1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (c) 2003-2006, Cluster File Systems, Inc, info@clusterfs.com
4 * Written by Alex Tomas <alex@clusterfs.com>
5 */
6
7
8 /*
9 * mballoc.c contains the multiblocks allocation routines
10 */
11
12 #include "ext4_jbd2.h"
13 #include "mballoc.h"
14 #include <linux/log2.h>
15 #include <linux/module.h>
16 #include <linux/slab.h>
17 #include <linux/nospec.h>
18 #include <linux/backing-dev.h>
19 #include <linux/freezer.h>
20 #include <trace/events/ext4.h>
21
22 /*
23 * MUSTDO:
24 * - test ext4_ext_search_left() and ext4_ext_search_right()
25 * - search for metadata in few groups
26 *
27 * TODO v4:
28 * - normalization should take into account whether file is still open
29 * - discard preallocations if no free space left (policy?)
30 * - don't normalize tails
31 * - quota
32 * - reservation for superuser
33 *
34 * TODO v3:
35 * - bitmap read-ahead (proposed by Oleg Drokin aka green)
36 * - track min/max extents in each group for better group selection
37 * - mb_mark_used() may allocate chunk right after splitting buddy
38 * - tree of groups sorted by number of free blocks
39 * - error handling
40 */
41
42 /*
43 * The allocation request involve request for multiple number of blocks
44 * near to the goal(block) value specified.
45 *
46 * During initialization phase of the allocator we decide to use the
47 * group preallocation or inode preallocation depending on the size of
48 * the file. The size of the file could be the resulting file size we
49 * would have after allocation, or the current file size, which ever
50 * is larger. If the size is less than sbi->s_mb_stream_request we
51 * select to use the group preallocation. The default value of
52 * s_mb_stream_request is 16 blocks. This can also be tuned via
53 * /sys/fs/ext4/<partition>/mb_stream_req. The value is represented in
54 * terms of number of blocks.
55 *
56 * The main motivation for having small file use group preallocation is to
57 * ensure that we have small files closer together on the disk.
58 *
59 * First stage the allocator looks at the inode prealloc list,
60 * ext4_inode_info->i_prealloc_list, which contains list of prealloc
61 * spaces for this particular inode. The inode prealloc space is
62 * represented as:
63 *
64 * pa_lstart -> the logical start block for this prealloc space
65 * pa_pstart -> the physical start block for this prealloc space
66 * pa_len -> length for this prealloc space (in clusters)
67 * pa_free -> free space available in this prealloc space (in clusters)
68 *
69 * The inode preallocation space is used looking at the _logical_ start
70 * block. If only the logical file block falls within the range of prealloc
71 * space we will consume the particular prealloc space. This makes sure that
72 * we have contiguous physical blocks representing the file blocks
73 *
74 * The important thing to be noted in case of inode prealloc space is that
75 * we don't modify the values associated to inode prealloc space except
76 * pa_free.
77 *
78 * If we are not able to find blocks in the inode prealloc space and if we
79 * have the group allocation flag set then we look at the locality group
80 * prealloc space. These are per CPU prealloc list represented as
81 *
82 * ext4_sb_info.s_locality_groups[smp_processor_id()]
83 *
84 * The reason for having a per cpu locality group is to reduce the contention
85 * between CPUs. It is possible to get scheduled at this point.
86 *
87 * The locality group prealloc space is used looking at whether we have
88 * enough free space (pa_free) within the prealloc space.
89 *
90 * If we can't allocate blocks via inode prealloc or/and locality group
91 * prealloc then we look at the buddy cache. The buddy cache is represented
92 * by ext4_sb_info.s_buddy_cache (struct inode) whose file offset gets
93 * mapped to the buddy and bitmap information regarding different
94 * groups. The buddy information is attached to buddy cache inode so that
95 * we can access them through the page cache. The information regarding
96 * each group is loaded via ext4_mb_load_buddy. The information involve
97 * block bitmap and buddy information. The information are stored in the
98 * inode as:
99 *
100 * { page }
101 * [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]...
102 *
103 *
104 * one block each for bitmap and buddy information. So for each group we
105 * take up 2 blocks. A page can contain blocks_per_page (PAGE_SIZE /
106 * blocksize) blocks. So it can have information regarding groups_per_page
107 * which is blocks_per_page/2
108 *
109 * The buddy cache inode is not stored on disk. The inode is thrown
110 * away when the filesystem is unmounted.
111 *
112 * We look for count number of blocks in the buddy cache. If we were able
113 * to locate that many free blocks we return with additional information
114 * regarding rest of the contiguous physical block available
115 *
116 * Before allocating blocks via buddy cache we normalize the request
117 * blocks. This ensure we ask for more blocks that we needed. The extra
118 * blocks that we get after allocation is added to the respective prealloc
119 * list. In case of inode preallocation we follow a list of heuristics
120 * based on file size. This can be found in ext4_mb_normalize_request. If
121 * we are doing a group prealloc we try to normalize the request to
122 * sbi->s_mb_group_prealloc. The default value of s_mb_group_prealloc is
123 * dependent on the cluster size; for non-bigalloc file systems, it is
124 * 512 blocks. This can be tuned via
125 * /sys/fs/ext4/<partition>/mb_group_prealloc. The value is represented in
126 * terms of number of blocks. If we have mounted the file system with -O
127 * stripe=<value> option the group prealloc request is normalized to the
128 * smallest multiple of the stripe value (sbi->s_stripe) which is
129 * greater than the default mb_group_prealloc.
130 *
131 * The regular allocator (using the buddy cache) supports a few tunables.
132 *
133 * /sys/fs/ext4/<partition>/mb_min_to_scan
134 * /sys/fs/ext4/<partition>/mb_max_to_scan
135 * /sys/fs/ext4/<partition>/mb_order2_req
136 *
137 * The regular allocator uses buddy scan only if the request len is power of
138 * 2 blocks and the order of allocation is >= sbi->s_mb_order2_reqs. The
139 * value of s_mb_order2_reqs can be tuned via
140 * /sys/fs/ext4/<partition>/mb_order2_req. If the request len is equal to
141 * stripe size (sbi->s_stripe), we try to search for contiguous block in
142 * stripe size. This should result in better allocation on RAID setups. If
143 * not, we search in the specific group using bitmap for best extents. The
144 * tunable min_to_scan and max_to_scan control the behaviour here.
145 * min_to_scan indicate how long the mballoc __must__ look for a best
146 * extent and max_to_scan indicates how long the mballoc __can__ look for a
147 * best extent in the found extents. Searching for the blocks starts with
148 * the group specified as the goal value in allocation context via
149 * ac_g_ex. Each group is first checked based on the criteria whether it
150 * can be used for allocation. ext4_mb_good_group explains how the groups are
151 * checked.
152 *
153 * Both the prealloc space are getting populated as above. So for the first
154 * request we will hit the buddy cache which will result in this prealloc
155 * space getting filled. The prealloc space is then later used for the
156 * subsequent request.
157 */
158
159 /*
160 * mballoc operates on the following data:
161 * - on-disk bitmap
162 * - in-core buddy (actually includes buddy and bitmap)
163 * - preallocation descriptors (PAs)
164 *
165 * there are two types of preallocations:
166 * - inode
167 * assiged to specific inode and can be used for this inode only.
168 * it describes part of inode's space preallocated to specific
169 * physical blocks. any block from that preallocated can be used
170 * independent. the descriptor just tracks number of blocks left
171 * unused. so, before taking some block from descriptor, one must
172 * make sure corresponded logical block isn't allocated yet. this
173 * also means that freeing any block within descriptor's range
174 * must discard all preallocated blocks.
175 * - locality group
176 * assigned to specific locality group which does not translate to
177 * permanent set of inodes: inode can join and leave group. space
178 * from this type of preallocation can be used for any inode. thus
179 * it's consumed from the beginning to the end.
180 *
181 * relation between them can be expressed as:
182 * in-core buddy = on-disk bitmap + preallocation descriptors
183 *
184 * this mean blocks mballoc considers used are:
185 * - allocated blocks (persistent)
186 * - preallocated blocks (non-persistent)
187 *
188 * consistency in mballoc world means that at any time a block is either
189 * free or used in ALL structures. notice: "any time" should not be read
190 * literally -- time is discrete and delimited by locks.
191 *
192 * to keep it simple, we don't use block numbers, instead we count number of
193 * blocks: how many blocks marked used/free in on-disk bitmap, buddy and PA.
194 *
195 * all operations can be expressed as:
196 * - init buddy: buddy = on-disk + PAs
197 * - new PA: buddy += N; PA = N
198 * - use inode PA: on-disk += N; PA -= N
199 * - discard inode PA buddy -= on-disk - PA; PA = 0
200 * - use locality group PA on-disk += N; PA -= N
201 * - discard locality group PA buddy -= PA; PA = 0
202 * note: 'buddy -= on-disk - PA' is used to show that on-disk bitmap
203 * is used in real operation because we can't know actual used
204 * bits from PA, only from on-disk bitmap
205 *
206 * if we follow this strict logic, then all operations above should be atomic.
207 * given some of them can block, we'd have to use something like semaphores
208 * killing performance on high-end SMP hardware. let's try to relax it using
209 * the following knowledge:
210 * 1) if buddy is referenced, it's already initialized
211 * 2) while block is used in buddy and the buddy is referenced,
212 * nobody can re-allocate that block
213 * 3) we work on bitmaps and '+' actually means 'set bits'. if on-disk has
214 * bit set and PA claims same block, it's OK. IOW, one can set bit in
215 * on-disk bitmap if buddy has same bit set or/and PA covers corresponded
216 * block
217 *
218 * so, now we're building a concurrency table:
219 * - init buddy vs.
220 * - new PA
221 * blocks for PA are allocated in the buddy, buddy must be referenced
222 * until PA is linked to allocation group to avoid concurrent buddy init
223 * - use inode PA
224 * we need to make sure that either on-disk bitmap or PA has uptodate data
225 * given (3) we care that PA-=N operation doesn't interfere with init
226 * - discard inode PA
227 * the simplest way would be to have buddy initialized by the discard
228 * - use locality group PA
229 * again PA-=N must be serialized with init
230 * - discard locality group PA
231 * the simplest way would be to have buddy initialized by the discard
232 * - new PA vs.
233 * - use inode PA
234 * i_data_sem serializes them
235 * - discard inode PA
236 * discard process must wait until PA isn't used by another process
237 * - use locality group PA
238 * some mutex should serialize them
239 * - discard locality group PA
240 * discard process must wait until PA isn't used by another process
241 * - use inode PA
242 * - use inode PA
243 * i_data_sem or another mutex should serializes them
244 * - discard inode PA
245 * discard process must wait until PA isn't used by another process
246 * - use locality group PA
247 * nothing wrong here -- they're different PAs covering different blocks
248 * - discard locality group PA
249 * discard process must wait until PA isn't used by another process
250 *
251 * now we're ready to make few consequences:
252 * - PA is referenced and while it is no discard is possible
253 * - PA is referenced until block isn't marked in on-disk bitmap
254 * - PA changes only after on-disk bitmap
255 * - discard must not compete with init. either init is done before
256 * any discard or they're serialized somehow
257 * - buddy init as sum of on-disk bitmap and PAs is done atomically
258 *
259 * a special case when we've used PA to emptiness. no need to modify buddy
260 * in this case, but we should care about concurrent init
261 *
262 */
263
264 /*
265 * Logic in few words:
266 *
267 * - allocation:
268 * load group
269 * find blocks
270 * mark bits in on-disk bitmap
271 * release group
272 *
273 * - use preallocation:
274 * find proper PA (per-inode or group)
275 * load group
276 * mark bits in on-disk bitmap
277 * release group
278 * release PA
279 *
280 * - free:
281 * load group
282 * mark bits in on-disk bitmap
283 * release group
284 *
285 * - discard preallocations in group:
286 * mark PAs deleted
287 * move them onto local list
288 * load on-disk bitmap
289 * load group
290 * remove PA from object (inode or locality group)
291 * mark free blocks in-core
292 *
293 * - discard inode's preallocations:
294 */
295
296 /*
297 * Locking rules
298 *
299 * Locks:
300 * - bitlock on a group (group)
301 * - object (inode/locality) (object)
302 * - per-pa lock (pa)
303 *
304 * Paths:
305 * - new pa
306 * object
307 * group
308 *
309 * - find and use pa:
310 * pa
311 *
312 * - release consumed pa:
313 * pa
314 * group
315 * object
316 *
317 * - generate in-core bitmap:
318 * group
319 * pa
320 *
321 * - discard all for given object (inode, locality group):
322 * object
323 * pa
324 * group
325 *
326 * - discard all for given group:
327 * group
328 * pa
329 * group
330 * object
331 *
332 */
333 static struct kmem_cache *ext4_pspace_cachep;
334 static struct kmem_cache *ext4_ac_cachep;
335 static struct kmem_cache *ext4_free_data_cachep;
336
337 /* We create slab caches for groupinfo data structures based on the
338 * superblock block size. There will be one per mounted filesystem for
339 * each unique s_blocksize_bits */
340 #define NR_GRPINFO_CACHES 8
341 static struct kmem_cache *ext4_groupinfo_caches[NR_GRPINFO_CACHES];
342
343 static const char * const ext4_groupinfo_slab_names[NR_GRPINFO_CACHES] = {
344 "ext4_groupinfo_1k", "ext4_groupinfo_2k", "ext4_groupinfo_4k",
345 "ext4_groupinfo_8k", "ext4_groupinfo_16k", "ext4_groupinfo_32k",
346 "ext4_groupinfo_64k", "ext4_groupinfo_128k"
347 };
348
349 static void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap,
350 ext4_group_t group);
351 static void ext4_mb_generate_from_freelist(struct super_block *sb, void *bitmap,
352 ext4_group_t group);
353 static void ext4_mb_new_preallocation(struct ext4_allocation_context *ac);
354
355 /*
356 * The algorithm using this percpu seq counter goes below:
357 * 1. We sample the percpu discard_pa_seq counter before trying for block
358 * allocation in ext4_mb_new_blocks().
359 * 2. We increment this percpu discard_pa_seq counter when we either allocate
360 * or free these blocks i.e. while marking those blocks as used/free in
361 * mb_mark_used()/mb_free_blocks().
362 * 3. We also increment this percpu seq counter when we successfully identify
363 * that the bb_prealloc_list is not empty and hence proceed for discarding
364 * of those PAs inside ext4_mb_discard_group_preallocations().
365 *
366 * Now to make sure that the regular fast path of block allocation is not
367 * affected, as a small optimization we only sample the percpu seq counter
368 * on that cpu. Only when the block allocation fails and when freed blocks
369 * found were 0, that is when we sample percpu seq counter for all cpus using
370 * below function ext4_get_discard_pa_seq_sum(). This happens after making
371 * sure that all the PAs on grp->bb_prealloc_list got freed or if it's empty.
372 */
373 static DEFINE_PER_CPU(u64, discard_pa_seq);
ext4_get_discard_pa_seq_sum(void)374 static inline u64 ext4_get_discard_pa_seq_sum(void)
375 {
376 int __cpu;
377 u64 __seq = 0;
378
379 for_each_possible_cpu(__cpu)
380 __seq += per_cpu(discard_pa_seq, __cpu);
381 return __seq;
382 }
383
mb_correct_addr_and_bit(int *bit, void *addr)384 static inline void *mb_correct_addr_and_bit(int *bit, void *addr)
385 {
386 #if BITS_PER_LONG == 64
387 *bit += ((unsigned long) addr & 7UL) << 3;
388 addr = (void *) ((unsigned long) addr & ~7UL);
389 #elif BITS_PER_LONG == 32
390 *bit += ((unsigned long) addr & 3UL) << 3;
391 addr = (void *) ((unsigned long) addr & ~3UL);
392 #else
393 #error "how many bits you are?!"
394 #endif
395 return addr;
396 }
397
mb_test_bit(int bit, void *addr)398 static inline int mb_test_bit(int bit, void *addr)
399 {
400 /*
401 * ext4_test_bit on architecture like powerpc
402 * needs unsigned long aligned address
403 */
404 addr = mb_correct_addr_and_bit(&bit, addr);
405 return ext4_test_bit(bit, addr);
406 }
407
mb_set_bit(int bit, void *addr)408 static inline void mb_set_bit(int bit, void *addr)
409 {
410 addr = mb_correct_addr_and_bit(&bit, addr);
411 ext4_set_bit(bit, addr);
412 }
413
mb_clear_bit(int bit, void *addr)414 static inline void mb_clear_bit(int bit, void *addr)
415 {
416 addr = mb_correct_addr_and_bit(&bit, addr);
417 ext4_clear_bit(bit, addr);
418 }
419
mb_test_and_clear_bit(int bit, void *addr)420 static inline int mb_test_and_clear_bit(int bit, void *addr)
421 {
422 addr = mb_correct_addr_and_bit(&bit, addr);
423 return ext4_test_and_clear_bit(bit, addr);
424 }
425
mb_find_next_zero_bit(void *addr, int max, int start)426 static inline int mb_find_next_zero_bit(void *addr, int max, int start)
427 {
428 int fix = 0, ret, tmpmax;
429 addr = mb_correct_addr_and_bit(&fix, addr);
430 tmpmax = max + fix;
431 start += fix;
432
433 ret = ext4_find_next_zero_bit(addr, tmpmax, start) - fix;
434 if (ret > max)
435 return max;
436 return ret;
437 }
438
mb_find_next_bit(void *addr, int max, int start)439 static inline int mb_find_next_bit(void *addr, int max, int start)
440 {
441 int fix = 0, ret, tmpmax;
442 addr = mb_correct_addr_and_bit(&fix, addr);
443 tmpmax = max + fix;
444 start += fix;
445
446 ret = ext4_find_next_bit(addr, tmpmax, start) - fix;
447 if (ret > max)
448 return max;
449 return ret;
450 }
451
mb_find_buddy(struct ext4_buddy *e4b, int order, int *max)452 static void *mb_find_buddy(struct ext4_buddy *e4b, int order, int *max)
453 {
454 char *bb;
455
456 BUG_ON(e4b->bd_bitmap == e4b->bd_buddy);
457 BUG_ON(max == NULL);
458
459 if (order > e4b->bd_blkbits + 1) {
460 *max = 0;
461 return NULL;
462 }
463
464 /* at order 0 we see each particular block */
465 if (order == 0) {
466 *max = 1 << (e4b->bd_blkbits + 3);
467 return e4b->bd_bitmap;
468 }
469
470 bb = e4b->bd_buddy + EXT4_SB(e4b->bd_sb)->s_mb_offsets[order];
471 *max = EXT4_SB(e4b->bd_sb)->s_mb_maxs[order];
472
473 return bb;
474 }
475
476 #ifdef DOUBLE_CHECK
mb_free_blocks_double(struct inode *inode, struct ext4_buddy *e4b, int first, int count)477 static void mb_free_blocks_double(struct inode *inode, struct ext4_buddy *e4b,
478 int first, int count)
479 {
480 int i;
481 struct super_block *sb = e4b->bd_sb;
482
483 if (unlikely(e4b->bd_info->bb_bitmap == NULL))
484 return;
485 assert_spin_locked(ext4_group_lock_ptr(sb, e4b->bd_group));
486 for (i = 0; i < count; i++) {
487 if (!mb_test_bit(first + i, e4b->bd_info->bb_bitmap)) {
488 ext4_fsblk_t blocknr;
489
490 blocknr = ext4_group_first_block_no(sb, e4b->bd_group);
491 blocknr += EXT4_C2B(EXT4_SB(sb), first + i);
492 ext4_grp_locked_error(sb, e4b->bd_group,
493 inode ? inode->i_ino : 0,
494 blocknr,
495 "freeing block already freed "
496 "(bit %u)",
497 first + i);
498 ext4_mark_group_bitmap_corrupted(sb, e4b->bd_group,
499 EXT4_GROUP_INFO_BBITMAP_CORRUPT);
500 }
501 mb_clear_bit(first + i, e4b->bd_info->bb_bitmap);
502 }
503 }
504
mb_mark_used_double(struct ext4_buddy *e4b, int first, int count)505 static void mb_mark_used_double(struct ext4_buddy *e4b, int first, int count)
506 {
507 int i;
508
509 if (unlikely(e4b->bd_info->bb_bitmap == NULL))
510 return;
511 assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
512 for (i = 0; i < count; i++) {
513 BUG_ON(mb_test_bit(first + i, e4b->bd_info->bb_bitmap));
514 mb_set_bit(first + i, e4b->bd_info->bb_bitmap);
515 }
516 }
517
mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap)518 static void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap)
519 {
520 if (unlikely(e4b->bd_info->bb_bitmap == NULL))
521 return;
522 if (memcmp(e4b->bd_info->bb_bitmap, bitmap, e4b->bd_sb->s_blocksize)) {
523 unsigned char *b1, *b2;
524 int i;
525 b1 = (unsigned char *) e4b->bd_info->bb_bitmap;
526 b2 = (unsigned char *) bitmap;
527 for (i = 0; i < e4b->bd_sb->s_blocksize; i++) {
528 if (b1[i] != b2[i]) {
529 ext4_msg(e4b->bd_sb, KERN_ERR,
530 "corruption in group %u "
531 "at byte %u(%u): %x in copy != %x "
532 "on disk/prealloc",
533 e4b->bd_group, i, i * 8, b1[i], b2[i]);
534 BUG();
535 }
536 }
537 }
538 }
539
mb_group_bb_bitmap_alloc(struct super_block *sb, struct ext4_group_info *grp, ext4_group_t group)540 static void mb_group_bb_bitmap_alloc(struct super_block *sb,
541 struct ext4_group_info *grp, ext4_group_t group)
542 {
543 struct buffer_head *bh;
544
545 grp->bb_bitmap = kmalloc(sb->s_blocksize, GFP_NOFS);
546 if (!grp->bb_bitmap)
547 return;
548
549 bh = ext4_read_block_bitmap(sb, group);
550 if (IS_ERR_OR_NULL(bh)) {
551 kfree(grp->bb_bitmap);
552 grp->bb_bitmap = NULL;
553 return;
554 }
555
556 memcpy(grp->bb_bitmap, bh->b_data, sb->s_blocksize);
557 put_bh(bh);
558 }
559
mb_group_bb_bitmap_free(struct ext4_group_info *grp)560 static void mb_group_bb_bitmap_free(struct ext4_group_info *grp)
561 {
562 kfree(grp->bb_bitmap);
563 }
564
565 #else
mb_free_blocks_double(struct inode *inode, struct ext4_buddy *e4b, int first, int count)566 static inline void mb_free_blocks_double(struct inode *inode,
567 struct ext4_buddy *e4b, int first, int count)
568 {
569 return;
570 }
mb_mark_used_double(struct ext4_buddy *e4b, int first, int count)571 static inline void mb_mark_used_double(struct ext4_buddy *e4b,
572 int first, int count)
573 {
574 return;
575 }
mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap)576 static inline void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap)
577 {
578 return;
579 }
580
mb_group_bb_bitmap_alloc(struct super_block *sb, struct ext4_group_info *grp, ext4_group_t group)581 static inline void mb_group_bb_bitmap_alloc(struct super_block *sb,
582 struct ext4_group_info *grp, ext4_group_t group)
583 {
584 return;
585 }
586
mb_group_bb_bitmap_free(struct ext4_group_info *grp)587 static inline void mb_group_bb_bitmap_free(struct ext4_group_info *grp)
588 {
589 return;
590 }
591 #endif
592
593 #ifdef AGGRESSIVE_CHECK
594
595 #define MB_CHECK_ASSERT(assert) \
596 do { \
597 if (!(assert)) { \
598 printk(KERN_EMERG \
599 "Assertion failure in %s() at %s:%d: \"%s\"\n", \
600 function, file, line, # assert); \
601 BUG(); \
602 } \
603 } while (0)
604
__mb_check_buddy(struct ext4_buddy *e4b, char *file, const char *function, int line)605 static int __mb_check_buddy(struct ext4_buddy *e4b, char *file,
606 const char *function, int line)
607 {
608 struct super_block *sb = e4b->bd_sb;
609 int order = e4b->bd_blkbits + 1;
610 int max;
611 int max2;
612 int i;
613 int j;
614 int k;
615 int count;
616 struct ext4_group_info *grp;
617 int fragments = 0;
618 int fstart;
619 struct list_head *cur;
620 void *buddy;
621 void *buddy2;
622
623 if (e4b->bd_info->bb_check_counter++ % 10)
624 return 0;
625
626 while (order > 1) {
627 buddy = mb_find_buddy(e4b, order, &max);
628 MB_CHECK_ASSERT(buddy);
629 buddy2 = mb_find_buddy(e4b, order - 1, &max2);
630 MB_CHECK_ASSERT(buddy2);
631 MB_CHECK_ASSERT(buddy != buddy2);
632 MB_CHECK_ASSERT(max * 2 == max2);
633
634 count = 0;
635 for (i = 0; i < max; i++) {
636
637 if (mb_test_bit(i, buddy)) {
638 /* only single bit in buddy2 may be 1 */
639 if (!mb_test_bit(i << 1, buddy2)) {
640 MB_CHECK_ASSERT(
641 mb_test_bit((i<<1)+1, buddy2));
642 } else if (!mb_test_bit((i << 1) + 1, buddy2)) {
643 MB_CHECK_ASSERT(
644 mb_test_bit(i << 1, buddy2));
645 }
646 continue;
647 }
648
649 /* both bits in buddy2 must be 1 */
650 MB_CHECK_ASSERT(mb_test_bit(i << 1, buddy2));
651 MB_CHECK_ASSERT(mb_test_bit((i << 1) + 1, buddy2));
652
653 for (j = 0; j < (1 << order); j++) {
654 k = (i * (1 << order)) + j;
655 MB_CHECK_ASSERT(
656 !mb_test_bit(k, e4b->bd_bitmap));
657 }
658 count++;
659 }
660 MB_CHECK_ASSERT(e4b->bd_info->bb_counters[order] == count);
661 order--;
662 }
663
664 fstart = -1;
665 buddy = mb_find_buddy(e4b, 0, &max);
666 for (i = 0; i < max; i++) {
667 if (!mb_test_bit(i, buddy)) {
668 MB_CHECK_ASSERT(i >= e4b->bd_info->bb_first_free);
669 if (fstart == -1) {
670 fragments++;
671 fstart = i;
672 }
673 continue;
674 }
675 fstart = -1;
676 /* check used bits only */
677 for (j = 0; j < e4b->bd_blkbits + 1; j++) {
678 buddy2 = mb_find_buddy(e4b, j, &max2);
679 k = i >> j;
680 MB_CHECK_ASSERT(k < max2);
681 MB_CHECK_ASSERT(mb_test_bit(k, buddy2));
682 }
683 }
684 MB_CHECK_ASSERT(!EXT4_MB_GRP_NEED_INIT(e4b->bd_info));
685 MB_CHECK_ASSERT(e4b->bd_info->bb_fragments == fragments);
686
687 grp = ext4_get_group_info(sb, e4b->bd_group);
688 if (!grp)
689 return NULL;
690 list_for_each(cur, &grp->bb_prealloc_list) {
691 ext4_group_t groupnr;
692 struct ext4_prealloc_space *pa;
693 pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
694 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &groupnr, &k);
695 MB_CHECK_ASSERT(groupnr == e4b->bd_group);
696 for (i = 0; i < pa->pa_len; i++)
697 MB_CHECK_ASSERT(mb_test_bit(k + i, buddy));
698 }
699 return 0;
700 }
701 #undef MB_CHECK_ASSERT
702 #define mb_check_buddy(e4b) __mb_check_buddy(e4b, \
703 __FILE__, __func__, __LINE__)
704 #else
705 #define mb_check_buddy(e4b)
706 #endif
707
708 /*
709 * Divide blocks started from @first with length @len into
710 * smaller chunks with power of 2 blocks.
711 * Clear the bits in bitmap which the blocks of the chunk(s) covered,
712 * then increase bb_counters[] for corresponded chunk size.
713 */
ext4_mb_mark_free_simple(struct super_block *sb, void *buddy, ext4_grpblk_t first, ext4_grpblk_t len, struct ext4_group_info *grp)714 static void ext4_mb_mark_free_simple(struct super_block *sb,
715 void *buddy, ext4_grpblk_t first, ext4_grpblk_t len,
716 struct ext4_group_info *grp)
717 {
718 struct ext4_sb_info *sbi = EXT4_SB(sb);
719 ext4_grpblk_t min;
720 ext4_grpblk_t max;
721 ext4_grpblk_t chunk;
722 unsigned int border;
723
724 BUG_ON(len > EXT4_CLUSTERS_PER_GROUP(sb));
725
726 border = 2 << sb->s_blocksize_bits;
727
728 while (len > 0) {
729 /* find how many blocks can be covered since this position */
730 max = ffs(first | border) - 1;
731
732 /* find how many blocks of power 2 we need to mark */
733 min = fls(len) - 1;
734
735 if (max < min)
736 min = max;
737 chunk = 1 << min;
738
739 /* mark multiblock chunks only */
740 grp->bb_counters[min]++;
741 if (min > 0)
742 mb_clear_bit(first >> min,
743 buddy + sbi->s_mb_offsets[min]);
744
745 len -= chunk;
746 first += chunk;
747 }
748 }
749
750 /*
751 * Cache the order of the largest free extent we have available in this block
752 * group.
753 */
754 static void
mb_set_largest_free_order(struct super_block *sb, struct ext4_group_info *grp)755 mb_set_largest_free_order(struct super_block *sb, struct ext4_group_info *grp)
756 {
757 int i;
758 int bits;
759
760 grp->bb_largest_free_order = -1; /* uninit */
761
762 bits = sb->s_blocksize_bits + 1;
763 for (i = bits; i >= 0; i--) {
764 if (grp->bb_counters[i] > 0) {
765 grp->bb_largest_free_order = i;
766 break;
767 }
768 }
769 }
770
771 static noinline_for_stack
ext4_mb_generate_buddy(struct super_block *sb, void *buddy, void *bitmap, ext4_group_t group, struct ext4_group_info *grp)772 void ext4_mb_generate_buddy(struct super_block *sb,
773 void *buddy, void *bitmap, ext4_group_t group,
774 struct ext4_group_info *grp)
775 {
776 struct ext4_sb_info *sbi = EXT4_SB(sb);
777 ext4_grpblk_t max = EXT4_CLUSTERS_PER_GROUP(sb);
778 ext4_grpblk_t i = 0;
779 ext4_grpblk_t first;
780 ext4_grpblk_t len;
781 unsigned free = 0;
782 unsigned fragments = 0;
783 unsigned long long period = get_cycles();
784
785 /* initialize buddy from bitmap which is aggregation
786 * of on-disk bitmap and preallocations */
787 i = mb_find_next_zero_bit(bitmap, max, 0);
788 grp->bb_first_free = i;
789 while (i < max) {
790 fragments++;
791 first = i;
792 i = mb_find_next_bit(bitmap, max, i);
793 len = i - first;
794 free += len;
795 if (len > 1)
796 ext4_mb_mark_free_simple(sb, buddy, first, len, grp);
797 else
798 grp->bb_counters[0]++;
799 if (i < max)
800 i = mb_find_next_zero_bit(bitmap, max, i);
801 }
802 grp->bb_fragments = fragments;
803
804 if (free != grp->bb_free) {
805 ext4_grp_locked_error(sb, group, 0, 0,
806 "block bitmap and bg descriptor "
807 "inconsistent: %u vs %u free clusters",
808 free, grp->bb_free);
809 /*
810 * If we intend to continue, we consider group descriptor
811 * corrupt and update bb_free using bitmap value
812 */
813 grp->bb_free = free;
814 ext4_mark_group_bitmap_corrupted(sb, group,
815 EXT4_GROUP_INFO_BBITMAP_CORRUPT);
816 }
817 mb_set_largest_free_order(sb, grp);
818
819 clear_bit(EXT4_GROUP_INFO_NEED_INIT_BIT, &(grp->bb_state));
820
821 period = get_cycles() - period;
822 atomic_inc(&sbi->s_mb_buddies_generated);
823 atomic64_add(period, &sbi->s_mb_generation_time);
824 }
825
mb_regenerate_buddy(struct ext4_buddy *e4b)826 static void mb_regenerate_buddy(struct ext4_buddy *e4b)
827 {
828 int count;
829 int order = 1;
830 void *buddy;
831
832 while ((buddy = mb_find_buddy(e4b, order++, &count)))
833 ext4_set_bits(buddy, 0, count);
834
835 e4b->bd_info->bb_fragments = 0;
836 memset(e4b->bd_info->bb_counters, 0,
837 sizeof(*e4b->bd_info->bb_counters) *
838 (e4b->bd_sb->s_blocksize_bits + 2));
839
840 ext4_mb_generate_buddy(e4b->bd_sb, e4b->bd_buddy,
841 e4b->bd_bitmap, e4b->bd_group, e4b->bd_info);
842 }
843
844 /* The buddy information is attached the buddy cache inode
845 * for convenience. The information regarding each group
846 * is loaded via ext4_mb_load_buddy. The information involve
847 * block bitmap and buddy information. The information are
848 * stored in the inode as
849 *
850 * { page }
851 * [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]...
