1// SPDX-License-Identifier: GPL-2.0 2/* 3 * Copyright (c) 2003-2006, Cluster File Systems, Inc, info@clusterfs.com 4 * Written by Alex Tomas <alex@clusterfs.com> 5 */ 6 7 8/* 9 * mballoc.c contains the multiblocks allocation routines 10 */ 11 12#include "ext4_jbd2.h" 13#include "mballoc.h" 14#include <linux/log2.h> 15#include <linux/module.h> 16#include <linux/slab.h> 17#include <linux/nospec.h> 18#include <linux/backing-dev.h> 19#include <linux/freezer.h> 20#include <trace/events/ext4.h> 21 22/* 23 * MUSTDO: 24 * - test ext4_ext_search_left() and ext4_ext_search_right() 25 * - search for metadata in few groups 26 * 27 * TODO v4: 28 * - normalization should take into account whether file is still open 29 * - discard preallocations if no free space left (policy?) 30 * - don't normalize tails 31 * - quota 32 * - reservation for superuser 33 * 34 * TODO v3: 35 * - bitmap read-ahead (proposed by Oleg Drokin aka green) 36 * - track min/max extents in each group for better group selection 37 * - mb_mark_used() may allocate chunk right after splitting buddy 38 * - tree of groups sorted by number of free blocks 39 * - error handling 40 */ 41 42/* 43 * The allocation request involve request for multiple number of blocks 44 * near to the goal(block) value specified. 45 * 46 * During initialization phase of the allocator we decide to use the 47 * group preallocation or inode preallocation depending on the size of 48 * the file. The size of the file could be the resulting file size we 49 * would have after allocation, or the current file size, which ever 50 * is larger. If the size is less than sbi->s_mb_stream_request we 51 * select to use the group preallocation. The default value of 52 * s_mb_stream_request is 16 blocks. This can also be tuned via 53 * /sys/fs/ext4/<partition>/mb_stream_req. The value is represented in 54 * terms of number of blocks. 55 * 56 * The main motivation for having small file use group preallocation is to 57 * ensure that we have small files closer together on the disk. 58 * 59 * First stage the allocator looks at the inode prealloc list, 60 * ext4_inode_info->i_prealloc_list, which contains list of prealloc 61 * spaces for this particular inode. The inode prealloc space is 62 * represented as: 63 * 64 * pa_lstart -> the logical start block for this prealloc space 65 * pa_pstart -> the physical start block for this prealloc space 66 * pa_len -> length for this prealloc space (in clusters) 67 * pa_free -> free space available in this prealloc space (in clusters) 68 * 69 * The inode preallocation space is used looking at the _logical_ start 70 * block. If only the logical file block falls within the range of prealloc 71 * space we will consume the particular prealloc space. This makes sure that 72 * we have contiguous physical blocks representing the file blocks 73 * 74 * The important thing to be noted in case of inode prealloc space is that 75 * we don't modify the values associated to inode prealloc space except 76 * pa_free. 77 * 78 * If we are not able to find blocks in the inode prealloc space and if we 79 * have the group allocation flag set then we look at the locality group 80 * prealloc space. These are per CPU prealloc list represented as 81 * 82 * ext4_sb_info.s_locality_groups[smp_processor_id()] 83 * 84 * The reason for having a per cpu locality group is to reduce the contention 85 * between CPUs. It is possible to get scheduled at this point. 86 * 87 * The locality group prealloc space is used looking at whether we have 88 * enough free space (pa_free) within the prealloc space. 89 * 90 * If we can't allocate blocks via inode prealloc or/and locality group 91 * prealloc then we look at the buddy cache. The buddy cache is represented 92 * by ext4_sb_info.s_buddy_cache (struct inode) whose file offset gets 93 * mapped to the buddy and bitmap information regarding different 94 * groups. The buddy information is attached to buddy cache inode so that 95 * we can access them through the page cache. The information regarding 96 * each group is loaded via ext4_mb_load_buddy. The information involve 97 * block bitmap and buddy information. The information are stored in the 98 * inode as: 99 * 100 * { page } 101 * [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]... 102 * 103 * 104 * one block each for bitmap and buddy information. So for each group we 105 * take up 2 blocks. A page can contain blocks_per_page (PAGE_SIZE / 106 * blocksize) blocks. So it can have information regarding groups_per_page 107 * which is blocks_per_page/2 108 * 109 * The buddy cache inode is not stored on disk. The inode is thrown 110 * away when the filesystem is unmounted. 111 * 112 * We look for count number of blocks in the buddy cache. If we were able 113 * to locate that many free blocks we return with additional information 114 * regarding rest of the contiguous physical block available 115 * 116 * Before allocating blocks via buddy cache we normalize the request 117 * blocks. This ensure we ask for more blocks that we needed. The extra 118 * blocks that we get after allocation is added to the respective prealloc 119 * list. In case of inode preallocation we follow a list of heuristics 120 * based on file size. This can be found in ext4_mb_normalize_request. If 121 * we are doing a group prealloc we try to normalize the request to 122 * sbi->s_mb_group_prealloc. The default value of s_mb_group_prealloc is 123 * dependent on the cluster size; for non-bigalloc file systems, it is 124 * 512 blocks. This can be tuned via 125 * /sys/fs/ext4/<partition>/mb_group_prealloc. The value is represented in 126 * terms of number of blocks. If we have mounted the file system with -O 127 * stripe=<value> option the group prealloc request is normalized to the 128 * smallest multiple of the stripe value (sbi->s_stripe) which is 129 * greater than the default mb_group_prealloc. 130 * 131 * The regular allocator (using the buddy cache) supports a few tunables. 132 * 133 * /sys/fs/ext4/<partition>/mb_min_to_scan 134 * /sys/fs/ext4/<partition>/mb_max_to_scan 135 * /sys/fs/ext4/<partition>/mb_order2_req 136 * 137 * The regular allocator uses buddy scan only if the request len is power of 138 * 2 blocks and the order of allocation is >= sbi->s_mb_order2_reqs. The 139 * value of s_mb_order2_reqs can be tuned via 140 * /sys/fs/ext4/<partition>/mb_order2_req. If the request len is equal to 141 * stripe size (sbi->s_stripe), we try to search for contiguous block in 142 * stripe size. This should result in better allocation on RAID setups. If 143 * not, we search in the specific group using bitmap for best extents. The 144 * tunable min_to_scan and max_to_scan control the behaviour here. 145 * min_to_scan indicate how long the mballoc __must__ look for a best 146 * extent and max_to_scan indicates how long the mballoc __can__ look for a 147 * best extent in the found extents. Searching for the blocks starts with 148 * the group specified as the goal value in allocation context via 149 * ac_g_ex. Each group is first checked based on the criteria whether it 150 * can be used for allocation. ext4_mb_good_group explains how the groups are 151 * checked. 152 * 153 * Both the prealloc space are getting populated as above. So for the first 154 * request we will hit the buddy cache which will result in this prealloc 155 * space getting filled. The prealloc space is then later used for the 156 * subsequent request. 157 */ 158 159/* 160 * mballoc operates on the following data: 161 * - on-disk bitmap 162 * - in-core buddy (actually includes buddy and bitmap) 163 * - preallocation descriptors (PAs) 164 * 165 * there are two types of preallocations: 166 * - inode 167 * assiged to specific inode and can be used for this inode only. 168 * it describes part of inode's space preallocated to specific 169 * physical blocks. any block from that preallocated can be used 170 * independent. the descriptor just tracks number of blocks left 171 * unused. so, before taking some block from descriptor, one must 172 * make sure corresponded logical block isn't allocated yet. this 173 * also means that freeing any block within descriptor's range 174 * must discard all preallocated blocks. 175 * - locality group 176 * assigned to specific locality group which does not translate to 177 * permanent set of inodes: inode can join and leave group. space 178 * from this type of preallocation can be used for any inode. thus 179 * it's consumed from the beginning to the end. 180 * 181 * relation between them can be expressed as: 182 * in-core buddy = on-disk bitmap + preallocation descriptors 183 * 184 * this mean blocks mballoc considers used are: 185 * - allocated blocks (persistent) 186 * - preallocated blocks (non-persistent) 187 * 188 * consistency in mballoc world means that at any time a block is either 189 * free or used in ALL structures. notice: "any time" should not be read 190 * literally -- time is discrete and delimited by locks. 191 * 192 * to keep it simple, we don't use block numbers, instead we count number of 193 * blocks: how many blocks marked used/free in on-disk bitmap, buddy and PA. 194 * 195 * all operations can be expressed as: 196 * - init buddy: buddy = on-disk + PAs 197 * - new PA: buddy += N; PA = N 198 * - use inode PA: on-disk += N; PA -= N 199 * - discard inode PA buddy -= on-disk - PA; PA = 0 200 * - use locality group PA on-disk += N; PA -= N 201 * - discard locality group PA buddy -= PA; PA = 0 202 * note: 'buddy -= on-disk - PA' is used to show that on-disk bitmap 203 * is used in real operation because we can't know actual used 204 * bits from PA, only from on-disk bitmap 205 * 206 * if we follow this strict logic, then all operations above should be atomic. 207 * given some of them can block, we'd have to use something like semaphores 208 * killing performance on high-end SMP hardware. let's try to relax it using 209 * the following knowledge: 210 * 1) if buddy is referenced, it's already initialized 211 * 2) while block is used in buddy and the buddy is referenced, 212 * nobody can re-allocate that block 213 * 3) we work on bitmaps and '+' actually means 'set bits'. if on-disk has 214 * bit set and PA claims same block, it's OK. IOW, one can set bit in 215 * on-disk bitmap if buddy has same bit set or/and PA covers corresponded 216 * block 217 * 218 * so, now we're building a concurrency table: 219 * - init buddy vs. 220 * - new PA 221 * blocks for PA are allocated in the buddy, buddy must be referenced 222 * until PA is linked to allocation group to avoid concurrent buddy init 223 * - use inode PA 224 * we need to make sure that either on-disk bitmap or PA has uptodate data 225 * given (3) we care that PA-=N operation doesn't interfere with init 226 * - discard inode PA 227 * the simplest way would be to have buddy initialized by the discard 228 * - use locality group PA 229 * again PA-=N must be serialized with init 230 * - discard locality group PA 231 * the simplest way would be to have buddy initialized by the discard 232 * - new PA vs. 233 * - use inode PA 234 * i_data_sem serializes them 235 * - discard inode PA 236 * discard process must wait until PA isn't used by another process 237 * - use locality group PA 238 * some mutex should serialize them 239 * - discard locality group PA 240 * discard process must wait until PA isn't used by another process 241 * - use inode PA 242 * - use inode PA 243 * i_data_sem or another mutex should serializes them 244 * - discard inode PA 245 * discard process must wait until PA isn't used by another process 246 * - use locality group PA 247 * nothing wrong here -- they're different PAs covering different blocks 248 * - discard locality group PA 249 * discard process must wait until PA isn't used by another process 250 * 251 * now we're ready to make few consequences: 252 * - PA is referenced and while it is no discard is possible 253 * - PA is referenced until block isn't marked in on-disk bitmap 254 * - PA changes only after on-disk bitmap 255 * - discard must not compete with init. either init is done before 256 * any discard or they're serialized somehow 257 * - buddy init as sum of on-disk bitmap and PAs is done atomically 258 * 259 * a special case when we've used PA to emptiness. no need to modify buddy 260 * in this case, but we should care about concurrent init 261 * 262 */ 263 264 /* 265 * Logic in few words: 266 * 267 * - allocation: 268 * load group 269 * find blocks 270 * mark bits in on-disk bitmap 271 * release group 272 * 273 * - use preallocation: 274 * find proper PA (per-inode or group) 275 * load group 276 * mark bits in on-disk bitmap 277 * release group 278 * release PA 279 * 280 * - free: 281 * load group 282 * mark bits in on-disk bitmap 283 * release group 284 * 285 * - discard preallocations in group: 286 * mark PAs deleted 287 * move them onto local list 288 * load on-disk bitmap 289 * load group 290 * remove PA from object (inode or locality group) 291 * mark free blocks in-core 292 * 293 * - discard inode's preallocations: 294 */ 295 296/* 297 * Locking rules 298 * 299 * Locks: 300 * - bitlock on a group (group) 301 * - object (inode/locality) (object) 302 * - per-pa lock (pa) 303 * 304 * Paths: 305 * - new pa 306 * object 307 * group 308 * 309 * - find and use pa: 310 * pa 311 * 312 * - release consumed pa: 313 * pa 314 * group 315 * object 316 * 317 * - generate in-core bitmap: 318 * group 319 * pa 320 * 321 * - discard all for given object (inode, locality group): 322 * object 323 * pa 324 * group 325 * 326 * - discard all for given group: 327 * group 328 * pa 329 * group 330 * object 331 * 332 */ 333static struct kmem_cache *ext4_pspace_cachep; 334static struct kmem_cache *ext4_ac_cachep; 335static struct kmem_cache *ext4_free_data_cachep; 336 337/* We create slab caches for groupinfo data structures based on the 338 * superblock block size. There will be one per mounted filesystem for 339 * each unique s_blocksize_bits */ 340#define NR_GRPINFO_CACHES 8 341static struct kmem_cache *ext4_groupinfo_caches[NR_GRPINFO_CACHES]; 342 343static const char * const ext4_groupinfo_slab_names[NR_GRPINFO_CACHES] = { 344 "ext4_groupinfo_1k", "ext4_groupinfo_2k", "ext4_groupinfo_4k", 345 "ext4_groupinfo_8k", "ext4_groupinfo_16k", "ext4_groupinfo_32k", 346 "ext4_groupinfo_64k", "ext4_groupinfo_128k" 347}; 348 349static void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap, 350 ext4_group_t group); 351static void ext4_mb_generate_from_freelist(struct super_block *sb, void *bitmap, 352 ext4_group_t group); 353static void ext4_mb_new_preallocation(struct ext4_allocation_context *ac); 354 355/* 356 * The algorithm using this percpu seq counter goes below: 357 * 1. We sample the percpu discard_pa_seq counter before trying for block 358 * allocation in ext4_mb_new_blocks(). 359 * 2. We increment this percpu discard_pa_seq counter when we either allocate 360 * or free these blocks i.e. while marking those blocks as used/free in 361 * mb_mark_used()/mb_free_blocks(). 362 * 3. We also increment this percpu seq counter when we successfully identify 363 * that the bb_prealloc_list is not empty and hence proceed for discarding 364 * of those PAs inside ext4_mb_discard_group_preallocations(). 365 * 366 * Now to make sure that the regular fast path of block allocation is not 367 * affected, as a small optimization we only sample the percpu seq counter 368 * on that cpu. Only when the block allocation fails and when freed blocks 369 * found were 0, that is when we sample percpu seq counter for all cpus using 370 * below function ext4_get_discard_pa_seq_sum(). This happens after making 371 * sure that all the PAs on grp->bb_prealloc_list got freed or if it's empty. 372 */ 373static DEFINE_PER_CPU(u64, discard_pa_seq); 374static inline u64 ext4_get_discard_pa_seq_sum(void) 375{ 376 int __cpu; 377 u64 __seq = 0; 378 379 for_each_possible_cpu(__cpu) 380 __seq += per_cpu(discard_pa_seq, __cpu); 381 return __seq; 382} 383 384static inline void *mb_correct_addr_and_bit(int *bit, void *addr) 385{ 386#if BITS_PER_LONG == 64 387 *bit += ((unsigned long) addr & 7UL) << 3; 388 addr = (void *) ((unsigned long) addr & ~7UL); 389#elif BITS_PER_LONG == 32 390 *bit += ((unsigned long) addr & 3UL) << 3; 391 addr = (void *) ((unsigned long) addr & ~3UL); 392#else 393#error "how many bits you are?!" 394#endif 395 return addr; 396} 397 398static inline int mb_test_bit(int bit, void *addr) 399{ 400 /* 401 * ext4_test_bit on architecture like powerpc 402 * needs unsigned long aligned address 403 */ 404 addr = mb_correct_addr_and_bit(&bit, addr); 405 return ext4_test_bit(bit, addr); 406} 407 408static inline void mb_set_bit(int bit, void *addr) 409{ 410 addr = mb_correct_addr_and_bit(&bit, addr); 411 ext4_set_bit(bit, addr); 412} 413 414static inline void mb_clear_bit(int bit, void *addr) 415{ 416 addr = mb_correct_addr_and_bit(&bit, addr); 417 ext4_clear_bit(bit, addr); 418} 419 420static inline int mb_test_and_clear_bit(int bit, void *addr) 421{ 422 addr = mb_correct_addr_and_bit(&bit, addr); 423 return ext4_test_and_clear_bit(bit, addr); 424} 425 426static inline int mb_find_next_zero_bit(void *addr, int max, int start) 427{ 428 int fix = 0, ret, tmpmax; 429 addr = mb_correct_addr_and_bit(&fix, addr); 430 tmpmax = max + fix; 431 start += fix; 432 433 ret = ext4_find_next_zero_bit(addr, tmpmax, start) - fix; 434 if (ret > max) 435 return max; 436 return ret; 437} 438 439static inline int mb_find_next_bit(void *addr, int max, int start) 440{ 441 int fix = 0, ret, tmpmax; 442 addr = mb_correct_addr_and_bit(&fix, addr); 443 tmpmax = max + fix; 444 start += fix; 445 446 ret = ext4_find_next_bit(addr, tmpmax, start) - fix; 447 if (ret > max) 448 return max; 449 return ret; 450} 451 452static void *mb_find_buddy(struct ext4_buddy *e4b, int order, int *max) 453{ 454 char *bb; 455 456 BUG_ON(e4b->bd_bitmap == e4b->bd_buddy); 457 BUG_ON(max == NULL); 458 459 if (order > e4b->bd_blkbits + 1) { 460 *max = 0; 461 return NULL; 462 } 463 464 /* at order 0 we see each particular block */ 465 if (order == 0) { 466 *max = 1 << (e4b->bd_blkbits + 3); 467 return e4b->bd_bitmap; 468 } 469 470 bb = e4b->bd_buddy + EXT4_SB(e4b->bd_sb)->s_mb_offsets[order]; 471 *max = EXT4_SB(e4b->bd_sb)->s_mb_maxs[order]; 472 473 return bb; 474} 475 476#ifdef DOUBLE_CHECK 477static void mb_free_blocks_double(struct inode *inode, struct ext4_buddy *e4b, 478 int first, int count) 479{ 480 int i; 481 struct super_block *sb = e4b->bd_sb; 482 483 if (unlikely(e4b->bd_info->bb_bitmap == NULL)) 484 return; 485 assert_spin_locked(ext4_group_lock_ptr(sb, e4b->bd_group)); 486 for (i = 0; i < count; i++) { 487 if (!mb_test_bit(first + i, e4b->bd_info->bb_bitmap)) { 488 ext4_fsblk_t blocknr; 489 490 blocknr = ext4_group_first_block_no(sb, e4b->bd_group); 491 blocknr += EXT4_C2B(EXT4_SB(sb), first + i); 492 ext4_grp_locked_error(sb, e4b->bd_group, 493 inode ? inode->i_ino : 0, 494 blocknr, 495 "freeing block already freed " 496 "(bit %u)", 497 first + i); 498 ext4_mark_group_bitmap_corrupted(sb, e4b->bd_group, 499 EXT4_GROUP_INFO_BBITMAP_CORRUPT); 500 } 501 mb_clear_bit(first + i, e4b->bd_info->bb_bitmap); 502 } 503} 504 505static void mb_mark_used_double(struct ext4_buddy *e4b, int first, int count) 506{ 507 int i; 508 509 if (unlikely(e4b->bd_info->bb_bitmap == NULL)) 510 return; 511 assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group)); 512 for (i = 0; i < count; i++) { 513 BUG_ON(mb_test_bit(first + i, e4b->bd_info->bb_bitmap)); 514 mb_set_bit(first + i, e4b->bd_info->bb_bitmap); 515 } 516} 517 518static void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap) 519{ 520 if (unlikely(e4b->bd_info->bb_bitmap == NULL)) 521 return; 522 if (memcmp(e4b->bd_info->bb_bitmap, bitmap, e4b->bd_sb->s_blocksize)) { 523 unsigned char *b1, *b2; 524 int i; 525 b1 = (unsigned char *) e4b->bd_info->bb_bitmap; 526 b2 = (unsigned char *) bitmap; 527 for (i = 0; i < e4b->bd_sb->s_blocksize; i++) { 528 if (b1[i] != b2[i]) { 529 ext4_msg(e4b->bd_sb, KERN_ERR, 530 "corruption in group %u " 531 "at byte %u(%u): %x in copy != %x " 532 "on disk/prealloc", 533 e4b->bd_group, i, i * 8, b1[i], b2[i]); 534 BUG(); 535 } 536 } 537 } 538} 539 540static void mb_group_bb_bitmap_alloc(struct super_block *sb, 541 struct ext4_group_info *grp, ext4_group_t group) 542{ 543 struct buffer_head *bh; 544 545 grp->bb_bitmap = kmalloc(sb->s_blocksize, GFP_NOFS); 546 if (!grp->bb_bitmap) 547 return; 548 549 bh = ext4_read_block_bitmap(sb, group); 550 if (IS_ERR_OR_NULL(bh)) { 551 kfree(grp->bb_bitmap); 552 grp->bb_bitmap = NULL; 553 return; 554 } 555 556 memcpy(grp->bb_bitmap, bh->b_data, sb->s_blocksize); 557 put_bh(bh); 558} 559 560static void mb_group_bb_bitmap_free(struct ext4_group_info *grp) 561{ 562 kfree(grp->bb_bitmap); 563} 564 565#else 566static inline void mb_free_blocks_double(struct inode *inode, 567 struct ext4_buddy *e4b, int first, int count) 568{ 569 return; 570} 571static inline void mb_mark_used_double(struct ext4_buddy *e4b, 572 int first, int count) 573{ 574 return; 575} 576static inline void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap) 577{ 578 return; 579} 580 581static inline void mb_group_bb_bitmap_alloc(struct super_block *sb, 582 struct ext4_group_info *grp, ext4_group_t group) 583{ 584 return; 585} 586 587static inline void mb_group_bb_bitmap_free(struct ext4_group_info *grp) 588{ 589 return; 590} 591#endif 592 593#ifdef AGGRESSIVE_CHECK 594 595#define MB_CHECK_ASSERT(assert) \ 596do { \ 597 if (!(assert)) { \ 598 printk(KERN_EMERG \ 599 "Assertion failure in %s() at %s:%d: \"%s\"\n", \ 600 function, file, line, # assert); \ 601 BUG(); \ 602 } \ 603} while (0) 604 605static int __mb_check_buddy(struct ext4_buddy *e4b, char *file, 606 const char *function, int line) 607{ 608 struct super_block *sb = e4b->bd_sb; 609 int order = e4b->bd_blkbits + 1; 610 int max; 611 int max2; 612 int i; 613 int j; 614 int k; 615 int count; 616 struct ext4_group_info *grp; 617 int fragments = 0; 618 int fstart; 619 struct list_head *cur; 620 void *buddy; 621 void *buddy2; 622 623 if (e4b->bd_info->bb_check_counter++ % 10) 624 return 0; 625 626 while (order > 1) { 627 buddy = mb_find_buddy(e4b, order, &max); 628 MB_CHECK_ASSERT(buddy); 629 buddy2 = mb_find_buddy(e4b, order - 1, &max2); 630 MB_CHECK_ASSERT(buddy2); 631 MB_CHECK_ASSERT(buddy != buddy2); 632 MB_CHECK_ASSERT(max * 2 == max2); 633 634 count = 0; 635 for (i = 0; i < max; i++) { 636 637 if (mb_test_bit(i, buddy)) { 638 /* only single bit in buddy2 may be 1 */ 639 if (!mb_test_bit(i << 1, buddy2)) { 640 MB_CHECK_ASSERT( 641 mb_test_bit((i<<1)+1, buddy2)); 642 } else if (!mb_test_bit((i << 1) + 1, buddy2)) { 643 MB_CHECK_ASSERT( 644 mb_test_bit(i << 1, buddy2)); 645 } 646 continue; 647 } 648 649 /* both bits in buddy2 must be 1 */ 650 MB_CHECK_ASSERT(mb_test_bit(i << 1, buddy2)); 651 MB_CHECK_ASSERT(mb_test_bit((i << 1) + 1, buddy2)); 652 653 for (j = 0; j < (1 << order); j++) { 654 k = (i * (1 << order)) + j; 655 MB_CHECK_ASSERT( 656 !mb_test_bit(k, e4b->bd_bitmap)); 657 } 658 count++; 659 } 660 MB_CHECK_ASSERT(e4b->bd_info->bb_counters[order] == count); 661 order--; 662 } 663 664 fstart = -1; 665 buddy = mb_find_buddy(e4b, 0, &max); 666 for (i = 0; i < max; i++) { 667 if (!mb_test_bit(i, buddy)) { 668 MB_CHECK_ASSERT(i >= e4b->bd_info->bb_first_free); 669 if (fstart == -1) { 670 fragments++; 671 fstart = i; 672 } 673 continue; 674 } 675 fstart = -1; 676 /* check used bits only */ 677 for (j = 0; j < e4b->bd_blkbits + 1; j++) { 678 buddy2 = mb_find_buddy(e4b, j, &max2); 679 k = i >> j; 680 MB_CHECK_ASSERT(k < max2); 681 MB_CHECK_ASSERT(mb_test_bit(k, buddy2)); 682 } 683 } 684 MB_CHECK_ASSERT(!EXT4_MB_GRP_NEED_INIT(e4b->bd_info)); 685 MB_CHECK_ASSERT(e4b->bd_info->bb_fragments == fragments); 686 687 grp = ext4_get_group_info(sb, e4b->bd_group); 688 if (!grp) 689 return NULL; 690 list_for_each(cur, &grp->bb_prealloc_list) { 691 ext4_group_t groupnr; 692 struct ext4_prealloc_space *pa; 693 pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list); 694 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &groupnr, &k); 695 MB_CHECK_ASSERT(groupnr == e4b->bd_group); 696 for (i = 0; i < pa->pa_len; i++) 697 MB_CHECK_ASSERT(mb_test_bit(k + i, buddy)); 698 } 699 return 0; 700} 701#undef MB_CHECK_ASSERT 702#define mb_check_buddy(e4b) __mb_check_buddy(e4b, \ 703 __FILE__, __func__, __LINE__) 704#else 705#define mb_check_buddy(e4b) 706#endif 707 708/* 709 * Divide blocks started from @first with length @len into 710 * smaller chunks with power of 2 blocks. 