1// SPDX-License-Identifier: GPL-2.0 2/* 3 * Copyright (C) 2012 Alexander Block. All rights reserved. 4 */ 5 6#include <linux/bsearch.h> 7#include <linux/fs.h> 8#include <linux/file.h> 9#include <linux/sort.h> 10#include <linux/mount.h> 11#include <linux/xattr.h> 12#include <linux/posix_acl_xattr.h> 13#include <linux/radix-tree.h> 14#include <linux/vmalloc.h> 15#include <linux/string.h> 16#include <linux/compat.h> 17#include <linux/crc32c.h> 18 19#include "send.h" 20#include "backref.h" 21#include "locking.h" 22#include "disk-io.h" 23#include "btrfs_inode.h" 24#include "transaction.h" 25#include "compression.h" 26#include "xattr.h" 27 28/* 29 * Maximum number of references an extent can have in order for us to attempt to 30 * issue clone operations instead of write operations. This currently exists to 31 * avoid hitting limitations of the backreference walking code (taking a lot of 32 * time and using too much memory for extents with large number of references). 33 */ 34#define SEND_MAX_EXTENT_REFS 64 35 36/* 37 * A fs_path is a helper to dynamically build path names with unknown size. 38 * It reallocates the internal buffer on demand. 39 * It allows fast adding of path elements on the right side (normal path) and 40 * fast adding to the left side (reversed path). A reversed path can also be 41 * unreversed if needed. 42 */ 43struct fs_path { 44 union { 45 struct { 46 char *start; 47 char *end; 48 49 char *buf; 50 unsigned short buf_len:15; 51 unsigned short reversed:1; 52 char inline_buf[]; 53 }; 54 /* 55 * Average path length does not exceed 200 bytes, we'll have 56 * better packing in the slab and higher chance to satisfy 57 * a allocation later during send. 58 */ 59 char pad[256]; 60 }; 61}; 62#define FS_PATH_INLINE_SIZE \ 63 (sizeof(struct fs_path) - offsetof(struct fs_path, inline_buf)) 64 65 66/* reused for each extent */ 67struct clone_root { 68 struct btrfs_root *root; 69 u64 ino; 70 u64 offset; 71 72 u64 found_refs; 73}; 74 75#define SEND_CTX_MAX_NAME_CACHE_SIZE 128 76#define SEND_CTX_NAME_CACHE_CLEAN_SIZE (SEND_CTX_MAX_NAME_CACHE_SIZE * 2) 77 78struct send_ctx { 79 struct file *send_filp; 80 loff_t send_off; 81 char *send_buf; 82 u32 send_size; 83 u32 send_max_size; 84 u64 total_send_size; 85 u64 cmd_send_size[BTRFS_SEND_C_MAX + 1]; 86 u64 flags; /* 'flags' member of btrfs_ioctl_send_args is u64 */ 87 88 struct btrfs_root *send_root; 89 struct btrfs_root *parent_root; 90 struct clone_root *clone_roots; 91 int clone_roots_cnt; 92 93 /* current state of the compare_tree call */ 94 struct btrfs_path *left_path; 95 struct btrfs_path *right_path; 96 struct btrfs_key *cmp_key; 97 98 /* 99 * infos of the currently processed inode. In case of deleted inodes, 100 * these are the values from the deleted inode. 101 */ 102 u64 cur_ino; 103 u64 cur_inode_gen; 104 int cur_inode_new; 105 int cur_inode_new_gen; 106 int cur_inode_deleted; 107 u64 cur_inode_size; 108 u64 cur_inode_mode; 109 u64 cur_inode_rdev; 110 u64 cur_inode_last_extent; 111 u64 cur_inode_next_write_offset; 112 bool ignore_cur_inode; 113 114 u64 send_progress; 115 116 struct list_head new_refs; 117 struct list_head deleted_refs; 118 119 struct radix_tree_root name_cache; 120 struct list_head name_cache_list; 121 int name_cache_size; 122 123 struct file_ra_state ra; 124 125 /* 126 * We process inodes by their increasing order, so if before an 127 * incremental send we reverse the parent/child relationship of 128 * directories such that a directory with a lower inode number was 129 * the parent of a directory with a higher inode number, and the one 130 * becoming the new parent got renamed too, we can't rename/move the 131 * directory with lower inode number when we finish processing it - we 132 * must process the directory with higher inode number first, then 133 * rename/move it and then rename/move the directory with lower inode 134 * number. Example follows. 135 * 136 * Tree state when the first send was performed: 137 * 138 * . 139 * |-- a (ino 257) 140 * |-- b (ino 258) 141 * | 142 * | 143 * |-- c (ino 259) 144 * | |-- d (ino 260) 145 * | 146 * |-- c2 (ino 261) 147 * 148 * Tree state when the second (incremental) send is performed: 149 * 150 * . 151 * |-- a (ino 257) 152 * |-- b (ino 258) 153 * |-- c2 (ino 261) 154 * |-- d2 (ino 260) 155 * |-- cc (ino 259) 156 * 157 * The sequence of steps that lead to the second state was: 158 * 159 * mv /a/b/c/d /a/b/c2/d2 160 * mv /a/b/c /a/b/c2/d2/cc 161 * 162 * "c" has lower inode number, but we can't move it (2nd mv operation) 163 * before we move "d", which has higher inode number. 164 * 165 * So we just memorize which move/rename operations must be performed 166 * later when their respective parent is processed and moved/renamed. 167 */ 168 169 /* Indexed by parent directory inode number. */ 170 struct rb_root pending_dir_moves; 171 172 /* 173 * Reverse index, indexed by the inode number of a directory that 174 * is waiting for the move/rename of its immediate parent before its 175 * own move/rename can be performed. 176 */ 177 struct rb_root waiting_dir_moves; 178 179 /* 180 * A directory that is going to be rm'ed might have a child directory 181 * which is in the pending directory moves index above. In this case, 182 * the directory can only be removed after the move/rename of its child 183 * is performed. Example: 184 * 185 * Parent snapshot: 186 * 187 * . (ino 256) 188 * |-- a/ (ino 257) 189 * |-- b/ (ino 258) 190 * |-- c/ (ino 259) 191 * | |-- x/ (ino 260) 192 * | 193 * |-- y/ (ino 261) 194 * 195 * Send snapshot: 196 * 197 * . (ino 256) 198 * |-- a/ (ino 257) 199 * |-- b/ (ino 258) 200 * |-- YY/ (ino 261) 201 * |-- x/ (ino 260) 202 * 203 * Sequence of steps that lead to the send snapshot: 204 * rm -f /a/b/c/foo.txt 205 * mv /a/b/y /a/b/YY 206 * mv /a/b/c/x /a/b/YY 207 * rmdir /a/b/c 208 * 209 * When the child is processed, its move/rename is delayed until its 210 * parent is processed (as explained above), but all other operations 211 * like update utimes, chown, chgrp, etc, are performed and the paths 212 * that it uses for those operations must use the orphanized name of 213 * its parent (the directory we're going to rm later), so we need to 214 * memorize that name. 215 * 216 * Indexed by the inode number of the directory to be deleted. 217 */ 218 struct rb_root orphan_dirs; 219}; 220 221struct pending_dir_move { 222 struct rb_node node; 223 struct list_head list; 224 u64 parent_ino; 225 u64 ino; 226 u64 gen; 227 struct list_head update_refs; 228}; 229 230struct waiting_dir_move { 231 struct rb_node node; 232 u64 ino; 233 /* 234 * There might be some directory that could not be removed because it 235 * was waiting for this directory inode to be moved first. Therefore 236 * after this directory is moved, we can try to rmdir the ino rmdir_ino. 237 */ 238 u64 rmdir_ino; 239 u64 rmdir_gen; 240 bool orphanized; 241}; 242 243struct orphan_dir_info { 244 struct rb_node node; 245 u64 ino; 246 u64 gen; 247 u64 last_dir_index_offset; 248}; 249 250struct name_cache_entry { 251 struct list_head list; 252 /* 253 * radix_tree has only 32bit entries but we need to handle 64bit inums. 254 * We use the lower 32bit of the 64bit inum to store it in the tree. If 255 * more then one inum would fall into the same entry, we use radix_list 256 * to store the additional entries. radix_list is also used to store 257 * entries where two entries have the same inum but different 258 * generations. 259 */ 260 struct list_head radix_list; 261 u64 ino; 262 u64 gen; 263 u64 parent_ino; 264 u64 parent_gen; 265 int ret; 266 int need_later_update; 267 int name_len; 268 char name[]; 269}; 270 271#define ADVANCE 1 272#define ADVANCE_ONLY_NEXT -1 273 274enum btrfs_compare_tree_result { 275 BTRFS_COMPARE_TREE_NEW, 276 BTRFS_COMPARE_TREE_DELETED, 277 BTRFS_COMPARE_TREE_CHANGED, 278 BTRFS_COMPARE_TREE_SAME, 279}; 280 281__cold 282static void inconsistent_snapshot_error(struct send_ctx *sctx, 283 enum btrfs_compare_tree_result result, 284 const char *what) 285{ 286 const char *result_string; 287 288 switch (result) { 289 case BTRFS_COMPARE_TREE_NEW: 290 result_string = "new"; 291 break; 292 case BTRFS_COMPARE_TREE_DELETED: 293 result_string = "deleted"; 294 break; 295 case BTRFS_COMPARE_TREE_CHANGED: 296 result_string = "updated"; 297 break; 298 case BTRFS_COMPARE_TREE_SAME: 299 ASSERT(0); 300 result_string = "unchanged"; 301 break; 302 default: 303 ASSERT(0); 304 result_string = "unexpected"; 305 } 306 307 btrfs_err(sctx->send_root->fs_info, 308 "Send: inconsistent snapshot, found %s %s for inode %llu without updated inode item, send root is %llu, parent root is %llu", 309 result_string, what, sctx->cmp_key->objectid, 310 sctx->send_root->root_key.objectid, 311 (sctx->parent_root ? 312 sctx->parent_root->root_key.objectid : 0)); 313} 314 315static int is_waiting_for_move(struct send_ctx *sctx, u64 ino); 316 317static struct waiting_dir_move * 318get_waiting_dir_move(struct send_ctx *sctx, u64 ino); 319 320static int is_waiting_for_rm(struct send_ctx *sctx, u64 dir_ino, u64 gen); 321 322static int need_send_hole(struct send_ctx *sctx) 323{ 324 return (sctx->parent_root && !sctx->cur_inode_new && 325 !sctx->cur_inode_new_gen && !sctx->cur_inode_deleted && 326 S_ISREG(sctx->cur_inode_mode)); 327} 328 329static void fs_path_reset(struct fs_path *p) 330{ 331 if (p->reversed) { 332 p->start = p->buf + p->buf_len - 1; 333 p->end = p->start; 334 *p->start = 0; 335 } else { 336 p->start = p->buf; 337 p->end = p->start; 338 *p->start = 0; 339 } 340} 341 342static struct fs_path *fs_path_alloc(void) 343{ 344 struct fs_path *p; 345 346 p = kmalloc(sizeof(*p), GFP_KERNEL); 347 if (!p) 348 return NULL; 349 p->reversed = 0; 350 p->buf = p->inline_buf; 351 p->buf_len = FS_PATH_INLINE_SIZE; 352 fs_path_reset(p); 353 return p; 354} 355 356static struct fs_path *fs_path_alloc_reversed(void) 357{ 358 struct fs_path *p; 359 360 p = fs_path_alloc(); 361 if (!p) 362 return NULL; 363 p->reversed = 1; 364 fs_path_reset(p); 365 return p; 366} 367 368static void fs_path_free(struct fs_path *p) 369{ 370 if (!p) 371 return; 372 if (p->buf != p->inline_buf) 373 kfree(p->buf); 374 kfree(p); 375} 376 377static int fs_path_len(struct fs_path *p) 378{ 379 return p->end - p->start; 380} 381 382static int fs_path_ensure_buf(struct fs_path *p, int len) 383{ 384 char *tmp_buf; 385 int path_len; 386 int old_buf_len; 387 388 len++; 389 390 if (p->buf_len >= len) 391 return 0; 392 393 if (len > PATH_MAX) { 394 WARN_ON(1); 395 return -ENOMEM; 396 } 397 398 path_len = p->end - p->start; 399 old_buf_len = p->buf_len; 400 401 /* 402 * First time the inline_buf does not suffice 403 */ 404 if (p->buf == p->inline_buf) { 405 tmp_buf = kmalloc(len, GFP_KERNEL); 406 if (tmp_buf) 407 memcpy(tmp_buf, p->buf, old_buf_len); 408 } else { 409 tmp_buf = krealloc(p->buf, len, GFP_KERNEL); 410 } 411 if (!tmp_buf) 412 return -ENOMEM; 413 p->buf = tmp_buf; 414 /* 415 * The real size of the buffer is bigger, this will let the fast path 416 * happen most of the time 417 */ 418 p->buf_len = ksize(p->buf); 419 420 if (p->reversed) { 421 tmp_buf = p->buf + old_buf_len - path_len - 1; 422 p->end = p->buf + p->buf_len - 1; 423 p->start = p->end - path_len; 424 memmove(p->start, tmp_buf, path_len + 1); 425 } else { 426 p->start = p->buf; 427 p->end = p->start + path_len; 428 } 429 return 0; 430} 431 432static int fs_path_prepare_for_add(struct fs_path *p, int name_len, 433 char **prepared) 434{ 435 int ret; 436 int new_len; 437 438 new_len = p->end - p->start + name_len; 439 if (p->start != p->end) 440 new_len++; 441 ret = fs_path_ensure_buf(p, new_len); 442 if (ret < 0) 443 goto out; 444 445 if (p->reversed) { 446 if (p->start != p->end) 447 *--p->start = '/'; 448 p->start -= name_len; 449 *prepared = p->start; 450 } else { 451 if (p->start != p->end) 452 *p->end++ = '/'; 453 *prepared = p->end; 454 p->end += name_len; 455 *p->end = 0; 456 } 457 458out: 459 return ret; 460} 461 462static int fs_path_add(struct fs_path *p, const char *name, int name_len) 463{ 464 int ret; 465 char *prepared; 466 467 ret = fs_path_prepare_for_add(p, name_len, &prepared); 468 if (ret < 0) 469 goto out; 470 memcpy(prepared, name, name_len); 471 472out: 473 return ret; 474} 475 476static int fs_path_add_path(struct fs_path *p, struct fs_path *p2) 477{ 478 int ret; 479 char *prepared; 480 481 ret = fs_path_prepare_for_add(p, p2->end - p2->start, &prepared); 482 if (ret < 0) 483 goto out; 484 memcpy(prepared, p2->start, p2->end - p2->start); 485 486out: 487 return ret; 488} 489 490static int fs_path_add_from_extent_buffer(struct fs_path *p, 491 struct extent_buffer *eb, 492 unsigned long off, int len) 493{ 494 int ret; 495 char *prepared; 496 497 ret = fs_path_prepare_for_add(p, len, &prepared); 498 if (ret < 0) 499 goto out; 500 501 read_extent_buffer(eb, prepared, off, len); 502 503out: 504 return ret; 505} 506 507static int fs_path_copy(struct fs_path *p, struct fs_path *from) 508{ 509 int ret; 510 511 p->reversed = from->reversed; 512 fs_path_reset(p); 513 514 ret = fs_path_add_path(p, from); 515 516 return ret; 517} 518 519 520static void fs_path_unreverse(struct fs_path *p) 521{ 522 char *tmp; 523 int len; 524 525 if (!p->reversed) 526 return; 527 528 tmp = p->start; 529 len = p->end - p->start; 530 p->start = p->buf; 531 p->end = p->start + len; 532 memmove(p->start, tmp, len + 1); 533 p->reversed = 0; 534} 535 536static struct btrfs_path *alloc_path_for_send(void) 537{ 538 struct btrfs_path *path; 539 540 path = btrfs_alloc_path(); 541 if (!path) 542 return NULL; 543 path->search_commit_root = 1; 544 path->skip_locking = 1; 545 path->need_commit_sem = 1; 546 return path; 547} 548 549static int write_buf(struct file *filp, const void *buf, u32 len, loff_t *off) 550{ 551 int ret; 552 u32 pos = 0; 553 554 while (pos < len) { 555 ret = kernel_write(filp, buf + pos, len - pos, off); 556 /* TODO handle that correctly */ 557 /*if (ret == -ERESTARTSYS) { 558 continue; 559 }*/ 560 if (ret < 0) 561 return ret; 562 if (ret == 0) { 563 return -EIO; 564 } 565 pos += ret; 566 } 567 568 return 0; 569} 570 571static int tlv_put(struct send_ctx *sctx, u16 attr, const void *data, int len) 572{ 573 struct btrfs_tlv_header *hdr; 574 int total_len = sizeof(*hdr) + len; 575 int left = sctx->send_max_size - sctx->send_size; 576 577 if (unlikely(left < total_len)) 578 return -EOVERFLOW; 579 580 hdr = (struct btrfs_tlv_header *) (sctx->send_buf + sctx->send_size); 581 put_unaligned_le16(attr, &hdr->tlv_type); 582 put_unaligned_le16(len, &hdr->tlv_len); 583 memcpy(hdr + 1, data, len); 584 sctx->send_size += total_len; 585 586 return 0; 587} 588 589#define TLV_PUT_DEFINE_INT(bits) \ 590 static int tlv_put_u##bits(struct send_ctx *sctx, \ 591 u##bits attr, u##bits value) \ 592 { \ 593 __le##bits __tmp = cpu_to_le##bits(value); \ 594 return tlv_put(sctx, attr, &__tmp, sizeof(__tmp)); \ 595 } 596 597TLV_PUT_DEFINE_INT(64) 598 599static int tlv_put_string(struct send_ctx *sctx, u16 attr, 600 const char *str, int len) 601{ 602 if (len == -1) 603 len = strlen(str); 604 return tlv_put(sctx, attr, str, len); 605} 606 607static int tlv_put_uuid(struct send_ctx *sctx, u16 attr, 608 const u8 *uuid) 609{ 610 return tlv_put(sctx, attr, uuid, BTRFS_UUID_SIZE); 611} 612 613static int tlv_put_btrfs_timespec(struct send_ctx *sctx, u16 attr, 614 struct extent_buffer *eb, 615 struct btrfs_timespec *ts) 616{ 617 struct btrfs_timespec bts; 618 read_extent_buffer(eb, &bts, (unsigned long)ts, sizeof(bts)); 619 return tlv_put(sctx, attr, &bts, sizeof(bts)); 620} 621 622 623#define TLV_PUT(sctx, attrtype, data, attrlen) \ 624 do { \ 625 ret = tlv_put(sctx, attrtype, data, attrlen); \ 626 if (ret < 0) \ 627 goto tlv_put_failure; \ 628 } while (0) 629 630#define TLV_PUT_INT(sctx, attrtype, bits, value) \ 631 do { \ 632 ret = tlv_put_u##bits(sctx, attrtype, value); \ 633 if (ret < 0) \ 634 goto tlv_put_failure; \ 635 } while (0) 636 637#define TLV_PUT_U8(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 8, data) 638#define TLV_PUT_U16(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 16, data) 639#define TLV_PUT_U32(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 32, data) 640#define TLV_PUT_U64(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 64, data) 641#define TLV_PUT_STRING(sctx, attrtype, str, len) \ 642 do { \ 643 ret = tlv_put_string(sctx, attrtype, str, len); \ 644 if (ret < 0) \ 645 goto tlv_put_failure; \ 646 } while (0) 647#define TLV_PUT_PATH(sctx, attrtype, p) \ 648 do { \ 649 ret = tlv_put_string(sctx, attrtype, p->start, \ 650 p->end - p->start); \ 651 if (ret < 0) \ 652 goto tlv_put_failure; \ 653 } while(0) 654#define TLV_PUT_UUID(sctx, attrtype, uuid) \ 655 do { \ 656 ret = tlv_put_uuid(sctx, attrtype, uuid); \ 657 if (ret < 0) \ 658 goto tlv_put_failure; \ 659 } while (0) 660#define TLV_PUT_BTRFS_TIMESPEC(sctx, attrtype, eb, ts) \ 661 do { \ 662 ret = tlv_put_btrfs_timespec(sctx, attrtype, eb, ts); \ 663 if (ret < 0) \ 664 goto tlv_put_failure; \ 665 } while (0) 666 667static int send_header(struct send_ctx *sctx) 668{ 669 struct btrfs_stream_header hdr; 670 671 strcpy(hdr.magic, BTRFS_SEND_STREAM_MAGIC); 672 hdr.version = cpu_to_le32(BTRFS_SEND_STREAM_VERSION); 673 674 return write_buf(sctx->send_filp, &hdr, sizeof(hdr), 675 &sctx->send_off); 676} 677 678/* 679 * For each command/item we want to send to userspace, we call this function. 680 */ 681static int begin_cmd(struct send_ctx *sctx, int cmd) 682{ 683 struct btrfs_cmd_header *hdr; 684 685 if (WARN_ON(!sctx->send_buf)) 686 return -EINVAL; 687 688 BUG_ON(sctx->send_size); 689 690 sctx->send_size += sizeof(*hdr); 691 hdr = (struct btrfs_cmd_header *)sctx->send_buf; 692 put_unaligned_le16(cmd, &hdr->cmd); 693 694 return 0; 695} 696 697static int send_cmd(struct send_ctx *sctx) 698{ 699 int ret; 700 struct btrfs_cmd_header *hdr; 701 u32 crc; 702 703 hdr = (struct btrfs_cmd_header *)sctx->send_buf; 704 put_unaligned_le32(sctx->send_size - sizeof(*hdr), &hdr->len); 705 put_unaligned_le32(0, &hdr->crc); 706 707 crc = btrfs_crc32c(0, (unsigned char *)sctx->send_buf, sctx->send_size); 708 put_unaligned_le32(crc, &hdr->crc); 709 710 ret = write_buf(sctx->send_filp, sctx->send_buf, sctx->send_size, 711 &sctx->send_off); 712 713 sctx->total_send_size += sctx->send_size; 714 sctx->cmd_send_size[get_unaligned_le16(&hdr->cmd)] += sctx->send_size; 715 sctx->send_size = 0; 716 717 return ret; 718} 719 720/* 721 * Sends a move instruction to user space 722 */ 723static int send_rename(struct send_ctx *sctx, 724 struct fs_path *from, struct fs_path *to) 725{ 726 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 727 int ret; 728 729 btrfs_debug(fs_info, "send_rename %s -> %s", from->start, to->start); 730 731 ret = begin_cmd(sctx, BTRFS_SEND_C_RENAME); 732 if (ret < 0) 733 goto out; 734 735 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, from); 736 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_TO, to); 737 738 ret = send_cmd(sctx); 739 740tlv_put_failure: 741out: 742 return ret; 743} 744 745/* 746 * Sends a link instruction to user space 747 */ 748static int send_link(struct send_ctx *sctx, 749 struct fs_path *path, struct fs_path *lnk) 750{ 751 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 752 int ret; 753 754 btrfs_debug(fs_info, "send_link %s -> %s", path->start, lnk->start); 755 756 ret = begin_cmd(sctx, BTRFS_SEND_C_LINK); 757 if (ret < 0) 758 goto out; 759 760 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path); 761 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_LINK, lnk); 762 763 ret = send_cmd(sctx); 764 765tlv_put_failure: 766out: 767 return ret; 768} 769 770/* 771 * Sends an unlink instruction to user space 772 */ 773static int send_unlink(struct send_ctx *sctx, struct fs_path *path) 774{ 775 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 776 int ret; 777 778 btrfs_debug(fs_info, "send_unlink %s", path->start); 779 780 ret = begin_cmd(sctx, BTRFS_SEND_C_UNLINK); 781 if (ret < 0) 782 goto out; 783 784 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path); 785 786 ret = send_cmd(sctx); 787 788tlv_put_failure: 789out: 790 return ret; 791} 792 793/* 794 * Sends a rmdir instruction to user space 795 */ 796static int send_rmdir(struct send_ctx *sctx, struct fs_path *path) 797{ 798 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 799 int ret; 800 801 btrfs_debug(fs_info, "send_rmdir %s", path->start); 802 803 ret = begin_cmd(sctx, BTRFS_SEND_C_RMDIR); 804 if (ret < 0) 805 goto out; 806 807 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path); 808 809 ret = send_cmd(sctx); 810 811tlv_put_failure: 812out: 813 return ret; 814} 815 816/* 817 * Helper function to retrieve some fields from an inode item. 818 */ 819static int __get_inode_info(struct btrfs_root *root, struct btrfs_path *path, 820 u64 ino, u64 *size, u64 *gen, u64 *mode, u64 *uid, 821 u64 *gid, u64 *rdev) 822{ 823 int ret; 824 struct btrfs_inode_item *ii; 825 struct btrfs_key key; 826 827 key.objectid = ino; 828 key.type = BTRFS_INODE_ITEM_KEY; 829 key.offset = 0; 830 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 831 if (ret) { 832 if (ret > 0) 833 ret = -ENOENT; 834 return ret; 835 } 836 837 ii = btrfs_item_ptr(path->nodes[0], path->slots[0], 838 struct btrfs_inode_item); 839 if (size) 840 *size = btrfs_inode_size(path->nodes[0], ii); 841 if (gen) 842 *gen = btrfs_inode_generation(path->nodes[0], ii); 843 if (mode) 844 *mode = btrfs_inode_mode(path->nodes[0], ii); 845 if (uid) 846 *uid = btrfs_inode_uid(path->nodes[0], ii); 847 if (gid) 848 *gid = btrfs_inode_gid(path->nodes[0], ii); 849 if (rdev) 850 *rdev = btrfs_inode_rdev(path->nodes[0], ii); 851 852 return ret; 853} 854 855static int get_inode_info(struct btrfs_root *root, 856 u64 ino, u64 *size, u64 *gen, 857 u64 *mode, u64 *uid, u64 *gid, 858 u64 *rdev) 859{ 860 struct btrfs_path *path; 861 int ret; 862 863 path = alloc_path_for_send(); 864 if (!path) 865 return -ENOMEM; 866 ret = __get_inode_info(root, path, ino, size, gen, mode, uid, gid, 867 rdev); 868 btrfs_free_path(path); 869 return ret; 870} 871 872typedef int (*iterate_inode_ref_t)(int num, u64 dir, int index, 873 struct fs_path *p, 874 void *ctx); 875 876/* 877 * Helper function to iterate the entries in ONE btrfs_inode_ref or 878 * btrfs_inode_extref. 879 * The iterate callback may return a non zero value to stop iteration. This can 880 * be a negative value for error codes or 1 to simply stop it. 881 * 882 * path must point to the INODE_REF or INODE_EXTREF when called. 