852 *
853 *
854 * one block each for bitmap and buddy information.
855 * So for each group we take up 2 blocks. A page can
856 * contain blocks_per_page (PAGE_SIZE / blocksize) blocks.
857 * So it can have information regarding groups_per_page which
858 * is blocks_per_page/2
859 *
860 * Locking note: This routine takes the block group lock of all groups
861 * for this page; do not hold this lock when calling this routine!
862 */
863
ext4_mb_init_cache(struct page *page, char *incore, gfp_t gfp)864 static int ext4_mb_init_cache(struct page *page, char *incore, gfp_t gfp)
865 {
866 ext4_group_t ngroups;
867 int blocksize;
868 int blocks_per_page;
869 int groups_per_page;
870 int err = 0;
871 int i;
872 ext4_group_t first_group, group;
873 int first_block;
874 struct super_block *sb;
875 struct buffer_head *bhs;
876 struct buffer_head **bh = NULL;
877 struct inode *inode;
878 char *data;
879 char *bitmap;
880 struct ext4_group_info *grinfo;
881
882 inode = page->mapping->host;
883 sb = inode->i_sb;
884 ngroups = ext4_get_groups_count(sb);
885 blocksize = i_blocksize(inode);
886 blocks_per_page = PAGE_SIZE / blocksize;
887
888 mb_debug(sb, "init page %lu\n", page->index);
889
890 groups_per_page = blocks_per_page >> 1;
891 if (groups_per_page == 0)
892 groups_per_page = 1;
893
894 /* allocate buffer_heads to read bitmaps */
895 if (groups_per_page > 1) {
896 i = sizeof(struct buffer_head *) * groups_per_page;
897 bh = kzalloc(i, gfp);
898 if (bh == NULL) {
899 err = -ENOMEM;
900 goto out;
901 }
902 } else
903 bh = &bhs;
904
905 first_group = page->index * blocks_per_page / 2;
906
907 /* read all groups the page covers into the cache */
908 for (i = 0, group = first_group; i < groups_per_page; i++, group++) {
909 if (group >= ngroups)
910 break;
911
912 grinfo = ext4_get_group_info(sb, group);
913 if (!grinfo)
914 continue;
915 /*
916 * If page is uptodate then we came here after online resize
917 * which added some new uninitialized group info structs, so
918 * we must skip all initialized uptodate buddies on the page,
919 * which may be currently in use by an allocating task.
920 */
921 if (PageUptodate(page) && !EXT4_MB_GRP_NEED_INIT(grinfo)) {
922 bh[i] = NULL;
923 continue;
924 }
925 bh[i] = ext4_read_block_bitmap_nowait(sb, group, false);
926 if (IS_ERR(bh[i])) {
927 err = PTR_ERR(bh[i]);
928 bh[i] = NULL;
929 goto out;
930 }
931 mb_debug(sb, "read bitmap for group %u\n", group);
932 }
933
934 /* wait for I/O completion */
935 for (i = 0, group = first_group; i < groups_per_page; i++, group++) {
936 int err2;
937
938 if (!bh[i])
939 continue;
940 err2 = ext4_wait_block_bitmap(sb, group, bh[i]);
941 if (!err)
942 err = err2;
943 }
944
945 first_block = page->index * blocks_per_page;
946 for (i = 0; i < blocks_per_page; i++) {
947 group = (first_block + i) >> 1;
948 if (group >= ngroups)
949 break;
950
951 if (!bh[group - first_group])
952 /* skip initialized uptodate buddy */
953 continue;
954
955 if (!buffer_verified(bh[group - first_group]))
956 /* Skip faulty bitmaps */
957 continue;
958 err = 0;
959
960 /*
961 * data carry information regarding this
962 * particular group in the format specified
963 * above
964 *
965 */
966 data = page_address(page) + (i * blocksize);
967 bitmap = bh[group - first_group]->b_data;
968
969 /*
970 * We place the buddy block and bitmap block
971 * close together
972 */
973 if ((first_block + i) & 1) {
974 /* this is block of buddy */
975 BUG_ON(incore == NULL);
976 mb_debug(sb, "put buddy for group %u in page %lu/%x\n",
977 group, page->index, i * blocksize);
978 trace_ext4_mb_buddy_bitmap_load(sb, group);
979 grinfo = ext4_get_group_info(sb, group);
980 if (!grinfo) {
981 err = -EFSCORRUPTED;
982 goto out;
983 }
984 grinfo->bb_fragments = 0;
985 memset(grinfo->bb_counters, 0,
986 sizeof(*grinfo->bb_counters) *
987 (sb->s_blocksize_bits+2));
988 /*
989 * incore got set to the group block bitmap below
990 */
991 ext4_lock_group(sb, group);
992 /* init the buddy */
993 memset(data, 0xff, blocksize);
994 ext4_mb_generate_buddy(sb, data, incore, group, grinfo);
995 ext4_unlock_group(sb, group);
996 incore = NULL;
997 } else {
998 /* this is block of bitmap */
999 BUG_ON(incore != NULL);
1000 mb_debug(sb, "put bitmap for group %u in page %lu/%x\n",
1001 group, page->index, i * blocksize);
1002 trace_ext4_mb_bitmap_load(sb, group);
1003
1004 /* see comments in ext4_mb_put_pa() */
1005 ext4_lock_group(sb, group);
1006 memcpy(data, bitmap, blocksize);
1007
1008 /* mark all preallocated blks used in in-core bitmap */
1009 ext4_mb_generate_from_pa(sb, data, group);
1010 ext4_mb_generate_from_freelist(sb, data, group);
1011 ext4_unlock_group(sb, group);
1012
1013 /* set incore so that the buddy information can be
1014 * generated using this
1015 */
1016 incore = data;
1017 }
1018 }
1019 SetPageUptodate(page);
1020
1021 out:
1022 if (bh) {
1023 for (i = 0; i < groups_per_page; i++)
1024 brelse(bh[i]);
1025 if (bh != &bhs)
1026 kfree(bh);
1027 }
1028 return err;
1029 }
1030
1031 /*
1032 * Lock the buddy and bitmap pages. This make sure other parallel init_group
1033 * on the same buddy page doesn't happen whild holding the buddy page lock.
1034 * Return locked buddy and bitmap pages on e4b struct. If buddy and bitmap
1035 * are on the same page e4b->bd_buddy_page is NULL and return value is 0.
1036 */
ext4_mb_get_buddy_page_lock(struct super_block *sb, ext4_group_t group, struct ext4_buddy *e4b, gfp_t gfp)1037 static int ext4_mb_get_buddy_page_lock(struct super_block *sb,
1038 ext4_group_t group, struct ext4_buddy *e4b, gfp_t gfp)
1039 {
1040 struct inode *inode = EXT4_SB(sb)->s_buddy_cache;
1041 int block, pnum, poff;
1042 int blocks_per_page;
1043 struct page *page;
1044
1045 e4b->bd_buddy_page = NULL;
1046 e4b->bd_bitmap_page = NULL;
1047
1048 blocks_per_page = PAGE_SIZE / sb->s_blocksize;
1049 /*
1050 * the buddy cache inode stores the block bitmap
1051 * and buddy information in consecutive blocks.
1052 * So for each group we need two blocks.
1053 */
1054 block = group * 2;
1055 pnum = block / blocks_per_page;
1056 poff = block % blocks_per_page;
1057 page = find_or_create_page(inode->i_mapping, pnum, gfp);
1058 if (!page)
1059 return -ENOMEM;
1060 BUG_ON(page->mapping != inode->i_mapping);
1061 e4b->bd_bitmap_page = page;
1062 e4b->bd_bitmap = page_address(page) + (poff * sb->s_blocksize);
1063
1064 if (blocks_per_page >= 2) {
1065 /* buddy and bitmap are on the same page */
1066 return 0;
1067 }
1068
1069 block++;
1070 pnum = block / blocks_per_page;
1071 page = find_or_create_page(inode->i_mapping, pnum, gfp);
1072 if (!page)
1073 return -ENOMEM;
1074 BUG_ON(page->mapping != inode->i_mapping);
1075 e4b->bd_buddy_page = page;
1076 return 0;
1077 }
1078
ext4_mb_put_buddy_page_lock(struct ext4_buddy *e4b)1079 static void ext4_mb_put_buddy_page_lock(struct ext4_buddy *e4b)
1080 {
1081 if (e4b->bd_bitmap_page) {
1082 unlock_page(e4b->bd_bitmap_page);
1083 put_page(e4b->bd_bitmap_page);
1084 }
1085 if (e4b->bd_buddy_page) {
1086 unlock_page(e4b->bd_buddy_page);
1087 put_page(e4b->bd_buddy_page);
1088 }
1089 }
1090
1091 /*
1092 * Locking note: This routine calls ext4_mb_init_cache(), which takes the
1093 * block group lock of all groups for this page; do not hold the BG lock when
1094 * calling this routine!
1095 */
1096 static noinline_for_stack
ext4_mb_init_group(struct super_block *sb, ext4_group_t group, gfp_t gfp)1097 int ext4_mb_init_group(struct super_block *sb, ext4_group_t group, gfp_t gfp)
1098 {
1099
1100 struct ext4_group_info *this_grp;
1101 struct ext4_buddy e4b;
1102 struct page *page;
1103 int ret = 0;
1104
1105 might_sleep();
1106 mb_debug(sb, "init group %u\n", group);
1107 this_grp = ext4_get_group_info(sb, group);
1108 if (!this_grp)
1109 return -EFSCORRUPTED;
1110
1111 /*
1112 * This ensures that we don't reinit the buddy cache
1113 * page which map to the group from which we are already
1114 * allocating. If we are looking at the buddy cache we would
1115 * have taken a reference using ext4_mb_load_buddy and that
1116 * would have pinned buddy page to page cache.
1117 * The call to ext4_mb_get_buddy_page_lock will mark the
1118 * page accessed.
1119 */
1120 ret = ext4_mb_get_buddy_page_lock(sb, group, &e4b, gfp);
1121 if (ret || !EXT4_MB_GRP_NEED_INIT(this_grp)) {
1122 /*
1123 * somebody initialized the group
1124 * return without doing anything
1125 */
1126 goto err;
1127 }
1128
1129 page = e4b.bd_bitmap_page;
1130 ret = ext4_mb_init_cache(page, NULL, gfp);
1131 if (ret)
1132 goto err;
1133 if (!PageUptodate(page)) {
1134 ret = -EIO;
1135 goto err;
1136 }
1137
1138 if (e4b.bd_buddy_page == NULL) {
1139 /*
1140 * If both the bitmap and buddy are in
1141 * the same page we don't need to force
1142 * init the buddy
1143 */
1144 ret = 0;
1145 goto err;
1146 }
1147 /* init buddy cache */
1148 page = e4b.bd_buddy_page;
1149 ret = ext4_mb_init_cache(page, e4b.bd_bitmap, gfp);
1150 if (ret)
1151 goto err;
1152 if (!PageUptodate(page)) {
1153 ret = -EIO;
1154 goto err;
1155 }
1156 err:
1157 ext4_mb_put_buddy_page_lock(&e4b);
1158 return ret;
1159 }
1160
1161 /*
1162 * Locking note: This routine calls ext4_mb_init_cache(), which takes the
1163 * block group lock of all groups for this page; do not hold the BG lock when
1164 * calling this routine!
1165 */
1166 static noinline_for_stack int
ext4_mb_load_buddy_gfp(struct super_block *sb, ext4_group_t group, struct ext4_buddy *e4b, gfp_t gfp)1167 ext4_mb_load_buddy_gfp(struct super_block *sb, ext4_group_t group,
1168 struct ext4_buddy *e4b, gfp_t gfp)
1169 {
1170 int blocks_per_page;
1171 int block;
1172 int pnum;
1173 int poff;
1174 struct page *page;
1175 int ret;
1176 struct ext4_group_info *grp;
1177 struct ext4_sb_info *sbi = EXT4_SB(sb);
1178 struct inode *inode = sbi->s_buddy_cache;
1179
1180 might_sleep();
1181 mb_debug(sb, "load group %u\n", group);
1182
1183 blocks_per_page = PAGE_SIZE / sb->s_blocksize;
1184 grp = ext4_get_group_info(sb, group);
1185 if (!grp)
1186 return -EFSCORRUPTED;
1187
1188 e4b->bd_blkbits = sb->s_blocksize_bits;
1189 e4b->bd_info = grp;
1190 e4b->bd_sb = sb;
1191 e4b->bd_group = group;
1192 e4b->bd_buddy_page = NULL;
1193 e4b->bd_bitmap_page = NULL;
1194
1195 if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) {
1196 /*
1197 * we need full data about the group
1198 * to make a good selection
1199 */
1200 ret = ext4_mb_init_group(sb, group, gfp);
1201 if (ret)
1202 return ret;
1203 }
1204
1205 /*
1206 * the buddy cache inode stores the block bitmap
1207 * and buddy information in consecutive blocks.
1208 * So for each group we need two blocks.
1209 */
1210 block = group * 2;
1211 pnum = block / blocks_per_page;
1212 poff = block % blocks_per_page;
1213
1214 /* we could use find_or_create_page(), but it locks page
1215 * what we'd like to avoid in fast path ... */
1216 page = find_get_page_flags(inode->i_mapping, pnum, FGP_ACCESSED);
1217 if (page == NULL || !PageUptodate(page)) {
1218 if (page)
1219 /*
1220 * drop the page reference and try
1221 * to get the page with lock. If we
1222 * are not uptodate that implies
1223 * somebody just created the page but
1224 * is yet to initialize the same. So
1225 * wait for it to initialize.
1226 */
1227 put_page(page);
1228 page = find_or_create_page(inode->i_mapping, pnum, gfp);
1229 if (page) {
1230 BUG_ON(page->mapping != inode->i_mapping);
1231 if (!PageUptodate(page)) {
1232 ret = ext4_mb_init_cache(page, NULL, gfp);
1233 if (ret) {
1234 unlock_page(page);
1235 goto err;
1236 }
1237 mb_cmp_bitmaps(e4b, page_address(page) +
1238 (poff * sb->s_blocksize));
1239 }
1240 unlock_page(page);
1241 }
1242 }
1243 if (page == NULL) {
1244 ret = -ENOMEM;
1245 goto err;
1246 }
1247 if (!PageUptodate(page)) {
1248 ret = -EIO;
1249 goto err;
1250 }
1251
1252 /* Pages marked accessed already */
1253 e4b->bd_bitmap_page = page;
1254 e4b->bd_bitmap = page_address(page) + (poff * sb->s_blocksize);
1255
1256 block++;
1257 pnum = block / blocks_per_page;
1258 poff = block % blocks_per_page;
1259
1260 page = find_get_page_flags(inode->i_mapping, pnum, FGP_ACCESSED);
1261 if (page == NULL || !PageUptodate(page)) {
1262 if (page)
1263 put_page(page);
1264 page = find_or_create_page(inode->i_mapping, pnum, gfp);
1265 if (page) {
1266 BUG_ON(page->mapping != inode->i_mapping);
1267 if (!PageUptodate(page)) {
1268 ret = ext4_mb_init_cache(page, e4b->bd_bitmap,
1269 gfp);
1270 if (ret) {
1271 unlock_page(page);
1272 goto err;
1273 }
1274 }
1275 unlock_page(page);
1276 }
1277 }
1278 if (page == NULL) {
1279 ret = -ENOMEM;
1280 goto err;
1281 }
1282 if (!PageUptodate(page)) {
1283 ret = -EIO;
1284 goto err;
1285 }
1286
1287 /* Pages marked accessed already */
1288 e4b->bd_buddy_page = page;
1289 e4b->bd_buddy = page_address(page) + (poff * sb->s_blocksize);
1290
1291 return 0;
1292
1293 err:
1294 if (page)
1295 put_page(page);
1296 if (e4b->bd_bitmap_page)
1297 put_page(e4b->bd_bitmap_page);
1298 if (e4b->bd_buddy_page)
1299 put_page(e4b->bd_buddy_page);
1300 e4b->bd_buddy = NULL;
1301 e4b->bd_bitmap = NULL;
1302 return ret;
1303 }
1304
ext4_mb_load_buddy(struct super_block *sb, ext4_group_t group, struct ext4_buddy *e4b)1305 static int ext4_mb_load_buddy(struct super_block *sb, ext4_group_t group,
1306 struct ext4_buddy *e4b)
1307 {
1308 return ext4_mb_load_buddy_gfp(sb, group, e4b, GFP_NOFS);
1309 }
1310
ext4_mb_unload_buddy(struct ext4_buddy *e4b)1311 static void ext4_mb_unload_buddy(struct ext4_buddy *e4b)
1312 {
1313 if (e4b->bd_bitmap_page)
1314 put_page(e4b->bd_bitmap_page);
1315 if (e4b->bd_buddy_page)
1316 put_page(e4b->bd_buddy_page);
1317 }
1318
1319
mb_find_order_for_block(struct ext4_buddy *e4b, int block)1320 static int mb_find_order_for_block(struct ext4_buddy *e4b, int block)
1321 {
1322 int order = 1;
1323 int bb_incr = 1 << (e4b->bd_blkbits - 1);
1324 void *bb;
1325
1326 BUG_ON(e4b->bd_bitmap == e4b->bd_buddy);
1327 BUG_ON(block >= (1 << (e4b->bd_blkbits + 3)));
1328
1329 bb = e4b->bd_buddy;
1330 while (order <= e4b->bd_blkbits + 1) {
1331 block = block >> 1;
1332 if (!mb_test_bit(block, bb)) {
1333 /* this block is part of buddy of order 'order' */
1334 return order;
1335 }
1336 bb += bb_incr;
1337 bb_incr >>= 1;
1338 order++;
1339 }
1340 return 0;
1341 }
1342
mb_clear_bits(void *bm, int cur, int len)1343 static void mb_clear_bits(void *bm, int cur, int len)
1344 {
1345 __u32 *addr;
1346
1347 len = cur + len;
1348 while (cur < len) {
1349 if ((cur & 31) == 0 && (len - cur) >= 32) {
1350 /* fast path: clear whole word at once */
1351 addr = bm + (cur >> 3);
1352 *addr = 0;
1353 cur += 32;
1354 continue;
1355 }
1356 mb_clear_bit(cur, bm);
1357 cur++;
1358 }
1359 }
1360
1361 /* clear bits in given range
1362 * will return first found zero bit if any, -1 otherwise
1363 */
mb_test_and_clear_bits(void *bm, int cur, int len)1364 static int mb_test_and_clear_bits(void *bm, int cur, int len)
1365 {
1366 __u32 *addr;
1367 int zero_bit = -1;
1368
1369 len = cur + len;
1370 while (cur < len) {
1371 if ((cur & 31) == 0 && (len - cur) >= 32) {
1372 /* fast path: clear whole word at once */
1373 addr = bm + (cur >> 3);
1374 if (*addr != (__u32)(-1) && zero_bit == -1)
1375 zero_bit = cur + mb_find_next_zero_bit(addr, 32, 0);
1376 *addr = 0;
1377 cur += 32;
1378 continue;
1379 }
1380 if (!mb_test_and_clear_bit(cur, bm) && zero_bit == -1)
1381 zero_bit = cur;
1382 cur++;
1383 }
1384
1385 return zero_bit;
1386 }
1387
ext4_set_bits(void *bm, int cur, int len)1388 void ext4_set_bits(void *bm, int cur, int len)
1389 {
1390 __u32 *addr;
1391
1392 len = cur + len;
1393 while (cur < len) {
1394 if ((cur & 31) == 0 && (len - cur) >= 32) {
1395 /* fast path: set whole word at once */
1396 addr = bm + (cur >> 3);
1397 *addr = 0xffffffff;
1398 cur += 32;
1399 continue;
1400 }
1401 mb_set_bit(cur, bm);
1402 cur++;
1403 }
1404 }
1405
mb_buddy_adjust_border(int* bit, void* bitmap, int side)1406 static inline int mb_buddy_adjust_border(int* bit, void* bitmap, int side)
1407 {
1408 if (mb_test_bit(*bit + side, bitmap)) {
1409 mb_clear_bit(*bit, bitmap);
1410 (*bit) -= side;
1411 return 1;
1412 }
1413 else {
1414 (*bit) += side;
1415 mb_set_bit(*bit, bitmap);
1416 return -1;
1417 }
1418 }
1419
mb_buddy_mark_free(struct ext4_buddy *e4b, int first, int last)1420 static void mb_buddy_mark_free(struct ext4_buddy *e4b, int first, int last)
1421 {
1422 int max;
1423 int order = 1;
1424 void *buddy = mb_find_buddy(e4b, order, &max);
1425
1426 while (buddy) {
1427 void *buddy2;
1428
1429 /* Bits in range [first; last] are known to be set since
1430 * corresponding blocks were allocated. Bits in range
1431 * (first; last) will stay set because they form buddies on
1432 * upper layer. We just deal with borders if they don't
1433 * align with upper layer and then go up.
1434 * Releasing entire group is all about clearing
1435 * single bit of highest order buddy.
1436 */
1437
1438 /* Example:
1439 * ---------------------------------
1440 * | 1 | 1 | 1 | 1 |
1441 * ---------------------------------
1442 * | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
1443 * ---------------------------------
1444 * 0 1 2 3 4 5 6 7
1445 * \_____________________/
1446 *
1447 * Neither [1] nor [6] is aligned to above layer.
1448 * Left neighbour [0] is free, so mark it busy,
1449 * decrease bb_counters and extend range to
1450 * [0; 6]
1451 * Right neighbour [7] is busy. It can't be coaleasced with [6], so
1452 * mark [6] free, increase bb_counters and shrink range to
1453 * [0; 5].
1454 * Then shift range to [0; 2], go up and do the same.
1455 */
1456
1457
1458 if (first & 1)
1459 e4b->bd_info->bb_counters[order] += mb_buddy_adjust_border(&first, buddy, -1);
1460 if (!(last & 1))
1461 e4b->bd_info->bb_counters[order] += mb_buddy_adjust_border(&last, buddy, 1);
1462 if (first > last)
1463 break;
1464 order++;
1465
1466 if (first == last || !(buddy2 = mb_find_buddy(e4b, order, &max))) {
1467 mb_clear_bits(buddy, first, last - first + 1);
1468 e4b->bd_info->bb_counters[order - 1] += last - first + 1;
1469 break;
1470 }
1471 first >>= 1;
1472 last >>= 1;
1473 buddy = buddy2;
1474 }
1475 }
1476
mb_free_blocks(struct inode *inode, struct ext4_buddy *e4b, int first, int count)1477 static void mb_free_blocks(struct inode *inode, struct ext4_buddy *e4b,
1478 int first, int count)
1479 {
1480 int left_is_free = 0;
1481 int right_is_free = 0;
1482 int block;
1483 int last = first + count - 1;
1484 struct super_block *sb = e4b->bd_sb;
1485
1486 if (WARN_ON(count == 0))
1487 return;
1488 BUG_ON(last >= (sb->s_blocksize << 3));
1489 assert_spin_locked(ext4_group_lock_ptr(sb, e4b->bd_group));
1490 /* Don't bother if the block group is corrupt. */
1491 if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(e4b->bd_info)))
1492 return;
1493
1494 mb_check_buddy(e4b);
1495 mb_free_blocks_double(inode, e4b, first, count);
1496
1497 this_cpu_inc(discard_pa_seq);
1498 e4b->bd_info->bb_free += count;
1499 if (first < e4b->bd_info->bb_first_free)
1500 e4b->bd_info->bb_first_free = first;
1501
1502 /* access memory sequentially: check left neighbour,
1503 * clear range and then check right neighbour
1504 */
1505 if (first != 0)
1506 left_is_free = !mb_test_bit(first - 1, e4b->bd_bitmap);
1507 block = mb_test_and_clear_bits(e4b->bd_bitmap, first, count);
1508 if (last + 1 < EXT4_SB(sb)->s_mb_maxs[0])
1509 right_is_free = !mb_test_bit(last + 1, e4b->bd_bitmap);
1510
1511 if (unlikely(block != -1)) {
1512 struct ext4_sb_info *sbi = EXT4_SB(sb);
1513 ext4_fsblk_t blocknr;
1514
1515 blocknr = ext4_group_first_block_no(sb, e4b->bd_group);
1516 blocknr += EXT4_C2B(sbi, block);
1517 if (!(sbi->s_mount_state & EXT4_FC_REPLAY)) {
1518 ext4_grp_locked_error(sb, e4b->bd_group,
1519 inode ? inode->i_ino : 0,
1520 blocknr,
1521 "freeing already freed block (bit %u); block bitmap corrupt.",
1522 block);
1523 ext4_mark_group_bitmap_corrupted(
1524 sb, e4b->bd_group,
1525 EXT4_GROUP_INFO_BBITMAP_CORRUPT);
1526 } else {
1527 mb_regenerate_buddy(e4b);
1528 }
1529 goto done;
1530 }
1531
1532 /* let's maintain fragments counter */
1533 if (left_is_free && right_is_free)
1534 e4b->bd_info->bb_fragments--;
1535 else if (!left_is_free && !right_is_free)
1536 e4b->bd_info->bb_fragments++;
1537
1538 /* buddy[0] == bd_bitmap is a special case, so handle
1539 * it right away and let mb_buddy_mark_free stay free of
1540 * zero order checks.
1541 * Check if neighbours are to be coaleasced,
1542 * adjust bitmap bb_counters and borders appropriately.
1543 */
1544 if (first & 1) {
1545 first += !left_is_free;
1546 e4b->bd_info->bb_counters[0] += left_is_free ? -1 : 1;
1547 }
1548 if (!(last & 1)) {
1549 last -= !right_is_free;
1550 e4b->bd_info->bb_counters[0] += right_is_free ? -1 : 1;
1551 }
1552
1553 if (first <= last)
1554 mb_buddy_mark_free(e4b, first >> 1, last >> 1);
1555
1556 done:
1557 mb_set_largest_free_order(sb, e4b->bd_info);
1558 mb_check_buddy(e4b);
1559 }
1560
mb_find_extent(struct ext4_buddy *e4b, int block, int needed, struct ext4_free_extent *ex)1561 static int mb_find_extent(struct ext4_buddy *e4b, int block,
1562 int needed, struct ext4_free_extent *ex)
1563 {
1564 int next = block;
1565 int max, order;
1566 void *buddy;
1567
1568 assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
1569 BUG_ON(ex == NULL);
1570
1571 buddy = mb_find_buddy(e4b, 0, &max);
1572 BUG_ON(buddy == NULL);
1573 BUG_ON(block >= max);
1574 if (mb_test_bit(block, buddy)) {
1575 ex->fe_len = 0;
1576 ex->fe_start = 0;
1577 ex->fe_group = 0;
1578 return 0;
1579 }
1580
1581 /* find actual order */
1582 order = mb_find_order_for_block(e4b, block);
1583 block = block >> order;
1584
1585 ex->fe_len = 1 << order;
1586 ex->fe_start = block << order;
1587 ex->fe_group = e4b->bd_group;
1588
1589 /* calc difference from given start */
1590 next = next - ex->fe_start;
1591 ex->fe_len -= next;
1592 ex->fe_start += next;
1593
1594 while (needed > ex->fe_len &&
1595 mb_find_buddy(e4b, order, &max)) {
1596
1597 if (block + 1 >= max)
1598 break;
1599
1600 next = (block + 1) * (1 << order);
1601 if (mb_test_bit(next, e4b->bd_bitmap))
1602 break;
1603
1604 order = mb_find_order_for_block(e4b, next);
1605
1606 block = next >> order;
1607 ex->fe_len += 1 << order;
1608 }
1609
1610 if (ex->fe_start + ex->fe_len > EXT4_CLUSTERS_PER_GROUP(e4b->bd_sb)) {
1611 /* Should never happen! (but apparently sometimes does?!?) */
1612 WARN_ON(1);
1613 ext4_grp_locked_error(e4b->bd_sb, e4b->bd_group, 0, 0,
1614 "corruption or bug in mb_find_extent "
1615 "block=%d, order=%d needed=%d ex=%u/%d/%d@%u",
1616 block, order, needed, ex->fe_group, ex->fe_start,
1617 ex->fe_len, ex->fe_logical);
1618 ex->fe_len = 0;
1619 ex->fe_start = 0;
1620 ex->fe_group = 0;
1621 }
1622 return ex->fe_len;
1623 }
1624
mb_mark_used(struct ext4_buddy *e4b, struct ext4_free_extent *ex)1625 static int mb_mark_used(struct ext4_buddy *e4b, struct ext4_free_extent *ex)
1626 {
1627 int ord;
1628 int mlen = 0;
1629 int max = 0;
1630 int cur;
1631 int start = ex->fe_start;
1632 int len = ex->fe_len;
1633 unsigned ret = 0;
1634 int len0 = len;
1635 void *buddy;
1636
1637 BUG_ON(start + len > (e4b->bd_sb->s_blocksize << 3));
1638 BUG_ON(e4b->bd_group != ex->fe_group);
1639 assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
1640 mb_check_buddy(e4b);
1641 mb_mark_used_double(e4b, start, len);
1642
1643 this_cpu_inc(discard_pa_seq);
1644 e4b->bd_info->bb_free -= len;
1645 if (e4b->bd_info->bb_first_free == start)
1646 e4b->bd_info->bb_first_free += len;
1647
1648 /* let's maintain fragments counter */
1649 if (start != 0)
1650 mlen = !mb_test_bit(start - 1, e4b->bd_bitmap);
1651 if (start + len < EXT4_SB(e4b->bd_sb)->s_mb_maxs[0])
1652 max = !mb_test_bit(start + len, e4b->bd_bitmap);
1653 if (mlen && max)
1654 e4b->bd_info->bb_fragments++;
1655 else if (!mlen && !max)
1656 e4b->bd_info->bb_fragments--;
1657
1658 /* let's maintain buddy itself */
1659 while (len) {
1660 ord = mb_find_order_for_block(e4b, start);
1661
1662 if (((start >> ord) << ord) == start && len >= (1 << ord)) {
1663 /* the whole chunk may be allocated at once! */
1664 mlen = 1 << ord;
1665 buddy = mb_find_buddy(e4b, ord, &max);
1666 BUG_ON((start >> ord) >= max);
1667 mb_set_bit(start >> ord, buddy);
1668 e4b->bd_info->bb_counters[ord]--;
1669 start += mlen;
1670 len -= mlen;
1671 BUG_ON(len < 0);
1672 continue;
1673 }
1674
1675 /* store for history */
1676 if (ret == 0)
1677 ret = len | (ord << 16);
1678
1679 /* we have to split large buddy */
1680 BUG_ON(ord <= 0);
1681 buddy = mb_find_buddy(e4b, ord, &max);
1682 mb_set_bit(start >> ord, buddy);
1683 e4b->bd_info->bb_counters[ord]--;
1684
1685 ord--;
1686 cur = (start >> ord) & ~1U;
1687 buddy = mb_find_buddy(e4b, ord, &max);
1688 mb_clear_bit(cur, buddy);
1689 mb_clear_bit(cur + 1, buddy);
1690 e4b->bd_info->bb_counters[ord]++;
1691 e4b->bd_info->bb_counters[ord]++;
1692 }
1693 mb_set_largest_free_order(e4b->bd_sb, e4b->bd_info);
1694
1695 ext4_set_bits(e4b->bd_bitmap, ex->fe_start, len0);
1696 mb_check_buddy(e4b);
1697
1698 return ret;
1699 }
1700
1701 /*
1702 * Must be called under group lock!