711 * Clear the bits in bitmap which the blocks of the chunk(s) covered, 712 * then increase bb_counters[] for corresponded chunk size. 713 */ 714static void ext4_mb_mark_free_simple(struct super_block *sb, 715 void *buddy, ext4_grpblk_t first, ext4_grpblk_t len, 716 struct ext4_group_info *grp) 717{ 718 struct ext4_sb_info *sbi = EXT4_SB(sb); 719 ext4_grpblk_t min; 720 ext4_grpblk_t max; 721 ext4_grpblk_t chunk; 722 unsigned int border; 723 724 BUG_ON(len > EXT4_CLUSTERS_PER_GROUP(sb)); 725 726 border = 2 << sb->s_blocksize_bits; 727 728 while (len > 0) { 729 /* find how many blocks can be covered since this position */ 730 max = ffs(first | border) - 1; 731 732 /* find how many blocks of power 2 we need to mark */ 733 min = fls(len) - 1; 734 735 if (max < min) 736 min = max; 737 chunk = 1 << min; 738 739 /* mark multiblock chunks only */ 740 grp->bb_counters[min]++; 741 if (min > 0) 742 mb_clear_bit(first >> min, 743 buddy + sbi->s_mb_offsets[min]); 744 745 len -= chunk; 746 first += chunk; 747 } 748} 749 750/* 751 * Cache the order of the largest free extent we have available in this block 752 * group. 753 */ 754static void 755mb_set_largest_free_order(struct super_block *sb, struct ext4_group_info *grp) 756{ 757 int i; 758 int bits; 759 760 grp->bb_largest_free_order = -1; /* uninit */ 761 762 bits = sb->s_blocksize_bits + 1; 763 for (i = bits; i >= 0; i--) { 764 if (grp->bb_counters[i] > 0) { 765 grp->bb_largest_free_order = i; 766 break; 767 } 768 } 769} 770 771static noinline_for_stack 772void ext4_mb_generate_buddy(struct super_block *sb, 773 void *buddy, void *bitmap, ext4_group_t group, 774 struct ext4_group_info *grp) 775{ 776 struct ext4_sb_info *sbi = EXT4_SB(sb); 777 ext4_grpblk_t max = EXT4_CLUSTERS_PER_GROUP(sb); 778 ext4_grpblk_t i = 0; 779 ext4_grpblk_t first; 780 ext4_grpblk_t len; 781 unsigned free = 0; 782 unsigned fragments = 0; 783 unsigned long long period = get_cycles(); 784 785 /* initialize buddy from bitmap which is aggregation 786 * of on-disk bitmap and preallocations */ 787 i = mb_find_next_zero_bit(bitmap, max, 0); 788 grp->bb_first_free = i; 789 while (i < max) { 790 fragments++; 791 first = i; 792 i = mb_find_next_bit(bitmap, max, i); 793 len = i - first; 794 free += len; 795 if (len > 1) 796 ext4_mb_mark_free_simple(sb, buddy, first, len, grp); 797 else 798 grp->bb_counters[0]++; 799 if (i < max) 800 i = mb_find_next_zero_bit(bitmap, max, i); 801 } 802 grp->bb_fragments = fragments; 803 804 if (free != grp->bb_free) { 805 ext4_grp_locked_error(sb, group, 0, 0, 806 "block bitmap and bg descriptor " 807 "inconsistent: %u vs %u free clusters", 808 free, grp->bb_free); 809 /* 810 * If we intend to continue, we consider group descriptor 811 * corrupt and update bb_free using bitmap value 812 */ 813 grp->bb_free = free; 814 ext4_mark_group_bitmap_corrupted(sb, group, 815 EXT4_GROUP_INFO_BBITMAP_CORRUPT); 816 } 817 mb_set_largest_free_order(sb, grp); 818 819 clear_bit(EXT4_GROUP_INFO_NEED_INIT_BIT, &(grp->bb_state)); 820 821 period = get_cycles() - period; 822 atomic_inc(&sbi->s_mb_buddies_generated); 823 atomic64_add(period, &sbi->s_mb_generation_time); 824} 825 826static void mb_regenerate_buddy(struct ext4_buddy *e4b) 827{ 828 int count; 829 int order = 1; 830 void *buddy; 831 832 while ((buddy = mb_find_buddy(e4b, order++, &count))) 833 ext4_set_bits(buddy, 0, count); 834 835 e4b->bd_info->bb_fragments = 0; 836 memset(e4b->bd_info->bb_counters, 0, 837 sizeof(*e4b->bd_info->bb_counters) * 838 (e4b->bd_sb->s_blocksize_bits + 2)); 839 840 ext4_mb_generate_buddy(e4b->bd_sb, e4b->bd_buddy, 841 e4b->bd_bitmap, e4b->bd_group, e4b->bd_info); 842} 843 844/* The buddy information is attached the buddy cache inode 845 * for convenience. The information regarding each group 846 * is loaded via ext4_mb_load_buddy. The information involve 847 * block bitmap and buddy information. The information are 848 * stored in the inode as 849 * 850 * { page } 851 * [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]... 852 * 853 * 854 * one block each for bitmap and buddy information. 855 * So for each group we take up 2 blocks. A page can 856 * contain blocks_per_page (PAGE_SIZE / blocksize) blocks. 857 * So it can have information regarding groups_per_page which 858 * is blocks_per_page/2 859 * 860 * Locking note: This routine takes the block group lock of all groups 861 * for this page; do not hold this lock when calling this routine! 862 */ 863 864static int ext4_mb_init_cache(struct page *page, char *incore, gfp_t gfp) 865{ 866 ext4_group_t ngroups; 867 int blocksize; 868 int blocks_per_page; 869 int groups_per_page; 870 int err = 0; 871 int i; 872 ext4_group_t first_group, group; 873 int first_block; 874 struct super_block *sb; 875 struct buffer_head *bhs; 876 struct buffer_head **bh = NULL; 877 struct inode *inode; 878 char *data; 879 char *bitmap; 880 struct ext4_group_info *grinfo; 881 882 inode = page->mapping->host; 883 sb = inode->i_sb; 884 ngroups = ext4_get_groups_count(sb); 885 blocksize = i_blocksize(inode); 886 blocks_per_page = PAGE_SIZE / blocksize; 887 888 mb_debug(sb, "init page %lu\n", page->index); 889 890 groups_per_page = blocks_per_page >> 1; 891 if (groups_per_page == 0) 892 groups_per_page = 1; 893 894 /* allocate buffer_heads to read bitmaps */ 895 if (groups_per_page > 1) { 896 i = sizeof(struct buffer_head *) * groups_per_page; 897 bh = kzalloc(i, gfp); 898 if (bh == NULL) { 899 err = -ENOMEM; 900 goto out; 901 } 902 } else 903 bh = &bhs; 904 905 first_group = page->index * blocks_per_page / 2; 906 907 /* read all groups the page covers into the cache */ 908 for (i = 0, group = first_group; i < groups_per_page; i++, group++) { 909 if (group >= ngroups) 910 break; 911 912 grinfo = ext4_get_group_info(sb, group); 913 if (!grinfo) 914 continue; 915 /* 916 * If page is uptodate then we came here after online resize 917 * which added some new uninitialized group info structs, so 918 * we must skip all initialized uptodate buddies on the page, 919 * which may be currently in use by an allocating task. 920 */ 921 if (PageUptodate(page) && !EXT4_MB_GRP_NEED_INIT(grinfo)) { 922 bh[i] = NULL; 923 continue; 924 } 925 bh[i] = ext4_read_block_bitmap_nowait(sb, group, false); 926 if (IS_ERR(bh[i])) { 927 err = PTR_ERR(bh[i]); 928 bh[i] = NULL; 929 goto out; 930 } 931 mb_debug(sb, "read bitmap for group %u\n", group); 932 } 933 934 /* wait for I/O completion */ 935 for (i = 0, group = first_group; i < groups_per_page; i++, group++) { 936 int err2; 937 938 if (!bh[i]) 939 continue; 940 err2 = ext4_wait_block_bitmap(sb, group, bh[i]); 941 if (!err) 942 err = err2; 943 } 944 945 first_block = page->index * blocks_per_page; 946 for (i = 0; i < blocks_per_page; i++) { 947 group = (first_block + i) >> 1; 948 if (group >= ngroups) 949 break; 950 951 if (!bh[group - first_group]) 952 /* skip initialized uptodate buddy */ 953 continue; 954 955 if (!buffer_verified(bh[group - first_group])) 956 /* Skip faulty bitmaps */ 957 continue; 958 err = 0; 959 960 /* 961 * data carry information regarding this 962 * particular group in the format specified 963 * above 964 * 965 */ 966 data = page_address(page) + (i * blocksize); 967 bitmap = bh[group - first_group]->b_data; 968 969 /* 970 * We place the buddy block and bitmap block 971 * close together 972 */ 973 if ((first_block + i) & 1) { 974 /* this is block of buddy */ 975 BUG_ON(incore == NULL); 976 mb_debug(sb, "put buddy for group %u in page %lu/%x\n", 977 group, page->index, i * blocksize); 978 trace_ext4_mb_buddy_bitmap_load(sb, group); 979 grinfo = ext4_get_group_info(sb, group); 980 if (!grinfo) { 981 err = -EFSCORRUPTED; 982 goto out; 983 } 984 grinfo->bb_fragments = 0; 985 memset(grinfo->bb_counters, 0, 986 sizeof(*grinfo->bb_counters) * 987 (sb->s_blocksize_bits+2)); 988 /* 989 * incore got set to the group block bitmap below 990 */ 991 ext4_lock_group(sb, group); 992 /* init the buddy */ 993 memset(data, 0xff, blocksize); 994 ext4_mb_generate_buddy(sb, data, incore, group, grinfo); 995 ext4_unlock_group(sb, group); 996 incore = NULL; 997 } else { 998 /* this is block of bitmap */ 999 BUG_ON(incore != NULL); 1000 mb_debug(sb, "put bitmap for group %u in page %lu/%x\n", 1001 group, page->index, i * blocksize); 1002 trace_ext4_mb_bitmap_load(sb, group); 1003 1004 /* see comments in ext4_mb_put_pa() */ 1005 ext4_lock_group(sb, group); 1006 memcpy(data, bitmap, blocksize); 1007 1008 /* mark all preallocated blks used in in-core bitmap */ 1009 ext4_mb_generate_from_pa(sb, data, group); 1010 ext4_mb_generate_from_freelist(sb, data, group); 1011 ext4_unlock_group(sb, group); 1012 1013 /* set incore so that the buddy information can be 1014 * generated using this 1015 */ 1016 incore = data; 1017 } 1018 } 1019 SetPageUptodate(page); 1020 1021out: 1022 if (bh) { 1023 for (i = 0; i < groups_per_page; i++) 1024 brelse(bh[i]); 1025 if (bh != &bhs) 1026 kfree(bh); 1027 } 1028 return err; 1029} 1030 1031/* 1032 * Lock the buddy and bitmap pages. This make sure other parallel init_group 1033 * on the same buddy page doesn't happen whild holding the buddy page lock. 1034 * Return locked buddy and bitmap pages on e4b struct. If buddy and bitmap 1035 * are on the same page e4b->bd_buddy_page is NULL and return value is 0. 1036 */ 1037static int ext4_mb_get_buddy_page_lock(struct super_block *sb, 1038 ext4_group_t group, struct ext4_buddy *e4b, gfp_t gfp) 1039{ 1040 struct inode *inode = EXT4_SB(sb)->s_buddy_cache; 1041 int block, pnum, poff; 1042 int blocks_per_page; 1043 struct page *page; 1044 1045 e4b->bd_buddy_page = NULL; 1046 e4b->bd_bitmap_page = NULL; 1047 1048 blocks_per_page = PAGE_SIZE / sb->s_blocksize; 1049 /* 1050 * the buddy cache inode stores the block bitmap 1051 * and buddy information in consecutive blocks. 1052 * So for each group we need two blocks. 1053 */ 1054 block = group * 2; 1055 pnum = block / blocks_per_page; 1056 poff = block % blocks_per_page; 1057 page = find_or_create_page(inode->i_mapping, pnum, gfp); 1058 if (!page) 1059 return -ENOMEM; 1060 BUG_ON(page->mapping != inode->i_mapping); 1061 e4b->bd_bitmap_page = page; 1062 e4b->bd_bitmap = page_address(page) + (poff * sb->s_blocksize); 1063 1064 if (blocks_per_page >= 2) { 1065 /* buddy and bitmap are on the same page */ 1066 return 0; 1067 } 1068 1069 block++; 1070 pnum = block / blocks_per_page; 1071 page = find_or_create_page(inode->i_mapping, pnum, gfp); 1072 if (!page) 1073 return -ENOMEM; 1074 BUG_ON(page->mapping != inode->i_mapping); 1075 e4b->bd_buddy_page = page; 1076 return 0; 1077} 1078 1079static void ext4_mb_put_buddy_page_lock(struct ext4_buddy *e4b) 1080{ 1081 if (e4b->bd_bitmap_page) { 1082 unlock_page(e4b->bd_bitmap_page); 1083 put_page(e4b->bd_bitmap_page); 1084 } 1085 if (e4b->bd_buddy_page) { 1086 unlock_page(e4b->bd_buddy_page); 1087 put_page(e4b->bd_buddy_page); 1088 } 1089} 1090 1091/* 1092 * Locking note: This routine calls ext4_mb_init_cache(), which takes the 1093 * block group lock of all groups for this page; do not hold the BG lock when 1094 * calling this routine! 1095 */ 1096static noinline_for_stack 1097int ext4_mb_init_group(struct super_block *sb, ext4_group_t group, gfp_t gfp) 1098{ 1099 1100 struct ext4_group_info *this_grp; 1101 struct ext4_buddy e4b; 1102 struct page *page; 1103 int ret = 0; 1104 1105 might_sleep(); 1106 mb_debug(sb, "init group %u\n", group); 1107 this_grp = ext4_get_group_info(sb, group); 1108 if (!this_grp) 1109 return -EFSCORRUPTED; 1110 1111 /* 1112 * This ensures that we don't reinit the buddy cache 1113 * page which map to the group from which we are already 1114 * allocating. If we are looking at the buddy cache we would 1115 * have taken a reference using ext4_mb_load_buddy and that 1116 * would have pinned buddy page to page cache. 1117 * The call to ext4_mb_get_buddy_page_lock will mark the 1118 * page accessed. 1119 */ 1120 ret = ext4_mb_get_buddy_page_lock(sb, group, &e4b, gfp); 1121 if (ret || !EXT4_MB_GRP_NEED_INIT(this_grp)) { 1122 /* 1123 * somebody initialized the group 1124 * return without doing anything 1125 */ 1126 goto err; 1127 } 1128 1129 page = e4b.bd_bitmap_page; 1130 ret = ext4_mb_init_cache(page, NULL, gfp); 1131 if (ret) 1132 goto err; 1133 if (!PageUptodate(page)) { 1134 ret = -EIO; 1135 goto err; 1136 } 1137 1138 if (e4b.bd_buddy_page == NULL) { 1139 /* 1140 * If both the bitmap and buddy are in 1141 * the same page we don't need to force 1142 * init the buddy 1143 */ 1144 ret = 0; 1145 goto err; 1146 } 1147 /* init buddy cache */ 1148 page = e4b.bd_buddy_page; 1149 ret = ext4_mb_init_cache(page, e4b.bd_bitmap, gfp); 1150 if (ret) 1151 goto err; 1152 if (!PageUptodate(page)) { 1153 ret = -EIO; 1154 goto err; 1155 } 1156err: 1157 ext4_mb_put_buddy_page_lock(&e4b); 1158 return ret; 1159} 1160 1161/* 1162 * Locking note: This routine calls ext4_mb_init_cache(), which takes the 1163 * block group lock of all groups for this page; do not hold the BG lock when 1164 * calling this routine! 1165 */ 1166static noinline_for_stack int 1167ext4_mb_load_buddy_gfp(struct super_block *sb, ext4_group_t group, 1168 struct ext4_buddy *e4b, gfp_t gfp) 1169{ 1170 int blocks_per_page; 1171 int block; 1172 int pnum; 1173 int poff; 1174 struct page *page; 1175 int ret; 1176 struct ext4_group_info *grp; 1177 struct ext4_sb_info *sbi = EXT4_SB(sb); 1178 struct inode *inode = sbi->s_buddy_cache; 1179 1180 might_sleep(); 1181 mb_debug(sb, "load group %u\n", group); 1182 1183 blocks_per_page = PAGE_SIZE / sb->s_blocksize; 1184 grp = ext4_get_group_info(sb, group); 1185 if (!grp) 1186 return -EFSCORRUPTED; 1187 1188 e4b->bd_blkbits = sb->s_blocksize_bits; 1189 e4b->bd_info = grp; 1190 e4b->bd_sb = sb; 1191 e4b->bd_group = group; 1192 e4b->bd_buddy_page = NULL; 1193 e4b->bd_bitmap_page = NULL; 1194 1195 if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) { 1196 /* 1197 * we need full data about the group 1198 * to make a good selection 1199 */ 1200 ret = ext4_mb_init_group(sb, group, gfp); 1201 if (ret) 1202 return ret; 1203 } 1204 1205 /* 1206 * the buddy cache inode stores the block bitmap 1207 * and buddy information in consecutive blocks. 1208 * So for each group we need two blocks. 1209 */ 1210 block = group * 2; 1211 pnum = block / blocks_per_page; 1212 poff = block % blocks_per_page; 1213 1214 /* we could use find_or_create_page(), but it locks page 1215 * what we'd like to avoid in fast path ... */ 1216 page = find_get_page_flags(inode->i_mapping, pnum, FGP_ACCESSED); 1217 if (page == NULL || !PageUptodate(page)) { 1218 if (page) 1219 /* 1220 * drop the page reference and try 1221 * to get the page with lock. If we 1222 * are not uptodate that implies 1223 * somebody just created the page but 1224 * is yet to initialize the same. So 1225 * wait for it to initialize. 1226 */ 1227 put_page(page); 1228 page = find_or_create_page(inode->i_mapping, pnum, gfp); 1229 if (page) { 1230 BUG_ON(page->mapping != inode->i_mapping); 1231 if (!PageUptodate(page)) { 1232 ret = ext4_mb_init_cache(page, NULL, gfp); 1233 if (ret) { 1234 unlock_page(page); 1235 goto err; 1236 } 1237 mb_cmp_bitmaps(e4b, page_address(page) + 1238 (poff * sb->s_blocksize)); 1239 } 1240 unlock_page(page); 1241 } 1242 } 1243 if (page == NULL) { 1244 ret = -ENOMEM; 1245 goto err; 1246 } 1247 if (!PageUptodate(page)) { 1248 ret = -EIO; 1249 goto err; 1250 } 1251 1252 /* Pages marked accessed already */ 1253 e4b->bd_bitmap_page = page; 1254 e4b->bd_bitmap = page_address(page) + (poff * sb->s_blocksize); 1255 1256 block++; 1257 pnum = block / blocks_per_page; 1258 poff = block % blocks_per_page; 1259 1260 page = find_get_page_flags(inode->i_mapping, pnum, FGP_ACCESSED); 1261 if (page == NULL || !PageUptodate(page)) { 1262 if (page) 1263 put_page(page); 1264 page = find_or_create_page(inode->i_mapping, pnum, gfp); 1265 if (page) { 1266 BUG_ON(page->mapping != inode->i_mapping); 1267 if (!PageUptodate(page)) { 1268 ret = ext4_mb_init_cache(page, e4b->bd_bitmap, 1269 gfp); 1270 if (ret) { 1271 unlock_page(page); 1272 goto err; 1273 } 1274 } 1275 unlock_page(page); 1276 } 1277 } 1278 if (page == NULL) { 1279 ret = -ENOMEM; 1280 goto err; 1281 } 1282 if (!PageUptodate(page)) { 1283 ret = -EIO; 1284 goto err; 1285 } 1286 1287 /* Pages marked accessed already */ 1288 e4b->bd_buddy_page = page; 1289 e4b->bd_buddy = page_address(page) + (poff * sb->s_blocksize); 1290 1291 return 0; 1292 1293err: 1294 if (page) 1295 put_page(page); 1296 if (e4b->bd_bitmap_page) 1297 put_page(e4b->bd_bitmap_page); 1298 if (e4b->bd_buddy_page) 1299 put_page(e4b->bd_buddy_page); 1300 e4b->bd_buddy = NULL; 1301 e4b->bd_bitmap = NULL; 1302 return ret; 1303} 1304 1305static int ext4_mb_load_buddy(struct super_block *sb, ext4_group_t group, 1306 struct ext4_buddy *e4b) 1307{ 1308 return ext4_mb_load_buddy_gfp(sb, group, e4b, GFP_NOFS); 1309} 1310 1311static void ext4_mb_unload_buddy(struct ext4_buddy *e4b) 1312{ 1313 if (e4b->bd_bitmap_page) 1314 put_page(e4b->bd_bitmap_page); 1315 if (e4b->bd_buddy_page) 1316 put_page(e4b->bd_buddy_page); 1317} 1318 1319 1320static int mb_find_order_for_block(struct ext4_buddy *e4b, int block) 1321{ 1322 int order = 1; 1323 int bb_incr = 1 << (e4b->bd_blkbits - 1); 1324 void *bb; 1325 1326 BUG_ON(e4b->bd_bitmap == e4b->bd_buddy); 1327 BUG_ON(block >= (1 << (e4b->bd_blkbits + 3))); 1328 1329 bb = e4b->bd_buddy; 1330 while (order <= e4b->bd_blkbits + 1) { 1331 block = block >> 1; 1332 if (!mb_test_bit(block, bb)) { 1333 /* this block is part of buddy of order 'order' */ 1334 return order; 1335 } 1336 bb += bb_incr; 1337 bb_incr >>= 1; 1338 order++; 1339 } 1340 return 0; 1341} 1342 1343static void mb_clear_bits(void *bm, int cur, int len) 1344{ 1345 __u32 *addr; 1346 1347 len = cur + len; 1348 while (cur < len) { 1349 if ((cur & 31) == 0 && (len - cur) >= 32) { 1350 /* fast path: clear whole word at once */ 1351 addr = bm + (cur >> 3); 1352 *addr = 0; 1353 cur += 32; 1354 continue; 1355 } 1356 mb_clear_bit(cur, bm); 1357 cur++; 1358 } 1359} 1360 1361/* clear bits in given range 1362 * will return first found zero bit if any, -1 otherwise 1363 */ 1364static int mb_test_and_clear_bits(void *bm, int cur, int len) 1365{ 1366 __u32 *addr; 1367 int zero_bit = -1; 1368 1369 len = cur + len; 1370 while (cur < len) { 1371 if ((cur & 31) == 0 && (len - cur) >= 32) { 1372 /* fast path: clear whole word at once */ 1373 addr = bm + (cur >> 3); 1374 if (*addr != (__u32)(-1) && zero_bit == -1) 1375 zero_bit = cur + mb_find_next_zero_bit(addr, 32, 0); 1376 *addr = 0; 1377 cur += 32; 1378 continue; 1379 } 1380 if (!mb_test_and_clear_bit(cur, bm) && zero_bit == -1) 1381 zero_bit = cur; 1382 cur++; 1383 } 1384 1385 return zero_bit; 1386} 1387 1388void ext4_set_bits(void *bm, int cur, int len) 1389{ 1390 __u32 *addr; 1391 1392 len = cur + len; 1393 while (cur < len) { 1394 if ((cur & 31) == 0 && (len - cur) >= 32) { 1395 /* fast path: set whole word at once */ 1396 addr = bm + (cur >> 3); 1397 *addr = 0xffffffff; 1398 cur += 32; 1399 continue; 1400 } 1401 mb_set_bit(cur, bm); 1402 cur++; 1403 } 1404} 1405 1406static inline int mb_buddy_adjust_border(int* bit, void* bitmap, int side) 1407{ 1408 if (mb_test_bit(*bit + side, bitmap)) { 1409 mb_clear_bit(*bit, bitmap); 1410 (*bit) -= side; 1411 return 1; 1412 } 1413 else { 1414 (*bit) += side; 1415 mb_set_bit(*bit, bitmap); 1416 return -1; 1417 } 1418} 1419 1420static void mb_buddy_mark_free(struct ext4_buddy *e4b, int first, int last) 1421{ 1422 int max; 1423 int order = 1; 1424 void *buddy = mb_find_buddy(e4b, order, &max); 1425 1426 while (buddy) { 1427 void *buddy2; 1428 1429 /* Bits in range [first; last] are known to be set since 1430 * corresponding blocks were allocated. Bits in range 1431 * (first; last) will stay set because they form buddies on 1432 * upper layer. We just deal with borders if they don't 1433 * align with upper layer and then go up. 1434 * Releasing entire group is all about clearing 1435 * single bit of highest order buddy. 1436 */ 1437 1438 /* Example: 1439 * --------------------------------- 1440 * | 1 | 1 | 1 | 1 | 1441 * --------------------------------- 1442 * | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1443 * --------------------------------- 1444 * 0 1 2 3 4 5 6 7 1445 * \_____________________/ 1446 * 1447 * Neither [1] nor [6] is aligned to above layer. 1448 * Left neighbour [0] is free, so mark it busy, 1449 * decrease bb_counters and extend range to 1450 * [0; 6] 1451 * Right neighbour [7] is busy. It can't be coaleasced with [6], so 1452 * mark [6] free, increase bb_counters and shrink range to 1453 * [0; 5]. 1454 * Then shift range to [0; 2], go up and do the same. 1455 */ 1456 1457 1458 if (first & 1) 1459 e4b->bd_info->bb_counters[order] += mb_buddy_adjust_border(&first, buddy, -1); 1460 if (!(last & 1)) 1461 e4b->bd_info->bb_counters[order] += mb_buddy_adjust_border(&last, buddy, 1); 1462 if (first > last) 1463 break; 1464 order++; 1465 1466 if (first == last || !(buddy2 = mb_find_buddy(e4b, order, &max))) { 1467 mb_clear_bits(buddy, first, last - first + 1); 1468 e4b->bd_info->bb_counters[order - 1] += last - first + 1; 1469 break; 1470 } 1471 first >>= 1; 1472 last >>= 1; 1473 buddy = buddy2; 1474 } 1475} 1476 1477static void mb_free_blocks(struct inode *inode, struct ext4_buddy *e4b, 1478 int first, int count) 1479{ 1480 int left_is_free = 0; 1481 int right_is_free = 0; 1482 int block; 1483 int last = first + count - 1; 1484 struct super_block *sb = e4b->bd_sb; 1485 1486 if (WARN_ON(count == 0)) 1487 return; 1488 BUG_ON(last >= (sb->s_blocksize << 3)); 1489 assert_spin_locked(ext4_group_lock_ptr(sb, e4b->bd_group)); 1490 /* Don't bother if the block group is corrupt. */ 1491 if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(e4b->bd_info))) 1492 return; 1493 1494 mb_check_buddy(e4b); 1495 mb_free_blocks_double(inode, e4b, first, count); 1496 1497 this_cpu_inc(discard_pa_seq); 1498 e4b->bd_info->bb_free += count; 1499 if (first < e4b->bd_info->bb_first_free) 1500 e4b->bd_info->bb_first_free = first; 1501 1502 /* access memory sequentially: check left neighbour, 1503 * clear range and then check right neighbour 1504 */ 1505 if (first != 0) 1506 left_is_free = !mb_test_bit(first - 1, e4b->bd_bitmap); 1507 block = mb_test_and_clear_bits(e4b->bd_bitmap, first, count); 1508 if (last + 1 < EXT4_SB(sb)->s_mb_maxs[0]) 1509 right_is_free = !mb_test_bit(last + 1, e4b->bd_bitmap); 1510 1511 if (unlikely(block != -1)) { 1512 struct ext4_sb_info *sbi = EXT4_SB(sb); 1513 ext4_fsblk_t blocknr; 1514 1515 blocknr = ext4_group_first_block_no(sb, e4b->bd_group); 1516 blocknr += EXT4_C2B(sbi, block); 1517 if (!(sbi->s_mount_state & EXT4_FC_REPLAY)) { 1518 ext4_grp_locked_error(sb, e4b->bd_group, 1519 inode ? inode->i_ino : 0, 1520 blocknr, 1521 "freeing already freed block (bit %u); block bitmap corrupt.", 1522 block); 1523 ext4_mark_group_bitmap_corrupted( 1524 sb, e4b->bd_group, 1525 EXT4_GROUP_INFO_BBITMAP_CORRUPT); 1526 } else { 1527 mb_regenerate_buddy(e4b); 1528 } 1529 goto done; 1530 } 1531 1532 /* let's maintain fragments counter */ 1533 if (left_is_free && right_is_free) 1534 e4b->bd_info->bb_fragments--; 1535 else if (!left_is_free && !right_is_free) 1536 e4b->bd_info->bb_fragments++; 1537 1538 /* buddy[0] == bd_bitmap is a special case, so handle 1539 * it right away and let mb_buddy_mark_free stay free of 1540 * zero order checks. 1541 * Check if neighbours are to be coaleasced, 1542 * adjust bitmap bb_counters and borders appropriately. 1543 */ 1544 if (first & 1) { 1545 first += !left_is_free; 1546 e4b->bd_info->bb_counters[0] += left_is_free ? -1 : 1; 1547 } 1548 if (!