTIVATE)
3141 				unlock_page(page);
3142 #ifdef CONFIG_F2FS_FS_COMPRESSION
3143 result:
3144 #endif
3145 			nwritten += submitted;
3146 			wbc->nr_to_write -= submitted;
3147 
3148 			if (unlikely(ret)) {
3149 				/*
3150 				 * keep nr_to_write, since vfs uses this to
3151 				 * get # of written pages.
3152 				 */
3153 				if (ret == AOP_WRITEPAGE_ACTIVATE) {
3154 					ret = 0;
3155 					goto next;
3156 				} else if (ret == -EAGAIN) {
3157 					ret = 0;
3158 					if (wbc->sync_mode == WB_SYNC_ALL) {
3159 						cond_resched();
3160 						congestion_wait(BLK_RW_ASYNC,
3161 							DEFAULT_IO_TIMEOUT);
3162 						goto retry_write;
3163 					}
3164 					goto next;
3165 				}
3166 				done_index = page->index + 1;
3167 				done = 1;
3168 				break;
3169 			}
3170 
3171 			if (wbc->nr_to_write <= 0 &&
3172 					wbc->sync_mode == WB_SYNC_NONE) {
3173 				done = 1;
3174 				break;
3175 			}
3176 next:
3177 			if (need_readd)
3178 				goto readd;
3179 		}
3180 		pagevec_release(&pvec);
3181 		cond_resched();
3182 	}
3183 #ifdef CONFIG_F2FS_FS_COMPRESSION
3184 	/* flush remained pages in compress cluster */
3185 	if (f2fs_compressed_file(inode) && !f2fs_cluster_is_empty(&cc)) {
3186 		ret = f2fs_write_multi_pages(&cc, &submitted, wbc, io_type);
3187 		nwritten += submitted;
3188 		wbc->nr_to_write -= submitted;
3189 		if (ret) {
3190 			done = 1;
3191 			retry = 0;
3192 		}
3193 	}
3194 	if (f2fs_compressed_file(inode))
3195 		f2fs_destroy_compress_ctx(&cc, false);
3196 #endif
3197 	if (retry) {
3198 		index = 0;
3199 		end = -1;
3200 		goto retry;
3201 	}
3202 	if (wbc->range_cyclic && !done)
3203 		done_index = 0;
3204 	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
3205 		mapping->writeback_index = done_index;
3206 
3207 	if (nwritten)
3208 		f2fs_submit_merged_write_cond(F2FS_M_SB(mapping), mapping->host,
3209 								NULL, 0, DATA);
3210 	/* submit cached bio of IPU write */
3211 	if (bio)
3212 		f2fs_submit_merged_ipu_write(sbi, &bio, NULL);
3213 
3214 	return ret;
3215 }
3216 
__should_serialize_io(struct inode *inode, struct writeback_control *wbc)3217 static inline bool __should_serialize_io(struct inode *inode,
3218 					struct writeback_control *wbc)
3219 {
3220 	/* to avoid deadlock in path of data flush */
3221 	if (F2FS_I(inode)->wb_task)
3222 		return false;
3223 
3224 	if (!S_ISREG(inode->i_mode))
3225 		return false;
3226 	if (IS_NOQUOTA(inode))
3227 		return false;
3228 
3229 	if (f2fs_compressed_file(inode))
3230 		return true;
3231 	if (wbc->sync_mode != WB_SYNC_ALL)
3232 		return true;
3233 	if (get_dirty_pages(inode) >= SM_I(F2FS_I_SB(inode))->min_seq_blocks)
3234 		return true;
3235 	return false;
3236 }
3237 
__f2fs_write_data_pages(struct address_space *mapping, struct writeback_control *wbc, enum iostat_type io_type)3238 static int __f2fs_write_data_pages(struct address_space *mapping,
3239 						struct writeback_control *wbc,
3240 						enum iostat_type io_type)
3241 {
3242 	struct inode *inode = mapping->host;
3243 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3244 	struct blk_plug plug;
3245 	int ret;
3246 	bool locked = false;
3247 
3248 	/* deal with chardevs and other special file */
3249 	if (!mapping->a_ops->writepage)
3250 		return 0;
3251 
3252 	/* skip writing if there is no dirty page in this inode */
3253 	if (!get_dirty_pages(inode) && wbc->sync_mode == WB_SYNC_NONE)
3254 		return 0;
3255 
3256 	/* during POR, we don't need to trigger writepage at all. */
3257 	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
3258 		goto skip_write;
3259 
3260 	if ((S_ISDIR(inode->i_mode) || IS_NOQUOTA(inode)) &&
3261 			wbc->sync_mode == WB_SYNC_NONE &&
3262 			get_dirty_pages(inode) < nr_pages_to_skip(sbi, DATA) &&
3263 			f2fs_available_free_memory(sbi, DIRTY_DENTS))
3264 		goto skip_write;
3265 
3266 	/* skip writing during file defragment */
3267 	if (is_inode_flag_set(inode, FI_DO_DEFRAG))
3268 		goto skip_write;
3269 
3270 	trace_f2fs_writepages(mapping->host, wbc, DATA);
3271 
3272 	/* to avoid spliting IOs due to mixed WB_SYNC_ALL and WB_SYNC_NONE */
3273 	if (wbc->sync_mode == WB_SYNC_ALL)
3274 		atomic_inc(&sbi->wb_sync_req[DATA]);
3275 	else if (atomic_read(&sbi->wb_sync_req[DATA])) {
3276 		/* to avoid potential deadlock */
3277 		if (current->plug)
3278 			blk_finish_plug(current->plug);
3279 		goto skip_write;
3280 	}
3281 
3282 	if (__should_serialize_io(inode, wbc)) {
3283 		mutex_lock(&sbi->writepages);
3284 		locked = true;
3285 	}
3286 
3287 	blk_start_plug(&plug);
3288 	ret = f2fs_write_cache_pages(mapping, wbc, io_type);
3289 	blk_finish_plug(&plug);
3290 
3291 	if (locked)
3292 		mutex_unlock(&sbi->writepages);
3293 
3294 	if (wbc->sync_mode == WB_SYNC_ALL)
3295 		atomic_dec(&sbi->wb_sync_req[DATA]);
3296 	/*
3297 	 * if some pages were truncated, we cannot guarantee its mapping->host
3298 	 * to detect pending bios.