883 */ 884static int iterate_inode_ref(struct btrfs_root *root, struct btrfs_path *path, 885 struct btrfs_key *found_key, int resolve, 886 iterate_inode_ref_t iterate, void *ctx) 887{ 888 struct extent_buffer *eb = path->nodes[0]; 889 struct btrfs_item *item; 890 struct btrfs_inode_ref *iref; 891 struct btrfs_inode_extref *extref; 892 struct btrfs_path *tmp_path; 893 struct fs_path *p; 894 u32 cur = 0; 895 u32 total; 896 int slot = path->slots[0]; 897 u32 name_len; 898 char *start; 899 int ret = 0; 900 int num = 0; 901 int index; 902 u64 dir; 903 unsigned long name_off; 904 unsigned long elem_size; 905 unsigned long ptr; 906 907 p = fs_path_alloc_reversed(); 908 if (!p) 909 return -ENOMEM; 910 911 tmp_path = alloc_path_for_send(); 912 if (!tmp_path) { 913 fs_path_free(p); 914 return -ENOMEM; 915 } 916 917 918 if (found_key->type == BTRFS_INODE_REF_KEY) { 919 ptr = (unsigned long)btrfs_item_ptr(eb, slot, 920 struct btrfs_inode_ref); 921 item = btrfs_item_nr(slot); 922 total = btrfs_item_size(eb, item); 923 elem_size = sizeof(*iref); 924 } else { 925 ptr = btrfs_item_ptr_offset(eb, slot); 926 total = btrfs_item_size_nr(eb, slot); 927 elem_size = sizeof(*extref); 928 } 929 930 while (cur < total) { 931 fs_path_reset(p); 932 933 if (found_key->type == BTRFS_INODE_REF_KEY) { 934 iref = (struct btrfs_inode_ref *)(ptr + cur); 935 name_len = btrfs_inode_ref_name_len(eb, iref); 936 name_off = (unsigned long)(iref + 1); 937 index = btrfs_inode_ref_index(eb, iref); 938 dir = found_key->offset; 939 } else { 940 extref = (struct btrfs_inode_extref *)(ptr + cur); 941 name_len = btrfs_inode_extref_name_len(eb, extref); 942 name_off = (unsigned long)&extref->name; 943 index = btrfs_inode_extref_index(eb, extref); 944 dir = btrfs_inode_extref_parent(eb, extref); 945 } 946 947 if (resolve) { 948 start = btrfs_ref_to_path(root, tmp_path, name_len, 949 name_off, eb, dir, 950 p->buf, p->buf_len); 951 if (IS_ERR(start)) { 952 ret = PTR_ERR(start); 953 goto out; 954 } 955 if (start < p->buf) { 956 /* overflow , try again with larger buffer */ 957 ret = fs_path_ensure_buf(p, 958 p->buf_len + p->buf - start); 959 if (ret < 0) 960 goto out; 961 start = btrfs_ref_to_path(root, tmp_path, 962 name_len, name_off, 963 eb, dir, 964 p->buf, p->buf_len); 965 if (IS_ERR(start)) { 966 ret = PTR_ERR(start); 967 goto out; 968 } 969 BUG_ON(start < p->buf); 970 } 971 p->start = start; 972 } else { 973 ret = fs_path_add_from_extent_buffer(p, eb, name_off, 974 name_len); 975 if (ret < 0) 976 goto out; 977 } 978 979 cur += elem_size + name_len; 980 ret = iterate(num, dir, index, p, ctx); 981 if (ret) 982 goto out; 983 num++; 984 } 985 986out: 987 btrfs_free_path(tmp_path); 988 fs_path_free(p); 989 return ret; 990} 991 992typedef int (*iterate_dir_item_t)(int num, struct btrfs_key *di_key, 993 const char *name, int name_len, 994 const char *data, int data_len, 995 u8 type, void *ctx); 996 997/* 998 * Helper function to iterate the entries in ONE btrfs_dir_item. 999 * The iterate callback may return a non zero value to stop iteration. This can 1000 * be a negative value for error codes or 1 to simply stop it. 1001 * 1002 * path must point to the dir item when called. 1003 */ 1004static int iterate_dir_item(struct btrfs_root *root, struct btrfs_path *path, 1005 iterate_dir_item_t iterate, void *ctx) 1006{ 1007 int ret = 0; 1008 struct extent_buffer *eb; 1009 struct btrfs_item *item; 1010 struct btrfs_dir_item *di; 1011 struct btrfs_key di_key; 1012 char *buf = NULL; 1013 int buf_len; 1014 u32 name_len; 1015 u32 data_len; 1016 u32 cur; 1017 u32 len; 1018 u32 total; 1019 int slot; 1020 int num; 1021 u8 type; 1022 1023 /* 1024 * Start with a small buffer (1 page). If later we end up needing more 1025 * space, which can happen for xattrs on a fs with a leaf size greater 1026 * then the page size, attempt to increase the buffer. Typically xattr 1027 * values are small. 1028 */ 1029 buf_len = PATH_MAX; 1030 buf = kmalloc(buf_len, GFP_KERNEL); 1031 if (!buf) { 1032 ret = -ENOMEM; 1033 goto out; 1034 } 1035 1036 eb = path->nodes[0]; 1037 slot = path->slots[0]; 1038 item = btrfs_item_nr(slot); 1039 di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item); 1040 cur = 0; 1041 len = 0; 1042 total = btrfs_item_size(eb, item); 1043 1044 num = 0; 1045 while (cur < total) { 1046 name_len = btrfs_dir_name_len(eb, di); 1047 data_len = btrfs_dir_data_len(eb, di); 1048 type = btrfs_dir_type(eb, di); 1049 btrfs_dir_item_key_to_cpu(eb, di, &di_key); 1050 1051 if (type == BTRFS_FT_XATTR) { 1052 if (name_len > XATTR_NAME_MAX) { 1053 ret = -ENAMETOOLONG; 1054 goto out; 1055 } 1056 if (name_len + data_len > 1057 BTRFS_MAX_XATTR_SIZE(root->fs_info)) { 1058 ret = -E2BIG; 1059 goto out; 1060 } 1061 } else { 1062 /* 1063 * Path too long 1064 */ 1065 if (name_len + data_len > PATH_MAX) { 1066 ret = -ENAMETOOLONG; 1067 goto out; 1068 } 1069 } 1070 1071 if (name_len + data_len > buf_len) { 1072 buf_len = name_len + data_len; 1073 if (is_vmalloc_addr(buf)) { 1074 vfree(buf); 1075 buf = NULL; 1076 } else { 1077 char *tmp = krealloc(buf, buf_len, 1078 GFP_KERNEL | __GFP_NOWARN); 1079 1080 if (!tmp) 1081 kfree(buf); 1082 buf = tmp; 1083 } 1084 if (!buf) { 1085 buf = kvmalloc(buf_len, GFP_KERNEL); 1086 if (!buf) { 1087 ret = -ENOMEM; 1088 goto out; 1089 } 1090 } 1091 } 1092 1093 read_extent_buffer(eb, buf, (unsigned long)(di + 1), 1094 name_len + data_len); 1095 1096 len = sizeof(*di) + name_len + data_len; 1097 di = (struct btrfs_dir_item *)((char *)di + len); 1098 cur += len; 1099 1100 ret = iterate(num, &di_key, buf, name_len, buf + name_len, 1101 data_len, type, ctx); 1102 if (ret < 0) 1103 goto out; 1104 if (ret) { 1105 ret = 0; 1106 goto out; 1107 } 1108 1109 num++; 1110 } 1111 1112out: 1113 kvfree(buf); 1114 return ret; 1115} 1116 1117static int __copy_first_ref(int num, u64 dir, int index, 1118 struct fs_path *p, void *ctx) 1119{ 1120 int ret; 1121 struct fs_path *pt = ctx; 1122 1123 ret = fs_path_copy(pt, p); 1124 if (ret < 0) 1125 return ret; 1126 1127 /* we want the first only */ 1128 return 1; 1129} 1130 1131/* 1132 * Retrieve the first path of an inode. If an inode has more then one 1133 * ref/hardlink, this is ignored. 1134 */ 1135static int get_inode_path(struct btrfs_root *root, 1136 u64 ino, struct fs_path *path) 1137{ 1138 int ret; 1139 struct btrfs_key key, found_key; 1140 struct btrfs_path *p; 1141 1142 p = alloc_path_for_send(); 1143 if (!p) 1144 return -ENOMEM; 1145 1146 fs_path_reset(path); 1147 1148 key.objectid = ino; 1149 key.type = BTRFS_INODE_REF_KEY; 1150 key.offset = 0; 1151 1152 ret = btrfs_search_slot_for_read(root, &key, p, 1, 0); 1153 if (ret < 0) 1154 goto out; 1155 if (ret) { 1156 ret = 1; 1157 goto out; 1158 } 1159 btrfs_item_key_to_cpu(p->nodes[0], &found_key, p->slots[0]); 1160 if (found_key.objectid != ino || 1161 (found_key.type != BTRFS_INODE_REF_KEY && 1162 found_key.type != BTRFS_INODE_EXTREF_KEY)) { 1163 ret = -ENOENT; 1164 goto out; 1165 } 1166 1167 ret = iterate_inode_ref(root, p, &found_key, 1, 1168 __copy_first_ref, path); 1169 if (ret < 0) 1170 goto out; 1171 ret = 0; 1172 1173out: 1174 btrfs_free_path(p); 1175 return ret; 1176} 1177 1178struct backref_ctx { 1179 struct send_ctx *sctx; 1180 1181 /* number of total found references */ 1182 u64 found; 1183 1184 /* 1185 * used for clones found in send_root. clones found behind cur_objectid 1186 * and cur_offset are not considered as allowed clones. 1187 */ 1188 u64 cur_objectid; 1189 u64 cur_offset; 1190 1191 /* may be truncated in case it's the last extent in a file */ 1192 u64 extent_len; 1193 1194 /* data offset in the file extent item */ 1195 u64 data_offset; 1196 1197 /* Just to check for bugs in backref resolving */ 1198 int found_itself; 1199}; 1200 1201static int __clone_root_cmp_bsearch(const void *key, const void *elt) 1202{ 1203 u64 root = (u64)(uintptr_t)key; 1204 struct clone_root *cr = (struct clone_root *)elt; 1205 1206 if (root < cr->root->root_key.objectid) 1207 return -1; 1208 if (root > cr->root->root_key.objectid) 1209 return 1; 1210 return 0; 1211} 1212 1213static int __clone_root_cmp_sort(const void *e1, const void *e2) 1214{ 1215 struct clone_root *cr1 = (struct clone_root *)e1; 1216 struct clone_root *cr2 = (struct clone_root *)e2; 1217 1218 if (cr1->root->root_key.objectid < cr2->root->root_key.objectid) 1219 return -1; 1220 if (cr1->root->root_key.objectid > cr2->root->root_key.objectid) 1221 return 1; 1222 return 0; 1223} 1224 1225/* 1226 * Called for every backref that is found for the current extent. 1227 * Results are collected in sctx->clone_roots->ino/offset/found_refs 1228 */ 1229static int __iterate_backrefs(u64 ino, u64 offset, u64 root, void *ctx_) 1230{ 1231 struct backref_ctx *bctx = ctx_; 1232 struct clone_root *found; 1233 1234 /* First check if the root is in the list of accepted clone sources */ 1235 found = bsearch((void *)(uintptr_t)root, bctx->sctx->clone_roots, 1236 bctx->sctx->clone_roots_cnt, 1237 sizeof(struct clone_root), 1238 __clone_root_cmp_bsearch); 1239 if (!found) 1240 return 0; 1241 1242 if (found->root == bctx->sctx->send_root && 1243 ino == bctx->cur_objectid && 1244 offset == bctx->cur_offset) { 1245 bctx->found_itself = 1; 1246 } 1247 1248 /* 1249 * Make sure we don't consider clones from send_root that are 1250 * behind the current inode/offset. 1251 */ 1252 if (found->root == bctx->sctx->send_root) { 1253 /* 1254 * If the source inode was not yet processed we can't issue a 1255 * clone operation, as the source extent does not exist yet at 1256 * the destination of the stream. 1257 */ 1258 if (ino > bctx->cur_objectid) 1259 return 0; 1260 /* 1261 * We clone from the inode currently being sent as long as the 1262 * source extent is already processed, otherwise we could try 1263 * to clone from an extent that does not exist yet at the 1264 * destination of the stream. 1265 */ 1266 if (ino == bctx->cur_objectid && 1267 offset + bctx->extent_len > 1268 bctx->sctx->cur_inode_next_write_offset) 1269 return 0; 1270 } 1271 1272 bctx->found++; 1273 found->found_refs++; 1274 if (ino < found->ino) { 1275 found->ino = ino; 1276 found->offset = offset; 1277 } else if (found->ino == ino) { 1278 /* 1279 * same extent found more then once in the same file. 1280 */ 1281 if (found->offset > offset + bctx->extent_len) 1282 found->offset = offset; 1283 } 1284 1285 return 0; 1286} 1287 1288/* 1289 * Given an inode, offset and extent item, it finds a good clone for a clone 1290 * instruction. Returns -ENOENT when none could be found. The function makes 1291 * sure that the returned clone is usable at the point where sending is at the 1292 * moment. This means, that no clones are accepted which lie behind the current 1293 * inode+offset. 1294 * 1295 * path must point to the extent item when called. 1296 */ 1297static int find_extent_clone(struct send_ctx *sctx, 1298 struct btrfs_path *path, 1299 u64 ino, u64 data_offset, 1300 u64 ino_size, 1301 struct clone_root **found) 1302{ 1303 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 1304 int ret; 1305 int extent_type; 1306 u64 logical; 1307 u64 disk_byte; 1308 u64 num_bytes; 1309 u64 extent_item_pos; 1310 u64 flags = 0; 1311 struct btrfs_file_extent_item *fi; 1312 struct extent_buffer *eb = path->nodes[0]; 1313 struct backref_ctx *backref_ctx = NULL; 1314 struct clone_root *cur_clone_root; 1315 struct btrfs_key found_key; 1316 struct btrfs_path *tmp_path; 1317 struct btrfs_extent_item *ei; 1318 int compressed; 1319 u32 i; 1320 1321 tmp_path = alloc_path_for_send(); 1322 if (!tmp_path) 1323 return -ENOMEM; 1324 1325 /* We only use this path under the commit sem */ 1326 tmp_path->need_commit_sem = 0; 1327 1328 backref_ctx = kmalloc(sizeof(*backref_ctx), GFP_KERNEL); 1329 if (!backref_ctx) { 1330 ret = -ENOMEM; 1331 goto out; 1332 } 1333 1334 if (data_offset >= ino_size) { 1335 /* 1336 * There may be extents that lie behind the file's size. 1337 * I at least had this in combination with snapshotting while 1338 * writing large files. 1339 */ 1340 ret = 0; 1341 goto out; 1342 } 1343 1344 fi = btrfs_item_ptr(eb, path->slots[0], 1345 struct btrfs_file_extent_item); 1346 extent_type = btrfs_file_extent_type(eb, fi); 1347 if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 1348 ret = -ENOENT; 1349 goto out; 1350 } 1351 compressed = btrfs_file_extent_compression(eb, fi); 1352 1353 num_bytes = btrfs_file_extent_num_bytes(eb, fi); 1354 disk_byte = btrfs_file_extent_disk_bytenr(eb, fi); 1355 if (disk_byte == 0) { 1356 ret = -ENOENT; 1357 goto out; 1358 } 1359 logical = disk_byte + btrfs_file_extent_offset(eb, fi); 1360 1361 down_read(&fs_info->commit_root_sem); 1362 ret = extent_from_logical(fs_info, disk_byte, tmp_path, 1363 &found_key, &flags); 1364 up_read(&fs_info->commit_root_sem); 1365 1366 if (ret < 0) 1367 goto out; 1368 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) { 1369 ret = -EIO; 1370 goto out; 1371 } 1372 1373 ei = btrfs_item_ptr(tmp_path->nodes[0], tmp_path->slots[0], 1374 struct btrfs_extent_item); 1375 /* 1376 * Backreference walking (iterate_extent_inodes() below) is currently 1377 * too expensive when an extent has a large number of references, both 1378 * in time spent and used memory. So for now just fallback to write 1379 * operations instead of clone operations when an extent has more than 1380 * a certain amount of references. 1381 */ 1382 if (btrfs_extent_refs(tmp_path->nodes[0], ei) > SEND_MAX_EXTENT_REFS) { 1383 ret = -ENOENT; 1384 goto out; 1385 } 1386 btrfs_release_path(tmp_path); 1387 1388 /* 1389 * Setup the clone roots. 1390 */ 1391 for (i = 0; i < sctx->clone_roots_cnt; i++) { 1392 cur_clone_root = sctx->clone_roots + i; 1393 cur_clone_root->ino = (u64)-1; 1394 cur_clone_root->offset = 0; 1395 cur_clone_root->found_refs = 0; 1396 } 1397 1398 backref_ctx->sctx = sctx; 1399 backref_ctx->found = 0; 1400 backref_ctx->cur_objectid = ino; 1401 backref_ctx->cur_offset = data_offset; 1402 backref_ctx->found_itself = 0; 1403 backref_ctx->extent_len = num_bytes; 1404 /* 1405 * For non-compressed extents iterate_extent_inodes() gives us extent 1406 * offsets that already take into account the data offset, but not for 1407 * compressed extents, since the offset is logical and not relative to 1408 * the physical extent locations. We must take this into account to 1409 * avoid sending clone offsets that go beyond the source file's size, 1410 * which would result in the clone ioctl failing with -EINVAL on the 1411 * receiving end. 1412 */ 1413 if (compressed == BTRFS_COMPRESS_NONE) 1414 backref_ctx->data_offset = 0; 1415 else 1416 backref_ctx->data_offset = btrfs_file_extent_offset(eb, fi); 1417 1418 /* 1419 * The last extent of a file may be too large due to page alignment. 1420 * We need to adjust extent_len in this case so that the checks in 1421 * __iterate_backrefs work. 1422 */ 1423 if (data_offset + num_bytes >= ino_size) 1424 backref_ctx->extent_len = ino_size - data_offset; 1425 1426 /* 1427 * Now collect all backrefs. 1428 */ 1429 if (compressed == BTRFS_COMPRESS_NONE) 1430 extent_item_pos = logical - found_key.objectid; 1431 else 1432 extent_item_pos = 0; 1433 ret = iterate_extent_inodes(fs_info, found_key.objectid, 1434 extent_item_pos, 1, __iterate_backrefs, 1435 backref_ctx, false); 1436 1437 if (ret < 0) 1438 goto out; 1439 1440 if (!backref_ctx->found_itself) { 1441 /* found a bug in backref code? */ 1442 ret = -EIO; 1443 btrfs_err(fs_info, 1444 "did not find backref in send_root. inode=%llu, offset=%llu, disk_byte=%llu found extent=%llu", 1445 ino, data_offset, disk_byte, found_key.objectid); 1446 goto out; 1447 } 1448 1449 btrfs_debug(fs_info, 1450 "find_extent_clone: data_offset=%llu, ino=%llu, num_bytes=%llu, logical=%llu", 1451 data_offset, ino, num_bytes, logical); 1452 1453 if (!backref_ctx->found) 1454 btrfs_debug(fs_info, "no clones found"); 1455 1456 cur_clone_root = NULL; 1457 for (i = 0; i < sctx->clone_roots_cnt; i++) { 1458 if (sctx->clone_roots[i].found_refs) { 1459 if (!cur_clone_root) 1460 cur_clone_root = sctx->clone_roots + i; 1461 else if (sctx->clone_roots[i].root == sctx->send_root) 1462 /* prefer clones from send_root over others */ 1463 cur_clone_root = sctx->clone_roots + i; 1464 } 1465 1466 } 1467 1468 if (cur_clone_root) { 1469 *found = cur_clone_root; 1470 ret = 0; 1471 } else { 1472 ret = -ENOENT; 1473 } 1474 1475out: 1476 btrfs_free_path(tmp_path); 1477 kfree(backref_ctx); 1478 return ret; 1479} 1480 1481static int read_symlink(struct btrfs_root *root, 1482 u64 ino, 1483 struct fs_path *dest) 1484{ 1485 int ret; 1486 struct btrfs_path *path; 1487 struct btrfs_key key; 1488 struct btrfs_file_extent_item *ei; 1489 u8 type; 1490 u8 compression; 1491 unsigned long off; 1492 int len; 1493 1494 path = alloc_path_for_send(); 1495 if (!path) 1496 return -ENOMEM; 1497 1498 key.objectid = ino; 1499 key.type = BTRFS_EXTENT_DATA_KEY; 1500 key.offset = 0; 1501 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 1502 if (ret < 0) 1503 goto out; 1504 if (ret) { 1505 /* 1506 * An empty symlink inode. Can happen in rare error paths when 1507 * creating a symlink (transaction committed before the inode 1508 * eviction handler removed the symlink inode items and a crash 1509 * happened in between or the subvol was snapshoted in between). 1510 * Print an informative message to dmesg/syslog so that the user 1511 * can delete the symlink. 1512 */ 1513 btrfs_err(root->fs_info, 1514 "Found empty symlink inode %llu at root %llu", 1515 ino, root->root_key.objectid); 1516 ret = -EIO; 1517 goto out; 1518 } 1519 1520 ei = btrfs_item_ptr(path->nodes[0], path->slots[0], 1521 struct btrfs_file_extent_item); 1522 type = btrfs_file_extent_type(path->nodes[0], ei); 1523 compression = btrfs_file_extent_compression(path->nodes[0], ei); 1524 BUG_ON(type != BTRFS_FILE_EXTENT_INLINE); 1525 BUG_ON(compression); 1526 1527 off = btrfs_file_extent_inline_start(ei); 1528 len = btrfs_file_extent_ram_bytes(path->nodes[0], ei); 1529 1530 ret = fs_path_add_from_extent_buffer(dest, path->nodes[0], off, len); 1531 1532out: 1533 btrfs_free_path(path); 1534 return ret; 1535} 1536 1537/* 1538 * Helper function to generate a file name that is unique in the root of 1539 * send_root and parent_root. This is used to generate names for orphan inodes. 1540 */ 1541static int gen_unique_name(struct send_ctx *sctx, 1542 u64 ino, u64 gen, 1543 struct fs_path *dest) 1544{ 1545 int ret = 0; 1546 struct btrfs_path *path; 1547 struct btrfs_dir_item *di; 1548 char tmp[64]; 1549 int len; 1550 u64 idx = 0; 1551 1552 path = alloc_path_for_send(); 1553 if (!path) 1554 return -ENOMEM; 1555 1556 while (1) { 1557 len = snprintf(tmp, sizeof(tmp), "o%llu-%llu-%llu", 1558 ino, gen, idx); 1559 ASSERT(len < sizeof(tmp)); 1560 1561 di = btrfs_lookup_dir_item(NULL, sctx->send_root, 1562 path, BTRFS_FIRST_FREE_OBJECTID, 1563 tmp, strlen(tmp), 0); 1564 btrfs_release_path(path); 1565 if (IS_ERR(di)) { 1566 ret = PTR_ERR(di); 1567 goto out; 1568 } 1569 if (di) { 1570 /* not unique, try again */ 1571 idx++; 1572 continue; 1573 } 1574 1575 if (!sctx->parent_root) { 1576 /* unique */ 1577 ret = 0; 1578 break; 1579 } 1580 1581 di = btrfs_lookup_dir_item(NULL, sctx->parent_root, 1582 path, BTRFS_FIRST_FREE_OBJECTID, 1583 tmp, strlen(tmp), 0); 1584 btrfs_release_path(path); 1585 if (IS_ERR(di)) { 1586 ret = PTR_ERR(di); 1587 goto out; 1588 } 1589 if (di) { 1590 /* not unique, try again */ 1591 idx++; 1592 continue; 1593 } 1594 /* unique */ 1595 break; 1596 } 1597 1598 ret = fs_path_add(dest, tmp, strlen(tmp)); 1599 1600out: 1601 btrfs_free_path(path); 1602 return ret; 1603} 1604 1605enum inode_state { 1606 inode_state_no_change, 1607 inode_state_will_create, 1608 inode_state_did_create, 1609 inode_state_will_delete, 1610 inode_state_did_delete, 1611}; 1612 1613static int get_cur_inode_state(struct send_ctx *sctx, u64 ino, u64 gen) 1614{ 1615 int ret; 1616 int left_ret; 1617 int right_ret; 1618 u64 left_gen; 1619 u64 right_gen; 1620 1621 ret = get_inode_info(sctx->send_root, ino, NULL, &left_gen, NULL, NULL, 1622 NULL, NULL); 1623 if (ret < 0 && ret != -ENOENT) 1624 goto out; 1625 left_ret = ret; 1626 1627 if (!sctx->parent_root) { 1628 right_ret = -ENOENT; 1629 } else { 1630 ret = get_inode_info(sctx->parent_root, ino, NULL, &right_gen, 1631 NULL, NULL, NULL, NULL); 1632 if (ret < 0 && ret != -ENOENT) 1633 goto out; 1634 right_ret = ret; 1635 } 1636 1637 if (!left_ret && !right_ret) { 1638 if (left_gen == gen && right_gen == gen) { 1639 ret = inode_state_no_change; 1640 } else if (left_gen == gen) { 1641 if (ino < sctx->send_progress) 1642 ret = inode_state_did_create; 1643 else 1644 ret = inode_state_will_create; 1645 } else if (right_gen == gen) { 1646 if (ino < sctx->send_progress) 1647 ret = inode_state_did_delete; 1648 else 1649 ret = inode_state_will_delete; 1650 } else { 1651 ret = -ENOENT; 1652 } 1653 } else if (!left_ret) { 1654 if (left_gen == gen) { 1655 if (ino < sctx->send_progress) 1656 ret = inode_state_did_create; 1657 else 1658 ret = inode_state_will_create; 1659 } else { 1660 ret = -ENOENT; 1661 } 1662 } else if (!right_ret) { 1663 if (right_gen == gen) { 1664 if (ino < sctx->send_progress) 1665 ret = inode_state_did_delete; 1666 else 1667 ret = inode_state_will_delete; 1668 } else { 1669 ret = -ENOENT; 1670 } 1671 } else { 1672 ret = -ENOENT; 1673 } 1674 1675out: 1676 return ret; 1677} 1678 1679static int is_inode_existent(struct send_ctx *sctx, u64 ino, u64 gen) 1680{ 1681 int ret; 1682 1683 if (ino == BTRFS_FIRST_FREE_OBJECTID) 1684 return 1; 1685 1686 ret = get_cur_inode_state(sctx, ino, gen); 1687 if (ret < 0) 1688 goto out; 1689 1690 if (ret == inode_state_no_change || 1691 ret == inode_state_did_create || 1692 ret == inode_state_will_delete) 1693 ret = 1; 1694 else 1695 ret = 0; 1696 1697out: 1698 return ret; 1699} 1700 1701/* 1702 * Helper function to lookup a dir item in a dir. 1703 */ 1704static int lookup_dir_item_inode(struct btrfs_root *root, 1705 u64 dir, const char *name, int name_len, 1706 u64 *found_inode, 1707 u8 *found_type) 1708{ 1709 int ret = 0; 1710 struct btrfs_dir_item *di; 1711 struct btrfs_key key; 1712 struct btrfs_path *path; 1713 1714 path = alloc_path_for_send(); 1715 if (!path) 1716 return -ENOMEM; 1717 1718 di = btrfs_lookup_dir_item(NULL, root, path, 1719 dir, name, name_len, 0); 1720 if (IS_ERR_OR_NULL(di)) { 1721 ret = di ? PTR_ERR(di) : -ENOENT; 1722 goto out; 1723 } 1724 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key); 1725 if (key.type == BTRFS_ROOT_ITEM_KEY) { 1726 ret = -ENOENT; 1727 goto out; 1728 } 1729 *found_inode = key.objectid; 1730 *found_type = btrfs_dir_type(path->nodes[0], di); 1731 1732out: 1733 btrfs_free_path(path); 1734 return ret; 1735} 1736 1737/* 1738 * Looks up the first btrfs_inode_ref of a given ino. It returns the parent dir, 1739 * generation of the parent dir and the name of the dir entry. 1740 */ 1741static int get_first_ref(struct btrfs_root *root, u64 ino, 1742 u64 *dir, u64 *dir_gen, struct fs_path *name) 1743{ 1744 int ret; 1745 struct btrfs_key key; 1746 struct btrfs_key found_key; 1747 struct btrfs_path *path; 1748 int len; 1749 u64 parent_dir; 1750 1751 path = alloc_path_for_send(); 1752 if (!path) 1753 return -ENOMEM; 1754 1755 key.objectid = ino; 1756 key.type = BTRFS_INODE_REF_KEY; 1757 key.offset = 0; 1758 1759 ret = btrfs_search_slot_for_read(root, &key, path, 1, 0); 1760 if (ret < 0) 1761 goto out; 1762 if (!ret) 1763 btrfs_item_key_to_cpu(path->nodes[0], &found_key, 1764 path->slots[0]); 1765 if (ret || found_key.objectid != ino || 1766 (found_key.type != BTRFS_INODE_REF_KEY && 1767 found_key.type != BTRFS_INODE_EXTREF_KEY)) { 1768 ret = -ENOENT; 1769 goto out; 1770 } 1771 1772 if (found_key.type == BTRFS_INODE_REF_KEY) { 1773 struct btrfs_inode_ref *iref; 1774 iref = btrfs_item_ptr(path->nodes[0], path->slots[0], 1775 struct btrfs_inode_ref); 1776 len = btrfs_inode_ref_name_len(path->nodes[0], iref); 1777 ret = fs_path_add_from_extent_buffer(name, path->nodes[0], 1778 (unsigned long)(iref + 1), 1779 len); 1780 parent_dir = found_key.offset; 1781 } else { 1782 struct btrfs_inode_extref *extref; 1783 extref = btrfs_item_ptr(path->nodes[0], path->slots[0], 1784 struct btrfs_inode_extref); 1785 len = btrfs_inode_extref_name_len(path->nodes[0], extref); 1786 ret = fs_path_add_from_extent_buffer(name, path->nodes[0], 1787 (unsigned long)&extref->name, len); 1788 parent_dir = btrfs_inode_extref_parent(path->nodes[0], extref); 1789 } 1790 if (ret < 0) 1791 goto out; 1792 btrfs_release_path(path); 1793 1794 if (dir_gen) { 1795 ret = get_inode_info(root, parent_dir, NULL, dir_gen, NULL, 1796 NULL, NULL, NULL); 1797 if (ret < 0) 1798 goto out; 1799 } 1800 1801 *dir = parent_dir; 1802 1803out: 1804 btrfs_free_path(path); 1805 return ret; 1806} 1807 1808static int is_first_ref(struct btrfs_root *root, 1809 u64 ino, u64 dir, 1810 const char *name, int name_len) 1811{ 1812 int ret; 1813 struct fs_path *tmp_name; 1814 u64 tmp_dir; 1815 1816 tmp_name = fs_path_alloc(); 1817 if (!tmp_name) 1818 return -ENOMEM; 1819 1820 ret = get_first_ref(root, ino, &tmp_dir, NULL, tmp_name); 1821 if (ret < 0) 1822 goto out; 1823 1824 if (dir != tmp_dir || name_len != fs_path_len(tmp_name)) { 1825 ret = 0; 1826 goto out; 1827 } 1828 1829 ret = !memcmp(tmp_name->start, name, name_len); 1830 1831out: 1832 fs_path_free(tmp_name); 1833 return ret; 1834} 1835 1836/* 1837 * Used by process_recorded_refs to determine if a new ref would overwrite an 1838 * already existing ref. In case it detects an overwrite, it returns the 1839 * inode/gen in who_ino/who_gen. 1840 * When an overwrite is detected, process_recorded_refs does proper orphanizing 1841 * to make sure later references to the overwritten inode are possible. 