(last & 1)) { 1549 last -= !right_is_free; 1550 e4b->bd_info->bb_counters[0] += right_is_free ? -1 : 1; 1551 } 1552 1553 if (first <= last) 1554 mb_buddy_mark_free(e4b, first >> 1, last >> 1); 1555 1556done: 1557 mb_set_largest_free_order(sb, e4b->bd_info); 1558 mb_check_buddy(e4b); 1559} 1560 1561static int mb_find_extent(struct ext4_buddy *e4b, int block, 1562 int needed, struct ext4_free_extent *ex) 1563{ 1564 int next = block; 1565 int max, order; 1566 void *buddy; 1567 1568 assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group)); 1569 BUG_ON(ex == NULL); 1570 1571 buddy = mb_find_buddy(e4b, 0, &max); 1572 BUG_ON(buddy == NULL); 1573 BUG_ON(block >= max); 1574 if (mb_test_bit(block, buddy)) { 1575 ex->fe_len = 0; 1576 ex->fe_start = 0; 1577 ex->fe_group = 0; 1578 return 0; 1579 } 1580 1581 /* find actual order */ 1582 order = mb_find_order_for_block(e4b, block); 1583 block = block >> order; 1584 1585 ex->fe_len = 1 << order; 1586 ex->fe_start = block << order; 1587 ex->fe_group = e4b->bd_group; 1588 1589 /* calc difference from given start */ 1590 next = next - ex->fe_start; 1591 ex->fe_len -= next; 1592 ex->fe_start += next; 1593 1594 while (needed > ex->fe_len && 1595 mb_find_buddy(e4b, order, &max)) { 1596 1597 if (block + 1 >= max) 1598 break; 1599 1600 next = (block + 1) * (1 << order); 1601 if (mb_test_bit(next, e4b->bd_bitmap)) 1602 break; 1603 1604 order = mb_find_order_for_block(e4b, next); 1605 1606 block = next >> order; 1607 ex->fe_len += 1 << order; 1608 } 1609 1610 if (ex->fe_start + ex->fe_len > EXT4_CLUSTERS_PER_GROUP(e4b->bd_sb)) { 1611 /* Should never happen! (but apparently sometimes does?!?) */ 1612 WARN_ON(1); 1613 ext4_grp_locked_error(e4b->bd_sb, e4b->bd_group, 0, 0, 1614 "corruption or bug in mb_find_extent " 1615 "block=%d, order=%d needed=%d ex=%u/%d/%d@%u", 1616 block, order, needed, ex->fe_group, ex->fe_start, 1617 ex->fe_len, ex->fe_logical); 1618 ex->fe_len = 0; 1619 ex->fe_start = 0; 1620 ex->fe_group = 0; 1621 } 1622 return ex->fe_len; 1623} 1624 1625static int mb_mark_used(struct ext4_buddy *e4b, struct ext4_free_extent *ex) 1626{ 1627 int ord; 1628 int mlen = 0; 1629 int max = 0; 1630 int cur; 1631 int start = ex->fe_start; 1632 int len = ex->fe_len; 1633 unsigned ret = 0; 1634 int len0 = len; 1635 void *buddy; 1636 1637 BUG_ON(start + len > (e4b->bd_sb->s_blocksize << 3)); 1638 BUG_ON(e4b->bd_group != ex->fe_group); 1639 assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group)); 1640 mb_check_buddy(e4b); 1641 mb_mark_used_double(e4b, start, len); 1642 1643 this_cpu_inc(discard_pa_seq); 1644 e4b->bd_info->bb_free -= len; 1645 if (e4b->bd_info->bb_first_free == start) 1646 e4b->bd_info->bb_first_free += len; 1647 1648 /* let's maintain fragments counter */ 1649 if (start != 0) 1650 mlen = !mb_test_bit(start - 1, e4b->bd_bitmap); 1651 if (start + len < EXT4_SB(e4b->bd_sb)->s_mb_maxs[0]) 1652 max = !mb_test_bit(start + len, e4b->bd_bitmap); 1653 if (mlen && max) 1654 e4b->bd_info->bb_fragments++; 1655 else if (!mlen && !max) 1656 e4b->bd_info->bb_fragments--; 1657 1658 /* let's maintain buddy itself */ 1659 while (len) { 1660 ord = mb_find_order_for_block(e4b, start); 1661 1662 if (((start >> ord) << ord) == start && len >= (1 << ord)) { 1663 /* the whole chunk may be allocated at once! */ 1664 mlen = 1 << ord; 1665 buddy = mb_find_buddy(e4b, ord, &max); 1666 BUG_ON((start >> ord) >= max); 1667 mb_set_bit(start >> ord, buddy); 1668 e4b->bd_info->bb_counters[ord]--; 1669 start += mlen; 1670 len -= mlen; 1671 BUG_ON(len < 0); 1672 continue; 1673 } 1674 1675 /* store for history */ 1676 if (ret == 0) 1677 ret = len | (ord << 16); 1678 1679 /* we have to split large buddy */ 1680 BUG_ON(ord <= 0); 1681 buddy = mb_find_buddy(e4b, ord, &max); 1682 mb_set_bit(start >> ord, buddy); 1683 e4b->bd_info->bb_counters[ord]--; 1684 1685 ord--; 1686 cur = (start >> ord) & ~1U; 1687 buddy = mb_find_buddy(e4b, ord, &max); 1688 mb_clear_bit(cur, buddy); 1689 mb_clear_bit(cur + 1, buddy); 1690 e4b->bd_info->bb_counters[ord]++; 1691 e4b->bd_info->bb_counters[ord]++; 1692 } 1693 mb_set_largest_free_order(e4b->bd_sb, e4b->bd_info); 1694 1695 ext4_set_bits(e4b->bd_bitmap, ex->fe_start, len0); 1696 mb_check_buddy(e4b); 1697 1698 return ret; 1699} 1700 1701/* 1702 * Must be called under group lock! 1703 */ 1704static void ext4_mb_use_best_found(struct ext4_allocation_context *ac, 1705 struct ext4_buddy *e4b) 1706{ 1707 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 1708 int ret; 1709 1710 BUG_ON(ac->ac_b_ex.fe_group != e4b->bd_group); 1711 BUG_ON(ac->ac_status == AC_STATUS_FOUND); 1712 1713 ac->ac_b_ex.fe_len = min(ac->ac_b_ex.fe_len, ac->ac_g_ex.fe_len); 1714 ac->ac_b_ex.fe_logical = ac->ac_g_ex.fe_logical; 1715 ret = mb_mark_used(e4b, &ac->ac_b_ex); 1716 1717 /* preallocation can change ac_b_ex, thus we store actually 1718 * allocated blocks for history */ 1719 ac->ac_f_ex = ac->ac_b_ex; 1720 1721 ac->ac_status = AC_STATUS_FOUND; 1722 ac->ac_tail = ret & 0xffff; 1723 ac->ac_buddy = ret >> 16; 1724 1725 /* 1726 * take the page reference. We want the page to be pinned 1727 * so that we don't get a ext4_mb_init_cache_call for this 1728 * group until we update the bitmap. That would mean we 1729 * double allocate blocks. The reference is dropped 1730 * in ext4_mb_release_context 1731 */ 1732 ac->ac_bitmap_page = e4b->bd_bitmap_page; 1733 get_page(ac->ac_bitmap_page); 1734 ac->ac_buddy_page = e4b->bd_buddy_page; 1735 get_page(ac->ac_buddy_page); 1736 /* store last allocated for subsequent stream allocation */ 1737 if (ac->ac_flags & EXT4_MB_STREAM_ALLOC) { 1738 spin_lock(&sbi->s_md_lock); 1739 sbi->s_mb_last_group = ac->ac_f_ex.fe_group; 1740 sbi->s_mb_last_start = ac->ac_f_ex.fe_start; 1741 spin_unlock(&sbi->s_md_lock); 1742 } 1743 /* 1744 * As we've just preallocated more space than 1745 * user requested originally, we store allocated 1746 * space in a special descriptor. 1747 */ 1748 if (ac->ac_o_ex.fe_len < ac->ac_b_ex.fe_len) 1749 ext4_mb_new_preallocation(ac); 1750 1751} 1752 1753static void ext4_mb_check_limits(struct ext4_allocation_context *ac, 1754 struct ext4_buddy *e4b, 1755 int finish_group) 1756{ 1757 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 1758 struct ext4_free_extent *bex = &ac->ac_b_ex; 1759 struct ext4_free_extent *gex = &ac->ac_g_ex; 1760 struct ext4_free_extent ex; 1761 int max; 1762 1763 if (ac->ac_status == AC_STATUS_FOUND) 1764 return; 1765 /* 1766 * We don't want to scan for a whole year 1767 */ 1768 if (ac->ac_found > sbi->s_mb_max_to_scan && 1769 !(ac->ac_flags & EXT4_MB_HINT_FIRST)) { 1770 ac->ac_status = AC_STATUS_BREAK; 1771 return; 1772 } 1773 1774 /* 1775 * Haven't found good chunk so far, let's continue 1776 */ 1777 if (bex->fe_len < gex->fe_len) 1778 return; 1779 1780 if ((finish_group || ac->ac_found > sbi->s_mb_min_to_scan) 1781 && bex->fe_group == e4b->bd_group) { 1782 /* recheck chunk's availability - we don't know 1783 * when it was found (within this lock-unlock 1784 * period or not) */ 1785 max = mb_find_extent(e4b, bex->fe_start, gex->fe_len, &ex); 1786 if (max >= gex->fe_len) { 1787 ext4_mb_use_best_found(ac, e4b); 1788 return; 1789 } 1790 } 1791} 1792 1793/* 1794 * The routine checks whether found extent is good enough. If it is, 1795 * then the extent gets marked used and flag is set to the context 1796 * to stop scanning. Otherwise, the extent is compared with the 1797 * previous found extent and if new one is better, then it's stored 1798 * in the context. Later, the best found extent will be used, if 1799 * mballoc can't find good enough extent. 1800 * 1801 * FIXME: real allocation policy is to be designed yet! 1802 */ 1803static void ext4_mb_measure_extent(struct ext4_allocation_context *ac, 1804 struct ext4_free_extent *ex, 1805 struct ext4_buddy *e4b) 1806{ 1807 struct ext4_free_extent *bex = &ac->ac_b_ex; 1808 struct ext4_free_extent *gex = &ac->ac_g_ex; 1809 1810 BUG_ON(ex->fe_len <= 0); 1811 BUG_ON(ex->fe_len > EXT4_CLUSTERS_PER_GROUP(ac->ac_sb)); 1812 BUG_ON(ex->fe_start >= EXT4_CLUSTERS_PER_GROUP(ac->ac_sb)); 1813 BUG_ON(ac->ac_status != AC_STATUS_CONTINUE); 1814 1815 ac->ac_found++; 1816 1817 /* 1818 * The special case - take what you catch first 1819 */ 1820 if (unlikely(ac->ac_flags & EXT4_MB_HINT_FIRST)) { 1821 *bex = *ex; 1822 ext4_mb_use_best_found(ac, e4b); 1823 return; 1824 } 1825 1826 /* 1827 * Let's check whether the chuck is good enough 1828 */ 1829 if (ex->fe_len == gex->fe_len) { 1830 *bex = *ex; 1831 ext4_mb_use_best_found(ac, e4b); 1832 return; 1833 } 1834 1835 /* 1836 * If this is first found extent, just store it in the context 1837 */ 1838 if (bex->fe_len == 0) { 1839 *bex = *ex; 1840 return; 1841 } 1842 1843 /* 1844 * If new found extent is better, store it in the context 1845 */ 1846 if (bex->fe_len < gex->fe_len) { 1847 /* if the request isn't satisfied, any found extent 1848 * larger than previous best one is better */ 1849 if (ex->fe_len > bex->fe_len) 1850 *bex = *ex; 1851 } else if (ex->fe_len > gex->fe_len) { 1852 /* if the request is satisfied, then we try to find 1853 * an extent that still satisfy the request, but is 1854 * smaller than previous one */ 1855 if (ex->fe_len < bex->fe_len) 1856 *bex = *ex; 1857 } 1858 1859 ext4_mb_check_limits(ac, e4b, 0); 1860} 1861 1862static noinline_for_stack 1863int ext4_mb_try_best_found(struct ext4_allocation_context *ac, 1864 struct ext4_buddy *e4b) 1865{ 1866 struct ext4_free_extent ex = ac->ac_b_ex; 1867 ext4_group_t group = ex.fe_group; 1868 int max; 1869 int err; 1870 1871 BUG_ON(ex.fe_len <= 0); 1872 err = ext4_mb_load_buddy(ac->ac_sb, group, e4b); 1873 if (err) 1874 return err; 1875 1876 ext4_lock_group(ac->ac_sb, group); 1877 if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(e4b->bd_info))) 1878 goto out; 1879 1880 max = mb_find_extent(e4b, ex.fe_start, ex.fe_len, &ex); 1881 1882 if (max > 0) { 1883 ac->ac_b_ex = ex; 1884 ext4_mb_use_best_found(ac, e4b); 1885 } 1886 1887out: 1888 ext4_unlock_group(ac->ac_sb, group); 1889 ext4_mb_unload_buddy(e4b); 1890 1891 return 0; 1892} 1893 1894static noinline_for_stack 1895int ext4_mb_find_by_goal(struct ext4_allocation_context *ac, 1896 struct ext4_buddy *e4b) 1897{ 1898 ext4_group_t group = ac->ac_g_ex.fe_group; 1899 int max; 1900 int err; 1901 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 1902 struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group); 1903 struct ext4_free_extent ex; 1904 1905 if (!grp) 1906 return -EFSCORRUPTED; 1907 if (!(ac->ac_flags & (EXT4_MB_HINT_TRY_GOAL | EXT4_MB_HINT_GOAL_ONLY))) 1908 return 0; 1909 if (grp->bb_free == 0) 1910 return 0; 1911 1912 err = ext4_mb_load_buddy(ac->ac_sb, group, e4b); 1913 if (err) 1914 return err; 1915 1916 ext4_lock_group(ac->ac_sb, group); 1917 if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(e4b->bd_info))) 1918 goto out; 1919 1920 max = mb_find_extent(e4b, ac->ac_g_ex.fe_start, 1921 ac->ac_g_ex.fe_len, &ex); 1922 ex.fe_logical = 0xDEADFA11; /* debug value */ 1923 1924 if (max >= ac->ac_g_ex.fe_len && ac->ac_g_ex.fe_len == sbi->s_stripe) { 1925 ext4_fsblk_t start; 1926 1927 start = ext4_group_first_block_no(ac->ac_sb, e4b->bd_group) + 1928 ex.fe_start; 1929 /* use do_div to get remainder (would be 64-bit modulo) */ 1930 if (do_div(start, sbi->s_stripe) == 0) { 1931 ac->ac_found++; 1932 ac->ac_b_ex = ex; 1933 ext4_mb_use_best_found(ac, e4b); 1934 } 1935 } else if (max >= ac->ac_g_ex.fe_len) { 1936 BUG_ON(ex.fe_len <= 0); 1937 BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group); 1938 BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start); 1939 ac->ac_found++; 1940 ac->ac_b_ex = ex; 1941 ext4_mb_use_best_found(ac, e4b); 1942 } else if (max > 0 && (ac->ac_flags & EXT4_MB_HINT_MERGE)) { 1943 /* Sometimes, caller may want to merge even small 1944 * number of blocks to an existing extent */ 1945 BUG_ON(ex.fe_len <= 0); 1946 BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group); 1947 BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start); 1948 ac->ac_found++; 1949 ac->ac_b_ex = ex; 1950 ext4_mb_use_best_found(ac, e4b); 1951 } 1952out: 1953 ext4_unlock_group(ac->ac_sb, group); 1954 ext4_mb_unload_buddy(e4b); 1955 1956 return 0; 1957} 1958 1959/* 1960 * The routine scans buddy structures (not bitmap!) from given order 1961 * to max order and tries to find big enough chunk to satisfy the req 1962 */ 1963static noinline_for_stack 1964void ext4_mb_simple_scan_group(struct ext4_allocation_context *ac, 1965 struct ext4_buddy *e4b) 1966{ 1967 struct super_block *sb = ac->ac_sb; 1968 struct ext4_group_info *grp = e4b->bd_info; 1969 void *buddy; 1970 int i; 1971 int k; 1972 int max; 1973 1974 BUG_ON(ac->ac_2order <= 0); 1975 for (i = ac->ac_2order; i <= sb->s_blocksize_bits + 1; i++) { 1976 if (grp->bb_counters[i] == 0) 1977 continue; 1978 1979 buddy = mb_find_buddy(e4b, i, &max); 1980 BUG_ON(buddy == NULL); 1981 1982 k = mb_find_next_zero_bit(buddy, max, 0); 1983 if (k >= max) { 1984 ext4_grp_locked_error(ac->ac_sb, e4b->bd_group, 0, 0, 1985 "%d free clusters of order %d. But found 0", 1986 grp->bb_counters[i], i); 1987 ext4_mark_group_bitmap_corrupted(ac->ac_sb, 1988 e4b->bd_group, 1989 EXT4_GROUP_INFO_BBITMAP_CORRUPT); 1990 break; 1991 } 1992 ac->ac_found++; 1993 1994 ac->ac_b_ex.fe_len = 1 << i; 1995 ac->ac_b_ex.fe_start = k << i; 1996 ac->ac_b_ex.fe_group = e4b->bd_group; 1997 1998 ext4_mb_use_best_found(ac, e4b); 1999 2000 BUG_ON(ac->ac_f_ex.fe_len != ac->ac_g_ex.fe_len); 2001 2002 if (EXT4_SB(sb)->s_mb_stats) 2003 atomic_inc(&EXT4_SB(sb)->s_bal_2orders); 2004 2005 break; 2006 } 2007} 2008 2009/* 2010 * The routine scans the group and measures all found extents. 2011 * In order to optimize scanning, caller must pass number of 2012 * free blocks in the group, so the routine can know upper limit. 2013 */ 2014static noinline_for_stack 2015void ext4_mb_complex_scan_group(struct ext4_allocation_context *ac, 2016 struct ext4_buddy *e4b) 2017{ 2018 struct super_block *sb = ac->ac_sb; 2019 void *bitmap = e4b->bd_bitmap; 2020 struct ext4_free_extent ex; 2021 int i; 2022 int free; 2023 2024 free = e4b->bd_info->bb_free; 2025 if (WARN_ON(free <= 0)) 2026 return; 2027 2028 i = e4b->bd_info->bb_first_free; 2029 2030 while (free && ac->ac_status == AC_STATUS_CONTINUE) { 2031 i = mb_find_next_zero_bit(bitmap, 2032 EXT4_CLUSTERS_PER_GROUP(sb), i); 2033 if (i >= EXT4_CLUSTERS_PER_GROUP(sb)) { 2034 /* 2035 * IF we have corrupt bitmap, we won't find any 2036 * free blocks even though group info says we 2037 * have free blocks 2038 */ 2039 ext4_grp_locked_error(sb, e4b->bd_group, 0, 0, 2040 "%d free clusters as per " 2041 "group info. But bitmap says 0", 2042 free); 2043 ext4_mark_group_bitmap_corrupted(sb, e4b->bd_group, 2044 EXT4_GROUP_INFO_BBITMAP_CORRUPT); 2045 break; 2046 } 2047 2048 mb_find_extent(e4b, i, ac->ac_g_ex.fe_len, &ex); 2049 if (WARN_ON(ex.fe_len <= 0)) 2050 break; 2051 if (free < ex.fe_len) { 2052 ext4_grp_locked_error(sb, e4b->bd_group, 0, 0, 2053 "%d free clusters as per " 2054 "group info. But got %d blocks", 2055 free, ex.fe_len); 2056 ext4_mark_group_bitmap_corrupted(sb, e4b->bd_group, 2057 EXT4_GROUP_INFO_BBITMAP_CORRUPT); 2058 /* 2059 * The number of free blocks differs. This mostly 2060 * indicate that the bitmap is corrupt. So exit 2061 * without claiming the space. 2062 */ 2063 break; 2064 } 2065 ex.fe_logical = 0xDEADC0DE; /* debug value */ 2066 ext4_mb_measure_extent(ac, &ex, e4b); 2067 2068 i += ex.fe_len; 2069 free -= ex.fe_len; 2070 } 2071 2072 ext4_mb_check_limits(ac, e4b, 1); 2073} 2074 2075/* 2076 * This is a special case for storages like raid5 2077 * we try to find stripe-aligned chunks for stripe-size-multiple requests 2078 */ 2079static noinline_for_stack 2080void ext4_mb_scan_aligned(struct ext4_allocation_context *ac, 2081 struct ext4_buddy *e4b) 2082{ 2083 struct super_block *sb = ac->ac_sb; 2084 struct ext4_sb_info *sbi = EXT4_SB(sb); 2085 void *bitmap = e4b->bd_bitmap; 2086 struct ext4_free_extent ex; 2087 ext4_fsblk_t first_group_block; 2088 ext4_fsblk_t a; 2089 ext4_grpblk_t i; 2090 int max; 2091 2092 BUG_ON(sbi->s_stripe == 0); 2093 2094 /* find first stripe-aligned block in group */ 2095 first_group_block = ext4_group_first_block_no(sb, e4b->bd_group); 2096 2097 a = first_group_block + sbi->s_stripe - 1; 2098 do_div(a, sbi->s_stripe); 2099 i = (a * sbi->s_stripe) - first_group_block; 2100 2101 while (i < EXT4_CLUSTERS_PER_GROUP(sb)) { 2102 if (!mb_test_bit(i, bitmap)) { 2103 max = mb_find_extent(e4b, i, sbi->s_stripe, &ex); 2104 if (max >= sbi->s_stripe) { 2105 ac->ac_found++; 2106 ex.fe_logical = 0xDEADF00D; /* debug value */ 2107 ac->ac_b_ex = ex; 2108 ext4_mb_use_best_found(ac, e4b); 2109 break; 2110 } 2111 } 2112 i += sbi->s_stripe; 2113 } 2114} 2115 2116/* 2117 * This is also called BEFORE we load the buddy bitmap. 2118 * Returns either 1 or 0 indicating that the group is either suitable 2119 * for the allocation or not. 2120 */ 2121static bool ext4_mb_good_group(struct ext4_allocation_context *ac, 2122 ext4_group_t group, int cr) 2123{ 2124 ext4_grpblk_t free, fragments; 2125 int flex_size = ext4_flex_bg_size(EXT4_SB(ac->ac_sb)); 2126 struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group); 2127 2128 BUG_ON(cr < 0 || cr >= 4); 2129 2130 if (unlikely(!grp || EXT4_MB_GRP_BBITMAP_CORRUPT(grp))) 2131 return false; 2132 2133 free = grp->bb_free; 2134 if (free == 0) 2135 return false; 2136 2137 fragments = grp->bb_fragments; 2138 if (fragments == 0) 2139 return false; 2140 2141 switch (cr) { 2142 case 0: 2143 BUG_ON(ac->ac_2order == 0); 2144 2145 /* Avoid using the first bg of a flexgroup for data files */ 2146 if ((ac->ac_flags & EXT4_MB_HINT_DATA) && 2147 (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) && 2148 ((group % flex_size) == 0)) 2149 return false; 2150 2151 if (free < ac->ac_g_ex.fe_len) 2152 return false; 2153 2154 if (ac->ac_2order > ac->ac_sb->s_blocksize_bits+1) 2155 return true; 2156 2157 if (grp->bb_largest_free_order < ac->ac_2order) 2158 return false; 2159 2160 return true; 2161 case 1: 2162 if ((free / fragments) >= ac->ac_g_ex.fe_len) 2163 return true; 2164 break; 2165 case 2: 2166 if (free >= ac->ac_g_ex.fe_len) 2167 return true; 2168 break; 2169 case 3: 2170 return true; 2171 default: 2172 BUG(); 2173 } 2174 2175 return false; 2176} 2177 2178/* 2179 * This could return negative error code if something goes wrong 2180 * during ext4_mb_init_group(). This should not be called with 2181 * ext4_lock_group() held. 2182 */ 2183static int ext4_mb_good_group_nolock(struct ext4_allocation_context *ac, 2184 ext4_group_t group, int cr) 2185{ 2186 struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group); 2187 struct super_block *sb = ac->ac_sb; 2188 struct ext4_sb_info *sbi = EXT4_SB(sb); 2189 bool should_lock = ac->ac_flags & EXT4_MB_STRICT_CHECK; 2190 ext4_grpblk_t free; 2191 int ret = 0; 2192 2193 if (!grp) 2194 return -EFSCORRUPTED; 2195 if (sbi->s_mb_stats) 2196 atomic64_inc(&sbi->s_bal_cX_groups_considered[ac->ac_criteria]); 2197 if (should_lock) 2198 ext4_lock_group(sb, group); 2199 free = grp->bb_free; 2200 if (free == 0) 2201 goto out; 2202 if (cr <= 2 && free < ac->ac_g_ex.fe_len) 2203 goto out; 2204 if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(grp))) 2205 goto out; 2206 if (should_lock) 2207 ext4_unlock_group(sb, group); 2208 2209 /* We only do this if the grp has never been initialized */ 2210 if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) { 2211 struct ext4_group_desc *gdp = 2212 ext4_get_group_desc(sb, group, NULL); 2213 int ret; 2214 2215 /* cr=0/1 is a very optimistic search to find large 2216 * good chunks almost for free. If buddy data is not 2217 * ready, then this optimization makes no sense. But 2218 * we never skip the first block group in a flex_bg, 2219 * since this gets used for metadata block allocation, 2220 * and we want to make sure we locate metadata blocks 2221 * in the first block group in the flex_bg if possible. 2222 */ 2223 if (cr < 2 && 2224 (!sbi->s_log_groups_per_flex || 2225 ((group & ((1 << sbi->s_log_groups_per_flex) - 1)) != 0)) && 2226 !(ext4_has_group_desc_csum(sb) && 2227 (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)))) 2228 return 0; 2229 ret = ext4_mb_init_group(sb, group, GFP_NOFS); 2230 if (ret) 2231 return ret; 2232 } 2233 2234 if (should_lock) 2235 ext4_lock_group(sb, group); 2236 ret = ext4_mb_good_group(ac, group, cr); 2237out: 2238 if (should_lock) 2239 ext4_unlock_group(sb, group); 2240 return ret; 2241} 2242 2243/* 2244 * Start prefetching @nr block bitmaps starting at @group. 2245 * Return the next group which needs to be prefetched. 2246 */ 2247ext4_group_t ext4_mb_prefetch(struct super_block *sb, ext4_group_t group, 2248 unsigned int nr, int *cnt) 2249{ 2250 ext4_group_t ngroups = ext4_get_groups_count(sb); 2251 struct buffer_head *bh; 2252 struct blk_plug plug; 2253 2254 blk_start_plug(&plug); 2255 while (nr-- > 0) { 2256 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, group, 2257 NULL); 2258 struct ext4_group_info *grp = ext4_get_group_info(sb, group); 2259 2260 /* 2261 * Prefetch block groups with free blocks; but don't 2262 * bother if it is marked uninitialized on disk, since 2263 * it won't require I/O to read. Also only try to 2264 * prefetch once, so we avoid getblk() call, which can 2265 * be expensive. 2266 */ 2267 if (gdp && grp && !EXT4_MB_GRP_TEST_AND_SET_READ(grp) && 2268 EXT4_MB_GRP_NEED_INIT(grp) && 2269 ext4_free_group_clusters(sb, gdp) > 0 && 2270 !(ext4_has_group_desc_csum(sb) && 2271 (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)))) { 2272 bh = ext4_read_block_bitmap_nowait(sb, group, true); 2273 if (bh && !IS_ERR(bh)) { 2274 if (!buffer_uptodate(bh) && cnt) 2275 (*cnt)++; 2276 brelse(bh); 2277 } 2278 } 2279 if (++group >= ngroups) 2280 group = 0; 2281 } 2282 blk_finish_plug(&plug); 2283 return group; 2284} 2285 2286/* 2287 * Prefetching reads the block bitmap into the buffer cache; but we 2288 * need to make sure that the buddy bitmap in the page cache has been 2289 * initialized. Note that ext4_mb_init_group() will block if the I/O 2290 * is not yet completed, or indeed if it was not initiated by 2291 * ext4_mb_prefetch did not start the I/O. 2292 * 2293 * TODO: We should actually kick off the buddy bitmap setup in a work 2294 * queue when the buffer I/O is completed, so that we don't block 2295 * waiting for the block allocation bitmap read to finish when 2296 * ext4_mb_prefetch_fini is called from ext4_mb_regular_allocator(). 2297 */ 2298void ext4_mb_prefetch_fini(struct super_block *sb, ext4_group_t group, 2299 unsigned int nr) 2300{ 2301 while (nr-- > 0) { 2302 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, group, 2303 NULL); 2304 struct ext4_group_info *grp = ext4_get_group_info(sb, group); 2305 2306 if (!group) 2307 group = ext4_get_groups_count(sb); 2308 group--; 2309 grp = ext4_get_group_info(sb, group); 2310 2311 if (grp && gdp && EXT4_MB_GRP_NEED_INIT(grp) && 2312 ext4_free_group_clusters(sb, gdp) > 0 && 2313 !(ext4_has_group_desc_csum(sb) && 2314 (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)))) { 2315 if (ext4_mb_init_group(sb, group, GFP_NOFS)) 2316 break; 2317 } 2318 } 2319} 2320 2321static noinline_for_stack int 2322ext4_mb_regular_allocator(struct ext4_allocation_context *ac) 2323{ 2324 ext4_group_t prefetch_grp = 0, ngroups, group, i; 2325 int cr = -1; 2326 int err = 0, first_err = 0; 2327 unsigned int nr = 0, prefetch_ios = 0; 2328 struct ext4_sb_info *sbi; 2329 struct super_block *sb; 2330 struct ext4_buddy e4b; 2331 int lost; 2332 2333 sb = ac->ac_sb; 2334 sbi = EXT4_SB(sb); 2335 ngroups = ext4_get_groups_count(sb); 2336 /* non-extent files are limited to low blocks/groups */ 2337 if (!(ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS))) 2338 ngroups = sbi->s_blockfile_groups; 2339 2340 BUG_ON(ac->ac_status == AC_STATUS_FOUND); 2341 2342 /* first, try the goal */ 2343 err = ext4_mb_find_by_goal(ac, &e4b); 2344 if (err || ac->ac_status == AC_STATUS_FOUND) 2345 goto out; 2346 2347 if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY)) 2348 goto out; 2349 2350 /* 2351 * ac->ac_2order is set only if the fe_len is a power of 2 2352 * if ac->ac_2order is set we also set criteria to 0 so that we 2353 * try exact allocation using buddy. 2354 */ 2355 i = fls(ac->ac_g_ex.fe_len); 2356 ac->ac_2order = 0; 2357 /* 2358 * We search using buddy data only if the order of the request 2359 * is greater than equal to the sbi_s_mb_order2_reqs 2360 * You can tune it via /sys/fs/ext4/<partition>/mb_order2_req 2361 * We also support searching for power-of-two requests only for 2362 * requests upto maximum buddy size we have constructed. 