3299 	 */
3300 
3301 	f2fs_remove_dirty_inode(inode);
3302 	return ret;
3303 
3304 skip_write:
3305 	wbc->pages_skipped += get_dirty_pages(inode);
3306 	trace_f2fs_writepages(mapping->host, wbc, DATA);
3307 	return 0;
3308 }
3309 
f2fs_write_data_pages(struct address_space *mapping, struct writeback_control *wbc)3310 static int f2fs_write_data_pages(struct address_space *mapping,
3311 			    struct writeback_control *wbc)
3312 {
3313 	struct inode *inode = mapping->host;
3314 
3315 	return __f2fs_write_data_pages(mapping, wbc,
3316 			F2FS_I(inode)->cp_task == current ?
3317 			FS_CP_DATA_IO : FS_DATA_IO);
3318 }
3319 
f2fs_write_failed(struct address_space *mapping, loff_t to)3320 static void f2fs_write_failed(struct address_space *mapping, loff_t to)
3321 {
3322 	struct inode *inode = mapping->host;
3323 	loff_t i_size = i_size_read(inode);
3324 
3325 	if (IS_NOQUOTA(inode))
3326 		return;
3327 
3328 	/* In the fs-verity case, f2fs_end_enable_verity() does the truncate */
3329 	if (to > i_size && !f2fs_verity_in_progress(inode)) {
3330 		down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3331 		down_write(&F2FS_I(inode)->i_mmap_sem);
3332 
3333 		truncate_pagecache(inode, i_size);
3334 		f2fs_truncate_blocks(inode, i_size, true);
3335 
3336 		up_write(&F2FS_I(inode)->i_mmap_sem);
3337 		up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3338 	}
3339 }
3340 
prepare_write_begin(struct f2fs_sb_info *sbi, struct page *page, loff_t pos, unsigned len, block_t *blk_addr, bool *node_changed)3341 static int prepare_write_begin(struct f2fs_sb_info *sbi,
3342 			struct page *page, loff_t pos, unsigned len,
3343 			block_t *blk_addr, bool *node_changed)
3344 {
3345 	struct inode *inode = page->mapping->host;
3346 	pgoff_t index = page->index;
3347 	struct dnode_of_data dn;
3348 	struct page *ipage;
3349 	bool locked = false;
3350 	struct extent_info ei = {0,0,0};
3351 	int err = 0;
3352 	int flag;
3353 
3354 	/*
3355 	 * we already allocated all the blocks, so we don't need to get
3356 	 * the block addresses when there is no need to fill the page.
3357 	 */
3358 	if (!f2fs_has_inline_data(inode) && len == PAGE_SIZE &&
3359 	    !is_inode_flag_set(inode, FI_NO_PREALLOC) &&
3360 	    !f2fs_verity_in_progress(inode))
3361 		return 0;
3362 
3363 	/* f2fs_lock_op avoids race between write CP and convert_inline_page */
3364 	if (f2fs_has_inline_data(inode) && pos + len > MAX_INLINE_DATA(inode))
3365 		flag = F2FS_GET_BLOCK_DEFAULT;
3366 	else
3367 		flag = F2FS_GET_BLOCK_PRE_AIO;
3368 
3369 	if (f2fs_has_inline_data(inode) ||
3370 			(pos & PAGE_MASK) >= i_size_read(inode)) {
3371 		f2fs_do_map_lock(sbi, flag, true);
3372 		locked = true;
3373 	}
3374 
3375 restart:
3376 	/* check inline_data */
3377 	ipage = f2fs_get_node_page(sbi, inode->i_ino);
3378 	if (IS_ERR(ipage)) {
3379 		err = PTR_ERR(ipage);
3380 		goto unlock_out;
3381 	}
3382 
3383 	set_new_dnode(&dn, inode, ipage, ipage, 0);
3384 
3385 	if (f2fs_has_inline_data(inode)) {
3386 		if (pos + len <= MAX_INLINE_DATA(inode)) {
3387 			f2fs_do_read_inline_data(page, ipage);
3388 			set_inode_flag(inode, FI_DATA_EXIST);
3389 			if (inode->i_nlink)
3390 				set_inline_node(ipage);
3391 		} else {
3392 			err = f2fs_convert_inline_page(&dn, page);
3393 			if (err)
3394 				goto out;
3395 			if (dn.data_blkaddr == NULL_ADDR)
3396 				err = f2fs_get_block(&dn, index);
3397 		}
3398 	} else if (locked) {
3399 		err = f2fs_get_block(&dn, index);
3400 	} else {
3401 		if (f2fs_lookup_extent_cache(inode, index, &ei)) {
3402 			dn.data_blkaddr = ei.blk + index - ei.fofs;
3403 		} else {
3404 			/* hole case */
3405 			err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE);
3406 			if (err || dn.data_blkaddr == NULL_ADDR) {
3407 				f2fs_put_dnode(&dn);
3408 				f2fs_do_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO,
3409 								true);
3410 				WARN_ON(flag != F2FS_GET_BLOCK_PRE_AIO);
3411 				locked = true;
3412 				goto restart;
3413 			}
3414 		}
3415 	}
3416 
3417 	/* convert_inline_page can make node_changed */
3418 	*blk_addr = dn.data_blkaddr;
3419 	*node_changed = dn.node_changed;
3420 out:
3421 	f2fs_put_dnode(&dn);
3422 unlock_out:
3423 	if (locked)
3424 		f2fs_do_map_lock(sbi, flag, false);
3425 	return err;
3426 }
3427 
f2fs_write_begin(struct file *file, struct address_space *mapping, loff_t pos, unsigned len, unsigned flags, struct page **pagep, void **fsdata)3428 static int f2fs_write_begin(struct file *file, struct address_space *mapping,