1842 * Orphanizing is however only required for the first ref of an inode. 1843 * process_recorded_refs does an additional is_first_ref check to see if 1844 * orphanizing is really required. 1845 */ 1846static int will_overwrite_ref(struct send_ctx *sctx, u64 dir, u64 dir_gen, 1847 const char *name, int name_len, 1848 u64 *who_ino, u64 *who_gen, u64 *who_mode) 1849{ 1850 int ret = 0; 1851 u64 gen; 1852 u64 other_inode = 0; 1853 u8 other_type = 0; 1854 1855 if (!sctx->parent_root) 1856 goto out; 1857 1858 ret = is_inode_existent(sctx, dir, dir_gen); 1859 if (ret <= 0) 1860 goto out; 1861 1862 /* 1863 * If we have a parent root we need to verify that the parent dir was 1864 * not deleted and then re-created, if it was then we have no overwrite 1865 * and we can just unlink this entry. 1866 */ 1867 if (sctx->parent_root && dir != BTRFS_FIRST_FREE_OBJECTID) { 1868 ret = get_inode_info(sctx->parent_root, dir, NULL, &gen, NULL, 1869 NULL, NULL, NULL); 1870 if (ret < 0 && ret != -ENOENT) 1871 goto out; 1872 if (ret) { 1873 ret = 0; 1874 goto out; 1875 } 1876 if (gen != dir_gen) 1877 goto out; 1878 } 1879 1880 ret = lookup_dir_item_inode(sctx->parent_root, dir, name, name_len, 1881 &other_inode, &other_type); 1882 if (ret < 0 && ret != -ENOENT) 1883 goto out; 1884 if (ret) { 1885 ret = 0; 1886 goto out; 1887 } 1888 1889 /* 1890 * Check if the overwritten ref was already processed. If yes, the ref 1891 * was already unlinked/moved, so we can safely assume that we will not 1892 * overwrite anything at this point in time. 1893 */ 1894 if (other_inode > sctx->send_progress || 1895 is_waiting_for_move(sctx, other_inode)) { 1896 ret = get_inode_info(sctx->parent_root, other_inode, NULL, 1897 who_gen, who_mode, NULL, NULL, NULL); 1898 if (ret < 0) 1899 goto out; 1900 1901 ret = 1; 1902 *who_ino = other_inode; 1903 } else { 1904 ret = 0; 1905 } 1906 1907out: 1908 return ret; 1909} 1910 1911/* 1912 * Checks if the ref was overwritten by an already processed inode. This is 1913 * used by __get_cur_name_and_parent to find out if the ref was orphanized and 1914 * thus the orphan name needs be used. 1915 * process_recorded_refs also uses it to avoid unlinking of refs that were 1916 * overwritten. 1917 */ 1918static int did_overwrite_ref(struct send_ctx *sctx, 1919 u64 dir, u64 dir_gen, 1920 u64 ino, u64 ino_gen, 1921 const char *name, int name_len) 1922{ 1923 int ret = 0; 1924 u64 gen; 1925 u64 ow_inode; 1926 u8 other_type; 1927 1928 if (!sctx->parent_root) 1929 goto out; 1930 1931 ret = is_inode_existent(sctx, dir, dir_gen); 1932 if (ret <= 0) 1933 goto out; 1934 1935 if (dir != BTRFS_FIRST_FREE_OBJECTID) { 1936 ret = get_inode_info(sctx->send_root, dir, NULL, &gen, NULL, 1937 NULL, NULL, NULL); 1938 if (ret < 0 && ret != -ENOENT) 1939 goto out; 1940 if (ret) { 1941 ret = 0; 1942 goto out; 1943 } 1944 if (gen != dir_gen) 1945 goto out; 1946 } 1947 1948 /* check if the ref was overwritten by another ref */ 1949 ret = lookup_dir_item_inode(sctx->send_root, dir, name, name_len, 1950 &ow_inode, &other_type); 1951 if (ret < 0 && ret != -ENOENT) 1952 goto out; 1953 if (ret) { 1954 /* was never and will never be overwritten */ 1955 ret = 0; 1956 goto out; 1957 } 1958 1959 ret = get_inode_info(sctx->send_root, ow_inode, NULL, &gen, NULL, NULL, 1960 NULL, NULL); 1961 if (ret < 0) 1962 goto out; 1963 1964 if (ow_inode == ino && gen == ino_gen) { 1965 ret = 0; 1966 goto out; 1967 } 1968 1969 /* 1970 * We know that it is or will be overwritten. Check this now. 1971 * The current inode being processed might have been the one that caused 1972 * inode 'ino' to be orphanized, therefore check if ow_inode matches 1973 * the current inode being processed. 1974 */ 1975 if ((ow_inode < sctx->send_progress) || 1976 (ino != sctx->cur_ino && ow_inode == sctx->cur_ino && 1977 gen == sctx->cur_inode_gen)) 1978 ret = 1; 1979 else 1980 ret = 0; 1981 1982out: 1983 return ret; 1984} 1985 1986/* 1987 * Same as did_overwrite_ref, but also checks if it is the first ref of an inode 1988 * that got overwritten. This is used by process_recorded_refs to determine 1989 * if it has to use the path as returned by get_cur_path or the orphan name. 1990 */ 1991static int did_overwrite_first_ref(struct send_ctx *sctx, u64 ino, u64 gen) 1992{ 1993 int ret = 0; 1994 struct fs_path *name = NULL; 1995 u64 dir; 1996 u64 dir_gen; 1997 1998 if (!sctx->parent_root) 1999 goto out; 2000 2001 name = fs_path_alloc(); 2002 if (!name) 2003 return -ENOMEM; 2004 2005 ret = get_first_ref(sctx->parent_root, ino, &dir, &dir_gen, name); 2006 if (ret < 0) 2007 goto out; 2008 2009 ret = did_overwrite_ref(sctx, dir, dir_gen, ino, gen, 2010 name->start, fs_path_len(name)); 2011 2012out: 2013 fs_path_free(name); 2014 return ret; 2015} 2016 2017/* 2018 * Insert a name cache entry. On 32bit kernels the radix tree index is 32bit, 2019 * so we need to do some special handling in case we have clashes. This function 2020 * takes care of this with the help of name_cache_entry::radix_list. 2021 * In case of error, nce is kfreed. 2022 */ 2023static int name_cache_insert(struct send_ctx *sctx, 2024 struct name_cache_entry *nce) 2025{ 2026 int ret = 0; 2027 struct list_head *nce_head; 2028 2029 nce_head = radix_tree_lookup(&sctx->name_cache, 2030 (unsigned long)nce->ino); 2031 if (!nce_head) { 2032 nce_head = kmalloc(sizeof(*nce_head), GFP_KERNEL); 2033 if (!nce_head) { 2034 kfree(nce); 2035 return -ENOMEM; 2036 } 2037 INIT_LIST_HEAD(nce_head); 2038 2039 ret = radix_tree_insert(&sctx->name_cache, nce->ino, nce_head); 2040 if (ret < 0) { 2041 kfree(nce_head); 2042 kfree(nce); 2043 return ret; 2044 } 2045 } 2046 list_add_tail(&nce->radix_list, nce_head); 2047 list_add_tail(&nce->list, &sctx->name_cache_list); 2048 sctx->name_cache_size++; 2049 2050 return ret; 2051} 2052 2053static void name_cache_delete(struct send_ctx *sctx, 2054 struct name_cache_entry *nce) 2055{ 2056 struct list_head *nce_head; 2057 2058 nce_head = radix_tree_lookup(&sctx->name_cache, 2059 (unsigned long)nce->ino); 2060 if (!nce_head) { 2061 btrfs_err(sctx->send_root->fs_info, 2062 "name_cache_delete lookup failed ino %llu cache size %d, leaking memory", 2063 nce->ino, sctx->name_cache_size); 2064 } 2065 2066 list_del(&nce->radix_list); 2067 list_del(&nce->list); 2068 sctx->name_cache_size--; 2069 2070 /* 2071 * We may not get to the final release of nce_head if the lookup fails 2072 */ 2073 if (nce_head && list_empty(nce_head)) { 2074 radix_tree_delete(&sctx->name_cache, (unsigned long)nce->ino); 2075 kfree(nce_head); 2076 } 2077} 2078 2079static struct name_cache_entry *name_cache_search(struct send_ctx *sctx, 2080 u64 ino, u64 gen) 2081{ 2082 struct list_head *nce_head; 2083 struct name_cache_entry *cur; 2084 2085 nce_head = radix_tree_lookup(&sctx->name_cache, (unsigned long)ino); 2086 if (!nce_head) 2087 return NULL; 2088 2089 list_for_each_entry(cur, nce_head, radix_list) { 2090 if (cur->ino == ino && cur->gen == gen) 2091 return cur; 2092 } 2093 return NULL; 2094} 2095 2096/* 2097 * Removes the entry from the list and adds it back to the end. This marks the 2098 * entry as recently used so that name_cache_clean_unused does not remove it. 2099 */ 2100static void name_cache_used(struct send_ctx *sctx, struct name_cache_entry *nce) 2101{ 2102 list_del(&nce->list); 2103 list_add_tail(&nce->list, &sctx->name_cache_list); 2104} 2105 2106/* 2107 * Remove some entries from the beginning of name_cache_list. 2108 */ 2109static void name_cache_clean_unused(struct send_ctx *sctx) 2110{ 2111 struct name_cache_entry *nce; 2112 2113 if (sctx->name_cache_size < SEND_CTX_NAME_CACHE_CLEAN_SIZE) 2114 return; 2115 2116 while (sctx->name_cache_size > SEND_CTX_MAX_NAME_CACHE_SIZE) { 2117 nce = list_entry(sctx->name_cache_list.next, 2118 struct name_cache_entry, list); 2119 name_cache_delete(sctx, nce); 2120 kfree(nce); 2121 } 2122} 2123 2124static void name_cache_free(struct send_ctx *sctx) 2125{ 2126 struct name_cache_entry *nce; 2127 2128 while (!list_empty(&sctx->name_cache_list)) { 2129 nce = list_entry(sctx->name_cache_list.next, 2130 struct name_cache_entry, list); 2131 name_cache_delete(sctx, nce); 2132 kfree(nce); 2133 } 2134} 2135 2136/* 2137 * Used by get_cur_path for each ref up to the root. 2138 * Returns 0 if it succeeded. 2139 * Returns 1 if the inode is not existent or got overwritten. In that case, the 2140 * name is an orphan name. This instructs get_cur_path to stop iterating. If 1 2141 * is returned, parent_ino/parent_gen are not guaranteed to be valid. 2142 * Returns <0 in case of error. 2143 */ 2144static int __get_cur_name_and_parent(struct send_ctx *sctx, 2145 u64 ino, u64 gen, 2146 u64 *parent_ino, 2147 u64 *parent_gen, 2148 struct fs_path *dest) 2149{ 2150 int ret; 2151 int nce_ret; 2152 struct name_cache_entry *nce = NULL; 2153 2154 /* 2155 * First check if we already did a call to this function with the same 2156 * ino/gen. If yes, check if the cache entry is still up-to-date. If yes 2157 * return the cached result. 2158 */ 2159 nce = name_cache_search(sctx, ino, gen); 2160 if (nce) { 2161 if (ino < sctx->send_progress && nce->need_later_update) { 2162 name_cache_delete(sctx, nce); 2163 kfree(nce); 2164 nce = NULL; 2165 } else { 2166 name_cache_used(sctx, nce); 2167 *parent_ino = nce->parent_ino; 2168 *parent_gen = nce->parent_gen; 2169 ret = fs_path_add(dest, nce->name, nce->name_len); 2170 if (ret < 0) 2171 goto out; 2172 ret = nce->ret; 2173 goto out; 2174 } 2175 } 2176 2177 /* 2178 * If the inode is not existent yet, add the orphan name and return 1. 2179 * This should only happen for the parent dir that we determine in 2180 * __record_new_ref 2181 */ 2182 ret = is_inode_existent(sctx, ino, gen); 2183 if (ret < 0) 2184 goto out; 2185 2186 if (!ret) { 2187 ret = gen_unique_name(sctx, ino, gen, dest); 2188 if (ret < 0) 2189 goto out; 2190 ret = 1; 2191 goto out_cache; 2192 } 2193 2194 /* 2195 * Depending on whether the inode was already processed or not, use 2196 * send_root or parent_root for ref lookup. 2197 */ 2198 if (ino < sctx->send_progress) 2199 ret = get_first_ref(sctx->send_root, ino, 2200 parent_ino, parent_gen, dest); 2201 else 2202 ret = get_first_ref(sctx->parent_root, ino, 2203 parent_ino, parent_gen, dest); 2204 if (ret < 0) 2205 goto out; 2206 2207 /* 2208 * Check if the ref was overwritten by an inode's ref that was processed 2209 * earlier. If yes, treat as orphan and return 1. 2210 */ 2211 ret = did_overwrite_ref(sctx, *parent_ino, *parent_gen, ino, gen, 2212 dest->start, dest->end - dest->start); 2213 if (ret < 0) 2214 goto out; 2215 if (ret) { 2216 fs_path_reset(dest); 2217 ret = gen_unique_name(sctx, ino, gen, dest); 2218 if (ret < 0) 2219 goto out; 2220 ret = 1; 2221 } 2222 2223out_cache: 2224 /* 2225 * Store the result of the lookup in the name cache. 2226 */ 2227 nce = kmalloc(sizeof(*nce) + fs_path_len(dest) + 1, GFP_KERNEL); 2228 if (!nce) { 2229 ret = -ENOMEM; 2230 goto out; 2231 } 2232 2233 nce->ino = ino; 2234 nce->gen = gen; 2235 nce->parent_ino = *parent_ino; 2236 nce->parent_gen = *parent_gen; 2237 nce->name_len = fs_path_len(dest); 2238 nce->ret = ret; 2239 strcpy(nce->name, dest->start); 2240 2241 if (ino < sctx->send_progress) 2242 nce->need_later_update = 0; 2243 else 2244 nce->need_later_update = 1; 2245 2246 nce_ret = name_cache_insert(sctx, nce); 2247 if (nce_ret < 0) 2248 ret = nce_ret; 2249 name_cache_clean_unused(sctx); 2250 2251out: 2252 return ret; 2253} 2254 2255/* 2256 * Magic happens here. This function returns the first ref to an inode as it 2257 * would look like while receiving the stream at this point in time. 2258 * We walk the path up to the root. For every inode in between, we check if it 2259 * was already processed/sent. If yes, we continue with the parent as found 2260 * in send_root. If not, we continue with the parent as found in parent_root. 2261 * If we encounter an inode that was deleted at this point in time, we use the 2262 * inodes "orphan" name instead of the real name and stop. Same with new inodes 2263 * that were not created yet and overwritten inodes/refs. 2264 * 2265 * When do we have orphan inodes: 2266 * 1. When an inode is freshly created and thus no valid refs are available yet 2267 * 2. When a directory lost all it's refs (deleted) but still has dir items 2268 * inside which were not processed yet (pending for move/delete). If anyone 2269 * tried to get the path to the dir items, it would get a path inside that 2270 * orphan directory. 2271 * 3. When an inode is moved around or gets new links, it may overwrite the ref 2272 * of an unprocessed inode. If in that case the first ref would be 2273 * overwritten, the overwritten inode gets "orphanized". Later when we 2274 * process this overwritten inode, it is restored at a new place by moving 2275 * the orphan inode. 2276 * 2277 * sctx->send_progress tells this function at which point in time receiving 2278 * would be. 2279 */ 2280static int get_cur_path(struct send_ctx *sctx, u64 ino, u64 gen, 2281 struct fs_path *dest) 2282{ 2283 int ret = 0; 2284 struct fs_path *name = NULL; 2285 u64 parent_inode = 0; 2286 u64 parent_gen = 0; 2287 int stop = 0; 2288 2289 name = fs_path_alloc(); 2290 if (!name) { 2291 ret = -ENOMEM; 2292 goto out; 2293 } 2294 2295 dest->reversed = 1; 2296 fs_path_reset(dest); 2297 2298 while (!stop && ino != BTRFS_FIRST_FREE_OBJECTID) { 2299 struct waiting_dir_move *wdm; 2300 2301 fs_path_reset(name); 2302 2303 if (is_waiting_for_rm(sctx, ino, gen)) { 2304 ret = gen_unique_name(sctx, ino, gen, name); 2305 if (ret < 0) 2306 goto out; 2307 ret = fs_path_add_path(dest, name); 2308 break; 2309 } 2310 2311 wdm = get_waiting_dir_move(sctx, ino); 2312 if (wdm && wdm->orphanized) { 2313 ret = gen_unique_name(sctx, ino, gen, name); 2314 stop = 1; 2315 } else if (wdm) { 2316 ret = get_first_ref(sctx->parent_root, ino, 2317 &parent_inode, &parent_gen, name); 2318 } else { 2319 ret = __get_cur_name_and_parent(sctx, ino, gen, 2320 &parent_inode, 2321 &parent_gen, name); 2322 if (ret) 2323 stop = 1; 2324 } 2325 2326 if (ret < 0) 2327 goto out; 2328 2329 ret = fs_path_add_path(dest, name); 2330 if (ret < 0) 2331 goto out; 2332 2333 ino = parent_inode; 2334 gen = parent_gen; 2335 } 2336 2337out: 2338 fs_path_free(name); 2339 if (!ret) 2340 fs_path_unreverse(dest); 2341 return ret; 2342} 2343 2344/* 2345 * Sends a BTRFS_SEND_C_SUBVOL command/item to userspace 2346 */ 2347static int send_subvol_begin(struct send_ctx *sctx) 2348{ 2349 int ret; 2350 struct btrfs_root *send_root = sctx->send_root; 2351 struct btrfs_root *parent_root = sctx->parent_root; 2352 struct btrfs_path *path; 2353 struct btrfs_key key; 2354 struct btrfs_root_ref *ref; 2355 struct extent_buffer *leaf; 2356 char *name = NULL; 2357 int namelen; 2358 2359 path = btrfs_alloc_path(); 2360 if (!path) 2361 return -ENOMEM; 2362 2363 name = kmalloc(BTRFS_PATH_NAME_MAX, GFP_KERNEL); 2364 if (!name) { 2365 btrfs_free_path(path); 2366 return -ENOMEM; 2367 } 2368 2369 key.objectid = send_root->root_key.objectid; 2370 key.type = BTRFS_ROOT_BACKREF_KEY; 2371 key.offset = 0; 2372 2373 ret = btrfs_search_slot_for_read(send_root->fs_info->tree_root, 2374 &key, path, 1, 0); 2375 if (ret < 0) 2376 goto out; 2377 if (ret) { 2378 ret = -ENOENT; 2379 goto out; 2380 } 2381 2382 leaf = path->nodes[0]; 2383 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 2384 if (key.type != BTRFS_ROOT_BACKREF_KEY || 2385 key.objectid != send_root->root_key.objectid) { 2386 ret = -ENOENT; 2387 goto out; 2388 } 2389 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref); 2390 namelen = btrfs_root_ref_name_len(leaf, ref); 2391 read_extent_buffer(leaf, name, (unsigned long)(ref + 1), namelen); 2392 btrfs_release_path(path); 2393 2394 if (parent_root) { 2395 ret = begin_cmd(sctx, BTRFS_SEND_C_SNAPSHOT); 2396 if (ret < 0) 2397 goto out; 2398 } else { 2399 ret = begin_cmd(sctx, BTRFS_SEND_C_SUBVOL); 2400 if (ret < 0) 2401 goto out; 2402 } 2403 2404 TLV_PUT_STRING(sctx, BTRFS_SEND_A_PATH, name, namelen); 2405 2406 if (!btrfs_is_empty_uuid(sctx->send_root->root_item.received_uuid)) 2407 TLV_PUT_UUID(sctx, BTRFS_SEND_A_UUID, 2408 sctx->send_root->root_item.received_uuid); 2409 else 2410 TLV_PUT_UUID(sctx, BTRFS_SEND_A_UUID, 2411 sctx->send_root->root_item.uuid); 2412 2413 TLV_PUT_U64(sctx, BTRFS_SEND_A_CTRANSID, 2414 le64_to_cpu(sctx->send_root->root_item.ctransid)); 2415 if (parent_root) { 2416 if (!btrfs_is_empty_uuid(parent_root->root_item.received_uuid)) 2417 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID, 2418 parent_root->root_item.received_uuid); 2419 else 2420 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID, 2421 parent_root->root_item.uuid); 2422 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_CTRANSID, 2423 le64_to_cpu(sctx->parent_root->root_item.ctransid)); 2424 } 2425 2426 ret = send_cmd(sctx); 2427 2428tlv_put_failure: 2429out: 2430 btrfs_free_path(path); 2431 kfree(name); 2432 return ret; 2433} 2434 2435static int send_truncate(struct send_ctx *sctx, u64 ino, u64 gen, u64 size) 2436{ 2437 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 2438 int ret = 0; 2439 struct fs_path *p; 2440 2441 btrfs_debug(fs_info, "send_truncate %llu size=%llu", ino, size); 2442 2443 p = fs_path_alloc(); 2444 if (!p) 2445 return -ENOMEM; 2446 2447 ret = begin_cmd(sctx, BTRFS_SEND_C_TRUNCATE); 2448 if (ret < 0) 2449 goto out; 2450 2451 ret = get_cur_path(sctx, ino, gen, p); 2452 if (ret < 0) 2453 goto out; 2454 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 2455 TLV_PUT_U64(sctx, BTRFS_SEND_A_SIZE, size); 2456 2457 ret = send_cmd(sctx); 2458 2459tlv_put_failure: 2460out: 2461 fs_path_free(p); 2462 return ret; 2463} 2464 2465static int send_chmod(struct send_ctx *sctx, u64 ino, u64 gen, u64 mode) 2466{ 2467 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 2468 int ret = 0; 2469 struct fs_path *p; 2470 2471 btrfs_debug(fs_info, "send_chmod %llu mode=%llu", ino, mode); 2472 2473 p = fs_path_alloc(); 2474 if (!p) 2475 return -ENOMEM; 2476 2477 ret = begin_cmd(sctx, BTRFS_SEND_C_CHMOD); 2478 if (ret < 0) 2479 goto out; 2480 2481 ret = get_cur_path(sctx, ino, gen, p); 2482 if (ret < 0) 2483 goto out; 2484 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 2485 TLV_PUT_U64(sctx, BTRFS_SEND_A_MODE, mode & 07777); 2486 2487 ret = send_cmd(sctx); 2488 2489tlv_put_failure: 2490out: 2491 fs_path_free(p); 2492 return ret; 2493} 2494 2495static int send_chown(struct send_ctx *sctx, u64 ino, u64 gen, u64 uid, u64 gid) 2496{ 2497 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 2498 int ret = 0; 2499 struct fs_path *p; 2500 2501 btrfs_debug(fs_info, "send_chown %llu uid=%llu, gid=%llu", 2502 ino, uid, gid); 2503 2504 p = fs_path_alloc(); 2505 if (!p) 2506 return -ENOMEM; 2507 2508 ret = begin_cmd(sctx, BTRFS_SEND_C_CHOWN); 2509 if (ret < 0) 2510 goto out; 2511 2512 ret = get_cur_path(sctx, ino, gen, p); 2513 if (ret < 0) 2514 goto out; 2515 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 2516 TLV_PUT_U64(sctx, BTRFS_SEND_A_UID, uid); 2517 TLV_PUT_U64(sctx, BTRFS_SEND_A_GID, gid); 2518 2519 ret = send_cmd(sctx); 2520 2521tlv_put_failure: 2522out: 2523 fs_path_free(p); 2524 return ret; 2525} 2526 2527static int send_utimes(struct send_ctx *sctx, u64 ino, u64 gen) 2528{ 2529 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 2530 int ret = 0; 2531 struct fs_path *p = NULL; 2532 struct btrfs_inode_item *ii; 2533 struct btrfs_path *path = NULL; 2534 struct extent_buffer *eb; 2535 struct btrfs_key key; 2536 int slot; 2537 2538 btrfs_debug(fs_info, "send_utimes %llu", ino); 2539 2540 p = fs_path_alloc(); 2541 if (!p) 2542 return -ENOMEM; 2543 2544 path = alloc_path_for_send(); 2545 if (!path) { 2546 ret = -ENOMEM; 2547 goto out; 2548 } 2549 2550 key.objectid = ino; 2551 key.type = BTRFS_INODE_ITEM_KEY; 2552 key.offset = 0; 2553 ret = btrfs_search_slot(NULL, sctx->send_root, &key, path, 0, 0); 2554 if (ret > 0) 2555 ret = -ENOENT; 2556 if (ret < 0) 2557 goto out; 2558 2559 eb = path->nodes[0]; 2560 slot = path->slots[0]; 2561 ii = btrfs_item_ptr(eb, slot, struct btrfs_inode_item); 2562 2563 ret = begin_cmd(sctx, BTRFS_SEND_C_UTIMES); 2564 if (ret < 0) 2565 goto out; 2566 2567 ret = get_cur_path(sctx, ino, gen, p); 2568 if (ret < 0) 2569 goto out; 2570 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 2571 TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_ATIME, eb, &ii->atime); 2572 TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_MTIME, eb, &ii->mtime); 2573 TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_CTIME, eb, &ii->ctime); 2574 /* TODO Add otime support when the otime patches get into upstream */ 2575 2576 ret = send_cmd(sctx); 2577 2578tlv_put_failure: 2579out: 2580 fs_path_free(p); 2581 btrfs_free_path(path); 2582 return ret; 2583} 2584 2585/* 2586 * Sends a BTRFS_SEND_C_MKXXX or SYMLINK command to user space. We don't have 2587 * a valid path yet because we did not process the refs yet. So, the inode 2588 * is created as orphan. 2589 */ 2590static int send_create_inode(struct send_ctx *sctx, u64 ino) 2591{ 2592 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 2593 int ret = 0; 2594 struct fs_path *p; 2595 int cmd; 2596 u64 gen; 2597 u64 mode; 2598 u64 rdev; 2599 2600 btrfs_debug(fs_info, "send_create_inode %llu", ino); 2601 2602 p = fs_path_alloc(); 2603 if (!p) 2604 return -ENOMEM; 2605 2606 if (ino != sctx->cur_ino) { 2607 ret = get_inode_info(sctx->send_root, ino, NULL, &gen, &mode, 2608 NULL, NULL, &rdev); 2609 if (ret < 0) 2610 goto out; 2611 } else { 2612 gen = sctx->cur_inode_gen; 2613 mode = sctx->cur_inode_mode; 2614 rdev = sctx->cur_inode_rdev; 2615 } 2616 2617 if (S_ISREG(mode)) { 2618 cmd = BTRFS_SEND_C_MKFILE; 2619 } else if (S_ISDIR(mode)) { 2620 cmd = BTRFS_SEND_C_MKDIR; 2621 } else if (S_ISLNK(mode)) { 2622 cmd = BTRFS_SEND_C_SYMLINK; 2623 } else if (S_ISCHR(mode) || S_ISBLK(mode)) { 2624 cmd = BTRFS_SEND_C_MKNOD; 2625 } else if (S_ISFIFO(mode)) { 2626 cmd = BTRFS_SEND_C_MKFIFO; 2627 } else if (S_ISSOCK(mode)) { 2628 cmd = BTRFS_SEND_C_MKSOCK; 2629 } else { 2630 btrfs_warn(sctx->send_root->fs_info, "unexpected inode type %o", 2631 (int)(mode & S_IFMT)); 2632 ret = -EOPNOTSUPP; 2633 goto out; 2634 } 2635 2636 ret = begin_cmd(sctx, cmd); 2637 if (ret < 0) 2638 goto out; 2639 2640 ret = gen_unique_name(sctx, ino, gen, p); 2641 if (ret < 0) 2642 goto out; 2643 2644 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 2645 TLV_PUT_U64(sctx, BTRFS_SEND_A_INO, ino); 2646 2647 if (S_ISLNK(mode)) { 2648 fs_path_reset(p); 2649 ret = read_symlink(sctx->send_root, ino, p); 2650 if (ret < 0) 2651 goto out; 2652 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_LINK, p); 2653 } else if (S_ISCHR(mode) || S_ISBLK(mode) || 2654 S_ISFIFO(mode) || S_ISSOCK(mode)) { 2655 TLV_PUT_U64(sctx, BTRFS_SEND_A_RDEV, new_encode_dev(rdev)); 2656 TLV_PUT_U64(sctx, BTRFS_SEND_A_MODE, mode); 2657 } 2658 2659 ret = send_cmd(sctx); 2660 if (ret < 0) 2661 goto out; 2662 2663 2664tlv_put_failure: 2665out: 2666 fs_path_free(p); 2667 return ret; 2668} 2669 2670/* 2671 * We need some special handling for inodes that get processed before the parent 2672 * directory got created. See process_recorded_refs for details. 2673 * This function does the check if we already created the dir out of order. 