2363 */ 2364 if (i >= sbi->s_mb_order2_reqs && i <= sb->s_blocksize_bits + 2) { 2365 /* 2366 * This should tell if fe_len is exactly power of 2 2367 */ 2368 if ((ac->ac_g_ex.fe_len & (~(1 << (i - 1)))) == 0) 2369 ac->ac_2order = array_index_nospec(i - 1, 2370 sb->s_blocksize_bits + 2); 2371 } 2372 2373 /* if stream allocation is enabled, use global goal */ 2374 if (ac->ac_flags & EXT4_MB_STREAM_ALLOC) { 2375 /* TBD: may be hot point */ 2376 spin_lock(&sbi->s_md_lock); 2377 ac->ac_g_ex.fe_group = sbi->s_mb_last_group; 2378 ac->ac_g_ex.fe_start = sbi->s_mb_last_start; 2379 spin_unlock(&sbi->s_md_lock); 2380 } 2381 2382 /* Let's just scan groups to find more-less suitable blocks */ 2383 cr = ac->ac_2order ? 0 : 1; 2384 /* 2385 * cr == 0 try to get exact allocation, 2386 * cr == 3 try to get anything 2387 */ 2388repeat: 2389 for (; cr < 4 && ac->ac_status == AC_STATUS_CONTINUE; cr++) { 2390 ac->ac_criteria = cr; 2391 /* 2392 * searching for the right group start 2393 * from the goal value specified 2394 */ 2395 group = ac->ac_g_ex.fe_group; 2396 prefetch_grp = group; 2397 2398 for (i = 0; i < ngroups; group++, i++) { 2399 int ret = 0; 2400 cond_resched(); 2401 /* 2402 * Artificially restricted ngroups for non-extent 2403 * files makes group > ngroups possible on first loop. 2404 */ 2405 if (group >= ngroups) 2406 group = 0; 2407 2408 /* 2409 * Batch reads of the block allocation bitmaps 2410 * to get multiple READs in flight; limit 2411 * prefetching at cr=0/1, otherwise mballoc can 2412 * spend a lot of time loading imperfect groups 2413 */ 2414 if ((prefetch_grp == group) && 2415 (cr > 1 || 2416 prefetch_ios < sbi->s_mb_prefetch_limit)) { 2417 unsigned int curr_ios = prefetch_ios; 2418 2419 nr = sbi->s_mb_prefetch; 2420 if (ext4_has_feature_flex_bg(sb)) { 2421 nr = 1 << sbi->s_log_groups_per_flex; 2422 nr -= group & (nr - 1); 2423 nr = min(nr, sbi->s_mb_prefetch); 2424 } 2425 prefetch_grp = ext4_mb_prefetch(sb, group, 2426 nr, &prefetch_ios); 2427 if (prefetch_ios == curr_ios) 2428 nr = 0; 2429 } 2430 2431 /* This now checks without needing the buddy page */ 2432 ret = ext4_mb_good_group_nolock(ac, group, cr); 2433 if (ret <= 0) { 2434 if (!first_err) 2435 first_err = ret; 2436 continue; 2437 } 2438 2439 err = ext4_mb_load_buddy(sb, group, &e4b); 2440 if (err) 2441 goto out; 2442 2443 ext4_lock_group(sb, group); 2444 2445 /* 2446 * We need to check again after locking the 2447 * block group 2448 */ 2449 ret = ext4_mb_good_group(ac, group, cr); 2450 if (ret == 0) { 2451 ext4_unlock_group(sb, group); 2452 ext4_mb_unload_buddy(&e4b); 2453 continue; 2454 } 2455 2456 ac->ac_groups_scanned++; 2457 if (cr == 0) 2458 ext4_mb_simple_scan_group(ac, &e4b); 2459 else if (cr == 1 && sbi->s_stripe && 2460 !(ac->ac_g_ex.fe_len % sbi->s_stripe)) 2461 ext4_mb_scan_aligned(ac, &e4b); 2462 else 2463 ext4_mb_complex_scan_group(ac, &e4b); 2464 2465 ext4_unlock_group(sb, group); 2466 ext4_mb_unload_buddy(&e4b); 2467 2468 if (ac->ac_status != AC_STATUS_CONTINUE) 2469 break; 2470 } 2471 /* Processed all groups and haven't found blocks */ 2472 if (sbi->s_mb_stats && i == ngroups) 2473 atomic64_inc(&sbi->s_bal_cX_failed[cr]); 2474 } 2475 2476 if (ac->ac_b_ex.fe_len > 0 && ac->ac_status != AC_STATUS_FOUND && 2477 !(ac->ac_flags & EXT4_MB_HINT_FIRST)) { 2478 /* 2479 * We've been searching too long. Let's try to allocate 2480 * the best chunk we've found so far 2481 */ 2482 ext4_mb_try_best_found(ac, &e4b); 2483 if (ac->ac_status != AC_STATUS_FOUND) { 2484 /* 2485 * Someone more lucky has already allocated it. 2486 * The only thing we can do is just take first 2487 * found block(s) 2488 */ 2489 lost = atomic_inc_return(&sbi->s_mb_lost_chunks); 2490 mb_debug(sb, "lost chunk, group: %u, start: %d, len: %d, lost: %d\n", 2491 ac->ac_b_ex.fe_group, ac->ac_b_ex.fe_start, 2492 ac->ac_b_ex.fe_len, lost); 2493 2494 ac->ac_b_ex.fe_group = 0; 2495 ac->ac_b_ex.fe_start = 0; 2496 ac->ac_b_ex.fe_len = 0; 2497 ac->ac_status = AC_STATUS_CONTINUE; 2498 ac->ac_flags |= EXT4_MB_HINT_FIRST; 2499 cr = 3; 2500 goto repeat; 2501 } 2502 } 2503 2504 if (sbi->s_mb_stats && ac->ac_status == AC_STATUS_FOUND) 2505 atomic64_inc(&sbi->s_bal_cX_hits[ac->ac_criteria]); 2506out: 2507 if (!err && ac->ac_status != AC_STATUS_FOUND && first_err) 2508 err = first_err; 2509 2510 mb_debug(sb, "Best len %d, origin len %d, ac_status %u, ac_flags 0x%x, cr %d ret %d\n", 2511 ac->ac_b_ex.fe_len, ac->ac_o_ex.fe_len, ac->ac_status, 2512 ac->ac_flags, cr, err); 2513 2514 if (nr) 2515 ext4_mb_prefetch_fini(sb, prefetch_grp, nr); 2516 2517 return err; 2518} 2519 2520static void *ext4_mb_seq_groups_start(struct seq_file *seq, loff_t *pos) 2521{ 2522 struct super_block *sb = PDE_DATA(file_inode(seq->file)); 2523 ext4_group_t group; 2524 2525 if (*pos < 0 || *pos >= ext4_get_groups_count(sb)) 2526 return NULL; 2527 group = *pos + 1; 2528 return (void *) ((unsigned long) group); 2529} 2530 2531static void *ext4_mb_seq_groups_next(struct seq_file *seq, void *v, loff_t *pos) 2532{ 2533 struct super_block *sb = PDE_DATA(file_inode(seq->file)); 2534 ext4_group_t group; 2535 2536 ++*pos; 2537 if (*pos < 0 || *pos >= ext4_get_groups_count(sb)) 2538 return NULL; 2539 group = *pos + 1; 2540 return (void *) ((unsigned long) group); 2541} 2542 2543static int ext4_mb_seq_groups_show(struct seq_file *seq, void *v) 2544{ 2545 struct super_block *sb = PDE_DATA(file_inode(seq->file)); 2546 ext4_group_t group = (ext4_group_t) ((unsigned long) v); 2547 int i; 2548 int err, buddy_loaded = 0; 2549 struct ext4_buddy e4b; 2550 struct ext4_group_info *grinfo; 2551 unsigned char blocksize_bits = min_t(unsigned char, 2552 sb->s_blocksize_bits, 2553 EXT4_MAX_BLOCK_LOG_SIZE); 2554 struct sg { 2555 struct ext4_group_info info; 2556 ext4_grpblk_t counters[EXT4_MAX_BLOCK_LOG_SIZE + 2]; 2557 } sg; 2558 2559 group--; 2560 if (group == 0) 2561 seq_puts(seq, "#group: free frags first [" 2562 " 2^0 2^1 2^2 2^3 2^4 2^5 2^6 " 2563 " 2^7 2^8 2^9 2^10 2^11 2^12 2^13 ]\n"); 2564 2565 i = (blocksize_bits + 2) * sizeof(sg.info.bb_counters[0]) + 2566 sizeof(struct ext4_group_info); 2567 2568 grinfo = ext4_get_group_info(sb, group); 2569 if (!grinfo) 2570 return 0; 2571 /* Load the group info in memory only if not already loaded. */ 2572 if (unlikely(EXT4_MB_GRP_NEED_INIT(grinfo))) { 2573 err = ext4_mb_load_buddy(sb, group, &e4b); 2574 if (err) { 2575 seq_printf(seq, "#%-5u: I/O error\n", group); 2576 return 0; 2577 } 2578 buddy_loaded = 1; 2579 } 2580 2581 memcpy(&sg, grinfo, i); 2582 2583 if (buddy_loaded) 2584 ext4_mb_unload_buddy(&e4b); 2585 2586 seq_printf(seq, "#%-5u: %-5u %-5u %-5u [", group, sg.info.bb_free, 2587 sg.info.bb_fragments, sg.info.bb_first_free); 2588 for (i = 0; i <= 13; i++) 2589 seq_printf(seq, " %-5u", i <= blocksize_bits + 1 ? 2590 sg.info.bb_counters[i] : 0); 2591 seq_puts(seq, " ]\n"); 2592 2593 return 0; 2594} 2595 2596static void ext4_mb_seq_groups_stop(struct seq_file *seq, void *v) 2597{ 2598} 2599 2600const struct seq_operations ext4_mb_seq_groups_ops = { 2601 .start = ext4_mb_seq_groups_start, 2602 .next = ext4_mb_seq_groups_next, 2603 .stop = ext4_mb_seq_groups_stop, 2604 .show = ext4_mb_seq_groups_show, 2605}; 2606 2607int ext4_seq_mb_stats_show(struct seq_file *seq, void *offset) 2608{ 2609 struct super_block *sb = (struct super_block *)seq->private; 2610 struct ext4_sb_info *sbi = EXT4_SB(sb); 2611 2612 seq_puts(seq, "mballoc:\n"); 2613 if (!sbi->s_mb_stats) { 2614 seq_puts(seq, "\tmb stats collection turned off.\n"); 2615 seq_puts(seq, "\tTo enable, please write \"1\" to sysfs file mb_stats.\n"); 2616 return 0; 2617 } 2618 seq_printf(seq, "\treqs: %u\n", atomic_read(&sbi->s_bal_reqs)); 2619 seq_printf(seq, "\tsuccess: %u\n", atomic_read(&sbi->s_bal_success)); 2620 2621 seq_printf(seq, "\tgroups_scanned: %u\n", atomic_read(&sbi->s_bal_groups_scanned)); 2622 2623 seq_puts(seq, "\tcr0_stats:\n"); 2624 seq_printf(seq, "\t\thits: %llu\n", atomic64_read(&sbi->s_bal_cX_hits[0])); 2625 seq_printf(seq, "\t\tgroups_considered: %llu\n", 2626 atomic64_read(&sbi->s_bal_cX_groups_considered[0])); 2627 seq_printf(seq, "\t\tuseless_loops: %llu\n", 2628 atomic64_read(&sbi->s_bal_cX_failed[0])); 2629 2630 seq_puts(seq, "\tcr1_stats:\n"); 2631 seq_printf(seq, "\t\thits: %llu\n", atomic64_read(&sbi->s_bal_cX_hits[1])); 2632 seq_printf(seq, "\t\tgroups_considered: %llu\n", 2633 atomic64_read(&sbi->s_bal_cX_groups_considered[1])); 2634 seq_printf(seq, "\t\tuseless_loops: %llu\n", 2635 atomic64_read(&sbi->s_bal_cX_failed[1])); 2636 2637 seq_puts(seq, "\tcr2_stats:\n"); 2638 seq_printf(seq, "\t\thits: %llu\n", atomic64_read(&sbi->s_bal_cX_hits[2])); 2639 seq_printf(seq, "\t\tgroups_considered: %llu\n", 2640 atomic64_read(&sbi->s_bal_cX_groups_considered[2])); 2641 seq_printf(seq, "\t\tuseless_loops: %llu\n", 2642 atomic64_read(&sbi->s_bal_cX_failed[2])); 2643 2644 seq_puts(seq, "\tcr3_stats:\n"); 2645 seq_printf(seq, "\t\thits: %llu\n", atomic64_read(&sbi->s_bal_cX_hits[3])); 2646 seq_printf(seq, "\t\tgroups_considered: %llu\n", 2647 atomic64_read(&sbi->s_bal_cX_groups_considered[3])); 2648 seq_printf(seq, "\t\tuseless_loops: %llu\n", 2649 atomic64_read(&sbi->s_bal_cX_failed[3])); 2650 seq_printf(seq, "\textents_scanned: %u\n", atomic_read(&sbi->s_bal_ex_scanned)); 2651 seq_printf(seq, "\t\tgoal_hits: %u\n", atomic_read(&sbi->s_bal_goals)); 2652 seq_printf(seq, "\t\t2^n_hits: %u\n", atomic_read(&sbi->s_bal_2orders)); 2653 seq_printf(seq, "\t\tbreaks: %u\n", atomic_read(&sbi->s_bal_breaks)); 2654 seq_printf(seq, "\t\tlost: %u\n", atomic_read(&sbi->s_mb_lost_chunks)); 2655 2656 seq_printf(seq, "\tbuddies_generated: %u/%u\n", 2657 atomic_read(&sbi->s_mb_buddies_generated), 2658 ext4_get_groups_count(sb)); 2659 seq_printf(seq, "\tbuddies_time_used: %llu\n", 2660 atomic64_read(&sbi->s_mb_generation_time)); 2661 seq_printf(seq, "\tpreallocated: %u\n", 2662 atomic_read(&sbi->s_mb_preallocated)); 2663 seq_printf(seq, "\tdiscarded: %u\n", 2664 atomic_read(&sbi->s_mb_discarded)); 2665 return 0; 2666} 2667 2668static struct kmem_cache *get_groupinfo_cache(int blocksize_bits) 2669{ 2670 int cache_index = blocksize_bits - EXT4_MIN_BLOCK_LOG_SIZE; 2671 struct kmem_cache *cachep = ext4_groupinfo_caches[cache_index]; 2672 2673 BUG_ON(!cachep); 2674 return cachep; 2675} 2676 2677/* 2678 * Allocate the top-level s_group_info array for the specified number 2679 * of groups 2680 */ 2681int ext4_mb_alloc_groupinfo(struct super_block *sb, ext4_group_t ngroups) 2682{ 2683 struct ext4_sb_info *sbi = EXT4_SB(sb); 2684 unsigned size; 2685 struct ext4_group_info ***old_groupinfo, ***new_groupinfo; 2686 2687 size = (ngroups + EXT4_DESC_PER_BLOCK(sb) - 1) >> 2688 EXT4_DESC_PER_BLOCK_BITS(sb); 2689 if (size <= sbi->s_group_info_size) 2690 return 0; 2691 2692 size = roundup_pow_of_two(sizeof(*sbi->s_group_info) * size); 2693 new_groupinfo = kvzalloc(size, GFP_KERNEL); 2694 if (!new_groupinfo) { 2695 ext4_msg(sb, KERN_ERR, "can't allocate buddy meta group"); 2696 return -ENOMEM; 2697 } 2698 rcu_read_lock(); 2699 old_groupinfo = rcu_dereference(sbi->s_group_info); 2700 if (old_groupinfo) 2701 memcpy(new_groupinfo, old_groupinfo, 2702 sbi->s_group_info_size * sizeof(*sbi->s_group_info)); 2703 rcu_read_unlock(); 2704 rcu_assign_pointer(sbi->s_group_info, new_groupinfo); 2705 sbi->s_group_info_size = size / sizeof(*sbi->s_group_info); 2706 if (old_groupinfo) 2707 ext4_kvfree_array_rcu(old_groupinfo); 2708 ext4_debug("allocated s_groupinfo array for %d meta_bg's\n", 2709 sbi->s_group_info_size); 2710 return 0; 2711} 2712 2713/* Create and initialize ext4_group_info data for the given group. */ 2714int ext4_mb_add_groupinfo(struct super_block *sb, ext4_group_t group, 2715 struct ext4_group_desc *desc) 2716{ 2717 int i; 2718 int metalen = 0; 2719 int idx = group >> EXT4_DESC_PER_BLOCK_BITS(sb); 2720 struct ext4_sb_info *sbi = EXT4_SB(sb); 2721 struct ext4_group_info **meta_group_info; 2722 struct kmem_cache *cachep = get_groupinfo_cache(sb->s_blocksize_bits); 2723 2724 /* 2725 * First check if this group is the first of a reserved block. 2726 * If it's true, we have to allocate a new table of pointers 2727 * to ext4_group_info structures 2728 */ 2729 if (group % EXT4_DESC_PER_BLOCK(sb) == 0) { 2730 metalen = sizeof(*meta_group_info) << 2731 EXT4_DESC_PER_BLOCK_BITS(sb); 2732 meta_group_info = kmalloc(metalen, GFP_NOFS); 2733 if (meta_group_info == NULL) { 2734 ext4_msg(sb, KERN_ERR, "can't allocate mem " 2735 "for a buddy group"); 2736 goto exit_meta_group_info; 2737 } 2738 rcu_read_lock(); 2739 rcu_dereference(sbi->s_group_info)[idx] = meta_group_info; 2740 rcu_read_unlock(); 2741 } 2742 2743 meta_group_info = sbi_array_rcu_deref(sbi, s_group_info, idx); 2744 i = group & (EXT4_DESC_PER_BLOCK(sb) - 1); 2745 2746 meta_group_info[i] = kmem_cache_zalloc(cachep, GFP_NOFS); 2747 if (meta_group_info[i] == NULL) { 2748 ext4_msg(sb, KERN_ERR, "can't allocate buddy mem"); 2749 goto exit_group_info; 2750 } 2751 set_bit(EXT4_GROUP_INFO_NEED_INIT_BIT, 2752 &(meta_group_info[i]->bb_state)); 2753 2754 /* 2755 * initialize bb_free to be able to skip 2756 * empty groups without initialization 2757 */ 2758 if (ext4_has_group_desc_csum(sb) && 2759 (desc->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT))) { 2760 meta_group_info[i]->bb_free = 2761 ext4_free_clusters_after_init(sb, group, desc); 2762 } else { 2763 meta_group_info[i]->bb_free = 2764 ext4_free_group_clusters(sb, desc); 2765 } 2766 2767 INIT_LIST_HEAD(&meta_group_info[i]->bb_prealloc_list); 2768 init_rwsem(&meta_group_info[i]->alloc_sem); 2769 meta_group_info[i]->bb_free_root = RB_ROOT; 2770 meta_group_info[i]->bb_largest_free_order = -1; /* uninit */ 2771 2772 mb_group_bb_bitmap_alloc(sb, meta_group_info[i], group); 2773 return 0; 2774 2775exit_group_info: 2776 /* If a meta_group_info table has been allocated, release it now */ 2777 if (group % EXT4_DESC_PER_BLOCK(sb) == 0) { 2778 struct ext4_group_info ***group_info; 2779 2780 rcu_read_lock(); 2781 group_info = rcu_dereference(sbi->s_group_info); 2782 kfree(group_info[idx]); 2783 group_info[idx] = NULL; 2784 rcu_read_unlock(); 2785 } 2786exit_meta_group_info: 2787 return -ENOMEM; 2788} /* ext4_mb_add_groupinfo */ 2789 2790static int ext4_mb_init_backend(struct super_block *sb) 2791{ 2792 ext4_group_t ngroups = ext4_get_groups_count(sb); 2793 ext4_group_t i; 2794 struct ext4_sb_info *sbi = EXT4_SB(sb); 2795 int err; 2796 struct ext4_group_desc *desc; 2797 struct ext4_group_info ***group_info; 2798 struct kmem_cache *cachep; 2799 2800 err = ext4_mb_alloc_groupinfo(sb, ngroups); 2801 if (err) 2802 return err; 2803 2804 sbi->s_buddy_cache = new_inode(sb); 2805 if (sbi->s_buddy_cache == NULL) { 2806 ext4_msg(sb, KERN_ERR, "can't get new inode"); 2807 goto err_freesgi; 2808 } 2809 /* To avoid potentially colliding with an valid on-disk inode number, 2810 * use EXT4_BAD_INO for the buddy cache inode number. This inode is 2811 * not in the inode hash, so it should never be found by iget(), but 2812 * this will avoid confusion if it ever shows up during debugging. */ 2813 sbi->s_buddy_cache->i_ino = EXT4_BAD_INO; 2814 EXT4_I(sbi->s_buddy_cache)->i_disksize = 0; 2815 for (i = 0; i < ngroups; i++) { 2816 cond_resched(); 2817 desc = ext4_get_group_desc(sb, i, NULL); 2818 if (desc == NULL) { 2819 ext4_msg(sb, KERN_ERR, "can't read descriptor %u", i); 2820 goto err_freebuddy; 2821 } 2822 if (ext4_mb_add_groupinfo(sb, i, desc) != 0) 2823 goto err_freebuddy; 2824 } 2825 2826 if (ext4_has_feature_flex_bg(sb)) { 2827 /* a single flex group is supposed to be read by a single IO. 2828 * 2 ^ s_log_groups_per_flex != UINT_MAX as s_mb_prefetch is 2829 * unsigned integer, so the maximum shift is 32. 2830 */ 2831 if (sbi->s_es->s_log_groups_per_flex >= 32) { 2832 ext4_msg(sb, KERN_ERR, "too many log groups per flexible block group"); 2833 goto err_freebuddy; 2834 } 2835 sbi->s_mb_prefetch = min_t(uint, 1 << sbi->s_es->s_log_groups_per_flex, 2836 BLK_MAX_SEGMENT_SIZE >> (sb->s_blocksize_bits - 9)); 2837 sbi->s_mb_prefetch *= 8; /* 8 prefetch IOs in flight at most */ 2838 } else { 2839 sbi->s_mb_prefetch = 32; 2840 } 2841 if (sbi->s_mb_prefetch > ext4_get_groups_count(sb)) 2842 sbi->s_mb_prefetch = ext4_get_groups_count(sb); 2843 /* now many real IOs to prefetch within a single allocation at cr=0 2844 * given cr=0 is an CPU-related optimization we shouldn't try to 2845 * load too many groups, at some point we should start to use what 2846 * we've got in memory. 2847 * with an average random access time 5ms, it'd take a second to get 2848 * 200 groups (* N with flex_bg), so let's make this limit 4 2849 */ 2850 sbi->s_mb_prefetch_limit = sbi->s_mb_prefetch * 4; 2851 if (sbi->s_mb_prefetch_limit > ext4_get_groups_count(sb)) 2852 sbi->s_mb_prefetch_limit = ext4_get_groups_count(sb); 2853 2854 return 0; 2855 2856err_freebuddy: 2857 cachep = get_groupinfo_cache(sb->s_blocksize_bits); 2858 while (i-- > 0) { 2859 struct ext4_group_info *grp = ext4_get_group_info(sb, i); 2860 2861 if (grp) 2862 kmem_cache_free(cachep, grp); 2863 } 2864 i = sbi->s_group_info_size; 2865 rcu_read_lock(); 2866 group_info = rcu_dereference(sbi->s_group_info); 2867 while (i-- > 0) 2868 kfree(group_info[i]); 2869 rcu_read_unlock(); 2870 iput(sbi->s_buddy_cache); 2871err_freesgi: 2872 rcu_read_lock(); 2873 kvfree(rcu_dereference(sbi->s_group_info)); 2874 rcu_read_unlock(); 2875 return -ENOMEM; 2876} 2877 2878static void ext4_groupinfo_destroy_slabs(void) 2879{ 2880 int i; 2881 2882 for (i = 0; i < NR_GRPINFO_CACHES; i++) { 2883 kmem_cache_destroy(ext4_groupinfo_caches[i]); 2884 ext4_groupinfo_caches[i] = NULL; 2885 } 2886} 2887 2888static int ext4_groupinfo_create_slab(size_t size) 2889{ 2890 static DEFINE_MUTEX(ext4_grpinfo_slab_create_mutex); 2891 int slab_size; 2892 int blocksize_bits = order_base_2(size); 2893 int cache_index = blocksize_bits - EXT4_MIN_BLOCK_LOG_SIZE; 2894 struct kmem_cache *cachep; 2895 2896 if (cache_index >= NR_GRPINFO_CACHES) 2897 return -EINVAL; 2898 2899 if (unlikely(cache_index < 0)) 2900 cache_index = 0; 2901 2902 mutex_lock(&ext4_grpinfo_slab_create_mutex); 2903 if (ext4_groupinfo_caches[cache_index]) { 2904 mutex_unlock(&ext4_grpinfo_slab_create_mutex); 2905 return 0; /* Already created */ 2906 } 2907 2908 slab_size = offsetof(struct ext4_group_info, 2909 bb_counters[blocksize_bits + 2]); 2910 2911 cachep = kmem_cache_create(ext4_groupinfo_slab_names[cache_index], 2912 slab_size, 0, SLAB_RECLAIM_ACCOUNT, 2913 NULL); 2914 2915 ext4_groupinfo_caches[cache_index] = cachep; 2916 2917 mutex_unlock(&ext4_grpinfo_slab_create_mutex); 2918 if (!cachep) { 2919 printk(KERN_EMERG 2920 "EXT4-fs: no memory for groupinfo slab cache\n"); 2921 return -ENOMEM; 2922 } 2923 2924 return 0; 2925} 2926 2927int ext4_mb_init(struct super_block *sb) 2928{ 2929 struct ext4_sb_info *sbi = EXT4_SB(sb); 2930 unsigned i, j; 2931 unsigned offset, offset_incr; 2932 unsigned max; 2933 int ret; 2934 2935 i = (sb->s_blocksize_bits + 2) * sizeof(*sbi->s_mb_offsets); 2936 2937 sbi->s_mb_offsets = kmalloc(i, GFP_KERNEL); 2938 if (sbi->s_mb_offsets == NULL) { 2939 ret = -ENOMEM; 2940 goto out; 2941 } 2942 2943 i = (sb->s_blocksize_bits + 2) * sizeof(*sbi->s_mb_maxs); 2944 sbi->s_mb_maxs = kmalloc(i, GFP_KERNEL); 2945 if (sbi->s_mb_maxs == NULL) { 2946 ret = -ENOMEM; 2947 goto out; 2948 } 2949 2950 ret = ext4_groupinfo_create_slab(sb->s_blocksize); 2951 if (ret < 0) 2952 goto out; 2953 2954 /* order 0 is regular bitmap */ 2955 sbi->s_mb_maxs[0] = sb->s_blocksize << 3; 2956 sbi->s_mb_offsets[0] = 0; 2957 2958 i = 1; 2959 offset = 0; 2960 offset_incr = 1 << (sb->s_blocksize_bits - 1); 2961 max = sb->s_blocksize << 2; 2962 do { 2963 sbi->s_mb_offsets[i] = offset; 2964 sbi->s_mb_maxs[i] = max; 2965 offset += offset_incr; 2966 offset_incr = offset_incr >> 1; 2967 max = max >> 1; 2968 i++; 2969 } while (i <= sb->s_blocksize_bits + 1); 2970 2971 spin_lock_init(&sbi->s_md_lock); 2972 sbi->s_mb_free_pending = 0; 2973 INIT_LIST_HEAD(&sbi->s_freed_data_list); 2974 2975 sbi->s_mb_max_to_scan = MB_DEFAULT_MAX_TO_SCAN; 2976 sbi->s_mb_min_to_scan = MB_DEFAULT_MIN_TO_SCAN; 2977 sbi->s_mb_stats = MB_DEFAULT_STATS; 2978 sbi->s_mb_stream_request = MB_DEFAULT_STREAM_THRESHOLD; 2979 sbi->s_mb_order2_reqs = MB_DEFAULT_ORDER2_REQS; 2980 sbi->s_mb_max_inode_prealloc = MB_DEFAULT_MAX_INODE_PREALLOC; 2981 /* 2982 * The default group preallocation is 512, which for 4k block 2983 * sizes translates to 2 megabytes. However for bigalloc file 2984 * systems, this is probably too big (i.e, if the cluster size 2985 * is 1 megabyte, then group preallocation size becomes half a 2986 * gigabyte!). As a default, we will keep a two megabyte 2987 * group pralloc size for cluster sizes up to 64k, and after 2988 * that, we will force a minimum group preallocation size of 2989 * 32 clusters. This translates to 8 megs when the cluster 2990 * size is 256k, and 32 megs when the cluster size is 1 meg, 2991 * which seems reasonable as a default. 2992 */ 2993 sbi->s_mb_group_prealloc = max(MB_DEFAULT_GROUP_PREALLOC >> 2994 sbi->s_cluster_bits, 32); 2995 /* 2996 * If there is a s_stripe > 1, then we set the s_mb_group_prealloc 2997 * to the lowest multiple of s_stripe which is bigger than 2998 * the s_mb_group_prealloc as determined above. We want 2999 * the preallocation size to be an exact multiple of the 3000 * RAID stripe size so that preallocations don't fragment 3001 * the stripes. 