3429 		loff_t pos, unsigned len, unsigned flags,
3430 		struct page **pagep, void **fsdata)
3431 {
3432 	struct inode *inode = mapping->host;
3433 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3434 	struct page *page = NULL;
3435 	pgoff_t index = ((unsigned long long) pos) >> PAGE_SHIFT;
3436 	bool need_balance = false, drop_atomic = false;
3437 	block_t blkaddr = NULL_ADDR;
3438 	int err = 0;
3439 
3440 	trace_f2fs_write_begin(inode, pos, len, flags);
3441 
3442 	if (!f2fs_is_checkpoint_ready(sbi)) {
3443 		err = -ENOSPC;
3444 		goto fail;
3445 	}
3446 
3447 	if ((f2fs_is_atomic_file(inode) &&
3448 			!f2fs_available_free_memory(sbi, INMEM_PAGES)) ||
3449 			is_inode_flag_set(inode, FI_ATOMIC_REVOKE_REQUEST)) {
3450 		err = -ENOMEM;
3451 		drop_atomic = true;
3452 		goto fail;
3453 	}
3454 
3455 	/*
3456 	 * We should check this at this moment to avoid deadlock on inode page
3457 	 * and #0 page. The locking rule for inline_data conversion should be:
3458 	 * lock_page(page #0) -> lock_page(inode_page)
3459 	 */
3460 	if (index != 0) {
3461 		err = f2fs_convert_inline_inode(inode);
3462 		if (err)
3463 			goto fail;
3464 	}
3465 
3466 #ifdef CONFIG_F2FS_FS_COMPRESSION
3467 	if (f2fs_compressed_file(inode)) {
3468 		int ret;
3469 
3470 		*fsdata = NULL;
3471 
3472 		if (len == PAGE_SIZE && !(f2fs_is_atomic_file(inode)))
3473 			goto repeat;
3474 
3475 		ret = f2fs_prepare_compress_overwrite(inode, pagep,
3476 							index, fsdata);
3477 		if (ret < 0) {
3478 			err = ret;
3479 			goto fail;
3480 		} else if (ret) {
3481 			return 0;
3482 		}
3483 	}
3484 #endif
3485 
3486 repeat:
3487 	/*
3488 	 * Do not use grab_cache_page_write_begin() to avoid deadlock due to
3489 	 * wait_for_stable_page. Will wait that below with our IO control.
3490 	 */
3491 	page = f2fs_pagecache_get_page(mapping, index,
3492 				FGP_LOCK | FGP_WRITE | FGP_CREAT, GFP_NOFS);
3493 	if (!page) {
3494 		err = -ENOMEM;
3495 		goto fail;
3496 	}
3497 
3498 	/* TODO: cluster can be compressed due to race with .writepage */
3499 
3500 	*pagep = page;
3501 
3502 	err = prepare_write_begin(sbi, page, pos, len,
3503 					&blkaddr, &need_balance);
3504 	if (err)
3505 		goto fail;
3506 
3507 	if (need_balance && !IS_NOQUOTA(inode) &&
3508 			has_not_enough_free_secs(sbi, 0, 0)) {
3509 		unlock_page(page);
3510 		f2fs_balance_fs(sbi, true);
3511 		lock_page(page);
3512 		if (page->mapping != mapping) {
3513 			/* The page got truncated from under us */
3514 			f2fs_put_page(page, 1);
3515 			goto repeat;
3516 		}
3517 	}
3518 
3519 	f2fs_wait_on_page_writeback(page, DATA, false, true);
3520 
3521 	if (len == PAGE_SIZE || PageUptodate(page))
3522 		return 0;
3523 
3524 	if (!(pos & (PAGE_SIZE - 1)) && (pos + len) >= i_size_read(inode) &&
3525 	    !f2fs_verity_in_progress(inode)) {
3526 		zero_user_segment(page, len, PAGE_SIZE);
3527 		return 0;
3528 	}
3529 
3530 	if (blkaddr == NEW_ADDR) {
3531 		zero_user_segment(page, 0, PAGE_SIZE);
3532 		SetPageUptodate(page);
3533 	} else {
3534 		if (!f2fs_is_valid_blkaddr(sbi, blkaddr,
3535 				DATA_GENERIC_ENHANCE_READ)) {
3536 			err = -EFSCORRUPTED;
3537 			goto fail;
3538 		}
3539 		err = f2fs_submit_page_read(inode, page, blkaddr, 0, true);
3540 		if (err)
3541 			goto fail;
3542 
3543 		lock_page(page);
3544 		if (unlikely(page->mapping != mapping)) {
3545 			f2fs_put_page(page, 1);
3546 			goto repeat;
3547 		}
3548 		if (unlikely(!PageUptodate(page))) {
3549 			err = -EIO;
3550 			goto fail;
3551 		}
3552 	}
3553 	return 0;
3554 
3555 fail:
3556 	f2fs_put_page(page, 1);
3557 	f2fs_write_failed(mapping, pos + len);
3558 	if (drop_atomic)
3559 		f2fs_drop_inmem_pages_all(sbi, false);
3560 	return err;
3561 }
3562 
f2fs_write_end(struct file *file, struct address_space *mapping, loff_t pos, unsigned len, unsigned copied, struct page *page, void *fsdata)3563 static int f2fs_write_end(struct file *file,
3564 			struct address_space *mapping,
3565 			loff_t pos, unsigned len, unsigned copied,
3566 			struct page *page, void *fsdata)
3567 {
3568 	struct inode *inode = page->mapping->host;
3569 
3570 	trace_f2fs_write_end(inode, pos, len, copied);
3571 
3572 	/*
3573 	 * This should be come from len == PAGE_SIZE, and we expect copied
3574 	 * should be PAGE_SIZE. Otherwise, we treat it with zero copied and
3575 	 * let generic_perform_write() try to copy data again through copied=0.