2674 */ 2675static int did_create_dir(struct send_ctx *sctx, u64 dir) 2676{ 2677 int ret = 0; 2678 struct btrfs_path *path = NULL; 2679 struct btrfs_key key; 2680 struct btrfs_key found_key; 2681 struct btrfs_key di_key; 2682 struct extent_buffer *eb; 2683 struct btrfs_dir_item *di; 2684 int slot; 2685 2686 path = alloc_path_for_send(); 2687 if (!path) { 2688 ret = -ENOMEM; 2689 goto out; 2690 } 2691 2692 key.objectid = dir; 2693 key.type = BTRFS_DIR_INDEX_KEY; 2694 key.offset = 0; 2695 ret = btrfs_search_slot(NULL, sctx->send_root, &key, path, 0, 0); 2696 if (ret < 0) 2697 goto out; 2698 2699 while (1) { 2700 eb = path->nodes[0]; 2701 slot = path->slots[0]; 2702 if (slot >= btrfs_header_nritems(eb)) { 2703 ret = btrfs_next_leaf(sctx->send_root, path); 2704 if (ret < 0) { 2705 goto out; 2706 } else if (ret > 0) { 2707 ret = 0; 2708 break; 2709 } 2710 continue; 2711 } 2712 2713 btrfs_item_key_to_cpu(eb, &found_key, slot); 2714 if (found_key.objectid != key.objectid || 2715 found_key.type != key.type) { 2716 ret = 0; 2717 goto out; 2718 } 2719 2720 di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item); 2721 btrfs_dir_item_key_to_cpu(eb, di, &di_key); 2722 2723 if (di_key.type != BTRFS_ROOT_ITEM_KEY && 2724 di_key.objectid < sctx->send_progress) { 2725 ret = 1; 2726 goto out; 2727 } 2728 2729 path->slots[0]++; 2730 } 2731 2732out: 2733 btrfs_free_path(path); 2734 return ret; 2735} 2736 2737/* 2738 * Only creates the inode if it is: 2739 * 1. Not a directory 2740 * 2. Or a directory which was not created already due to out of order 2741 * directories. See did_create_dir and process_recorded_refs for details. 2742 */ 2743static int send_create_inode_if_needed(struct send_ctx *sctx) 2744{ 2745 int ret; 2746 2747 if (S_ISDIR(sctx->cur_inode_mode)) { 2748 ret = did_create_dir(sctx, sctx->cur_ino); 2749 if (ret < 0) 2750 goto out; 2751 if (ret) { 2752 ret = 0; 2753 goto out; 2754 } 2755 } 2756 2757 ret = send_create_inode(sctx, sctx->cur_ino); 2758 if (ret < 0) 2759 goto out; 2760 2761out: 2762 return ret; 2763} 2764 2765struct recorded_ref { 2766 struct list_head list; 2767 char *name; 2768 struct fs_path *full_path; 2769 u64 dir; 2770 u64 dir_gen; 2771 int name_len; 2772}; 2773 2774static void set_ref_path(struct recorded_ref *ref, struct fs_path *path) 2775{ 2776 ref->full_path = path; 2777 ref->name = (char *)kbasename(ref->full_path->start); 2778 ref->name_len = ref->full_path->end - ref->name; 2779} 2780 2781/* 2782 * We need to process new refs before deleted refs, but compare_tree gives us 2783 * everything mixed. So we first record all refs and later process them. 2784 * This function is a helper to record one ref. 2785 */ 2786static int __record_ref(struct list_head *head, u64 dir, 2787 u64 dir_gen, struct fs_path *path) 2788{ 2789 struct recorded_ref *ref; 2790 2791 ref = kmalloc(sizeof(*ref), GFP_KERNEL); 2792 if (!ref) 2793 return -ENOMEM; 2794 2795 ref->dir = dir; 2796 ref->dir_gen = dir_gen; 2797 set_ref_path(ref, path); 2798 list_add_tail(&ref->list, head); 2799 return 0; 2800} 2801 2802static int dup_ref(struct recorded_ref *ref, struct list_head *list) 2803{ 2804 struct recorded_ref *new; 2805 2806 new = kmalloc(sizeof(*ref), GFP_KERNEL); 2807 if (!new) 2808 return -ENOMEM; 2809 2810 new->dir = ref->dir; 2811 new->dir_gen = ref->dir_gen; 2812 new->full_path = NULL; 2813 INIT_LIST_HEAD(&new->list); 2814 list_add_tail(&new->list, list); 2815 return 0; 2816} 2817 2818static void __free_recorded_refs(struct list_head *head) 2819{ 2820 struct recorded_ref *cur; 2821 2822 while (!list_empty(head)) { 2823 cur = list_entry(head->next, struct recorded_ref, list); 2824 fs_path_free(cur->full_path); 2825 list_del(&cur->list); 2826 kfree(cur); 2827 } 2828} 2829 2830static void free_recorded_refs(struct send_ctx *sctx) 2831{ 2832 __free_recorded_refs(&sctx->new_refs); 2833 __free_recorded_refs(&sctx->deleted_refs); 2834} 2835 2836/* 2837 * Renames/moves a file/dir to its orphan name. Used when the first 2838 * ref of an unprocessed inode gets overwritten and for all non empty 2839 * directories. 2840 */ 2841static int orphanize_inode(struct send_ctx *sctx, u64 ino, u64 gen, 2842 struct fs_path *path) 2843{ 2844 int ret; 2845 struct fs_path *orphan; 2846 2847 orphan = fs_path_alloc(); 2848 if (!orphan) 2849 return -ENOMEM; 2850 2851 ret = gen_unique_name(sctx, ino, gen, orphan); 2852 if (ret < 0) 2853 goto out; 2854 2855 ret = send_rename(sctx, path, orphan); 2856 2857out: 2858 fs_path_free(orphan); 2859 return ret; 2860} 2861 2862static struct orphan_dir_info *add_orphan_dir_info(struct send_ctx *sctx, 2863 u64 dir_ino, u64 dir_gen) 2864{ 2865 struct rb_node **p = &sctx->orphan_dirs.rb_node; 2866 struct rb_node *parent = NULL; 2867 struct orphan_dir_info *entry, *odi; 2868 2869 while (*p) { 2870 parent = *p; 2871 entry = rb_entry(parent, struct orphan_dir_info, node); 2872 if (dir_ino < entry->ino) 2873 p = &(*p)->rb_left; 2874 else if (dir_ino > entry->ino) 2875 p = &(*p)->rb_right; 2876 else if (dir_gen < entry->gen) 2877 p = &(*p)->rb_left; 2878 else if (dir_gen > entry->gen) 2879 p = &(*p)->rb_right; 2880 else 2881 return entry; 2882 } 2883 2884 odi = kmalloc(sizeof(*odi), GFP_KERNEL); 2885 if (!odi) 2886 return ERR_PTR(-ENOMEM); 2887 odi->ino = dir_ino; 2888 odi->gen = dir_gen; 2889 odi->last_dir_index_offset = 0; 2890 2891 rb_link_node(&odi->node, parent, p); 2892 rb_insert_color(&odi->node, &sctx->orphan_dirs); 2893 return odi; 2894} 2895 2896static struct orphan_dir_info *get_orphan_dir_info(struct send_ctx *sctx, 2897 u64 dir_ino, u64 gen) 2898{ 2899 struct rb_node *n = sctx->orphan_dirs.rb_node; 2900 struct orphan_dir_info *entry; 2901 2902 while (n) { 2903 entry = rb_entry(n, struct orphan_dir_info, node); 2904 if (dir_ino < entry->ino) 2905 n = n->rb_left; 2906 else if (dir_ino > entry->ino) 2907 n = n->rb_right; 2908 else if (gen < entry->gen) 2909 n = n->rb_left; 2910 else if (gen > entry->gen) 2911 n = n->rb_right; 2912 else 2913 return entry; 2914 } 2915 return NULL; 2916} 2917 2918static int is_waiting_for_rm(struct send_ctx *sctx, u64 dir_ino, u64 gen) 2919{ 2920 struct orphan_dir_info *odi = get_orphan_dir_info(sctx, dir_ino, gen); 2921 2922 return odi != NULL; 2923} 2924 2925static void free_orphan_dir_info(struct send_ctx *sctx, 2926 struct orphan_dir_info *odi) 2927{ 2928 if (!odi) 2929 return; 2930 rb_erase(&odi->node, &sctx->orphan_dirs); 2931 kfree(odi); 2932} 2933 2934/* 2935 * Returns 1 if a directory can be removed at this point in time. 2936 * We check this by iterating all dir items and checking if the inode behind 2937 * the dir item was already processed. 2938 */ 2939static int can_rmdir(struct send_ctx *sctx, u64 dir, u64 dir_gen, 2940 u64 send_progress) 2941{ 2942 int ret = 0; 2943 struct btrfs_root *root = sctx->parent_root; 2944 struct btrfs_path *path; 2945 struct btrfs_key key; 2946 struct btrfs_key found_key; 2947 struct btrfs_key loc; 2948 struct btrfs_dir_item *di; 2949 struct orphan_dir_info *odi = NULL; 2950 2951 /* 2952 * Don't try to rmdir the top/root subvolume dir. 2953 */ 2954 if (dir == BTRFS_FIRST_FREE_OBJECTID) 2955 return 0; 2956 2957 path = alloc_path_for_send(); 2958 if (!path) 2959 return -ENOMEM; 2960 2961 key.objectid = dir; 2962 key.type = BTRFS_DIR_INDEX_KEY; 2963 key.offset = 0; 2964 2965 odi = get_orphan_dir_info(sctx, dir, dir_gen); 2966 if (odi) 2967 key.offset = odi->last_dir_index_offset; 2968 2969 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2970 if (ret < 0) 2971 goto out; 2972 2973 while (1) { 2974 struct waiting_dir_move *dm; 2975 2976 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) { 2977 ret = btrfs_next_leaf(root, path); 2978 if (ret < 0) 2979 goto out; 2980 else if (ret > 0) 2981 break; 2982 continue; 2983 } 2984 btrfs_item_key_to_cpu(path->nodes[0], &found_key, 2985 path->slots[0]); 2986 if (found_key.objectid != key.objectid || 2987 found_key.type != key.type) 2988 break; 2989 2990 di = btrfs_item_ptr(path->nodes[0], path->slots[0], 2991 struct btrfs_dir_item); 2992 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &loc); 2993 2994 dm = get_waiting_dir_move(sctx, loc.objectid); 2995 if (dm) { 2996 odi = add_orphan_dir_info(sctx, dir, dir_gen); 2997 if (IS_ERR(odi)) { 2998 ret = PTR_ERR(odi); 2999 goto out; 3000 } 3001 odi->gen = dir_gen; 3002 odi->last_dir_index_offset = found_key.offset; 3003 dm->rmdir_ino = dir; 3004 dm->rmdir_gen = dir_gen; 3005 ret = 0; 3006 goto out; 3007 } 3008 3009 if (loc.objectid > send_progress) { 3010 odi = add_orphan_dir_info(sctx, dir, dir_gen); 3011 if (IS_ERR(odi)) { 3012 ret = PTR_ERR(odi); 3013 goto out; 3014 } 3015 odi->gen = dir_gen; 3016 odi->last_dir_index_offset = found_key.offset; 3017 ret = 0; 3018 goto out; 3019 } 3020 3021 path->slots[0]++; 3022 } 3023 free_orphan_dir_info(sctx, odi); 3024 3025 ret = 1; 3026 3027out: 3028 btrfs_free_path(path); 3029 return ret; 3030} 3031 3032static int is_waiting_for_move(struct send_ctx *sctx, u64 ino) 3033{ 3034 struct waiting_dir_move *entry = get_waiting_dir_move(sctx, ino); 3035 3036 return entry != NULL; 3037} 3038 3039static int add_waiting_dir_move(struct send_ctx *sctx, u64 ino, bool orphanized) 3040{ 3041 struct rb_node **p = &sctx->waiting_dir_moves.rb_node; 3042 struct rb_node *parent = NULL; 3043 struct waiting_dir_move *entry, *dm; 3044 3045 dm = kmalloc(sizeof(*dm), GFP_KERNEL); 3046 if (!dm) 3047 return -ENOMEM; 3048 dm->ino = ino; 3049 dm->rmdir_ino = 0; 3050 dm->rmdir_gen = 0; 3051 dm->orphanized = orphanized; 3052 3053 while (*p) { 3054 parent = *p; 3055 entry = rb_entry(parent, struct waiting_dir_move, node); 3056 if (ino < entry->ino) { 3057 p = &(*p)->rb_left; 3058 } else if (ino > entry->ino) { 3059 p = &(*p)->rb_right; 3060 } else { 3061 kfree(dm); 3062 return -EEXIST; 3063 } 3064 } 3065 3066 rb_link_node(&dm->node, parent, p); 3067 rb_insert_color(&dm->node, &sctx->waiting_dir_moves); 3068 return 0; 3069} 3070 3071static struct waiting_dir_move * 3072get_waiting_dir_move(struct send_ctx *sctx, u64 ino) 3073{ 3074 struct rb_node *n = sctx->waiting_dir_moves.rb_node; 3075 struct waiting_dir_move *entry; 3076 3077 while (n) { 3078 entry = rb_entry(n, struct waiting_dir_move, node); 3079 if (ino < entry->ino) 3080 n = n->rb_left; 3081 else if (ino > entry->ino) 3082 n = n->rb_right; 3083 else 3084 return entry; 3085 } 3086 return NULL; 3087} 3088 3089static void free_waiting_dir_move(struct send_ctx *sctx, 3090 struct waiting_dir_move *dm) 3091{ 3092 if (!dm) 3093 return; 3094 rb_erase(&dm->node, &sctx->waiting_dir_moves); 3095 kfree(dm); 3096} 3097 3098static int add_pending_dir_move(struct send_ctx *sctx, 3099 u64 ino, 3100 u64 ino_gen, 3101 u64 parent_ino, 3102 struct list_head *new_refs, 3103 struct list_head *deleted_refs, 3104 const bool is_orphan) 3105{ 3106 struct rb_node **p = &sctx->pending_dir_moves.rb_node; 3107 struct rb_node *parent = NULL; 3108 struct pending_dir_move *entry = NULL, *pm; 3109 struct recorded_ref *cur; 3110 int exists = 0; 3111 int ret; 3112 3113 pm = kmalloc(sizeof(*pm), GFP_KERNEL); 3114 if (!pm) 3115 return -ENOMEM; 3116 pm->parent_ino = parent_ino; 3117 pm->ino = ino; 3118 pm->gen = ino_gen; 3119 INIT_LIST_HEAD(&pm->list); 3120 INIT_LIST_HEAD(&pm->update_refs); 3121 RB_CLEAR_NODE(&pm->node); 3122 3123 while (*p) { 3124 parent = *p; 3125 entry = rb_entry(parent, struct pending_dir_move, node); 3126 if (parent_ino < entry->parent_ino) { 3127 p = &(*p)->rb_left; 3128 } else if (parent_ino > entry->parent_ino) { 3129 p = &(*p)->rb_right; 3130 } else { 3131 exists = 1; 3132 break; 3133 } 3134 } 3135 3136 list_for_each_entry(cur, deleted_refs, list) { 3137 ret = dup_ref(cur, &pm->update_refs); 3138 if (ret < 0) 3139 goto out; 3140 } 3141 list_for_each_entry(cur, new_refs, list) { 3142 ret = dup_ref(cur, &pm->update_refs); 3143 if (ret < 0) 3144 goto out; 3145 } 3146 3147 ret = add_waiting_dir_move(sctx, pm->ino, is_orphan); 3148 if (ret) 3149 goto out; 3150 3151 if (exists) { 3152 list_add_tail(&pm->list, &entry->list); 3153 } else { 3154 rb_link_node(&pm->node, parent, p); 3155 rb_insert_color(&pm->node, &sctx->pending_dir_moves); 3156 } 3157 ret = 0; 3158out: 3159 if (ret) { 3160 __free_recorded_refs(&pm->update_refs); 3161 kfree(pm); 3162 } 3163 return ret; 3164} 3165 3166static struct pending_dir_move *get_pending_dir_moves(struct send_ctx *sctx, 3167 u64 parent_ino) 3168{ 3169 struct rb_node *n = sctx->pending_dir_moves.rb_node; 3170 struct pending_dir_move *entry; 3171 3172 while (n) { 3173 entry = rb_entry(n, struct pending_dir_move, node); 3174 if (parent_ino < entry->parent_ino) 3175 n = n->rb_left; 3176 else if (parent_ino > entry->parent_ino) 3177 n = n->rb_right; 3178 else 3179 return entry; 3180 } 3181 return NULL; 3182} 3183 3184static int path_loop(struct send_ctx *sctx, struct fs_path *name, 3185 u64 ino, u64 gen, u64 *ancestor_ino) 3186{ 3187 int ret = 0; 3188 u64 parent_inode = 0; 3189 u64 parent_gen = 0; 3190 u64 start_ino = ino; 3191 3192 *ancestor_ino = 0; 3193 while (ino != BTRFS_FIRST_FREE_OBJECTID) { 3194 fs_path_reset(name); 3195 3196 if (is_waiting_for_rm(sctx, ino, gen)) 3197 break; 3198 if (is_waiting_for_move(sctx, ino)) { 3199 if (*ancestor_ino == 0) 3200 *ancestor_ino = ino; 3201 ret = get_first_ref(sctx->parent_root, ino, 3202 &parent_inode, &parent_gen, name); 3203 } else { 3204 ret = __get_cur_name_and_parent(sctx, ino, gen, 3205 &parent_inode, 3206 &parent_gen, name); 3207 if (ret > 0) { 3208 ret = 0; 3209 break; 3210 } 3211 } 3212 if (ret < 0) 3213 break; 3214 if (parent_inode == start_ino) { 3215 ret = 1; 3216 if (*ancestor_ino == 0) 3217 *ancestor_ino = ino; 3218 break; 3219 } 3220 ino = parent_inode; 3221 gen = parent_gen; 3222 } 3223 return ret; 3224} 3225 3226static int apply_dir_move(struct send_ctx *sctx, struct pending_dir_move *pm) 3227{ 3228 struct fs_path *from_path = NULL; 3229 struct fs_path *to_path = NULL; 3230 struct fs_path *name = NULL; 3231 u64 orig_progress = sctx->send_progress; 3232 struct recorded_ref *cur; 3233 u64 parent_ino, parent_gen; 3234 struct waiting_dir_move *dm = NULL; 3235 u64 rmdir_ino = 0; 3236 u64 rmdir_gen; 3237 u64 ancestor; 3238 bool is_orphan; 3239 int ret; 3240 3241 name = fs_path_alloc(); 3242 from_path = fs_path_alloc(); 3243 if (!name || !from_path) { 3244 ret = -ENOMEM; 3245 goto out; 3246 } 3247 3248 dm = get_waiting_dir_move(sctx, pm->ino); 3249 ASSERT(dm); 3250 rmdir_ino = dm->rmdir_ino; 3251 rmdir_gen = dm->rmdir_gen; 3252 is_orphan = dm->orphanized; 3253 free_waiting_dir_move(sctx, dm); 3254 3255 if (is_orphan) { 3256 ret = gen_unique_name(sctx, pm->ino, 3257 pm->gen, from_path); 3258 } else { 3259 ret = get_first_ref(sctx->parent_root, pm->ino, 3260 &parent_ino, &parent_gen, name); 3261 if (ret < 0) 3262 goto out; 3263 ret = get_cur_path(sctx, parent_ino, parent_gen, 3264 from_path); 3265 if (ret < 0) 3266 goto out; 3267 ret = fs_path_add_path(from_path, name); 3268 } 3269 if (ret < 0) 3270 goto out; 3271 3272 sctx->send_progress = sctx->cur_ino + 1; 3273 ret = path_loop(sctx, name, pm->ino, pm->gen, &ancestor); 3274 if (ret < 0) 3275 goto out; 3276 if (ret) { 3277 LIST_HEAD(deleted_refs); 3278 ASSERT(ancestor > BTRFS_FIRST_FREE_OBJECTID); 3279 ret = add_pending_dir_move(sctx, pm->ino, pm->gen, ancestor, 3280 &pm->update_refs, &deleted_refs, 3281 is_orphan); 3282 if (ret < 0) 3283 goto out; 3284 if (rmdir_ino) { 3285 dm = get_waiting_dir_move(sctx, pm->ino); 3286 ASSERT(dm); 3287 dm->rmdir_ino = rmdir_ino; 3288 dm->rmdir_gen = rmdir_gen; 3289 } 3290 goto out; 3291 } 3292 fs_path_reset(name); 3293 to_path = name; 3294 name = NULL; 3295 ret = get_cur_path(sctx, pm->ino, pm->gen, to_path); 3296 if (ret < 0) 3297 goto out; 3298 3299 ret = send_rename(sctx, from_path, to_path); 3300 if (ret < 0) 3301 goto out; 3302 3303 if (rmdir_ino) { 3304 struct orphan_dir_info *odi; 3305 u64 gen; 3306 3307 odi = get_orphan_dir_info(sctx, rmdir_ino, rmdir_gen); 3308 if (!odi) { 3309 /* already deleted */ 3310 goto finish; 3311 } 3312 gen = odi->gen; 3313 3314 ret = can_rmdir(sctx, rmdir_ino, gen, sctx->cur_ino); 3315 if (ret < 0) 3316 goto out; 3317 if (!ret) 3318 goto finish; 3319 3320 name = fs_path_alloc(); 3321 if (!name) { 3322 ret = -ENOMEM; 3323 goto out; 3324 } 3325 ret = get_cur_path(sctx, rmdir_ino, gen, name); 3326 if (ret < 0) 3327 goto out; 3328 ret = send_rmdir(sctx, name); 3329 if (ret < 0) 3330 goto out; 3331 } 3332 3333finish: 3334 ret = send_utimes(sctx, pm->ino, pm->gen); 3335 if (ret < 0) 3336 goto out; 3337 3338 /* 3339 * After rename/move, need to update the utimes of both new parent(s) 3340 * and old parent(s). 3341 */ 3342 list_for_each_entry(cur, &pm->update_refs, list) { 3343 /* 3344 * The parent inode might have been deleted in the send snapshot 3345 */ 3346 ret = get_inode_info(sctx->send_root, cur->dir, NULL, 3347 NULL, NULL, NULL, NULL, NULL); 3348 if (ret == -ENOENT) { 3349 ret = 0; 3350 continue; 3351 } 3352 if (ret < 0) 3353 goto out; 3354 3355 ret = send_utimes(sctx, cur->dir, cur->dir_gen); 3356 if (ret < 0) 3357 goto out; 3358 } 3359 3360out: 3361 fs_path_free(name); 3362 fs_path_free(from_path); 3363 fs_path_free(to_path); 3364 sctx->send_progress = orig_progress; 3365 3366 return ret; 3367} 3368 3369static void free_pending_move(struct send_ctx *sctx, struct pending_dir_move *m) 3370{ 3371 if (!list_empty(&m->list)) 3372 list_del(&m->list); 3373 if (!RB_EMPTY_NODE(&m->node)) 3374 rb_erase(&m->node, &sctx->pending_dir_moves); 3375 __free_recorded_refs(&m->update_refs); 3376 kfree(m); 3377} 3378 3379static void tail_append_pending_moves(struct send_ctx *sctx, 3380 struct pending_dir_move *moves, 3381 struct list_head *stack) 3382{ 3383 if (list_empty(&moves->list)) { 3384 list_add_tail(&moves->list, stack); 3385 } else { 3386 LIST_HEAD(list); 3387 list_splice_init(&moves->list, &list); 3388 list_add_tail(&moves->list, stack); 3389 list_splice_tail(&list, stack); 3390 } 3391 if (!RB_EMPTY_NODE(&moves->node)) { 3392 rb_erase(&moves->node, &sctx->pending_dir_moves); 3393 RB_CLEAR_NODE(&moves->node); 3394 } 3395} 3396 3397static int apply_children_dir_moves(struct send_ctx *sctx) 3398{ 3399 struct pending_dir_move *pm; 3400 struct list_head stack; 3401 u64 parent_ino = sctx->cur_ino; 3402 int ret = 0; 3403 3404 pm = get_pending_dir_moves(sctx, parent_ino); 3405 if (!pm) 3406 return 0; 3407 3408 INIT_LIST_HEAD(&stack); 3409 tail_append_pending_moves(sctx, pm, &stack); 3410 3411 while (!list_empty(&stack)) { 3412 pm = list_first_entry(&stack, struct pending_dir_move, list); 3413 parent_ino = pm->ino; 3414 ret = apply_dir_move(sctx, pm); 3415 free_pending_move(sctx, pm); 3416 if (ret) 3417 goto out; 3418 pm = get_pending_dir_moves(sctx, parent_ino); 3419 if (pm) 3420 tail_append_pending_moves(sctx, pm, &stack); 3421 } 3422 return 0; 3423 3424out: 3425 while (!list_empty(&stack)) { 3426 pm = list_first_entry(&stack, struct pending_dir_move, list); 3427 free_pending_move(sctx, pm); 3428 } 3429 return ret; 3430} 3431 3432/* 3433 * We might need to delay a directory rename even when no ancestor directory 3434 * (in the send root) with a higher inode number than ours (sctx->cur_ino) was 3435 * renamed. This happens when we rename a directory to the old name (the name 3436 * in the parent root) of some other unrelated directory that got its rename 3437 * delayed due to some ancestor with higher number that got renamed. 3438 * 3439 * Example: 3440 * 3441 * Parent snapshot: 3442 * . (ino 256) 3443 * |---- a/ (ino 257) 3444 * | |---- file (ino 260) 3445 * | 3446 * |---- b/ (ino 258) 3447 * |---- c/ (ino 259) 3448 * 3449 * Send snapshot: 3450 * . (ino 256) 3451 * |---- a/ (ino 258) 3452 * |---- x/ (ino 259) 3453 * |---- y/ (ino 257) 3454 * |----- file (ino 260) 3455 * 3456 * Here we can not rename 258 from 'b' to 'a' without the rename of inode 257 3457 * from 'a' to 'x/y' happening first, which in turn depends on the rename of 3458 * inode 259 from 'c' to 'x'. So the order of rename commands the send stream 3459 * must issue is: 3460 * 3461 * 1 - rename 259 from 'c' to 'x' 3462 * 2 - rename 257 from 'a' to 'x/y' 3463 * 3 - rename 258 from 'b' to 'a' 3464 * 3465 * Returns 1 if the rename of sctx->cur_ino needs to be delayed, 0 if it can 3466 * be done right away and < 0 on error. 3467 */ 3468static int wait_for_dest_dir_move(struct send_ctx *sctx, 3469 struct recorded_ref *parent_ref, 3470 const bool is_orphan) 3471{ 3472 struct btrfs_fs_info *fs_info = sctx->parent_root->fs_info; 3473 struct btrfs_path *path; 3474 struct btrfs_key key; 3475 struct btrfs_key di_key; 3476 struct btrfs_dir_item *di; 3477 u64 left_gen; 3478 u64 right_gen; 3479 int ret = 0; 3480 struct waiting_dir_move *wdm; 3481 3482 if (RB_EMPTY_ROOT(&sctx->waiting_dir_moves)) 3483 return 0; 3484 3485 path = alloc_path_for_send(); 3486 if (!path) 3487 return -ENOMEM; 3488 3489 key.objectid = parent_ref->dir; 3490 key.type = BTRFS_DIR_ITEM_KEY; 3491 key.offset = btrfs_name_hash(parent_ref->name, parent_ref->name_len); 3492 3493 ret = btrfs_search_slot(NULL, sctx->parent_root, &key, path, 0, 0); 3494 if (ret < 0) { 3495 goto out; 3496 } else if (ret > 0) { 3497 ret = 0; 3498 goto out; 3499 } 3500 3501 di = btrfs_match_dir_item_name(fs_info, path, parent_ref->name, 3502 parent_ref->name_len); 3503 if (!di) { 3504 ret = 0; 3505 goto out; 3506 } 3507 /* 3508 * di_key.objectid has the number of the inode that has a dentry in the 3509 * parent directory with the same name that sctx->cur_ino is being 3510 * renamed to. We need to check if that inode is in the send root as 3511 * well and if it is currently marked as an inode with a pending rename, 3512 * if it is, we need to delay the rename of sctx->cur_ino as well, so 3513 * that it happens after that other inode is renamed. 3514 */ 3515 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &di_key); 3516 if (di_key.type != BTRFS_INODE_ITEM_KEY) { 3517 ret = 0; 3518 goto out; 3519 } 3520 3521 ret = get_inode_info(sctx->parent_root, di_key.objectid, NULL, 3522 &left_gen, NULL, NULL, NULL, NULL); 3523 if (ret < 0) 3524 goto out; 3525 ret = get_inode_info(sctx->send_root, di_key.objectid, NULL, 3526 &right_gen, NULL, NULL, NULL, NULL); 3527 if (ret < 0) { 3528 if (ret == -ENOENT) 3529 ret = 0; 3530 goto out; 3531 } 3532 3533 /* Different inode, no need to delay the rename of sctx->cur_ino */ 3534 if (right_gen != left_gen) { 3535 ret = 0; 3536 goto out; 3537 } 3538 3539 wdm = get_waiting_dir_move(sctx, di_key.objectid); 3540 if (wdm && !wdm->orphanized) { 3541 ret = add_pending_dir_move(sctx, 3542 sctx->cur_ino, 3543 sctx->cur_inode_gen, 3544 di_key.objectid, 3545 &sctx->new_refs, 3546 &sctx->deleted_refs, 3547 is_orphan); 3548 if (!ret) 3549 ret = 1; 3550 } 3551out: 3552 btrfs_free_path(path); 3553 return ret; 3554} 3555 3556/* 3557 * Check if inode ino2, or any of its ancestors, is inode ino1. 3558 * Return 1 if true, 0 if false and < 0 on error. 3559 */ 3560static int check_ino_in_path(struct btrfs_root *root, 3561 const u64 ino1, 3562 const u64 ino1_gen, 3563 const u64 ino2, 3564 const u64 ino2_gen, 3565 struct fs_path *fs_path) 3566{ 3567 u64 ino = ino2; 3568 3569 if (ino1 == ino2) 3570 return ino1_gen == ino2_gen; 3571 3572 while (ino > BTRFS_FIRST_FREE_OBJECTID) { 3573 u64 parent; 3574 u64 parent_gen; 3575 int ret; 3576 3577 fs_path_reset(fs_path); 3578 ret = get_first_ref(root, ino, &parent, &parent_gen, fs_path); 3579 if (ret < 0) 3580 return ret; 3581 if (parent == ino1) 3582 return parent_gen == ino1_gen; 3583 ino = parent; 3584 } 3585 return 0; 3586} 3587 3588/* 3589 * Check if ino ino1 is an ancestor of inode ino2 in the given root for any 3590 * possible path (in case ino2 is not a directory and has multiple hard links). 3591 * Return 1 if true, 0 if false and < 0 on error. 