3002 */ 3003 if (sbi->s_stripe > 1) { 3004 sbi->s_mb_group_prealloc = roundup( 3005 sbi->s_mb_group_prealloc, sbi->s_stripe); 3006 } 3007 3008 sbi->s_locality_groups = alloc_percpu(struct ext4_locality_group); 3009 if (sbi->s_locality_groups == NULL) { 3010 ret = -ENOMEM; 3011 goto out; 3012 } 3013 for_each_possible_cpu(i) { 3014 struct ext4_locality_group *lg; 3015 lg = per_cpu_ptr(sbi->s_locality_groups, i); 3016 mutex_init(&lg->lg_mutex); 3017 for (j = 0; j < PREALLOC_TB_SIZE; j++) 3018 INIT_LIST_HEAD(&lg->lg_prealloc_list[j]); 3019 spin_lock_init(&lg->lg_prealloc_lock); 3020 } 3021 3022 /* init file for buddy data */ 3023 ret = ext4_mb_init_backend(sb); 3024 if (ret != 0) 3025 goto out_free_locality_groups; 3026 3027 return 0; 3028 3029out_free_locality_groups: 3030 free_percpu(sbi->s_locality_groups); 3031 sbi->s_locality_groups = NULL; 3032out: 3033 kfree(sbi->s_mb_offsets); 3034 sbi->s_mb_offsets = NULL; 3035 kfree(sbi->s_mb_maxs); 3036 sbi->s_mb_maxs = NULL; 3037 return ret; 3038} 3039 3040/* need to called with the ext4 group lock held */ 3041static int ext4_mb_cleanup_pa(struct ext4_group_info *grp) 3042{ 3043 struct ext4_prealloc_space *pa; 3044 struct list_head *cur, *tmp; 3045 int count = 0; 3046 3047 list_for_each_safe(cur, tmp, &grp->bb_prealloc_list) { 3048 pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list); 3049 list_del(&pa->pa_group_list); 3050 count++; 3051 kmem_cache_free(ext4_pspace_cachep, pa); 3052 } 3053 return count; 3054} 3055 3056int ext4_mb_release(struct super_block *sb) 3057{ 3058 ext4_group_t ngroups = ext4_get_groups_count(sb); 3059 ext4_group_t i; 3060 int num_meta_group_infos; 3061 struct ext4_group_info *grinfo, ***group_info; 3062 struct ext4_sb_info *sbi = EXT4_SB(sb); 3063 struct kmem_cache *cachep = get_groupinfo_cache(sb->s_blocksize_bits); 3064 int count; 3065 3066 if (sbi->s_group_info) { 3067 for (i = 0; i < ngroups; i++) { 3068 cond_resched(); 3069 grinfo = ext4_get_group_info(sb, i); 3070 if (!grinfo) 3071 continue; 3072 mb_group_bb_bitmap_free(grinfo); 3073 ext4_lock_group(sb, i); 3074 count = ext4_mb_cleanup_pa(grinfo); 3075 if (count) 3076 mb_debug(sb, "mballoc: %d PAs left\n", 3077 count); 3078 ext4_unlock_group(sb, i); 3079 kmem_cache_free(cachep, grinfo); 3080 } 3081 num_meta_group_infos = (ngroups + 3082 EXT4_DESC_PER_BLOCK(sb) - 1) >> 3083 EXT4_DESC_PER_BLOCK_BITS(sb); 3084 rcu_read_lock(); 3085 group_info = rcu_dereference(sbi->s_group_info); 3086 for (i = 0; i < num_meta_group_infos; i++) 3087 kfree(group_info[i]); 3088 kvfree(group_info); 3089 rcu_read_unlock(); 3090 } 3091 kfree(sbi->s_mb_offsets); 3092 kfree(sbi->s_mb_maxs); 3093 iput(sbi->s_buddy_cache); 3094 if (sbi->s_mb_stats) { 3095 ext4_msg(sb, KERN_INFO, 3096 "mballoc: %u blocks %u reqs (%u success)", 3097 atomic_read(&sbi->s_bal_allocated), 3098 atomic_read(&sbi->s_bal_reqs), 3099 atomic_read(&sbi->s_bal_success)); 3100 ext4_msg(sb, KERN_INFO, 3101 "mballoc: %u extents scanned, %u groups scanned, %u goal hits, " 3102 "%u 2^N hits, %u breaks, %u lost", 3103 atomic_read(&sbi->s_bal_ex_scanned), 3104 atomic_read(&sbi->s_bal_groups_scanned), 3105 atomic_read(&sbi->s_bal_goals), 3106 atomic_read(&sbi->s_bal_2orders), 3107 atomic_read(&sbi->s_bal_breaks), 3108 atomic_read(&sbi->s_mb_lost_chunks)); 3109 ext4_msg(sb, KERN_INFO, 3110 "mballoc: %u generated and it took %llu", 3111 atomic_read(&sbi->s_mb_buddies_generated), 3112 atomic64_read(&sbi->s_mb_generation_time)); 3113 ext4_msg(sb, KERN_INFO, 3114 "mballoc: %u preallocated, %u discarded", 3115 atomic_read(&sbi->s_mb_preallocated), 3116 atomic_read(&sbi->s_mb_discarded)); 3117 } 3118 3119 free_percpu(sbi->s_locality_groups); 3120 3121 return 0; 3122} 3123 3124static inline int ext4_issue_discard(struct super_block *sb, 3125 ext4_group_t block_group, ext4_grpblk_t cluster, int count, 3126 struct bio **biop) 3127{ 3128 ext4_fsblk_t discard_block; 3129 3130 discard_block = (EXT4_C2B(EXT4_SB(sb), cluster) + 3131 ext4_group_first_block_no(sb, block_group)); 3132 count = EXT4_C2B(EXT4_SB(sb), count); 3133 trace_ext4_discard_blocks(sb, 3134 (unsigned long long) discard_block, count); 3135 if (biop) { 3136 return __blkdev_issue_discard(sb->s_bdev, 3137 (sector_t)discard_block << (sb->s_blocksize_bits - 9), 3138 (sector_t)count << (sb->s_blocksize_bits - 9), 3139 GFP_NOFS, 0, biop); 3140 } else 3141 return sb_issue_discard(sb, discard_block, count, GFP_NOFS, 0); 3142} 3143 3144static void ext4_free_data_in_buddy(struct super_block *sb, 3145 struct ext4_free_data *entry) 3146{ 3147 struct ext4_buddy e4b; 3148 struct ext4_group_info *db; 3149 int err, count = 0, count2 = 0; 3150 3151 mb_debug(sb, "gonna free %u blocks in group %u (0x%p):", 3152 entry->efd_count, entry->efd_group, entry); 3153 3154 err = ext4_mb_load_buddy(sb, entry->efd_group, &e4b); 3155 /* we expect to find existing buddy because it's pinned */ 3156 BUG_ON(err != 0); 3157 3158 spin_lock(&EXT4_SB(sb)->s_md_lock); 3159 EXT4_SB(sb)->s_mb_free_pending -= entry->efd_count; 3160 spin_unlock(&EXT4_SB(sb)->s_md_lock); 3161 3162 db = e4b.bd_info; 3163 /* there are blocks to put in buddy to make them really free */ 3164 count += entry->efd_count; 3165 count2++; 3166 ext4_lock_group(sb, entry->efd_group); 3167 /* Take it out of per group rb tree */ 3168 rb_erase(&entry->efd_node, &(db->bb_free_root)); 3169 mb_free_blocks(NULL, &e4b, entry->efd_start_cluster, entry->efd_count); 3170 3171 /* 3172 * Clear the trimmed flag for the group so that the next 3173 * ext4_trim_fs can trim it. 3174 * If the volume is mounted with -o discard, online discard 3175 * is supported and the free blocks will be trimmed online. 3176 */ 3177 if (!test_opt(sb, DISCARD)) 3178 EXT4_MB_GRP_CLEAR_TRIMMED(db); 3179 3180 if (!db->bb_free_root.rb_node) { 3181 /* No more items in the per group rb tree 3182 * balance refcounts from ext4_mb_free_metadata() 3183 */ 3184 put_page(e4b.bd_buddy_page); 3185 put_page(e4b.bd_bitmap_page); 3186 } 3187 ext4_unlock_group(sb, entry->efd_group); 3188 kmem_cache_free(ext4_free_data_cachep, entry); 3189 ext4_mb_unload_buddy(&e4b); 3190 3191 mb_debug(sb, "freed %d blocks in %d structures\n", count, 3192 count2); 3193} 3194 3195/* 3196 * This function is called by the jbd2 layer once the commit has finished, 3197 * so we know we can free the blocks that were released with that commit. 3198 */ 3199void ext4_process_freed_data(struct super_block *sb, tid_t commit_tid) 3200{ 3201 struct ext4_sb_info *sbi = EXT4_SB(sb); 3202 struct ext4_free_data *entry, *tmp; 3203 struct bio *discard_bio = NULL; 3204 struct list_head freed_data_list; 3205 struct list_head *cut_pos = NULL; 3206 int err; 3207 3208 INIT_LIST_HEAD(&freed_data_list); 3209 3210 spin_lock(&sbi->s_md_lock); 3211 list_for_each_entry(entry, &sbi->s_freed_data_list, efd_list) { 3212 if (entry->efd_tid != commit_tid) 3213 break; 3214 cut_pos = &entry->efd_list; 3215 } 3216 if (cut_pos) 3217 list_cut_position(&freed_data_list, &sbi->s_freed_data_list, 3218 cut_pos); 3219 spin_unlock(&sbi->s_md_lock); 3220 3221 if (test_opt(sb, DISCARD)) { 3222 list_for_each_entry(entry, &freed_data_list, efd_list) { 3223 err = ext4_issue_discard(sb, entry->efd_group, 3224 entry->efd_start_cluster, 3225 entry->efd_count, 3226 &discard_bio); 3227 if (err && err != -EOPNOTSUPP) { 3228 ext4_msg(sb, KERN_WARNING, "discard request in" 3229 " group:%d block:%d count:%d failed" 3230 " with %d", entry->efd_group, 3231 entry->efd_start_cluster, 3232 entry->efd_count, err); 3233 } else if (err == -EOPNOTSUPP) 3234 break; 3235 } 3236 3237 if (discard_bio) { 3238 submit_bio_wait(discard_bio); 3239 bio_put(discard_bio); 3240 } 3241 } 3242 3243 list_for_each_entry_safe(entry, tmp, &freed_data_list, efd_list) 3244 ext4_free_data_in_buddy(sb, entry); 3245} 3246 3247int __init ext4_init_mballoc(void) 3248{ 3249 ext4_pspace_cachep = KMEM_CACHE(ext4_prealloc_space, 3250 SLAB_RECLAIM_ACCOUNT); 3251 if (ext4_pspace_cachep == NULL) 3252 goto out; 3253 3254 ext4_ac_cachep = KMEM_CACHE(ext4_allocation_context, 3255 SLAB_RECLAIM_ACCOUNT); 3256 if (ext4_ac_cachep == NULL) 3257 goto out_pa_free; 3258 3259 ext4_free_data_cachep = KMEM_CACHE(ext4_free_data, 3260 SLAB_RECLAIM_ACCOUNT); 3261 if (ext4_free_data_cachep == NULL) 3262 goto out_ac_free; 3263 3264 return 0; 3265 3266out_ac_free: 3267 kmem_cache_destroy(ext4_ac_cachep); 3268out_pa_free: 3269 kmem_cache_destroy(ext4_pspace_cachep); 3270out: 3271 return -ENOMEM; 3272} 3273 3274void ext4_exit_mballoc(void) 3275{ 3276 /* 3277 * Wait for completion of call_rcu()'s on ext4_pspace_cachep 3278 * before destroying the slab cache. 3279 */ 3280 rcu_barrier(); 3281 kmem_cache_destroy(ext4_pspace_cachep); 3282 kmem_cache_destroy(ext4_ac_cachep); 3283 kmem_cache_destroy(ext4_free_data_cachep); 3284 ext4_groupinfo_destroy_slabs(); 3285} 3286 3287 3288/* 3289 * Check quota and mark chosen space (ac->ac_b_ex) non-free in bitmaps 3290 * Returns 0 if success or error code 3291 */ 3292static noinline_for_stack int 3293ext4_mb_mark_diskspace_used(struct ext4_allocation_context *ac, 3294 handle_t *handle, unsigned int reserv_clstrs) 3295{ 3296 struct buffer_head *bitmap_bh = NULL; 3297 struct ext4_group_desc *gdp; 3298 struct buffer_head *gdp_bh; 3299 struct ext4_sb_info *sbi; 3300 struct super_block *sb; 3301 ext4_fsblk_t block; 3302 int err, len; 3303 3304 BUG_ON(ac->ac_status != AC_STATUS_FOUND); 3305 BUG_ON(ac->ac_b_ex.fe_len <= 0); 3306 3307 sb = ac->ac_sb; 3308 sbi = EXT4_SB(sb); 3309 3310 bitmap_bh = ext4_read_block_bitmap(sb, ac->ac_b_ex.fe_group); 3311 if (IS_ERR(bitmap_bh)) { 3312 err = PTR_ERR(bitmap_bh); 3313 bitmap_bh = NULL; 3314 goto out_err; 3315 } 3316 3317 BUFFER_TRACE(bitmap_bh, "getting write access"); 3318 err = ext4_journal_get_write_access(handle, bitmap_bh); 3319 if (err) 3320 goto out_err; 3321 3322 err = -EIO; 3323 gdp = ext4_get_group_desc(sb, ac->ac_b_ex.fe_group, &gdp_bh); 3324 if (!gdp) 3325 goto out_err; 3326 3327 ext4_debug("using block group %u(%d)\n", ac->ac_b_ex.fe_group, 3328 ext4_free_group_clusters(sb, gdp)); 3329 3330 BUFFER_TRACE(gdp_bh, "get_write_access"); 3331 err = ext4_journal_get_write_access(handle, gdp_bh); 3332 if (err) 3333 goto out_err; 3334 3335 block = ext4_grp_offs_to_block(sb, &ac->ac_b_ex); 3336 3337 len = EXT4_C2B(sbi, ac->ac_b_ex.fe_len); 3338 if (!ext4_inode_block_valid(ac->ac_inode, block, len)) { 3339 ext4_error(sb, "Allocating blocks %llu-%llu which overlap " 3340 "fs metadata", block, block+len); 3341 /* File system mounted not to panic on error 3342 * Fix the bitmap and return EFSCORRUPTED 3343 * We leak some of the blocks here. 3344 */ 3345 ext4_lock_group(sb, ac->ac_b_ex.fe_group); 3346 ext4_set_bits(bitmap_bh->b_data, ac->ac_b_ex.fe_start, 3347 ac->ac_b_ex.fe_len); 3348 ext4_unlock_group(sb, ac->ac_b_ex.fe_group); 3349 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh); 3350 if (!err) 3351 err = -EFSCORRUPTED; 3352 goto out_err; 3353 } 3354 3355 ext4_lock_group(sb, ac->ac_b_ex.fe_group); 3356#ifdef AGGRESSIVE_CHECK 3357 { 3358 int i; 3359 for (i = 0; i < ac->ac_b_ex.fe_len; i++) { 3360 BUG_ON(mb_test_bit(ac->ac_b_ex.fe_start + i, 3361 bitmap_bh->b_data)); 3362 } 3363 } 3364#endif 3365 ext4_set_bits(bitmap_bh->b_data, ac->ac_b_ex.fe_start, 3366 ac->ac_b_ex.fe_len); 3367 if (ext4_has_group_desc_csum(sb) && 3368 (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT))) { 3369 gdp->bg_flags &= cpu_to_le16(~EXT4_BG_BLOCK_UNINIT); 3370 ext4_free_group_clusters_set(sb, gdp, 3371 ext4_free_clusters_after_init(sb, 3372 ac->ac_b_ex.fe_group, gdp)); 3373 } 3374 len = ext4_free_group_clusters(sb, gdp) - ac->ac_b_ex.fe_len; 3375 ext4_free_group_clusters_set(sb, gdp, len); 3376 ext4_block_bitmap_csum_set(sb, ac->ac_b_ex.fe_group, gdp, bitmap_bh); 3377 ext4_group_desc_csum_set(sb, ac->ac_b_ex.fe_group, gdp); 3378 3379 ext4_unlock_group(sb, ac->ac_b_ex.fe_group); 3380 percpu_counter_sub(&sbi->s_freeclusters_counter, ac->ac_b_ex.fe_len); 3381 /* 3382 * Now reduce the dirty block count also. Should not go negative 3383 */ 3384 if (!(ac->ac_flags & EXT4_MB_DELALLOC_RESERVED)) 3385 /* release all the reserved blocks if non delalloc */ 3386 percpu_counter_sub(&sbi->s_dirtyclusters_counter, 3387 reserv_clstrs); 3388 3389 if (sbi->s_log_groups_per_flex) { 3390 ext4_group_t flex_group = ext4_flex_group(sbi, 3391 ac->ac_b_ex.fe_group); 3392 atomic64_sub(ac->ac_b_ex.fe_len, 3393 &sbi_array_rcu_deref(sbi, s_flex_groups, 3394 flex_group)->free_clusters); 3395 } 3396 3397 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh); 3398 if (err) 3399 goto out_err; 3400 err = ext4_handle_dirty_metadata(handle, NULL, gdp_bh); 3401 3402out_err: 3403 brelse(bitmap_bh); 3404 return err; 3405} 3406 3407/* 3408 * Idempotent helper for Ext4 fast commit replay path to set the state of 3409 * blocks in bitmaps and update counters. 3410 */ 3411void ext4_mb_mark_bb(struct super_block *sb, ext4_fsblk_t block, 3412 int len, int state) 3413{ 3414 struct buffer_head *bitmap_bh = NULL; 3415 struct ext4_group_desc *gdp; 3416 struct buffer_head *gdp_bh; 3417 struct ext4_sb_info *sbi = EXT4_SB(sb); 3418 ext4_group_t group; 3419 ext4_grpblk_t blkoff; 3420 int i, err; 3421 int already; 3422 unsigned int clen, clen_changed, thisgrp_len; 3423 3424 while (len > 0) { 3425 ext4_get_group_no_and_offset(sb, block, &group, &blkoff); 3426 3427 /* 3428 * Check to see if we are freeing blocks across a group 3429 * boundary. 3430 * In case of flex_bg, this can happen that (block, len) may 3431 * span across more than one group. In that case we need to 3432 * get the corresponding group metadata to work with. 3433 * For this we have goto again loop. 3434 */ 3435 thisgrp_len = min_t(unsigned int, (unsigned int)len, 3436 EXT4_BLOCKS_PER_GROUP(sb) - EXT4_C2B(sbi, blkoff)); 3437 clen = EXT4_NUM_B2C(sbi, thisgrp_len); 3438 3439 bitmap_bh = ext4_read_block_bitmap(sb, group); 3440 if (IS_ERR(bitmap_bh)) { 3441 err = PTR_ERR(bitmap_bh); 3442 bitmap_bh = NULL; 3443 break; 3444 } 3445 3446 err = -EIO; 3447 gdp = ext4_get_group_desc(sb, group, &gdp_bh); 3448 if (!gdp) 3449 break; 3450 3451 ext4_lock_group(sb, group); 3452 already = 0; 3453 for (i = 0; i < clen; i++) 3454 if (!mb_test_bit(blkoff + i, bitmap_bh->b_data) == 3455 !state) 3456 already++; 3457 3458 clen_changed = clen - already; 3459 if (state) 3460 ext4_set_bits(bitmap_bh->b_data, blkoff, clen); 3461 else 3462 mb_test_and_clear_bits(bitmap_bh->b_data, blkoff, clen); 3463 if (ext4_has_group_desc_csum(sb) && 3464 (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT))) { 3465 gdp->bg_flags &= cpu_to_le16(~EXT4_BG_BLOCK_UNINIT); 3466 ext4_free_group_clusters_set(sb, gdp, 3467 ext4_free_clusters_after_init(sb, group, gdp)); 3468 } 3469 if (state) 3470 clen = ext4_free_group_clusters(sb, gdp) - clen_changed; 3471 else 3472 clen = ext4_free_group_clusters(sb, gdp) + clen_changed; 3473 3474 ext4_free_group_clusters_set(sb, gdp, clen); 3475 ext4_block_bitmap_csum_set(sb, group, gdp, bitmap_bh); 3476 ext4_group_desc_csum_set(sb, group, gdp); 3477 3478 ext4_unlock_group(sb, group); 3479 3480 if (sbi->s_log_groups_per_flex) { 3481 ext4_group_t flex_group = ext4_flex_group(sbi, group); 3482 struct flex_groups *fg = sbi_array_rcu_deref(sbi, 3483 s_flex_groups, flex_group); 3484 3485 if (state) 3486 atomic64_sub(clen_changed, &fg->free_clusters); 3487 else 3488 atomic64_add(clen_changed, &fg->free_clusters); 3489 3490 } 3491 3492 err = ext4_handle_dirty_metadata(NULL, NULL, bitmap_bh); 3493 if (err) 3494 break; 3495 sync_dirty_buffer(bitmap_bh); 3496 err = ext4_handle_dirty_metadata(NULL, NULL, gdp_bh); 3497 sync_dirty_buffer(gdp_bh); 3498 if (err) 3499 break; 3500 3501 block += thisgrp_len; 3502 len -= thisgrp_len; 3503 brelse(bitmap_bh); 3504 BUG_ON(len < 0); 3505 } 3506 3507 if (err) 3508 brelse(bitmap_bh); 3509} 3510 3511/* 3512 * here we normalize request for locality group 3513 * Group request are normalized to s_mb_group_prealloc, which goes to 3514 * s_strip if we set the same via mount option. 3515 * s_mb_group_prealloc can be configured via 3516 * /sys/fs/ext4/<partition>/mb_group_prealloc 3517 * 3518 * XXX: should we try to preallocate more than the group has now? 3519 */ 3520static void ext4_mb_normalize_group_request(struct ext4_allocation_context *ac) 3521{ 3522 struct super_block *sb = ac->ac_sb; 3523 struct ext4_locality_group *lg = ac->ac_lg; 3524 3525 BUG_ON(lg == NULL); 3526 ac->ac_g_ex.fe_len = EXT4_SB(sb)->s_mb_group_prealloc; 3527 mb_debug(sb, "goal %u blocks for locality group\n", ac->ac_g_ex.fe_len); 3528} 3529 3530/* 3531 * Normalization means making request better in terms of 3532 * size and alignment 3533 */ 3534static noinline_for_stack void 3535ext4_mb_normalize_request(struct ext4_allocation_context *ac, 3536 struct ext4_allocation_request *ar) 3537{ 3538 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 3539 struct ext4_super_block *es = sbi->s_es; 3540 int bsbits, max; 3541 loff_t size, start_off, end; 3542 loff_t orig_size __maybe_unused; 3543 ext4_lblk_t start; 3544 struct ext4_inode_info *ei = EXT4_I(ac->ac_inode); 3545 struct ext4_prealloc_space *pa; 3546 3547 /* do normalize only data requests, metadata requests 3548 do not need preallocation */ 3549 if (!(ac->ac_flags & EXT4_MB_HINT_DATA)) 3550 return; 3551 3552 /* sometime caller may want exact blocks */ 3553 if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY)) 3554 return; 3555 3556 /* caller may indicate that preallocation isn't 3557 * required (it's a tail, for example) */ 3558 if (ac->ac_flags & EXT4_MB_HINT_NOPREALLOC) 3559 return; 3560 3561 if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC) { 3562 ext4_mb_normalize_group_request(ac); 3563 return ; 3564 } 3565 3566 bsbits = ac->ac_sb->s_blocksize_bits; 3567 3568 /* first, let's learn actual file size 3569 * given current request is allocated */ 3570 size = extent_logical_end(sbi, &ac->ac_o_ex); 3571 size = size << bsbits; 3572 if (size < i_size_read(ac->ac_inode)) 3573 size = i_size_read(ac->ac_inode); 3574 orig_size = size; 3575 3576 /* max size of free chunks */ 3577 max = 2 << bsbits; 3578 3579#define NRL_CHECK_SIZE(req, size, max, chunk_size) \ 3580 (req <= (size) || max <= (chunk_size)) 3581 3582 /* first, try to predict filesize */ 3583 /* XXX: should this table be tunable? */ 3584 start_off = 0; 3585 if (size <= 16 * 1024) { 3586 size = 16 * 1024; 3587 } else if (size <= 32 * 1024) { 3588 size = 32 * 1024; 3589 } else if (size <= 64 * 1024) { 3590 size = 64 * 1024; 3591 } else if (size <= 128 * 1024) { 3592 size = 128 * 1024; 3593 } else if (size <= 256 * 1024) { 3594 size = 256 * 1024; 3595 } else if (size <= 512 * 1024) { 3596 size = 512 * 1024; 3597 } else if (size <= 1024 * 1024) { 3598 size = 1024 * 1024; 3599 } else if (NRL_CHECK_SIZE(size, 4 * 1024 * 1024, max, 2 * 1024)) { 3600 start_off = ((loff_t)ac->ac_o_ex.fe_logical >> 3601 (21 - bsbits)) << 21; 3602 size = 2 * 1024 * 1024; 3603 } else if (NRL_CHECK_SIZE(size, 8 * 1024 * 1024, max, 4 * 1024)) { 3604 start_off = ((loff_t)ac->ac_o_ex.fe_logical >> 3605 (22 - bsbits)) << 22; 3606 size = 4 * 1024 * 1024; 3607 } else if (NRL_CHECK_SIZE(ac->ac_o_ex.fe_len, 3608 (8<<20)>>bsbits, max, 8 * 1024)) { 3609 start_off = ((loff_t)ac->ac_o_ex.fe_logical >> 3610 (23 - bsbits)) << 23; 3611 size = 8 * 1024 * 1024; 3612 } else { 3613 start_off = (loff_t) ac->ac_o_ex.fe_logical << bsbits; 3614 size = (loff_t) EXT4_C2B(EXT4_SB(ac->ac_sb), 3615 ac->ac_o_ex.fe_len) << bsbits; 3616 } 3617 size = size >> bsbits; 3618 start = start_off >> bsbits; 3619 3620 /* 3621 * For tiny groups (smaller than 8MB) the chosen allocation 3622 * alignment may be larger than group size. Make sure the 3623 * alignment does not move allocation to a different group which 3624 * makes mballoc fail assertions later. 3625 */ 3626 start = max(start, rounddown(ac->ac_o_ex.fe_logical, 3627 (ext4_lblk_t)EXT4_BLOCKS_PER_GROUP(ac->ac_sb))); 3628 3629 /* avoid unnecessary preallocation that may trigger assertions */ 3630 if (start + size > EXT_MAX_BLOCKS) 3631 size = EXT_MAX_BLOCKS - start; 3632 3633 /* don't cover already allocated blocks in selected range */ 3634 if (ar->pleft && start <= ar->lleft) { 3635 size -= ar->lleft + 1 - start; 3636 start = ar->lleft + 1; 3637 } 3638 if (ar->pright && start + size - 1 >= ar->lright) 3639 size -= start + size - ar->lright; 3640 3641 /* 3642 * Trim allocation request for filesystems with artificially small 3643 * groups. 3644 */ 3645 if (size > EXT4_BLOCKS_PER_GROUP(ac->ac_sb)) 3646 size = EXT4_BLOCKS_PER_GROUP(ac->ac_sb); 3647 3648 end = start + size; 3649 3650 /* check we don't cross already preallocated blocks */ 3651 rcu_read_lock(); 3652 list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) { 3653 loff_t pa_end; 3654 3655 if (pa->pa_deleted) 3656 continue; 3657 spin_lock(&pa->pa_lock); 3658 if (pa->pa_deleted) { 3659 spin_unlock(&pa->pa_lock); 3660 continue; 3661 } 3662 3663 pa_end = pa_logical_end(EXT4_SB(ac->ac_sb), pa); 3664 3665 /* PA must not overlap original request */ 3666 BUG_ON(!(ac->ac_o_ex.fe_logical >= pa_end || 3667 ac->ac_o_ex.fe_logical < pa->pa_lstart)); 3668 3669 /* skip PAs this normalized request doesn't overlap with */ 3670 if (pa->pa_lstart >= end || pa_end <= start) { 3671 spin_unlock(&pa->pa_lock); 3672 continue; 3673 } 3674 BUG_ON(pa->pa_lstart <= start && pa_end >= end); 3675 3676 /* adjust start or end to be adjacent to this pa */ 3677 if (pa_end <= ac->ac_o_ex.fe_logical) { 3678 BUG_ON(pa_end < start); 3679 start = pa_end; 3680 } else if (pa->pa_lstart > ac->ac_o_ex.fe_logical) { 3681 BUG_ON(pa->pa_lstart > end); 3682 end = pa->pa_lstart; 3683 } 3684 spin_unlock(&pa->pa_lock); 3685 } 3686 rcu_read_unlock(); 3687 size = end - start; 3688 3689 /* XXX: extra loop to check we really don't overlap preallocations */ 3690 rcu_read_lock(); 3691 list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) { 3692 loff_t pa_end; 3693 3694 spin_lock(&pa->pa_lock); 3695 if (pa->pa_deleted == 0) { 3696 pa_end = pa_logical_end(EXT4_SB(ac->ac_sb), pa); 3697 BUG_ON(!(start >= pa_end || end <= pa->pa_lstart)); 3698 } 3699 spin_unlock(&pa->pa_lock); 3700 } 3701 rcu_read_unlock(); 3702 3703 if (start + size <= ac->ac_o_ex.fe_logical && 3704 start > ac->ac_o_ex.fe_logical) { 3705 ext4_msg(ac->ac_sb, KERN_ERR, 3706 "start %lu, size %lu, fe_logical %lu", 3707 (unsigned long) start, (unsigned long) size, 3708 (unsigned long) ac->ac_o_ex.fe_logical); 3709 BUG(); 3710 } 3711 BUG_ON(size <= 0 || size > EXT4_BLOCKS_PER_GROUP(ac->ac_sb)); 3712 3713 /* now prepare goal request */ 3714 3715 /* XXX: is it better to align blocks WRT to logical 3716 * placement or satisfy big request as is */ 3717 ac->ac_g_ex.fe_logical = start; 3718 ac->ac_g_ex.fe_len = EXT4_NUM_B2C(sbi, size); 3719 3720 /* define goal start in order to merge */ 3721 if (ar->pright && (ar->lright == (start + size)) && 3722 ar->pright >= size && 3723 ar->pright - size >= le32_to_cpu(es->s_first_data_block)) { 3724 /* merge to the right */ 3725 ext4_get_group_no_and_offset(ac->ac_sb, ar->pright - size, 3726 &ac->ac_g_ex.fe_group, 3727 &ac->ac_g_ex.fe_start); 3728 ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL; 3729 } 3730 if (ar->pleft && (ar->lleft + 1 == start) && 3731 ar->pleft + 1 < ext4_blocks_count(es)) { 3732 /* merge to the left */ 3733 ext4_get_group_no_and_offset(ac->ac_sb, ar->pleft + 1, 3734 &ac->ac_g_ex.fe_group, 3735 &ac->ac_g_ex.fe_start); 3736 ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL; 3737 } 3738 3739 mb_debug(ac->ac_sb, "goal: %lld(was %lld) blocks at %u\n", size, 3740 orig_size, start); 3741} 3742 3743static void ext4_mb_collect_stats(struct ext4_allocation_context *ac) 3744{ 3745 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 3746 3747 if (sbi->s_mb_stats && ac->ac_g_ex.fe_len >= 1) { 3748 atomic_inc(&sbi->s_bal_reqs); 3749 atomic_add(ac->ac_b_ex.fe_len, &sbi->s_bal_allocated); 3750 if (ac->ac_b_ex.fe_len >= ac->ac_o_ex.fe_len) 3751 atomic_inc(&sbi->s_bal_success); 3752 atomic_add(ac->ac_found, &sbi->s_bal_ex_scanned); 3753 atomic_add(ac->ac_groups_scanned, &sbi->s_bal_groups_scanned); 3754 if (ac->ac_g_ex.fe_start == ac->ac_b_ex.fe_start && 3755 ac->ac_g_ex.fe_group == ac->ac_b_ex.fe_group) 3756 atomic_inc(&sbi->s_bal_goals); 3757 if (ac->ac_found > sbi->s_mb_max_to_scan) 3758 atomic_inc(&sbi->s_bal_breaks); 3759 } 3760 3761 if (ac->ac_op == EXT4_MB_HISTORY_ALLOC) 3762 trace_ext4_mballoc_alloc(ac); 3763 else 3764 trace_ext4_mballoc_prealloc(ac); 3765} 3766 3767/* 3768 * Called on failure; free up any blocks from the inode PA for this 3769 * context. We don't need this for MB_GROUP_PA because we only change 3770 * pa_free in ext4_mb_release_context(), but on failure, we've already 3771 * zeroed out ac->ac_b_ex.fe_len, so group_pa->pa_free is not changed. 3772 */ 3773static void ext4_discard_allocated_blocks(struct ext4_allocation_context *ac) 3774{ 3775 struct ext4_prealloc_space *pa = ac->ac_pa; 3776 struct ext4_buddy e4b; 3777 int err; 3778 3779 if (pa == NULL) { 3780 if (ac->ac_f_ex.fe_len == 0) 3781 return; 3782 err = ext4_mb_load_buddy(ac->ac_sb, ac->ac_f_ex.fe_group, &e4b); 3783 if (err) { 3784 /* 3785 * This should never happen since we pin the 3786 * pages in the ext4_allocation_context so 3787 * ext4_mb_load_buddy() should never fail. 3788 */ 3789 WARN(1, "mb_load_buddy failed (%d)", err); 3790 return; 3791 } 3792 ext4_lock_group(ac->ac_sb, ac->ac_f_ex.fe_group); 3793 mb_free_blocks(ac->ac_inode, &e4b, ac->ac_f_ex.fe_start, 3794 ac->ac_f_ex.fe_len); 3795 ext4_unlock_group(ac->ac_sb, ac->ac_f_ex.fe_group); 3796 ext4_mb_unload_buddy(&e4b); 3797 return; 3798 } 3799 if (pa->pa_type == MB_INODE_PA) 3800 pa->pa_free += ac->ac_b_ex.fe_len; 3801} 3802 3803/* 3804 * use blocks preallocated to inode 3805 */ 3806static void ext4_mb_use_inode_pa(struct ext4_allocation_context *ac, 3807 struct ext4_prealloc_space *pa) 3808{ 3809 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 3810 ext4_fsblk_t start; 3811 ext4_fsblk_t end; 3812 int len; 3813 3814 /* found preallocated blocks, use them */ 3815 start = pa->pa_pstart + (ac->ac_o_ex.fe_logical - pa->pa_lstart); 3816 end = min(pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len), 3817 start + EXT4_C2B(sbi, ac->ac_o_ex.fe_len)); 3818 len = EXT4_NUM_B2C(sbi, end - start); 3819 ext4_get_group_no_and_offset(ac->ac_sb, start, &ac->ac_b_ex.fe_group, 3820 &ac->ac_b_ex.fe_start); 3821 ac->ac_b_ex.fe_len = len; 3822 ac->ac_status = AC_STATUS_FOUND; 3823 ac->ac_pa = pa; 3824 3825 BUG_ON(start < pa->pa_pstart); 3826 BUG_ON(end > pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len)); 3827 BUG_ON(pa->pa_free < len); 3828 BUG_ON(ac->ac_b_ex.fe_len <= 0); 3829 pa->pa_free -= len; 3830 3831 mb_debug(ac->ac_sb, "use %llu/%d from inode pa %p\n", start, len, pa); 3832} 3833 3834/* 3835 * use blocks preallocated to locality group 3836 */ 3837static void ext4_mb_use_group_pa(struct ext4_allocation_context *ac, 3838 struct ext4_prealloc_space *pa) 3839{ 3840 unsigned int len = ac->ac_o_ex.fe_len; 3841 3842 ext4_get_group_no_and_offset(ac->ac_sb, pa->pa_pstart, 3843 &ac->ac_b_ex.fe_group, 3844 &ac->ac_b_ex.fe_start); 3845 ac->ac_b_ex.fe_len = len; 3846 ac->ac_status = AC_STATUS_FOUND; 3847 ac->ac_pa = pa; 3848 3849 /* we don't correct pa_pstart or pa_plen here to avoid 3850 * possible race when the group is being loaded concurrently 3851 * instead we correct pa later, after blocks are marked 3852 * in on-disk bitmap -- see ext4_mb_release_context() 3853 * Other CPUs are prevented from allocating from this pa by lg_mutex 3854 */ 3855 mb_debug(ac->ac_sb, "use %u/%u from group pa %p\n", 3856 pa->pa_lstart-len, len, pa); 3857} 3858 3859/* 3860 * Return the prealloc space that have minimal distance 3861 * from the goal block. @cpa is the prealloc 3862 * space that is having currently known minimal distance 3863 * from the goal block. 