1703 */
ext4_mb_use_best_found(struct ext4_allocation_context *ac, struct ext4_buddy *e4b)1704 static void ext4_mb_use_best_found(struct ext4_allocation_context *ac,
1705 struct ext4_buddy *e4b)
1706 {
1707 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
1708 int ret;
1709
1710 BUG_ON(ac->ac_b_ex.fe_group != e4b->bd_group);
1711 BUG_ON(ac->ac_status == AC_STATUS_FOUND);
1712
1713 ac->ac_b_ex.fe_len = min(ac->ac_b_ex.fe_len, ac->ac_g_ex.fe_len);
1714 ac->ac_b_ex.fe_logical = ac->ac_g_ex.fe_logical;
1715 ret = mb_mark_used(e4b, &ac->ac_b_ex);
1716
1717 /* preallocation can change ac_b_ex, thus we store actually
1718 * allocated blocks for history */
1719 ac->ac_f_ex = ac->ac_b_ex;
1720
1721 ac->ac_status = AC_STATUS_FOUND;
1722 ac->ac_tail = ret & 0xffff;
1723 ac->ac_buddy = ret >> 16;
1724
1725 /*
1726 * take the page reference. We want the page to be pinned
1727 * so that we don't get a ext4_mb_init_cache_call for this
1728 * group until we update the bitmap. That would mean we
1729 * double allocate blocks. The reference is dropped
1730 * in ext4_mb_release_context
1731 */
1732 ac->ac_bitmap_page = e4b->bd_bitmap_page;
1733 get_page(ac->ac_bitmap_page);
1734 ac->ac_buddy_page = e4b->bd_buddy_page;
1735 get_page(ac->ac_buddy_page);
1736 /* store last allocated for subsequent stream allocation */
1737 if (ac->ac_flags & EXT4_MB_STREAM_ALLOC) {
1738 spin_lock(&sbi->s_md_lock);
1739 sbi->s_mb_last_group = ac->ac_f_ex.fe_group;
1740 sbi->s_mb_last_start = ac->ac_f_ex.fe_start;
1741 spin_unlock(&sbi->s_md_lock);
1742 }
1743 /*
1744 * As we've just preallocated more space than
1745 * user requested originally, we store allocated
1746 * space in a special descriptor.
1747 */
1748 if (ac->ac_o_ex.fe_len < ac->ac_b_ex.fe_len)
1749 ext4_mb_new_preallocation(ac);
1750
1751 }
1752
ext4_mb_check_limits(struct ext4_allocation_context *ac, struct ext4_buddy *e4b, int finish_group)1753 static void ext4_mb_check_limits(struct ext4_allocation_context *ac,
1754 struct ext4_buddy *e4b,
1755 int finish_group)
1756 {
1757 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
1758 struct ext4_free_extent *bex = &ac->ac_b_ex;
1759 struct ext4_free_extent *gex = &ac->ac_g_ex;
1760 struct ext4_free_extent ex;
1761 int max;
1762
1763 if (ac->ac_status == AC_STATUS_FOUND)
1764 return;
1765 /*
1766 * We don't want to scan for a whole year
1767 */
1768 if (ac->ac_found > sbi->s_mb_max_to_scan &&
1769 !(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
1770 ac->ac_status = AC_STATUS_BREAK;
1771 return;
1772 }
1773
1774 /*
1775 * Haven't found good chunk so far, let's continue
1776 */
1777 if (bex->fe_len < gex->fe_len)
1778 return;
1779
1780 if ((finish_group || ac->ac_found > sbi->s_mb_min_to_scan)
1781 && bex->fe_group == e4b->bd_group) {
1782 /* recheck chunk's availability - we don't know
1783 * when it was found (within this lock-unlock
1784 * period or not) */
1785 max = mb_find_extent(e4b, bex->fe_start, gex->fe_len, &ex);
1786 if (max >= gex->fe_len) {
1787 ext4_mb_use_best_found(ac, e4b);
1788 return;
1789 }
1790 }
1791 }
1792
1793 /*
1794 * The routine checks whether found extent is good enough. If it is,
1795 * then the extent gets marked used and flag is set to the context
1796 * to stop scanning. Otherwise, the extent is compared with the
1797 * previous found extent and if new one is better, then it's stored
1798 * in the context. Later, the best found extent will be used, if
1799 * mballoc can't find good enough extent.
1800 *
1801 * FIXME: real allocation policy is to be designed yet!
1802 */
ext4_mb_measure_extent(struct ext4_allocation_context *ac, struct ext4_free_extent *ex, struct ext4_buddy *e4b)1803 static void ext4_mb_measure_extent(struct ext4_allocation_context *ac,
1804 struct ext4_free_extent *ex,
1805 struct ext4_buddy *e4b)
1806 {
1807 struct ext4_free_extent *bex = &ac->ac_b_ex;
1808 struct ext4_free_extent *gex = &ac->ac_g_ex;
1809
1810 BUG_ON(ex->fe_len <= 0);
1811 BUG_ON(ex->fe_len > EXT4_CLUSTERS_PER_GROUP(ac->ac_sb));
1812 BUG_ON(ex->fe_start >= EXT4_CLUSTERS_PER_GROUP(ac->ac_sb));
1813 BUG_ON(ac->ac_status != AC_STATUS_CONTINUE);
1814
1815 ac->ac_found++;
1816
1817 /*
1818 * The special case - take what you catch first
1819 */
1820 if (unlikely(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
1821 *bex = *ex;
1822 ext4_mb_use_best_found(ac, e4b);
1823 return;
1824 }
1825
1826 /*
1827 * Let's check whether the chuck is good enough
1828 */
1829 if (ex->fe_len == gex->fe_len) {
1830 *bex = *ex;
1831 ext4_mb_use_best_found(ac, e4b);
1832 return;
1833 }
1834
1835 /*
1836 * If this is first found extent, just store it in the context
1837 */
1838 if (bex->fe_len == 0) {
1839 *bex = *ex;
1840 return;
1841 }
1842
1843 /*
1844 * If new found extent is better, store it in the context
1845 */
1846 if (bex->fe_len < gex->fe_len) {
1847 /* if the request isn't satisfied, any found extent
1848 * larger than previous best one is better */
1849 if (ex->fe_len > bex->fe_len)
1850 *bex = *ex;
1851 } else if (ex->fe_len > gex->fe_len) {
1852 /* if the request is satisfied, then we try to find
1853 * an extent that still satisfy the request, but is
1854 * smaller than previous one */
1855 if (ex->fe_len < bex->fe_len)
1856 *bex = *ex;
1857 }
1858
1859 ext4_mb_check_limits(ac, e4b, 0);
1860 }
1861
1862 static noinline_for_stack
ext4_mb_try_best_found(struct ext4_allocation_context *ac, struct ext4_buddy *e4b)1863 int ext4_mb_try_best_found(struct ext4_allocation_context *ac,
1864 struct ext4_buddy *e4b)
1865 {
1866 struct ext4_free_extent ex = ac->ac_b_ex;
1867 ext4_group_t group = ex.fe_group;
1868 int max;
1869 int err;
1870
1871 BUG_ON(ex.fe_len <= 0);
1872 err = ext4_mb_load_buddy(ac->ac_sb, group, e4b);
1873 if (err)
1874 return err;
1875
1876 ext4_lock_group(ac->ac_sb, group);
1877 if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(e4b->bd_info)))
1878 goto out;
1879
1880 max = mb_find_extent(e4b, ex.fe_start, ex.fe_len, &ex);
1881
1882 if (max > 0) {
1883 ac->ac_b_ex = ex;
1884 ext4_mb_use_best_found(ac, e4b);
1885 }
1886
1887 out:
1888 ext4_unlock_group(ac->ac_sb, group);
1889 ext4_mb_unload_buddy(e4b);
1890
1891 return 0;
1892 }
1893
1894 static noinline_for_stack
ext4_mb_find_by_goal(struct ext4_allocation_context *ac, struct ext4_buddy *e4b)1895 int ext4_mb_find_by_goal(struct ext4_allocation_context *ac,
1896 struct ext4_buddy *e4b)
1897 {
1898 ext4_group_t group = ac->ac_g_ex.fe_group;
1899 int max;
1900 int err;
1901 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
1902 struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group);
1903 struct ext4_free_extent ex;
1904
1905 if (!grp)
1906 return -EFSCORRUPTED;
1907 if (!(ac->ac_flags & (EXT4_MB_HINT_TRY_GOAL | EXT4_MB_HINT_GOAL_ONLY)))
1908 return 0;
1909 if (grp->bb_free == 0)
1910 return 0;
1911
1912 err = ext4_mb_load_buddy(ac->ac_sb, group, e4b);
1913 if (err)
1914 return err;
1915
1916 ext4_lock_group(ac->ac_sb, group);
1917 if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(e4b->bd_info)))
1918 goto out;
1919
1920 max = mb_find_extent(e4b, ac->ac_g_ex.fe_start,
1921 ac->ac_g_ex.fe_len, &ex);
1922 ex.fe_logical = 0xDEADFA11; /* debug value */
1923
1924 if (max >= ac->ac_g_ex.fe_len && ac->ac_g_ex.fe_len == sbi->s_stripe) {
1925 ext4_fsblk_t start;
1926
1927 start = ext4_group_first_block_no(ac->ac_sb, e4b->bd_group) +
1928 ex.fe_start;
1929 /* use do_div to get remainder (would be 64-bit modulo) */
1930 if (do_div(start, sbi->s_stripe) == 0) {
1931 ac->ac_found++;
1932 ac->ac_b_ex = ex;
1933 ext4_mb_use_best_found(ac, e4b);
1934 }
1935 } else if (max >= ac->ac_g_ex.fe_len) {
1936 BUG_ON(ex.fe_len <= 0);
1937 BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group);
1938 BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start);
1939 ac->ac_found++;
1940 ac->ac_b_ex = ex;
1941 ext4_mb_use_best_found(ac, e4b);
1942 } else if (max > 0 && (ac->ac_flags & EXT4_MB_HINT_MERGE)) {
1943 /* Sometimes, caller may want to merge even small
1944 * number of blocks to an existing extent */
1945 BUG_ON(ex.fe_len <= 0);
1946 BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group);
1947 BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start);
1948 ac->ac_found++;
1949 ac->ac_b_ex = ex;
1950 ext4_mb_use_best_found(ac, e4b);
1951 }
1952 out:
1953 ext4_unlock_group(ac->ac_sb, group);
1954 ext4_mb_unload_buddy(e4b);
1955
1956 return 0;
1957 }
1958
1959 /*
1960 * The routine scans buddy structures (not bitmap!) from given order
1961 * to max order and tries to find big enough chunk to satisfy the req
1962 */
1963 static noinline_for_stack
ext4_mb_simple_scan_group(struct ext4_allocation_context *ac, struct ext4_buddy *e4b)1964 void ext4_mb_simple_scan_group(struct ext4_allocation_context *ac,
1965 struct ext4_buddy *e4b)
1966 {
1967 struct super_block *sb = ac->ac_sb;
1968 struct ext4_group_info *grp = e4b->bd_info;
1969 void *buddy;
1970 int i;
1971 int k;
1972 int max;
1973
1974 BUG_ON(ac->ac_2order <= 0);
1975 for (i = ac->ac_2order; i <= sb->s_blocksize_bits + 1; i++) {
1976 if (grp->bb_counters[i] == 0)
1977 continue;
1978
1979 buddy = mb_find_buddy(e4b, i, &max);
1980 BUG_ON(buddy == NULL);
1981
1982 k = mb_find_next_zero_bit(buddy, max, 0);
1983 if (k >= max) {
1984 ext4_grp_locked_error(ac->ac_sb, e4b->bd_group, 0, 0,
1985 "%d free clusters of order %d. But found 0",
1986 grp->bb_counters[i], i);
1987 ext4_mark_group_bitmap_corrupted(ac->ac_sb,
1988 e4b->bd_group,
1989 EXT4_GROUP_INFO_BBITMAP_CORRUPT);
1990 break;
1991 }
1992 ac->ac_found++;
1993
1994 ac->ac_b_ex.fe_len = 1 << i;
1995 ac->ac_b_ex.fe_start = k << i;
1996 ac->ac_b_ex.fe_group = e4b->bd_group;
1997
1998 ext4_mb_use_best_found(ac, e4b);
1999
2000 BUG_ON(ac->ac_f_ex.fe_len != ac->ac_g_ex.fe_len);
2001
2002 if (EXT4_SB(sb)->s_mb_stats)
2003 atomic_inc(&EXT4_SB(sb)->s_bal_2orders);
2004
2005 break;
2006 }
2007 }
2008
2009 /*
2010 * The routine scans the group and measures all found extents.
2011 * In order to optimize scanning, caller must pass number of
2012 * free blocks in the group, so the routine can know upper limit.
2013 */
2014 static noinline_for_stack
ext4_mb_complex_scan_group(struct ext4_allocation_context *ac, struct ext4_buddy *e4b)2015 void ext4_mb_complex_scan_group(struct ext4_allocation_context *ac,
2016 struct ext4_buddy *e4b)
2017 {
2018 struct super_block *sb = ac->ac_sb;
2019 void *bitmap = e4b->bd_bitmap;
2020 struct ext4_free_extent ex;
2021 int i;
2022 int free;
2023
2024 free = e4b->bd_info->bb_free;
2025 if (WARN_ON(free <= 0))
2026 return;
2027
2028 i = e4b->bd_info->bb_first_free;
2029
2030 while (free && ac->ac_status == AC_STATUS_CONTINUE) {
2031 i = mb_find_next_zero_bit(bitmap,
2032 EXT4_CLUSTERS_PER_GROUP(sb), i);
2033 if (i >= EXT4_CLUSTERS_PER_GROUP(sb)) {
2034 /*
2035 * IF we have corrupt bitmap, we won't find any
2036 * free blocks even though group info says we
2037 * have free blocks
2038 */
2039 ext4_grp_locked_error(sb, e4b->bd_group, 0, 0,
2040 "%d free clusters as per "
2041 "group info. But bitmap says 0",
2042 free);
2043 ext4_mark_group_bitmap_corrupted(sb, e4b->bd_group,
2044 EXT4_GROUP_INFO_BBITMAP_CORRUPT);
2045 break;
2046 }
2047
2048 mb_find_extent(e4b, i, ac->ac_g_ex.fe_len, &ex);
2049 if (WARN_ON(ex.fe_len <= 0))
2050 break;
2051 if (free < ex.fe_len) {
2052 ext4_grp_locked_error(sb, e4b->bd_group, 0, 0,
2053 "%d free clusters as per "
2054 "group info. But got %d blocks",
2055 free, ex.fe_len);
2056 ext4_mark_group_bitmap_corrupted(sb, e4b->bd_group,
2057 EXT4_GROUP_INFO_BBITMAP_CORRUPT);
2058 /*
2059 * The number of free blocks differs. This mostly
2060 * indicate that the bitmap is corrupt. So exit
2061 * without claiming the space.
2062 */
2063 break;
2064 }
2065 ex.fe_logical = 0xDEADC0DE; /* debug value */
2066 ext4_mb_measure_extent(ac, &ex, e4b);
2067
2068 i += ex.fe_len;
2069 free -= ex.fe_len;
2070 }
2071
2072 ext4_mb_check_limits(ac, e4b, 1);
2073 }
2074
2075 /*
2076 * This is a special case for storages like raid5
2077 * we try to find stripe-aligned chunks for stripe-size-multiple requests
2078 */
2079 static noinline_for_stack
ext4_mb_scan_aligned(struct ext4_allocation_context *ac, struct ext4_buddy *e4b)2080 void ext4_mb_scan_aligned(struct ext4_allocation_context *ac,
2081 struct ext4_buddy *e4b)
2082 {
2083 struct super_block *sb = ac->ac_sb;
2084 struct ext4_sb_info *sbi = EXT4_SB(sb);
2085 void *bitmap = e4b->bd_bitmap;
2086 struct ext4_free_extent ex;
2087 ext4_fsblk_t first_group_block;
2088 ext4_fsblk_t a;
2089 ext4_grpblk_t i;
2090 int max;
2091
2092 BUG_ON(sbi->s_stripe == 0);
2093
2094 /* find first stripe-aligned block in group */
2095 first_group_block = ext4_group_first_block_no(sb, e4b->bd_group);
2096
2097 a = first_group_block + sbi->s_stripe - 1;
2098 do_div(a, sbi->s_stripe);
2099 i = (a * sbi->s_stripe) - first_group_block;
2100
2101 while (i < EXT4_CLUSTERS_PER_GROUP(sb)) {
2102 if (!mb_test_bit(i, bitmap)) {
2103 max = mb_find_extent(e4b, i, sbi->s_stripe, &ex);
2104 if (max >= sbi->s_stripe) {
2105 ac->ac_found++;
2106 ex.fe_logical = 0xDEADF00D; /* debug value */
2107 ac->ac_b_ex = ex;
2108 ext4_mb_use_best_found(ac, e4b);
2109 break;
2110 }
2111 }
2112 i += sbi->s_stripe;
2113 }
2114 }
2115
2116 /*
2117 * This is also called BEFORE we load the buddy bitmap.
2118 * Returns either 1 or 0 indicating that the group is either suitable
2119 * for the allocation or not.
2120 */
ext4_mb_good_group(struct ext4_allocation_context *ac, ext4_group_t group, int cr)2121 static bool ext4_mb_good_group(struct ext4_allocation_context *ac,
2122 ext4_group_t group, int cr)
2123 {
2124 ext4_grpblk_t free, fragments;
2125 int flex_size = ext4_flex_bg_size(EXT4_SB(ac->ac_sb));
2126 struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group);
2127
2128 BUG_ON(cr < 0 || cr >= 4);
2129
2130 if (unlikely(!grp || EXT4_MB_GRP_BBITMAP_CORRUPT(grp)))
2131 return false;
2132
2133 free = grp->bb_free;
2134 if (free == 0)
2135 return false;
2136
2137 fragments = grp->bb_fragments;
2138 if (fragments == 0)
2139 return false;
2140
2141 switch (cr) {
2142 case 0:
2143 BUG_ON(ac->ac_2order == 0);
2144
2145 /* Avoid using the first bg of a flexgroup for data files */
2146 if ((ac->ac_flags & EXT4_MB_HINT_DATA) &&
2147 (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) &&
2148 ((group % flex_size) == 0))
2149 return false;
2150
2151 if (free < ac->ac_g_ex.fe_len)
2152 return false;
2153
2154 if (ac->ac_2order > ac->ac_sb->s_blocksize_bits+1)
2155 return true;
2156
2157 if (grp->bb_largest_free_order < ac->ac_2order)
2158 return false;
2159
2160 return true;
2161 case 1:
2162 if ((free / fragments) >= ac->ac_g_ex.fe_len)
2163 return true;
2164 break;
2165 case 2:
2166 if (free >= ac->ac_g_ex.fe_len)
2167 return true;
2168 break;
2169 case 3:
2170 return true;
2171 default:
2172 BUG();
2173 }
2174
2175 return false;
2176 }
2177
2178 /*
2179 * This could return negative error code if something goes wrong
2180 * during ext4_mb_init_group(). This should not be called with
2181 * ext4_lock_group() held.
2182 */
ext4_mb_good_group_nolock(struct ext4_allocation_context *ac, ext4_group_t group, int cr)2183 static int ext4_mb_good_group_nolock(struct ext4_allocation_context *ac,
2184 ext4_group_t group, int cr)
2185 {
2186 struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group);
2187 struct super_block *sb = ac->ac_sb;
2188 struct ext4_sb_info *sbi = EXT4_SB(sb);
2189 bool should_lock = ac->ac_flags & EXT4_MB_STRICT_CHECK;
2190 ext4_grpblk_t free;
2191 int ret = 0;
2192
2193 if (!grp)
2194 return -EFSCORRUPTED;
2195 if (sbi->s_mb_stats)
2196 atomic64_inc(&sbi->s_bal_cX_groups_considered[ac->ac_criteria]);
2197 if (should_lock)
2198 ext4_lock_group(sb, group);
2199 free = grp->bb_free;
2200 if (free == 0)
2201 goto out;
2202 if (cr <= 2 && free < ac->ac_g_ex.fe_len)
2203 goto out;
2204 if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(grp)))
2205 goto out;
2206 if (should_lock)
2207 ext4_unlock_group(sb, group);
2208
2209 /* We only do this if the grp has never been initialized */
2210 if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) {
2211 struct ext4_group_desc *gdp =
2212 ext4_get_group_desc(sb, group, NULL);
2213 int ret;
2214
2215 /* cr=0/1 is a very optimistic search to find large
2216 * good chunks almost for free. If buddy data is not
2217 * ready, then this optimization makes no sense. But
2218 * we never skip the first block group in a flex_bg,
2219 * since this gets used for metadata block allocation,
2220 * and we want to make sure we locate metadata blocks
2221 * in the first block group in the flex_bg if possible.
2222 */
2223 if (cr < 2 &&
2224 (!sbi->s_log_groups_per_flex ||
2225 ((group & ((1 << sbi->s_log_groups_per_flex) - 1)) != 0)) &&
2226 !(ext4_has_group_desc_csum(sb) &&
2227 (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT))))
2228 return 0;
2229 ret = ext4_mb_init_group(sb, group, GFP_NOFS);
2230 if (ret)
2231 return ret;
2232 }
2233
2234 if (should_lock)
2235 ext4_lock_group(sb, group);
2236 ret = ext4_mb_good_group(ac, group, cr);
2237 out:
2238 if (should_lock)
2239 ext4_unlock_group(sb, group);
2240 return ret;
2241 }
2242
2243 /*
2244 * Start prefetching @nr block bitmaps starting at @group.
2245 * Return the next group which needs to be prefetched.
2246 */
ext4_mb_prefetch(struct super_block *sb, ext4_group_t group, unsigned int nr, int *cnt)2247 ext4_group_t ext4_mb_prefetch(struct super_block *sb, ext4_group_t group,
2248 unsigned int nr, int *cnt)
2249 {
2250 ext4_group_t ngroups = ext4_get_groups_count(sb);
2251 struct buffer_head *bh;
2252 struct blk_plug plug;
2253
2254 blk_start_plug(&plug);
2255 while (nr-- > 0) {
2256 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, group,
2257 NULL);
2258 struct ext4_group_info *grp = ext4_get_group_info(sb, group);
2259
2260 /*
2261 * Prefetch block groups with free blocks; but don't
2262 * bother if it is marked uninitialized on disk, since
2263 * it won't require I/O to read. Also only try to
2264 * prefetch once, so we avoid getblk() call, which can
2265 * be expensive.
2266 */
2267 if (gdp && grp && !EXT4_MB_GRP_TEST_AND_SET_READ(grp) &&
2268 EXT4_MB_GRP_NEED_INIT(grp) &&
2269 ext4_free_group_clusters(sb, gdp) > 0 &&
2270 !(ext4_has_group_desc_csum(sb) &&
2271 (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)))) {
2272 bh = ext4_read_block_bitmap_nowait(sb, group, true);
2273 if (bh && !IS_ERR(bh)) {
2274 if (!buffer_uptodate(bh) && cnt)
2275 (*cnt)++;
2276 brelse(bh);
2277 }
2278 }
2279 if (++group >= ngroups)
2280 group = 0;
2281 }
2282 blk_finish_plug(&plug);
2283 return group;
2284 }
2285
2286 /*
2287 * Prefetching reads the block bitmap into the buffer cache; but we
2288 * need to make sure that the buddy bitmap in the page cache has been
2289 * initialized. Note that ext4_mb_init_group() will block if the I/O
2290 * is not yet completed, or indeed if it was not initiated by
2291 * ext4_mb_prefetch did not start the I/O.
2292 *
2293 * TODO: We should actually kick off the buddy bitmap setup in a work
2294 * queue when the buffer I/O is completed, so that we don't block
2295 * waiting for the block allocation bitmap read to finish when
2296 * ext4_mb_prefetch_fini is called from ext4_mb_regular_allocator().
2297 */
ext4_mb_prefetch_fini(struct super_block *sb, ext4_group_t group, unsigned int nr)2298 void ext4_mb_prefetch_fini(struct super_block *sb, ext4_group_t group,
2299 unsigned int nr)
2300 {
2301 while (nr-- > 0) {
2302 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, group,
2303 NULL);
2304 struct ext4_group_info *grp = ext4_get_group_info(sb, group);
2305
2306 if (!group)
2307 group = ext4_get_groups_count(sb);
2308 group--;
2309 grp = ext4_get_group_info(sb, group);
2310
2311 if (grp && gdp && EXT4_MB_GRP_NEED_INIT(grp) &&
2312 ext4_free_group_clusters(sb, gdp) > 0 &&
2313 !(ext4_has_group_desc_csum(sb) &&
2314 (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)))) {
2315 if (ext4_mb_init_group(sb, group, GFP_NOFS))
2316 break;
2317 }
2318 }
2319 }
2320
2321 static noinline_for_stack int
ext4_mb_regular_allocator(struct ext4_allocation_context *ac)2322 ext4_mb_regular_allocator(struct ext4_allocation_context *ac)
2323 {
2324 ext4_group_t prefetch_grp = 0, ngroups, group, i;
2325 int cr = -1;
2326 int err = 0, first_err = 0;
2327 unsigned int nr = 0, prefetch_ios = 0;
2328 struct ext4_sb_info *sbi;
2329 struct super_block *sb;
2330 struct ext4_buddy e4b;
2331 int lost;
2332
2333 sb = ac->ac_sb;
2334 sbi = EXT4_SB(sb);
2335 ngroups = ext4_get_groups_count(sb);
2336 /* non-extent files are limited to low blocks/groups */
2337 if (!(ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS)))
2338 ngroups = sbi->s_blockfile_groups;
2339
2340 BUG_ON(ac->ac_status == AC_STATUS_FOUND);
2341
2342 /* first, try the goal */
2343 err = ext4_mb_find_by_goal(ac, &e4b);
2344 if (err || ac->ac_status == AC_STATUS_FOUND)
2345 goto out;
2346
2347 if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
2348 goto out;
2349
2350 /*
2351 * ac->ac_2order is set only if the fe_len is a power of 2
2352 * if ac->ac_2order is set we also set criteria to 0 so that we
2353 * try exact allocation using buddy.
2354 */
2355 i = fls(ac->ac_g_ex.fe_len);
2356 ac->ac_2order = 0;
2357 /*
2358 * We search using buddy data only if the order of the request
2359 * is greater than equal to the sbi_s_mb_order2_reqs
2360 * You can tune it via /sys/fs/ext4/<partition>/mb_order2_req
2361 * We also support searching for power-of-two requests only for
2362 * requests upto maximum buddy size we have constructed.
2363 */
2364 if (i >= sbi->s_mb_order2_reqs && i <= sb->s_blocksize_bits + 2) {
2365 /*
2366 * This should tell if fe_len is exactly power of 2
2367 */
2368 if ((ac->ac_g_ex.fe_len & (~(1 << (i - 1)))) == 0)
2369 ac->ac_2order = array_index_nospec(i - 1,
2370 sb->s_blocksize_bits + 2);
2371 }
2372
2373 /* if stream allocation is enabled, use global goal */
2374 if (ac->ac_flags & EXT4_MB_STREAM_ALLOC) {
2375 /* TBD: may be hot point */
2376 spin_lock(&sbi->s_md_lock);
2377 ac->ac_g_ex.fe_group = sbi->s_mb_last_group;
2378 ac->ac_g_ex.fe_start = sbi->s_mb_last_start;
2379 spin_unlock(&sbi->s_md_lock);
2380 }
2381
2382 /* Let's just scan groups to find more-less suitable blocks */
2383 cr = ac->ac_2order ? 0 : 1;
2384 /*
2385 * cr == 0 try to get exact allocation,
2386 * cr == 3 try to get anything
2387 */
2388 repeat:
2389 for (; cr < 4 && ac->ac_status == AC_STATUS_CONTINUE; cr++) {
2390 ac->ac_criteria = cr;
2391 /*
2392 * searching for the right group start
2393 * from the goal value specified
2394 */
2395 group = ac->ac_g_ex.fe_group;
2396 prefetch_grp = group;
2397
2398 for (i = 0; i < ngroups; group++, i++) {
2399 int ret = 0;
2400 cond_resched();
2401 /*
2402 * Artificially restricted ngroups for non-extent
2403 * files makes group > ngroups possible on first loop.
2404 */
2405 if (group >= ngroups)
2406 group = 0;
2407
2408 /*
2409 * Batch reads of the block allocation bitmaps
2410 * to get multiple READs in flight; limit
2411 * prefetching at cr=0/1, otherwise mballoc can
2412 * spend a lot of time loading imperfect groups
2413 */
2414 if ((prefetch_grp == group) &&
2415 (cr > 1 ||
2416 prefetch_ios < sbi->s_mb_prefetch_limit)) {
2417 unsigned int curr_ios = prefetch_ios;
2418
2419 nr = sbi->s_mb_prefetch;
2420 if (ext4_has_feature_flex_bg(sb)) {
2421 nr = 1 << sbi->s_log_groups_per_flex;
2422 nr -= group & (nr - 1);
2423 nr = min(nr, sbi->s_mb_prefetch);
2424 }
2425 prefetch_grp = ext4_mb_prefetch(sb, group,
2426 nr, &prefetch_ios);
2427 if (prefetch_ios == curr_ios)
2428 nr = 0;
2429 }
2430
2431 /* This now checks without needing the buddy page */
2432 ret = ext4_mb_good_group_nolock(ac, group, cr);
2433 if (ret <= 0) {
2434 if (!first_err)
2435 first_err = ret;
2436 continue;
2437 }
2438
2439 err = ext4_mb_load_buddy(sb, group, &e4b);
2440 if (err)
2441 goto out;
2442
2443 ext4_lock_group(sb, group);
2444
2445 /*
2446 * We need to check again after locking the
2447 * block group
2448 */
2449 ret = ext4_mb_good_group(ac, group, cr);
2450 if (ret == 0) {
2451 ext4_unlock_group(sb, group);
2452 ext4_mb_unload_buddy(&e4b);
2453 continue;
2454 }
2455
2456 ac->ac_groups_scanned++;
2457 if (cr == 0)
2458 ext4_mb_simple_scan_group(ac, &e4b);
2459 else if (cr == 1 && sbi->s_stripe &&
2460 !(ac->ac_g_ex.fe_len % sbi->s_stripe))
2461 ext4_mb_scan_aligned(ac, &e4b);
2462 else
2463 ext4_mb_complex_scan_group(ac, &e4b);
2464
2465 ext4_unlock_group(sb, group);
2466 ext4_mb_unload_buddy(&e4b);
2467
2468 if (ac->ac_status != AC_STATUS_CONTINUE)
2469 break;
2470 }
2471 /* Processed all groups and haven't found blocks */
2472 if (sbi->s_mb_stats && i == ngroups)
2473 atomic64_inc(&sbi->s_bal_cX_failed[cr]);
2474 }
2475
2476 if (ac->ac_b_ex.fe_len > 0 && ac->ac_status != AC_STATUS_FOUND &&
2477 !(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
2478 /*
2479 * We've been searching too long. Let's try to allocate
2480 * the best chunk we've found so far
2481 */
2482 ext4_mb_try_best_found(ac, &e4b);
2483 if (ac->ac_status != AC_STATUS_FOUND) {
2484 /*
2485 * Someone more lucky has already allocated it.