3592 */ 3593static int is_ancestor(struct btrfs_root *root, 3594 const u64 ino1, 3595 const u64 ino1_gen, 3596 const u64 ino2, 3597 struct fs_path *fs_path) 3598{ 3599 bool free_fs_path = false; 3600 int ret = 0; 3601 struct btrfs_path *path = NULL; 3602 struct btrfs_key key; 3603 3604 if (!fs_path) { 3605 fs_path = fs_path_alloc(); 3606 if (!fs_path) 3607 return -ENOMEM; 3608 free_fs_path = true; 3609 } 3610 3611 path = alloc_path_for_send(); 3612 if (!path) { 3613 ret = -ENOMEM; 3614 goto out; 3615 } 3616 3617 key.objectid = ino2; 3618 key.type = BTRFS_INODE_REF_KEY; 3619 key.offset = 0; 3620 3621 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 3622 if (ret < 0) 3623 goto out; 3624 3625 while (true) { 3626 struct extent_buffer *leaf = path->nodes[0]; 3627 int slot = path->slots[0]; 3628 u32 cur_offset = 0; 3629 u32 item_size; 3630 3631 if (slot >= btrfs_header_nritems(leaf)) { 3632 ret = btrfs_next_leaf(root, path); 3633 if (ret < 0) 3634 goto out; 3635 if (ret > 0) 3636 break; 3637 continue; 3638 } 3639 3640 btrfs_item_key_to_cpu(leaf, &key, slot); 3641 if (key.objectid != ino2) 3642 break; 3643 if (key.type != BTRFS_INODE_REF_KEY && 3644 key.type != BTRFS_INODE_EXTREF_KEY) 3645 break; 3646 3647 item_size = btrfs_item_size_nr(leaf, slot); 3648 while (cur_offset < item_size) { 3649 u64 parent; 3650 u64 parent_gen; 3651 3652 if (key.type == BTRFS_INODE_EXTREF_KEY) { 3653 unsigned long ptr; 3654 struct btrfs_inode_extref *extref; 3655 3656 ptr = btrfs_item_ptr_offset(leaf, slot); 3657 extref = (struct btrfs_inode_extref *) 3658 (ptr + cur_offset); 3659 parent = btrfs_inode_extref_parent(leaf, 3660 extref); 3661 cur_offset += sizeof(*extref); 3662 cur_offset += btrfs_inode_extref_name_len(leaf, 3663 extref); 3664 } else { 3665 parent = key.offset; 3666 cur_offset = item_size; 3667 } 3668 3669 ret = get_inode_info(root, parent, NULL, &parent_gen, 3670 NULL, NULL, NULL, NULL); 3671 if (ret < 0) 3672 goto out; 3673 ret = check_ino_in_path(root, ino1, ino1_gen, 3674 parent, parent_gen, fs_path); 3675 if (ret) 3676 goto out; 3677 } 3678 path->slots[0]++; 3679 } 3680 ret = 0; 3681 out: 3682 btrfs_free_path(path); 3683 if (free_fs_path) 3684 fs_path_free(fs_path); 3685 return ret; 3686} 3687 3688static int wait_for_parent_move(struct send_ctx *sctx, 3689 struct recorded_ref *parent_ref, 3690 const bool is_orphan) 3691{ 3692 int ret = 0; 3693 u64 ino = parent_ref->dir; 3694 u64 ino_gen = parent_ref->dir_gen; 3695 u64 parent_ino_before, parent_ino_after; 3696 struct fs_path *path_before = NULL; 3697 struct fs_path *path_after = NULL; 3698 int len1, len2; 3699 3700 path_after = fs_path_alloc(); 3701 path_before = fs_path_alloc(); 3702 if (!path_after || !path_before) { 3703 ret = -ENOMEM; 3704 goto out; 3705 } 3706 3707 /* 3708 * Our current directory inode may not yet be renamed/moved because some 3709 * ancestor (immediate or not) has to be renamed/moved first. So find if 3710 * such ancestor exists and make sure our own rename/move happens after 3711 * that ancestor is processed to avoid path build infinite loops (done 3712 * at get_cur_path()). 3713 */ 3714 while (ino > BTRFS_FIRST_FREE_OBJECTID) { 3715 u64 parent_ino_after_gen; 3716 3717 if (is_waiting_for_move(sctx, ino)) { 3718 /* 3719 * If the current inode is an ancestor of ino in the 3720 * parent root, we need to delay the rename of the 3721 * current inode, otherwise don't delayed the rename 3722 * because we can end up with a circular dependency 3723 * of renames, resulting in some directories never 3724 * getting the respective rename operations issued in 3725 * the send stream or getting into infinite path build 3726 * loops. 3727 */ 3728 ret = is_ancestor(sctx->parent_root, 3729 sctx->cur_ino, sctx->cur_inode_gen, 3730 ino, path_before); 3731 if (ret) 3732 break; 3733 } 3734 3735 fs_path_reset(path_before); 3736 fs_path_reset(path_after); 3737 3738 ret = get_first_ref(sctx->send_root, ino, &parent_ino_after, 3739 &parent_ino_after_gen, path_after); 3740 if (ret < 0) 3741 goto out; 3742 ret = get_first_ref(sctx->parent_root, ino, &parent_ino_before, 3743 NULL, path_before); 3744 if (ret < 0 && ret != -ENOENT) { 3745 goto out; 3746 } else if (ret == -ENOENT) { 3747 ret = 0; 3748 break; 3749 } 3750 3751 len1 = fs_path_len(path_before); 3752 len2 = fs_path_len(path_after); 3753 if (ino > sctx->cur_ino && 3754 (parent_ino_before != parent_ino_after || len1 != len2 || 3755 memcmp(path_before->start, path_after->start, len1))) { 3756 u64 parent_ino_gen; 3757 3758 ret = get_inode_info(sctx->parent_root, ino, NULL, 3759 &parent_ino_gen, NULL, NULL, NULL, 3760 NULL); 3761 if (ret < 0) 3762 goto out; 3763 if (ino_gen == parent_ino_gen) { 3764 ret = 1; 3765 break; 3766 } 3767 } 3768 ino = parent_ino_after; 3769 ino_gen = parent_ino_after_gen; 3770 } 3771 3772out: 3773 fs_path_free(path_before); 3774 fs_path_free(path_after); 3775 3776 if (ret == 1) { 3777 ret = add_pending_dir_move(sctx, 3778 sctx->cur_ino, 3779 sctx->cur_inode_gen, 3780 ino, 3781 &sctx->new_refs, 3782 &sctx->deleted_refs, 3783 is_orphan); 3784 if (!ret) 3785 ret = 1; 3786 } 3787 3788 return ret; 3789} 3790 3791static int update_ref_path(struct send_ctx *sctx, struct recorded_ref *ref) 3792{ 3793 int ret; 3794 struct fs_path *new_path; 3795 3796 /* 3797 * Our reference's name member points to its full_path member string, so 3798 * we use here a new path. 3799 */ 3800 new_path = fs_path_alloc(); 3801 if (!new_path) 3802 return -ENOMEM; 3803 3804 ret = get_cur_path(sctx, ref->dir, ref->dir_gen, new_path); 3805 if (ret < 0) { 3806 fs_path_free(new_path); 3807 return ret; 3808 } 3809 ret = fs_path_add(new_path, ref->name, ref->name_len); 3810 if (ret < 0) { 3811 fs_path_free(new_path); 3812 return ret; 3813 } 3814 3815 fs_path_free(ref->full_path); 3816 set_ref_path(ref, new_path); 3817 3818 return 0; 3819} 3820 3821/* 3822 * When processing the new references for an inode we may orphanize an existing 3823 * directory inode because its old name conflicts with one of the new references 3824 * of the current inode. Later, when processing another new reference of our 3825 * inode, we might need to orphanize another inode, but the path we have in the 3826 * reference reflects the pre-orphanization name of the directory we previously 3827 * orphanized. For example: 3828 * 3829 * parent snapshot looks like: 3830 * 3831 * . (ino 256) 3832 * |----- f1 (ino 257) 3833 * |----- f2 (ino 258) 3834 * |----- d1/ (ino 259) 3835 * |----- d2/ (ino 260) 3836 * 3837 * send snapshot looks like: 3838 * 3839 * . (ino 256) 3840 * |----- d1 (ino 258) 3841 * |----- f2/ (ino 259) 3842 * |----- f2_link/ (ino 260) 3843 * | |----- f1 (ino 257) 3844 * | 3845 * |----- d2 (ino 258) 3846 * 3847 * When processing inode 257 we compute the name for inode 259 as "d1", and we 3848 * cache it in the name cache. Later when we start processing inode 258, when 3849 * collecting all its new references we set a full path of "d1/d2" for its new 3850 * reference with name "d2". When we start processing the new references we 3851 * start by processing the new reference with name "d1", and this results in 3852 * orphanizing inode 259, since its old reference causes a conflict. Then we 3853 * move on the next new reference, with name "d2", and we find out we must 3854 * orphanize inode 260, as its old reference conflicts with ours - but for the 3855 * orphanization we use a source path corresponding to the path we stored in the 3856 * new reference, which is "d1/d2" and not "o259-6-0/d2" - this makes the 3857 * receiver fail since the path component "d1/" no longer exists, it was renamed 3858 * to "o259-6-0/" when processing the previous new reference. So in this case we 3859 * must recompute the path in the new reference and use it for the new 3860 * orphanization operation. 3861 */ 3862static int refresh_ref_path(struct send_ctx *sctx, struct recorded_ref *ref) 3863{ 3864 char *name; 3865 int ret; 3866 3867 name = kmemdup(ref->name, ref->name_len, GFP_KERNEL); 3868 if (!name) 3869 return -ENOMEM; 3870 3871 fs_path_reset(ref->full_path); 3872 ret = get_cur_path(sctx, ref->dir, ref->dir_gen, ref->full_path); 3873 if (ret < 0) 3874 goto out; 3875 3876 ret = fs_path_add(ref->full_path, name, ref->name_len); 3877 if (ret < 0) 3878 goto out; 3879 3880 /* Update the reference's base name pointer. */ 3881 set_ref_path(ref, ref->full_path); 3882out: 3883 kfree(name); 3884 return ret; 3885} 3886 3887/* 3888 * This does all the move/link/unlink/rmdir magic. 3889 */ 3890static int process_recorded_refs(struct send_ctx *sctx, int *pending_move) 3891{ 3892 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 3893 int ret = 0; 3894 struct recorded_ref *cur; 3895 struct recorded_ref *cur2; 3896 struct list_head check_dirs; 3897 struct fs_path *valid_path = NULL; 3898 u64 ow_inode = 0; 3899 u64 ow_gen; 3900 u64 ow_mode; 3901 int did_overwrite = 0; 3902 int is_orphan = 0; 3903 u64 last_dir_ino_rm = 0; 3904 bool can_rename = true; 3905 bool orphanized_dir = false; 3906 bool orphanized_ancestor = false; 3907 3908 btrfs_debug(fs_info, "process_recorded_refs %llu", sctx->cur_ino); 3909 3910 /* 3911 * This should never happen as the root dir always has the same ref 3912 * which is always '..' 3913 */ 3914 BUG_ON(sctx->cur_ino <= BTRFS_FIRST_FREE_OBJECTID); 3915 INIT_LIST_HEAD(&check_dirs); 3916 3917 valid_path = fs_path_alloc(); 3918 if (!valid_path) { 3919 ret = -ENOMEM; 3920 goto out; 3921 } 3922 3923 /* 3924 * First, check if the first ref of the current inode was overwritten 3925 * before. If yes, we know that the current inode was already orphanized 3926 * and thus use the orphan name. If not, we can use get_cur_path to 3927 * get the path of the first ref as it would like while receiving at 3928 * this point in time. 3929 * New inodes are always orphan at the beginning, so force to use the 3930 * orphan name in this case. 3931 * The first ref is stored in valid_path and will be updated if it 3932 * gets moved around. 3933 */ 3934 if (!sctx->cur_inode_new) { 3935 ret = did_overwrite_first_ref(sctx, sctx->cur_ino, 3936 sctx->cur_inode_gen); 3937 if (ret < 0) 3938 goto out; 3939 if (ret) 3940 did_overwrite = 1; 3941 } 3942 if (sctx->cur_inode_new || did_overwrite) { 3943 ret = gen_unique_name(sctx, sctx->cur_ino, 3944 sctx->cur_inode_gen, valid_path); 3945 if (ret < 0) 3946 goto out; 3947 is_orphan = 1; 3948 } else { 3949 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, 3950 valid_path); 3951 if (ret < 0) 3952 goto out; 3953 } 3954 3955 /* 3956 * Before doing any rename and link operations, do a first pass on the 3957 * new references to orphanize any unprocessed inodes that may have a 3958 * reference that conflicts with one of the new references of the current 3959 * inode. This needs to happen first because a new reference may conflict 3960 * with the old reference of a parent directory, so we must make sure 3961 * that the path used for link and rename commands don't use an 3962 * orphanized name when an ancestor was not yet orphanized. 3963 * 3964 * Example: 3965 * 3966 * Parent snapshot: 3967 * 3968 * . (ino 256) 3969 * |----- testdir/ (ino 259) 3970 * | |----- a (ino 257) 3971 * | 3972 * |----- b (ino 258) 3973 * 3974 * Send snapshot: 3975 * 3976 * . (ino 256) 3977 * |----- testdir_2/ (ino 259) 3978 * | |----- a (ino 260) 3979 * | 3980 * |----- testdir (ino 257) 3981 * |----- b (ino 257) 3982 * |----- b2 (ino 258) 3983 * 3984 * Processing the new reference for inode 257 with name "b" may happen 3985 * before processing the new reference with name "testdir". If so, we 3986 * must make sure that by the time we send a link command to create the 3987 * hard link "b", inode 259 was already orphanized, since the generated 3988 * path in "valid_path" already contains the orphanized name for 259. 3989 * We are processing inode 257, so only later when processing 259 we do 3990 * the rename operation to change its temporary (orphanized) name to 3991 * "testdir_2". 3992 */ 3993 list_for_each_entry(cur, &sctx->new_refs, list) { 3994 ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen); 3995 if (ret < 0) 3996 goto out; 3997 if (ret == inode_state_will_create) 3998 continue; 3999 4000 /* 4001 * Check if this new ref would overwrite the first ref of another 4002 * unprocessed inode. If yes, orphanize the overwritten inode. 4003 * If we find an overwritten ref that is not the first ref, 4004 * simply unlink it. 4005 */ 4006 ret = will_overwrite_ref(sctx, cur->dir, cur->dir_gen, 4007 cur->name, cur->name_len, 4008 &ow_inode, &ow_gen, &ow_mode); 4009 if (ret < 0) 4010 goto out; 4011 if (ret) { 4012 ret = is_first_ref(sctx->parent_root, 4013 ow_inode, cur->dir, cur->name, 4014 cur->name_len); 4015 if (ret < 0) 4016 goto out; 4017 if (ret) { 4018 struct name_cache_entry *nce; 4019 struct waiting_dir_move *wdm; 4020 4021 if (orphanized_dir) { 4022 ret = refresh_ref_path(sctx, cur); 4023 if (ret < 0) 4024 goto out; 4025 } 4026 4027 ret = orphanize_inode(sctx, ow_inode, ow_gen, 4028 cur->full_path); 4029 if (ret < 0) 4030 goto out; 4031 if (S_ISDIR(ow_mode)) 4032 orphanized_dir = true; 4033 4034 /* 4035 * If ow_inode has its rename operation delayed 4036 * make sure that its orphanized name is used in 4037 * the source path when performing its rename 4038 * operation. 4039 */ 4040 if (is_waiting_for_move(sctx, ow_inode)) { 4041 wdm = get_waiting_dir_move(sctx, 4042 ow_inode); 4043 ASSERT(wdm); 4044 wdm->orphanized = true; 4045 } 4046 4047 /* 4048 * Make sure we clear our orphanized inode's 4049 * name from the name cache. This is because the 4050 * inode ow_inode might be an ancestor of some 4051 * other inode that will be orphanized as well 4052 * later and has an inode number greater than 4053 * sctx->send_progress. We need to prevent 4054 * future name lookups from using the old name 4055 * and get instead the orphan name. 4056 */ 4057 nce = name_cache_search(sctx, ow_inode, ow_gen); 4058 if (nce) { 4059 name_cache_delete(sctx, nce); 4060 kfree(nce); 4061 } 4062 4063 /* 4064 * ow_inode might currently be an ancestor of 4065 * cur_ino, therefore compute valid_path (the 4066 * current path of cur_ino) again because it 4067 * might contain the pre-orphanization name of 4068 * ow_inode, which is no longer valid. 4069 */ 4070 ret = is_ancestor(sctx->parent_root, 4071 ow_inode, ow_gen, 4072 sctx->cur_ino, NULL); 4073 if (ret > 0) { 4074 orphanized_ancestor = true; 4075 fs_path_reset(valid_path); 4076 ret = get_cur_path(sctx, sctx->cur_ino, 4077 sctx->cur_inode_gen, 4078 valid_path); 4079 } 4080 if (ret < 0) 4081 goto out; 4082 } else { 4083 /* 4084 * If we previously orphanized a directory that 4085 * collided with a new reference that we already 4086 * processed, recompute the current path because 4087 * that directory may be part of the path. 4088 */ 4089 if (orphanized_dir) { 4090 ret = refresh_ref_path(sctx, cur); 4091 if (ret < 0) 4092 goto out; 4093 } 4094 ret = send_unlink(sctx, cur->full_path); 4095 if (ret < 0) 4096 goto out; 4097 } 4098 } 4099 4100 } 4101 4102 list_for_each_entry(cur, &sctx->new_refs, list) { 4103 /* 4104 * We may have refs where the parent directory does not exist 4105 * yet. This happens if the parent directories inum is higher 4106 * than the current inum. To handle this case, we create the 4107 * parent directory out of order. But we need to check if this 4108 * did already happen before due to other refs in the same dir. 4109 */ 4110 ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen); 4111 if (ret < 0) 4112 goto out; 4113 if (ret == inode_state_will_create) { 4114 ret = 0; 4115 /* 4116 * First check if any of the current inodes refs did 4117 * already create the dir. 4118 */ 4119 list_for_each_entry(cur2, &sctx->new_refs, list) { 4120 if (cur == cur2) 4121 break; 4122 if (cur2->dir == cur->dir) { 4123 ret = 1; 4124 break; 4125 } 4126 } 4127 4128 /* 4129 * If that did not happen, check if a previous inode 4130 * did already create the dir. 4131 */ 4132 if (!ret) 4133 ret = did_create_dir(sctx, cur->dir); 4134 if (ret < 0) 4135 goto out; 4136 if (!ret) { 4137 ret = send_create_inode(sctx, cur->dir); 4138 if (ret < 0) 4139 goto out; 4140 } 4141 } 4142 4143 if (S_ISDIR(sctx->cur_inode_mode) && sctx->parent_root) { 4144 ret = wait_for_dest_dir_move(sctx, cur, is_orphan); 4145 if (ret < 0) 4146 goto out; 4147 if (ret == 1) { 4148 can_rename = false; 4149 *pending_move = 1; 4150 } 4151 } 4152 4153 if (S_ISDIR(sctx->cur_inode_mode) && sctx->parent_root && 4154 can_rename) { 4155 ret = wait_for_parent_move(sctx, cur, is_orphan); 4156 if (ret < 0) 4157 goto out; 4158 if (ret == 1) { 4159 can_rename = false; 4160 *pending_move = 1; 4161 } 4162 } 4163 4164 /* 4165 * link/move the ref to the new place. If we have an orphan 4166 * inode, move it and update valid_path. If not, link or move 4167 * it depending on the inode mode. 4168 */ 4169 if (is_orphan && can_rename) { 4170 ret = send_rename(sctx, valid_path, cur->full_path); 4171 if (ret < 0) 4172 goto out; 4173 is_orphan = 0; 4174 ret = fs_path_copy(valid_path, cur->full_path); 4175 if (ret < 0) 4176 goto out; 4177 } else if (can_rename) { 4178 if (S_ISDIR(sctx->cur_inode_mode)) { 4179 /* 4180 * Dirs can't be linked, so move it. For moved 4181 * dirs, we always have one new and one deleted 4182 * ref. The deleted ref is ignored later. 4183 */ 4184 ret = send_rename(sctx, valid_path, 4185 cur->full_path); 4186 if (!ret) 4187 ret = fs_path_copy(valid_path, 4188 cur->full_path); 4189 if (ret < 0) 4190 goto out; 4191 } else { 4192 /* 4193 * We might have previously orphanized an inode 4194 * which is an ancestor of our current inode, 4195 * so our reference's full path, which was 4196 * computed before any such orphanizations, must 4197 * be updated. 4198 */ 4199 if (orphanized_dir) { 4200 ret = update_ref_path(sctx, cur); 4201 if (ret < 0) 4202 goto out; 4203 } 4204 ret = send_link(sctx, cur->full_path, 4205 valid_path); 4206 if (ret < 0) 4207 goto out; 4208 } 4209 } 4210 ret = dup_ref(cur, &check_dirs); 4211 if (ret < 0) 4212 goto out; 4213 } 4214 4215 if (S_ISDIR(sctx->cur_inode_mode) && sctx->cur_inode_deleted) { 4216 /* 4217 * Check if we can already rmdir the directory. If not, 4218 * orphanize it. For every dir item inside that gets deleted 4219 * later, we do this check again and rmdir it then if possible. 4220 * See the use of check_dirs for more details. 4221 */ 4222 ret = can_rmdir(sctx, sctx->cur_ino, sctx->cur_inode_gen, 4223 sctx->cur_ino); 4224 if (ret < 0) 4225 goto out; 4226 if (ret) { 4227 ret = send_rmdir(sctx, valid_path); 4228 if (ret < 0) 4229 goto out; 4230 } else if (!is_orphan) { 4231 ret = orphanize_inode(sctx, sctx->cur_ino, 4232 sctx->cur_inode_gen, valid_path); 4233 if (ret < 0) 4234 goto out; 4235 is_orphan = 1; 4236 } 4237 4238 list_for_each_entry(cur, &sctx->deleted_refs, list) { 4239 ret = dup_ref(cur, &check_dirs); 4240 if (ret < 0) 4241 goto out; 4242 } 4243 } else if (S_ISDIR(sctx->cur_inode_mode) && 4244 !list_empty(&sctx->deleted_refs)) { 4245 /* 4246 * We have a moved dir. Add the old parent to check_dirs 4247 */ 4248 cur = list_entry(sctx->deleted_refs.next, struct recorded_ref, 4249 list); 4250 ret = dup_ref(cur, &check_dirs); 4251 if (ret < 0) 4252 goto out; 4253 } else if (!S_ISDIR(sctx->cur_inode_mode)) { 4254 /* 4255 * We have a non dir inode. Go through all deleted refs and 4256 * unlink them if they were not already overwritten by other 4257 * inodes. 4258 */ 4259 list_for_each_entry(cur, &sctx->deleted_refs, list) { 4260 ret = did_overwrite_ref(sctx, cur->dir, cur->dir_gen, 4261 sctx->cur_ino, sctx->cur_inode_gen, 4262 cur->name, cur->name_len); 4263 if (ret < 0) 4264 goto out; 4265 if (!ret) { 4266 /* 4267 * If we orphanized any ancestor before, we need 4268 * to recompute the full path for deleted names, 4269 * since any such path was computed before we 4270 * processed any references and orphanized any 4271 * ancestor inode. 4272 */ 4273 if (orphanized_ancestor) { 4274 ret = update_ref_path(sctx, cur); 4275 if (ret < 0) 4276 goto out; 4277 } 4278 ret = send_unlink(sctx, cur->full_path); 4279 if (ret < 0) 4280 goto out; 4281 } 4282 ret = dup_ref(cur, &check_dirs); 4283 if (ret < 0) 4284 goto out; 4285 } 4286 /* 4287 * If the inode is still orphan, unlink the orphan. This may 4288 * happen when a previous inode did overwrite the first ref 4289 * of this inode and no new refs were added for the current 4290 * inode. Unlinking does not mean that the inode is deleted in 4291 * all cases. There may still be links to this inode in other 4292 * places. 4293 */ 4294 if (is_orphan) { 4295 ret = send_unlink(sctx, valid_path); 4296 if (ret < 0) 4297 goto out; 4298 } 4299 } 4300 4301 /* 4302 * We did collect all parent dirs where cur_inode was once located. We 4303 * now go through all these dirs and check if they are pending for 4304 * deletion and if it's finally possible to perform the rmdir now. 4305 * We also update the inode stats of the parent dirs here. 4306 */ 4307 list_for_each_entry(cur, &check_dirs, list) { 4308 /* 4309 * In case we had refs into dirs that were not processed yet, 4310 * we don't need to do the utime and rmdir logic for these dirs. 4311 * The dir will be processed later. 4312 */ 4313 if (cur->dir > sctx->cur_ino) 4314 continue; 4315 4316 ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen); 4317 if (ret < 0) 4318 goto out; 4319 4320 if (ret == inode_state_did_create || 4321 ret == inode_state_no_change) { 4322 /* TODO delayed utimes */ 4323 ret = send_utimes(sctx, cur->dir, cur->dir_gen); 4324 if (ret < 0) 4325 goto out; 4326 } else if (ret == inode_state_did_delete && 4327 cur->dir != last_dir_ino_rm) { 4328 ret = can_rmdir(sctx, cur->dir, cur->dir_gen, 4329 sctx->cur_ino); 4330 if (ret < 0) 4331 goto out; 4332 if (ret) { 4333 ret = get_cur_path(sctx, cur->dir, 4334 cur->dir_gen, valid_path); 4335 if (ret < 0) 4336 goto out; 4337 ret = send_rmdir(sctx, valid_path); 4338 if (ret < 0) 4339 goto out; 4340 last_dir_ino_rm = cur->dir; 4341 } 4342 } 4343 } 4344 4345 ret = 0; 4346 4347out: 4348 __free_recorded_refs(&check_dirs); 4349 free_recorded_refs(sctx); 4350 fs_path_free(valid_path); 4351 return ret; 4352} 4353 4354static int record_ref(struct btrfs_root *root, u64 dir, struct fs_path *name, 4355 void *ctx, struct list_head *refs) 4356{ 4357 int ret = 0; 4358 struct send_ctx *sctx = ctx; 4359 struct fs_path *p; 4360 u64 gen; 4361 4362 p = fs_path_alloc(); 4363 if (!p) 4364 return -ENOMEM; 4365 4366 ret = get_inode_info(root, dir, NULL, &gen, NULL, NULL, 4367 NULL, NULL); 4368 if (ret < 0) 4369 goto out; 4370 4371 ret = get_cur_path(sctx, dir, gen, p); 4372 if (ret < 0) 4373 goto out; 4374 ret = fs_path_add_path(p, name); 4375 if (ret < 0) 4376 goto out; 4377 4378 ret = __record_ref(refs, dir, gen, p); 4379 4380out: 4381 if (ret) 4382 fs_path_free(p); 4383 return ret; 4384} 4385 4386static int __record_new_ref(int num, u64 dir, int index, 4387 struct fs_path *name, 4388 void *ctx) 4389{ 4390 struct send_ctx *sctx = ctx; 4391 return record_ref(sctx->send_root, dir, name, ctx, &sctx->new_refs); 4392} 4393 4394 4395static int __record_deleted_ref(int num, u64 dir, int index, 4396 struct fs_path *name, 4397 void *ctx) 4398{ 4399 struct send_ctx *sctx = ctx; 4400 return record_ref(sctx->parent_root, dir, name, ctx, 4401 &sctx->deleted_refs); 4402} 4403 4404static int record_new_ref(struct send_ctx *sctx) 4405{ 4406 int ret; 4407 4408 ret = iterate_inode_ref(sctx->send_root, sctx->left_path, 4409 sctx->cmp_key, 0, __record_new_ref, sctx); 4410 if (ret < 0) 4411 goto out; 4412 ret = 0; 4413 4414out: 4415 return ret; 4416} 4417 4418static int record_deleted_ref(struct send_ctx *sctx) 4419{ 4420 int ret; 4421 4422 ret = iterate_inode_ref(sctx->parent_root, sctx->right_path, 4423 sctx->cmp_key, 0, __record_deleted_ref, sctx); 4424 if (ret < 0) 4425 goto out; 4426 ret = 0; 4427 4428out: 4429 return ret; 4430} 4431 4432struct find_ref_ctx { 4433 u64 dir; 4434 u64 dir_gen; 4435 struct btrfs_root *root; 4436 struct fs_path *name; 4437 int found_idx; 4438}; 4439 4440static int __find_iref(int num, u64 dir, int index, 4441 struct fs_path *name, 4442 void *ctx_) 4443{ 4444 struct find_ref_ctx *ctx = ctx_; 4445 u64 dir_gen; 4446 int ret; 4447 4448 if (dir == ctx->dir && fs_path_len(name) == fs_path_len(ctx->name) && 4449 strncmp(name->start, ctx->name->start, fs_path_len(name)) == 0) { 4450 /* 4451 * To avoid doing extra lookups we'll only do this if everything 4452 * else matches. 