3576 	 */
3577 	if (!PageUptodate(page)) {
3578 		if (unlikely(copied != len))
3579 			copied = 0;
3580 		else
3581 			SetPageUptodate(page);
3582 	}
3583 
3584 #ifdef CONFIG_F2FS_FS_COMPRESSION
3585 	/* overwrite compressed file */
3586 	if (f2fs_compressed_file(inode) && fsdata) {
3587 		f2fs_compress_write_end(inode, fsdata, page->index, copied);
3588 		f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
3589 
3590 		if (pos + copied > i_size_read(inode) &&
3591 				!f2fs_verity_in_progress(inode))
3592 			f2fs_i_size_write(inode, pos + copied);
3593 		return copied;
3594 	}
3595 #endif
3596 
3597 	if (!copied)
3598 		goto unlock_out;
3599 
3600 	set_page_dirty(page);
3601 
3602 	if (pos + copied > i_size_read(inode) &&
3603 	    !f2fs_verity_in_progress(inode))
3604 		f2fs_i_size_write(inode, pos + copied);
3605 unlock_out:
3606 	f2fs_put_page(page, 1);
3607 	f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
3608 	return copied;
3609 }
3610 
check_direct_IO(struct inode *inode, struct iov_iter *iter, loff_t offset)3611 static int check_direct_IO(struct inode *inode, struct iov_iter *iter,
3612 			   loff_t offset)
3613 {
3614 	unsigned i_blkbits = READ_ONCE(inode->i_blkbits);
3615 	unsigned blkbits = i_blkbits;
3616 	unsigned blocksize_mask = (1 << blkbits) - 1;
3617 	unsigned long align = offset | iov_iter_alignment(iter);
3618 	struct block_device *bdev = inode->i_sb->s_bdev;
3619 
3620 	if (iov_iter_rw(iter) == READ && offset >= i_size_read(inode))
3621 		return 1;
3622 
3623 	if (align & blocksize_mask) {
3624 		if (bdev)
3625 			blkbits = blksize_bits(bdev_logical_block_size(bdev));
3626 		blocksize_mask = (1 << blkbits) - 1;
3627 		if (align & blocksize_mask)
3628 			return -EINVAL;
3629 		return 1;
3630 	}
3631 	return 0;
3632 }
3633 
f2fs_dio_end_io(struct bio *bio)3634 static void f2fs_dio_end_io(struct bio *bio)
3635 {
3636 	struct f2fs_private_dio *dio = bio->bi_private;
3637 
3638 	dec_page_count(F2FS_I_SB(dio->inode),
3639 			dio->write ? F2FS_DIO_WRITE : F2FS_DIO_READ);
3640 
3641 	bio->bi_private = dio->orig_private;
3642 	bio->bi_end_io = dio->orig_end_io;
3643 
3644 	kfree(dio);
3645 
3646 	bio_endio(bio);
3647 }
3648 
f2fs_dio_submit_bio(struct bio *bio, struct inode *inode, loff_t file_offset)3649 static void f2fs_dio_submit_bio(struct bio *bio, struct inode *inode,
3650 							loff_t file_offset)
3651 {
3652 	struct f2fs_private_dio *dio;
3653 	bool write = (bio_op(bio) == REQ_OP_WRITE);
3654 
3655 	dio = f2fs_kzalloc(F2FS_I_SB(inode),
3656 			sizeof(struct f2fs_private_dio), GFP_NOFS);
3657 	if (!dio)
3658 		goto out;
3659 
3660 	dio->inode = inode;
3661 	dio->orig_end_io = bio->bi_end_io;
3662 	dio->orig_private = bio->bi_private;
3663 	dio->write = write;
3664 
3665 	bio->bi_end_io = f2fs_dio_end_io;
3666 	bio->bi_private = dio;
3667 
3668 	inc_page_count(F2FS_I_SB(inode),
3669 			write ? F2FS_DIO_WRITE : F2FS_DIO_READ);
3670 
3671 	submit_bio(bio);
3672 	return;
3673 out:
3674 	bio->bi_status = BLK_STS_IOERR;
3675 	bio_endio(bio);
3676 }
3677 
f2fs_direct_IO(struct kiocb *iocb, struct iov_iter *iter)3678 static ssize_t f2fs_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
3679 {
3680 	struct address_space *mapping = iocb->ki_filp->f_mapping;
3681 	struct inode *inode = mapping->host;
3682 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3683 	struct f2fs_inode_info *fi = F2FS_I(inode);
3684 	size_t count = iov_iter_count(iter);
3685 	loff_t offset = iocb->ki_pos;
3686 	int rw = iov_iter_rw(iter);
3687 	int err;
3688 	enum rw_hint hint = iocb->ki_hint;
3689 	int whint_mode = F2FS_OPTION(sbi).whint_mode;
3690 	bool do_opu;
3691 
3692 	err = check_direct_IO(inode, iter, offset);
3693 	if (err)
3694 		return err < 0 ? err : 0;
3695 
3696 	if (f2fs_force_buffered_io(inode, iocb, iter))
3697 		return 0;
3698 
3699 	do_opu = allow_outplace_dio(inode, iocb, iter);
3700 