2486 * The only thing we can do is just take first
2487 * found block(s)
2488 */
2489 lost = atomic_inc_return(&sbi->s_mb_lost_chunks);
2490 mb_debug(sb, "lost chunk, group: %u, start: %d, len: %d, lost: %d\n",
2491 ac->ac_b_ex.fe_group, ac->ac_b_ex.fe_start,
2492 ac->ac_b_ex.fe_len, lost);
2493
2494 ac->ac_b_ex.fe_group = 0;
2495 ac->ac_b_ex.fe_start = 0;
2496 ac->ac_b_ex.fe_len = 0;
2497 ac->ac_status = AC_STATUS_CONTINUE;
2498 ac->ac_flags |= EXT4_MB_HINT_FIRST;
2499 cr = 3;
2500 goto repeat;
2501 }
2502 }
2503
2504 if (sbi->s_mb_stats && ac->ac_status == AC_STATUS_FOUND)
2505 atomic64_inc(&sbi->s_bal_cX_hits[ac->ac_criteria]);
2506 out:
2507 if (!err && ac->ac_status != AC_STATUS_FOUND && first_err)
2508 err = first_err;
2509
2510 mb_debug(sb, "Best len %d, origin len %d, ac_status %u, ac_flags 0x%x, cr %d ret %d\n",
2511 ac->ac_b_ex.fe_len, ac->ac_o_ex.fe_len, ac->ac_status,
2512 ac->ac_flags, cr, err);
2513
2514 if (nr)
2515 ext4_mb_prefetch_fini(sb, prefetch_grp, nr);
2516
2517 return err;
2518 }
2519
ext4_mb_seq_groups_start(struct seq_file *seq, loff_t *pos)2520 static void *ext4_mb_seq_groups_start(struct seq_file *seq, loff_t *pos)
2521 {
2522 struct super_block *sb = PDE_DATA(file_inode(seq->file));
2523 ext4_group_t group;
2524
2525 if (*pos < 0 || *pos >= ext4_get_groups_count(sb))
2526 return NULL;
2527 group = *pos + 1;
2528 return (void *) ((unsigned long) group);
2529 }
2530
ext4_mb_seq_groups_next(struct seq_file *seq, void *v, loff_t *pos)2531 static void *ext4_mb_seq_groups_next(struct seq_file *seq, void *v, loff_t *pos)
2532 {
2533 struct super_block *sb = PDE_DATA(file_inode(seq->file));
2534 ext4_group_t group;
2535
2536 ++*pos;
2537 if (*pos < 0 || *pos >= ext4_get_groups_count(sb))
2538 return NULL;
2539 group = *pos + 1;
2540 return (void *) ((unsigned long) group);
2541 }
2542
ext4_mb_seq_groups_show(struct seq_file *seq, void *v)2543 static int ext4_mb_seq_groups_show(struct seq_file *seq, void *v)
2544 {
2545 struct super_block *sb = PDE_DATA(file_inode(seq->file));
2546 ext4_group_t group = (ext4_group_t) ((unsigned long) v);
2547 int i;
2548 int err, buddy_loaded = 0;
2549 struct ext4_buddy e4b;
2550 struct ext4_group_info *grinfo;
2551 unsigned char blocksize_bits = min_t(unsigned char,
2552 sb->s_blocksize_bits,
2553 EXT4_MAX_BLOCK_LOG_SIZE);
2554 struct sg {
2555 struct ext4_group_info info;
2556 ext4_grpblk_t counters[EXT4_MAX_BLOCK_LOG_SIZE + 2];
2557 } sg;
2558
2559 group--;
2560 if (group == 0)
2561 seq_puts(seq, "#group: free frags first ["
2562 " 2^0 2^1 2^2 2^3 2^4 2^5 2^6 "
2563 " 2^7 2^8 2^9 2^10 2^11 2^12 2^13 ]\n");
2564
2565 i = (blocksize_bits + 2) * sizeof(sg.info.bb_counters[0]) +
2566 sizeof(struct ext4_group_info);
2567
2568 grinfo = ext4_get_group_info(sb, group);
2569 if (!grinfo)
2570 return 0;
2571 /* Load the group info in memory only if not already loaded. */
2572 if (unlikely(EXT4_MB_GRP_NEED_INIT(grinfo))) {
2573 err = ext4_mb_load_buddy(sb, group, &e4b);
2574 if (err) {
2575 seq_printf(seq, "#%-5u: I/O error\n", group);
2576 return 0;
2577 }
2578 buddy_loaded = 1;
2579 }
2580
2581 memcpy(&sg, grinfo, i);
2582
2583 if (buddy_loaded)
2584 ext4_mb_unload_buddy(&e4b);
2585
2586 seq_printf(seq, "#%-5u: %-5u %-5u %-5u [", group, sg.info.bb_free,
2587 sg.info.bb_fragments, sg.info.bb_first_free);
2588 for (i = 0; i <= 13; i++)
2589 seq_printf(seq, " %-5u", i <= blocksize_bits + 1 ?
2590 sg.info.bb_counters[i] : 0);
2591 seq_puts(seq, " ]\n");
2592
2593 return 0;
2594 }
2595
ext4_mb_seq_groups_stop(struct seq_file *seq, void *v)2596 static void ext4_mb_seq_groups_stop(struct seq_file *seq, void *v)
2597 {
2598 }
2599
2600 const struct seq_operations ext4_mb_seq_groups_ops = {
2601 .start = ext4_mb_seq_groups_start,
2602 .next = ext4_mb_seq_groups_next,
2603 .stop = ext4_mb_seq_groups_stop,
2604 .show = ext4_mb_seq_groups_show,
2605 };
2606
ext4_seq_mb_stats_show(struct seq_file *seq, void *offset)2607 int ext4_seq_mb_stats_show(struct seq_file *seq, void *offset)
2608 {
2609 struct super_block *sb = (struct super_block *)seq->private;
2610 struct ext4_sb_info *sbi = EXT4_SB(sb);
2611
2612 seq_puts(seq, "mballoc:\n");
2613 if (!sbi->s_mb_stats) {
2614 seq_puts(seq, "\tmb stats collection turned off.\n");
2615 seq_puts(seq, "\tTo enable, please write \"1\" to sysfs file mb_stats.\n");
2616 return 0;
2617 }
2618 seq_printf(seq, "\treqs: %u\n", atomic_read(&sbi->s_bal_reqs));
2619 seq_printf(seq, "\tsuccess: %u\n", atomic_read(&sbi->s_bal_success));
2620
2621 seq_printf(seq, "\tgroups_scanned: %u\n", atomic_read(&sbi->s_bal_groups_scanned));
2622
2623 seq_puts(seq, "\tcr0_stats:\n");
2624 seq_printf(seq, "\t\thits: %llu\n", atomic64_read(&sbi->s_bal_cX_hits[0]));
2625 seq_printf(seq, "\t\tgroups_considered: %llu\n",
2626 atomic64_read(&sbi->s_bal_cX_groups_considered[0]));
2627 seq_printf(seq, "\t\tuseless_loops: %llu\n",
2628 atomic64_read(&sbi->s_bal_cX_failed[0]));
2629
2630 seq_puts(seq, "\tcr1_stats:\n");
2631 seq_printf(seq, "\t\thits: %llu\n", atomic64_read(&sbi->s_bal_cX_hits[1]));
2632 seq_printf(seq, "\t\tgroups_considered: %llu\n",
2633 atomic64_read(&sbi->s_bal_cX_groups_considered[1]));
2634 seq_printf(seq, "\t\tuseless_loops: %llu\n",
2635 atomic64_read(&sbi->s_bal_cX_failed[1]));
2636
2637 seq_puts(seq, "\tcr2_stats:\n");
2638 seq_printf(seq, "\t\thits: %llu\n", atomic64_read(&sbi->s_bal_cX_hits[2]));
2639 seq_printf(seq, "\t\tgroups_considered: %llu\n",
2640 atomic64_read(&sbi->s_bal_cX_groups_considered[2]));
2641 seq_printf(seq, "\t\tuseless_loops: %llu\n",
2642 atomic64_read(&sbi->s_bal_cX_failed[2]));
2643
2644 seq_puts(seq, "\tcr3_stats:\n");
2645 seq_printf(seq, "\t\thits: %llu\n", atomic64_read(&sbi->s_bal_cX_hits[3]));
2646 seq_printf(seq, "\t\tgroups_considered: %llu\n",
2647 atomic64_read(&sbi->s_bal_cX_groups_considered[3]));
2648 seq_printf(seq, "\t\tuseless_loops: %llu\n",
2649 atomic64_read(&sbi->s_bal_cX_failed[3]));
2650 seq_printf(seq, "\textents_scanned: %u\n", atomic_read(&sbi->s_bal_ex_scanned));
2651 seq_printf(seq, "\t\tgoal_hits: %u\n", atomic_read(&sbi->s_bal_goals));
2652 seq_printf(seq, "\t\t2^n_hits: %u\n", atomic_read(&sbi->s_bal_2orders));
2653 seq_printf(seq, "\t\tbreaks: %u\n", atomic_read(&sbi->s_bal_breaks));
2654 seq_printf(seq, "\t\tlost: %u\n", atomic_read(&sbi->s_mb_lost_chunks));
2655
2656 seq_printf(seq, "\tbuddies_generated: %u/%u\n",
2657 atomic_read(&sbi->s_mb_buddies_generated),
2658 ext4_get_groups_count(sb));
2659 seq_printf(seq, "\tbuddies_time_used: %llu\n",
2660 atomic64_read(&sbi->s_mb_generation_time));
2661 seq_printf(seq, "\tpreallocated: %u\n",
2662 atomic_read(&sbi->s_mb_preallocated));
2663 seq_printf(seq, "\tdiscarded: %u\n",
2664 atomic_read(&sbi->s_mb_discarded));
2665 return 0;
2666 }
2667
get_groupinfo_cache(int blocksize_bits)2668 static struct kmem_cache *get_groupinfo_cache(int blocksize_bits)
2669 {
2670 int cache_index = blocksize_bits - EXT4_MIN_BLOCK_LOG_SIZE;
2671 struct kmem_cache *cachep = ext4_groupinfo_caches[cache_index];
2672
2673 BUG_ON(!cachep);
2674 return cachep;
2675 }
2676
2677 /*
2678 * Allocate the top-level s_group_info array for the specified number
2679 * of groups
2680 */
ext4_mb_alloc_groupinfo(struct super_block *sb, ext4_group_t ngroups)2681 int ext4_mb_alloc_groupinfo(struct super_block *sb, ext4_group_t ngroups)
2682 {
2683 struct ext4_sb_info *sbi = EXT4_SB(sb);
2684 unsigned size;
2685 struct ext4_group_info ***old_groupinfo, ***new_groupinfo;
2686
2687 size = (ngroups + EXT4_DESC_PER_BLOCK(sb) - 1) >>
2688 EXT4_DESC_PER_BLOCK_BITS(sb);
2689 if (size <= sbi->s_group_info_size)
2690 return 0;
2691
2692 size = roundup_pow_of_two(sizeof(*sbi->s_group_info) * size);
2693 new_groupinfo = kvzalloc(size, GFP_KERNEL);
2694 if (!new_groupinfo) {
2695 ext4_msg(sb, KERN_ERR, "can't allocate buddy meta group");
2696 return -ENOMEM;
2697 }
2698 rcu_read_lock();
2699 old_groupinfo = rcu_dereference(sbi->s_group_info);
2700 if (old_groupinfo)
2701 memcpy(new_groupinfo, old_groupinfo,
2702 sbi->s_group_info_size * sizeof(*sbi->s_group_info));
2703 rcu_read_unlock();
2704 rcu_assign_pointer(sbi->s_group_info, new_groupinfo);
2705 sbi->s_group_info_size = size / sizeof(*sbi->s_group_info);
2706 if (old_groupinfo)
2707 ext4_kvfree_array_rcu(old_groupinfo);
2708 ext4_debug("allocated s_groupinfo array for %d meta_bg's\n",
2709 sbi->s_group_info_size);
2710 return 0;
2711 }
2712
2713 /* Create and initialize ext4_group_info data for the given group. */
ext4_mb_add_groupinfo(struct super_block *sb, ext4_group_t group, struct ext4_group_desc *desc)2714 int ext4_mb_add_groupinfo(struct super_block *sb, ext4_group_t group,
2715 struct ext4_group_desc *desc)
2716 {
2717 int i;
2718 int metalen = 0;
2719 int idx = group >> EXT4_DESC_PER_BLOCK_BITS(sb);
2720 struct ext4_sb_info *sbi = EXT4_SB(sb);
2721 struct ext4_group_info **meta_group_info;
2722 struct kmem_cache *cachep = get_groupinfo_cache(sb->s_blocksize_bits);
2723
2724 /*
2725 * First check if this group is the first of a reserved block.
2726 * If it's true, we have to allocate a new table of pointers
2727 * to ext4_group_info structures
2728 */
2729 if (group % EXT4_DESC_PER_BLOCK(sb) == 0) {
2730 metalen = sizeof(*meta_group_info) <<
2731 EXT4_DESC_PER_BLOCK_BITS(sb);
2732 meta_group_info = kmalloc(metalen, GFP_NOFS);
2733 if (meta_group_info == NULL) {
2734 ext4_msg(sb, KERN_ERR, "can't allocate mem "
2735 "for a buddy group");
2736 goto exit_meta_group_info;
2737 }
2738 rcu_read_lock();
2739 rcu_dereference(sbi->s_group_info)[idx] = meta_group_info;
2740 rcu_read_unlock();
2741 }
2742
2743 meta_group_info = sbi_array_rcu_deref(sbi, s_group_info, idx);
2744 i = group & (EXT4_DESC_PER_BLOCK(sb) - 1);
2745
2746 meta_group_info[i] = kmem_cache_zalloc(cachep, GFP_NOFS);
2747 if (meta_group_info[i] == NULL) {
2748 ext4_msg(sb, KERN_ERR, "can't allocate buddy mem");
2749 goto exit_group_info;
2750 }
2751 set_bit(EXT4_GROUP_INFO_NEED_INIT_BIT,
2752 &(meta_group_info[i]->bb_state));
2753
2754 /*
2755 * initialize bb_free to be able to skip
2756 * empty groups without initialization
2757 */
2758 if (ext4_has_group_desc_csum(sb) &&
2759 (desc->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT))) {
2760 meta_group_info[i]->bb_free =
2761 ext4_free_clusters_after_init(sb, group, desc);
2762 } else {
2763 meta_group_info[i]->bb_free =
2764 ext4_free_group_clusters(sb, desc);
2765 }
2766
2767 INIT_LIST_HEAD(&meta_group_info[i]->bb_prealloc_list);
2768 init_rwsem(&meta_group_info[i]->alloc_sem);
2769 meta_group_info[i]->bb_free_root = RB_ROOT;
2770 meta_group_info[i]->bb_largest_free_order = -1; /* uninit */
2771
2772 mb_group_bb_bitmap_alloc(sb, meta_group_info[i], group);
2773 return 0;
2774
2775 exit_group_info:
2776 /* If a meta_group_info table has been allocated, release it now */
2777 if (group % EXT4_DESC_PER_BLOCK(sb) == 0) {
2778 struct ext4_group_info ***group_info;
2779
2780 rcu_read_lock();
2781 group_info = rcu_dereference(sbi->s_group_info);
2782 kfree(group_info[idx]);
2783 group_info[idx] = NULL;
2784 rcu_read_unlock();
2785 }
2786 exit_meta_group_info:
2787 return -ENOMEM;
2788 } /* ext4_mb_add_groupinfo */
2789
ext4_mb_init_backend(struct super_block *sb)2790 static int ext4_mb_init_backend(struct super_block *sb)
2791 {
2792 ext4_group_t ngroups = ext4_get_groups_count(sb);
2793 ext4_group_t i;
2794 struct ext4_sb_info *sbi = EXT4_SB(sb);
2795 int err;
2796 struct ext4_group_desc *desc;
2797 struct ext4_group_info ***group_info;
2798 struct kmem_cache *cachep;
2799
2800 err = ext4_mb_alloc_groupinfo(sb, ngroups);
2801 if (err)
2802 return err;
2803
2804 sbi->s_buddy_cache = new_inode(sb);
2805 if (sbi->s_buddy_cache == NULL) {
2806 ext4_msg(sb, KERN_ERR, "can't get new inode");
2807 goto err_freesgi;
2808 }
2809 /* To avoid potentially colliding with an valid on-disk inode number,
2810 * use EXT4_BAD_INO for the buddy cache inode number. This inode is
2811 * not in the inode hash, so it should never be found by iget(), but
2812 * this will avoid confusion if it ever shows up during debugging. */
2813 sbi->s_buddy_cache->i_ino = EXT4_BAD_INO;
2814 EXT4_I(sbi->s_buddy_cache)->i_disksize = 0;
2815 for (i = 0; i < ngroups; i++) {
2816 cond_resched();
2817 desc = ext4_get_group_desc(sb, i, NULL);
2818 if (desc == NULL) {
2819 ext4_msg(sb, KERN_ERR, "can't read descriptor %u", i);
2820 goto err_freebuddy;
2821 }
2822 if (ext4_mb_add_groupinfo(sb, i, desc) != 0)
2823 goto err_freebuddy;
2824 }
2825
2826 if (ext4_has_feature_flex_bg(sb)) {
2827 /* a single flex group is supposed to be read by a single IO.
2828 * 2 ^ s_log_groups_per_flex != UINT_MAX as s_mb_prefetch is
2829 * unsigned integer, so the maximum shift is 32.
2830 */
2831 if (sbi->s_es->s_log_groups_per_flex >= 32) {
2832 ext4_msg(sb, KERN_ERR, "too many log groups per flexible block group");
2833 goto err_freebuddy;
2834 }
2835 sbi->s_mb_prefetch = min_t(uint, 1 << sbi->s_es->s_log_groups_per_flex,
2836 BLK_MAX_SEGMENT_SIZE >> (sb->s_blocksize_bits - 9));
2837 sbi->s_mb_prefetch *= 8; /* 8 prefetch IOs in flight at most */
2838 } else {
2839 sbi->s_mb_prefetch = 32;
2840 }
2841 if (sbi->s_mb_prefetch > ext4_get_groups_count(sb))
2842 sbi->s_mb_prefetch = ext4_get_groups_count(sb);
2843 /* now many real IOs to prefetch within a single allocation at cr=0
2844 * given cr=0 is an CPU-related optimization we shouldn't try to
2845 * load too many groups, at some point we should start to use what
2846 * we've got in memory.
2847 * with an average random access time 5ms, it'd take a second to get
2848 * 200 groups (* N with flex_bg), so let's make this limit 4
2849 */
2850 sbi->s_mb_prefetch_limit = sbi->s_mb_prefetch * 4;
2851 if (sbi->s_mb_prefetch_limit > ext4_get_groups_count(sb))
2852 sbi->s_mb_prefetch_limit = ext4_get_groups_count(sb);
2853
2854 return 0;
2855
2856 err_freebuddy:
2857 cachep = get_groupinfo_cache(sb->s_blocksize_bits);
2858 while (i-- > 0) {
2859 struct ext4_group_info *grp = ext4_get_group_info(sb, i);
2860
2861 if (grp)
2862 kmem_cache_free(cachep, grp);
2863 }
2864 i = sbi->s_group_info_size;
2865 rcu_read_lock();
2866 group_info = rcu_dereference(sbi->s_group_info);
2867 while (i-- > 0)
2868 kfree(group_info[i]);
2869 rcu_read_unlock();
2870 iput(sbi->s_buddy_cache);
2871 err_freesgi:
2872 rcu_read_lock();
2873 kvfree(rcu_dereference(sbi->s_group_info));
2874 rcu_read_unlock();
2875 return -ENOMEM;
2876 }
2877
ext4_groupinfo_destroy_slabs(void)2878 static void ext4_groupinfo_destroy_slabs(void)
2879 {
2880 int i;
2881
2882 for (i = 0; i < NR_GRPINFO_CACHES; i++) {
2883 kmem_cache_destroy(ext4_groupinfo_caches[i]);
2884 ext4_groupinfo_caches[i] = NULL;
2885 }
2886 }
2887
ext4_groupinfo_create_slab(size_t size)2888 static int ext4_groupinfo_create_slab(size_t size)
2889 {
2890 static DEFINE_MUTEX(ext4_grpinfo_slab_create_mutex);
2891 int slab_size;
2892 int blocksize_bits = order_base_2(size);
2893 int cache_index = blocksize_bits - EXT4_MIN_BLOCK_LOG_SIZE;
2894 struct kmem_cache *cachep;
2895
2896 if (cache_index >= NR_GRPINFO_CACHES)
2897 return -EINVAL;
2898
2899 if (unlikely(cache_index < 0))
2900 cache_index = 0;
2901
2902 mutex_lock(&ext4_grpinfo_slab_create_mutex);
2903 if (ext4_groupinfo_caches[cache_index]) {
2904 mutex_unlock(&ext4_grpinfo_slab_create_mutex);
2905 return 0; /* Already created */
2906 }
2907
2908 slab_size = offsetof(struct ext4_group_info,
2909 bb_counters[blocksize_bits + 2]);
2910
2911 cachep = kmem_cache_create(ext4_groupinfo_slab_names[cache_index],
2912 slab_size, 0, SLAB_RECLAIM_ACCOUNT,
2913 NULL);
2914
2915 ext4_groupinfo_caches[cache_index] = cachep;
2916
2917 mutex_unlock(&ext4_grpinfo_slab_create_mutex);
2918 if (!cachep) {
2919 printk(KERN_EMERG
2920 "EXT4-fs: no memory for groupinfo slab cache\n");
2921 return -ENOMEM;
2922 }
2923
2924 return 0;
2925 }
2926
ext4_mb_init(struct super_block *sb)2927 int ext4_mb_init(struct super_block *sb)
2928 {
2929 struct ext4_sb_info *sbi = EXT4_SB(sb);
2930 unsigned i, j;
2931 unsigned offset, offset_incr;
2932 unsigned max;
2933 int ret;
2934
2935 i = (sb->s_blocksize_bits + 2) * sizeof(*sbi->s_mb_offsets);
2936
2937 sbi->s_mb_offsets = kmalloc(i, GFP_KERNEL);
2938 if (sbi->s_mb_offsets == NULL) {
2939 ret = -ENOMEM;
2940 goto out;
2941 }
2942
2943 i = (sb->s_blocksize_bits + 2) * sizeof(*sbi->s_mb_maxs);
2944 sbi->s_mb_maxs = kmalloc(i, GFP_KERNEL);
2945 if (sbi->s_mb_maxs == NULL) {
2946 ret = -ENOMEM;
2947 goto out;
2948 }
2949
2950 ret = ext4_groupinfo_create_slab(sb->s_blocksize);
2951 if (ret < 0)
2952 goto out;
2953
2954 /* order 0 is regular bitmap */
2955 sbi->s_mb_maxs[0] = sb->s_blocksize << 3;
2956 sbi->s_mb_offsets[0] = 0;
2957
2958 i = 1;
2959 offset = 0;
2960 offset_incr = 1 << (sb->s_blocksize_bits - 1);
2961 max = sb->s_blocksize << 2;
2962 do {
2963 sbi->s_mb_offsets[i] = offset;
2964 sbi->s_mb_maxs[i] = max;
2965 offset += offset_incr;
2966 offset_incr = offset_incr >> 1;
2967 max = max >> 1;
2968 i++;
2969 } while (i <= sb->s_blocksize_bits + 1);
2970
2971 spin_lock_init(&sbi->s_md_lock);
2972 sbi->s_mb_free_pending = 0;
2973 INIT_LIST_HEAD(&sbi->s_freed_data_list);
2974
2975 sbi->s_mb_max_to_scan = MB_DEFAULT_MAX_TO_SCAN;
2976 sbi->s_mb_min_to_scan = MB_DEFAULT_MIN_TO_SCAN;
2977 sbi->s_mb_stats = MB_DEFAULT_STATS;
2978 sbi->s_mb_stream_request = MB_DEFAULT_STREAM_THRESHOLD;
2979 sbi->s_mb_order2_reqs = MB_DEFAULT_ORDER2_REQS;
2980 sbi->s_mb_max_inode_prealloc = MB_DEFAULT_MAX_INODE_PREALLOC;
2981 /*
2982 * The default group preallocation is 512, which for 4k block
2983 * sizes translates to 2 megabytes. However for bigalloc file
2984 * systems, this is probably too big (i.e, if the cluster size
2985 * is 1 megabyte, then group preallocation size becomes half a
2986 * gigabyte!). As a default, we will keep a two megabyte
2987 * group pralloc size for cluster sizes up to 64k, and after
2988 * that, we will force a minimum group preallocation size of
2989 * 32 clusters. This translates to 8 megs when the cluster
2990 * size is 256k, and 32 megs when the cluster size is 1 meg,
2991 * which seems reasonable as a default.
2992 */
2993 sbi->s_mb_group_prealloc = max(MB_DEFAULT_GROUP_PREALLOC >>
2994 sbi->s_cluster_bits, 32);
2995 /*
2996 * If there is a s_stripe > 1, then we set the s_mb_group_prealloc
2997 * to the lowest multiple of s_stripe which is bigger than
2998 * the s_mb_group_prealloc as determined above. We want
2999 * the preallocation size to be an exact multiple of the
3000 * RAID stripe size so that preallocations don't fragment
3001 * the stripes.
3002 */
3003 if (sbi->s_stripe > 1) {
3004 sbi->s_mb_group_prealloc = roundup(
3005 sbi->s_mb_group_prealloc, sbi->s_stripe);
3006 }
3007
3008 sbi->s_locality_groups = alloc_percpu(struct ext4_locality_group);
3009 if (sbi->s_locality_groups == NULL) {
3010 ret = -ENOMEM;
3011 goto out;
3012 }
3013 for_each_possible_cpu(i) {
3014 struct ext4_locality_group *lg;
3015 lg = per_cpu_ptr(sbi->s_locality_groups, i);
3016 mutex_init(&lg->lg_mutex);
3017 for (j = 0; j < PREALLOC_TB_SIZE; j++)
3018 INIT_LIST_HEAD(&lg->lg_prealloc_list[j]);
3019 spin_lock_init(&lg->lg_prealloc_lock);
3020 }
3021
3022 /* init file for buddy data */
3023 ret = ext4_mb_init_backend(sb);
3024 if (ret != 0)
3025 goto out_free_locality_groups;
3026
3027 return 0;
3028
3029 out_free_locality_groups:
3030 free_percpu(sbi->s_locality_groups);
3031 sbi->s_locality_groups = NULL;
3032 out:
3033 kfree(sbi->s_mb_offsets);
3034 sbi->s_mb_offsets = NULL;
3035 kfree(sbi->s_mb_maxs);
3036 sbi->s_mb_maxs = NULL;
3037 return ret;
3038 }
3039
3040 /* need to called with the ext4 group lock held */
ext4_mb_cleanup_pa(struct ext4_group_info *grp)3041 static int ext4_mb_cleanup_pa(struct ext4_group_info *grp)
3042 {
3043 struct ext4_prealloc_space *pa;
3044 struct list_head *cur, *tmp;
3045 int count = 0;
3046
3047 list_for_each_safe(cur, tmp, &grp->bb_prealloc_list) {
3048 pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
3049 list_del(&pa->pa_group_list);
3050 count++;
3051 kmem_cache_free(ext4_pspace_cachep, pa);
3052 }
3053 return count;
3054 }
3055
ext4_mb_release(struct super_block *sb)3056 int ext4_mb_release(struct super_block *sb)
3057 {
3058 ext4_group_t ngroups = ext4_get_groups_count(sb);
3059 ext4_group_t i;
3060 int num_meta_group_infos;
3061 struct ext4_group_info *grinfo, ***group_info;
3062 struct ext4_sb_info *sbi = EXT4_SB(sb);
3063 struct kmem_cache *cachep = get_groupinfo_cache(sb->s_blocksize_bits);
3064 int count;
3065
3066 if (sbi->s_group_info) {
3067 for (i = 0; i < ngroups; i++) {
3068 cond_resched();
3069 grinfo = ext4_get_group_info(sb, i);
3070 if (!grinfo)
3071 continue;
3072 mb_group_bb_bitmap_free(grinfo);
3073 ext4_lock_group(sb, i);
3074 count = ext4_mb_cleanup_pa(grinfo);
3075 if (count)
3076 mb_debug(sb, "mballoc: %d PAs left\n",
3077 count);
3078 ext4_unlock_group(sb, i);
3079 kmem_cache_free(cachep, grinfo);
3080 }
3081 num_meta_group_infos = (ngroups +
3082 EXT4_DESC_PER_BLOCK(sb) - 1) >>
3083 EXT4_DESC_PER_BLOCK_BITS(sb);
3084 rcu_read_lock();
3085 group_info = rcu_dereference(sbi->s_group_info);
3086 for (i = 0; i < num_meta_group_infos; i++)
3087 kfree(group_info[i]);
3088 kvfree(group_info);
3089 rcu_read_unlock();
3090 }
3091 kfree(sbi->s_mb_offsets);
3092 kfree(sbi->s_mb_maxs);
3093 iput(sbi->s_buddy_cache);
3094 if (sbi->s_mb_stats) {
3095 ext4_msg(sb, KERN_INFO,
3096 "mballoc: %u blocks %u reqs (%u success)",
3097 atomic_read(&sbi->s_bal_allocated),
3098 atomic_read(&sbi->s_bal_reqs),
3099 atomic_read(&sbi->s_bal_success));
3100 ext4_msg(sb, KERN_INFO,
3101 "mballoc: %u extents scanned, %u groups scanned, %u goal hits, "
3102 "%u 2^N hits, %u breaks, %u lost",
3103 atomic_read(&sbi->s_bal_ex_scanned),
3104 atomic_read(&sbi->s_bal_groups_scanned),
3105 atomic_read(&sbi->s_bal_goals),
3106 atomic_read(&sbi->s_bal_2orders),
3107 atomic_read(&sbi->s_bal_breaks),
3108 atomic_read(&sbi->s_mb_lost_chunks));
3109 ext4_msg(sb, KERN_INFO,
3110 "mballoc: %u generated and it took %llu",
3111 atomic_read(&sbi->s_mb_buddies_generated),
3112 atomic64_read(&sbi->s_mb_generation_time));
3113 ext4_msg(sb, KERN_INFO,
3114 "mballoc: %u preallocated, %u discarded",
3115 atomic_read(&sbi->s_mb_preallocated),
3116 atomic_read(&sbi->s_mb_discarded));
3117 }
3118
3119 free_percpu(sbi->s_locality_groups);
3120
3121 return 0;
3122 }
3123
ext4_issue_discard(struct super_block *sb, ext4_group_t block_group, ext4_grpblk_t cluster, int count, struct bio **biop)3124 static inline int ext4_issue_discard(struct super_block *sb,
3125 ext4_group_t block_group, ext4_grpblk_t cluster, int count,
3126 struct bio **biop)
3127 {
3128 ext4_fsblk_t discard_block;
3129
3130 discard_block = (EXT4_C2B(EXT4_SB(sb), cluster) +
3131 ext4_group_first_block_no(sb, block_group));
3132 count = EXT4_C2B(EXT4_SB(sb), count);
3133 trace_ext4_discard_blocks(sb,
3134 (unsigned long long) discard_block, count);
3135 if (biop) {
3136 return __blkdev_issue_discard(sb->s_bdev,
3137 (sector_t)discard_block << (sb->s_blocksize_bits - 9),
3138 (sector_t)count << (sb->s_blocksize_bits - 9),
3139 GFP_NOFS, 0, biop);
3140 } else
3141 return sb_issue_discard(sb, discard_block, count, GFP_NOFS, 0);
3142 }
3143
ext4_free_data_in_buddy(struct super_block *sb, struct ext4_free_data *entry)3144 static void ext4_free_data_in_buddy(struct super_block *sb,
3145 struct ext4_free_data *entry)
3146 {
3147 struct ext4_buddy e4b;
3148 struct ext4_group_info *db;
3149 int err, count = 0, count2 = 0;
3150
3151 mb_debug(sb, "gonna free %u blocks in group %u (0x%p):",
3152 entry->efd_count, entry->efd_group, entry);
3153
3154 err = ext4_mb_load_buddy(sb, entry->efd_group, &e4b);
3155 /* we expect to find existing buddy because it's pinned */
3156 BUG_ON(err != 0);
3157
3158 spin_lock(&EXT4_SB(sb)->s_md_lock);
3159 EXT4_SB(sb)->s_mb_free_pending -= entry->efd_count;
3160 spin_unlock(&EXT4_SB(sb)->s_md_lock);
3161
3162 db = e4b.bd_info;
3163 /* there are blocks to put in buddy to make them really free */
3164 count += entry->efd_count;
3165 count2++;
3166 ext4_lock_group(sb, entry->efd_group);
3167 /* Take it out of per group rb tree */
3168 rb_erase(&entry->efd_node, &(db->bb_free_root));
3169 mb_free_blocks(NULL, &e4b, entry->efd_start_cluster, entry->efd_count);
3170
3171 /*
3172 * Clear the trimmed flag for the group so that the next
3173 * ext4_trim_fs can trim it.