4453 */ 4454 ret = get_inode_info(ctx->root, dir, NULL, &dir_gen, NULL, 4455 NULL, NULL, NULL); 4456 if (ret) 4457 return ret; 4458 if (dir_gen != ctx->dir_gen) 4459 return 0; 4460 ctx->found_idx = num; 4461 return 1; 4462 } 4463 return 0; 4464} 4465 4466static int find_iref(struct btrfs_root *root, 4467 struct btrfs_path *path, 4468 struct btrfs_key *key, 4469 u64 dir, u64 dir_gen, struct fs_path *name) 4470{ 4471 int ret; 4472 struct find_ref_ctx ctx; 4473 4474 ctx.dir = dir; 4475 ctx.name = name; 4476 ctx.dir_gen = dir_gen; 4477 ctx.found_idx = -1; 4478 ctx.root = root; 4479 4480 ret = iterate_inode_ref(root, path, key, 0, __find_iref, &ctx); 4481 if (ret < 0) 4482 return ret; 4483 4484 if (ctx.found_idx == -1) 4485 return -ENOENT; 4486 4487 return ctx.found_idx; 4488} 4489 4490static int __record_changed_new_ref(int num, u64 dir, int index, 4491 struct fs_path *name, 4492 void *ctx) 4493{ 4494 u64 dir_gen; 4495 int ret; 4496 struct send_ctx *sctx = ctx; 4497 4498 ret = get_inode_info(sctx->send_root, dir, NULL, &dir_gen, NULL, 4499 NULL, NULL, NULL); 4500 if (ret) 4501 return ret; 4502 4503 ret = find_iref(sctx->parent_root, sctx->right_path, 4504 sctx->cmp_key, dir, dir_gen, name); 4505 if (ret == -ENOENT) 4506 ret = __record_new_ref(num, dir, index, name, sctx); 4507 else if (ret > 0) 4508 ret = 0; 4509 4510 return ret; 4511} 4512 4513static int __record_changed_deleted_ref(int num, u64 dir, int index, 4514 struct fs_path *name, 4515 void *ctx) 4516{ 4517 u64 dir_gen; 4518 int ret; 4519 struct send_ctx *sctx = ctx; 4520 4521 ret = get_inode_info(sctx->parent_root, dir, NULL, &dir_gen, NULL, 4522 NULL, NULL, NULL); 4523 if (ret) 4524 return ret; 4525 4526 ret = find_iref(sctx->send_root, sctx->left_path, sctx->cmp_key, 4527 dir, dir_gen, name); 4528 if (ret == -ENOENT) 4529 ret = __record_deleted_ref(num, dir, index, name, sctx); 4530 else if (ret > 0) 4531 ret = 0; 4532 4533 return ret; 4534} 4535 4536static int record_changed_ref(struct send_ctx *sctx) 4537{ 4538 int ret = 0; 4539 4540 ret = iterate_inode_ref(sctx->send_root, sctx->left_path, 4541 sctx->cmp_key, 0, __record_changed_new_ref, sctx); 4542 if (ret < 0) 4543 goto out; 4544 ret = iterate_inode_ref(sctx->parent_root, sctx->right_path, 4545 sctx->cmp_key, 0, __record_changed_deleted_ref, sctx); 4546 if (ret < 0) 4547 goto out; 4548 ret = 0; 4549 4550out: 4551 return ret; 4552} 4553 4554/* 4555 * Record and process all refs at once. Needed when an inode changes the 4556 * generation number, which means that it was deleted and recreated. 4557 */ 4558static int process_all_refs(struct send_ctx *sctx, 4559 enum btrfs_compare_tree_result cmd) 4560{ 4561 int ret; 4562 struct btrfs_root *root; 4563 struct btrfs_path *path; 4564 struct btrfs_key key; 4565 struct btrfs_key found_key; 4566 struct extent_buffer *eb; 4567 int slot; 4568 iterate_inode_ref_t cb; 4569 int pending_move = 0; 4570 4571 path = alloc_path_for_send(); 4572 if (!path) 4573 return -ENOMEM; 4574 4575 if (cmd == BTRFS_COMPARE_TREE_NEW) { 4576 root = sctx->send_root; 4577 cb = __record_new_ref; 4578 } else if (cmd == BTRFS_COMPARE_TREE_DELETED) { 4579 root = sctx->parent_root; 4580 cb = __record_deleted_ref; 4581 } else { 4582 btrfs_err(sctx->send_root->fs_info, 4583 "Wrong command %d in process_all_refs", cmd); 4584 ret = -EINVAL; 4585 goto out; 4586 } 4587 4588 key.objectid = sctx->cmp_key->objectid; 4589 key.type = BTRFS_INODE_REF_KEY; 4590 key.offset = 0; 4591 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 4592 if (ret < 0) 4593 goto out; 4594 4595 while (1) { 4596 eb = path->nodes[0]; 4597 slot = path->slots[0]; 4598 if (slot >= btrfs_header_nritems(eb)) { 4599 ret = btrfs_next_leaf(root, path); 4600 if (ret < 0) 4601 goto out; 4602 else if (ret > 0) 4603 break; 4604 continue; 4605 } 4606 4607 btrfs_item_key_to_cpu(eb, &found_key, slot); 4608 4609 if (found_key.objectid != key.objectid || 4610 (found_key.type != BTRFS_INODE_REF_KEY && 4611 found_key.type != BTRFS_INODE_EXTREF_KEY)) 4612 break; 4613 4614 ret = iterate_inode_ref(root, path, &found_key, 0, cb, sctx); 4615 if (ret < 0) 4616 goto out; 4617 4618 path->slots[0]++; 4619 } 4620 btrfs_release_path(path); 4621 4622 /* 4623 * We don't actually care about pending_move as we are simply 4624 * re-creating this inode and will be rename'ing it into place once we 4625 * rename the parent directory. 4626 */ 4627 ret = process_recorded_refs(sctx, &pending_move); 4628out: 4629 btrfs_free_path(path); 4630 return ret; 4631} 4632 4633static int send_set_xattr(struct send_ctx *sctx, 4634 struct fs_path *path, 4635 const char *name, int name_len, 4636 const char *data, int data_len) 4637{ 4638 int ret = 0; 4639 4640 ret = begin_cmd(sctx, BTRFS_SEND_C_SET_XATTR); 4641 if (ret < 0) 4642 goto out; 4643 4644 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path); 4645 TLV_PUT_STRING(sctx, BTRFS_SEND_A_XATTR_NAME, name, name_len); 4646 TLV_PUT(sctx, BTRFS_SEND_A_XATTR_DATA, data, data_len); 4647 4648 ret = send_cmd(sctx); 4649 4650tlv_put_failure: 4651out: 4652 return ret; 4653} 4654 4655static int send_remove_xattr(struct send_ctx *sctx, 4656 struct fs_path *path, 4657 const char *name, int name_len) 4658{ 4659 int ret = 0; 4660 4661 ret = begin_cmd(sctx, BTRFS_SEND_C_REMOVE_XATTR); 4662 if (ret < 0) 4663 goto out; 4664 4665 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path); 4666 TLV_PUT_STRING(sctx, BTRFS_SEND_A_XATTR_NAME, name, name_len); 4667 4668 ret = send_cmd(sctx); 4669 4670tlv_put_failure: 4671out: 4672 return ret; 4673} 4674 4675static int __process_new_xattr(int num, struct btrfs_key *di_key, 4676 const char *name, int name_len, 4677 const char *data, int data_len, 4678 u8 type, void *ctx) 4679{ 4680 int ret; 4681 struct send_ctx *sctx = ctx; 4682 struct fs_path *p; 4683 struct posix_acl_xattr_header dummy_acl; 4684 4685 /* Capabilities are emitted by finish_inode_if_needed */ 4686 if (!strncmp(name, XATTR_NAME_CAPS, name_len)) 4687 return 0; 4688 4689 p = fs_path_alloc(); 4690 if (!p) 4691 return -ENOMEM; 4692 4693 /* 4694 * This hack is needed because empty acls are stored as zero byte 4695 * data in xattrs. Problem with that is, that receiving these zero byte 4696 * acls will fail later. To fix this, we send a dummy acl list that 4697 * only contains the version number and no entries. 4698 */ 4699 if (!strncmp(name, XATTR_NAME_POSIX_ACL_ACCESS, name_len) || 4700 !strncmp(name, XATTR_NAME_POSIX_ACL_DEFAULT, name_len)) { 4701 if (data_len == 0) { 4702 dummy_acl.a_version = 4703 cpu_to_le32(POSIX_ACL_XATTR_VERSION); 4704 data = (char *)&dummy_acl; 4705 data_len = sizeof(dummy_acl); 4706 } 4707 } 4708 4709 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p); 4710 if (ret < 0) 4711 goto out; 4712 4713 ret = send_set_xattr(sctx, p, name, name_len, data, data_len); 4714 4715out: 4716 fs_path_free(p); 4717 return ret; 4718} 4719 4720static int __process_deleted_xattr(int num, struct btrfs_key *di_key, 4721 const char *name, int name_len, 4722 const char *data, int data_len, 4723 u8 type, void *ctx) 4724{ 4725 int ret; 4726 struct send_ctx *sctx = ctx; 4727 struct fs_path *p; 4728 4729 p = fs_path_alloc(); 4730 if (!p) 4731 return -ENOMEM; 4732 4733 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p); 4734 if (ret < 0) 4735 goto out; 4736 4737 ret = send_remove_xattr(sctx, p, name, name_len); 4738 4739out: 4740 fs_path_free(p); 4741 return ret; 4742} 4743 4744static int process_new_xattr(struct send_ctx *sctx) 4745{ 4746 int ret = 0; 4747 4748 ret = iterate_dir_item(sctx->send_root, sctx->left_path, 4749 __process_new_xattr, sctx); 4750 4751 return ret; 4752} 4753 4754static int process_deleted_xattr(struct send_ctx *sctx) 4755{ 4756 return iterate_dir_item(sctx->parent_root, sctx->right_path, 4757 __process_deleted_xattr, sctx); 4758} 4759 4760struct find_xattr_ctx { 4761 const char *name; 4762 int name_len; 4763 int found_idx; 4764 char *found_data; 4765 int found_data_len; 4766}; 4767 4768static int __find_xattr(int num, struct btrfs_key *di_key, 4769 const char *name, int name_len, 4770 const char *data, int data_len, 4771 u8 type, void *vctx) 4772{ 4773 struct find_xattr_ctx *ctx = vctx; 4774 4775 if (name_len == ctx->name_len && 4776 strncmp(name, ctx->name, name_len) == 0) { 4777 ctx->found_idx = num; 4778 ctx->found_data_len = data_len; 4779 ctx->found_data = kmemdup(data, data_len, GFP_KERNEL); 4780 if (!ctx->found_data) 4781 return -ENOMEM; 4782 return 1; 4783 } 4784 return 0; 4785} 4786 4787static int find_xattr(struct btrfs_root *root, 4788 struct btrfs_path *path, 4789 struct btrfs_key *key, 4790 const char *name, int name_len, 4791 char **data, int *data_len) 4792{ 4793 int ret; 4794 struct find_xattr_ctx ctx; 4795 4796 ctx.name = name; 4797 ctx.name_len = name_len; 4798 ctx.found_idx = -1; 4799 ctx.found_data = NULL; 4800 ctx.found_data_len = 0; 4801 4802 ret = iterate_dir_item(root, path, __find_xattr, &ctx); 4803 if (ret < 0) 4804 return ret; 4805 4806 if (ctx.found_idx == -1) 4807 return -ENOENT; 4808 if (data) { 4809 *data = ctx.found_data; 4810 *data_len = ctx.found_data_len; 4811 } else { 4812 kfree(ctx.found_data); 4813 } 4814 return ctx.found_idx; 4815} 4816 4817 4818static int __process_changed_new_xattr(int num, struct btrfs_key *di_key, 4819 const char *name, int name_len, 4820 const char *data, int data_len, 4821 u8 type, void *ctx) 4822{ 4823 int ret; 4824 struct send_ctx *sctx = ctx; 4825 char *found_data = NULL; 4826 int found_data_len = 0; 4827 4828 ret = find_xattr(sctx->parent_root, sctx->right_path, 4829 sctx->cmp_key, name, name_len, &found_data, 4830 &found_data_len); 4831 if (ret == -ENOENT) { 4832 ret = __process_new_xattr(num, di_key, name, name_len, data, 4833 data_len, type, ctx); 4834 } else if (ret >= 0) { 4835 if (data_len != found_data_len || 4836 memcmp(data, found_data, data_len)) { 4837 ret = __process_new_xattr(num, di_key, name, name_len, 4838 data, data_len, type, ctx); 4839 } else { 4840 ret = 0; 4841 } 4842 } 4843 4844 kfree(found_data); 4845 return ret; 4846} 4847 4848static int __process_changed_deleted_xattr(int num, struct btrfs_key *di_key, 4849 const char *name, int name_len, 4850 const char *data, int data_len, 4851 u8 type, void *ctx) 4852{ 4853 int ret; 4854 struct send_ctx *sctx = ctx; 4855 4856 ret = find_xattr(sctx->send_root, sctx->left_path, sctx->cmp_key, 4857 name, name_len, NULL, NULL); 4858 if (ret == -ENOENT) 4859 ret = __process_deleted_xattr(num, di_key, name, name_len, data, 4860 data_len, type, ctx); 4861 else if (ret >= 0) 4862 ret = 0; 4863 4864 return ret; 4865} 4866 4867static int process_changed_xattr(struct send_ctx *sctx) 4868{ 4869 int ret = 0; 4870 4871 ret = iterate_dir_item(sctx->send_root, sctx->left_path, 4872 __process_changed_new_xattr, sctx); 4873 if (ret < 0) 4874 goto out; 4875 ret = iterate_dir_item(sctx->parent_root, sctx->right_path, 4876 __process_changed_deleted_xattr, sctx); 4877 4878out: 4879 return ret; 4880} 4881 4882static int process_all_new_xattrs(struct send_ctx *sctx) 4883{ 4884 int ret; 4885 struct btrfs_root *root; 4886 struct btrfs_path *path; 4887 struct btrfs_key key; 4888 struct btrfs_key found_key; 4889 struct extent_buffer *eb; 4890 int slot; 4891 4892 path = alloc_path_for_send(); 4893 if (!path) 4894 return -ENOMEM; 4895 4896 root = sctx->send_root; 4897 4898 key.objectid = sctx->cmp_key->objectid; 4899 key.type = BTRFS_XATTR_ITEM_KEY; 4900 key.offset = 0; 4901 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 4902 if (ret < 0) 4903 goto out; 4904 4905 while (1) { 4906 eb = path->nodes[0]; 4907 slot = path->slots[0]; 4908 if (slot >= btrfs_header_nritems(eb)) { 4909 ret = btrfs_next_leaf(root, path); 4910 if (ret < 0) { 4911 goto out; 4912 } else if (ret > 0) { 4913 ret = 0; 4914 break; 4915 } 4916 continue; 4917 } 4918 4919 btrfs_item_key_to_cpu(eb, &found_key, slot); 4920 if (found_key.objectid != key.objectid || 4921 found_key.type != key.type) { 4922 ret = 0; 4923 goto out; 4924 } 4925 4926 ret = iterate_dir_item(root, path, __process_new_xattr, sctx); 4927 if (ret < 0) 4928 goto out; 4929 4930 path->slots[0]++; 4931 } 4932 4933out: 4934 btrfs_free_path(path); 4935 return ret; 4936} 4937 4938static inline u64 max_send_read_size(const struct send_ctx *sctx) 4939{ 4940 return sctx->send_max_size - SZ_16K; 4941} 4942 4943static int put_data_header(struct send_ctx *sctx, u32 len) 4944{ 4945 struct btrfs_tlv_header *hdr; 4946 4947 if (sctx->send_max_size - sctx->send_size < sizeof(*hdr) + len) 4948 return -EOVERFLOW; 4949 hdr = (struct btrfs_tlv_header *)(sctx->send_buf + sctx->send_size); 4950 put_unaligned_le16(BTRFS_SEND_A_DATA, &hdr->tlv_type); 4951 put_unaligned_le16(len, &hdr->tlv_len); 4952 sctx->send_size += sizeof(*hdr); 4953 return 0; 4954} 4955 4956static int put_file_data(struct send_ctx *sctx, u64 offset, u32 len) 4957{ 4958 struct btrfs_root *root = sctx->send_root; 4959 struct btrfs_fs_info *fs_info = root->fs_info; 4960 struct inode *inode; 4961 struct page *page; 4962 char *addr; 4963 pgoff_t index = offset >> PAGE_SHIFT; 4964 pgoff_t last_index; 4965 unsigned pg_offset = offset_in_page(offset); 4966 int ret; 4967 4968 ret = put_data_header(sctx, len); 4969 if (ret) 4970 return ret; 4971 4972 inode = btrfs_iget(fs_info->sb, sctx->cur_ino, root); 4973 if (IS_ERR(inode)) 4974 return PTR_ERR(inode); 4975 4976 last_index = (offset + len - 1) >> PAGE_SHIFT; 4977 4978 /* initial readahead */ 4979 memset(&sctx->ra, 0, sizeof(struct file_ra_state)); 4980 file_ra_state_init(&sctx->ra, inode->i_mapping); 4981 4982 while (index <= last_index) { 4983 unsigned cur_len = min_t(unsigned, len, 4984 PAGE_SIZE - pg_offset); 4985 4986 page = find_lock_page(inode->i_mapping, index); 4987 if (!page) { 4988 page_cache_sync_readahead(inode->i_mapping, &sctx->ra, 4989 NULL, index, last_index + 1 - index); 4990 4991 page = find_or_create_page(inode->i_mapping, index, 4992 GFP_KERNEL); 4993 if (!page) { 4994 ret = -ENOMEM; 4995 break; 4996 } 4997 } 4998 4999 if (PageReadahead(page)) { 5000 page_cache_async_readahead(inode->i_mapping, &sctx->ra, 5001 NULL, page, index, last_index + 1 - index); 5002 } 5003 5004 if (!PageUptodate(page)) { 5005 btrfs_readpage(NULL, page); 5006 lock_page(page); 5007 if (!PageUptodate(page)) { 5008 unlock_page(page); 5009 btrfs_err(fs_info, 5010 "send: IO error at offset %llu for inode %llu root %llu", 5011 page_offset(page), sctx->cur_ino, 5012 sctx->send_root->root_key.objectid); 5013 put_page(page); 5014 ret = -EIO; 5015 break; 5016 } 5017 } 5018 5019 addr = kmap(page); 5020 memcpy(sctx->send_buf + sctx->send_size, addr + pg_offset, 5021 cur_len); 5022 kunmap(page); 5023 unlock_page(page); 5024 put_page(page); 5025 index++; 5026 pg_offset = 0; 5027 len -= cur_len; 5028 sctx->send_size += cur_len; 5029 } 5030 iput(inode); 5031 return ret; 5032} 5033 5034/* 5035 * Read some bytes from the current inode/file and send a write command to 5036 * user space. 5037 */ 5038static int send_write(struct send_ctx *sctx, u64 offset, u32 len) 5039{ 5040 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 5041 int ret = 0; 5042 struct fs_path *p; 5043 5044 p = fs_path_alloc(); 5045 if (!p) 5046 return -ENOMEM; 5047 5048 btrfs_debug(fs_info, "send_write offset=%llu, len=%d", offset, len); 5049 5050 ret = begin_cmd(sctx, BTRFS_SEND_C_WRITE); 5051 if (ret < 0) 5052 goto out; 5053 5054 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p); 5055 if (ret < 0) 5056 goto out; 5057 5058 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 5059 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset); 5060 ret = put_file_data(sctx, offset, len); 5061 if (ret < 0) 5062 goto out; 5063 5064 ret = send_cmd(sctx); 5065 5066tlv_put_failure: 5067out: 5068 fs_path_free(p); 5069 return ret; 5070} 5071 5072/* 5073 * Send a clone command to user space. 5074 */ 5075static int send_clone(struct send_ctx *sctx, 5076 u64 offset, u32 len, 5077 struct clone_root *clone_root) 5078{ 5079 int ret = 0; 5080 struct fs_path *p; 5081 u64 gen; 5082 5083 btrfs_debug(sctx->send_root->fs_info, 5084 "send_clone offset=%llu, len=%d, clone_root=%llu, clone_inode=%llu, clone_offset=%llu", 5085 offset, len, clone_root->root->root_key.objectid, 5086 clone_root->ino, clone_root->offset); 5087 5088 p = fs_path_alloc(); 5089 if (!p) 5090 return -ENOMEM; 5091 5092 ret = begin_cmd(sctx, BTRFS_SEND_C_CLONE); 5093 if (ret < 0) 5094 goto out; 5095 5096 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p); 5097 if (ret < 0) 5098 goto out; 5099 5100 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset); 5101 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_LEN, len); 5102 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 5103 5104 if (clone_root->root == sctx->send_root) { 5105 ret = get_inode_info(sctx->send_root, clone_root->ino, NULL, 5106 &gen, NULL, NULL, NULL, NULL); 5107 if (ret < 0) 5108 goto out; 5109 ret = get_cur_path(sctx, clone_root->ino, gen, p); 5110 } else { 5111 ret = get_inode_path(clone_root->root, clone_root->ino, p); 5112 } 5113 if (ret < 0) 5114 goto out; 5115 5116 /* 5117 * If the parent we're using has a received_uuid set then use that as 5118 * our clone source as that is what we will look for when doing a 5119 * receive. 5120 * 5121 * This covers the case that we create a snapshot off of a received 5122 * subvolume and then use that as the parent and try to receive on a 5123 * different host. 5124 */ 5125 if (!btrfs_is_empty_uuid(clone_root->root->root_item.received_uuid)) 5126 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID, 5127 clone_root->root->root_item.received_uuid); 5128 else 5129 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID, 5130 clone_root->root->root_item.uuid); 5131 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_CTRANSID, 5132 le64_to_cpu(clone_root->root->root_item.ctransid)); 5133 TLV_PUT_PATH(sctx, BTRFS_SEND_A_CLONE_PATH, p); 5134 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_OFFSET, 5135 clone_root->offset); 5136 5137 ret = send_cmd(sctx); 5138 5139tlv_put_failure: 5140out: 5141 fs_path_free(p); 5142 return ret; 5143} 5144 5145/* 5146 * Send an update extent command to user space. 5147 */ 5148static int send_update_extent(struct send_ctx *sctx, 5149 u64 offset, u32 len) 5150{ 5151 int ret = 0; 5152 struct fs_path *p; 5153 5154 p = fs_path_alloc(); 5155 if (!p) 5156 return -ENOMEM; 5157 5158 ret = begin_cmd(sctx, BTRFS_SEND_C_UPDATE_EXTENT); 5159 if (ret < 0) 5160 goto out; 5161 5162 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p); 5163 if (ret < 0) 5164 goto out; 5165 5166 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 5167 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset); 5168 TLV_PUT_U64(sctx, BTRFS_SEND_A_SIZE, len); 5169 5170 ret = send_cmd(sctx); 5171 5172tlv_put_failure: 5173out: 5174 fs_path_free(p); 5175 return ret; 5176} 5177 5178static int send_hole(struct send_ctx *sctx, u64 end) 5179{ 5180 struct fs_path *p = NULL; 5181 u64 read_size = max_send_read_size(sctx); 5182 u64 offset = sctx->cur_inode_last_extent; 5183 int ret = 0; 5184 5185 /* 5186 * A hole that starts at EOF or beyond it. Since we do not yet support 5187 * fallocate (for extent preallocation and hole punching), sending a 5188 * write of zeroes starting at EOF or beyond would later require issuing 5189 * a truncate operation which would undo the write and achieve nothing. 5190 */ 5191 if (offset >= sctx->cur_inode_size) 5192 return 0; 5193 5194 /* 5195 * Don't go beyond the inode's i_size due to prealloc extents that start 5196 * after the i_size. 5197 */ 5198 end = min_t(u64, end, sctx->cur_inode_size); 5199 5200 if (sctx->flags & BTRFS_SEND_FLAG_NO_FILE_DATA) 5201 return send_update_extent(sctx, offset, end - offset); 5202 5203 p = fs_path_alloc(); 5204 if (!p) 5205 return -ENOMEM; 5206 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p); 5207 if (ret < 0) 5208 goto tlv_put_failure; 5209 while (offset < end) { 5210 u64 len = min(end - offset, read_size); 5211 5212 ret = begin_cmd(sctx, BTRFS_SEND_C_WRITE); 5213 if (ret < 0) 5214 break; 5215 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 5216 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset); 5217 ret = put_data_header(sctx, len); 5218 if (ret < 0) 5219 break; 5220 memset(sctx->send_buf + sctx->send_size, 0, len); 5221 sctx->send_size += len; 5222 ret = send_cmd(sctx); 5223 if (ret < 0) 5224 break; 5225 offset += len; 5226 } 5227 sctx->cur_inode_next_write_offset = offset; 5228tlv_put_failure: 5229 fs_path_free(p); 5230 return ret; 5231} 5232 5233static int send_extent_data(struct send_ctx *sctx, 5234 const u64 offset, 5235 const u64 len) 5236{ 5237 u64 read_size = max_send_read_size(sctx); 5238 u64 sent = 0; 5239 5240 if (sctx->flags & BTRFS_SEND_FLAG_NO_FILE_DATA) 5241 return send_update_extent(sctx, offset, len); 5242 5243 while (sent < len) { 5244 u64 size = min(len - sent, read_size); 5245 int ret; 5246 5247 ret = send_write(sctx, offset + sent, size); 5248 if (ret < 0) 5249 return ret; 5250 sent += size; 5251 } 5252 return 0; 5253} 5254 5255/* 5256 * Search for a capability xattr related to sctx->cur_ino. If the capability is 5257 * found, call send_set_xattr function to emit it. 5258 * 5259 * Return 0 if there isn't a capability, or when the capability was emitted 5260 * successfully, or < 0 if an error occurred. 5261 */ 5262static int send_capabilities(struct send_ctx *sctx) 5263{ 5264 struct fs_path *fspath = NULL; 5265 struct btrfs_path *path; 5266 struct btrfs_dir_item *di; 5267 struct extent_buffer *leaf; 5268 unsigned long data_ptr; 5269 char *buf = NULL; 5270 int buf_len; 5271 int ret = 0; 5272 5273 path = alloc_path_for_send(); 5274 if (!path) 5275 return -ENOMEM; 5276 5277 di = btrfs_lookup_xattr(NULL, sctx->send_root, path, sctx->cur_ino, 5278 XATTR_NAME_CAPS, strlen(XATTR_NAME_CAPS), 0); 5279 if (!di) { 5280 /* There is no xattr for this inode */ 5281 goto out; 5282 } else if (IS_ERR(di)) { 5283 ret = PTR_ERR(di); 5284 goto out; 5285 } 5286 5287 leaf = path->nodes[0]; 5288 buf_len = btrfs_dir_data_len(leaf, di); 5289 5290 fspath = fs_path_alloc(); 5291 buf = kmalloc(buf_len, GFP_KERNEL); 5292 if (!fspath || !buf) { 5293 ret = -ENOMEM; 5294 goto out; 5295 } 5296 5297 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, fspath); 5298 if (ret < 0) 5299 goto out; 5300 5301 data_ptr = (unsigned long)(di + 1) + btrfs_dir_name_len(leaf, di); 5302 read_extent_buffer(leaf, buf, data_ptr, buf_len); 5303 5304 ret = send_set_xattr(sctx, fspath, XATTR_NAME_CAPS, 5305 strlen(XATTR_NAME_CAPS), buf, buf_len); 5306out: 5307 kfree(buf); 5308 fs_path_free(fspath); 5309 btrfs_free_path(path); 5310 return ret; 5311} 5312 5313static int clone_range(struct send_ctx *sctx, 5314 struct clone_root *clone_root, 5315 const u64 disk_byte, 5316 u64 data_offset, 5317 u64 offset, 5318 u64 len) 5319{ 5320 struct btrfs_path *path; 5321 struct btrfs_key key; 5322 int ret; 5323 u64 clone_src_i_size = 0; 5324 5325 /* 5326 * Prevent cloning from a zero offset with a length matching the sector 5327 * size because in some scenarios this will make the receiver fail. 5328 * 5329 * For example, if in the source filesystem the extent at offset 0 5330 * has a length of sectorsize and it was written using direct IO, then 5331 * it can never be an inline extent (even if compression is enabled). 5332 * Then this extent can be cloned in the original filesystem to a non 5333 * zero file offset, but it may not be possible to clone in the 5334 * destination filesystem because it can be inlined due to compression 5335 * on the destination filesystem (as the receiver's write operations are 5336 * always done using buffered IO). The same happens when the original 5337 * filesystem does not have compression enabled but the destination 5338 * filesystem has. 5339 */ 5340 if (clone_root->offset == 0 && 5341 len == sctx->send_root->fs_info->sectorsize) 5342 return send_extent_data(sctx, offset, len); 5343 5344 path = alloc_path_for_send(); 5345 if (!path) 5346 return -ENOMEM; 5347 5348 /* 5349 * There are inodes that have extents that lie behind its i_size. Don't 5350 * accept clones from these extents. 5351 */ 5352 ret = __get_inode_info(clone_root->root, path, clone_root->ino, 5353 &clone_src_i_size, NULL, NULL, NULL, NULL, NULL); 5354 btrfs_release_path(path); 5355 if (ret < 0) 5356 goto out; 5357 5358 /* 5359 * We can't send a clone operation for the entire range if we find 5360 * extent items in the respective range in the source file that 5361 * refer to different extents or if we find holes. 5362 * So check for that and do a mix of clone and regular write/copy 5363 * operations if needed. 