3864 */ 3865static struct ext4_prealloc_space * 3866ext4_mb_check_group_pa(ext4_fsblk_t goal_block, 3867 struct ext4_prealloc_space *pa, 3868 struct ext4_prealloc_space *cpa) 3869{ 3870 ext4_fsblk_t cur_distance, new_distance; 3871 3872 if (cpa == NULL) { 3873 atomic_inc(&pa->pa_count); 3874 return pa; 3875 } 3876 cur_distance = abs(goal_block - cpa->pa_pstart); 3877 new_distance = abs(goal_block - pa->pa_pstart); 3878 3879 if (cur_distance <= new_distance) 3880 return cpa; 3881 3882 /* drop the previous reference */ 3883 atomic_dec(&cpa->pa_count); 3884 atomic_inc(&pa->pa_count); 3885 return pa; 3886} 3887 3888/* 3889 * search goal blocks in preallocated space 3890 */ 3891static noinline_for_stack bool 3892ext4_mb_use_preallocated(struct ext4_allocation_context *ac) 3893{ 3894 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 3895 int order, i; 3896 struct ext4_inode_info *ei = EXT4_I(ac->ac_inode); 3897 struct ext4_locality_group *lg; 3898 struct ext4_prealloc_space *pa, *cpa = NULL; 3899 ext4_fsblk_t goal_block; 3900 3901 /* only data can be preallocated */ 3902 if (!(ac->ac_flags & EXT4_MB_HINT_DATA)) 3903 return false; 3904 3905 /* first, try per-file preallocation */ 3906 rcu_read_lock(); 3907 list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) { 3908 3909 /* all fields in this condition don't change, 3910 * so we can skip locking for them */ 3911 if (ac->ac_o_ex.fe_logical < pa->pa_lstart || 3912 ac->ac_o_ex.fe_logical >= pa_logical_end(sbi, pa)) 3913 continue; 3914 3915 /* non-extent files can't have physical blocks past 2^32 */ 3916 if (!(ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS)) && 3917 (pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len) > 3918 EXT4_MAX_BLOCK_FILE_PHYS)) 3919 continue; 3920 3921 /* found preallocated blocks, use them */ 3922 spin_lock(&pa->pa_lock); 3923 if (pa->pa_deleted == 0 && pa->pa_free) { 3924 atomic_inc(&pa->pa_count); 3925 ext4_mb_use_inode_pa(ac, pa); 3926 spin_unlock(&pa->pa_lock); 3927 ac->ac_criteria = 10; 3928 rcu_read_unlock(); 3929 return true; 3930 } 3931 spin_unlock(&pa->pa_lock); 3932 } 3933 rcu_read_unlock(); 3934 3935 /* can we use group allocation? */ 3936 if (!(ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC)) 3937 return false; 3938 3939 /* inode may have no locality group for some reason */ 3940 lg = ac->ac_lg; 3941 if (lg == NULL) 3942 return false; 3943 order = fls(ac->ac_o_ex.fe_len) - 1; 3944 if (order > PREALLOC_TB_SIZE - 1) 3945 /* The max size of hash table is PREALLOC_TB_SIZE */ 3946 order = PREALLOC_TB_SIZE - 1; 3947 3948 goal_block = ext4_grp_offs_to_block(ac->ac_sb, &ac->ac_g_ex); 3949 /* 3950 * search for the prealloc space that is having 3951 * minimal distance from the goal block. 3952 */ 3953 for (i = order; i < PREALLOC_TB_SIZE; i++) { 3954 rcu_read_lock(); 3955 list_for_each_entry_rcu(pa, &lg->lg_prealloc_list[i], 3956 pa_inode_list) { 3957 spin_lock(&pa->pa_lock); 3958 if (pa->pa_deleted == 0 && 3959 pa->pa_free >= ac->ac_o_ex.fe_len) { 3960 3961 cpa = ext4_mb_check_group_pa(goal_block, 3962 pa, cpa); 3963 } 3964 spin_unlock(&pa->pa_lock); 3965 } 3966 rcu_read_unlock(); 3967 } 3968 if (cpa) { 3969 ext4_mb_use_group_pa(ac, cpa); 3970 ac->ac_criteria = 20; 3971 return true; 3972 } 3973 return false; 3974} 3975 3976/* 3977 * the function goes through all block freed in the group 3978 * but not yet committed and marks them used in in-core bitmap. 3979 * buddy must be generated from this bitmap 3980 * Need to be called with the ext4 group lock held 3981 */ 3982static void ext4_mb_generate_from_freelist(struct super_block *sb, void *bitmap, 3983 ext4_group_t group) 3984{ 3985 struct rb_node *n; 3986 struct ext4_group_info *grp; 3987 struct ext4_free_data *entry; 3988 3989 grp = ext4_get_group_info(sb, group); 3990 if (!grp) 3991 return; 3992 n = rb_first(&(grp->bb_free_root)); 3993 3994 while (n) { 3995 entry = rb_entry(n, struct ext4_free_data, efd_node); 3996 ext4_set_bits(bitmap, entry->efd_start_cluster, entry->efd_count); 3997 n = rb_next(n); 3998 } 3999 return; 4000} 4001 4002/* 4003 * the function goes through all preallocation in this group and marks them 4004 * used in in-core bitmap. buddy must be generated from this bitmap 4005 * Need to be called with ext4 group lock held 4006 */ 4007static noinline_for_stack 4008void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap, 4009 ext4_group_t group) 4010{ 4011 struct ext4_group_info *grp = ext4_get_group_info(sb, group); 4012 struct ext4_prealloc_space *pa; 4013 struct list_head *cur; 4014 ext4_group_t groupnr; 4015 ext4_grpblk_t start; 4016 int preallocated = 0; 4017 int len; 4018 4019 if (!grp) 4020 return; 4021 4022 /* all form of preallocation discards first load group, 4023 * so the only competing code is preallocation use. 4024 * we don't need any locking here 4025 * notice we do NOT ignore preallocations with pa_deleted 4026 * otherwise we could leave used blocks available for 4027 * allocation in buddy when concurrent ext4_mb_put_pa() 4028 * is dropping preallocation 4029 */ 4030 list_for_each(cur, &grp->bb_prealloc_list) { 4031 pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list); 4032 spin_lock(&pa->pa_lock); 4033 ext4_get_group_no_and_offset(sb, pa->pa_pstart, 4034 &groupnr, &start); 4035 len = pa->pa_len; 4036 spin_unlock(&pa->pa_lock); 4037 if (unlikely(len == 0)) 4038 continue; 4039 BUG_ON(groupnr != group); 4040 ext4_set_bits(bitmap, start, len); 4041 preallocated += len; 4042 } 4043 mb_debug(sb, "preallocated %d for group %u\n", preallocated, group); 4044} 4045 4046static void ext4_mb_mark_pa_deleted(struct super_block *sb, 4047 struct ext4_prealloc_space *pa) 4048{ 4049 struct ext4_inode_info *ei; 4050 4051 if (pa->pa_deleted) { 4052 ext4_warning(sb, "deleted pa, type:%d, pblk:%llu, lblk:%u, len:%d\n", 4053 pa->pa_type, pa->pa_pstart, pa->pa_lstart, 4054 pa->pa_len); 4055 return; 4056 } 4057 4058 pa->pa_deleted = 1; 4059 4060 if (pa->pa_type == MB_INODE_PA) { 4061 ei = EXT4_I(pa->pa_inode); 4062 atomic_dec(&ei->i_prealloc_active); 4063 } 4064} 4065 4066static void ext4_mb_pa_callback(struct rcu_head *head) 4067{ 4068 struct ext4_prealloc_space *pa; 4069 pa = container_of(head, struct ext4_prealloc_space, u.pa_rcu); 4070 4071 BUG_ON(atomic_read(&pa->pa_count)); 4072 BUG_ON(pa->pa_deleted == 0); 4073 kmem_cache_free(ext4_pspace_cachep, pa); 4074} 4075 4076/* 4077 * drops a reference to preallocated space descriptor 4078 * if this was the last reference and the space is consumed 4079 */ 4080static void ext4_mb_put_pa(struct ext4_allocation_context *ac, 4081 struct super_block *sb, struct ext4_prealloc_space *pa) 4082{ 4083 ext4_group_t grp; 4084 ext4_fsblk_t grp_blk; 4085 4086 /* in this short window concurrent discard can set pa_deleted */ 4087 spin_lock(&pa->pa_lock); 4088 if (!atomic_dec_and_test(&pa->pa_count) || pa->pa_free != 0) { 4089 spin_unlock(&pa->pa_lock); 4090 return; 4091 } 4092 4093 if (pa->pa_deleted == 1) { 4094 spin_unlock(&pa->pa_lock); 4095 return; 4096 } 4097 4098 ext4_mb_mark_pa_deleted(sb, pa); 4099 spin_unlock(&pa->pa_lock); 4100 4101 grp_blk = pa->pa_pstart; 4102 /* 4103 * If doing group-based preallocation, pa_pstart may be in the 4104 * next group when pa is used up 4105 */ 4106 if (pa->pa_type == MB_GROUP_PA) 4107 grp_blk--; 4108 4109 grp = ext4_get_group_number(sb, grp_blk); 4110 4111 /* 4112 * possible race: 4113 * 4114 * P1 (buddy init) P2 (regular allocation) 4115 * find block B in PA 4116 * copy on-disk bitmap to buddy 4117 * mark B in on-disk bitmap 4118 * drop PA from group 4119 * mark all PAs in buddy 4120 * 4121 * thus, P1 initializes buddy with B available. to prevent this 4122 * we make "copy" and "mark all PAs" atomic and serialize "drop PA" 4123 * against that pair 4124 */ 4125 ext4_lock_group(sb, grp); 4126 list_del(&pa->pa_group_list); 4127 ext4_unlock_group(sb, grp); 4128 4129 spin_lock(pa->pa_obj_lock); 4130 list_del_rcu(&pa->pa_inode_list); 4131 spin_unlock(pa->pa_obj_lock); 4132 4133 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback); 4134} 4135 4136/* 4137 * creates new preallocated space for given inode 4138 */ 4139static noinline_for_stack void 4140ext4_mb_new_inode_pa(struct ext4_allocation_context *ac) 4141{ 4142 struct super_block *sb = ac->ac_sb; 4143 struct ext4_sb_info *sbi = EXT4_SB(sb); 4144 struct ext4_prealloc_space *pa; 4145 struct ext4_group_info *grp; 4146 struct ext4_inode_info *ei; 4147 4148 /* preallocate only when found space is larger then requested */ 4149 BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len); 4150 BUG_ON(ac->ac_status != AC_STATUS_FOUND); 4151 BUG_ON(!S_ISREG(ac->ac_inode->i_mode)); 4152 BUG_ON(ac->ac_pa == NULL); 4153 4154 pa = ac->ac_pa; 4155 4156 if (ac->ac_b_ex.fe_len < ac->ac_g_ex.fe_len) { 4157 struct ext4_free_extent ex = { 4158 .fe_logical = ac->ac_g_ex.fe_logical, 4159 .fe_len = ac->ac_g_ex.fe_len, 4160 }; 4161 loff_t orig_goal_end = extent_logical_end(sbi, &ex); 4162 4163 /* we can't allocate as much as normalizer wants. 4164 * so, found space must get proper lstart 4165 * to cover original request */ 4166 BUG_ON(ac->ac_g_ex.fe_logical > ac->ac_o_ex.fe_logical); 4167 BUG_ON(ac->ac_g_ex.fe_len < ac->ac_o_ex.fe_len); 4168 4169 /* 4170 * Use the below logic for adjusting best extent as it keeps 4171 * fragmentation in check while ensuring logical range of best 4172 * extent doesn't overflow out of goal extent: 4173 * 4174 * 1. Check if best ex can be kept at end of goal and still 4175 * cover original start 4176 * 2. Else, check if best ex can be kept at start of goal and 4177 * still cover original start 4178 * 3. Else, keep the best ex at start of original request. 4179 */ 4180 ex.fe_len = ac->ac_b_ex.fe_len; 4181 4182 ex.fe_logical = orig_goal_end - EXT4_C2B(sbi, ex.fe_len); 4183 if (ac->ac_o_ex.fe_logical >= ex.fe_logical) 4184 goto adjust_bex; 4185 4186 ex.fe_logical = ac->ac_g_ex.fe_logical; 4187 if (ac->ac_o_ex.fe_logical < extent_logical_end(sbi, &ex)) 4188 goto adjust_bex; 4189 4190 ex.fe_logical = ac->ac_o_ex.fe_logical; 4191adjust_bex: 4192 ac->ac_b_ex.fe_logical = ex.fe_logical; 4193 4194 BUG_ON(ac->ac_o_ex.fe_logical < ac->ac_b_ex.fe_logical); 4195 BUG_ON(ac->ac_o_ex.fe_len > ac->ac_b_ex.fe_len); 4196 BUG_ON(extent_logical_end(sbi, &ex) > orig_goal_end); 4197 } 4198 4199 /* preallocation can change ac_b_ex, thus we store actually 4200 * allocated blocks for history */ 4201 ac->ac_f_ex = ac->ac_b_ex; 4202 4203 pa->pa_lstart = ac->ac_b_ex.fe_logical; 4204 pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex); 4205 pa->pa_len = ac->ac_b_ex.fe_len; 4206 pa->pa_free = pa->pa_len; 4207 spin_lock_init(&pa->pa_lock); 4208 INIT_LIST_HEAD(&pa->pa_inode_list); 4209 INIT_LIST_HEAD(&pa->pa_group_list); 4210 pa->pa_deleted = 0; 4211 pa->pa_type = MB_INODE_PA; 4212 4213 mb_debug(sb, "new inode pa %p: %llu/%d for %u\n", pa, pa->pa_pstart, 4214 pa->pa_len, pa->pa_lstart); 4215 trace_ext4_mb_new_inode_pa(ac, pa); 4216 4217 ext4_mb_use_inode_pa(ac, pa); 4218 atomic_add(pa->pa_free, &sbi->s_mb_preallocated); 4219 4220 ei = EXT4_I(ac->ac_inode); 4221 grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group); 4222 if (!grp) 4223 return; 4224 4225 pa->pa_obj_lock = &ei->i_prealloc_lock; 4226 pa->pa_inode = ac->ac_inode; 4227 4228 list_add(&pa->pa_group_list, &grp->bb_prealloc_list); 4229 4230 spin_lock(pa->pa_obj_lock); 4231 list_add_rcu(&pa->pa_inode_list, &ei->i_prealloc_list); 4232 spin_unlock(pa->pa_obj_lock); 4233 atomic_inc(&ei->i_prealloc_active); 4234} 4235 4236/* 4237 * creates new preallocated space for locality group inodes belongs to 4238 */ 4239static noinline_for_stack void 4240ext4_mb_new_group_pa(struct ext4_allocation_context *ac) 4241{ 4242 struct super_block *sb = ac->ac_sb; 4243 struct ext4_locality_group *lg; 4244 struct ext4_prealloc_space *pa; 4245 struct ext4_group_info *grp; 4246 4247 /* preallocate only when found space is larger then requested */ 4248 BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len); 4249 BUG_ON(ac->ac_status != AC_STATUS_FOUND); 4250 BUG_ON(!S_ISREG(ac->ac_inode->i_mode)); 4251 BUG_ON(ac->ac_pa == NULL); 4252 4253 pa = ac->ac_pa; 4254 4255 /* preallocation can change ac_b_ex, thus we store actually 4256 * allocated blocks for history */ 4257 ac->ac_f_ex = ac->ac_b_ex; 4258 4259 pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex); 4260 pa->pa_lstart = pa->pa_pstart; 4261 pa->pa_len = ac->ac_b_ex.fe_len; 4262 pa->pa_free = pa->pa_len; 4263 spin_lock_init(&pa->pa_lock); 4264 INIT_LIST_HEAD(&pa->pa_inode_list); 4265 INIT_LIST_HEAD(&pa->pa_group_list); 4266 pa->pa_deleted = 0; 4267 pa->pa_type = MB_GROUP_PA; 4268 4269 mb_debug(sb, "new group pa %p: %llu/%d for %u\n", pa, pa->pa_pstart, 4270 pa->pa_len, pa->pa_lstart); 4271 trace_ext4_mb_new_group_pa(ac, pa); 4272 4273 ext4_mb_use_group_pa(ac, pa); 4274 atomic_add(pa->pa_free, &EXT4_SB(sb)->s_mb_preallocated); 4275 4276 grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group); 4277 if (!grp) 4278 return; 4279 lg = ac->ac_lg; 4280 BUG_ON(lg == NULL); 4281 4282 pa->pa_obj_lock = &lg->lg_prealloc_lock; 4283 pa->pa_inode = NULL; 4284 4285 list_add(&pa->pa_group_list, &grp->bb_prealloc_list); 4286 4287 /* 4288 * We will later add the new pa to the right bucket 4289 * after updating the pa_free in ext4_mb_release_context 4290 */ 4291} 4292 4293static void ext4_mb_new_preallocation(struct ext4_allocation_context *ac) 4294{ 4295 if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC) 4296 ext4_mb_new_group_pa(ac); 4297 else 4298 ext4_mb_new_inode_pa(ac); 4299} 4300 4301/* 4302 * finds all unused blocks in on-disk bitmap, frees them in 4303 * in-core bitmap and buddy. 4304 * @pa must be unlinked from inode and group lists, so that 4305 * nobody else can find/use it. 4306 * the caller MUST hold group/inode locks. 4307 * TODO: optimize the case when there are no in-core structures yet 4308 */ 4309static noinline_for_stack int 4310ext4_mb_release_inode_pa(struct ext4_buddy *e4b, struct buffer_head *bitmap_bh, 4311 struct ext4_prealloc_space *pa) 4312{ 4313 struct super_block *sb = e4b->bd_sb; 4314 struct ext4_sb_info *sbi = EXT4_SB(sb); 4315 unsigned int end; 4316 unsigned int next; 4317 ext4_group_t group; 4318 ext4_grpblk_t bit; 4319 unsigned long long grp_blk_start; 4320 int free = 0; 4321 4322 BUG_ON(pa->pa_deleted == 0); 4323 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit); 4324 grp_blk_start = pa->pa_pstart - EXT4_C2B(sbi, bit); 4325 BUG_ON(group != e4b->bd_group && pa->pa_len != 0); 4326 end = bit + pa->pa_len; 4327 4328 while (bit < end) { 4329 bit = mb_find_next_zero_bit(bitmap_bh->b_data, end, bit); 4330 if (bit >= end) 4331 break; 4332 next = mb_find_next_bit(bitmap_bh->b_data, end, bit); 4333 mb_debug(sb, "free preallocated %u/%u in group %u\n", 4334 (unsigned) ext4_group_first_block_no(sb, group) + bit, 4335 (unsigned) next - bit, (unsigned) group); 4336 free += next - bit; 4337 4338 trace_ext4_mballoc_discard(sb, NULL, group, bit, next - bit); 4339 trace_ext4_mb_release_inode_pa(pa, (grp_blk_start + 4340 EXT4_C2B(sbi, bit)), 4341 next - bit); 4342 mb_free_blocks(pa->pa_inode, e4b, bit, next - bit); 4343 bit = next + 1; 4344 } 4345 if (free != pa->pa_free) { 4346 ext4_msg(e4b->bd_sb, KERN_CRIT, 4347 "pa %p: logic %lu, phys. %lu, len %d", 4348 pa, (unsigned long) pa->pa_lstart, 4349 (unsigned long) pa->pa_pstart, 4350 pa->pa_len); 4351 ext4_grp_locked_error(sb, group, 0, 0, "free %u, pa_free %u", 4352 free, pa->pa_free); 4353 /* 4354 * pa is already deleted so we use the value obtained 4355 * from the bitmap and continue. 4356 */ 4357 } 4358 atomic_add(free, &sbi->s_mb_discarded); 4359 4360 return 0; 4361} 4362 4363static noinline_for_stack int 4364ext4_mb_release_group_pa(struct ext4_buddy *e4b, 4365 struct ext4_prealloc_space *pa) 4366{ 4367 struct super_block *sb = e4b->bd_sb; 4368 ext4_group_t group; 4369 ext4_grpblk_t bit; 4370 4371 trace_ext4_mb_release_group_pa(sb, pa); 4372 BUG_ON(pa->pa_deleted == 0); 4373 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit); 4374 if (unlikely(group != e4b->bd_group && pa->pa_len != 0)) { 4375 ext4_warning(sb, "bad group: expected %u, group %u, pa_start %llu", 4376 e4b->bd_group, group, pa->pa_pstart); 4377 return 0; 4378 } 4379 mb_free_blocks(pa->pa_inode, e4b, bit, pa->pa_len); 4380 atomic_add(pa->pa_len, &EXT4_SB(sb)->s_mb_discarded); 4381 trace_ext4_mballoc_discard(sb, NULL, group, bit, pa->pa_len); 4382 4383 return 0; 4384} 4385 4386/* 4387 * releases all preallocations in given group 4388 * 4389 * first, we need to decide discard policy: 4390 * - when do we discard 4391 * 1) ENOSPC 4392 * - how many do we discard 4393 * 1) how many requested 4394 */ 4395static noinline_for_stack int 4396ext4_mb_discard_group_preallocations(struct super_block *sb, 4397 ext4_group_t group, int *busy) 4398{ 4399 struct ext4_group_info *grp = ext4_get_group_info(sb, group); 4400 struct buffer_head *bitmap_bh = NULL; 4401 struct ext4_prealloc_space *pa, *tmp; 4402 struct list_head list; 4403 struct ext4_buddy e4b; 4404 int err; 4405 int free = 0; 4406 4407 if (!grp) 4408 return 0; 4409 mb_debug(sb, "discard preallocation for group %u\n", group); 4410 if (list_empty(&grp->bb_prealloc_list)) 4411 goto out_dbg; 4412 4413 bitmap_bh = ext4_read_block_bitmap(sb, group); 4414 if (IS_ERR(bitmap_bh)) { 4415 err = PTR_ERR(bitmap_bh); 4416 ext4_error_err(sb, -err, 4417 "Error %d reading block bitmap for %u", 4418 err, group); 4419 goto out_dbg; 4420 } 4421 4422 err = ext4_mb_load_buddy(sb, group, &e4b); 4423 if (err) { 4424 ext4_warning(sb, "Error %d loading buddy information for %u", 4425 err, group); 4426 put_bh(bitmap_bh); 4427 goto out_dbg; 4428 } 4429 4430 INIT_LIST_HEAD(&list); 4431 ext4_lock_group(sb, group); 4432 list_for_each_entry_safe(pa, tmp, 4433 &grp->bb_prealloc_list, pa_group_list) { 4434 spin_lock(&pa->pa_lock); 4435 if (atomic_read(&pa->pa_count)) { 4436 spin_unlock(&pa->pa_lock); 4437 *busy = 1; 4438 continue; 4439 } 4440 if (pa->pa_deleted) { 4441 spin_unlock(&pa->pa_lock); 4442 continue; 4443 } 4444 4445 /* seems this one can be freed ... */ 4446 ext4_mb_mark_pa_deleted(sb, pa); 4447 4448 if (!free) 4449 this_cpu_inc(discard_pa_seq); 4450 4451 /* we can trust pa_free ... */ 4452 free += pa->pa_free; 4453 4454 spin_unlock(&pa->pa_lock); 4455 4456 list_del(&pa->pa_group_list); 4457 list_add(&pa->u.pa_tmp_list, &list); 4458 } 4459 4460 /* now free all selected PAs */ 4461 list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) { 4462 4463 /* remove from object (inode or locality group) */ 4464 spin_lock(pa->pa_obj_lock); 4465 list_del_rcu(&pa->pa_inode_list); 4466 spin_unlock(pa->pa_obj_lock); 4467 4468 if (pa->pa_type == MB_GROUP_PA) 4469 ext4_mb_release_group_pa(&e4b, pa); 4470 else 4471 ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa); 4472 4473 list_del(&pa->u.pa_tmp_list); 4474 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback); 4475 } 4476 4477 ext4_unlock_group(sb, group); 4478 ext4_mb_unload_buddy(&e4b); 4479 put_bh(bitmap_bh); 4480out_dbg: 4481 mb_debug(sb, "discarded (%d) blocks preallocated for group %u bb_free (%d)\n", 4482 free, group, grp->bb_free); 4483 return free; 4484} 4485 4486/* 4487 * releases all non-used preallocated blocks for given inode 4488 * 4489 * It's important to discard preallocations under i_data_sem 4490 * We don't want another block to be served from the prealloc 4491 * space when we are discarding the inode prealloc space. 4492 * 4493 * FIXME!! Make sure it is valid at all the call sites 4494 */ 4495void ext4_discard_preallocations(struct inode *inode, unsigned int needed) 4496{ 4497 struct ext4_inode_info *ei = EXT4_I(inode); 4498 struct super_block *sb = inode->i_sb; 4499 struct buffer_head *bitmap_bh = NULL; 4500 struct ext4_prealloc_space *pa, *tmp; 4501 ext4_group_t group = 0; 4502 struct list_head list; 4503 struct ext4_buddy e4b; 4504 int err; 4505 4506 if (!S_ISREG(inode->i_mode)) { 4507 /*BUG_ON(!list_empty(&ei->i_prealloc_list));*/ 4508 return; 4509 } 4510 4511 if (EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY) 4512 return; 4513 4514 mb_debug(sb, "discard preallocation for inode %lu\n", 4515 inode->i_ino); 4516 trace_ext4_discard_preallocations(inode, 4517 atomic_read(&ei->i_prealloc_active), needed); 4518 4519 INIT_LIST_HEAD(&list); 4520 4521 if (needed == 0) 4522 needed = UINT_MAX; 4523 4524repeat: 4525 /* first, collect all pa's in the inode */ 4526 spin_lock(&ei->i_prealloc_lock); 4527 while (!list_empty(&ei->i_prealloc_list) && needed) { 4528 pa = list_entry(ei->i_prealloc_list.prev, 4529 struct ext4_prealloc_space, pa_inode_list); 4530 BUG_ON(pa->pa_obj_lock != &ei->i_prealloc_lock); 4531 spin_lock(&pa->pa_lock); 4532 if (atomic_read(&pa->pa_count)) { 4533 /* this shouldn't happen often - nobody should 4534 * use preallocation while we're discarding it */ 4535 spin_unlock(&pa->pa_lock); 4536 spin_unlock(&ei->i_prealloc_lock); 4537 ext4_msg(sb, KERN_ERR, 4538 "uh-oh! used pa while discarding"); 4539 WARN_ON(1); 4540 schedule_timeout_uninterruptible(HZ); 4541 goto repeat; 4542 4543 } 4544 if (pa->pa_deleted == 0) { 4545 ext4_mb_mark_pa_deleted(sb, pa); 4546 spin_unlock(&pa->pa_lock); 4547 list_del_rcu(&pa->pa_inode_list); 4548 list_add(&pa->u.pa_tmp_list, &list); 4549 needed--; 4550 continue; 4551 } 4552 4553 /* someone is deleting pa right now */ 4554 spin_unlock(&pa->pa_lock); 4555 spin_unlock(&ei->i_prealloc_lock); 4556 4557 /* we have to wait here because pa_deleted 4558 * doesn't mean pa is already unlinked from 4559 * the list. as we might be called from 4560 * ->clear_inode() the inode will get freed 4561 * and concurrent thread which is unlinking 4562 * pa from inode's list may access already 4563 * freed memory, bad-bad-bad */ 4564 4565 /* XXX: if this happens too often, we can 4566 * add a flag to force wait only in case 4567 * of ->clear_inode(), but not in case of 4568 * regular truncate */ 4569 schedule_timeout_uninterruptible(HZ); 4570 goto repeat; 4571 } 4572 spin_unlock(&ei->i_prealloc_lock); 4573 4574 list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) { 4575 BUG_ON(pa->pa_type != MB_INODE_PA); 4576 group = ext4_get_group_number(sb, pa->pa_pstart); 4577 4578 err = ext4_mb_load_buddy_gfp(sb, group, &e4b, 4579 GFP_NOFS|__GFP_NOFAIL); 4580 if (err) { 4581 ext4_error_err(sb, -err, "Error %d loading buddy information for %u", 4582 err, group); 4583 continue; 4584 } 4585 4586 bitmap_bh = ext4_read_block_bitmap(sb, group); 4587 if (IS_ERR(bitmap_bh)) { 4588 err = PTR_ERR(bitmap_bh); 4589 ext4_error_err(sb, -err, "Error %d reading block bitmap for %u", 4590 err, group); 4591 ext4_mb_unload_buddy(&e4b); 4592 continue; 4593 } 4594 4595 ext4_lock_group(sb, group); 4596 list_del(&pa->pa_group_list); 4597 ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa); 4598 ext4_unlock_group(sb, group); 4599 4600 ext4_mb_unload_buddy(&e4b); 4601 put_bh(bitmap_bh); 4602 4603 list_del(&pa->u.pa_tmp_list); 4604 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback); 4605 } 4606} 4607 4608static int ext4_mb_pa_alloc(struct ext4_allocation_context *ac) 4609{ 4610 struct ext4_prealloc_space *pa; 4611 4612 BUG_ON(ext4_pspace_cachep == NULL); 4613 pa = kmem_cache_zalloc(ext4_pspace_cachep, GFP_NOFS); 4614 if (!pa) 4615 return -ENOMEM; 4616 atomic_set(&pa->pa_count, 1); 4617 ac->ac_pa = pa; 4618 return 0; 4619} 4620 4621static void ext4_mb_pa_free(struct ext4_allocation_context *ac) 4622{ 4623 struct ext4_prealloc_space *pa = ac->ac_pa; 4624 4625 BUG_ON(!pa); 4626 ac->ac_pa = NULL; 4627 WARN_ON(!atomic_dec_and_test(&pa->pa_count)); 4628 kmem_cache_free(ext4_pspace_cachep, pa); 4629} 4630 4631#ifdef CONFIG_EXT4_DEBUG 4632static inline void ext4_mb_show_pa(struct super_block *sb) 4633{ 4634 ext4_group_t i, ngroups; 4635 4636 if (ext4_test_mount_flag(sb, EXT4_MF_FS_ABORTED)) 4637 return; 4638 4639 ngroups = ext4_get_groups_count(sb); 4640 mb_debug(sb, "groups: "); 4641 for (i = 0; i < ngroups; i++) { 4642 struct ext4_group_info *grp = ext4_get_group_info(sb, i); 4643 struct ext4_prealloc_space *pa; 4644 ext4_grpblk_t start; 4645 struct list_head *cur; 4646 4647 if (!grp) 4648 continue; 4649 ext4_lock_group(sb, i); 4650 list_for_each(cur, &grp->bb_prealloc_list) { 4651 pa = list_entry(cur, struct ext4_prealloc_space, 4652 pa_group_list); 4653 spin_lock(&pa->pa_lock); 4654 ext4_get_group_no_and_offset(sb, pa->pa_pstart, 4655 NULL, &start); 4656 spin_unlock(&pa->pa_lock); 4657 mb_debug(sb, "PA:%u:%d:%d\n", i, start, 4658 pa->pa_len); 4659 } 4660 ext4_unlock_group(sb, i); 4661 mb_debug(sb, "%u: %d/%d\n", i, grp->bb_free, 4662 grp->bb_fragments); 4663 } 4664} 4665 4666static void ext4_mb_show_ac(struct ext4_allocation_context *ac) 4667{ 4668 struct super_block *sb = ac->ac_sb; 4669 4670 if (ext4_test_mount_flag(sb, EXT4_MF_FS_ABORTED)) 4671 return; 4672 4673 mb_debug(sb, "Can't allocate:" 4674 " Allocation context details:"); 4675 mb_debug(sb, "status %u flags 0x%x", 4676 ac->ac_status, ac->ac_flags); 4677 mb_debug(sb, "orig %lu/%lu/%lu@%lu, " 4678 "goal %lu/%lu/%lu@%lu, " 4679 "best %lu/%lu/%lu@%lu cr %d", 4680 (unsigned long)ac->ac_o_ex.fe_group, 4681 (unsigned long)ac->ac_o_ex.fe_start, 4682 (unsigned long)ac->ac_o_ex.fe_len, 4683 (unsigned long)ac->ac_o_ex.fe_logical, 4684 (unsigned long)ac->ac_g_ex.fe_group, 4685 (unsigned long)ac->ac_g_ex.fe_start, 4686 (unsigned long)ac->ac_g_ex.fe_len, 4687 (unsigned long)ac->ac_g_ex.fe_logical, 4688 (unsigned long)ac->ac_b_ex.fe_group, 4689 (unsigned long)ac->ac_b_ex.fe_start, 4690 (unsigned long)ac->ac_b_ex.fe_len, 4691 (unsigned long)ac->ac_b_ex.fe_logical, 4692 (int)ac->ac_criteria); 4693 mb_debug(sb, "%u found", ac->ac_found); 4694 ext4_mb_show_pa(sb); 4695} 4696#else 4697static inline void ext4_mb_show_pa(struct super_block *sb) 4698{ 4699 return; 4700} 4701static inline void ext4_mb_show_ac(struct ext4_allocation_context *ac) 4702{ 4703 ext4_mb_show_pa(ac->ac_sb); 4704 return; 4705} 4706#endif 4707 4708/* 4709 * We use locality group preallocation for small size file. The size of the 4710 * file is determined by the current size or the resulting size after 4711 * allocation which ever is larger 4712 * 4713 * One can tune this size via /sys/fs/ext4/<partition>/mb_stream_req 4714 */ 4715static void ext4_mb_group_or_file(struct ext4_allocation_context *ac) 4716{ 4717 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 4718 int bsbits = ac->ac_sb->s_blocksize_bits; 4719 loff_t size, isize; 4720 4721 if (!