3174 * If the volume is mounted with -o discard, online discard
3175 * is supported and the free blocks will be trimmed online.
3176 */
3177 if (!test_opt(sb, DISCARD))
3178 EXT4_MB_GRP_CLEAR_TRIMMED(db);
3179
3180 if (!db->bb_free_root.rb_node) {
3181 /* No more items in the per group rb tree
3182 * balance refcounts from ext4_mb_free_metadata()
3183 */
3184 put_page(e4b.bd_buddy_page);
3185 put_page(e4b.bd_bitmap_page);
3186 }
3187 ext4_unlock_group(sb, entry->efd_group);
3188 kmem_cache_free(ext4_free_data_cachep, entry);
3189 ext4_mb_unload_buddy(&e4b);
3190
3191 mb_debug(sb, "freed %d blocks in %d structures\n", count,
3192 count2);
3193 }
3194
3195 /*
3196 * This function is called by the jbd2 layer once the commit has finished,
3197 * so we know we can free the blocks that were released with that commit.
3198 */
ext4_process_freed_data(struct super_block *sb, tid_t commit_tid)3199 void ext4_process_freed_data(struct super_block *sb, tid_t commit_tid)
3200 {
3201 struct ext4_sb_info *sbi = EXT4_SB(sb);
3202 struct ext4_free_data *entry, *tmp;
3203 struct bio *discard_bio = NULL;
3204 struct list_head freed_data_list;
3205 struct list_head *cut_pos = NULL;
3206 int err;
3207
3208 INIT_LIST_HEAD(&freed_data_list);
3209
3210 spin_lock(&sbi->s_md_lock);
3211 list_for_each_entry(entry, &sbi->s_freed_data_list, efd_list) {
3212 if (entry->efd_tid != commit_tid)
3213 break;
3214 cut_pos = &entry->efd_list;
3215 }
3216 if (cut_pos)
3217 list_cut_position(&freed_data_list, &sbi->s_freed_data_list,
3218 cut_pos);
3219 spin_unlock(&sbi->s_md_lock);
3220
3221 if (test_opt(sb, DISCARD)) {
3222 list_for_each_entry(entry, &freed_data_list, efd_list) {
3223 err = ext4_issue_discard(sb, entry->efd_group,
3224 entry->efd_start_cluster,
3225 entry->efd_count,
3226 &discard_bio);
3227 if (err && err != -EOPNOTSUPP) {
3228 ext4_msg(sb, KERN_WARNING, "discard request in"
3229 " group:%d block:%d count:%d failed"
3230 " with %d", entry->efd_group,
3231 entry->efd_start_cluster,
3232 entry->efd_count, err);
3233 } else if (err == -EOPNOTSUPP)
3234 break;
3235 }
3236
3237 if (discard_bio) {
3238 submit_bio_wait(discard_bio);
3239 bio_put(discard_bio);
3240 }
3241 }
3242
3243 list_for_each_entry_safe(entry, tmp, &freed_data_list, efd_list)
3244 ext4_free_data_in_buddy(sb, entry);
3245 }
3246
ext4_init_mballoc(void)3247 int __init ext4_init_mballoc(void)
3248 {
3249 ext4_pspace_cachep = KMEM_CACHE(ext4_prealloc_space,
3250 SLAB_RECLAIM_ACCOUNT);
3251 if (ext4_pspace_cachep == NULL)
3252 goto out;
3253
3254 ext4_ac_cachep = KMEM_CACHE(ext4_allocation_context,
3255 SLAB_RECLAIM_ACCOUNT);
3256 if (ext4_ac_cachep == NULL)
3257 goto out_pa_free;
3258
3259 ext4_free_data_cachep = KMEM_CACHE(ext4_free_data,
3260 SLAB_RECLAIM_ACCOUNT);
3261 if (ext4_free_data_cachep == NULL)
3262 goto out_ac_free;
3263
3264 return 0;
3265
3266 out_ac_free:
3267 kmem_cache_destroy(ext4_ac_cachep);
3268 out_pa_free:
3269 kmem_cache_destroy(ext4_pspace_cachep);
3270 out:
3271 return -ENOMEM;
3272 }
3273
ext4_exit_mballoc(void)3274 void ext4_exit_mballoc(void)
3275 {
3276 /*
3277 * Wait for completion of call_rcu()'s on ext4_pspace_cachep
3278 * before destroying the slab cache.
3279 */
3280 rcu_barrier();
3281 kmem_cache_destroy(ext4_pspace_cachep);
3282 kmem_cache_destroy(ext4_ac_cachep);
3283 kmem_cache_destroy(ext4_free_data_cachep);
3284 ext4_groupinfo_destroy_slabs();
3285 }
3286
3287
3288 /*
3289 * Check quota and mark chosen space (ac->ac_b_ex) non-free in bitmaps
3290 * Returns 0 if success or error code
3291 */
3292 static noinline_for_stack int
ext4_mb_mark_diskspace_used(struct ext4_allocation_context *ac, handle_t *handle, unsigned int reserv_clstrs)3293 ext4_mb_mark_diskspace_used(struct ext4_allocation_context *ac,
3294 handle_t *handle, unsigned int reserv_clstrs)
3295 {
3296 struct buffer_head *bitmap_bh = NULL;
3297 struct ext4_group_desc *gdp;
3298 struct buffer_head *gdp_bh;
3299 struct ext4_sb_info *sbi;
3300 struct super_block *sb;
3301 ext4_fsblk_t block;
3302 int err, len;
3303
3304 BUG_ON(ac->ac_status != AC_STATUS_FOUND);
3305 BUG_ON(ac->ac_b_ex.fe_len <= 0);
3306
3307 sb = ac->ac_sb;
3308 sbi = EXT4_SB(sb);
3309
3310 bitmap_bh = ext4_read_block_bitmap(sb, ac->ac_b_ex.fe_group);
3311 if (IS_ERR(bitmap_bh)) {
3312 err = PTR_ERR(bitmap_bh);
3313 bitmap_bh = NULL;
3314 goto out_err;
3315 }
3316
3317 BUFFER_TRACE(bitmap_bh, "getting write access");
3318 err = ext4_journal_get_write_access(handle, bitmap_bh);
3319 if (err)
3320 goto out_err;
3321
3322 err = -EIO;
3323 gdp = ext4_get_group_desc(sb, ac->ac_b_ex.fe_group, &gdp_bh);
3324 if (!gdp)
3325 goto out_err;
3326
3327 ext4_debug("using block group %u(%d)\n", ac->ac_b_ex.fe_group,
3328 ext4_free_group_clusters(sb, gdp));
3329
3330 BUFFER_TRACE(gdp_bh, "get_write_access");
3331 err = ext4_journal_get_write_access(handle, gdp_bh);
3332 if (err)
3333 goto out_err;
3334
3335 block = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
3336
3337 len = EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
3338 if (!ext4_inode_block_valid(ac->ac_inode, block, len)) {
3339 ext4_error(sb, "Allocating blocks %llu-%llu which overlap "
3340 "fs metadata", block, block+len);
3341 /* File system mounted not to panic on error
3342 * Fix the bitmap and return EFSCORRUPTED
3343 * We leak some of the blocks here.
3344 */
3345 ext4_lock_group(sb, ac->ac_b_ex.fe_group);
3346 ext4_set_bits(bitmap_bh->b_data, ac->ac_b_ex.fe_start,
3347 ac->ac_b_ex.fe_len);
3348 ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
3349 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
3350 if (!err)
3351 err = -EFSCORRUPTED;
3352 goto out_err;
3353 }
3354
3355 ext4_lock_group(sb, ac->ac_b_ex.fe_group);
3356 #ifdef AGGRESSIVE_CHECK
3357 {
3358 int i;
3359 for (i = 0; i < ac->ac_b_ex.fe_len; i++) {
3360 BUG_ON(mb_test_bit(ac->ac_b_ex.fe_start + i,
3361 bitmap_bh->b_data));
3362 }
3363 }
3364 #endif
3365 ext4_set_bits(bitmap_bh->b_data, ac->ac_b_ex.fe_start,
3366 ac->ac_b_ex.fe_len);
3367 if (ext4_has_group_desc_csum(sb) &&
3368 (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT))) {
3369 gdp->bg_flags &= cpu_to_le16(~EXT4_BG_BLOCK_UNINIT);
3370 ext4_free_group_clusters_set(sb, gdp,
3371 ext4_free_clusters_after_init(sb,
3372 ac->ac_b_ex.fe_group, gdp));
3373 }
3374 len = ext4_free_group_clusters(sb, gdp) - ac->ac_b_ex.fe_len;
3375 ext4_free_group_clusters_set(sb, gdp, len);
3376 ext4_block_bitmap_csum_set(sb, ac->ac_b_ex.fe_group, gdp, bitmap_bh);
3377 ext4_group_desc_csum_set(sb, ac->ac_b_ex.fe_group, gdp);
3378
3379 ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
3380 percpu_counter_sub(&sbi->s_freeclusters_counter, ac->ac_b_ex.fe_len);
3381 /*
3382 * Now reduce the dirty block count also. Should not go negative
3383 */
3384 if (!(ac->ac_flags & EXT4_MB_DELALLOC_RESERVED))
3385 /* release all the reserved blocks if non delalloc */
3386 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
3387 reserv_clstrs);
3388
3389 if (sbi->s_log_groups_per_flex) {
3390 ext4_group_t flex_group = ext4_flex_group(sbi,
3391 ac->ac_b_ex.fe_group);
3392 atomic64_sub(ac->ac_b_ex.fe_len,
3393 &sbi_array_rcu_deref(sbi, s_flex_groups,
3394 flex_group)->free_clusters);
3395 }
3396
3397 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
3398 if (err)
3399 goto out_err;
3400 err = ext4_handle_dirty_metadata(handle, NULL, gdp_bh);
3401
3402 out_err:
3403 brelse(bitmap_bh);
3404 return err;
3405 }
3406
3407 /*
3408 * Idempotent helper for Ext4 fast commit replay path to set the state of
3409 * blocks in bitmaps and update counters.
3410 */
ext4_mb_mark_bb(struct super_block *sb, ext4_fsblk_t block, int len, int state)3411 void ext4_mb_mark_bb(struct super_block *sb, ext4_fsblk_t block,
3412 int len, int state)
3413 {
3414 struct buffer_head *bitmap_bh = NULL;
3415 struct ext4_group_desc *gdp;
3416 struct buffer_head *gdp_bh;
3417 struct ext4_sb_info *sbi = EXT4_SB(sb);
3418 ext4_group_t group;
3419 ext4_grpblk_t blkoff;
3420 int i, err;
3421 int already;
3422 unsigned int clen, clen_changed, thisgrp_len;
3423
3424 while (len > 0) {
3425 ext4_get_group_no_and_offset(sb, block, &group, &blkoff);
3426
3427 /*
3428 * Check to see if we are freeing blocks across a group
3429 * boundary.
3430 * In case of flex_bg, this can happen that (block, len) may
3431 * span across more than one group. In that case we need to
3432 * get the corresponding group metadata to work with.
3433 * For this we have goto again loop.
3434 */
3435 thisgrp_len = min_t(unsigned int, (unsigned int)len,
3436 EXT4_BLOCKS_PER_GROUP(sb) - EXT4_C2B(sbi, blkoff));
3437 clen = EXT4_NUM_B2C(sbi, thisgrp_len);
3438
3439 bitmap_bh = ext4_read_block_bitmap(sb, group);
3440 if (IS_ERR(bitmap_bh)) {
3441 err = PTR_ERR(bitmap_bh);
3442 bitmap_bh = NULL;
3443 break;
3444 }
3445
3446 err = -EIO;
3447 gdp = ext4_get_group_desc(sb, group, &gdp_bh);
3448 if (!gdp)
3449 break;
3450
3451 ext4_lock_group(sb, group);
3452 already = 0;
3453 for (i = 0; i < clen; i++)
3454 if (!mb_test_bit(blkoff + i, bitmap_bh->b_data) ==
3455 !state)
3456 already++;
3457
3458 clen_changed = clen - already;
3459 if (state)
3460 ext4_set_bits(bitmap_bh->b_data, blkoff, clen);
3461 else
3462 mb_test_and_clear_bits(bitmap_bh->b_data, blkoff, clen);
3463 if (ext4_has_group_desc_csum(sb) &&
3464 (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT))) {
3465 gdp->bg_flags &= cpu_to_le16(~EXT4_BG_BLOCK_UNINIT);
3466 ext4_free_group_clusters_set(sb, gdp,
3467 ext4_free_clusters_after_init(sb, group, gdp));
3468 }
3469 if (state)
3470 clen = ext4_free_group_clusters(sb, gdp) - clen_changed;
3471 else
3472 clen = ext4_free_group_clusters(sb, gdp) + clen_changed;
3473
3474 ext4_free_group_clusters_set(sb, gdp, clen);
3475 ext4_block_bitmap_csum_set(sb, group, gdp, bitmap_bh);
3476 ext4_group_desc_csum_set(sb, group, gdp);
3477
3478 ext4_unlock_group(sb, group);
3479
3480 if (sbi->s_log_groups_per_flex) {
3481 ext4_group_t flex_group = ext4_flex_group(sbi, group);
3482 struct flex_groups *fg = sbi_array_rcu_deref(sbi,
3483 s_flex_groups, flex_group);
3484
3485 if (state)
3486 atomic64_sub(clen_changed, &fg->free_clusters);
3487 else
3488 atomic64_add(clen_changed, &fg->free_clusters);
3489
3490 }
3491
3492 err = ext4_handle_dirty_metadata(NULL, NULL, bitmap_bh);
3493 if (err)
3494 break;
3495 sync_dirty_buffer(bitmap_bh);
3496 err = ext4_handle_dirty_metadata(NULL, NULL, gdp_bh);
3497 sync_dirty_buffer(gdp_bh);
3498 if (err)
3499 break;
3500
3501 block += thisgrp_len;
3502 len -= thisgrp_len;
3503 brelse(bitmap_bh);
3504 BUG_ON(len < 0);
3505 }
3506
3507 if (err)
3508 brelse(bitmap_bh);
3509 }
3510
3511 /*
3512 * here we normalize request for locality group
3513 * Group request are normalized to s_mb_group_prealloc, which goes to
3514 * s_strip if we set the same via mount option.
3515 * s_mb_group_prealloc can be configured via
3516 * /sys/fs/ext4/<partition>/mb_group_prealloc
3517 *
3518 * XXX: should we try to preallocate more than the group has now?
3519 */
ext4_mb_normalize_group_request(struct ext4_allocation_context *ac)3520 static void ext4_mb_normalize_group_request(struct ext4_allocation_context *ac)
3521 {
3522 struct super_block *sb = ac->ac_sb;
3523 struct ext4_locality_group *lg = ac->ac_lg;
3524
3525 BUG_ON(lg == NULL);
3526 ac->ac_g_ex.fe_len = EXT4_SB(sb)->s_mb_group_prealloc;
3527 mb_debug(sb, "goal %u blocks for locality group\n", ac->ac_g_ex.fe_len);
3528 }
3529
3530 /*
3531 * Normalization means making request better in terms of
3532 * size and alignment
3533 */
3534 static noinline_for_stack void
ext4_mb_normalize_request(struct ext4_allocation_context *ac, struct ext4_allocation_request *ar)3535 ext4_mb_normalize_request(struct ext4_allocation_context *ac,
3536 struct ext4_allocation_request *ar)
3537 {
3538 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
3539 struct ext4_super_block *es = sbi->s_es;
3540 int bsbits, max;
3541 loff_t size, start_off, end;
3542 loff_t orig_size __maybe_unused;
3543 ext4_lblk_t start;
3544 struct ext4_inode_info *ei = EXT4_I(ac->ac_inode);
3545 struct ext4_prealloc_space *pa;
3546
3547 /* do normalize only data requests, metadata requests
3548 do not need preallocation */
3549 if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
3550 return;
3551
3552 /* sometime caller may want exact blocks */
3553 if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
3554 return;
3555
3556 /* caller may indicate that preallocation isn't
3557 * required (it's a tail, for example) */
3558 if (ac->ac_flags & EXT4_MB_HINT_NOPREALLOC)
3559 return;
3560
3561 if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC) {
3562 ext4_mb_normalize_group_request(ac);
3563 return ;
3564 }
3565
3566 bsbits = ac->ac_sb->s_blocksize_bits;
3567
3568 /* first, let's learn actual file size
3569 * given current request is allocated */
3570 size = extent_logical_end(sbi, &ac->ac_o_ex);
3571 size = size << bsbits;
3572 if (size < i_size_read(ac->ac_inode))
3573 size = i_size_read(ac->ac_inode);
3574 orig_size = size;
3575
3576 /* max size of free chunks */
3577 max = 2 << bsbits;
3578
3579 #define NRL_CHECK_SIZE(req, size, max, chunk_size) \
3580 (req <= (size) || max <= (chunk_size))
3581
3582 /* first, try to predict filesize */
3583 /* XXX: should this table be tunable? */
3584 start_off = 0;
3585 if (size <= 16 * 1024) {
3586 size = 16 * 1024;
3587 } else if (size <= 32 * 1024) {
3588 size = 32 * 1024;
3589 } else if (size <= 64 * 1024) {
3590 size = 64 * 1024;
3591 } else if (size <= 128 * 1024) {
3592 size = 128 * 1024;
3593 } else if (size <= 256 * 1024) {
3594 size = 256 * 1024;
3595 } else if (size <= 512 * 1024) {
3596 size = 512 * 1024;
3597 } else if (size <= 1024 * 1024) {
3598 size = 1024 * 1024;
3599 } else if (NRL_CHECK_SIZE(size, 4 * 1024 * 1024, max, 2 * 1024)) {
3600 start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
3601 (21 - bsbits)) << 21;
3602 size = 2 * 1024 * 1024;
3603 } else if (NRL_CHECK_SIZE(size, 8 * 1024 * 1024, max, 4 * 1024)) {
3604 start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
3605 (22 - bsbits)) << 22;
3606 size = 4 * 1024 * 1024;
3607 } else if (NRL_CHECK_SIZE(ac->ac_o_ex.fe_len,
3608 (8<<20)>>bsbits, max, 8 * 1024)) {
3609 start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
3610 (23 - bsbits)) << 23;
3611 size = 8 * 1024 * 1024;
3612 } else {
3613 start_off = (loff_t) ac->ac_o_ex.fe_logical << bsbits;
3614 size = (loff_t) EXT4_C2B(EXT4_SB(ac->ac_sb),
3615 ac->ac_o_ex.fe_len) << bsbits;
3616 }
3617 size = size >> bsbits;
3618 start = start_off >> bsbits;
3619
3620 /*
3621 * For tiny groups (smaller than 8MB) the chosen allocation
3622 * alignment may be larger than group size. Make sure the
3623 * alignment does not move allocation to a different group which
3624 * makes mballoc fail assertions later.
3625 */
3626 start = max(start, rounddown(ac->ac_o_ex.fe_logical,
3627 (ext4_lblk_t)EXT4_BLOCKS_PER_GROUP(ac->ac_sb)));
3628
3629 /* avoid unnecessary preallocation that may trigger assertions */
3630 if (start + size > EXT_MAX_BLOCKS)
3631 size = EXT_MAX_BLOCKS - start;
3632
3633 /* don't cover already allocated blocks in selected range */
3634 if (ar->pleft && start <= ar->lleft) {
3635 size -= ar->lleft + 1 - start;
3636 start = ar->lleft + 1;
3637 }
3638 if (ar->pright && start + size - 1 >= ar->lright)
3639 size -= start + size - ar->lright;
3640
3641 /*
3642 * Trim allocation request for filesystems with artificially small
3643 * groups.
3644 */
3645 if (size > EXT4_BLOCKS_PER_GROUP(ac->ac_sb))
3646 size = EXT4_BLOCKS_PER_GROUP(ac->ac_sb);
3647
3648 end = start + size;
3649
3650 /* check we don't cross already preallocated blocks */
3651 rcu_read_lock();
3652 list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) {
3653 loff_t pa_end;
3654
3655 if (pa->pa_deleted)
3656 continue;
3657 spin_lock(&pa->pa_lock);
3658 if (pa->pa_deleted) {
3659 spin_unlock(&pa->pa_lock);
3660 continue;
3661 }
3662
3663 pa_end = pa_logical_end(EXT4_SB(ac->ac_sb), pa);
3664
3665 /* PA must not overlap original request */
3666 BUG_ON(!(ac->ac_o_ex.fe_logical >= pa_end ||
3667 ac->ac_o_ex.fe_logical < pa->pa_lstart));
3668
3669 /* skip PAs this normalized request doesn't overlap with */
3670 if (pa->pa_lstart >= end || pa_end <= start) {
3671 spin_unlock(&pa->pa_lock);
3672 continue;
3673 }
3674 BUG_ON(pa->pa_lstart <= start && pa_end >= end);
3675
3676 /* adjust start or end to be adjacent to this pa */
3677 if (pa_end <= ac->ac_o_ex.fe_logical) {
3678 BUG_ON(pa_end < start);
3679 start = pa_end;
3680 } else if (pa->pa_lstart > ac->ac_o_ex.fe_logical) {
3681 BUG_ON(pa->pa_lstart > end);
3682 end = pa->pa_lstart;
3683 }
3684 spin_unlock(&pa->pa_lock);
3685 }
3686 rcu_read_unlock();
3687 size = end - start;
3688
3689 /* XXX: extra loop to check we really don't overlap preallocations */
3690 rcu_read_lock();
3691 list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) {
3692 loff_t pa_end;
3693
3694 spin_lock(&pa->pa_lock);
3695 if (pa->pa_deleted == 0) {
3696 pa_end = pa_logical_end(EXT4_SB(ac->ac_sb), pa);
3697 BUG_ON(!(start >= pa_end || end <= pa->pa_lstart));
3698 }
3699 spin_unlock(&pa->pa_lock);
3700 }
3701 rcu_read_unlock();
3702
3703 if (start + size <= ac->ac_o_ex.fe_logical &&
3704 start > ac->ac_o_ex.fe_logical) {
3705 ext4_msg(ac->ac_sb, KERN_ERR,
3706 "start %lu, size %lu, fe_logical %lu",
3707 (unsigned long) start, (unsigned long) size,
3708 (unsigned long) ac->ac_o_ex.fe_logical);
3709 BUG();
3710 }
3711 BUG_ON(size <= 0 || size > EXT4_BLOCKS_PER_GROUP(ac->ac_sb));
3712
3713 /* now prepare goal request */
3714
3715 /* XXX: is it better to align blocks WRT to logical
3716 * placement or satisfy big request as is */
3717 ac->ac_g_ex.fe_logical = start;
3718 ac->ac_g_ex.fe_len = EXT4_NUM_B2C(sbi, size);
3719
3720 /* define goal start in order to merge */
3721 if (ar->pright && (ar->lright == (start + size)) &&
3722 ar->pright >= size &&
3723 ar->pright - size >= le32_to_cpu(es->s_first_data_block)) {
3724 /* merge to the right */
3725 ext4_get_group_no_and_offset(ac->ac_sb, ar->pright - size,
3726 &ac->ac_g_ex.fe_group,
3727 &ac->ac_g_ex.fe_start);
3728 ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL;
3729 }
3730 if (ar->pleft && (ar->lleft + 1 == start) &&
3731 ar->pleft + 1 < ext4_blocks_count(es)) {
3732 /* merge to the left */
3733 ext4_get_group_no_and_offset(ac->ac_sb, ar->pleft + 1,
3734 &ac->ac_g_ex.fe_group,
3735 &ac->ac_g_ex.fe_start);
3736 ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL;
3737 }
3738
3739 mb_debug(ac->ac_sb, "goal: %lld(was %lld) blocks at %u\n", size,
3740 orig_size, start);
3741 }
3742
ext4_mb_collect_stats(struct ext4_allocation_context *ac)3743 static void ext4_mb_collect_stats(struct ext4_allocation_context *ac)
3744 {
3745 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
3746
3747 if (sbi->s_mb_stats && ac->ac_g_ex.fe_len >= 1) {
3748 atomic_inc(&sbi->s_bal_reqs);
3749 atomic_add(ac->ac_b_ex.fe_len, &sbi->s_bal_allocated);
3750 if (ac->ac_b_ex.fe_len >= ac->ac_o_ex.fe_len)
3751 atomic_inc(&sbi->s_bal_success);
3752 atomic_add(ac->ac_found, &sbi->s_bal_ex_scanned);
3753 atomic_add(ac->ac_groups_scanned, &sbi->s_bal_groups_scanned);
3754 if (ac->ac_g_ex.fe_start == ac->ac_b_ex.fe_start &&
3755 ac->ac_g_ex.fe_group == ac->ac_b_ex.fe_group)
3756 atomic_inc(&sbi->s_bal_goals);
3757 if (ac->ac_found > sbi->s_mb_max_to_scan)
3758 atomic_inc(&sbi->s_bal_breaks);
3759 }
3760
3761 if (ac->ac_op == EXT4_MB_HISTORY_ALLOC)
3762 trace_ext4_mballoc_alloc(ac);
3763 else
3764 trace_ext4_mballoc_prealloc(ac);
3765 }
3766
3767 /*
3768 * Called on failure; free up any blocks from the inode PA for this
3769 * context. We don't need this for MB_GROUP_PA because we only change
3770 * pa_free in ext4_mb_release_context(), but on failure, we've already
3771 * zeroed out ac->ac_b_ex.fe_len, so group_pa->pa_free is not changed.
3772 */
ext4_discard_allocated_blocks(struct ext4_allocation_context *ac)3773 static void ext4_discard_allocated_blocks(struct ext4_allocation_context *ac)
3774 {
3775 struct ext4_prealloc_space *pa = ac->ac_pa;
3776 struct ext4_buddy e4b;
3777 int err;
3778
3779 if (pa == NULL) {
3780 if (ac->ac_f_ex.fe_len == 0)
3781 return;
3782 err = ext4_mb_load_buddy(ac->ac_sb, ac->ac_f_ex.fe_group, &e4b);
3783 if (err) {
3784 /*
3785 * This should never happen since we pin the
3786 * pages in the ext4_allocation_context so
3787 * ext4_mb_load_buddy() should never fail.
3788 */
3789 WARN(1, "mb_load_buddy failed (%d)", err);
3790 return;
3791 }
3792 ext4_lock_group(ac->ac_sb, ac->ac_f_ex.fe_group);
3793 mb_free_blocks(ac->ac_inode, &e4b, ac->ac_f_ex.fe_start,
3794 ac->ac_f_ex.fe_len);
3795 ext4_unlock_group(ac->ac_sb, ac->ac_f_ex.fe_group);
3796 ext4_mb_unload_buddy(&e4b);
3797 return;
3798 }
3799 if (pa->pa_type == MB_INODE_PA)
3800 pa->pa_free += ac->ac_b_ex.fe_len;
3801 }
3802
3803 /*
3804 * use blocks preallocated to inode
3805 */
ext4_mb_use_inode_pa(struct ext4_allocation_context *ac, struct ext4_prealloc_space *pa)3806 static void ext4_mb_use_inode_pa(struct ext4_allocation_context *ac,
3807 struct ext4_prealloc_space *pa)
3808 {
3809 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
3810 ext4_fsblk_t start;
3811 ext4_fsblk_t end;
3812 int len;
3813
3814 /* found preallocated blocks, use them */
3815 start = pa->pa_pstart + (ac->ac_o_ex.fe_logical - pa->pa_lstart);
3816 end = min(pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len),
3817 start + EXT4_C2B(sbi, ac->ac_o_ex.fe_len));
3818 len = EXT4_NUM_B2C(sbi, end - start);
3819 ext4_get_group_no_and_offset(ac->ac_sb, start, &ac->ac_b_ex.fe_group,
3820 &ac->ac_b_ex.fe_start);
3821 ac->ac_b_ex.fe_len = len;
3822 ac->ac_status = AC_STATUS_FOUND;
3823 ac->ac_pa = pa;
3824
3825 BUG_ON(start < pa->pa_pstart);
3826 BUG_ON(end > pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len));
3827 BUG_ON(pa->pa_free < len);
3828 BUG_ON(ac->ac_b_ex.fe_len <= 0);
3829 pa->pa_free -= len;
3830
3831 mb_debug(ac->ac_sb, "use %llu/%d from inode pa %p\n", start, len, pa);
3832 }
3833
3834 /*
3835 * use blocks preallocated to locality group
3836 */
ext4_mb_use_group_pa(struct ext4_allocation_context *ac, struct ext4_prealloc_space *pa)3837 static void ext4_mb_use_group_pa(struct ext4_allocation_context *ac,
3838 struct ext4_prealloc_space *pa)
3839 {
3840 unsigned int len = ac->ac_o_ex.fe_len;
3841
3842 ext4_get_group_no_and_offset(ac->ac_sb, pa->pa_pstart,
3843 &ac->ac_b_ex.fe_group,
3844 &ac->ac_b_ex.fe_start);
3845 ac->ac_b_ex.fe_len = len;
3846 ac->ac_status = AC_STATUS_FOUND;
3847 ac->ac_pa = pa;
3848
3849 /* we don't correct pa_pstart or pa_plen here to avoid
3850 * possible race when the group is being loaded concurrently
3851 * instead we correct pa later, after blocks are marked
3852 * in on-disk bitmap -- see ext4_mb_release_context()
3853 * Other CPUs are prevented from allocating from this pa by lg_mutex
3854 */
3855 mb_debug(ac->ac_sb, "use %u/%u from group pa %p\n",
3856 pa->pa_lstart-len, len, pa);
3857 }
3858
3859 /*
3860 * Return the prealloc space that have minimal distance
3861 * from the goal block. @cpa is the prealloc
3862 * space that is having currently known minimal distance
3863 * from the goal block.