5364 * 5365 * Example: 5366 * 5367 * mkfs.btrfs -f /dev/sda 5368 * mount /dev/sda /mnt 5369 * xfs_io -f -c "pwrite -S 0xaa 0K 100K" /mnt/foo 5370 * cp --reflink=always /mnt/foo /mnt/bar 5371 * xfs_io -c "pwrite -S 0xbb 50K 50K" /mnt/foo 5372 * btrfs subvolume snapshot -r /mnt /mnt/snap 5373 * 5374 * If when we send the snapshot and we are processing file bar (which 5375 * has a higher inode number than foo) we blindly send a clone operation 5376 * for the [0, 100K[ range from foo to bar, the receiver ends up getting 5377 * a file bar that matches the content of file foo - iow, doesn't match 5378 * the content from bar in the original filesystem. 5379 */ 5380 key.objectid = clone_root->ino; 5381 key.type = BTRFS_EXTENT_DATA_KEY; 5382 key.offset = clone_root->offset; 5383 ret = btrfs_search_slot(NULL, clone_root->root, &key, path, 0, 0); 5384 if (ret < 0) 5385 goto out; 5386 if (ret > 0 && path->slots[0] > 0) { 5387 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0] - 1); 5388 if (key.objectid == clone_root->ino && 5389 key.type == BTRFS_EXTENT_DATA_KEY) 5390 path->slots[0]--; 5391 } 5392 5393 while (true) { 5394 struct extent_buffer *leaf = path->nodes[0]; 5395 int slot = path->slots[0]; 5396 struct btrfs_file_extent_item *ei; 5397 u8 type; 5398 u64 ext_len; 5399 u64 clone_len; 5400 u64 clone_data_offset; 5401 bool crossed_src_i_size = false; 5402 5403 if (slot >= btrfs_header_nritems(leaf)) { 5404 ret = btrfs_next_leaf(clone_root->root, path); 5405 if (ret < 0) 5406 goto out; 5407 else if (ret > 0) 5408 break; 5409 continue; 5410 } 5411 5412 btrfs_item_key_to_cpu(leaf, &key, slot); 5413 5414 /* 5415 * We might have an implicit trailing hole (NO_HOLES feature 5416 * enabled). We deal with it after leaving this loop. 5417 */ 5418 if (key.objectid != clone_root->ino || 5419 key.type != BTRFS_EXTENT_DATA_KEY) 5420 break; 5421 5422 ei = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); 5423 type = btrfs_file_extent_type(leaf, ei); 5424 if (type == BTRFS_FILE_EXTENT_INLINE) { 5425 ext_len = btrfs_file_extent_ram_bytes(leaf, ei); 5426 ext_len = PAGE_ALIGN(ext_len); 5427 } else { 5428 ext_len = btrfs_file_extent_num_bytes(leaf, ei); 5429 } 5430 5431 if (key.offset + ext_len <= clone_root->offset) 5432 goto next; 5433 5434 if (key.offset > clone_root->offset) { 5435 /* Implicit hole, NO_HOLES feature enabled. */ 5436 u64 hole_len = key.offset - clone_root->offset; 5437 5438 if (hole_len > len) 5439 hole_len = len; 5440 ret = send_extent_data(sctx, offset, hole_len); 5441 if (ret < 0) 5442 goto out; 5443 5444 len -= hole_len; 5445 if (len == 0) 5446 break; 5447 offset += hole_len; 5448 clone_root->offset += hole_len; 5449 data_offset += hole_len; 5450 } 5451 5452 if (key.offset >= clone_root->offset + len) 5453 break; 5454 5455 if (key.offset >= clone_src_i_size) 5456 break; 5457 5458 if (key.offset + ext_len > clone_src_i_size) { 5459 ext_len = clone_src_i_size - key.offset; 5460 crossed_src_i_size = true; 5461 } 5462 5463 clone_data_offset = btrfs_file_extent_offset(leaf, ei); 5464 if (btrfs_file_extent_disk_bytenr(leaf, ei) == disk_byte) { 5465 clone_root->offset = key.offset; 5466 if (clone_data_offset < data_offset && 5467 clone_data_offset + ext_len > data_offset) { 5468 u64 extent_offset; 5469 5470 extent_offset = data_offset - clone_data_offset; 5471 ext_len -= extent_offset; 5472 clone_data_offset += extent_offset; 5473 clone_root->offset += extent_offset; 5474 } 5475 } 5476 5477 clone_len = min_t(u64, ext_len, len); 5478 5479 if (btrfs_file_extent_disk_bytenr(leaf, ei) == disk_byte && 5480 clone_data_offset == data_offset) { 5481 const u64 src_end = clone_root->offset + clone_len; 5482 const u64 sectorsize = SZ_64K; 5483 5484 /* 5485 * We can't clone the last block, when its size is not 5486 * sector size aligned, into the middle of a file. If we 5487 * do so, the receiver will get a failure (-EINVAL) when 5488 * trying to clone or will silently corrupt the data in 5489 * the destination file if it's on a kernel without the 5490 * fix introduced by commit ac765f83f1397646 5491 * ("Btrfs: fix data corruption due to cloning of eof 5492 * block). 5493 * 5494 * So issue a clone of the aligned down range plus a 5495 * regular write for the eof block, if we hit that case. 5496 * 5497 * Also, we use the maximum possible sector size, 64K, 5498 * because we don't know what's the sector size of the 5499 * filesystem that receives the stream, so we have to 5500 * assume the largest possible sector size. 5501 */ 5502 if (src_end == clone_src_i_size && 5503 !IS_ALIGNED(src_end, sectorsize) && 5504 offset + clone_len < sctx->cur_inode_size) { 5505 u64 slen; 5506 5507 slen = ALIGN_DOWN(src_end - clone_root->offset, 5508 sectorsize); 5509 if (slen > 0) { 5510 ret = send_clone(sctx, offset, slen, 5511 clone_root); 5512 if (ret < 0) 5513 goto out; 5514 } 5515 ret = send_extent_data(sctx, offset + slen, 5516 clone_len - slen); 5517 } else { 5518 ret = send_clone(sctx, offset, clone_len, 5519 clone_root); 5520 } 5521 } else if (crossed_src_i_size && clone_len < len) { 5522 /* 5523 * If we are at i_size of the clone source inode and we 5524 * can not clone from it, terminate the loop. This is 5525 * to avoid sending two write operations, one with a 5526 * length matching clone_len and the final one after 5527 * this loop with a length of len - clone_len. 5528 * 5529 * When using encoded writes (BTRFS_SEND_FLAG_COMPRESSED 5530 * was passed to the send ioctl), this helps avoid 5531 * sending an encoded write for an offset that is not 5532 * sector size aligned, in case the i_size of the source 5533 * inode is not sector size aligned. That will make the 5534 * receiver fallback to decompression of the data and 5535 * writing it using regular buffered IO, therefore while 5536 * not incorrect, it's not optimal due decompression and 5537 * possible re-compression at the receiver. 5538 */ 5539 break; 5540 } else { 5541 ret = send_extent_data(sctx, offset, clone_len); 5542 } 5543 5544 if (ret < 0) 5545 goto out; 5546 5547 len -= clone_len; 5548 if (len == 0) 5549 break; 5550 offset += clone_len; 5551 clone_root->offset += clone_len; 5552 5553 /* 5554 * If we are cloning from the file we are currently processing, 5555 * and using the send root as the clone root, we must stop once 5556 * the current clone offset reaches the current eof of the file 5557 * at the receiver, otherwise we would issue an invalid clone 5558 * operation (source range going beyond eof) and cause the 5559 * receiver to fail. So if we reach the current eof, bail out 5560 * and fallback to a regular write. 5561 */ 5562 if (clone_root->root == sctx->send_root && 5563 clone_root->ino == sctx->cur_ino && 5564 clone_root->offset >= sctx->cur_inode_next_write_offset) 5565 break; 5566 5567 data_offset += clone_len; 5568next: 5569 path->slots[0]++; 5570 } 5571 5572 if (len > 0) 5573 ret = send_extent_data(sctx, offset, len); 5574 else 5575 ret = 0; 5576out: 5577 btrfs_free_path(path); 5578 return ret; 5579} 5580 5581static int send_write_or_clone(struct send_ctx *sctx, 5582 struct btrfs_path *path, 5583 struct btrfs_key *key, 5584 struct clone_root *clone_root) 5585{ 5586 int ret = 0; 5587 u64 offset = key->offset; 5588 u64 end; 5589 u64 bs = sctx->send_root->fs_info->sb->s_blocksize; 5590 5591 end = min_t(u64, btrfs_file_extent_end(path), sctx->cur_inode_size); 5592 if (offset >= end) 5593 return 0; 5594 5595 if (clone_root && IS_ALIGNED(end, bs)) { 5596 struct btrfs_file_extent_item *ei; 5597 u64 disk_byte; 5598 u64 data_offset; 5599 5600 ei = btrfs_item_ptr(path->nodes[0], path->slots[0], 5601 struct btrfs_file_extent_item); 5602 disk_byte = btrfs_file_extent_disk_bytenr(path->nodes[0], ei); 5603 data_offset = btrfs_file_extent_offset(path->nodes[0], ei); 5604 ret = clone_range(sctx, clone_root, disk_byte, data_offset, 5605 offset, end - offset); 5606 } else { 5607 ret = send_extent_data(sctx, offset, end - offset); 5608 } 5609 sctx->cur_inode_next_write_offset = end; 5610 return ret; 5611} 5612 5613static int is_extent_unchanged(struct send_ctx *sctx, 5614 struct btrfs_path *left_path, 5615 struct btrfs_key *ekey) 5616{ 5617 int ret = 0; 5618 struct btrfs_key key; 5619 struct btrfs_path *path = NULL; 5620 struct extent_buffer *eb; 5621 int slot; 5622 struct btrfs_key found_key; 5623 struct btrfs_file_extent_item *ei; 5624 u64 left_disknr; 5625 u64 right_disknr; 5626 u64 left_offset; 5627 u64 right_offset; 5628 u64 left_offset_fixed; 5629 u64 left_len; 5630 u64 right_len; 5631 u64 left_gen; 5632 u64 right_gen; 5633 u8 left_type; 5634 u8 right_type; 5635 5636 path = alloc_path_for_send(); 5637 if (!path) 5638 return -ENOMEM; 5639 5640 eb = left_path->nodes[0]; 5641 slot = left_path->slots[0]; 5642 ei = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item); 5643 left_type = btrfs_file_extent_type(eb, ei); 5644 5645 if (left_type != BTRFS_FILE_EXTENT_REG) { 5646 ret = 0; 5647 goto out; 5648 } 5649 left_disknr = btrfs_file_extent_disk_bytenr(eb, ei); 5650 left_len = btrfs_file_extent_num_bytes(eb, ei); 5651 left_offset = btrfs_file_extent_offset(eb, ei); 5652 left_gen = btrfs_file_extent_generation(eb, ei); 5653 5654 /* 5655 * Following comments will refer to these graphics. L is the left 5656 * extents which we are checking at the moment. 1-8 are the right 5657 * extents that we iterate. 5658 * 5659 * |-----L-----| 5660 * |-1-|-2a-|-3-|-4-|-5-|-6-| 5661 * 5662 * |-----L-----| 5663 * |--1--|-2b-|...(same as above) 5664 * 5665 * Alternative situation. Happens on files where extents got split. 5666 * |-----L-----| 5667 * |-----------7-----------|-6-| 5668 * 5669 * Alternative situation. Happens on files which got larger. 5670 * |-----L-----| 5671 * |-8-| 5672 * Nothing follows after 8. 5673 */ 5674 5675 key.objectid = ekey->objectid; 5676 key.type = BTRFS_EXTENT_DATA_KEY; 5677 key.offset = ekey->offset; 5678 ret = btrfs_search_slot_for_read(sctx->parent_root, &key, path, 0, 0); 5679 if (ret < 0) 5680 goto out; 5681 if (ret) { 5682 ret = 0; 5683 goto out; 5684 } 5685 5686 /* 5687 * Handle special case where the right side has no extents at all. 5688 */ 5689 eb = path->nodes[0]; 5690 slot = path->slots[0]; 5691 btrfs_item_key_to_cpu(eb, &found_key, slot); 5692 if (found_key.objectid != key.objectid || 5693 found_key.type != key.type) { 5694 /* If we're a hole then just pretend nothing changed */ 5695 ret = (left_disknr) ? 0 : 1; 5696 goto out; 5697 } 5698 5699 /* 5700 * We're now on 2a, 2b or 7. 5701 */ 5702 key = found_key; 5703 while (key.offset < ekey->offset + left_len) { 5704 ei = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item); 5705 right_type = btrfs_file_extent_type(eb, ei); 5706 if (right_type != BTRFS_FILE_EXTENT_REG && 5707 right_type != BTRFS_FILE_EXTENT_INLINE) { 5708 ret = 0; 5709 goto out; 5710 } 5711 5712 if (right_type == BTRFS_FILE_EXTENT_INLINE) { 5713 right_len = btrfs_file_extent_ram_bytes(eb, ei); 5714 right_len = PAGE_ALIGN(right_len); 5715 } else { 5716 right_len = btrfs_file_extent_num_bytes(eb, ei); 5717 } 5718 5719 /* 5720 * Are we at extent 8? If yes, we know the extent is changed. 5721 * This may only happen on the first iteration. 5722 */ 5723 if (found_key.offset + right_len <= ekey->offset) { 5724 /* If we're a hole just pretend nothing changed */ 5725 ret = (left_disknr) ? 0 : 1; 5726 goto out; 5727 } 5728 5729 /* 5730 * We just wanted to see if when we have an inline extent, what 5731 * follows it is a regular extent (wanted to check the above 5732 * condition for inline extents too). This should normally not 5733 * happen but it's possible for example when we have an inline 5734 * compressed extent representing data with a size matching 5735 * the page size (currently the same as sector size). 5736 */ 5737 if (right_type == BTRFS_FILE_EXTENT_INLINE) { 5738 ret = 0; 5739 goto out; 5740 } 5741 5742 right_disknr = btrfs_file_extent_disk_bytenr(eb, ei); 5743 right_offset = btrfs_file_extent_offset(eb, ei); 5744 right_gen = btrfs_file_extent_generation(eb, ei); 5745 5746 left_offset_fixed = left_offset; 5747 if (key.offset < ekey->offset) { 5748 /* Fix the right offset for 2a and 7. */ 5749 right_offset += ekey->offset - key.offset; 5750 } else { 5751 /* Fix the left offset for all behind 2a and 2b */ 5752 left_offset_fixed += key.offset - ekey->offset; 5753 } 5754 5755 /* 5756 * Check if we have the same extent. 5757 */ 5758 if (left_disknr != right_disknr || 5759 left_offset_fixed != right_offset || 5760 left_gen != right_gen) { 5761 ret = 0; 5762 goto out; 5763 } 5764 5765 /* 5766 * Go to the next extent. 5767 */ 5768 ret = btrfs_next_item(sctx->parent_root, path); 5769 if (ret < 0) 5770 goto out; 5771 if (!ret) { 5772 eb = path->nodes[0]; 5773 slot = path->slots[0]; 5774 btrfs_item_key_to_cpu(eb, &found_key, slot); 5775 } 5776 if (ret || found_key.objectid != key.objectid || 5777 found_key.type != key.type) { 5778 key.offset += right_len; 5779 break; 5780 } 5781 if (found_key.offset != key.offset + right_len) { 5782 ret = 0; 5783 goto out; 5784 } 5785 key = found_key; 5786 } 5787 5788 /* 5789 * We're now behind the left extent (treat as unchanged) or at the end 5790 * of the right side (treat as changed). 5791 */ 5792 if (key.offset >= ekey->offset + left_len) 5793 ret = 1; 5794 else 5795 ret = 0; 5796 5797 5798out: 5799 btrfs_free_path(path); 5800 return ret; 5801} 5802 5803static int get_last_extent(struct send_ctx *sctx, u64 offset) 5804{ 5805 struct btrfs_path *path; 5806 struct btrfs_root *root = sctx->send_root; 5807 struct btrfs_key key; 5808 int ret; 5809 5810 path = alloc_path_for_send(); 5811 if (!path) 5812 return -ENOMEM; 5813 5814 sctx->cur_inode_last_extent = 0; 5815 5816 key.objectid = sctx->cur_ino; 5817 key.type = BTRFS_EXTENT_DATA_KEY; 5818 key.offset = offset; 5819 ret = btrfs_search_slot_for_read(root, &key, path, 0, 1); 5820 if (ret < 0) 5821 goto out; 5822 ret = 0; 5823 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 5824 if (key.objectid != sctx->cur_ino || key.type != BTRFS_EXTENT_DATA_KEY) 5825 goto out; 5826 5827 sctx->cur_inode_last_extent = btrfs_file_extent_end(path); 5828out: 5829 btrfs_free_path(path); 5830 return ret; 5831} 5832 5833static int range_is_hole_in_parent(struct send_ctx *sctx, 5834 const u64 start, 5835 const u64 end) 5836{ 5837 struct btrfs_path *path; 5838 struct btrfs_key key; 5839 struct btrfs_root *root = sctx->parent_root; 5840 u64 search_start = start; 5841 int ret; 5842 5843 path = alloc_path_for_send(); 5844 if (!path) 5845 return -ENOMEM; 5846 5847 key.objectid = sctx->cur_ino; 5848 key.type = BTRFS_EXTENT_DATA_KEY; 5849 key.offset = search_start; 5850 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 5851 if (ret < 0) 5852 goto out; 5853 if (ret > 0 && path->slots[0] > 0) 5854 path->slots[0]--; 5855 5856 while (search_start < end) { 5857 struct extent_buffer *leaf = path->nodes[0]; 5858 int slot = path->slots[0]; 5859 struct btrfs_file_extent_item *fi; 5860 u64 extent_end; 5861 5862 if (slot >= btrfs_header_nritems(leaf)) { 5863 ret = btrfs_next_leaf(root, path); 5864 if (ret < 0) 5865 goto out; 5866 else if (ret > 0) 5867 break; 5868 continue; 5869 } 5870 5871 btrfs_item_key_to_cpu(leaf, &key, slot); 5872 if (key.objectid < sctx->cur_ino || 5873 key.type < BTRFS_EXTENT_DATA_KEY) 5874 goto next; 5875 if (key.objectid > sctx->cur_ino || 5876 key.type > BTRFS_EXTENT_DATA_KEY || 5877 key.offset >= end) 5878 break; 5879 5880 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); 5881 extent_end = btrfs_file_extent_end(path); 5882 if (extent_end <= start) 5883 goto next; 5884 if (btrfs_file_extent_disk_bytenr(leaf, fi) == 0) { 5885 search_start = extent_end; 5886 goto next; 5887 } 5888 ret = 0; 5889 goto out; 5890next: 5891 path->slots[0]++; 5892 } 5893 ret = 1; 5894out: 5895 btrfs_free_path(path); 5896 return ret; 5897} 5898 5899static int maybe_send_hole(struct send_ctx *sctx, struct btrfs_path *path, 5900 struct btrfs_key *key) 5901{ 5902 int ret = 0; 5903 5904 if (sctx->cur_ino != key->objectid || !need_send_hole(sctx)) 5905 return 0; 5906 5907 if (sctx->cur_inode_last_extent == (u64)-1) { 5908 ret = get_last_extent(sctx, key->offset - 1); 5909 if (ret) 5910 return ret; 5911 } 5912 5913 if (path->slots[0] == 0 && 5914 sctx->cur_inode_last_extent < key->offset) { 5915 /* 5916 * We might have skipped entire leafs that contained only 5917 * file extent items for our current inode. These leafs have 5918 * a generation number smaller (older) than the one in the 5919 * current leaf and the leaf our last extent came from, and 5920 * are located between these 2 leafs. 5921 */ 5922 ret = get_last_extent(sctx, key->offset - 1); 5923 if (ret) 5924 return ret; 5925 } 5926 5927 if (sctx->cur_inode_last_extent < key->offset) { 5928 ret = range_is_hole_in_parent(sctx, 5929 sctx->cur_inode_last_extent, 5930 key->offset); 5931 if (ret < 0) 5932 return ret; 5933 else if (ret == 0) 5934 ret = send_hole(sctx, key->offset); 5935 else 5936 ret = 0; 5937 } 5938 sctx->cur_inode_last_extent = btrfs_file_extent_end(path); 5939 return ret; 5940} 5941 5942static int process_extent(struct send_ctx *sctx, 5943 struct btrfs_path *path, 5944 struct btrfs_key *key) 5945{ 5946 struct clone_root *found_clone = NULL; 5947 int ret = 0; 5948 5949 if (S_ISLNK(sctx->cur_inode_mode)) 5950 return 0; 5951 5952 if (sctx->parent_root && !sctx->cur_inode_new) { 5953 ret = is_extent_unchanged(sctx, path, key); 5954 if (ret < 0) 5955 goto out; 5956 if (ret) { 5957 ret = 0; 5958 goto out_hole; 5959 } 5960 } else { 5961 struct btrfs_file_extent_item *ei; 5962 u8 type; 5963 5964 ei = btrfs_item_ptr(path->nodes[0], path->slots[0], 5965 struct btrfs_file_extent_item); 5966 type = btrfs_file_extent_type(path->nodes[0], ei); 5967 if (type == BTRFS_FILE_EXTENT_PREALLOC || 5968 type == BTRFS_FILE_EXTENT_REG) { 5969 /* 5970 * The send spec does not have a prealloc command yet, 5971 * so just leave a hole for prealloc'ed extents until 5972 * we have enough commands queued up to justify rev'ing 5973 * the send spec. 5974 */ 5975 if (type == BTRFS_FILE_EXTENT_PREALLOC) { 5976 ret = 0; 5977 goto out; 5978 } 5979 5980 /* Have a hole, just skip it. */ 5981 if (btrfs_file_extent_disk_bytenr(path->nodes[0], ei) == 0) { 5982 ret = 0; 5983 goto out; 5984 } 5985 } 5986 } 5987 5988 ret = find_extent_clone(sctx, path, key->objectid, key->offset, 5989 sctx->cur_inode_size, &found_clone); 5990 if (ret != -ENOENT && ret < 0) 5991 goto out; 5992 5993 ret = send_write_or_clone(sctx, path, key, found_clone); 5994 if (ret) 5995 goto out; 5996out_hole: 5997 ret = maybe_send_hole(sctx, path, key); 5998out: 5999 return ret; 6000} 6001 6002static int process_all_extents(struct send_ctx *sctx) 6003{ 6004 int ret; 6005 struct btrfs_root *root; 6006 struct btrfs_path *path; 6007 struct btrfs_key key; 6008 struct btrfs_key found_key; 6009 struct extent_buffer *eb; 6010 int slot; 6011 6012 root = sctx->send_root; 6013 path = alloc_path_for_send(); 6014 if (!path) 6015 return -ENOMEM; 6016 6017 key.objectid = sctx->cmp_key->objectid; 6018 key.type = BTRFS_EXTENT_DATA_KEY; 6019 key.offset = 0; 6020 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 6021 if (ret < 0) 6022 goto out; 6023 6024 while (1) { 6025 eb = path->nodes[0]; 6026 slot = path->slots[0]; 6027 6028 if (slot >= btrfs_header_nritems(eb)) { 6029 ret = btrfs_next_leaf(root, path); 6030 if (ret < 0) { 6031 goto out; 6032 } else if (ret > 0) { 6033 ret = 0; 6034 break; 6035 } 6036 continue; 6037 } 6038 6039 btrfs_item_key_to_cpu(eb, &found_key, slot); 6040 6041 if (found_key.objectid != key.objectid || 6042 found_key.type != key.type) { 6043 ret = 0; 6044 goto out; 6045 } 6046 6047 ret = process_extent(sctx, path, &found_key); 6048 if (ret < 0) 6049 goto out; 6050 6051 path->slots[0]++; 6052 } 6053 6054out: 6055 btrfs_free_path(path); 6056 return ret; 6057} 6058 6059static int process_recorded_refs_if_needed(struct send_ctx *sctx, int at_end, 6060 int *pending_move, 6061 int *refs_processed) 6062{ 6063 int ret = 0; 6064 6065 if (sctx->cur_ino == 0) 6066 goto out; 6067 if (!at_end && sctx->cur_ino == sctx->cmp_key->objectid && 6068 sctx->cmp_key->type <= BTRFS_INODE_EXTREF_KEY) 6069 goto out; 6070 if (list_empty(&sctx->new_refs) && list_empty(&sctx->deleted_refs)) 6071 goto out; 6072 6073 ret = process_recorded_refs(sctx, pending_move); 6074 if (ret < 0) 6075 goto out; 6076 6077 *refs_processed = 1; 6078out: 6079 return ret; 6080} 6081 6082static int finish_inode_if_needed(struct send_ctx *sctx, int at_end) 6083{ 6084 int ret = 0; 6085 u64 left_mode; 6086 u64 left_uid; 6087 u64 left_gid; 6088 u64 right_mode; 6089 u64 right_uid; 6090 u64 right_gid; 6091 int need_chmod = 0; 6092 int need_chown = 0; 6093 int need_truncate = 1; 6094 int pending_move = 0; 6095 int refs_processed = 0; 6096 6097 if (sctx->ignore_cur_inode) 6098 return 0; 6099 6100 ret = process_recorded_refs_if_needed(sctx, at_end, &pending_move, 6101 &refs_processed); 6102 if (ret < 0) 6103 goto out; 6104 6105 /* 6106 * We have processed the refs and thus need to advance send_progress. 6107 * Now, calls to get_cur_xxx will take the updated refs of the current 6108 * inode into account. 6109 * 6110 * On the other hand, if our current inode is a directory and couldn't 6111 * be moved/renamed because its parent was renamed/moved too and it has 6112 * a higher inode number, we can only move/rename our current inode 6113 * after we moved/renamed its parent. Therefore in this case operate on 6114 * the old path (pre move/rename) of our current inode, and the 6115 * move/rename will be performed later. 6116 */ 6117 if (refs_processed && !pending_move) 6118 sctx->send_progress = sctx->cur_ino + 1; 6119 6120 if (sctx->cur_ino == 0 || sctx->cur_inode_deleted) 6121 goto out; 6122 if (!at_end && sctx->cmp_key->objectid == sctx->cur_ino) 6123 goto out; 6124 6125 ret = get_inode_info(sctx->send_root, sctx->cur_ino, NULL, NULL, 6126 &left_mode, &left_uid, &left_gid, NULL); 6127 if (ret < 0) 6128 goto out; 6129 6130 if (!sctx->parent_root || sctx->cur_inode_new) { 6131 need_chown = 1; 6132 if (!S_ISLNK(sctx->cur_inode_mode)) 6133 need_chmod = 1; 6134 if (sctx->cur_inode_next_write_offset == sctx->cur_inode_size) 6135 need_truncate = 0; 6136 } else { 6137 u64 old_size; 6138 6139 ret = get_inode_info(sctx->parent_root, sctx->cur_ino, 6140 &old_size, NULL, &right_mode, &right_uid, 6141 &right_gid, NULL); 6142 if (ret < 0) 6143 goto out; 6144 6145 if (left_uid != right_uid || left_gid != right_gid) 6146 need_chown = 1; 6147 if (!S_ISLNK(sctx->cur_inode_mode) && left_mode != right_mode) 6148 need_chmod = 1; 6149 if ((old_size == sctx->cur_inode_size) || 6150 (sctx->cur_inode_size > old_size && 6151 sctx->cur_inode_next_write_offset == sctx->cur_inode_size)) 6152 need_truncate = 0; 6153 } 6154 6155 if (S_ISREG(sctx->cur_inode_mode)) { 6156 if (need_send_hole(sctx)) { 6157 if (sctx->cur_inode_last_extent == (u64)-1 || 6158 sctx->cur_inode_last_extent < 6159 sctx->cur_inode_size) { 6160 ret = get_last_extent(sctx, (u64)-1); 6161 if (ret) 6162 goto out; 6163 } 6164 if (sctx->cur_inode_last_extent < 6165 sctx->cur_inode_size) { 6166 ret = send_hole(sctx, sctx->cur_inode_size); 6167 if (ret) 6168 goto out; 6169 } 6170 } 6171 if (need_truncate) { 6172 ret = send_truncate(sctx, sctx->cur_ino, 6173 sctx->cur_inode_gen, 6174 sctx->cur_inode_size); 6175 if (ret < 0) 6176 goto out; 6177 } 6178 } 6179 6180 if (need_chown) { 6181 ret = send_chown(sctx, sctx->cur_ino, sctx->cur_inode_gen, 6182 left_uid, left_gid); 6183 if (ret < 0) 6184 goto out; 6185 } 6186 if (need_chmod) { 6187 ret = send_chmod(sctx, sctx->cur_ino, sctx->cur_inode_gen, 6188 left_mode); 6189 if (ret < 0) 6190 goto out; 6191 } 6192 6193 ret = send_capabilities(sctx); 6194 if (ret < 0) 6195 goto out; 6196 6197 /* 6198 * If other directory inodes depended on our current directory 6199 * inode's move/rename, now do their move/rename operations. 