3701 	trace_f2fs_direct_IO_enter(inode, offset, count, rw);
3702 
3703 	if (rw == WRITE && whint_mode == WHINT_MODE_OFF)
3704 		iocb->ki_hint = WRITE_LIFE_NOT_SET;
3705 
3706 	if (iocb->ki_flags & IOCB_NOWAIT) {
3707 		if (!down_read_trylock(&fi->i_gc_rwsem[rw])) {
3708 			iocb->ki_hint = hint;
3709 			err = -EAGAIN;
3710 			goto out;
3711 		}
3712 		if (do_opu && !down_read_trylock(&fi->i_gc_rwsem[READ])) {
3713 			up_read(&fi->i_gc_rwsem[rw]);
3714 			iocb->ki_hint = hint;
3715 			err = -EAGAIN;
3716 			goto out;
3717 		}
3718 	} else {
3719 		down_read(&fi->i_gc_rwsem[rw]);
3720 		if (do_opu)
3721 			down_read(&fi->i_gc_rwsem[READ]);
3722 	}
3723 
3724 	err = __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev,
3725 			iter, rw == WRITE ? get_data_block_dio_write :
3726 			get_data_block_dio, NULL, f2fs_dio_submit_bio,
3727 			rw == WRITE ? DIO_LOCKING | DIO_SKIP_HOLES :
3728 			DIO_SKIP_HOLES);
3729 
3730 	if (do_opu)
3731 		up_read(&fi->i_gc_rwsem[READ]);
3732 
3733 	up_read(&fi->i_gc_rwsem[rw]);
3734 
3735 	if (rw == WRITE) {
3736 		if (whint_mode == WHINT_MODE_OFF)
3737 			iocb->ki_hint = hint;
3738 		if (err > 0) {
3739 			f2fs_update_iostat(F2FS_I_SB(inode), APP_DIRECT_IO,
3740 									err);
3741 			if (!do_opu)
3742 				set_inode_flag(inode, FI_UPDATE_WRITE);
3743 		} else if (err == -EIOCBQUEUED) {
3744 			f2fs_update_iostat(F2FS_I_SB(inode), APP_DIRECT_IO,
3745 						count - iov_iter_count(iter));
3746 		} else if (err < 0) {
3747 			f2fs_write_failed(mapping, offset + count);
3748 		}
3749 	} else {
3750 		if (err > 0)
3751 			f2fs_update_iostat(sbi, APP_DIRECT_READ_IO, err);
3752 		else if (err == -EIOCBQUEUED)
3753 			f2fs_update_iostat(F2FS_I_SB(inode), APP_DIRECT_READ_IO,
3754 						count - iov_iter_count(iter));
3755 	}
3756 
3757 out:
3758 	trace_f2fs_direct_IO_exit(inode, offset, count, rw, err);
3759 
3760 	return err;
3761 }
3762 
f2fs_invalidate_page(struct page *page, unsigned int offset, unsigned int length)3763 void f2fs_invalidate_page(struct page *page, unsigned int offset,
3764 							unsigned int length)
3765 {
3766 	struct inode *inode = page->mapping->host;
3767 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3768 
3769 	if (inode->i_ino >= F2FS_ROOT_INO(sbi) &&
3770 		(offset % PAGE_SIZE || length != PAGE_SIZE))
3771 		return;
3772 
3773 	if (PageDirty(page)) {
3774 		if (inode->i_ino == F2FS_META_INO(sbi)) {
3775 			dec_page_count(sbi, F2FS_DIRTY_META);
3776 		} else if (inode->i_ino == F2FS_NODE_INO(sbi)) {
3777 			dec_page_count(sbi, F2FS_DIRTY_NODES);
3778 		} else {
3779 			inode_dec_dirty_pages(inode);
3780 			f2fs_remove_dirty_inode(inode);
3781 		}
3782 	}
3783 
3784 	clear_cold_data(page);
3785 
3786 	if (IS_ATOMIC_WRITTEN_PAGE(page))
3787 		return f2fs_drop_inmem_page(inode, page);
3788 
3789 	f2fs_clear_page_private(page);
3790 }
3791 
f2fs_release_page(struct page *page, gfp_t wait)3792 int f2fs_release_page(struct page *page, gfp_t wait)
3793 {
3794 	/* If this is dirty page, keep PagePrivate */
3795 	if (PageDirty(page))
3796 		return 0;
3797 
3798 	/* This is atomic written page, keep Private */
3799 	if (IS_ATOMIC_WRITTEN_PAGE(page))
3800 		return 0;
3801 
3802 	clear_cold_data(page);
3803 	f2fs_clear_page_private(page);
3804 	return 1;
3805 }
3806 
f2fs_set_data_page_dirty(struct page *page)3807 static int f2fs_set_data_page_dirty(struct page *page)
3808 {
3809 	struct inode *inode = page_file_mapping(page)->host;
3810 
3811 	trace_f2fs_set_page_dirty(page, DATA);
3812 
3813 	if (!PageUptodate(page))
3814 		SetPageUptodate(page);
3815 	if (PageSwapCache(page))
3816 		return __set_page_dirty_nobuffers(page);
3817 
3818 	if (f2fs_is_atomic_file(inode) && !f2fs_is_commit_atomic_write(inode)) {
3819 		if (!IS_ATOMIC_WRITTEN_PAGE(page)) {
3820 			f2fs_register_inmem_page(inode, page);
3821 			return 1;
3822 		}
3823 		/*
3824 		 * Previously, this page has been registered, we just
3825 		 * return here.