3864 */
3865 static struct ext4_prealloc_space *
ext4_mb_check_group_pa(ext4_fsblk_t goal_block, struct ext4_prealloc_space *pa, struct ext4_prealloc_space *cpa)3866 ext4_mb_check_group_pa(ext4_fsblk_t goal_block,
3867 struct ext4_prealloc_space *pa,
3868 struct ext4_prealloc_space *cpa)
3869 {
3870 ext4_fsblk_t cur_distance, new_distance;
3871
3872 if (cpa == NULL) {
3873 atomic_inc(&pa->pa_count);
3874 return pa;
3875 }
3876 cur_distance = abs(goal_block - cpa->pa_pstart);
3877 new_distance = abs(goal_block - pa->pa_pstart);
3878
3879 if (cur_distance <= new_distance)
3880 return cpa;
3881
3882 /* drop the previous reference */
3883 atomic_dec(&cpa->pa_count);
3884 atomic_inc(&pa->pa_count);
3885 return pa;
3886 }
3887
3888 /*
3889 * search goal blocks in preallocated space
3890 */
3891 static noinline_for_stack bool
ext4_mb_use_preallocated(struct ext4_allocation_context *ac)3892 ext4_mb_use_preallocated(struct ext4_allocation_context *ac)
3893 {
3894 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
3895 int order, i;
3896 struct ext4_inode_info *ei = EXT4_I(ac->ac_inode);
3897 struct ext4_locality_group *lg;
3898 struct ext4_prealloc_space *pa, *cpa = NULL;
3899 ext4_fsblk_t goal_block;
3900
3901 /* only data can be preallocated */
3902 if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
3903 return false;
3904
3905 /* first, try per-file preallocation */
3906 rcu_read_lock();
3907 list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) {
3908
3909 /* all fields in this condition don't change,
3910 * so we can skip locking for them */
3911 if (ac->ac_o_ex.fe_logical < pa->pa_lstart ||
3912 ac->ac_o_ex.fe_logical >= pa_logical_end(sbi, pa))
3913 continue;
3914
3915 /* non-extent files can't have physical blocks past 2^32 */
3916 if (!(ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS)) &&
3917 (pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len) >
3918 EXT4_MAX_BLOCK_FILE_PHYS))
3919 continue;
3920
3921 /* found preallocated blocks, use them */
3922 spin_lock(&pa->pa_lock);
3923 if (pa->pa_deleted == 0 && pa->pa_free) {
3924 atomic_inc(&pa->pa_count);
3925 ext4_mb_use_inode_pa(ac, pa);
3926 spin_unlock(&pa->pa_lock);
3927 ac->ac_criteria = 10;
3928 rcu_read_unlock();
3929 return true;
3930 }
3931 spin_unlock(&pa->pa_lock);
3932 }
3933 rcu_read_unlock();
3934
3935 /* can we use group allocation? */
3936 if (!(ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC))
3937 return false;
3938
3939 /* inode may have no locality group for some reason */
3940 lg = ac->ac_lg;
3941 if (lg == NULL)
3942 return false;
3943 order = fls(ac->ac_o_ex.fe_len) - 1;
3944 if (order > PREALLOC_TB_SIZE - 1)
3945 /* The max size of hash table is PREALLOC_TB_SIZE */
3946 order = PREALLOC_TB_SIZE - 1;
3947
3948 goal_block = ext4_grp_offs_to_block(ac->ac_sb, &ac->ac_g_ex);
3949 /*
3950 * search for the prealloc space that is having
3951 * minimal distance from the goal block.
3952 */
3953 for (i = order; i < PREALLOC_TB_SIZE; i++) {
3954 rcu_read_lock();
3955 list_for_each_entry_rcu(pa, &lg->lg_prealloc_list[i],
3956 pa_inode_list) {
3957 spin_lock(&pa->pa_lock);
3958 if (pa->pa_deleted == 0 &&
3959 pa->pa_free >= ac->ac_o_ex.fe_len) {
3960
3961 cpa = ext4_mb_check_group_pa(goal_block,
3962 pa, cpa);
3963 }
3964 spin_unlock(&pa->pa_lock);
3965 }
3966 rcu_read_unlock();
3967 }
3968 if (cpa) {
3969 ext4_mb_use_group_pa(ac, cpa);
3970 ac->ac_criteria = 20;
3971 return true;
3972 }
3973 return false;
3974 }
3975
3976 /*
3977 * the function goes through all block freed in the group
3978 * but not yet committed and marks them used in in-core bitmap.
3979 * buddy must be generated from this bitmap
3980 * Need to be called with the ext4 group lock held
3981 */
ext4_mb_generate_from_freelist(struct super_block *sb, void *bitmap, ext4_group_t group)3982 static void ext4_mb_generate_from_freelist(struct super_block *sb, void *bitmap,
3983 ext4_group_t group)
3984 {
3985 struct rb_node *n;
3986 struct ext4_group_info *grp;
3987 struct ext4_free_data *entry;
3988
3989 grp = ext4_get_group_info(sb, group);
3990 if (!grp)
3991 return;
3992 n = rb_first(&(grp->bb_free_root));
3993
3994 while (n) {
3995 entry = rb_entry(n, struct ext4_free_data, efd_node);
3996 ext4_set_bits(bitmap, entry->efd_start_cluster, entry->efd_count);
3997 n = rb_next(n);
3998 }
3999 return;
4000 }
4001
4002 /*
4003 * the function goes through all preallocation in this group and marks them
4004 * used in in-core bitmap. buddy must be generated from this bitmap
4005 * Need to be called with ext4 group lock held
4006 */
4007 static noinline_for_stack
ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap, ext4_group_t group)4008 void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap,
4009 ext4_group_t group)
4010 {
4011 struct ext4_group_info *grp = ext4_get_group_info(sb, group);
4012 struct ext4_prealloc_space *pa;
4013 struct list_head *cur;
4014 ext4_group_t groupnr;
4015 ext4_grpblk_t start;
4016 int preallocated = 0;
4017 int len;
4018
4019 if (!grp)
4020 return;
4021
4022 /* all form of preallocation discards first load group,
4023 * so the only competing code is preallocation use.
4024 * we don't need any locking here
4025 * notice we do NOT ignore preallocations with pa_deleted
4026 * otherwise we could leave used blocks available for
4027 * allocation in buddy when concurrent ext4_mb_put_pa()
4028 * is dropping preallocation
4029 */
4030 list_for_each(cur, &grp->bb_prealloc_list) {
4031 pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
4032 spin_lock(&pa->pa_lock);
4033 ext4_get_group_no_and_offset(sb, pa->pa_pstart,
4034 &groupnr, &start);
4035 len = pa->pa_len;
4036 spin_unlock(&pa->pa_lock);
4037 if (unlikely(len == 0))
4038 continue;
4039 BUG_ON(groupnr != group);
4040 ext4_set_bits(bitmap, start, len);
4041 preallocated += len;
4042 }
4043 mb_debug(sb, "preallocated %d for group %u\n", preallocated, group);
4044 }
4045
ext4_mb_mark_pa_deleted(struct super_block *sb, struct ext4_prealloc_space *pa)4046 static void ext4_mb_mark_pa_deleted(struct super_block *sb,
4047 struct ext4_prealloc_space *pa)
4048 {
4049 struct ext4_inode_info *ei;
4050
4051 if (pa->pa_deleted) {
4052 ext4_warning(sb, "deleted pa, type:%d, pblk:%llu, lblk:%u, len:%d\n",
4053 pa->pa_type, pa->pa_pstart, pa->pa_lstart,
4054 pa->pa_len);
4055 return;
4056 }
4057
4058 pa->pa_deleted = 1;
4059
4060 if (pa->pa_type == MB_INODE_PA) {
4061 ei = EXT4_I(pa->pa_inode);
4062 atomic_dec(&ei->i_prealloc_active);
4063 }
4064 }
4065
ext4_mb_pa_callback(struct rcu_head *head)4066 static void ext4_mb_pa_callback(struct rcu_head *head)
4067 {
4068 struct ext4_prealloc_space *pa;
4069 pa = container_of(head, struct ext4_prealloc_space, u.pa_rcu);
4070
4071 BUG_ON(atomic_read(&pa->pa_count));
4072 BUG_ON(pa->pa_deleted == 0);
4073 kmem_cache_free(ext4_pspace_cachep, pa);
4074 }
4075
4076 /*
4077 * drops a reference to preallocated space descriptor
4078 * if this was the last reference and the space is consumed
4079 */
ext4_mb_put_pa(struct ext4_allocation_context *ac, struct super_block *sb, struct ext4_prealloc_space *pa)4080 static void ext4_mb_put_pa(struct ext4_allocation_context *ac,
4081 struct super_block *sb, struct ext4_prealloc_space *pa)
4082 {
4083 ext4_group_t grp;
4084 ext4_fsblk_t grp_blk;
4085
4086 /* in this short window concurrent discard can set pa_deleted */
4087 spin_lock(&pa->pa_lock);
4088 if (!atomic_dec_and_test(&pa->pa_count) || pa->pa_free != 0) {
4089 spin_unlock(&pa->pa_lock);
4090 return;
4091 }
4092
4093 if (pa->pa_deleted == 1) {
4094 spin_unlock(&pa->pa_lock);
4095 return;
4096 }
4097
4098 ext4_mb_mark_pa_deleted(sb, pa);
4099 spin_unlock(&pa->pa_lock);
4100
4101 grp_blk = pa->pa_pstart;
4102 /*
4103 * If doing group-based preallocation, pa_pstart may be in the
4104 * next group when pa is used up
4105 */
4106 if (pa->pa_type == MB_GROUP_PA)
4107 grp_blk--;
4108
4109 grp = ext4_get_group_number(sb, grp_blk);
4110
4111 /*
4112 * possible race:
4113 *
4114 * P1 (buddy init) P2 (regular allocation)
4115 * find block B in PA
4116 * copy on-disk bitmap to buddy
4117 * mark B in on-disk bitmap
4118 * drop PA from group
4119 * mark all PAs in buddy
4120 *
4121 * thus, P1 initializes buddy with B available. to prevent this
4122 * we make "copy" and "mark all PAs" atomic and serialize "drop PA"
4123 * against that pair
4124 */
4125 ext4_lock_group(sb, grp);
4126 list_del(&pa->pa_group_list);
4127 ext4_unlock_group(sb, grp);
4128
4129 spin_lock(pa->pa_obj_lock);
4130 list_del_rcu(&pa->pa_inode_list);
4131 spin_unlock(pa->pa_obj_lock);
4132
4133 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
4134 }
4135
4136 /*
4137 * creates new preallocated space for given inode
4138 */
4139 static noinline_for_stack void
ext4_mb_new_inode_pa(struct ext4_allocation_context *ac)4140 ext4_mb_new_inode_pa(struct ext4_allocation_context *ac)
4141 {
4142 struct super_block *sb = ac->ac_sb;
4143 struct ext4_sb_info *sbi = EXT4_SB(sb);
4144 struct ext4_prealloc_space *pa;
4145 struct ext4_group_info *grp;
4146 struct ext4_inode_info *ei;
4147
4148 /* preallocate only when found space is larger then requested */
4149 BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len);
4150 BUG_ON(ac->ac_status != AC_STATUS_FOUND);
4151 BUG_ON(!S_ISREG(ac->ac_inode->i_mode));
4152 BUG_ON(ac->ac_pa == NULL);
4153
4154 pa = ac->ac_pa;
4155
4156 if (ac->ac_b_ex.fe_len < ac->ac_g_ex.fe_len) {
4157 struct ext4_free_extent ex = {
4158 .fe_logical = ac->ac_g_ex.fe_logical,
4159 .fe_len = ac->ac_g_ex.fe_len,
4160 };
4161 loff_t orig_goal_end = extent_logical_end(sbi, &ex);
4162
4163 /* we can't allocate as much as normalizer wants.
4164 * so, found space must get proper lstart
4165 * to cover original request */
4166 BUG_ON(ac->ac_g_ex.fe_logical > ac->ac_o_ex.fe_logical);
4167 BUG_ON(ac->ac_g_ex.fe_len < ac->ac_o_ex.fe_len);
4168
4169 /*
4170 * Use the below logic for adjusting best extent as it keeps
4171 * fragmentation in check while ensuring logical range of best
4172 * extent doesn't overflow out of goal extent:
4173 *
4174 * 1. Check if best ex can be kept at end of goal and still
4175 * cover original start
4176 * 2. Else, check if best ex can be kept at start of goal and
4177 * still cover original start
4178 * 3. Else, keep the best ex at start of original request.
4179 */
4180 ex.fe_len = ac->ac_b_ex.fe_len;
4181
4182 ex.fe_logical = orig_goal_end - EXT4_C2B(sbi, ex.fe_len);
4183 if (ac->ac_o_ex.fe_logical >= ex.fe_logical)
4184 goto adjust_bex;
4185
4186 ex.fe_logical = ac->ac_g_ex.fe_logical;
4187 if (ac->ac_o_ex.fe_logical < extent_logical_end(sbi, &ex))
4188 goto adjust_bex;
4189
4190 ex.fe_logical = ac->ac_o_ex.fe_logical;
4191 adjust_bex:
4192 ac->ac_b_ex.fe_logical = ex.fe_logical;
4193
4194 BUG_ON(ac->ac_o_ex.fe_logical < ac->ac_b_ex.fe_logical);
4195 BUG_ON(ac->ac_o_ex.fe_len > ac->ac_b_ex.fe_len);
4196 BUG_ON(extent_logical_end(sbi, &ex) > orig_goal_end);
4197 }
4198
4199 /* preallocation can change ac_b_ex, thus we store actually
4200 * allocated blocks for history */
4201 ac->ac_f_ex = ac->ac_b_ex;
4202
4203 pa->pa_lstart = ac->ac_b_ex.fe_logical;
4204 pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
4205 pa->pa_len = ac->ac_b_ex.fe_len;
4206 pa->pa_free = pa->pa_len;
4207 spin_lock_init(&pa->pa_lock);
4208 INIT_LIST_HEAD(&pa->pa_inode_list);
4209 INIT_LIST_HEAD(&pa->pa_group_list);
4210 pa->pa_deleted = 0;
4211 pa->pa_type = MB_INODE_PA;
4212
4213 mb_debug(sb, "new inode pa %p: %llu/%d for %u\n", pa, pa->pa_pstart,
4214 pa->pa_len, pa->pa_lstart);
4215 trace_ext4_mb_new_inode_pa(ac, pa);
4216
4217 ext4_mb_use_inode_pa(ac, pa);
4218 atomic_add(pa->pa_free, &sbi->s_mb_preallocated);
4219
4220 ei = EXT4_I(ac->ac_inode);
4221 grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group);
4222 if (!grp)
4223 return;
4224
4225 pa->pa_obj_lock = &ei->i_prealloc_lock;
4226 pa->pa_inode = ac->ac_inode;
4227
4228 list_add(&pa->pa_group_list, &grp->bb_prealloc_list);
4229
4230 spin_lock(pa->pa_obj_lock);
4231 list_add_rcu(&pa->pa_inode_list, &ei->i_prealloc_list);
4232 spin_unlock(pa->pa_obj_lock);
4233 atomic_inc(&ei->i_prealloc_active);
4234 }
4235
4236 /*
4237 * creates new preallocated space for locality group inodes belongs to
4238 */
4239 static noinline_for_stack void
ext4_mb_new_group_pa(struct ext4_allocation_context *ac)4240 ext4_mb_new_group_pa(struct ext4_allocation_context *ac)
4241 {
4242 struct super_block *sb = ac->ac_sb;
4243 struct ext4_locality_group *lg;
4244 struct ext4_prealloc_space *pa;
4245 struct ext4_group_info *grp;
4246
4247 /* preallocate only when found space is larger then requested */
4248 BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len);
4249 BUG_ON(ac->ac_status != AC_STATUS_FOUND);
4250 BUG_ON(!S_ISREG(ac->ac_inode->i_mode));
4251 BUG_ON(ac->ac_pa == NULL);
4252
4253 pa = ac->ac_pa;
4254
4255 /* preallocation can change ac_b_ex, thus we store actually
4256 * allocated blocks for history */
4257 ac->ac_f_ex = ac->ac_b_ex;
4258
4259 pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
4260 pa->pa_lstart = pa->pa_pstart;
4261 pa->pa_len = ac->ac_b_ex.fe_len;
4262 pa->pa_free = pa->pa_len;
4263 spin_lock_init(&pa->pa_lock);
4264 INIT_LIST_HEAD(&pa->pa_inode_list);
4265 INIT_LIST_HEAD(&pa->pa_group_list);
4266 pa->pa_deleted = 0;
4267 pa->pa_type = MB_GROUP_PA;
4268
4269 mb_debug(sb, "new group pa %p: %llu/%d for %u\n", pa, pa->pa_pstart,
4270 pa->pa_len, pa->pa_lstart);
4271 trace_ext4_mb_new_group_pa(ac, pa);
4272
4273 ext4_mb_use_group_pa(ac, pa);
4274 atomic_add(pa->pa_free, &EXT4_SB(sb)->s_mb_preallocated);
4275
4276 grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group);
4277 if (!grp)
4278 return;
4279 lg = ac->ac_lg;
4280 BUG_ON(lg == NULL);
4281
4282 pa->pa_obj_lock = &lg->lg_prealloc_lock;
4283 pa->pa_inode = NULL;
4284
4285 list_add(&pa->pa_group_list, &grp->bb_prealloc_list);
4286
4287 /*
4288 * We will later add the new pa to the right bucket
4289 * after updating the pa_free in ext4_mb_release_context
4290 */
4291 }
4292
ext4_mb_new_preallocation(struct ext4_allocation_context *ac)4293 static void ext4_mb_new_preallocation(struct ext4_allocation_context *ac)
4294 {
4295 if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC)
4296 ext4_mb_new_group_pa(ac);
4297 else
4298 ext4_mb_new_inode_pa(ac);
4299 }
4300
4301 /*
4302 * finds all unused blocks in on-disk bitmap, frees them in
4303 * in-core bitmap and buddy.
4304 * @pa must be unlinked from inode and group lists, so that
4305 * nobody else can find/use it.
4306 * the caller MUST hold group/inode locks.
4307 * TODO: optimize the case when there are no in-core structures yet
4308 */
4309 static noinline_for_stack int
ext4_mb_release_inode_pa(struct ext4_buddy *e4b, struct buffer_head *bitmap_bh, struct ext4_prealloc_space *pa)4310 ext4_mb_release_inode_pa(struct ext4_buddy *e4b, struct buffer_head *bitmap_bh,
4311 struct ext4_prealloc_space *pa)
4312 {
4313 struct super_block *sb = e4b->bd_sb;
4314 struct ext4_sb_info *sbi = EXT4_SB(sb);
4315 unsigned int end;
4316 unsigned int next;
4317 ext4_group_t group;
4318 ext4_grpblk_t bit;
4319 unsigned long long grp_blk_start;
4320 int free = 0;
4321
4322 BUG_ON(pa->pa_deleted == 0);
4323 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit);
4324 grp_blk_start = pa->pa_pstart - EXT4_C2B(sbi, bit);
4325 BUG_ON(group != e4b->bd_group && pa->pa_len != 0);
4326 end = bit + pa->pa_len;
4327
4328 while (bit < end) {
4329 bit = mb_find_next_zero_bit(bitmap_bh->b_data, end, bit);
4330 if (bit >= end)
4331 break;
4332 next = mb_find_next_bit(bitmap_bh->b_data, end, bit);
4333 mb_debug(sb, "free preallocated %u/%u in group %u\n",
4334 (unsigned) ext4_group_first_block_no(sb, group) + bit,
4335 (unsigned) next - bit, (unsigned) group);
4336 free += next - bit;
4337
4338 trace_ext4_mballoc_discard(sb, NULL, group, bit, next - bit);
4339 trace_ext4_mb_release_inode_pa(pa, (grp_blk_start +
4340 EXT4_C2B(sbi, bit)),
4341 next - bit);
4342 mb_free_blocks(pa->pa_inode, e4b, bit, next - bit);
4343 bit = next + 1;
4344 }
4345 if (free != pa->pa_free) {
4346 ext4_msg(e4b->bd_sb, KERN_CRIT,
4347 "pa %p: logic %lu, phys. %lu, len %d",
4348 pa, (unsigned long) pa->pa_lstart,
4349 (unsigned long) pa->pa_pstart,
4350 pa->pa_len);
4351 ext4_grp_locked_error(sb, group, 0, 0, "free %u, pa_free %u",
4352 free, pa->pa_free);
4353 /*
4354 * pa is already deleted so we use the value obtained
4355 * from the bitmap and continue.
4356 */
4357 }
4358 atomic_add(free, &sbi->s_mb_discarded);
4359
4360 return 0;
4361 }
4362
4363 static noinline_for_stack int
ext4_mb_release_group_pa(struct ext4_buddy *e4b, struct ext4_prealloc_space *pa)4364 ext4_mb_release_group_pa(struct ext4_buddy *e4b,
4365 struct ext4_prealloc_space *pa)
4366 {
4367 struct super_block *sb = e4b->bd_sb;
4368 ext4_group_t group;
4369 ext4_grpblk_t bit;
4370
4371 trace_ext4_mb_release_group_pa(sb, pa);
4372 BUG_ON(pa->pa_deleted == 0);
4373 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit);
4374 if (unlikely(group != e4b->bd_group && pa->pa_len != 0)) {
4375 ext4_warning(sb, "bad group: expected %u, group %u, pa_start %llu",
4376 e4b->bd_group, group, pa->pa_pstart);
4377 return 0;
4378 }
4379 mb_free_blocks(pa->pa_inode, e4b, bit, pa->pa_len);
4380 atomic_add(pa->pa_len, &EXT4_SB(sb)->s_mb_discarded);
4381 trace_ext4_mballoc_discard(sb, NULL, group, bit, pa->pa_len);
4382
4383 return 0;
4384 }
4385
4386 /*
4387 * releases all preallocations in given group
4388 *
4389 * first, we need to decide discard policy:
4390 * - when do we discard
4391 * 1) ENOSPC
4392 * - how many do we discard
4393 * 1) how many requested
4394 */
4395 static noinline_for_stack int
ext4_mb_discard_group_preallocations(struct super_block *sb, ext4_group_t group, int *busy)4396 ext4_mb_discard_group_preallocations(struct super_block *sb,
4397 ext4_group_t group, int *busy)
4398 {
4399 struct ext4_group_info *grp = ext4_get_group_info(sb, group);
4400 struct buffer_head *bitmap_bh = NULL;
4401 struct ext4_prealloc_space *pa, *tmp;
4402 struct list_head list;
4403 struct ext4_buddy e4b;
4404 int err;
4405 int free = 0;
4406
4407 if (!grp)
4408 return 0;
4409 mb_debug(sb, "discard preallocation for group %u\n", group);
4410 if (list_empty(&grp->bb_prealloc_list))
4411 goto out_dbg;
4412
4413 bitmap_bh = ext4_read_block_bitmap(sb, group);
4414 if (IS_ERR(bitmap_bh)) {
4415 err = PTR_ERR(bitmap_bh);
4416 ext4_error_err(sb, -err,
4417 "Error %d reading block bitmap for %u",
4418 err, group);
4419 goto out_dbg;
4420 }
4421
4422 err = ext4_mb_load_buddy(sb, group, &e4b);
4423 if (err) {
4424 ext4_warning(sb, "Error %d loading buddy information for %u",
4425 err, group);
4426 put_bh(bitmap_bh);
4427 goto out_dbg;
4428 }
4429
4430 INIT_LIST_HEAD(&list);
4431 ext4_lock_group(sb, group);
4432 list_for_each_entry_safe(pa, tmp,
4433 &grp->bb_prealloc_list, pa_group_list) {
4434 spin_lock(&pa->pa_lock);
4435 if (atomic_read(&pa->pa_count)) {
4436 spin_unlock(&pa->pa_lock);
4437 *busy = 1;
4438 continue;
4439 }
4440 if (pa->pa_deleted) {
4441 spin_unlock(&pa->pa_lock);
4442 continue;
4443 }
4444
4445 /* seems this one can be freed ... */
4446 ext4_mb_mark_pa_deleted(sb, pa);
4447
4448 if (!free)
4449 this_cpu_inc(discard_pa_seq);
4450
4451 /* we can trust pa_free ... */
4452 free += pa->pa_free;
4453
4454 spin_unlock(&pa->pa_lock);
4455
4456 list_del(&pa->pa_group_list);
4457 list_add(&pa->u.pa_tmp_list, &list);
4458 }
4459
4460 /* now free all selected PAs */
4461 list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) {
4462
4463 /* remove from object (inode or locality group) */
4464 spin_lock(pa->pa_obj_lock);
4465 list_del_rcu(&pa->pa_inode_list);
4466 spin_unlock(pa->pa_obj_lock);
4467
4468 if (pa->pa_type == MB_GROUP_PA)
4469 ext4_mb_release_group_pa(&e4b, pa);
4470 else
4471 ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa);
4472
4473 list_del(&pa->u.pa_tmp_list);
4474 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
4475 }
4476
4477 ext4_unlock_group(sb, group);
4478 ext4_mb_unload_buddy(&e4b);
4479 put_bh(bitmap_bh);
4480 out_dbg:
4481 mb_debug(sb, "discarded (%d) blocks preallocated for group %u bb_free (%d)\n",
4482 free, group, grp->bb_free);
4483 return free;
4484 }
4485
4486 /*
4487 * releases all non-used preallocated blocks for given inode
4488 *
4489 * It's important to discard preallocations under i_data_sem
4490 * We don't want another block to be served from the prealloc
4491 * space when we are discarding the inode prealloc space.
4492 *
4493 * FIXME!! Make sure it is valid at all the call sites
4494 */
ext4_discard_preallocations(struct inode *inode, unsigned int needed)4495 void ext4_discard_preallocations(struct inode *inode, unsigned int needed)
4496 {
4497 struct ext4_inode_info *ei = EXT4_I(inode);
4498 struct super_block *sb = inode->i_sb;
4499 struct buffer_head *bitmap_bh = NULL;
4500 struct ext4_prealloc_space *pa, *tmp;
4501 ext4_group_t group = 0;
4502 struct list_head list;
4503 struct ext4_buddy e4b;
4504 int err;
4505
4506 if (!S_ISREG(inode->i_mode)) {
4507 /*BUG_ON(!list_empty(&ei->i_prealloc_list));*/
4508 return;
4509 }
4510
4511 if (EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY)
4512 return;
4513
4514 mb_debug(sb, "discard preallocation for inode %lu\n",
4515 inode->i_ino);
4516 trace_ext4_discard_preallocations(inode,
4517 atomic_read(&ei->i_prealloc_active), needed);
4518
4519 INIT_LIST_HEAD(&list);
4520
4521 if (needed == 0)
4522 needed = UINT_MAX;
4523
4524 repeat:
4525 /* first, collect all pa's in the inode */
4526 spin_lock(&ei->i_prealloc_lock);
4527 while (!list_empty(&ei->i_prealloc_list) && needed) {
4528 pa = list_entry(ei->i_prealloc_list.prev,
4529 struct ext4_prealloc_space, pa_inode_list);
4530 BUG_ON(pa->pa_obj_lock != &ei->i_prealloc_lock);
4531 spin_lock(&pa->pa_lock);
4532 if (atomic_read(&pa->pa_count)) {
4533 /* this shouldn't happen often - nobody should
4534 * use preallocation while we're discarding it */
4535 spin_unlock(&pa->pa_lock);
4536 spin_unlock(&ei->i_prealloc_lock);
4537 ext4_msg(sb, KERN_ERR,
4538 "uh-oh! used pa while discarding");
4539 WARN_ON(1);
4540 schedule_timeout_uninterruptible(HZ);
4541 goto repeat;
4542
4543 }
4544 if (pa->pa_deleted == 0) {
4545 ext4_mb_mark_pa_deleted(sb, pa);
4546 spin_unlock(&pa->pa_lock);
4547 list_del_rcu(&pa->pa_inode_list);
4548 list_add(&pa->u.pa_tmp_list, &list);
4549 needed--;
4550 continue;
4551 }
4552
4553 /* someone is deleting pa right now */
4554 spin_unlock(&pa->pa_lock);
4555 spin_unlock(&ei->i_prealloc_lock);
4556
4557 /* we have to wait here because pa_deleted
4558 * doesn't mean pa is already unlinked from
4559 * the list. as we might be called from
4560 * ->clear_inode() the inode will get freed
4561 * and concurrent thread which is unlinking
4562 * pa from inode's list may access already
4563 * freed memory, bad-bad-bad */
4564
4565 /* XXX: if this happens too often, we can
4566 * add a flag to force wait only in case
4567 * of ->clear_inode(), but not in case of
4568 * regular truncate */
4569 schedule_timeout_uninterruptible(HZ);
4570 goto repeat;
4571 }
4572 spin_unlock(&ei->i_prealloc_lock);
4573
4574 list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) {
4575 BUG_ON(pa->pa_type != MB_INODE_PA);
4576 group = ext4_get_group_number(sb, pa->pa_pstart);
4577
4578 err = ext4_mb_load_buddy_gfp(sb, group, &e4b,
4579 GFP_NOFS|__GFP_NOFAIL);
4580 if (err) {
4581 ext4_error_err(sb, -err, "Error %d loading buddy information for %u",
4582 err, group);
4583 continue;
4584 }
4585
4586 bitmap_bh = ext4_read_block_bitmap(sb, group);
4587 if (IS_ERR(bitmap_bh)) {
4588 err = PTR_ERR(bitmap_bh);
4589 ext4_error_err(sb, -err, "Error %d reading block bitmap for %u",
4590 err, group);
4591 ext4_mb_unload_buddy(&e4b);
4592 continue;
4593 }
4594
4595 ext4_lock_group(sb, group);
4596 list_del(&pa->pa_group_list);
4597 ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa);
4598 ext4_unlock_group(sb, group);
4599
4600 ext4_mb_unload_buddy(&e4b);
4601 put_bh(bitmap_bh);
4602
4603 list_del(&pa->u.pa_tmp_list);
4604 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
4605 }
4606 }
4607
ext4_mb_pa_alloc(struct ext4_allocation_context *ac)4608 static int ext4_mb_pa_alloc(struct ext4_allocation_context *ac)
4609 {
4610 struct ext4_prealloc_space *pa;
4611
4612 BUG_ON(ext4_pspace_cachep == NULL);
4613 pa = kmem_cache_zalloc(ext4_pspace_cachep, GFP_NOFS);
4614 if (!pa)
4615 return -ENOMEM;
4616 atomic_set(&pa->pa_count, 1);
4617 ac->ac_pa = pa;
4618 return 0;
4619 }
4620
ext4_mb_pa_free(struct ext4_allocation_context *ac)4621 static void ext4_mb_pa_free(struct ext4_allocation_context *ac)
4622 {
4623 struct ext4_prealloc_space *pa = ac->ac_pa;
4624
4625 BUG_ON(!pa);
4626 ac->ac_pa = NULL;
4627 WARN_ON(!atomic_dec_and_test(&pa->pa_count));
4628 kmem_cache_free(ext4_pspace_cachep, pa);
4629 }
4630
4631 #ifdef CONFIG_EXT4_DEBUG
ext4_mb_show_pa(struct super_block *sb)4632 static inline void ext4_mb_show_pa(struct super_block *sb)
4633 {
4634 ext4_group_t i, ngroups;
4635
4636 if (ext4_test_mount_flag(sb, EXT4_MF_FS_ABORTED))
4637 return;
4638
4639 ngroups = ext4_get_groups_count(sb);
4640 mb_debug(sb, "groups: ");
4641 for (i = 0; i < ngroups; i++) {
4642 struct ext4_group_info *grp = ext4_get_group_info(sb, i);
4643 struct ext4_prealloc_space *pa;
4644 ext4_grpblk_t start;
4645 struct list_head *cur;
4646
4647 if (!grp)
4648 continue;
4649 ext4_lock_group(sb, i);
4650 list_for_each(cur, &grp->bb_prealloc_list) {
4651 pa = list_entry(cur, struct ext4_prealloc_space,
4652 pa_group_list);
4653 spin_lock(&pa->pa_lock);
4654 ext4_get_group_no_and_offset(sb, pa->pa_pstart,
4655 NULL, &start);
4656 spin_unlock(&pa->pa_lock);
4657 mb_debug(sb, "PA:%u:%d:%d\n", i, start,
4658 pa->pa_len);
4659 }
4660 ext4_unlock_group(sb, i);
4661 mb_debug(sb, "%u: %d/%d\n", i, grp->bb_free,
4662 grp->bb_fragments);
4663 }
4664 }
4665
ext4_mb_show_ac(struct ext4_allocation_context *ac)4666 static void ext4_mb_show_ac(struct ext4_allocation_context *ac)
4667 {
4668 struct super_block *sb = ac->ac_sb;
4669
4670 if (ext4_test_mount_flag(sb, EXT4_MF_FS_ABORTED))
4671 return;
4672
4673 mb_debug(sb, "Can't allocate:"
4674 " Allocation context details:");
4675 mb_debug(sb, "status %u flags 0x%x",
4676 ac->ac_status, ac->ac_flags);
4677 mb_debug(sb, "orig %lu/%lu/%lu@%lu, "
4678 "goal %lu/%lu/%lu@%lu, "
4679 "best %lu/%lu/%lu@%lu cr %d",
4680 (unsigned long)ac->ac_o_ex.fe_group,
4681 (unsigned long)ac->ac_o_ex.fe_start,
4682 (unsigned long)ac->ac_o_ex.fe_len,
4683 (unsigned long)ac->ac_o_ex.fe_logical,
4684 (unsigned long)ac->ac_g_ex.fe_group,
4685 (unsigned long)ac->ac_g_ex.fe_start,
4686 (unsigned long)ac->ac_g_ex.fe_len,
4687 (unsigned long)ac->ac_g_ex.fe_logical,
4688 (unsigned long)ac->ac_b_ex.fe_group,
4689 (unsigned long)ac->ac_b_ex.fe_start,
4690 (unsigned long)ac->ac_b_ex.fe_len,
4691 (unsigned long)ac->ac_b_ex.fe_logical,
4692 (int)ac->ac_criteria);
4693 mb_debug(sb, "%u found", ac->ac_found);
4694 ext4_mb_show_pa(sb);
4695 }
4696 #else
ext4_mb_show_pa(struct super_block *sb)4697 static inline void ext4_mb_show_pa(struct super_block *sb)
4698 {
4699 return;
4700 }
ext4_mb_show_ac(struct ext4_allocation_context *ac)4701 static inline void ext4_mb_show_ac(struct ext4_allocation_context *ac)
4702 {
4703 ext4_mb_show_pa(ac->ac_sb);
4704 return;
4705 }
4706 #endif
4707
4708 /*
4709 * We use locality group preallocation for small size file. The size of the
4710 * file is determined by the current size or the resulting size after
4711 * allocation which ever is larger
4712 *
4713 * One can tune this size via /sys/fs/ext4/<partition>/mb_stream_req
4714 */
ext4_mb_group_or_file(struct ext4_allocation_context *ac)4715 static void ext4_mb_group_or_file(struct ext4_allocation_context *ac)
4716 {
4717 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
4718 int bsbits = ac->ac_sb->s_blocksize_bits;
4719 loff_t size, isize;
4720
4721 if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
4722 return;
4723
4724 if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
4725 return;
4726
4727 size = extent_logical_end(sbi, &ac->ac_o_ex);
4728 isize = (i_size_read(ac->ac_inode) + ac->ac_sb->s_blocksize - 1)
4729 >> bsbits;
4730
4731 if ((size == isize) && !ext4_fs_is_busy(sbi) &&
4732 !inode_is_open_for_write(ac->ac_inode)) {
4733 ac->ac_flags |= EXT4_MB_HINT_NOPREALLOC;
4734 return;
4735 }
4736
4737 if (sbi->s_mb_group_prealloc <= 0) {
4738 ac->ac_flags |= EXT4_MB_STREAM_ALLOC;
4739 return;
4740 }
4741
4742 /* don't use group allocation for large files */
4743 size = max(size, isize);
4744 if (size > sbi->s_mb_stream_request) {
4745 ac->ac_flags |= EXT4_MB_STREAM_ALLOC;
4746 return;
4747 }
4748
4749 BUG_ON(ac->ac_lg != NULL);
4750 /*
4751 * locality group prealloc space are per cpu. The reason for having
4752 * per cpu locality group is to reduce the contention between block
4753 * request from multiple CPUs.