(ac->ac_flags & EXT4_MB_HINT_DATA)) 4722 return; 4723 4724 if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY)) 4725 return; 4726 4727 size = extent_logical_end(sbi, &ac->ac_o_ex); 4728 isize = (i_size_read(ac->ac_inode) + ac->ac_sb->s_blocksize - 1) 4729 >> bsbits; 4730 4731 if ((size == isize) && !ext4_fs_is_busy(sbi) && 4732 !inode_is_open_for_write(ac->ac_inode)) { 4733 ac->ac_flags |= EXT4_MB_HINT_NOPREALLOC; 4734 return; 4735 } 4736 4737 if (sbi->s_mb_group_prealloc <= 0) { 4738 ac->ac_flags |= EXT4_MB_STREAM_ALLOC; 4739 return; 4740 } 4741 4742 /* don't use group allocation for large files */ 4743 size = max(size, isize); 4744 if (size > sbi->s_mb_stream_request) { 4745 ac->ac_flags |= EXT4_MB_STREAM_ALLOC; 4746 return; 4747 } 4748 4749 BUG_ON(ac->ac_lg != NULL); 4750 /* 4751 * locality group prealloc space are per cpu. The reason for having 4752 * per cpu locality group is to reduce the contention between block 4753 * request from multiple CPUs. 4754 */ 4755 ac->ac_lg = raw_cpu_ptr(sbi->s_locality_groups); 4756 4757 /* we're going to use group allocation */ 4758 ac->ac_flags |= EXT4_MB_HINT_GROUP_ALLOC; 4759 4760 /* serialize all allocations in the group */ 4761 mutex_lock(&ac->ac_lg->lg_mutex); 4762} 4763 4764static noinline_for_stack int 4765ext4_mb_initialize_context(struct ext4_allocation_context *ac, 4766 struct ext4_allocation_request *ar) 4767{ 4768 struct super_block *sb = ar->inode->i_sb; 4769 struct ext4_sb_info *sbi = EXT4_SB(sb); 4770 struct ext4_super_block *es = sbi->s_es; 4771 ext4_group_t group; 4772 unsigned int len; 4773 ext4_fsblk_t goal; 4774 ext4_grpblk_t block; 4775 4776 /* we can't allocate > group size */ 4777 len = ar->len; 4778 4779 /* just a dirty hack to filter too big requests */ 4780 if (len >= EXT4_CLUSTERS_PER_GROUP(sb)) 4781 len = EXT4_CLUSTERS_PER_GROUP(sb); 4782 4783 /* start searching from the goal */ 4784 goal = ar->goal; 4785 if (goal < le32_to_cpu(es->s_first_data_block) || 4786 goal >= ext4_blocks_count(es)) 4787 goal = le32_to_cpu(es->s_first_data_block); 4788 ext4_get_group_no_and_offset(sb, goal, &group, &block); 4789 4790 /* set up allocation goals */ 4791 ac->ac_b_ex.fe_logical = EXT4_LBLK_CMASK(sbi, ar->logical); 4792 ac->ac_status = AC_STATUS_CONTINUE; 4793 ac->ac_sb = sb; 4794 ac->ac_inode = ar->inode; 4795 ac->ac_o_ex.fe_logical = ac->ac_b_ex.fe_logical; 4796 ac->ac_o_ex.fe_group = group; 4797 ac->ac_o_ex.fe_start = block; 4798 ac->ac_o_ex.fe_len = len; 4799 ac->ac_g_ex = ac->ac_o_ex; 4800 ac->ac_flags = ar->flags; 4801 4802 /* we have to define context: we'll work with a file or 4803 * locality group. this is a policy, actually */ 4804 ext4_mb_group_or_file(ac); 4805 4806 mb_debug(sb, "init ac: %u blocks @ %u, goal %u, flags 0x%x, 2^%d, " 4807 "left: %u/%u, right %u/%u to %swritable\n", 4808 (unsigned) ar->len, (unsigned) ar->logical, 4809 (unsigned) ar->goal, ac->ac_flags, ac->ac_2order, 4810 (unsigned) ar->lleft, (unsigned) ar->pleft, 4811 (unsigned) ar->lright, (unsigned) ar->pright, 4812 inode_is_open_for_write(ar->inode) ? "" : "non-"); 4813 return 0; 4814 4815} 4816 4817static noinline_for_stack void 4818ext4_mb_discard_lg_preallocations(struct super_block *sb, 4819 struct ext4_locality_group *lg, 4820 int order, int total_entries) 4821{ 4822 ext4_group_t group = 0; 4823 struct ext4_buddy e4b; 4824 struct list_head discard_list; 4825 struct ext4_prealloc_space *pa, *tmp; 4826 4827 mb_debug(sb, "discard locality group preallocation\n"); 4828 4829 INIT_LIST_HEAD(&discard_list); 4830 4831 spin_lock(&lg->lg_prealloc_lock); 4832 list_for_each_entry_rcu(pa, &lg->lg_prealloc_list[order], 4833 pa_inode_list, 4834 lockdep_is_held(&lg->lg_prealloc_lock)) { 4835 spin_lock(&pa->pa_lock); 4836 if (atomic_read(&pa->pa_count)) { 4837 /* 4838 * This is the pa that we just used 4839 * for block allocation. So don't 4840 * free that 4841 */ 4842 spin_unlock(&pa->pa_lock); 4843 continue; 4844 } 4845 if (pa->pa_deleted) { 4846 spin_unlock(&pa->pa_lock); 4847 continue; 4848 } 4849 /* only lg prealloc space */ 4850 BUG_ON(pa->pa_type != MB_GROUP_PA); 4851 4852 /* seems this one can be freed ... */ 4853 ext4_mb_mark_pa_deleted(sb, pa); 4854 spin_unlock(&pa->pa_lock); 4855 4856 list_del_rcu(&pa->pa_inode_list); 4857 list_add(&pa->u.pa_tmp_list, &discard_list); 4858 4859 total_entries--; 4860 if (total_entries <= 5) { 4861 /* 4862 * we want to keep only 5 entries 4863 * allowing it to grow to 8. This 4864 * mak sure we don't call discard 4865 * soon for this list. 4866 */ 4867 break; 4868 } 4869 } 4870 spin_unlock(&lg->lg_prealloc_lock); 4871 4872 list_for_each_entry_safe(pa, tmp, &discard_list, u.pa_tmp_list) { 4873 int err; 4874 4875 group = ext4_get_group_number(sb, pa->pa_pstart); 4876 err = ext4_mb_load_buddy_gfp(sb, group, &e4b, 4877 GFP_NOFS|__GFP_NOFAIL); 4878 if (err) { 4879 ext4_error_err(sb, -err, "Error %d loading buddy information for %u", 4880 err, group); 4881 continue; 4882 } 4883 ext4_lock_group(sb, group); 4884 list_del(&pa->pa_group_list); 4885 ext4_mb_release_group_pa(&e4b, pa); 4886 ext4_unlock_group(sb, group); 4887 4888 ext4_mb_unload_buddy(&e4b); 4889 list_del(&pa->u.pa_tmp_list); 4890 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback); 4891 } 4892} 4893 4894/* 4895 * We have incremented pa_count. So it cannot be freed at this 4896 * point. Also we hold lg_mutex. So no parallel allocation is 4897 * possible from this lg. That means pa_free cannot be updated. 4898 * 4899 * A parallel ext4_mb_discard_group_preallocations is possible. 4900 * which can cause the lg_prealloc_list to be updated. 4901 */ 4902 4903static void ext4_mb_add_n_trim(struct ext4_allocation_context *ac) 4904{ 4905 int order, added = 0, lg_prealloc_count = 1; 4906 struct super_block *sb = ac->ac_sb; 4907 struct ext4_locality_group *lg = ac->ac_lg; 4908 struct ext4_prealloc_space *tmp_pa, *pa = ac->ac_pa; 4909 4910 order = fls(pa->pa_free) - 1; 4911 if (order > PREALLOC_TB_SIZE - 1) 4912 /* The max size of hash table is PREALLOC_TB_SIZE */ 4913 order = PREALLOC_TB_SIZE - 1; 4914 /* Add the prealloc space to lg */ 4915 spin_lock(&lg->lg_prealloc_lock); 4916 list_for_each_entry_rcu(tmp_pa, &lg->lg_prealloc_list[order], 4917 pa_inode_list, 4918 lockdep_is_held(&lg->lg_prealloc_lock)) { 4919 spin_lock(&tmp_pa->pa_lock); 4920 if (tmp_pa->pa_deleted) { 4921 spin_unlock(&tmp_pa->pa_lock); 4922 continue; 4923 } 4924 if (!added && pa->pa_free < tmp_pa->pa_free) { 4925 /* Add to the tail of the previous entry */ 4926 list_add_tail_rcu(&pa->pa_inode_list, 4927 &tmp_pa->pa_inode_list); 4928 added = 1; 4929 /* 4930 * we want to count the total 4931 * number of entries in the list 4932 */ 4933 } 4934 spin_unlock(&tmp_pa->pa_lock); 4935 lg_prealloc_count++; 4936 } 4937 if (!added) 4938 list_add_tail_rcu(&pa->pa_inode_list, 4939 &lg->lg_prealloc_list[order]); 4940 spin_unlock(&lg->lg_prealloc_lock); 4941 4942 /* Now trim the list to be not more than 8 elements */ 4943 if (lg_prealloc_count > 8) { 4944 ext4_mb_discard_lg_preallocations(sb, lg, 4945 order, lg_prealloc_count); 4946 return; 4947 } 4948 return ; 4949} 4950 4951/* 4952 * if per-inode prealloc list is too long, trim some PA 4953 */ 4954static void ext4_mb_trim_inode_pa(struct inode *inode) 4955{ 4956 struct ext4_inode_info *ei = EXT4_I(inode); 4957 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 4958 int count, delta; 4959 4960 count = atomic_read(&ei->i_prealloc_active); 4961 delta = (sbi->s_mb_max_inode_prealloc >> 2) + 1; 4962 if (count > sbi->s_mb_max_inode_prealloc + delta) { 4963 count -= sbi->s_mb_max_inode_prealloc; 4964 ext4_discard_preallocations(inode, count); 4965 } 4966} 4967 4968/* 4969 * release all resource we used in allocation 4970 */ 4971static int ext4_mb_release_context(struct ext4_allocation_context *ac) 4972{ 4973 struct inode *inode = ac->ac_inode; 4974 struct ext4_inode_info *ei = EXT4_I(inode); 4975 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 4976 struct ext4_prealloc_space *pa = ac->ac_pa; 4977 if (pa) { 4978 if (pa->pa_type == MB_GROUP_PA) { 4979 /* see comment in ext4_mb_use_group_pa() */ 4980 spin_lock(&pa->pa_lock); 4981 pa->pa_pstart += EXT4_C2B(sbi, ac->ac_b_ex.fe_len); 4982 pa->pa_lstart += EXT4_C2B(sbi, ac->ac_b_ex.fe_len); 4983 pa->pa_free -= ac->ac_b_ex.fe_len; 4984 pa->pa_len -= ac->ac_b_ex.fe_len; 4985 spin_unlock(&pa->pa_lock); 4986 4987 /* 4988 * We want to add the pa to the right bucket. 4989 * Remove it from the list and while adding 4990 * make sure the list to which we are adding 4991 * doesn't grow big. 4992 */ 4993 if (likely(pa->pa_free)) { 4994 spin_lock(pa->pa_obj_lock); 4995 list_del_rcu(&pa->pa_inode_list); 4996 spin_unlock(pa->pa_obj_lock); 4997 ext4_mb_add_n_trim(ac); 4998 } 4999 } 5000 5001 if (pa->pa_type == MB_INODE_PA) { 5002 /* 5003 * treat per-inode prealloc list as a lru list, then try 5004 * to trim the least recently used PA. 5005 */ 5006 spin_lock(pa->pa_obj_lock); 5007 list_move(&pa->pa_inode_list, &ei->i_prealloc_list); 5008 spin_unlock(pa->pa_obj_lock); 5009 } 5010 5011 ext4_mb_put_pa(ac, ac->ac_sb, pa); 5012 } 5013 if (ac->ac_bitmap_page) 5014 put_page(ac->ac_bitmap_page); 5015 if (ac->ac_buddy_page) 5016 put_page(ac->ac_buddy_page); 5017 if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC) 5018 mutex_unlock(&ac->ac_lg->lg_mutex); 5019 ext4_mb_collect_stats(ac); 5020 ext4_mb_trim_inode_pa(inode); 5021 return 0; 5022} 5023 5024static int ext4_mb_discard_preallocations(struct super_block *sb, int needed) 5025{ 5026 ext4_group_t i, ngroups = ext4_get_groups_count(sb); 5027 int ret; 5028 int freed = 0, busy = 0; 5029 int retry = 0; 5030 5031 trace_ext4_mb_discard_preallocations(sb, needed); 5032 5033 if (needed == 0) 5034 needed = EXT4_CLUSTERS_PER_GROUP(sb) + 1; 5035 repeat: 5036 for (i = 0; i < ngroups && needed > 0; i++) { 5037 ret = ext4_mb_discard_group_preallocations(sb, i, &busy); 5038 freed += ret; 5039 needed -= ret; 5040 cond_resched(); 5041 } 5042 5043 if (needed > 0 && busy && ++retry < 3) { 5044 busy = 0; 5045 goto repeat; 5046 } 5047 5048 return freed; 5049} 5050 5051static bool ext4_mb_discard_preallocations_should_retry(struct super_block *sb, 5052 struct ext4_allocation_context *ac, u64 *seq) 5053{ 5054 int freed; 5055 u64 seq_retry = 0; 5056 bool ret = false; 5057 5058 freed = ext4_mb_discard_preallocations(sb, ac->ac_o_ex.fe_len); 5059 if (freed) { 5060 ret = true; 5061 goto out_dbg; 5062 } 5063 seq_retry = ext4_get_discard_pa_seq_sum(); 5064 if (!(ac->ac_flags & EXT4_MB_STRICT_CHECK) || seq_retry != *seq) { 5065 ac->ac_flags |= EXT4_MB_STRICT_CHECK; 5066 *seq = seq_retry; 5067 ret = true; 5068 } 5069 5070out_dbg: 5071 mb_debug(sb, "freed %d, retry ? %s\n", freed, ret ? "yes" : "no"); 5072 return ret; 5073} 5074 5075static ext4_fsblk_t ext4_mb_new_blocks_simple(handle_t *handle, 5076 struct ext4_allocation_request *ar, int *errp); 5077 5078/* 5079 * Main entry point into mballoc to allocate blocks 5080 * it tries to use preallocation first, then falls back 5081 * to usual allocation 5082 */ 5083ext4_fsblk_t ext4_mb_new_blocks(handle_t *handle, 5084 struct ext4_allocation_request *ar, int *errp) 5085{ 5086 struct ext4_allocation_context *ac = NULL; 5087 struct ext4_sb_info *sbi; 5088 struct super_block *sb; 5089 ext4_fsblk_t block = 0; 5090 unsigned int inquota = 0; 5091 unsigned int reserv_clstrs = 0; 5092 int retries = 0; 5093 u64 seq; 5094 5095 might_sleep(); 5096 sb = ar->inode->i_sb; 5097 sbi = EXT4_SB(sb); 5098 5099 trace_ext4_request_blocks(ar); 5100 if (sbi->s_mount_state & EXT4_FC_REPLAY) 5101 return ext4_mb_new_blocks_simple(handle, ar, errp); 5102 5103 /* Allow to use superuser reservation for quota file */ 5104 if (ext4_is_quota_file(ar->inode)) 5105 ar->flags |= EXT4_MB_USE_ROOT_BLOCKS; 5106 5107 if ((ar->flags & EXT4_MB_DELALLOC_RESERVED) == 0) { 5108 /* Without delayed allocation we need to verify 5109 * there is enough free blocks to do block allocation 5110 * and verify allocation doesn't exceed the quota limits. 5111 */ 5112 while (ar->len && 5113 ext4_claim_free_clusters(sbi, ar->len, ar->flags)) { 5114 5115 /* let others to free the space */ 5116 cond_resched(); 5117 ar->len = ar->len >> 1; 5118 } 5119 if (!ar->len) { 5120 ext4_mb_show_pa(sb); 5121 *errp = -ENOSPC; 5122 return 0; 5123 } 5124 reserv_clstrs = ar->len; 5125 if (ar->flags & EXT4_MB_USE_ROOT_BLOCKS) { 5126 dquot_alloc_block_nofail(ar->inode, 5127 EXT4_C2B(sbi, ar->len)); 5128 } else { 5129 while (ar->len && 5130 dquot_alloc_block(ar->inode, 5131 EXT4_C2B(sbi, ar->len))) { 5132 5133 ar->flags |= EXT4_MB_HINT_NOPREALLOC; 5134 ar->len--; 5135 } 5136 } 5137 inquota = ar->len; 5138 if (ar->len == 0) { 5139 *errp = -EDQUOT; 5140 goto out; 5141 } 5142 } 5143 5144 ac = kmem_cache_zalloc(ext4_ac_cachep, GFP_NOFS); 5145 if (!ac) { 5146 ar->len = 0; 5147 *errp = -ENOMEM; 5148 goto out; 5149 } 5150 5151 *errp = ext4_mb_initialize_context(ac, ar); 5152 if (*errp) { 5153 ar->len = 0; 5154 goto out; 5155 } 5156 5157 ac->ac_op = EXT4_MB_HISTORY_PREALLOC; 5158 seq = this_cpu_read(discard_pa_seq); 5159 if (!ext4_mb_use_preallocated(ac)) { 5160 ac->ac_op = EXT4_MB_HISTORY_ALLOC; 5161 ext4_mb_normalize_request(ac, ar); 5162 5163 *errp = ext4_mb_pa_alloc(ac); 5164 if (*errp) 5165 goto errout; 5166repeat: 5167 /* allocate space in core */ 5168 *errp = ext4_mb_regular_allocator(ac); 5169 /* 5170 * pa allocated above is added to grp->bb_prealloc_list only 5171 * when we were able to allocate some block i.e. when 5172 * ac->ac_status == AC_STATUS_FOUND. 5173 * And error from above mean ac->ac_status != AC_STATUS_FOUND 5174 * So we have to free this pa here itself. 5175 */ 5176 if (*errp) { 5177 ext4_mb_pa_free(ac); 5178 ext4_discard_allocated_blocks(ac); 5179 goto errout; 5180 } 5181 if (ac->ac_status == AC_STATUS_FOUND && 5182 ac->ac_o_ex.fe_len >= ac->ac_f_ex.fe_len) 5183 ext4_mb_pa_free(ac); 5184 } 5185 if (likely(ac->ac_status == AC_STATUS_FOUND)) { 5186 *errp = ext4_mb_mark_diskspace_used(ac, handle, reserv_clstrs); 5187 if (*errp) { 5188 ext4_discard_allocated_blocks(ac); 5189 goto errout; 5190 } else { 5191 block = ext4_grp_offs_to_block(sb, &ac->ac_b_ex); 5192 ar->len = ac->ac_b_ex.fe_len; 5193 } 5194 } else { 5195 if (++retries < 3 && 5196 ext4_mb_discard_preallocations_should_retry(sb, ac, &seq)) 5197 goto repeat; 5198 /* 5199 * If block allocation fails then the pa allocated above 5200 * needs to be freed here itself. 5201 */ 5202 ext4_mb_pa_free(ac); 5203 *errp = -ENOSPC; 5204 } 5205 5206errout: 5207 if (*errp) { 5208 ac->ac_b_ex.fe_len = 0; 5209 ar->len = 0; 5210 ext4_mb_show_ac(ac); 5211 } 5212 ext4_mb_release_context(ac); 5213out: 5214 if (ac) 5215 kmem_cache_free(ext4_ac_cachep, ac); 5216 if (inquota && ar->len < inquota) 5217 dquot_free_block(ar->inode, EXT4_C2B(sbi, inquota - ar->len)); 5218 if (!ar->len) { 5219 if ((ar->flags & EXT4_MB_DELALLOC_RESERVED) == 0) 5220 /* release all the reserved blocks if non delalloc */ 5221 percpu_counter_sub(&sbi->s_dirtyclusters_counter, 5222 reserv_clstrs); 5223 } 5224 5225 trace_ext4_allocate_blocks(ar, (unsigned long long)block); 5226 5227 return block; 5228} 5229 5230/* 5231 * We can merge two free data extents only if the physical blocks 5232 * are contiguous, AND the extents were freed by the same transaction, 5233 * AND the blocks are associated with the same group. 5234 */ 5235static void ext4_try_merge_freed_extent(struct ext4_sb_info *sbi, 5236 struct ext4_free_data *entry, 5237 struct ext4_free_data *new_entry, 5238 struct rb_root *entry_rb_root) 5239{ 5240 if ((entry->efd_tid != new_entry->efd_tid) || 5241 (entry->efd_group != new_entry->efd_group)) 5242 return; 5243 if (entry->efd_start_cluster + entry->efd_count == 5244 new_entry->efd_start_cluster) { 5245 new_entry->efd_start_cluster = entry->efd_start_cluster; 5246 new_entry->efd_count += entry->efd_count; 5247 } else if (new_entry->efd_start_cluster + new_entry->efd_count == 5248 entry->efd_start_cluster) { 5249 new_entry->efd_count += entry->efd_count; 5250 } else 5251 return; 5252 spin_lock(&sbi->s_md_lock); 5253 list_del(&entry->efd_list); 5254 spin_unlock(&sbi->s_md_lock); 5255 rb_erase(&entry->efd_node, entry_rb_root); 5256 kmem_cache_free(ext4_free_data_cachep, entry); 5257} 5258 5259static noinline_for_stack int 5260ext4_mb_free_metadata(handle_t *handle, struct ext4_buddy *e4b, 5261 struct ext4_free_data *new_entry) 5262{ 5263 ext4_group_t group = e4b->bd_group; 5264 ext4_grpblk_t cluster; 5265 ext4_grpblk_t clusters = new_entry->efd_count; 5266 struct ext4_free_data *entry; 5267 struct ext4_group_info *db = e4b->bd_info; 5268 struct super_block *sb = e4b->bd_sb; 5269 struct ext4_sb_info *sbi = EXT4_SB(sb); 5270 struct rb_node **n = &db->bb_free_root.rb_node, *node; 5271 struct rb_node *parent = NULL, *new_node; 5272 5273 BUG_ON(!ext4_handle_valid(handle)); 5274 BUG_ON(e4b->bd_bitmap_page == NULL); 5275 BUG_ON(e4b->bd_buddy_page == NULL); 5276 5277 new_node = &new_entry->efd_node; 5278 cluster = new_entry->efd_start_cluster; 5279 5280 if (!*n) { 5281 /* first free block exent. We need to 5282 protect buddy cache from being freed, 5283 * otherwise we'll refresh it from 5284 * on-disk bitmap and lose not-yet-available 5285 * blocks */ 5286 get_page(e4b->bd_buddy_page); 5287 get_page(e4b->bd_bitmap_page); 5288 } 5289 while (*n) { 5290 parent = *n; 5291 entry = rb_entry(parent, struct ext4_free_data, efd_node); 5292 if (cluster < entry->efd_start_cluster) 5293 n = &(*n)->rb_left; 5294 else if (cluster >= (entry->efd_start_cluster + entry->efd_count)) 5295 n = &(*n)->rb_right; 5296 else { 5297 ext4_grp_locked_error(sb, group, 0, 5298 ext4_group_first_block_no(sb, group) + 5299 EXT4_C2B(sbi, cluster), 5300 "Block already on to-be-freed list"); 5301 kmem_cache_free(ext4_free_data_cachep, new_entry); 5302 return 0; 5303 } 5304 } 5305 5306 rb_link_node(new_node, parent, n); 5307 rb_insert_color(new_node, &db->bb_free_root); 5308 5309 /* Now try to see the extent can be merged to left and right */ 5310 node = rb_prev(new_node); 5311 if (node) { 5312 entry = rb_entry(node, struct ext4_free_data, efd_node); 5313 ext4_try_merge_freed_extent(sbi, entry, new_entry, 5314 &(db->bb_free_root)); 5315 } 5316 5317 node = rb_next(new_node); 5318 if (node) { 5319 entry = rb_entry(node, struct ext4_free_data, efd_node); 5320 ext4_try_merge_freed_extent(sbi, entry, new_entry, 5321 &(db->bb_free_root)); 5322 } 5323 5324 spin_lock(&sbi->s_md_lock); 5325 list_add_tail(&new_entry->efd_list, &sbi->s_freed_data_list); 5326 sbi->s_mb_free_pending += clusters; 5327 spin_unlock(&sbi->s_md_lock); 5328 return 0; 5329} 5330 5331/* 5332 * Simple allocator for Ext4 fast commit replay path. It searches for blocks 5333 * linearly starting at the goal block and also excludes the blocks which 5334 * are going to be in use after fast commit replay. 5335 */ 5336static ext4_fsblk_t ext4_mb_new_blocks_simple(handle_t *handle, 5337 struct ext4_allocation_request *ar, int *errp) 5338{ 5339 struct buffer_head *bitmap_bh; 5340 struct super_block *sb = ar->inode->i_sb; 5341 ext4_group_t group; 5342 ext4_grpblk_t blkoff; 5343 ext4_grpblk_t max = EXT4_CLUSTERS_PER_GROUP(sb); 5344 ext4_grpblk_t i = 0; 5345 ext4_fsblk_t goal, block; 5346 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 5347 5348 goal = ar->goal; 5349 if (goal < le32_to_cpu(es->s_first_data_block) || 5350 goal >= ext4_blocks_count(es)) 5351 goal = le32_to_cpu(es->s_first_data_block); 5352 5353 ar->len = 0; 5354 ext4_get_group_no_and_offset(sb, goal, &group, &blkoff); 5355 for (; group < ext4_get_groups_count(sb); group++) { 5356 bitmap_bh = ext4_read_block_bitmap(sb, group); 5357 if (IS_ERR(bitmap_bh)) { 5358 *errp = PTR_ERR(bitmap_bh); 5359 pr_warn("Failed to read block bitmap\n"); 5360 return 0; 5361 } 5362 5363 ext4_get_group_no_and_offset(sb, 5364 max(ext4_group_first_block_no(sb, group), goal), 5365 NULL, &blkoff); 5366 while (1) { 5367 i = mb_find_next_zero_bit(bitmap_bh->b_data, max, 5368 blkoff); 5369 if (i >= max) 5370 break; 5371 if (ext4_fc_replay_check_excluded(sb, 5372 ext4_group_first_block_no(sb, group) + i)) { 5373 blkoff = i + 1; 5374 } else 5375 break; 5376 } 5377 brelse(bitmap_bh); 5378 if (i < max) 5379 break; 5380 } 5381 5382 if (group >= ext4_get_groups_count(sb) || i >= max) { 5383 *errp = -ENOSPC; 5384 return 0; 5385 } 5386 5387 block = ext4_group_first_block_no(sb, group) + i; 5388 ext4_mb_mark_bb(sb, block, 1, 1); 5389 ar->len = 1; 5390 5391 return block; 5392} 5393 5394static void ext4_free_blocks_simple(struct inode *inode, ext4_fsblk_t block, 5395 unsigned long count) 5396{ 5397 struct buffer_head *bitmap_bh; 5398 struct super_block *sb = inode->i_sb; 5399 struct ext4_group_desc *gdp; 5400 struct buffer_head *gdp_bh; 5401 ext4_group_t group; 5402 ext4_grpblk_t blkoff; 5403 int already_freed = 0, err, i; 5404 5405 ext4_get_group_no_and_offset(sb, block, &group, &blkoff); 5406 bitmap_bh = ext4_read_block_bitmap(sb, group); 5407 if (IS_ERR(bitmap_bh)) { 5408 err = PTR_ERR(bitmap_bh); 5409 pr_warn("Failed to read block bitmap\n"); 5410 return; 5411 } 5412 gdp = ext4_get_group_desc(sb, group, &gdp_bh); 5413 if (!gdp) 5414 return; 5415 5416 for (i = 0; i < count; i++) { 5417 if (!mb_test_bit(blkoff + i, bitmap_bh->b_data)) 5418 already_freed++; 5419 } 5420 mb_clear_bits(bitmap_bh->b_data, blkoff, count); 5421 err = ext4_handle_dirty_metadata(NULL, NULL, bitmap_bh); 5422 if (err) 5423 return; 5424 ext4_free_group_clusters_set( 5425 sb, gdp, ext4_free_group_clusters(sb, gdp) + 5426 count - already_freed); 5427 ext4_block_bitmap_csum_set(sb, group, gdp, bitmap_bh); 5428 ext4_group_desc_csum_set(sb, group, gdp); 5429 ext4_handle_dirty_metadata(NULL, NULL, gdp_bh); 5430 sync_dirty_buffer(bitmap_bh); 5431 sync_dirty_buffer(gdp_bh); 5432 brelse(bitmap_bh); 5433} 5434 5435/** 5436 * ext4_mb_clear_bb() -- helper function for freeing blocks. 