3826 		 */
3827 		return 0;
3828 	}
3829 
3830 	if (!PageDirty(page)) {
3831 		__set_page_dirty_nobuffers(page);
3832 		f2fs_update_dirty_page(inode, page);
3833 		return 1;
3834 	}
3835 	return 0;
3836 }
3837 
3838 
f2fs_bmap_compress(struct inode *inode, sector_t block)3839 static sector_t f2fs_bmap_compress(struct inode *inode, sector_t block)
3840 {
3841 #ifdef CONFIG_F2FS_FS_COMPRESSION
3842 	struct dnode_of_data dn;
3843 	sector_t start_idx, blknr = 0;
3844 	int ret;
3845 
3846 	start_idx = round_down(block, F2FS_I(inode)->i_cluster_size);
3847 
3848 	set_new_dnode(&dn, inode, NULL, NULL, 0);
3849 	ret = f2fs_get_dnode_of_data(&dn, start_idx, LOOKUP_NODE);
3850 	if (ret)
3851 		return 0;
3852 
3853 	if (dn.data_blkaddr != COMPRESS_ADDR) {
3854 		dn.ofs_in_node += block - start_idx;
3855 		blknr = f2fs_data_blkaddr(&dn);
3856 		if (!__is_valid_data_blkaddr(blknr))
3857 			blknr = 0;
3858 	}
3859 
3860 	f2fs_put_dnode(&dn);
3861 	return blknr;
3862 #else
3863 	return 0;
3864 #endif
3865 }
3866 
3867 
f2fs_bmap(struct address_space *mapping, sector_t block)3868 static sector_t f2fs_bmap(struct address_space *mapping, sector_t block)
3869 {
3870 	struct inode *inode = mapping->host;
3871 	struct buffer_head tmp = {
3872 		.b_size = i_blocksize(inode),
3873 	};
3874 	sector_t blknr = 0;
3875 
3876 	if (f2fs_has_inline_data(inode))
3877 		goto out;
3878 
3879 	/* make sure allocating whole blocks */
3880 	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
3881 		filemap_write_and_wait(mapping);
3882 
3883 	/* Block number less than F2FS MAX BLOCKS */
3884 	if (unlikely(block >= F2FS_I_SB(inode)->max_file_blocks))
3885 		goto out;
3886 
3887 	if (f2fs_compressed_file(inode)) {
3888 		blknr = f2fs_bmap_compress(inode, block);
3889 	} else {
3890 		if (!get_data_block_bmap(inode, block, &tmp, 0))
3891 			blknr = tmp.b_blocknr;
3892 	}
3893 out:
3894 	trace_f2fs_bmap(inode, block, blknr);
3895 	return blknr;
3896 }
3897 
3898 #ifdef CONFIG_MIGRATION
3899 #include <linux/migrate.h>
3900 
f2fs_migrate_page(struct address_space *mapping, struct page *newpage, struct page *page, enum migrate_mode mode)3901 int f2fs_migrate_page(struct address_space *mapping,
3902 		struct page *newpage, struct page *page, enum migrate_mode mode)
3903 {
3904 	int rc, extra_count;
3905 	struct f2fs_inode_info *fi = F2FS_I(mapping->host);
3906 	bool atomic_written = IS_ATOMIC_WRITTEN_PAGE(page);
3907 
3908 	BUG_ON(PageWriteback(page));
3909 
3910 	/* migrating an atomic written page is safe with the inmem_lock hold */
3911 	if (atomic_written) {
3912 		if (mode != MIGRATE_SYNC)
3913 			return -EBUSY;
3914 		if (!mutex_trylock(&fi->inmem_lock))
3915 			return -EAGAIN;
3916 	}
3917 
3918 	/* one extra reference was held for atomic_write page */
3919 	extra_count = atomic_written ? 1 : 0;
3920 	rc = migrate_page_move_mapping(mapping, newpage,
3921 				page, extra_count);
3922 	if (rc != MIGRATEPAGE_SUCCESS) {
3923 		if (atomic_written)
3924 			mutex_unlock(&fi->inmem_lock);
3925 		return rc;
3926 	}
3927 
3928 	if (atomic_written) {
3929 		struct inmem_pages *cur;
3930 		list_for_each_entry(cur, &fi->inmem_pages, list)
3931 			if (cur->page == page) {
3932 				cur->page = newpage;
3933 				break;
3934 			}
3935 		mutex_unlock(&fi->inmem_lock);
3936 		put_page(page);
3937 		get_page(newpage);
3938 	}
3939 
3940 	if (PagePrivate(page)) {
3941 		f2fs_set_page_private(newpage, page_private(page));
3942 		f2fs_clear_page_private(page);
3943 	}
3944 
3945 	if (mode != MIGRATE_SYNC_NO_COPY)
3946 		migrate_page_copy(newpage, page);
3947 	else
3948 		migrate_page_states(newpage, page);
3949 
3950 	return MIGRATEPAGE_SUCCESS;
3951 }
3952 #endif
3953 
3954 #ifdef CONFIG_SWAP
check_swap_activate_fast(struct swap_info_struct *sis, struct file *swap_file, sector_t *span)3955 static int check_swap_activate_fast(struct swap_info_struct *sis,
3956 				struct file *swap_file, sector_t *span)
3957 {
3958 	struct address_space *mapping = swap_file->f_mapping;
3959 	struct inode *inode = mapping->host;
3960 	sector_t cur_lblock;
3961 	sector_t last_lblock;
3962 	sector_t pblock;
3963 	sector_t lowest_pblock = -1;
3964 	sector_t highest_pblock = 0;
3965 	int nr_extents = 0;
3966 	unsigned long nr_pblocks;
3967 	unsigned long len;
3968 	int ret;
3969 
3970 	/*
3971 	 * Map all the blocks into the extent list.  This code doesn't try
3972 	 * to be very smart.