4754 */
4755 ac->ac_lg = raw_cpu_ptr(sbi->s_locality_groups);
4756
4757 /* we're going to use group allocation */
4758 ac->ac_flags |= EXT4_MB_HINT_GROUP_ALLOC;
4759
4760 /* serialize all allocations in the group */
4761 mutex_lock(&ac->ac_lg->lg_mutex);
4762 }
4763
4764 static noinline_for_stack int
ext4_mb_initialize_context(struct ext4_allocation_context *ac, struct ext4_allocation_request *ar)4765 ext4_mb_initialize_context(struct ext4_allocation_context *ac,
4766 struct ext4_allocation_request *ar)
4767 {
4768 struct super_block *sb = ar->inode->i_sb;
4769 struct ext4_sb_info *sbi = EXT4_SB(sb);
4770 struct ext4_super_block *es = sbi->s_es;
4771 ext4_group_t group;
4772 unsigned int len;
4773 ext4_fsblk_t goal;
4774 ext4_grpblk_t block;
4775
4776 /* we can't allocate > group size */
4777 len = ar->len;
4778
4779 /* just a dirty hack to filter too big requests */
4780 if (len >= EXT4_CLUSTERS_PER_GROUP(sb))
4781 len = EXT4_CLUSTERS_PER_GROUP(sb);
4782
4783 /* start searching from the goal */
4784 goal = ar->goal;
4785 if (goal < le32_to_cpu(es->s_first_data_block) ||
4786 goal >= ext4_blocks_count(es))
4787 goal = le32_to_cpu(es->s_first_data_block);
4788 ext4_get_group_no_and_offset(sb, goal, &group, &block);
4789
4790 /* set up allocation goals */
4791 ac->ac_b_ex.fe_logical = EXT4_LBLK_CMASK(sbi, ar->logical);
4792 ac->ac_status = AC_STATUS_CONTINUE;
4793 ac->ac_sb = sb;
4794 ac->ac_inode = ar->inode;
4795 ac->ac_o_ex.fe_logical = ac->ac_b_ex.fe_logical;
4796 ac->ac_o_ex.fe_group = group;
4797 ac->ac_o_ex.fe_start = block;
4798 ac->ac_o_ex.fe_len = len;
4799 ac->ac_g_ex = ac->ac_o_ex;
4800 ac->ac_flags = ar->flags;
4801
4802 /* we have to define context: we'll work with a file or
4803 * locality group. this is a policy, actually */
4804 ext4_mb_group_or_file(ac);
4805
4806 mb_debug(sb, "init ac: %u blocks @ %u, goal %u, flags 0x%x, 2^%d, "
4807 "left: %u/%u, right %u/%u to %swritable\n",
4808 (unsigned) ar->len, (unsigned) ar->logical,
4809 (unsigned) ar->goal, ac->ac_flags, ac->ac_2order,
4810 (unsigned) ar->lleft, (unsigned) ar->pleft,
4811 (unsigned) ar->lright, (unsigned) ar->pright,
4812 inode_is_open_for_write(ar->inode) ? "" : "non-");
4813 return 0;
4814
4815 }
4816
4817 static noinline_for_stack void
ext4_mb_discard_lg_preallocations(struct super_block *sb, struct ext4_locality_group *lg, int order, int total_entries)4818 ext4_mb_discard_lg_preallocations(struct super_block *sb,
4819 struct ext4_locality_group *lg,
4820 int order, int total_entries)
4821 {
4822 ext4_group_t group = 0;
4823 struct ext4_buddy e4b;
4824 struct list_head discard_list;
4825 struct ext4_prealloc_space *pa, *tmp;
4826
4827 mb_debug(sb, "discard locality group preallocation\n");
4828
4829 INIT_LIST_HEAD(&discard_list);
4830
4831 spin_lock(&lg->lg_prealloc_lock);
4832 list_for_each_entry_rcu(pa, &lg->lg_prealloc_list[order],
4833 pa_inode_list,
4834 lockdep_is_held(&lg->lg_prealloc_lock)) {
4835 spin_lock(&pa->pa_lock);
4836 if (atomic_read(&pa->pa_count)) {
4837 /*
4838 * This is the pa that we just used
4839 * for block allocation. So don't
4840 * free that
4841 */
4842 spin_unlock(&pa->pa_lock);
4843 continue;
4844 }
4845 if (pa->pa_deleted) {
4846 spin_unlock(&pa->pa_lock);
4847 continue;
4848 }
4849 /* only lg prealloc space */
4850 BUG_ON(pa->pa_type != MB_GROUP_PA);
4851
4852 /* seems this one can be freed ... */
4853 ext4_mb_mark_pa_deleted(sb, pa);
4854 spin_unlock(&pa->pa_lock);
4855
4856 list_del_rcu(&pa->pa_inode_list);
4857 list_add(&pa->u.pa_tmp_list, &discard_list);
4858
4859 total_entries--;
4860 if (total_entries <= 5) {
4861 /*
4862 * we want to keep only 5 entries
4863 * allowing it to grow to 8. This
4864 * mak sure we don't call discard
4865 * soon for this list.
4866 */
4867 break;
4868 }
4869 }
4870 spin_unlock(&lg->lg_prealloc_lock);
4871
4872 list_for_each_entry_safe(pa, tmp, &discard_list, u.pa_tmp_list) {
4873 int err;
4874
4875 group = ext4_get_group_number(sb, pa->pa_pstart);
4876 err = ext4_mb_load_buddy_gfp(sb, group, &e4b,
4877 GFP_NOFS|__GFP_NOFAIL);
4878 if (err) {
4879 ext4_error_err(sb, -err, "Error %d loading buddy information for %u",
4880 err, group);
4881 continue;
4882 }
4883 ext4_lock_group(sb, group);
4884 list_del(&pa->pa_group_list);
4885 ext4_mb_release_group_pa(&e4b, pa);
4886 ext4_unlock_group(sb, group);
4887
4888 ext4_mb_unload_buddy(&e4b);
4889 list_del(&pa->u.pa_tmp_list);
4890 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
4891 }
4892 }
4893
4894 /*
4895 * We have incremented pa_count. So it cannot be freed at this
4896 * point. Also we hold lg_mutex. So no parallel allocation is
4897 * possible from this lg. That means pa_free cannot be updated.
4898 *
4899 * A parallel ext4_mb_discard_group_preallocations is possible.
4900 * which can cause the lg_prealloc_list to be updated.
4901 */
4902
ext4_mb_add_n_trim(struct ext4_allocation_context *ac)4903 static void ext4_mb_add_n_trim(struct ext4_allocation_context *ac)
4904 {
4905 int order, added = 0, lg_prealloc_count = 1;
4906 struct super_block *sb = ac->ac_sb;
4907 struct ext4_locality_group *lg = ac->ac_lg;
4908 struct ext4_prealloc_space *tmp_pa, *pa = ac->ac_pa;
4909
4910 order = fls(pa->pa_free) - 1;
4911 if (order > PREALLOC_TB_SIZE - 1)
4912 /* The max size of hash table is PREALLOC_TB_SIZE */
4913 order = PREALLOC_TB_SIZE - 1;
4914 /* Add the prealloc space to lg */
4915 spin_lock(&lg->lg_prealloc_lock);
4916 list_for_each_entry_rcu(tmp_pa, &lg->lg_prealloc_list[order],
4917 pa_inode_list,
4918 lockdep_is_held(&lg->lg_prealloc_lock)) {
4919 spin_lock(&tmp_pa->pa_lock);
4920 if (tmp_pa->pa_deleted) {
4921 spin_unlock(&tmp_pa->pa_lock);
4922 continue;
4923 }
4924 if (!added && pa->pa_free < tmp_pa->pa_free) {
4925 /* Add to the tail of the previous entry */
4926 list_add_tail_rcu(&pa->pa_inode_list,
4927 &tmp_pa->pa_inode_list);
4928 added = 1;
4929 /*
4930 * we want to count the total
4931 * number of entries in the list
4932 */
4933 }
4934 spin_unlock(&tmp_pa->pa_lock);
4935 lg_prealloc_count++;
4936 }
4937 if (!added)
4938 list_add_tail_rcu(&pa->pa_inode_list,
4939 &lg->lg_prealloc_list[order]);
4940 spin_unlock(&lg->lg_prealloc_lock);
4941
4942 /* Now trim the list to be not more than 8 elements */
4943 if (lg_prealloc_count > 8) {
4944 ext4_mb_discard_lg_preallocations(sb, lg,
4945 order, lg_prealloc_count);
4946 return;
4947 }
4948 return ;
4949 }
4950
4951 /*
4952 * if per-inode prealloc list is too long, trim some PA
4953 */
ext4_mb_trim_inode_pa(struct inode *inode)4954 static void ext4_mb_trim_inode_pa(struct inode *inode)
4955 {
4956 struct ext4_inode_info *ei = EXT4_I(inode);
4957 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4958 int count, delta;
4959
4960 count = atomic_read(&ei->i_prealloc_active);
4961 delta = (sbi->s_mb_max_inode_prealloc >> 2) + 1;
4962 if (count > sbi->s_mb_max_inode_prealloc + delta) {
4963 count -= sbi->s_mb_max_inode_prealloc;
4964 ext4_discard_preallocations(inode, count);
4965 }
4966 }
4967
4968 /*
4969 * release all resource we used in allocation
4970 */
ext4_mb_release_context(struct ext4_allocation_context *ac)4971 static int ext4_mb_release_context(struct ext4_allocation_context *ac)
4972 {
4973 struct inode *inode = ac->ac_inode;
4974 struct ext4_inode_info *ei = EXT4_I(inode);
4975 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
4976 struct ext4_prealloc_space *pa = ac->ac_pa;
4977 if (pa) {
4978 if (pa->pa_type == MB_GROUP_PA) {
4979 /* see comment in ext4_mb_use_group_pa() */
4980 spin_lock(&pa->pa_lock);
4981 pa->pa_pstart += EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
4982 pa->pa_lstart += EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
4983 pa->pa_free -= ac->ac_b_ex.fe_len;
4984 pa->pa_len -= ac->ac_b_ex.fe_len;
4985 spin_unlock(&pa->pa_lock);
4986
4987 /*
4988 * We want to add the pa to the right bucket.
4989 * Remove it from the list and while adding
4990 * make sure the list to which we are adding
4991 * doesn't grow big.
4992 */
4993 if (likely(pa->pa_free)) {
4994 spin_lock(pa->pa_obj_lock);
4995 list_del_rcu(&pa->pa_inode_list);
4996 spin_unlock(pa->pa_obj_lock);
4997 ext4_mb_add_n_trim(ac);
4998 }
4999 }
5000
5001 if (pa->pa_type == MB_INODE_PA) {
5002 /*
5003 * treat per-inode prealloc list as a lru list, then try
5004 * to trim the least recently used PA.
5005 */
5006 spin_lock(pa->pa_obj_lock);
5007 list_move(&pa->pa_inode_list, &ei->i_prealloc_list);
5008 spin_unlock(pa->pa_obj_lock);
5009 }
5010
5011 ext4_mb_put_pa(ac, ac->ac_sb, pa);
5012 }
5013 if (ac->ac_bitmap_page)
5014 put_page(ac->ac_bitmap_page);
5015 if (ac->ac_buddy_page)
5016 put_page(ac->ac_buddy_page);
5017 if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC)
5018 mutex_unlock(&ac->ac_lg->lg_mutex);
5019 ext4_mb_collect_stats(ac);
5020 ext4_mb_trim_inode_pa(inode);
5021 return 0;
5022 }
5023
ext4_mb_discard_preallocations(struct super_block *sb, int needed)5024 static int ext4_mb_discard_preallocations(struct super_block *sb, int needed)
5025 {
5026 ext4_group_t i, ngroups = ext4_get_groups_count(sb);
5027 int ret;
5028 int freed = 0, busy = 0;
5029 int retry = 0;
5030
5031 trace_ext4_mb_discard_preallocations(sb, needed);
5032
5033 if (needed == 0)
5034 needed = EXT4_CLUSTERS_PER_GROUP(sb) + 1;
5035 repeat:
5036 for (i = 0; i < ngroups && needed > 0; i++) {
5037 ret = ext4_mb_discard_group_preallocations(sb, i, &busy);
5038 freed += ret;
5039 needed -= ret;
5040 cond_resched();
5041 }
5042
5043 if (needed > 0 && busy && ++retry < 3) {
5044 busy = 0;
5045 goto repeat;
5046 }
5047
5048 return freed;
5049 }
5050
ext4_mb_discard_preallocations_should_retry(struct super_block *sb, struct ext4_allocation_context *ac, u64 *seq)5051 static bool ext4_mb_discard_preallocations_should_retry(struct super_block *sb,
5052 struct ext4_allocation_context *ac, u64 *seq)
5053 {
5054 int freed;
5055 u64 seq_retry = 0;
5056 bool ret = false;
5057
5058 freed = ext4_mb_discard_preallocations(sb, ac->ac_o_ex.fe_len);
5059 if (freed) {
5060 ret = true;
5061 goto out_dbg;
5062 }
5063 seq_retry = ext4_get_discard_pa_seq_sum();
5064 if (!(ac->ac_flags & EXT4_MB_STRICT_CHECK) || seq_retry != *seq) {
5065 ac->ac_flags |= EXT4_MB_STRICT_CHECK;
5066 *seq = seq_retry;
5067 ret = true;
5068 }
5069
5070 out_dbg:
5071 mb_debug(sb, "freed %d, retry ? %s\n", freed, ret ? "yes" : "no");
5072 return ret;
5073 }
5074
5075 static ext4_fsblk_t ext4_mb_new_blocks_simple(handle_t *handle,
5076 struct ext4_allocation_request *ar, int *errp);
5077
5078 /*
5079 * Main entry point into mballoc to allocate blocks
5080 * it tries to use preallocation first, then falls back
5081 * to usual allocation
5082 */
ext4_mb_new_blocks(handle_t *handle, struct ext4_allocation_request *ar, int *errp)5083 ext4_fsblk_t ext4_mb_new_blocks(handle_t *handle,
5084 struct ext4_allocation_request *ar, int *errp)
5085 {
5086 struct ext4_allocation_context *ac = NULL;
5087 struct ext4_sb_info *sbi;
5088 struct super_block *sb;
5089 ext4_fsblk_t block = 0;
5090 unsigned int inquota = 0;
5091 unsigned int reserv_clstrs = 0;
5092 int retries = 0;
5093 u64 seq;
5094
5095 might_sleep();
5096 sb = ar->inode->i_sb;
5097 sbi = EXT4_SB(sb);
5098
5099 trace_ext4_request_blocks(ar);
5100 if (sbi->s_mount_state & EXT4_FC_REPLAY)
5101 return ext4_mb_new_blocks_simple(handle, ar, errp);
5102
5103 /* Allow to use superuser reservation for quota file */
5104 if (ext4_is_quota_file(ar->inode))
5105 ar->flags |= EXT4_MB_USE_ROOT_BLOCKS;
5106
5107 if ((ar->flags & EXT4_MB_DELALLOC_RESERVED) == 0) {
5108 /* Without delayed allocation we need to verify
5109 * there is enough free blocks to do block allocation
5110 * and verify allocation doesn't exceed the quota limits.
5111 */
5112 while (ar->len &&
5113 ext4_claim_free_clusters(sbi, ar->len, ar->flags)) {
5114
5115 /* let others to free the space */
5116 cond_resched();
5117 ar->len = ar->len >> 1;
5118 }
5119 if (!ar->len) {
5120 ext4_mb_show_pa(sb);
5121 *errp = -ENOSPC;
5122 return 0;
5123 }
5124 reserv_clstrs = ar->len;
5125 if (ar->flags & EXT4_MB_USE_ROOT_BLOCKS) {
5126 dquot_alloc_block_nofail(ar->inode,
5127 EXT4_C2B(sbi, ar->len));
5128 } else {
5129 while (ar->len &&
5130 dquot_alloc_block(ar->inode,
5131 EXT4_C2B(sbi, ar->len))) {
5132
5133 ar->flags |= EXT4_MB_HINT_NOPREALLOC;
5134 ar->len--;
5135 }
5136 }
5137 inquota = ar->len;
5138 if (ar->len == 0) {
5139 *errp = -EDQUOT;
5140 goto out;
5141 }
5142 }
5143
5144 ac = kmem_cache_zalloc(ext4_ac_cachep, GFP_NOFS);
5145 if (!ac) {
5146 ar->len = 0;
5147 *errp = -ENOMEM;
5148 goto out;
5149 }
5150
5151 *errp = ext4_mb_initialize_context(ac, ar);
5152 if (*errp) {
5153 ar->len = 0;
5154 goto out;
5155 }
5156
5157 ac->ac_op = EXT4_MB_HISTORY_PREALLOC;
5158 seq = this_cpu_read(discard_pa_seq);
5159 if (!ext4_mb_use_preallocated(ac)) {
5160 ac->ac_op = EXT4_MB_HISTORY_ALLOC;
5161 ext4_mb_normalize_request(ac, ar);
5162
5163 *errp = ext4_mb_pa_alloc(ac);
5164 if (*errp)
5165 goto errout;
5166 repeat:
5167 /* allocate space in core */
5168 *errp = ext4_mb_regular_allocator(ac);
5169 /*
5170 * pa allocated above is added to grp->bb_prealloc_list only
5171 * when we were able to allocate some block i.e. when
5172 * ac->ac_status == AC_STATUS_FOUND.
5173 * And error from above mean ac->ac_status != AC_STATUS_FOUND
5174 * So we have to free this pa here itself.
5175 */
5176 if (*errp) {
5177 ext4_mb_pa_free(ac);
5178 ext4_discard_allocated_blocks(ac);
5179 goto errout;
5180 }
5181 if (ac->ac_status == AC_STATUS_FOUND &&
5182 ac->ac_o_ex.fe_len >= ac->ac_f_ex.fe_len)
5183 ext4_mb_pa_free(ac);
5184 }
5185 if (likely(ac->ac_status == AC_STATUS_FOUND)) {
5186 *errp = ext4_mb_mark_diskspace_used(ac, handle, reserv_clstrs);
5187 if (*errp) {
5188 ext4_discard_allocated_blocks(ac);
5189 goto errout;
5190 } else {
5191 block = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
5192 ar->len = ac->ac_b_ex.fe_len;
5193 }
5194 } else {
5195 if (++retries < 3 &&
5196 ext4_mb_discard_preallocations_should_retry(sb, ac, &seq))
5197 goto repeat;
5198 /*
5199 * If block allocation fails then the pa allocated above
5200 * needs to be freed here itself.
5201 */
5202 ext4_mb_pa_free(ac);
5203 *errp = -ENOSPC;
5204 }
5205
5206 errout:
5207 if (*errp) {
5208 ac->ac_b_ex.fe_len = 0;
5209 ar->len = 0;
5210 ext4_mb_show_ac(ac);
5211 }
5212 ext4_mb_release_context(ac);
5213 out:
5214 if (ac)
5215 kmem_cache_free(ext4_ac_cachep, ac);
5216 if (inquota && ar->len < inquota)
5217 dquot_free_block(ar->inode, EXT4_C2B(sbi, inquota - ar->len));
5218 if (!ar->len) {
5219 if ((ar->flags & EXT4_MB_DELALLOC_RESERVED) == 0)
5220 /* release all the reserved blocks if non delalloc */
5221 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
5222 reserv_clstrs);
5223 }
5224
5225 trace_ext4_allocate_blocks(ar, (unsigned long long)block);
5226
5227 return block;
5228 }
5229
5230 /*
5231 * We can merge two free data extents only if the physical blocks
5232 * are contiguous, AND the extents were freed by the same transaction,
5233 * AND the blocks are associated with the same group.
5234 */
ext4_try_merge_freed_extent(struct ext4_sb_info *sbi, struct ext4_free_data *entry, struct ext4_free_data *new_entry, struct rb_root *entry_rb_root)5235 static void ext4_try_merge_freed_extent(struct ext4_sb_info *sbi,
5236 struct ext4_free_data *entry,
5237 struct ext4_free_data *new_entry,
5238 struct rb_root *entry_rb_root)
5239 {
5240 if ((entry->efd_tid != new_entry->efd_tid) ||
5241 (entry->efd_group != new_entry->efd_group))
5242 return;
5243 if (entry->efd_start_cluster + entry->efd_count ==
5244 new_entry->efd_start_cluster) {
5245 new_entry->efd_start_cluster = entry->efd_start_cluster;
5246 new_entry->efd_count += entry->efd_count;
5247 } else if (new_entry->efd_start_cluster + new_entry->efd_count ==
5248 entry->efd_start_cluster) {
5249 new_entry->efd_count += entry->efd_count;
5250 } else
5251 return;
5252 spin_lock(&sbi->s_md_lock);
5253 list_del(&entry->efd_list);
5254 spin_unlock(&sbi->s_md_lock);
5255 rb_erase(&entry->efd_node, entry_rb_root);
5256 kmem_cache_free(ext4_free_data_cachep, entry);
5257 }
5258
5259 static noinline_for_stack int
ext4_mb_free_metadata(handle_t *handle, struct ext4_buddy *e4b, struct ext4_free_data *new_entry)5260 ext4_mb_free_metadata(handle_t *handle, struct ext4_buddy *e4b,
5261 struct ext4_free_data *new_entry)
5262 {
5263 ext4_group_t group = e4b->bd_group;
5264 ext4_grpblk_t cluster;
5265 ext4_grpblk_t clusters = new_entry->efd_count;
5266 struct ext4_free_data *entry;
5267 struct ext4_group_info *db = e4b->bd_info;
5268 struct super_block *sb = e4b->bd_sb;
5269 struct ext4_sb_info *sbi = EXT4_SB(sb);
5270 struct rb_node **n = &db->bb_free_root.rb_node, *node;
5271 struct rb_node *parent = NULL, *new_node;
5272
5273 BUG_ON(!ext4_handle_valid(handle));
5274 BUG_ON(e4b->bd_bitmap_page == NULL);
5275 BUG_ON(e4b->bd_buddy_page == NULL);
5276
5277 new_node = &new_entry->efd_node;
5278 cluster = new_entry->efd_start_cluster;
5279
5280 if (!*n) {
5281 /* first free block exent. We need to
5282 protect buddy cache from being freed,
5283 * otherwise we'll refresh it from
5284 * on-disk bitmap and lose not-yet-available
5285 * blocks */
5286 get_page(e4b->bd_buddy_page);
5287 get_page(e4b->bd_bitmap_page);
5288 }
5289 while (*n) {
5290 parent = *n;
5291 entry = rb_entry(parent, struct ext4_free_data, efd_node);
5292 if (cluster < entry->efd_start_cluster)
5293 n = &(*n)->rb_left;
5294 else if (cluster >= (entry->efd_start_cluster + entry->efd_count))
5295 n = &(*n)->rb_right;
5296 else {
5297 ext4_grp_locked_error(sb, group, 0,
5298 ext4_group_first_block_no(sb, group) +
5299 EXT4_C2B(sbi, cluster),
5300 "Block already on to-be-freed list");
5301 kmem_cache_free(ext4_free_data_cachep, new_entry);
5302 return 0;
5303 }
5304 }
5305
5306 rb_link_node(new_node, parent, n);
5307 rb_insert_color(new_node, &db->bb_free_root);
5308
5309 /* Now try to see the extent can be merged to left and right */
5310 node = rb_prev(new_node);
5311 if (node) {
5312 entry = rb_entry(node, struct ext4_free_data, efd_node);
5313 ext4_try_merge_freed_extent(sbi, entry, new_entry,
5314 &(db->bb_free_root));
5315 }
5316
5317 node = rb_next(new_node);
5318 if (node) {
5319 entry = rb_entry(node, struct ext4_free_data, efd_node);
5320 ext4_try_merge_freed_extent(sbi, entry, new_entry,
5321 &(db->bb_free_root));
5322 }
5323
5324 spin_lock(&sbi->s_md_lock);
5325 list_add_tail(&new_entry->efd_list, &sbi->s_freed_data_list);
5326 sbi->s_mb_free_pending += clusters;
5327 spin_unlock(&sbi->s_md_lock);
5328 return 0;
5329 }
5330
5331 /*
5332 * Simple allocator for Ext4 fast commit replay path. It searches for blocks
5333 * linearly starting at the goal block and also excludes the blocks which
5334 * are going to be in use after fast commit replay.
5335 */
ext4_mb_new_blocks_simple(handle_t *handle, struct ext4_allocation_request *ar, int *errp)5336 static ext4_fsblk_t ext4_mb_new_blocks_simple(handle_t *handle,
5337 struct ext4_allocation_request *ar, int *errp)
5338 {
5339 struct buffer_head *bitmap_bh;
5340 struct super_block *sb = ar->inode->i_sb;
5341 ext4_group_t group;
5342 ext4_grpblk_t blkoff;
5343 ext4_grpblk_t max = EXT4_CLUSTERS_PER_GROUP(sb);
5344 ext4_grpblk_t i = 0;
5345 ext4_fsblk_t goal, block;
5346 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
5347
5348 goal = ar->goal;
5349 if (goal < le32_to_cpu(es->s_first_data_block) ||
5350 goal >= ext4_blocks_count(es))
5351 goal = le32_to_cpu(es->s_first_data_block);
5352
5353 ar->len = 0;
5354 ext4_get_group_no_and_offset(sb, goal, &group, &blkoff);
5355 for (; group < ext4_get_groups_count(sb); group++) {
5356 bitmap_bh = ext4_read_block_bitmap(sb, group);
5357 if (IS_ERR(bitmap_bh)) {
5358 *errp = PTR_ERR(bitmap_bh);
5359 pr_warn("Failed to read block bitmap\n");
5360 return 0;
5361 }
5362
5363 ext4_get_group_no_and_offset(sb,
5364 max(ext4_group_first_block_no(sb, group), goal),
5365 NULL, &blkoff);
5366 while (1) {
5367 i = mb_find_next_zero_bit(bitmap_bh->b_data, max,
5368 blkoff);
5369 if (i >= max)
5370 break;
5371 if (ext4_fc_replay_check_excluded(sb,
5372 ext4_group_first_block_no(sb, group) + i)) {
5373 blkoff = i + 1;
5374 } else
5375 break;
5376 }
5377 brelse(bitmap_bh);
5378 if (i < max)
5379 break;
5380 }
5381
5382 if (group >= ext4_get_groups_count(sb) || i >= max) {
5383 *errp = -ENOSPC;
5384 return 0;
5385 }
5386
5387 block = ext4_group_first_block_no(sb, group) + i;
5388 ext4_mb_mark_bb(sb, block, 1, 1);
5389 ar->len = 1;
5390
5391 return block;
5392 }
5393
ext4_free_blocks_simple(struct inode *inode, ext4_fsblk_t block, unsigned long count)5394 static void ext4_free_blocks_simple(struct inode *inode, ext4_fsblk_t block,
5395 unsigned long count)
5396 {
5397 struct buffer_head *bitmap_bh;
5398 struct super_block *sb = inode->i_sb;
5399 struct ext4_group_desc *gdp;
5400 struct buffer_head *gdp_bh;
5401 ext4_group_t group;
5402 ext4_grpblk_t blkoff;
5403 int already_freed = 0, err, i;
5404
5405 ext4_get_group_no_and_offset(sb, block, &group, &blkoff);
5406 bitmap_bh = ext4_read_block_bitmap(sb, group);
5407 if (IS_ERR(bitmap_bh)) {
5408 err = PTR_ERR(bitmap_bh);
5409 pr_warn("Failed to read block bitmap\n");
5410 return;
5411 }
5412 gdp = ext4_get_group_desc(sb, group, &gdp_bh);
5413 if (!gdp)
5414 return;
5415
5416 for (i = 0; i < count; i++) {
5417 if (!mb_test_bit(blkoff + i, bitmap_bh->b_data))
5418 already_freed++;
5419 }
5420 mb_clear_bits(bitmap_bh->b_data, blkoff, count);
5421 err = ext4_handle_dirty_metadata(NULL, NULL, bitmap_bh);
5422 if (err)
5423 return;
5424 ext4_free_group_clusters_set(
5425 sb, gdp, ext4_free_group_clusters(sb, gdp) +
5426 count - already_freed);
5427 ext4_block_bitmap_csum_set(sb, group, gdp, bitmap_bh);
5428 ext4_group_desc_csum_set(sb, group, gdp);
5429 ext4_handle_dirty_metadata(NULL, NULL, gdp_bh);
5430 sync_dirty_buffer(bitmap_bh);
5431 sync_dirty_buffer(gdp_bh);
5432 brelse(bitmap_bh);
5433 }
5434
5435 /**
5436 * ext4_mb_clear_bb() -- helper function for freeing blocks.