5437 * Used by ext4_free_blocks() 5438 * @handle: handle for this transaction 5439 * @inode: inode 5440 * @bh: optional buffer of the block to be freed 5441 * @block: starting physical block to be freed 5442 * @count: number of blocks to be freed 5443 * @flags: flags used by ext4_free_blocks 5444 */ 5445static void ext4_mb_clear_bb(handle_t *handle, struct inode *inode, 5446 ext4_fsblk_t block, unsigned long count, 5447 int flags) 5448{ 5449 struct buffer_head *bitmap_bh = NULL; 5450 struct super_block *sb = inode->i_sb; 5451 struct ext4_group_desc *gdp; 5452 struct ext4_group_info *grp; 5453 unsigned int overflow; 5454 ext4_grpblk_t bit; 5455 struct buffer_head *gd_bh; 5456 ext4_group_t block_group; 5457 struct ext4_sb_info *sbi; 5458 struct ext4_buddy e4b; 5459 unsigned int count_clusters; 5460 int err = 0; 5461 int ret; 5462 5463 sbi = EXT4_SB(sb); 5464 5465 if (!(flags & EXT4_FREE_BLOCKS_VALIDATED) && 5466 !ext4_inode_block_valid(inode, block, count)) { 5467 ext4_error(sb, "Freeing blocks in system zone - " 5468 "Block = %llu, count = %lu", block, count); 5469 /* err = 0. ext4_std_error should be a no op */ 5470 goto error_return; 5471 } 5472 flags |= EXT4_FREE_BLOCKS_VALIDATED; 5473 5474do_more: 5475 overflow = 0; 5476 ext4_get_group_no_and_offset(sb, block, &block_group, &bit); 5477 5478 grp = ext4_get_group_info(sb, block_group); 5479 if (unlikely(!grp || EXT4_MB_GRP_BBITMAP_CORRUPT(grp))) 5480 return; 5481 5482 /* 5483 * Check to see if we are freeing blocks across a group 5484 * boundary. 5485 */ 5486 if (EXT4_C2B(sbi, bit) + count > EXT4_BLOCKS_PER_GROUP(sb)) { 5487 overflow = EXT4_C2B(sbi, bit) + count - 5488 EXT4_BLOCKS_PER_GROUP(sb); 5489 count -= overflow; 5490 /* The range changed so it's no longer validated */ 5491 flags &= ~EXT4_FREE_BLOCKS_VALIDATED; 5492 } 5493 count_clusters = EXT4_NUM_B2C(sbi, count); 5494 bitmap_bh = ext4_read_block_bitmap(sb, block_group); 5495 if (IS_ERR(bitmap_bh)) { 5496 err = PTR_ERR(bitmap_bh); 5497 bitmap_bh = NULL; 5498 goto error_return; 5499 } 5500 gdp = ext4_get_group_desc(sb, block_group, &gd_bh); 5501 if (!gdp) { 5502 err = -EIO; 5503 goto error_return; 5504 } 5505 5506 if (!(flags & EXT4_FREE_BLOCKS_VALIDATED) && 5507 !ext4_inode_block_valid(inode, block, count)) { 5508 ext4_error(sb, "Freeing blocks in system zone - " 5509 "Block = %llu, count = %lu", block, count); 5510 /* err = 0. ext4_std_error should be a no op */ 5511 goto error_return; 5512 } 5513 5514 BUFFER_TRACE(bitmap_bh, "getting write access"); 5515 err = ext4_journal_get_write_access(handle, bitmap_bh); 5516 if (err) 5517 goto error_return; 5518 5519 /* 5520 * We are about to modify some metadata. Call the journal APIs 5521 * to unshare ->b_data if a currently-committing transaction is 5522 * using it 5523 */ 5524 BUFFER_TRACE(gd_bh, "get_write_access"); 5525 err = ext4_journal_get_write_access(handle, gd_bh); 5526 if (err) 5527 goto error_return; 5528#ifdef AGGRESSIVE_CHECK 5529 { 5530 int i; 5531 for (i = 0; i < count_clusters; i++) 5532 BUG_ON(!mb_test_bit(bit + i, bitmap_bh->b_data)); 5533 } 5534#endif 5535 trace_ext4_mballoc_free(sb, inode, block_group, bit, count_clusters); 5536 5537 /* __GFP_NOFAIL: retry infinitely, ignore TIF_MEMDIE and memcg limit. */ 5538 err = ext4_mb_load_buddy_gfp(sb, block_group, &e4b, 5539 GFP_NOFS|__GFP_NOFAIL); 5540 if (err) 5541 goto error_return; 5542 5543 /* 5544 * We need to make sure we don't reuse the freed block until after the 5545 * transaction is committed. We make an exception if the inode is to be 5546 * written in writeback mode since writeback mode has weak data 5547 * consistency guarantees. 5548 */ 5549 if (ext4_handle_valid(handle) && 5550 ((flags & EXT4_FREE_BLOCKS_METADATA) || 5551 !ext4_should_writeback_data(inode))) { 5552 struct ext4_free_data *new_entry; 5553 /* 5554 * We use __GFP_NOFAIL because ext4_free_blocks() is not allowed 5555 * to fail. 5556 */ 5557 new_entry = kmem_cache_alloc(ext4_free_data_cachep, 5558 GFP_NOFS|__GFP_NOFAIL); 5559 new_entry->efd_start_cluster = bit; 5560 new_entry->efd_group = block_group; 5561 new_entry->efd_count = count_clusters; 5562 new_entry->efd_tid = handle->h_transaction->t_tid; 5563 5564 ext4_lock_group(sb, block_group); 5565 mb_clear_bits(bitmap_bh->b_data, bit, count_clusters); 5566 ext4_mb_free_metadata(handle, &e4b, new_entry); 5567 } else { 5568 /* need to update group_info->bb_free and bitmap 5569 * with group lock held. generate_buddy look at 5570 * them with group lock_held 5571 */ 5572 if (test_opt(sb, DISCARD)) { 5573 err = ext4_issue_discard(sb, block_group, bit, 5574 count_clusters, NULL); 5575 if (err && err != -EOPNOTSUPP) 5576 ext4_msg(sb, KERN_WARNING, "discard request in" 5577 " group:%u block:%d count:%lu failed" 5578 " with %d", block_group, bit, count, 5579 err); 5580 } else 5581 EXT4_MB_GRP_CLEAR_TRIMMED(e4b.bd_info); 5582 5583 ext4_lock_group(sb, block_group); 5584 mb_clear_bits(bitmap_bh->b_data, bit, count_clusters); 5585 mb_free_blocks(inode, &e4b, bit, count_clusters); 5586 } 5587 5588 ret = ext4_free_group_clusters(sb, gdp) + count_clusters; 5589 ext4_free_group_clusters_set(sb, gdp, ret); 5590 ext4_block_bitmap_csum_set(sb, block_group, gdp, bitmap_bh); 5591 ext4_group_desc_csum_set(sb, block_group, gdp); 5592 ext4_unlock_group(sb, block_group); 5593 5594 if (sbi->s_log_groups_per_flex) { 5595 ext4_group_t flex_group = ext4_flex_group(sbi, block_group); 5596 atomic64_add(count_clusters, 5597 &sbi_array_rcu_deref(sbi, s_flex_groups, 5598 flex_group)->free_clusters); 5599 } 5600 5601 /* 5602 * on a bigalloc file system, defer the s_freeclusters_counter 5603 * update to the caller (ext4_remove_space and friends) so they 5604 * can determine if a cluster freed here should be rereserved 5605 */ 5606 if (!(flags & EXT4_FREE_BLOCKS_RERESERVE_CLUSTER)) { 5607 if (!(flags & EXT4_FREE_BLOCKS_NO_QUOT_UPDATE)) 5608 dquot_free_block(inode, EXT4_C2B(sbi, count_clusters)); 5609 percpu_counter_add(&sbi->s_freeclusters_counter, 5610 count_clusters); 5611 } 5612 5613 ext4_mb_unload_buddy(&e4b); 5614 5615 /* We dirtied the bitmap block */ 5616 BUFFER_TRACE(bitmap_bh, "dirtied bitmap block"); 5617 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh); 5618 5619 /* And the group descriptor block */ 5620 BUFFER_TRACE(gd_bh, "dirtied group descriptor block"); 5621 ret = ext4_handle_dirty_metadata(handle, NULL, gd_bh); 5622 if (!err) 5623 err = ret; 5624 5625 if (overflow && !err) { 5626 block += count; 5627 count = overflow; 5628 put_bh(bitmap_bh); 5629 /* The range changed so it's no longer validated */ 5630 flags &= ~EXT4_FREE_BLOCKS_VALIDATED; 5631 goto do_more; 5632 } 5633error_return: 5634 brelse(bitmap_bh); 5635 ext4_std_error(sb, err); 5636 return; 5637} 5638 5639/** 5640 * ext4_free_blocks() -- Free given blocks and update quota 5641 * @handle: handle for this transaction 5642 * @inode: inode 5643 * @bh: optional buffer of the block to be freed 5644 * @block: starting physical block to be freed 5645 * @count: number of blocks to be freed 5646 * @flags: flags used by ext4_free_blocks 5647 */ 5648void ext4_free_blocks(handle_t *handle, struct inode *inode, 5649 struct buffer_head *bh, ext4_fsblk_t block, 5650 unsigned long count, int flags) 5651{ 5652 struct super_block *sb = inode->i_sb; 5653 unsigned int overflow; 5654 struct ext4_sb_info *sbi; 5655 5656 sbi = EXT4_SB(sb); 5657 5658 if (bh) { 5659 if (block) 5660 BUG_ON(block != bh->b_blocknr); 5661 else 5662 block = bh->b_blocknr; 5663 } 5664 5665 if (sbi->s_mount_state & EXT4_FC_REPLAY) { 5666 ext4_free_blocks_simple(inode, block, EXT4_NUM_B2C(sbi, count)); 5667 return; 5668 } 5669 5670 might_sleep(); 5671 5672 if (!(flags & EXT4_FREE_BLOCKS_VALIDATED) && 5673 !ext4_inode_block_valid(inode, block, count)) { 5674 ext4_error(sb, "Freeing blocks not in datazone - " 5675 "block = %llu, count = %lu", block, count); 5676 return; 5677 } 5678 flags |= EXT4_FREE_BLOCKS_VALIDATED; 5679 5680 ext4_debug("freeing block %llu\n", block); 5681 trace_ext4_free_blocks(inode, block, count, flags); 5682 5683 if (bh && (flags & EXT4_FREE_BLOCKS_FORGET)) { 5684 BUG_ON(count > 1); 5685 5686 ext4_forget(handle, flags & EXT4_FREE_BLOCKS_METADATA, 5687 inode, bh, block); 5688 } 5689 5690 /* 5691 * If the extent to be freed does not begin on a cluster 5692 * boundary, we need to deal with partial clusters at the 5693 * beginning and end of the extent. Normally we will free 5694 * blocks at the beginning or the end unless we are explicitly 5695 * requested to avoid doing so. 5696 */ 5697 overflow = EXT4_PBLK_COFF(sbi, block); 5698 if (overflow) { 5699 if (flags & EXT4_FREE_BLOCKS_NOFREE_FIRST_CLUSTER) { 5700 overflow = sbi->s_cluster_ratio - overflow; 5701 block += overflow; 5702 if (count > overflow) 5703 count -= overflow; 5704 else 5705 return; 5706 } else { 5707 block -= overflow; 5708 count += overflow; 5709 } 5710 /* The range changed so it's no longer validated */ 5711 flags &= ~EXT4_FREE_BLOCKS_VALIDATED; 5712 } 5713 overflow = EXT4_LBLK_COFF(sbi, count); 5714 if (overflow) { 5715 if (flags & EXT4_FREE_BLOCKS_NOFREE_LAST_CLUSTER) { 5716 if (count > overflow) 5717 count -= overflow; 5718 else 5719 return; 5720 } else 5721 count += sbi->s_cluster_ratio - overflow; 5722 /* The range changed so it's no longer validated */ 5723 flags &= ~EXT4_FREE_BLOCKS_VALIDATED; 5724 } 5725 5726 if (!bh && (flags & EXT4_FREE_BLOCKS_FORGET)) { 5727 int i; 5728 int is_metadata = flags & EXT4_FREE_BLOCKS_METADATA; 5729 5730 for (i = 0; i < count; i++) { 5731 cond_resched(); 5732 if (is_metadata) 5733 bh = sb_find_get_block(inode->i_sb, block + i); 5734 ext4_forget(handle, is_metadata, inode, bh, block + i); 5735 } 5736 } 5737 5738 ext4_mb_clear_bb(handle, inode, block, count, flags); 5739 return; 5740} 5741 5742/** 5743 * ext4_group_add_blocks() -- Add given blocks to an existing group 5744 * @handle: handle to this transaction 5745 * @sb: super block 5746 * @block: start physical block to add to the block group 5747 * @count: number of blocks to free 5748 * 5749 * This marks the blocks as free in the bitmap and buddy. 5750 */ 5751int ext4_group_add_blocks(handle_t *handle, struct super_block *sb, 5752 ext4_fsblk_t block, unsigned long count) 5753{ 5754 struct buffer_head *bitmap_bh = NULL; 5755 struct buffer_head *gd_bh; 5756 ext4_group_t block_group; 5757 ext4_grpblk_t bit; 5758 unsigned int i; 5759 struct ext4_group_desc *desc; 5760 struct ext4_sb_info *sbi = EXT4_SB(sb); 5761 struct ext4_buddy e4b; 5762 int err = 0, ret, free_clusters_count; 5763 ext4_grpblk_t clusters_freed; 5764 ext4_fsblk_t first_cluster = EXT4_B2C(sbi, block); 5765 ext4_fsblk_t last_cluster = EXT4_B2C(sbi, block + count - 1); 5766 unsigned long cluster_count = last_cluster - first_cluster + 1; 5767 5768 ext4_debug("Adding block(s) %llu-%llu\n", block, block + count - 1); 5769 5770 if (count == 0) 5771 return 0; 5772 5773 ext4_get_group_no_and_offset(sb, block, &block_group, &bit); 5774 /* 5775 * Check to see if we are freeing blocks across a group 5776 * boundary. 5777 */ 5778 if (bit + cluster_count > EXT4_CLUSTERS_PER_GROUP(sb)) { 5779 ext4_warning(sb, "too many blocks added to group %u", 5780 block_group); 5781 err = -EINVAL; 5782 goto error_return; 5783 } 5784 5785 bitmap_bh = ext4_read_block_bitmap(sb, block_group); 5786 if (IS_ERR(bitmap_bh)) { 5787 err = PTR_ERR(bitmap_bh); 5788 bitmap_bh = NULL; 5789 goto error_return; 5790 } 5791 5792 desc = ext4_get_group_desc(sb, block_group, &gd_bh); 5793 if (!desc) { 5794 err = -EIO; 5795 goto error_return; 5796 } 5797 5798 if (!ext4_sb_block_valid(sb, NULL, block, count)) { 5799 ext4_error(sb, "Adding blocks in system zones - " 5800 "Block = %llu, count = %lu", 5801 block, count); 5802 err = -EINVAL; 5803 goto error_return; 5804 } 5805 5806 BUFFER_TRACE(bitmap_bh, "getting write access"); 5807 err = ext4_journal_get_write_access(handle, bitmap_bh); 5808 if (err) 5809 goto error_return; 5810 5811 /* 5812 * We are about to modify some metadata. Call the journal APIs 5813 * to unshare ->b_data if a currently-committing transaction is 5814 * using it 5815 */ 5816 BUFFER_TRACE(gd_bh, "get_write_access"); 5817 err = ext4_journal_get_write_access(handle, gd_bh); 5818 if (err) 5819 goto error_return; 5820 5821 for (i = 0, clusters_freed = 0; i < cluster_count; i++) { 5822 BUFFER_TRACE(bitmap_bh, "clear bit"); 5823 if (!mb_test_bit(bit + i, bitmap_bh->b_data)) { 5824 ext4_error(sb, "bit already cleared for block %llu", 5825 (ext4_fsblk_t)(block + i)); 5826 BUFFER_TRACE(bitmap_bh, "bit already cleared"); 5827 } else { 5828 clusters_freed++; 5829 } 5830 } 5831 5832 err = ext4_mb_load_buddy(sb, block_group, &e4b); 5833 if (err) 5834 goto error_return; 5835 5836 /* 5837 * need to update group_info->bb_free and bitmap 5838 * with group lock held. generate_buddy look at 5839 * them with group lock_held 5840 */ 5841 ext4_lock_group(sb, block_group); 5842 mb_clear_bits(bitmap_bh->b_data, bit, cluster_count); 5843 mb_free_blocks(NULL, &e4b, bit, cluster_count); 5844 free_clusters_count = clusters_freed + 5845 ext4_free_group_clusters(sb, desc); 5846 ext4_free_group_clusters_set(sb, desc, free_clusters_count); 5847 ext4_block_bitmap_csum_set(sb, block_group, desc, bitmap_bh); 5848 ext4_group_desc_csum_set(sb, block_group, desc); 5849 ext4_unlock_group(sb, block_group); 5850 percpu_counter_add(&sbi->s_freeclusters_counter, 5851 clusters_freed); 5852 5853 if (sbi->s_log_groups_per_flex) { 5854 ext4_group_t flex_group = ext4_flex_group(sbi, block_group); 5855 atomic64_add(clusters_freed, 5856 &sbi_array_rcu_deref(sbi, s_flex_groups, 5857 flex_group)->free_clusters); 5858 } 5859 5860 ext4_mb_unload_buddy(&e4b); 5861 5862 /* We dirtied the bitmap block */ 5863 BUFFER_TRACE(bitmap_bh, "dirtied bitmap block"); 5864 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh); 5865 5866 /* And the group descriptor block */ 5867 BUFFER_TRACE(gd_bh, "dirtied group descriptor block"); 5868 ret = ext4_handle_dirty_metadata(handle, NULL, gd_bh); 5869 if (!err) 5870 err = ret; 5871 5872error_return: 5873 brelse(bitmap_bh); 5874 ext4_std_error(sb, err); 5875 return err; 5876} 5877 5878/** 5879 * ext4_trim_extent -- function to TRIM one single free extent in the group 5880 * @sb: super block for the file system 5881 * @start: starting block of the free extent in the alloc. group 5882 * @count: number of blocks to TRIM 5883 * @e4b: ext4 buddy for the group 5884 * 5885 * Trim "count" blocks starting at "start" in the "group". To assure that no 5886 * one will allocate those blocks, mark it as used in buddy bitmap. This must 5887 * be called with under the group lock. 5888 */ 5889static int ext4_trim_extent(struct super_block *sb, 5890 int start, int count, struct ext4_buddy *e4b) 5891__releases(bitlock) 5892__acquires(bitlock) 5893{ 5894 struct ext4_free_extent ex; 5895 ext4_group_t group = e4b->bd_group; 5896 int ret = 0; 5897 5898 trace_ext4_trim_extent(sb, group, start, count); 5899 5900 assert_spin_locked(ext4_group_lock_ptr(sb, group)); 5901 5902 ex.fe_start = start; 5903 ex.fe_group = group; 5904 ex.fe_len = count; 5905 5906 /* 5907 * Mark blocks used, so no one can reuse them while 5908 * being trimmed. 5909 */ 5910 mb_mark_used(e4b, &ex); 5911 ext4_unlock_group(sb, group); 5912 ret = ext4_issue_discard(sb, group, start, count, NULL); 5913 ext4_lock_group(sb, group); 5914 mb_free_blocks(NULL, e4b, start, ex.fe_len); 5915 return ret; 5916} 5917 5918static ext4_grpblk_t ext4_last_grp_cluster(struct super_block *sb, 5919 ext4_group_t grp) 5920{ 5921 unsigned long nr_clusters_in_group; 5922 5923 if (grp < (ext4_get_groups_count(sb) - 1)) 5924 nr_clusters_in_group = EXT4_CLUSTERS_PER_GROUP(sb); 5925 else 5926 nr_clusters_in_group = (ext4_blocks_count(EXT4_SB(sb)->s_es) - 5927 ext4_group_first_block_no(sb, grp)) 5928 >> EXT4_CLUSTER_BITS(sb); 5929 5930 return nr_clusters_in_group - 1; 5931} 5932 5933static bool ext4_trim_interrupted(void) 5934{ 5935 return fatal_signal_pending(current) || freezing(current); 5936} 5937 5938static int ext4_try_to_trim_range(struct super_block *sb, 5939 struct ext4_buddy *e4b, ext4_grpblk_t start, 5940 ext4_grpblk_t max, ext4_grpblk_t minblocks) 5941{ 5942 ext4_grpblk_t next, count, free_count, last, origin_start; 5943 bool set_trimmed = false; 5944 void *bitmap; 5945 5946 last = ext4_last_grp_cluster(sb, e4b->bd_group); 5947 bitmap = e4b->bd_bitmap; 5948 if (start == 0 && max >= last) 5949 set_trimmed = true; 5950 origin_start = start; 5951 start = max(e4b->bd_info->bb_first_free, start); 5952 count = 0; 5953 free_count = 0; 5954 5955 while (start <= max) { 5956 start = mb_find_next_zero_bit(bitmap, max + 1, start); 5957 if (start > max) 5958 break; 5959 5960 next = mb_find_next_bit(bitmap, last + 1, start); 5961 if (origin_start == 0 && next >= last) 5962 set_trimmed = true; 5963 5964 if ((next - start) >= minblocks) { 5965 int ret = ext4_trim_extent(sb, start, next - start, e4b); 5966 5967 if (ret && ret != -EOPNOTSUPP) 5968 return count; 5969 count += next - start; 5970 } 5971 free_count += next - start; 5972 start = next + 1; 5973 5974 if (ext4_trim_interrupted()) 5975 return count; 5976 5977 if (need_resched()) { 5978 ext4_unlock_group(sb, e4b->bd_group); 5979 cond_resched(); 5980 ext4_lock_group(sb, e4b->bd_group); 5981 } 5982 5983 if ((e4b->bd_info->bb_free - free_count) < minblocks) 5984 break; 5985 } 5986 5987 if (set_trimmed) 5988 EXT4_MB_GRP_SET_TRIMMED(e4b->bd_info); 5989 5990 return count; 5991} 5992 5993/** 5994 * ext4_trim_all_free -- function to trim all free space in alloc. group 5995 * @sb: super block for file system 5996 * @group: group to be trimmed 5997 * @start: first group block to examine 5998 * @max: last group block to examine 5999 * @minblocks: minimum extent block count 6000 * 6001 * ext4_trim_all_free walks through group's buddy bitmap searching for free 6002 * extents. When the free block is found, ext4_trim_extent is called to TRIM 6003 * the extent. 6004 * 6005 * 6006 * ext4_trim_all_free walks through group's block bitmap searching for free 6007 * extents. When the free extent is found, mark it as used in group buddy 6008 * bitmap. Then issue a TRIM command on this extent and free the extent in 6009 * the group buddy bitmap. This is done until whole group is scanned. 6010 */ 6011static ext4_grpblk_t 6012ext4_trim_all_free(struct super_block *sb, ext4_group_t group, 6013 ext4_grpblk_t start, ext4_grpblk_t max, 6014 ext4_grpblk_t minblocks) 6015{ 6016 struct ext4_buddy e4b; 6017 int ret; 6018 6019 trace_ext4_trim_all_free(sb, group, start, max); 6020 6021 ret = ext4_mb_load_buddy(sb, group, &e4b); 6022 if (ret) { 6023 ext4_warning(sb, "Error %d loading buddy information for %u", 6024 ret, group); 6025 return ret; 6026 } 6027 6028 ext4_lock_group(sb, group); 6029 6030 if (!EXT4_MB_GRP_WAS_TRIMMED(e4b.bd_info) || 6031 minblocks < EXT4_SB(sb)->s_last_trim_minblks) 6032 ret = ext4_try_to_trim_range(sb, &e4b, start, max, minblocks); 6033 else 6034 ret = 0; 6035 6036 ext4_unlock_group(sb, group); 6037 ext4_mb_unload_buddy(&e4b); 6038 6039 ext4_debug("trimmed %d blocks in the group %d\n", 6040 ret, group); 6041 6042 return ret; 6043} 6044 6045/** 6046 * ext4_trim_fs() -- trim ioctl handle function 6047 * @sb: superblock for filesystem 6048 * @range: fstrim_range structure 6049 * 6050 * start: First Byte to trim 6051 * len: number of Bytes to trim from start 6052 * minlen: minimum extent length in Bytes 6053 * ext4_trim_fs goes through all allocation groups containing Bytes from 6054 * start to start+len. For each such a group ext4_trim_all_free function 6055 * is invoked to trim all free space. 6056 */ 6057int ext4_trim_fs(struct super_block *sb, struct fstrim_range *range) 6058{ 6059 struct request_queue *q = bdev_get_queue(sb->s_bdev); 6060 struct ext4_group_info *grp; 6061 ext4_group_t group, first_group, last_group; 6062 ext4_grpblk_t cnt = 0, first_cluster, last_cluster; 6063 uint64_t start, end, minlen, trimmed = 0; 6064 ext4_fsblk_t first_data_blk = 6065 le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block); 6066 ext4_fsblk_t max_blks = ext4_blocks_count(EXT4_SB(sb)->s_es); 6067 int ret = 0; 6068 6069 start = range->start >> sb->s_blocksize_bits; 6070 end = start + (range->len >> sb->s_blocksize_bits) - 1; 6071 minlen = EXT4_NUM_B2C(EXT4_SB(sb), 6072 range->minlen >> sb->s_blocksize_bits); 6073 6074 if (minlen > EXT4_CLUSTERS_PER_GROUP(sb) || 6075 start >= max_blks || 6076 range->len < sb->s_blocksize) 6077 return -EINVAL; 6078 /* No point to try to trim less than discard granularity */ 6079 if (range->minlen < q->limits.discard_granularity) { 6080 minlen = EXT4_NUM_B2C(EXT4_SB(sb), 6081 q->limits.discard_granularity >> sb->s_blocksize_bits); 6082 if (minlen > EXT4_CLUSTERS_PER_GROUP(sb)) 6083 goto out; 6084 } 6085 if (end >= max_blks - 1) 6086 end = max_blks - 1; 6087 if (end <= first_data_blk) 6088 goto out; 6089 if (start < first_data_blk) 6090 start = first_data_blk; 6091 6092 /* Determine first and last group to examine based on start and end */ 6093 ext4_get_group_no_and_offset(sb, (ext4_fsblk_t) start, 6094 &first_group, &first_cluster); 6095 ext4_get_group_no_and_offset(sb, (ext4_fsblk_t) end, 6096 &last_group, &last_cluster); 6097 6098 /* end now represents the last cluster to discard in this group */ 6099 end = EXT4_CLUSTERS_PER_GROUP(sb) - 1; 6100 6101 for (group = first_group; group <= last_group; group++) { 6102 if (ext4_trim_interrupted()) 6103 break; 6104 grp = ext4_get_group_info(sb, group); 6105 if (!grp) 6106 continue; 6107 /* We only do this if the grp has never been initialized */ 6108 if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) { 6109 ret = ext4_mb_init_group(sb, group, GFP_NOFS); 6110 if (ret) 6111 break; 6112 } 6113 6114 /* 6115 * For all the groups except the last one, last cluster will 6116 * always be EXT4_CLUSTERS_PER_GROUP(sb)-1, so we only need to 6117 * change it for the last group, note that last_cluster is 6118 * already computed earlier by ext4_get_group_no_and_offset() 6119 */ 6120 if (group == last_group) 6121 end = last_cluster; 6122 if (grp->bb_free >= minlen) { 6123 cnt = ext4_trim_all_free(sb, group, first_cluster, 6124 end, minlen); 6125 if (cnt < 0) { 6126 ret = cnt; 6127 break; 6128 } 6129 trimmed += cnt; 6130 } 6131 6132 /* 6133 * For every group except the first one, we are sure 6134 * that the first cluster to discard will be cluster #0. 6135 */ 6136 first_cluster = 0; 6137 } 6138 6139 if (!ret) 6140 EXT4_SB(sb)->s_last_trim_minblks = minlen; 6141 6142out: 6143 range->len = EXT4_C2B(EXT4_SB(sb), trimmed) << sb->s_blocksize_bits; 6144 return ret; 6145} 6146 6147/* Iterate all the free extents in the group. */ 6148int 6149ext4_mballoc_query_range( 6150 struct super_block *sb, 6151 ext4_group_t group, 6152 ext4_grpblk_t start, 6153 ext4_grpblk_t end, 6154 ext4_mballoc_query_range_fn formatter, 6155 void *priv) 6156{ 6157 void *bitmap; 6158 ext4_grpblk_t next; 6159 struct ext4_buddy e4b; 6160 int error; 6161 6162 error = ext4_mb_load_buddy(sb, group, &e4b); 6163 if (error) 6164 return error; 6165 bitmap = e4b.bd_bitmap; 6166 6167 ext4_lock_group(sb, group); 6168 6169 start = max(e4b.bd_info->bb_first_free, start); 6170 if (end >= EXT4_CLUSTERS_PER_GROUP(sb)) 6171 end = EXT4_CLUSTERS_PER_GROUP(sb) - 1; 6172 6173 while (start <= end) { 6174 start = mb_find_next_zero_bit(bitmap, end + 1, start); 6175 if (start > end) 6176 break; 6177 next = mb_find_next_bit(bitmap, end + 1, start); 6178 6179 ext4_unlock_group(sb, group); 6180 error = formatter(sb, group, start, next - start, priv); 6181 if (error) 6182 goto out_unload; 6183 ext4_lock_group(sb, group); 6184 6185 start = next + 1; 6186 } 6187 6188 ext4_unlock_group(sb, group); 6189out_unload: 6190 ext4_mb_unload_buddy(&e4b); 6191 6192 return error; 6193} 6194