3973 	 */
3974 	cur_lblock = 0;
3975 	last_lblock = logical_to_blk(inode, i_size_read(inode));
3976 	len = i_size_read(inode);
3977 
3978 	while (cur_lblock <= last_lblock && cur_lblock < sis->max) {
3979 		struct buffer_head map_bh;
3980 		pgoff_t next_pgofs;
3981 
3982 		cond_resched();
3983 
3984 		memset(&map_bh, 0, sizeof(struct buffer_head));
3985 		map_bh.b_size = len - cur_lblock;
3986 
3987 		ret = get_data_block(inode, cur_lblock, &map_bh, 0,
3988 					F2FS_GET_BLOCK_FIEMAP, &next_pgofs);
3989 		if (ret)
3990 			goto err_out;
3991 
3992 		/* hole */
3993 		if (!buffer_mapped(&map_bh))
3994 			goto err_out;
3995 
3996 		pblock = map_bh.b_blocknr;
3997 		nr_pblocks = logical_to_blk(inode, map_bh.b_size);
3998 
3999 		if (cur_lblock + nr_pblocks >= sis->max)
4000 			nr_pblocks = sis->max - cur_lblock;
4001 
4002 		if (cur_lblock) {	/* exclude the header page */
4003 			if (pblock < lowest_pblock)
4004 				lowest_pblock = pblock;
4005 			if (pblock + nr_pblocks - 1 > highest_pblock)
4006 				highest_pblock = pblock + nr_pblocks - 1;
4007 		}
4008 
4009 		/*
4010 		 * We found a PAGE_SIZE-length, PAGE_SIZE-aligned run of blocks
4011 		 */
4012 		ret = add_swap_extent(sis, cur_lblock, nr_pblocks, pblock);
4013 		if (ret < 0)
4014 			goto out;
4015 		nr_extents += ret;
4016 		cur_lblock += nr_pblocks;
4017 	}
4018 	ret = nr_extents;
4019 	*span = 1 + highest_pblock - lowest_pblock;
4020 	if (cur_lblock == 0)
4021 		cur_lblock = 1;	/* force Empty message */
4022 	sis->max = cur_lblock;
4023 	sis->pages = cur_lblock - 1;
4024 	sis->highest_bit = cur_lblock - 1;
4025 out:
4026 	return ret;
4027 err_out:
4028 	pr_err("swapon: swapfile has holes\n");
4029 	return -EINVAL;
4030 }
4031 
4032 /* Copied from generic_swapfile_activate() to check any holes */
check_swap_activate(struct swap_info_struct *sis, struct file *swap_file, sector_t *span)4033 static int check_swap_activate(struct swap_info_struct *sis,
4034 				struct file *swap_file, sector_t *span)
4035 {
4036 	struct address_space *mapping = swap_file->f_mapping;
4037 	struct inode *inode = mapping->host;
4038 	unsigned blocks_per_page;
4039 	unsigned long page_no;
4040 	unsigned blkbits;
4041 	sector_t probe_block;
4042 	sector_t last_block;
4043 	sector_t lowest_block = -1;
4044 	sector_t highest_block = 0;
4045 	int nr_extents = 0;
4046 	int ret;
4047 
4048 	if (PAGE_SIZE == F2FS_BLKSIZE)
4049 		return check_swap_activate_fast(sis, swap_file, span);
4050 
4051 	blkbits = inode->i_blkbits;
4052 	blocks_per_page = PAGE_SIZE >> blkbits;
4053 
4054 	/*
4055 	 * Map all the blocks into the extent list.  This code doesn't try
4056 	 * to be very smart.
4057 	 */
4058 	probe_block = 0;
4059 	page_no = 0;
4060 	last_block = i_size_read(inode) >> blkbits;
4061 	while ((probe_block + blocks_per_page) <= last_block &&
4062 			page_no < sis->max) {
4063 		unsigned block_in_page;
4064 		sector_t first_block;
4065 		sector_t block = 0;
4066 		int	 err = 0;
4067 
4068 		cond_resched();
4069 
4070 		block = probe_block;
4071 		err = bmap(inode, &block);
4072 		if (err || !block)
4073 			goto bad_bmap;
4074 		first_block = block;
4075 
4076 		/*
4077 		 * It must be PAGE_SIZE aligned on-disk
4078 		 */
4079 		if (first_block & (blocks_per_page - 1)) {
4080 			probe_block++;
4081 			goto reprobe;
4082 		}
4083 
4084 		for (block_in_page = 1; block_in_page < blocks_per_page;
4085 					block_in_page++) {
4086 
4087 			block = probe_block + block_in_page;
4088 			err = bmap(inode, &block);
4089 
4090 			if (err || !block)
4091 				goto bad_bmap;
4092 
4093 			if (block != first_block + block_in_page) {
4094 				/* Discontiguity */
4095 				probe_block++;
4096 				goto reprobe;
4097 			}
4098 		}
4099 
4100 		first_block >>= (PAGE_SHIFT - blkbits);
4101 		if (page_no) {	/* exclude the header page */
4102 			if (first_block < lowest_block)
4103 				lowest_block = first_block;
4104 			if (first_block > highest_block)
4105 				highest_block = first_block;
4106 		}
4107 
4108 		/*
4109 		 * We found a PAGE_SIZE-length, PAGE_SIZE-aligned run of blocks
4110 		 */
4111 		ret = add_swap_extent(sis, page_no, 1, first_block);
4112 		if (ret < 0)
4113 			goto out;
4114 		nr_extents += ret;
4115 		page_no++;
4116 		probe_block += blocks_per_page;
4117 reprobe:
4118 		continue;
4119 	}
4120 	ret = nr_extents;
4121 	*span = 1 + highest_block - lowest_block;
4122 	if (page_no == 0)
4123 		page_no = 1;	/* force Empty message */
4124 	sis->max = page_no;
4125 	sis->pages = page_no - 1;
4126 	sis->highest_bit = page_no - 1;
4127 out:
4128 	return ret;
4129 bad_bmap:
4130 	pr_err("swapon: swapfile has holes\n");