5437 * Used by ext4_free_blocks()
5438 * @handle: handle for this transaction
5439 * @inode: inode
5440 * @bh: optional buffer of the block to be freed
5441 * @block: starting physical block to be freed
5442 * @count: number of blocks to be freed
5443 * @flags: flags used by ext4_free_blocks
5444 */
ext4_mb_clear_bb(handle_t *handle, struct inode *inode, ext4_fsblk_t block, unsigned long count, int flags)5445 static void ext4_mb_clear_bb(handle_t *handle, struct inode *inode,
5446 ext4_fsblk_t block, unsigned long count,
5447 int flags)
5448 {
5449 struct buffer_head *bitmap_bh = NULL;
5450 struct super_block *sb = inode->i_sb;
5451 struct ext4_group_desc *gdp;
5452 struct ext4_group_info *grp;
5453 unsigned int overflow;
5454 ext4_grpblk_t bit;
5455 struct buffer_head *gd_bh;
5456 ext4_group_t block_group;
5457 struct ext4_sb_info *sbi;
5458 struct ext4_buddy e4b;
5459 unsigned int count_clusters;
5460 int err = 0;
5461 int ret;
5462
5463 sbi = EXT4_SB(sb);
5464
5465 if (!(flags & EXT4_FREE_BLOCKS_VALIDATED) &&
5466 !ext4_inode_block_valid(inode, block, count)) {
5467 ext4_error(sb, "Freeing blocks in system zone - "
5468 "Block = %llu, count = %lu", block, count);
5469 /* err = 0. ext4_std_error should be a no op */
5470 goto error_return;
5471 }
5472 flags |= EXT4_FREE_BLOCKS_VALIDATED;
5473
5474 do_more:
5475 overflow = 0;
5476 ext4_get_group_no_and_offset(sb, block, &block_group, &bit);
5477
5478 grp = ext4_get_group_info(sb, block_group);
5479 if (unlikely(!grp || EXT4_MB_GRP_BBITMAP_CORRUPT(grp)))
5480 return;
5481
5482 /*
5483 * Check to see if we are freeing blocks across a group
5484 * boundary.
5485 */
5486 if (EXT4_C2B(sbi, bit) + count > EXT4_BLOCKS_PER_GROUP(sb)) {
5487 overflow = EXT4_C2B(sbi, bit) + count -
5488 EXT4_BLOCKS_PER_GROUP(sb);
5489 count -= overflow;
5490 /* The range changed so it's no longer validated */
5491 flags &= ~EXT4_FREE_BLOCKS_VALIDATED;
5492 }
5493 count_clusters = EXT4_NUM_B2C(sbi, count);
5494 bitmap_bh = ext4_read_block_bitmap(sb, block_group);
5495 if (IS_ERR(bitmap_bh)) {
5496 err = PTR_ERR(bitmap_bh);
5497 bitmap_bh = NULL;
5498 goto error_return;
5499 }
5500 gdp = ext4_get_group_desc(sb, block_group, &gd_bh);
5501 if (!gdp) {
5502 err = -EIO;
5503 goto error_return;
5504 }
5505
5506 if (!(flags & EXT4_FREE_BLOCKS_VALIDATED) &&
5507 !ext4_inode_block_valid(inode, block, count)) {
5508 ext4_error(sb, "Freeing blocks in system zone - "
5509 "Block = %llu, count = %lu", block, count);
5510 /* err = 0. ext4_std_error should be a no op */
5511 goto error_return;
5512 }
5513
5514 BUFFER_TRACE(bitmap_bh, "getting write access");
5515 err = ext4_journal_get_write_access(handle, bitmap_bh);
5516 if (err)
5517 goto error_return;
5518
5519 /*
5520 * We are about to modify some metadata. Call the journal APIs
5521 * to unshare ->b_data if a currently-committing transaction is
5522 * using it
5523 */
5524 BUFFER_TRACE(gd_bh, "get_write_access");
5525 err = ext4_journal_get_write_access(handle, gd_bh);
5526 if (err)
5527 goto error_return;
5528 #ifdef AGGRESSIVE_CHECK
5529 {
5530 int i;
5531 for (i = 0; i < count_clusters; i++)
5532 BUG_ON(!mb_test_bit(bit + i, bitmap_bh->b_data));
5533 }
5534 #endif
5535 trace_ext4_mballoc_free(sb, inode, block_group, bit, count_clusters);
5536
5537 /* __GFP_NOFAIL: retry infinitely, ignore TIF_MEMDIE and memcg limit. */
5538 err = ext4_mb_load_buddy_gfp(sb, block_group, &e4b,
5539 GFP_NOFS|__GFP_NOFAIL);
5540 if (err)
5541 goto error_return;
5542
5543 /*
5544 * We need to make sure we don't reuse the freed block until after the
5545 * transaction is committed. We make an exception if the inode is to be
5546 * written in writeback mode since writeback mode has weak data
5547 * consistency guarantees.
5548 */
5549 if (ext4_handle_valid(handle) &&
5550 ((flags & EXT4_FREE_BLOCKS_METADATA) ||
5551 !ext4_should_writeback_data(inode))) {
5552 struct ext4_free_data *new_entry;
5553 /*
5554 * We use __GFP_NOFAIL because ext4_free_blocks() is not allowed
5555 * to fail.
5556 */
5557 new_entry = kmem_cache_alloc(ext4_free_data_cachep,
5558 GFP_NOFS|__GFP_NOFAIL);
5559 new_entry->efd_start_cluster = bit;
5560 new_entry->efd_group = block_group;
5561 new_entry->efd_count = count_clusters;
5562 new_entry->efd_tid = handle->h_transaction->t_tid;
5563
5564 ext4_lock_group(sb, block_group);
5565 mb_clear_bits(bitmap_bh->b_data, bit, count_clusters);
5566 ext4_mb_free_metadata(handle, &e4b, new_entry);
5567 } else {
5568 /* need to update group_info->bb_free and bitmap
5569 * with group lock held. generate_buddy look at
5570 * them with group lock_held
5571 */
5572 if (test_opt(sb, DISCARD)) {
5573 err = ext4_issue_discard(sb, block_group, bit,
5574 count_clusters, NULL);
5575 if (err && err != -EOPNOTSUPP)
5576 ext4_msg(sb, KERN_WARNING, "discard request in"
5577 " group:%u block:%d count:%lu failed"
5578 " with %d", block_group, bit, count,
5579 err);
5580 } else
5581 EXT4_MB_GRP_CLEAR_TRIMMED(e4b.bd_info);
5582
5583 ext4_lock_group(sb, block_group);
5584 mb_clear_bits(bitmap_bh->b_data, bit, count_clusters);
5585 mb_free_blocks(inode, &e4b, bit, count_clusters);
5586 }
5587
5588 ret = ext4_free_group_clusters(sb, gdp) + count_clusters;
5589 ext4_free_group_clusters_set(sb, gdp, ret);
5590 ext4_block_bitmap_csum_set(sb, block_group, gdp, bitmap_bh);
5591 ext4_group_desc_csum_set(sb, block_group, gdp);
5592 ext4_unlock_group(sb, block_group);
5593
5594 if (sbi->s_log_groups_per_flex) {
5595 ext4_group_t flex_group = ext4_flex_group(sbi, block_group);
5596 atomic64_add(count_clusters,
5597 &sbi_array_rcu_deref(sbi, s_flex_groups,
5598 flex_group)->free_clusters);
5599 }
5600
5601 /*
5602 * on a bigalloc file system, defer the s_freeclusters_counter
5603 * update to the caller (ext4_remove_space and friends) so they
5604 * can determine if a cluster freed here should be rereserved
5605 */
5606 if (!(flags & EXT4_FREE_BLOCKS_RERESERVE_CLUSTER)) {
5607 if (!(flags & EXT4_FREE_BLOCKS_NO_QUOT_UPDATE))
5608 dquot_free_block(inode, EXT4_C2B(sbi, count_clusters));
5609 percpu_counter_add(&sbi->s_freeclusters_counter,
5610 count_clusters);
5611 }
5612
5613 ext4_mb_unload_buddy(&e4b);
5614
5615 /* We dirtied the bitmap block */
5616 BUFFER_TRACE(bitmap_bh, "dirtied bitmap block");
5617 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
5618
5619 /* And the group descriptor block */
5620 BUFFER_TRACE(gd_bh, "dirtied group descriptor block");
5621 ret = ext4_handle_dirty_metadata(handle, NULL, gd_bh);
5622 if (!err)
5623 err = ret;
5624
5625 if (overflow && !err) {
5626 block += count;
5627 count = overflow;
5628 put_bh(bitmap_bh);
5629 /* The range changed so it's no longer validated */
5630 flags &= ~EXT4_FREE_BLOCKS_VALIDATED;
5631 goto do_more;
5632 }
5633 error_return:
5634 brelse(bitmap_bh);
5635 ext4_std_error(sb, err);
5636 return;
5637 }
5638
5639 /**
5640 * ext4_free_blocks() -- Free given blocks and update quota
5641 * @handle: handle for this transaction
5642 * @inode: inode
5643 * @bh: optional buffer of the block to be freed
5644 * @block: starting physical block to be freed
5645 * @count: number of blocks to be freed
5646 * @flags: flags used by ext4_free_blocks
5647 */
ext4_free_blocks(handle_t *handle, struct inode *inode, struct buffer_head *bh, ext4_fsblk_t block, unsigned long count, int flags)5648 void ext4_free_blocks(handle_t *handle, struct inode *inode,
5649 struct buffer_head *bh, ext4_fsblk_t block,
5650 unsigned long count, int flags)
5651 {
5652 struct super_block *sb = inode->i_sb;
5653 unsigned int overflow;
5654 struct ext4_sb_info *sbi;
5655
5656 sbi = EXT4_SB(sb);
5657
5658 if (bh) {
5659 if (block)
5660 BUG_ON(block != bh->b_blocknr);
5661 else
5662 block = bh->b_blocknr;
5663 }
5664
5665 if (sbi->s_mount_state & EXT4_FC_REPLAY) {
5666 ext4_free_blocks_simple(inode, block, EXT4_NUM_B2C(sbi, count));
5667 return;
5668 }
5669
5670 might_sleep();
5671
5672 if (!(flags & EXT4_FREE_BLOCKS_VALIDATED) &&
5673 !ext4_inode_block_valid(inode, block, count)) {
5674 ext4_error(sb, "Freeing blocks not in datazone - "
5675 "block = %llu, count = %lu", block, count);
5676 return;
5677 }
5678 flags |= EXT4_FREE_BLOCKS_VALIDATED;
5679
5680 ext4_debug("freeing block %llu\n", block);
5681 trace_ext4_free_blocks(inode, block, count, flags);
5682
5683 if (bh && (flags & EXT4_FREE_BLOCKS_FORGET)) {
5684 BUG_ON(count > 1);
5685
5686 ext4_forget(handle, flags & EXT4_FREE_BLOCKS_METADATA,
5687 inode, bh, block);
5688 }
5689
5690 /*
5691 * If the extent to be freed does not begin on a cluster
5692 * boundary, we need to deal with partial clusters at the
5693 * beginning and end of the extent. Normally we will free
5694 * blocks at the beginning or the end unless we are explicitly
5695 * requested to avoid doing so.
5696 */
5697 overflow = EXT4_PBLK_COFF(sbi, block);
5698 if (overflow) {
5699 if (flags & EXT4_FREE_BLOCKS_NOFREE_FIRST_CLUSTER) {
5700 overflow = sbi->s_cluster_ratio - overflow;
5701 block += overflow;
5702 if (count > overflow)
5703 count -= overflow;
5704 else
5705 return;
5706 } else {
5707 block -= overflow;
5708 count += overflow;
5709 }
5710 /* The range changed so it's no longer validated */
5711 flags &= ~EXT4_FREE_BLOCKS_VALIDATED;
5712 }
5713 overflow = EXT4_LBLK_COFF(sbi, count);
5714 if (overflow) {
5715 if (flags & EXT4_FREE_BLOCKS_NOFREE_LAST_CLUSTER) {
5716 if (count > overflow)
5717 count -= overflow;
5718 else
5719 return;
5720 } else
5721 count += sbi->s_cluster_ratio - overflow;
5722 /* The range changed so it's no longer validated */
5723 flags &= ~EXT4_FREE_BLOCKS_VALIDATED;
5724 }
5725
5726 if (!bh && (flags & EXT4_FREE_BLOCKS_FORGET)) {
5727 int i;
5728 int is_metadata = flags & EXT4_FREE_BLOCKS_METADATA;
5729
5730 for (i = 0; i < count; i++) {
5731 cond_resched();
5732 if (is_metadata)
5733 bh = sb_find_get_block(inode->i_sb, block + i);
5734 ext4_forget(handle, is_metadata, inode, bh, block + i);
5735 }
5736 }
5737
5738 ext4_mb_clear_bb(handle, inode, block, count, flags);
5739 return;
5740 }
5741
5742 /**
5743 * ext4_group_add_blocks() -- Add given blocks to an existing group
5744 * @handle: handle to this transaction
5745 * @sb: super block
5746 * @block: start physical block to add to the block group
5747 * @count: number of blocks to free
5748 *
5749 * This marks the blocks as free in the bitmap and buddy.
5750 */
ext4_group_add_blocks(handle_t *handle, struct super_block *sb, ext4_fsblk_t block, unsigned long count)5751 int ext4_group_add_blocks(handle_t *handle, struct super_block *sb,
5752 ext4_fsblk_t block, unsigned long count)
5753 {
5754 struct buffer_head *bitmap_bh = NULL;
5755 struct buffer_head *gd_bh;
5756 ext4_group_t block_group;
5757 ext4_grpblk_t bit;
5758 unsigned int i;
5759 struct ext4_group_desc *desc;
5760 struct ext4_sb_info *sbi = EXT4_SB(sb);
5761 struct ext4_buddy e4b;
5762 int err = 0, ret, free_clusters_count;
5763 ext4_grpblk_t clusters_freed;
5764 ext4_fsblk_t first_cluster = EXT4_B2C(sbi, block);
5765 ext4_fsblk_t last_cluster = EXT4_B2C(sbi, block + count - 1);
5766 unsigned long cluster_count = last_cluster - first_cluster + 1;
5767
5768 ext4_debug("Adding block(s) %llu-%llu\n", block, block + count - 1);
5769
5770 if (count == 0)
5771 return 0;
5772
5773 ext4_get_group_no_and_offset(sb, block, &block_group, &bit);
5774 /*
5775 * Check to see if we are freeing blocks across a group
5776 * boundary.
5777 */
5778 if (bit + cluster_count > EXT4_CLUSTERS_PER_GROUP(sb)) {
5779 ext4_warning(sb, "too many blocks added to group %u",
5780 block_group);
5781 err = -EINVAL;
5782 goto error_return;
5783 }
5784
5785 bitmap_bh = ext4_read_block_bitmap(sb, block_group);
5786 if (IS_ERR(bitmap_bh)) {
5787 err = PTR_ERR(bitmap_bh);
5788 bitmap_bh = NULL;
5789 goto error_return;
5790 }
5791
5792 desc = ext4_get_group_desc(sb, block_group, &gd_bh);
5793 if (!desc) {
5794 err = -EIO;
5795 goto error_return;
5796 }
5797
5798 if (!ext4_sb_block_valid(sb, NULL, block, count)) {
5799 ext4_error(sb, "Adding blocks in system zones - "
5800 "Block = %llu, count = %lu",
5801 block, count);
5802 err = -EINVAL;
5803 goto error_return;
5804 }
5805
5806 BUFFER_TRACE(bitmap_bh, "getting write access");
5807 err = ext4_journal_get_write_access(handle, bitmap_bh);
5808 if (err)
5809 goto error_return;
5810
5811 /*
5812 * We are about to modify some metadata. Call the journal APIs
5813 * to unshare ->b_data if a currently-committing transaction is
5814 * using it
5815 */
5816 BUFFER_TRACE(gd_bh, "get_write_access");
5817 err = ext4_journal_get_write_access(handle, gd_bh);
5818 if (err)
5819 goto error_return;
5820
5821 for (i = 0, clusters_freed = 0; i < cluster_count; i++) {
5822 BUFFER_TRACE(bitmap_bh, "clear bit");
5823 if (!mb_test_bit(bit + i, bitmap_bh->b_data)) {
5824 ext4_error(sb, "bit already cleared for block %llu",
5825 (ext4_fsblk_t)(block + i));
5826 BUFFER_TRACE(bitmap_bh, "bit already cleared");
5827 } else {
5828 clusters_freed++;
5829 }
5830 }
5831
5832 err = ext4_mb_load_buddy(sb, block_group, &e4b);
5833 if (err)
5834 goto error_return;
5835
5836 /*
5837 * need to update group_info->bb_free and bitmap
5838 * with group lock held. generate_buddy look at
5839 * them with group lock_held
5840 */
5841 ext4_lock_group(sb, block_group);
5842 mb_clear_bits(bitmap_bh->b_data, bit, cluster_count);
5843 mb_free_blocks(NULL, &e4b, bit, cluster_count);
5844 free_clusters_count = clusters_freed +
5845 ext4_free_group_clusters(sb, desc);
5846 ext4_free_group_clusters_set(sb, desc, free_clusters_count);
5847 ext4_block_bitmap_csum_set(sb, block_group, desc, bitmap_bh);
5848 ext4_group_desc_csum_set(sb, block_group, desc);
5849 ext4_unlock_group(sb, block_group);
5850 percpu_counter_add(&sbi->s_freeclusters_counter,
5851 clusters_freed);
5852
5853 if (sbi->s_log_groups_per_flex) {
5854 ext4_group_t flex_group = ext4_flex_group(sbi, block_group);
5855 atomic64_add(clusters_freed,
5856 &sbi_array_rcu_deref(sbi, s_flex_groups,
5857 flex_group)->free_clusters);
5858 }
5859
5860 ext4_mb_unload_buddy(&e4b);
5861
5862 /* We dirtied the bitmap block */
5863 BUFFER_TRACE(bitmap_bh, "dirtied bitmap block");
5864 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
5865
5866 /* And the group descriptor block */
5867 BUFFER_TRACE(gd_bh, "dirtied group descriptor block");
5868 ret = ext4_handle_dirty_metadata(handle, NULL, gd_bh);
5869 if (!err)
5870 err = ret;
5871
5872 error_return:
5873 brelse(bitmap_bh);
5874 ext4_std_error(sb, err);
5875 return err;
5876 }
5877
5878 /**
5879 * ext4_trim_extent -- function to TRIM one single free extent in the group
5880 * @sb: super block for the file system
5881 * @start: starting block of the free extent in the alloc. group
5882 * @count: number of blocks to TRIM
5883 * @e4b: ext4 buddy for the group
5884 *
5885 * Trim "count" blocks starting at "start" in the "group". To assure that no
5886 * one will allocate those blocks, mark it as used in buddy bitmap. This must
5887 * be called with under the group lock.
5888 */
5889 static int ext4_trim_extent(struct super_block *sb,
5890 int start, int count, struct ext4_buddy *e4b)
__releasesnull5891 __releases(bitlock)
5892 __acquires(bitlock)
5893 {
5894 struct ext4_free_extent ex;
5895 ext4_group_t group = e4b->bd_group;
5896 int ret = 0;
5897
5898 trace_ext4_trim_extent(sb, group, start, count);
5899
5900 assert_spin_locked(ext4_group_lock_ptr(sb, group));
5901
5902 ex.fe_start = start;
5903 ex.fe_group = group;
5904 ex.fe_len = count;
5905
5906 /*
5907 * Mark blocks used, so no one can reuse them while
5908 * being trimmed.
5909 */
5910 mb_mark_used(e4b, &ex);
5911 ext4_unlock_group(sb, group);
5912 ret = ext4_issue_discard(sb, group, start, count, NULL);
5913 ext4_lock_group(sb, group);
5914 mb_free_blocks(NULL, e4b, start, ex.fe_len);
5915 return ret;
5916 }
5917
ext4_last_grp_cluster(struct super_block *sb, ext4_group_t grp)5918 static ext4_grpblk_t ext4_last_grp_cluster(struct super_block *sb,
5919 ext4_group_t grp)
5920 {
5921 unsigned long nr_clusters_in_group;
5922
5923 if (grp < (ext4_get_groups_count(sb) - 1))
5924 nr_clusters_in_group = EXT4_CLUSTERS_PER_GROUP(sb);
5925 else
5926 nr_clusters_in_group = (ext4_blocks_count(EXT4_SB(sb)->s_es) -
5927 ext4_group_first_block_no(sb, grp))
5928 >> EXT4_CLUSTER_BITS(sb);
5929
5930 return nr_clusters_in_group - 1;
5931 }
5932
ext4_trim_interrupted(void)5933 static bool ext4_trim_interrupted(void)
5934 {
5935 return fatal_signal_pending(current) || freezing(current);
5936 }
5937
ext4_try_to_trim_range(struct super_block *sb, struct ext4_buddy *e4b, ext4_grpblk_t start, ext4_grpblk_t max, ext4_grpblk_t minblocks)5938 static int ext4_try_to_trim_range(struct super_block *sb,
5939 struct ext4_buddy *e4b, ext4_grpblk_t start,
5940 ext4_grpblk_t max, ext4_grpblk_t minblocks)
5941 {
5942 ext4_grpblk_t next, count, free_count, last, origin_start;
5943 bool set_trimmed = false;
5944 void *bitmap;
5945
5946 last = ext4_last_grp_cluster(sb, e4b->bd_group);
5947 bitmap = e4b->bd_bitmap;
5948 if (start == 0 && max >= last)
5949 set_trimmed = true;
5950 origin_start = start;
5951 start = max(e4b->bd_info->bb_first_free, start);
5952 count = 0;
5953 free_count = 0;
5954
5955 while (start <= max) {
5956 start = mb_find_next_zero_bit(bitmap, max + 1, start);
5957 if (start > max)
5958 break;
5959
5960 next = mb_find_next_bit(bitmap, last + 1, start);
5961 if (origin_start == 0 && next >= last)
5962 set_trimmed = true;
5963
5964 if ((next - start) >= minblocks) {
5965 int ret = ext4_trim_extent(sb, start, next - start, e4b);
5966
5967 if (ret && ret != -EOPNOTSUPP)
5968 return count;
5969 count += next - start;
5970 }
5971 free_count += next - start;
5972 start = next + 1;
5973
5974 if (ext4_trim_interrupted())
5975 return count;
5976
5977 if (need_resched()) {
5978 ext4_unlock_group(sb, e4b->bd_group);
5979 cond_resched();
5980 ext4_lock_group(sb, e4b->bd_group);
5981 }
5982
5983 if ((e4b->bd_info->bb_free - free_count) < minblocks)
5984 break;
5985 }
5986
5987 if (set_trimmed)
5988 EXT4_MB_GRP_SET_TRIMMED(e4b->bd_info);
5989
5990 return count;
5991 }
5992
5993 /**
5994 * ext4_trim_all_free -- function to trim all free space in alloc. group
5995 * @sb: super block for file system
5996 * @group: group to be trimmed
5997 * @start: first group block to examine
5998 * @max: last group block to examine
5999 * @minblocks: minimum extent block count
6000 *
6001 * ext4_trim_all_free walks through group's buddy bitmap searching for free
6002 * extents. When the free block is found, ext4_trim_extent is called to TRIM
6003 * the extent.
6004 *
6005 *
6006 * ext4_trim_all_free walks through group's block bitmap searching for free
6007 * extents. When the free extent is found, mark it as used in group buddy
6008 * bitmap. Then issue a TRIM command on this extent and free the extent in
6009 * the group buddy bitmap. This is done until whole group is scanned.
6010 */
6011 static ext4_grpblk_t
ext4_trim_all_free(struct super_block *sb, ext4_group_t group, ext4_grpblk_t start, ext4_grpblk_t max, ext4_grpblk_t minblocks)6012 ext4_trim_all_free(struct super_block *sb, ext4_group_t group,
6013 ext4_grpblk_t start, ext4_grpblk_t max,
6014 ext4_grpblk_t minblocks)
6015 {
6016 struct ext4_buddy e4b;
6017 int ret;
6018
6019 trace_ext4_trim_all_free(sb, group, start, max);
6020
6021 ret = ext4_mb_load_buddy(sb, group, &e4b);
6022 if (ret) {
6023 ext4_warning(sb, "Error %d loading buddy information for %u",
6024 ret, group);
6025 return ret;
6026 }
6027
6028 ext4_lock_group(sb, group);
6029
6030 if (!EXT4_MB_GRP_WAS_TRIMMED(e4b.bd_info) ||
6031 minblocks < EXT4_SB(sb)->s_last_trim_minblks)
6032 ret = ext4_try_to_trim_range(sb, &e4b, start, max, minblocks);
6033 else
6034 ret = 0;
6035
6036 ext4_unlock_group(sb, group);
6037 ext4_mb_unload_buddy(&e4b);
6038
6039 ext4_debug("trimmed %d blocks in the group %d\n",
6040 ret, group);
6041
6042 return ret;
6043 }
6044
6045 /**
6046 * ext4_trim_fs() -- trim ioctl handle function
6047 * @sb: superblock for filesystem
6048 * @range: fstrim_range structure
6049 *
6050 * start: First Byte to trim
6051 * len: number of Bytes to trim from start
6052 * minlen: minimum extent length in Bytes
6053 * ext4_trim_fs goes through all allocation groups containing Bytes from
6054 * start to start+len. For each such a group ext4_trim_all_free function
6055 * is invoked to trim all free space.
6056 */
ext4_trim_fs(struct super_block *sb, struct fstrim_range *range)6057 int ext4_trim_fs(struct super_block *sb, struct fstrim_range *range)
6058 {
6059 struct request_queue *q = bdev_get_queue(sb->s_bdev);
6060 struct ext4_group_info *grp;
6061 ext4_group_t group, first_group, last_group;
6062 ext4_grpblk_t cnt = 0, first_cluster, last_cluster;
6063 uint64_t start, end, minlen, trimmed = 0;
6064 ext4_fsblk_t first_data_blk =
6065 le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block);
6066 ext4_fsblk_t max_blks = ext4_blocks_count(EXT4_SB(sb)->s_es);
6067 int ret = 0;
6068
6069 start = range->start >> sb->s_blocksize_bits;
6070 end = start + (range->len >> sb->s_blocksize_bits) - 1;
6071 minlen = EXT4_NUM_B2C(EXT4_SB(sb),
6072 range->minlen >> sb->s_blocksize_bits);
6073
6074 if (minlen > EXT4_CLUSTERS_PER_GROUP(sb) ||
6075 start >= max_blks ||
6076 range->len < sb->s_blocksize)
6077 return -EINVAL;
6078 /* No point to try to trim less than discard granularity */
6079 if (range->minlen < q->limits.discard_granularity) {
6080 minlen = EXT4_NUM_B2C(EXT4_SB(sb),
6081 q->limits.discard_granularity >> sb->s_blocksize_bits);
6082 if (minlen > EXT4_CLUSTERS_PER_GROUP(sb))
6083 goto out;
6084 }
6085 if (end >= max_blks - 1)
6086 end = max_blks - 1;
6087 if (end <= first_data_blk)
6088 goto out;
6089 if (start < first_data_blk)
6090 start = first_data_blk;
6091
6092 /* Determine first and last group to examine based on start and end */
6093 ext4_get_group_no_and_offset(sb, (ext4_fsblk_t) start,
6094 &first_group, &first_cluster);
6095 ext4_get_group_no_and_offset(sb, (ext4_fsblk_t) end,
6096 &last_group, &last_cluster);
6097
6098 /* end now represents the last cluster to discard in this group */
6099 end = EXT4_CLUSTERS_PER_GROUP(sb) - 1;
6100
6101 for (group = first_group; group <= last_group; group++) {
6102 if (ext4_trim_interrupted())
6103 break;
6104 grp = ext4_get_group_info(sb, group);
6105 if (!grp)
6106 continue;
6107 /* We only do this if the grp has never been initialized */
6108 if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) {
6109 ret = ext4_mb_init_group(sb, group, GFP_NOFS);
6110 if (ret)
6111 break;
6112 }
6113
6114 /*
6115 * For all the groups except the last one, last cluster will
6116 * always be EXT4_CLUSTERS_PER_GROUP(sb)-1, so we only need to
6117 * change it for the last group, note that last_cluster is
6118 * already computed earlier by ext4_get_group_no_and_offset()
6119 */
6120 if (group == last_group)
6121 end = last_cluster;
6122 if (grp->bb_free >= minlen) {
6123 cnt = ext4_trim_all_free(sb, group, first_cluster,
6124 end, minlen);
6125 if (cnt < 0) {
6126 ret = cnt;
6127 break;
6128 }
6129 trimmed += cnt;
6130 }
6131
6132 /*
6133 * For every group except the first one, we are sure
6134 * that the first cluster to discard will be cluster #0.
6135 */
6136 first_cluster = 0;
6137 }
6138
6139 if (!ret)
6140 EXT4_SB(sb)->s_last_trim_minblks = minlen;
6141
6142 out:
6143 range->len = EXT4_C2B(EXT4_SB(sb), trimmed) << sb->s_blocksize_bits;
6144 return ret;
6145 }
6146
6147 /* Iterate all the free extents in the group. */
6148 int
ext4_mballoc_query_range( struct super_block *sb, ext4_group_t group, ext4_grpblk_t start, ext4_grpblk_t end, ext4_mballoc_query_range_fn formatter, void *priv)6149 ext4_mballoc_query_range(
6150 struct super_block *sb,
6151 ext4_group_t group,
6152 ext4_grpblk_t start,
6153 ext4_grpblk_t end,
6154 ext4_mballoc_query_range_fn formatter,
6155 void *priv)
6156 {
6157 void *bitmap;
6158 ext4_grpblk_t next;
6159 struct ext4_buddy e4b;
6160 int error;
6161
6162 error = ext4_mb_load_buddy(sb, group, &e4b);
6163 if (error)
6164 return error;
6165 bitmap = e4b.bd_bitmap;
6166
6167 ext4_lock_group(sb, group);
6168
6169 start = max(e4b.bd_info->bb_first_free, start);
6170 if (end >= EXT4_CLUSTERS_PER_GROUP(sb))
6171 end = EXT4_CLUSTERS_PER_GROUP(sb) - 1;
6172
6173 while (start <= end) {
6174 start = mb_find_next_zero_bit(bitmap, end + 1, start);
6175 if (start > end)
6176 break;
6177 next = mb_find_next_bit(bitmap, end + 1, start);
6178
6179 ext4_unlock_group(sb, group);
6180 error = formatter(sb, group, start, next - start, priv);
6181 if (error)
6182 goto out_unload;
6183 ext4_lock_group(sb, group);
6184
6185 start = next + 1;
6186 }
6187
6188 ext4_unlock_group(sb, group);
6189 out_unload:
6190 ext4_mb_unload_buddy(&e4b);
6191
6192 return error;
6193 }
6194