4131 	return -EINVAL;
4132 }
4133 
f2fs_swap_activate(struct swap_info_struct *sis, struct file *file, sector_t *span)4134 static int f2fs_swap_activate(struct swap_info_struct *sis, struct file *file,
4135 				sector_t *span)
4136 {
4137 	struct inode *inode = file_inode(file);
4138 	int ret;
4139 
4140 	if (!S_ISREG(inode->i_mode))
4141 		return -EINVAL;
4142 
4143 	if (f2fs_readonly(F2FS_I_SB(inode)->sb))
4144 		return -EROFS;
4145 
4146 	if (f2fs_lfs_mode(F2FS_I_SB(inode))) {
4147 		f2fs_err(F2FS_I_SB(inode),
4148 			"Swapfile not supported in LFS mode");
4149 		return -EINVAL;
4150 	}
4151 
4152 	ret = f2fs_convert_inline_inode(inode);
4153 	if (ret)
4154 		return ret;
4155 
4156 	if (!f2fs_disable_compressed_file(inode))
4157 		return -EINVAL;
4158 
4159 	ret = check_swap_activate(sis, file, span);
4160 	if (ret < 0)
4161 		return ret;
4162 
4163 	set_inode_flag(inode, FI_PIN_FILE);
4164 	f2fs_precache_extents(inode);
4165 	f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
4166 	return ret;
4167 }
4168 
f2fs_swap_deactivate(struct file *file)4169 static void f2fs_swap_deactivate(struct file *file)
4170 {
4171 	struct inode *inode = file_inode(file);
4172 
4173 	clear_inode_flag(inode, FI_PIN_FILE);
4174 }
4175 #else
f2fs_swap_activate(struct swap_info_struct *sis, struct file *file, sector_t *span)4176 static int f2fs_swap_activate(struct swap_info_struct *sis, struct file *file,
4177 				sector_t *span)
4178 {
4179 	return -EOPNOTSUPP;
4180 }
4181 
f2fs_swap_deactivate(struct file *file)4182 static void f2fs_swap_deactivate(struct file *file)
4183 {
4184 }
4185 #endif
4186 
4187 const struct address_space_operations f2fs_dblock_aops = {
4188 	.readpage	= f2fs_read_data_page,
4189 	.readahead	= f2fs_readahead,
4190 	.writepage	= f2fs_write_data_page,
4191 	.writepages	= f2fs_write_data_pages,
4192 	.write_begin	= f2fs_write_begin,
4193 	.write_end	= f2fs_write_end,
4194 	.set_page_dirty	= f2fs_set_data_page_dirty,
4195 	.invalidatepage	= f2fs_invalidate_page,
4196 	.releasepage	= f2fs_release_page,
4197 	.direct_IO	= f2fs_direct_IO,
4198 	.bmap		= f2fs_bmap,
4199 	.swap_activate  = f2fs_swap_activate,
4200 	.swap_deactivate = f2fs_swap_deactivate,
4201 #ifdef CONFIG_MIGRATION
4202 	.migratepage    = f2fs_migrate_page,
4203 #endif
4204 };
4205 
f2fs_clear_page_cache_dirty_tag(struct page *page)4206 void f2fs_clear_page_cache_dirty_tag(struct page *page)
4207 {
4208 	struct address_space *mapping = page_mapping(page);
4209 	unsigned long flags;
4210 
4211 	xa_lock_irqsave(&mapping->i_pages, flags);
4212 	__xa_clear_mark(&mapping->i_pages, page_index(page),
4213 						PAGECACHE_TAG_DIRTY);
4214 	xa_unlock_irqrestore(&mapping->i_pages, flags);
4215 }
4216 
f2fs_init_post_read_processing(void)4217 int __init f2fs_init_post_read_processing(void)
4218 {
4219 	bio_post_read_ctx_cache =
4220 		kmem_cache_create("f2fs_bio_post_read_ctx",
4221 				  sizeof(struct bio_post_read_ctx), 0, 0, NULL);
4222 	if (!bio_post_read_ctx_cache)
4223 		goto fail;
4224 	bio_post_read_ctx_pool =
4225 		mempool_create_slab_pool(NUM_PREALLOC_POST_READ_CTXS,
4226 					 bio_post_read_ctx_cache);
4227 	if (!bio_post_read_ctx_pool)
4228 		goto fail_free_cache;
4229 	return 0;
4230 
4231 fail_free_cache:
4232 	kmem_cache_destroy(bio_post_read_ctx_cache);
4233 fail:
4234 	return -ENOMEM;
4235 }
4236 
f2fs_destroy_post_read_processing(void)4237 void f2fs_destroy_post_read_processing(void)
4238 {
4239 	mempool_destroy(bio_post_read_ctx_pool);
4240 	kmem_cache_destroy(bio_post_read_ctx_cache);
4241 }
4242 
f2fs_init_post_read_wq(struct f2fs_sb_info *sbi)4243 int f2fs_init_post_read_wq(struct f2fs_sb_info *sbi)
4244 {
4245 	if (!f2fs_sb_has_encrypt(sbi) &&
4246 		!f2fs_sb_has_verity(sbi) &&
4247 		!f2fs_sb_has_compression(sbi))
4248 		return 0;
4249 
4250 	sbi->post_read_wq = alloc_workqueue("f2fs_post_read_wq",
4251 						 WQ_UNBOUND | WQ_HIGHPRI,
4252 						 num_online_cpus());
4253 	if (!sbi->post_read_wq)
4254 		return -ENOMEM;
4255 	return 0;
4256 }
4257 
f2fs_destroy_post_read_wq(struct f2fs_sb_info *sbi)4258 void f2fs_destroy_post_read_wq(struct f2fs_sb_info *sbi)
4259 {
4260 	if (sbi->post_read_wq)
4261 		destroy_workqueue(sbi->post_read_wq);
4262 }
4263 
f2fs_init_bio_entry_cache(void)4264 int __init f2fs_init_bio_entry_cache(void)
4265 {
4266 	bio_entry_slab = f2fs_kmem_cache_create("f2fs_bio_entry_slab",
4267 			sizeof(struct bio_entry));
4268 	if (!bio_entry_slab)
4269 		return -ENOMEM;
4270 	return 0;
4271 }
4272 
f2fs_destroy_bio_entry_cache(void)4273 void f2fs_destroy_bio_entry_cache(void)
4274 {
4275 	kmem_cache_destroy(bio_entry_slab);
4276 }
4277