6200 */ 6201 if (!is_waiting_for_move(sctx, sctx->cur_ino)) { 6202 ret = apply_children_dir_moves(sctx); 6203 if (ret) 6204 goto out; 6205 /* 6206 * Need to send that every time, no matter if it actually 6207 * changed between the two trees as we have done changes to 6208 * the inode before. If our inode is a directory and it's 6209 * waiting to be moved/renamed, we will send its utimes when 6210 * it's moved/renamed, therefore we don't need to do it here. 6211 */ 6212 sctx->send_progress = sctx->cur_ino + 1; 6213 ret = send_utimes(sctx, sctx->cur_ino, sctx->cur_inode_gen); 6214 if (ret < 0) 6215 goto out; 6216 } 6217 6218out: 6219 return ret; 6220} 6221 6222struct parent_paths_ctx { 6223 struct list_head *refs; 6224 struct send_ctx *sctx; 6225}; 6226 6227static int record_parent_ref(int num, u64 dir, int index, struct fs_path *name, 6228 void *ctx) 6229{ 6230 struct parent_paths_ctx *ppctx = ctx; 6231 6232 return record_ref(ppctx->sctx->parent_root, dir, name, ppctx->sctx, 6233 ppctx->refs); 6234} 6235 6236/* 6237 * Issue unlink operations for all paths of the current inode found in the 6238 * parent snapshot. 6239 */ 6240static int btrfs_unlink_all_paths(struct send_ctx *sctx) 6241{ 6242 LIST_HEAD(deleted_refs); 6243 struct btrfs_path *path; 6244 struct btrfs_key key; 6245 struct parent_paths_ctx ctx; 6246 int ret; 6247 6248 path = alloc_path_for_send(); 6249 if (!path) 6250 return -ENOMEM; 6251 6252 key.objectid = sctx->cur_ino; 6253 key.type = BTRFS_INODE_REF_KEY; 6254 key.offset = 0; 6255 ret = btrfs_search_slot(NULL, sctx->parent_root, &key, path, 0, 0); 6256 if (ret < 0) 6257 goto out; 6258 6259 ctx.refs = &deleted_refs; 6260 ctx.sctx = sctx; 6261 6262 while (true) { 6263 struct extent_buffer *eb = path->nodes[0]; 6264 int slot = path->slots[0]; 6265 6266 if (slot >= btrfs_header_nritems(eb)) { 6267 ret = btrfs_next_leaf(sctx->parent_root, path); 6268 if (ret < 0) 6269 goto out; 6270 else if (ret > 0) 6271 break; 6272 continue; 6273 } 6274 6275 btrfs_item_key_to_cpu(eb, &key, slot); 6276 if (key.objectid != sctx->cur_ino) 6277 break; 6278 if (key.type != BTRFS_INODE_REF_KEY && 6279 key.type != BTRFS_INODE_EXTREF_KEY) 6280 break; 6281 6282 ret = iterate_inode_ref(sctx->parent_root, path, &key, 1, 6283 record_parent_ref, &ctx); 6284 if (ret < 0) 6285 goto out; 6286 6287 path->slots[0]++; 6288 } 6289 6290 while (!list_empty(&deleted_refs)) { 6291 struct recorded_ref *ref; 6292 6293 ref = list_first_entry(&deleted_refs, struct recorded_ref, list); 6294 ret = send_unlink(sctx, ref->full_path); 6295 if (ret < 0) 6296 goto out; 6297 fs_path_free(ref->full_path); 6298 list_del(&ref->list); 6299 kfree(ref); 6300 } 6301 ret = 0; 6302out: 6303 btrfs_free_path(path); 6304 if (ret) 6305 __free_recorded_refs(&deleted_refs); 6306 return ret; 6307} 6308 6309static int changed_inode(struct send_ctx *sctx, 6310 enum btrfs_compare_tree_result result) 6311{ 6312 int ret = 0; 6313 struct btrfs_key *key = sctx->cmp_key; 6314 struct btrfs_inode_item *left_ii = NULL; 6315 struct btrfs_inode_item *right_ii = NULL; 6316 u64 left_gen = 0; 6317 u64 right_gen = 0; 6318 6319 sctx->cur_ino = key->objectid; 6320 sctx->cur_inode_new_gen = 0; 6321 sctx->cur_inode_last_extent = (u64)-1; 6322 sctx->cur_inode_next_write_offset = 0; 6323 sctx->ignore_cur_inode = false; 6324 6325 /* 6326 * Set send_progress to current inode. This will tell all get_cur_xxx 6327 * functions that the current inode's refs are not updated yet. Later, 6328 * when process_recorded_refs is finished, it is set to cur_ino + 1. 6329 */ 6330 sctx->send_progress = sctx->cur_ino; 6331 6332 if (result == BTRFS_COMPARE_TREE_NEW || 6333 result == BTRFS_COMPARE_TREE_CHANGED) { 6334 left_ii = btrfs_item_ptr(sctx->left_path->nodes[0], 6335 sctx->left_path->slots[0], 6336 struct btrfs_inode_item); 6337 left_gen = btrfs_inode_generation(sctx->left_path->nodes[0], 6338 left_ii); 6339 } else { 6340 right_ii = btrfs_item_ptr(sctx->right_path->nodes[0], 6341 sctx->right_path->slots[0], 6342 struct btrfs_inode_item); 6343 right_gen = btrfs_inode_generation(sctx->right_path->nodes[0], 6344 right_ii); 6345 } 6346 if (result == BTRFS_COMPARE_TREE_CHANGED) { 6347 right_ii = btrfs_item_ptr(sctx->right_path->nodes[0], 6348 sctx->right_path->slots[0], 6349 struct btrfs_inode_item); 6350 6351 right_gen = btrfs_inode_generation(sctx->right_path->nodes[0], 6352 right_ii); 6353 6354 /* 6355 * The cur_ino = root dir case is special here. We can't treat 6356 * the inode as deleted+reused because it would generate a 6357 * stream that tries to delete/mkdir the root dir. 6358 */ 6359 if (left_gen != right_gen && 6360 sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID) 6361 sctx->cur_inode_new_gen = 1; 6362 } 6363 6364 /* 6365 * Normally we do not find inodes with a link count of zero (orphans) 6366 * because the most common case is to create a snapshot and use it 6367 * for a send operation. However other less common use cases involve 6368 * using a subvolume and send it after turning it to RO mode just 6369 * after deleting all hard links of a file while holding an open 6370 * file descriptor against it or turning a RO snapshot into RW mode, 6371 * keep an open file descriptor against a file, delete it and then 6372 * turn the snapshot back to RO mode before using it for a send 6373 * operation. So if we find such cases, ignore the inode and all its 6374 * items completely if it's a new inode, or if it's a changed inode 6375 * make sure all its previous paths (from the parent snapshot) are all 6376 * unlinked and all other the inode items are ignored. 6377 */ 6378 if (result == BTRFS_COMPARE_TREE_NEW || 6379 result == BTRFS_COMPARE_TREE_CHANGED) { 6380 u32 nlinks; 6381 6382 nlinks = btrfs_inode_nlink(sctx->left_path->nodes[0], left_ii); 6383 if (nlinks == 0) { 6384 sctx->ignore_cur_inode = true; 6385 if (result == BTRFS_COMPARE_TREE_CHANGED) 6386 ret = btrfs_unlink_all_paths(sctx); 6387 goto out; 6388 } 6389 } 6390 6391 if (result == BTRFS_COMPARE_TREE_NEW) { 6392 sctx->cur_inode_gen = left_gen; 6393 sctx->cur_inode_new = 1; 6394 sctx->cur_inode_deleted = 0; 6395 sctx->cur_inode_size = btrfs_inode_size( 6396 sctx->left_path->nodes[0], left_ii); 6397 sctx->cur_inode_mode = btrfs_inode_mode( 6398 sctx->left_path->nodes[0], left_ii); 6399 sctx->cur_inode_rdev = btrfs_inode_rdev( 6400 sctx->left_path->nodes[0], left_ii); 6401 if (sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID) 6402 ret = send_create_inode_if_needed(sctx); 6403 } else if (result == BTRFS_COMPARE_TREE_DELETED) { 6404 sctx->cur_inode_gen = right_gen; 6405 sctx->cur_inode_new = 0; 6406 sctx->cur_inode_deleted = 1; 6407 sctx->cur_inode_size = btrfs_inode_size( 6408 sctx->right_path->nodes[0], right_ii); 6409 sctx->cur_inode_mode = btrfs_inode_mode( 6410 sctx->right_path->nodes[0], right_ii); 6411 } else if (result == BTRFS_COMPARE_TREE_CHANGED) { 6412 /* 6413 * We need to do some special handling in case the inode was 6414 * reported as changed with a changed generation number. This 6415 * means that the original inode was deleted and new inode 6416 * reused the same inum. So we have to treat the old inode as 6417 * deleted and the new one as new. 6418 */ 6419 if (sctx->cur_inode_new_gen) { 6420 /* 6421 * First, process the inode as if it was deleted. 6422 */ 6423 sctx->cur_inode_gen = right_gen; 6424 sctx->cur_inode_new = 0; 6425 sctx->cur_inode_deleted = 1; 6426 sctx->cur_inode_size = btrfs_inode_size( 6427 sctx->right_path->nodes[0], right_ii); 6428 sctx->cur_inode_mode = btrfs_inode_mode( 6429 sctx->right_path->nodes[0], right_ii); 6430 ret = process_all_refs(sctx, 6431 BTRFS_COMPARE_TREE_DELETED); 6432 if (ret < 0) 6433 goto out; 6434 6435 /* 6436 * Now process the inode as if it was new. 6437 */ 6438 sctx->cur_inode_gen = left_gen; 6439 sctx->cur_inode_new = 1; 6440 sctx->cur_inode_deleted = 0; 6441 sctx->cur_inode_size = btrfs_inode_size( 6442 sctx->left_path->nodes[0], left_ii); 6443 sctx->cur_inode_mode = btrfs_inode_mode( 6444 sctx->left_path->nodes[0], left_ii); 6445 sctx->cur_inode_rdev = btrfs_inode_rdev( 6446 sctx->left_path->nodes[0], left_ii); 6447 ret = send_create_inode_if_needed(sctx); 6448 if (ret < 0) 6449 goto out; 6450 6451 ret = process_all_refs(sctx, BTRFS_COMPARE_TREE_NEW); 6452 if (ret < 0) 6453 goto out; 6454 /* 6455 * Advance send_progress now as we did not get into 6456 * process_recorded_refs_if_needed in the new_gen case. 6457 */ 6458 sctx->send_progress = sctx->cur_ino + 1; 6459 6460 /* 6461 * Now process all extents and xattrs of the inode as if 6462 * they were all new. 6463 */ 6464 ret = process_all_extents(sctx); 6465 if (ret < 0) 6466 goto out; 6467 ret = process_all_new_xattrs(sctx); 6468 if (ret < 0) 6469 goto out; 6470 } else { 6471 sctx->cur_inode_gen = left_gen; 6472 sctx->cur_inode_new = 0; 6473 sctx->cur_inode_new_gen = 0; 6474 sctx->cur_inode_deleted = 0; 6475 sctx->cur_inode_size = btrfs_inode_size( 6476 sctx->left_path->nodes[0], left_ii); 6477 sctx->cur_inode_mode = btrfs_inode_mode( 6478 sctx->left_path->nodes[0], left_ii); 6479 } 6480 } 6481 6482out: 6483 return ret; 6484} 6485 6486/* 6487 * We have to process new refs before deleted refs, but compare_trees gives us 6488 * the new and deleted refs mixed. To fix this, we record the new/deleted refs 6489 * first and later process them in process_recorded_refs. 6490 * For the cur_inode_new_gen case, we skip recording completely because 6491 * changed_inode did already initiate processing of refs. The reason for this is 6492 * that in this case, compare_tree actually compares the refs of 2 different 6493 * inodes. To fix this, process_all_refs is used in changed_inode to handle all 6494 * refs of the right tree as deleted and all refs of the left tree as new. 6495 */ 6496static int changed_ref(struct send_ctx *sctx, 6497 enum btrfs_compare_tree_result result) 6498{ 6499 int ret = 0; 6500 6501 if (sctx->cur_ino != sctx->cmp_key->objectid) { 6502 inconsistent_snapshot_error(sctx, result, "reference"); 6503 return -EIO; 6504 } 6505 6506 if (!sctx->cur_inode_new_gen && 6507 sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID) { 6508 if (result == BTRFS_COMPARE_TREE_NEW) 6509 ret = record_new_ref(sctx); 6510 else if (result == BTRFS_COMPARE_TREE_DELETED) 6511 ret = record_deleted_ref(sctx); 6512 else if (result == BTRFS_COMPARE_TREE_CHANGED) 6513 ret = record_changed_ref(sctx); 6514 } 6515 6516 return ret; 6517} 6518 6519/* 6520 * Process new/deleted/changed xattrs. We skip processing in the 6521 * cur_inode_new_gen case because changed_inode did already initiate processing 6522 * of xattrs. The reason is the same as in changed_ref 6523 */ 6524static int changed_xattr(struct send_ctx *sctx, 6525 enum btrfs_compare_tree_result result) 6526{ 6527 int ret = 0; 6528 6529 if (sctx->cur_ino != sctx->cmp_key->objectid) { 6530 inconsistent_snapshot_error(sctx, result, "xattr"); 6531 return -EIO; 6532 } 6533 6534 if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) { 6535 if (result == BTRFS_COMPARE_TREE_NEW) 6536 ret = process_new_xattr(sctx); 6537 else if (result == BTRFS_COMPARE_TREE_DELETED) 6538 ret = process_deleted_xattr(sctx); 6539 else if (result == BTRFS_COMPARE_TREE_CHANGED) 6540 ret = process_changed_xattr(sctx); 6541 } 6542 6543 return ret; 6544} 6545 6546/* 6547 * Process new/deleted/changed extents. We skip processing in the 6548 * cur_inode_new_gen case because changed_inode did already initiate processing 6549 * of extents. The reason is the same as in changed_ref 6550 */ 6551static int changed_extent(struct send_ctx *sctx, 6552 enum btrfs_compare_tree_result result) 6553{ 6554 int ret = 0; 6555 6556 /* 6557 * We have found an extent item that changed without the inode item 6558 * having changed. This can happen either after relocation (where the 6559 * disk_bytenr of an extent item is replaced at 6560 * relocation.c:replace_file_extents()) or after deduplication into a 6561 * file in both the parent and send snapshots (where an extent item can 6562 * get modified or replaced with a new one). Note that deduplication 6563 * updates the inode item, but it only changes the iversion (sequence 6564 * field in the inode item) of the inode, so if a file is deduplicated 6565 * the same amount of times in both the parent and send snapshots, its 6566 * iversion becames the same in both snapshots, whence the inode item is 6567 * the same on both snapshots. 6568 */ 6569 if (sctx->cur_ino != sctx->cmp_key->objectid) 6570 return 0; 6571 6572 if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) { 6573 if (result != BTRFS_COMPARE_TREE_DELETED) 6574 ret = process_extent(sctx, sctx->left_path, 6575 sctx->cmp_key); 6576 } 6577 6578 return ret; 6579} 6580 6581static int dir_changed(struct send_ctx *sctx, u64 dir) 6582{ 6583 u64 orig_gen, new_gen; 6584 int ret; 6585 6586 ret = get_inode_info(sctx->send_root, dir, NULL, &new_gen, NULL, NULL, 6587 NULL, NULL); 6588 if (ret) 6589 return ret; 6590 6591 ret = get_inode_info(sctx->parent_root, dir, NULL, &orig_gen, NULL, 6592 NULL, NULL, NULL); 6593 if (ret) 6594 return ret; 6595 6596 return (orig_gen != new_gen) ? 1 : 0; 6597} 6598 6599static int compare_refs(struct send_ctx *sctx, struct btrfs_path *path, 6600 struct btrfs_key *key) 6601{ 6602 struct btrfs_inode_extref *extref; 6603 struct extent_buffer *leaf; 6604 u64 dirid = 0, last_dirid = 0; 6605 unsigned long ptr; 6606 u32 item_size; 6607 u32 cur_offset = 0; 6608 int ref_name_len; 6609 int ret = 0; 6610 6611 /* Easy case, just check this one dirid */ 6612 if (key->type == BTRFS_INODE_REF_KEY) { 6613 dirid = key->offset; 6614 6615 ret = dir_changed(sctx, dirid); 6616 goto out; 6617 } 6618 6619 leaf = path->nodes[0]; 6620 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 6621 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]); 6622 while (cur_offset < item_size) { 6623 extref = (struct btrfs_inode_extref *)(ptr + 6624 cur_offset); 6625 dirid = btrfs_inode_extref_parent(leaf, extref); 6626 ref_name_len = btrfs_inode_extref_name_len(leaf, extref); 6627 cur_offset += ref_name_len + sizeof(*extref); 6628 if (dirid == last_dirid) 6629 continue; 6630 ret = dir_changed(sctx, dirid); 6631 if (ret) 6632 break; 6633 last_dirid = dirid; 6634 } 6635out: 6636 return ret; 6637} 6638 6639/* 6640 * Updates compare related fields in sctx and simply forwards to the actual 6641 * changed_xxx functions. 6642 */ 6643static int changed_cb(struct btrfs_path *left_path, 6644 struct btrfs_path *right_path, 6645 struct btrfs_key *key, 6646 enum btrfs_compare_tree_result result, 6647 void *ctx) 6648{ 6649 int ret = 0; 6650 struct send_ctx *sctx = ctx; 6651 6652 if (result == BTRFS_COMPARE_TREE_SAME) { 6653 if (key->type == BTRFS_INODE_REF_KEY || 6654 key->type == BTRFS_INODE_EXTREF_KEY) { 6655 ret = compare_refs(sctx, left_path, key); 6656 if (!ret) 6657 return 0; 6658 if (ret < 0) 6659 return ret; 6660 } else if (key->type == BTRFS_EXTENT_DATA_KEY) { 6661 return maybe_send_hole(sctx, left_path, key); 6662 } else { 6663 return 0; 6664 } 6665 result = BTRFS_COMPARE_TREE_CHANGED; 6666 ret = 0; 6667 } 6668 6669 sctx->left_path = left_path; 6670 sctx->right_path = right_path; 6671 sctx->cmp_key = key; 6672 6673 ret = finish_inode_if_needed(sctx, 0); 6674 if (ret < 0) 6675 goto out; 6676 6677 /* Ignore non-FS objects */ 6678 if (key->objectid == BTRFS_FREE_INO_OBJECTID || 6679 key->objectid == BTRFS_FREE_SPACE_OBJECTID) 6680 goto out; 6681 6682 if (key->type == BTRFS_INODE_ITEM_KEY) { 6683 ret = changed_inode(sctx, result); 6684 } else if (!sctx->ignore_cur_inode) { 6685 if (key->type == BTRFS_INODE_REF_KEY || 6686 key->type == BTRFS_INODE_EXTREF_KEY) 6687 ret = changed_ref(sctx, result); 6688 else if (key->type == BTRFS_XATTR_ITEM_KEY) 6689 ret = changed_xattr(sctx, result); 6690 else if (key->type == BTRFS_EXTENT_DATA_KEY) 6691 ret = changed_extent(sctx, result); 6692 } 6693 6694out: 6695 return ret; 6696} 6697 6698static int full_send_tree(struct send_ctx *sctx) 6699{ 6700 int ret; 6701 struct btrfs_root *send_root = sctx->send_root; 6702 struct btrfs_key key; 6703 struct btrfs_path *path; 6704 struct extent_buffer *eb; 6705 int slot; 6706 6707 path = alloc_path_for_send(); 6708 if (!path) 6709 return -ENOMEM; 6710 6711 key.objectid = BTRFS_FIRST_FREE_OBJECTID; 6712 key.type = BTRFS_INODE_ITEM_KEY; 6713 key.offset = 0; 6714 6715 ret = btrfs_search_slot_for_read(send_root, &key, path, 1, 0); 6716 if (ret < 0) 6717 goto out; 6718 if (ret) 6719 goto out_finish; 6720 6721 while (1) { 6722 eb = path->nodes[0]; 6723 slot = path->slots[0]; 6724 btrfs_item_key_to_cpu(eb, &key, slot); 6725 6726 ret = changed_cb(path, NULL, &key, 6727 BTRFS_COMPARE_TREE_NEW, sctx); 6728 if (ret < 0) 6729 goto out; 6730 6731 ret = btrfs_next_item(send_root, path); 6732 if (ret < 0) 6733 goto out; 6734 if (ret) { 6735 ret = 0; 6736 break; 6737 } 6738 } 6739 6740out_finish: 6741 ret = finish_inode_if_needed(sctx, 1); 6742 6743out: 6744 btrfs_free_path(path); 6745 return ret; 6746} 6747 6748static int tree_move_down(struct btrfs_path *path, int *level) 6749{ 6750 struct extent_buffer *eb; 6751 6752 BUG_ON(*level == 0); 6753 eb = btrfs_read_node_slot(path->nodes[*level], path->slots[*level]); 6754 if (IS_ERR(eb)) 6755 return PTR_ERR(eb); 6756 6757 path->nodes[*level - 1] = eb; 6758 path->slots[*level - 1] = 0; 6759 (*level)--; 6760 return 0; 6761} 6762 6763static int tree_move_next_or_upnext(struct btrfs_path *path, 6764 int *level, int root_level) 6765{ 6766 int ret = 0; 6767 int nritems; 6768 nritems = btrfs_header_nritems(path->nodes[*level]); 6769 6770 path->slots[*level]++; 6771 6772 while (path->slots[*level] >= nritems) { 6773 if (*level == root_level) 6774 return -1; 6775 6776 /* move upnext */ 6777 path->slots[*level] = 0; 6778 free_extent_buffer(path->nodes[*level]); 6779 path->nodes[*level] = NULL; 6780 (*level)++; 6781 path->slots[*level]++; 6782 6783 nritems = btrfs_header_nritems(path->nodes[*level]); 6784 ret = 1; 6785 } 6786 return ret; 6787} 6788 6789/* 6790 * Returns 1 if it had to move up and next. 0 is returned if it moved only next 6791 * or down. 6792 */ 6793static int tree_advance(struct btrfs_path *path, 6794 int *level, int root_level, 6795 int allow_down, 6796 struct btrfs_key *key) 6797{ 6798 int ret; 6799 6800 if (*level == 0 || !allow_down) { 6801 ret = tree_move_next_or_upnext(path, level, root_level); 6802 } else { 6803 ret = tree_move_down(path, level); 6804 } 6805 if (ret >= 0) { 6806 if (*level == 0) 6807 btrfs_item_key_to_cpu(path->nodes[*level], key, 6808 path->slots[*level]); 6809 else 6810 btrfs_node_key_to_cpu(path->nodes[*level], key, 6811 path->slots[*level]); 6812 } 6813 return ret; 6814} 6815 6816static int tree_compare_item(struct btrfs_path *left_path, 6817 struct btrfs_path *right_path, 6818 char *tmp_buf) 6819{ 6820 int cmp; 6821 int len1, len2; 6822 unsigned long off1, off2; 6823 6824 len1 = btrfs_item_size_nr(left_path->nodes[0], left_path->slots[0]); 6825 len2 = btrfs_item_size_nr(right_path->nodes[0], right_path->slots[0]); 6826 if (len1 != len2) 6827 return 1; 6828 6829 off1 = btrfs_item_ptr_offset(left_path->nodes[0], left_path->slots[0]); 6830 off2 = btrfs_item_ptr_offset(right_path->nodes[0], 6831 right_path->slots[0]); 6832 6833 read_extent_buffer(left_path->nodes[0], tmp_buf, off1, len1); 6834 6835 cmp = memcmp_extent_buffer(right_path->nodes[0], tmp_buf, off2, len1); 6836 if (cmp) 6837 return 1; 6838 return 0; 6839} 6840 6841/* 6842 * This function compares two trees and calls the provided callback for 6843 * every changed/new/deleted item it finds. 6844 * If shared tree blocks are encountered, whole subtrees are skipped, making 6845 * the compare pretty fast on snapshotted subvolumes. 6846 * 6847 * This currently works on commit roots only. As commit roots are read only, 6848 * we don't do any locking. The commit roots are protected with transactions. 6849 * Transactions are ended and rejoined when a commit is tried in between. 6850 * 6851 * This function checks for modifications done to the trees while comparing. 6852 * If it detects a change, it aborts immediately. 6853 */ 6854static int btrfs_compare_trees(struct btrfs_root *left_root, 6855 struct btrfs_root *right_root, void *ctx) 6856{ 6857 struct btrfs_fs_info *fs_info = left_root->fs_info; 6858 int ret; 6859 int cmp; 6860 struct btrfs_path *left_path = NULL; 6861 struct btrfs_path *right_path = NULL; 6862 struct btrfs_key left_key; 6863 struct btrfs_key right_key; 6864 char *tmp_buf = NULL; 6865 int left_root_level; 6866 int right_root_level; 6867 int left_level; 6868 int right_level; 6869 int left_end_reached; 6870 int right_end_reached; 6871 int advance_left; 6872 int advance_right; 6873 u64 left_blockptr; 6874 u64 right_blockptr; 6875 u64 left_gen; 6876 u64 right_gen; 6877 6878 left_path = btrfs_alloc_path(); 6879 if (!left_path) { 6880 ret = -ENOMEM; 6881 goto out; 6882 } 6883 right_path = btrfs_alloc_path(); 6884 if (!right_path) { 6885 ret = -ENOMEM; 6886 goto out; 6887 } 6888 6889 tmp_buf = kvmalloc(fs_info->nodesize, GFP_KERNEL); 6890 if (!tmp_buf) { 6891 ret = -ENOMEM; 6892 goto out; 6893 } 6894 6895 left_path->search_commit_root = 1; 6896 left_path->skip_locking = 1; 6897 right_path->search_commit_root = 1; 6898 right_path->skip_locking = 1; 6899 6900 /* 6901 * Strategy: Go to the first items of both trees. Then do 6902 * 6903 * If both trees are at level 0 6904 * Compare keys of current items 6905 * If left < right treat left item as new, advance left tree 6906 * and repeat 6907 * If left > right treat right item as deleted, advance right tree 6908 * and repeat 6909 * If left == right do deep compare of items, treat as changed if 6910 * needed, advance both trees and repeat 6911 * If both trees are at the same level but not at level 0 6912 * Compare keys of current nodes/leafs 6913 * If left < right advance left tree and repeat 6914 * If left > right advance right tree and repeat 6915 * If left == right compare blockptrs of the next nodes/leafs 6916 * If they match advance both trees but stay at the same level 6917 * and repeat 6918 * If they don't match advance both trees while allowing to go 6919 * deeper and repeat 6920 * If tree levels are different 6921 * Advance the tree that needs it and repeat 6922 * 6923 * Advancing a tree means: 6924 * If we are at level 0, try to go to the next slot. If that's not 6925 * possible, go one level up and repeat. Stop when we found a level 6926 * where we could go to the next slot. We may at this point be on a 6927 * node or a leaf. 6928 * 6929 * If we are not at level 0 and not on shared tree blocks, go one 6930 * level deeper. 6931 * 6932 * If we are not at level 0 and on shared tree blocks, go one slot to 6933 * the right if possible or go up and right. 6934 */ 6935 6936 down_read(&fs_info->commit_root_sem); 6937 left_level = btrfs_header_level(left_root->commit_root); 6938 left_root_level = left_level; 6939 left_path->nodes[left_level] = 6940 btrfs_clone_extent_buffer(left_root->commit_root); 6941 if (!left_path->nodes[left_level]) { 6942 up_read(&fs_info->commit_root_sem); 6943 ret = -ENOMEM; 6944 goto out; 6945 } 6946 6947 right_level = btrfs_header_level(right_root->commit_root); 6948 right_root_level = right_level; 6949 right_path->nodes[right_level] = 6950 btrfs_clone_extent_buffer(right_root->commit_root); 6951 if (!right_path->nodes[right_level]) { 6952 up_read(&fs_info->commit_root_sem); 6953 ret = -ENOMEM; 6954 goto out; 6955 } 6956 up_read(&fs_info->commit_root_sem); 6957 6958 if (left_level == 0) 6959 btrfs_item_key_to_cpu(left_path->nodes[left_level], 6960 &left_key, left_path->slots[left_level]); 6961 else 6962 btrfs_node_key_to_cpu(left_path->nodes[left_level], 6963 &left_key, left_path->slots[left_level]); 6964 if (right_level == 0) 6965 btrfs_item_key_to_cpu(right_path->nodes[right_level], 6966 &right_key, right_path->slots[right_level]); 6967 else 6968 btrfs_node_key_to_cpu(right_path->nodes[right_level], 6969 &right_key, right_path->slots[right_level]); 6970 6971 left_end_reached = right_end_reached = 0; 6972 advance_left = advance_right = 0; 6973 6974 while (1) { 6975 cond_resched(); 6976 if (advance_left && !left_end_reached) { 6977 ret = tree_advance(left_path, &left_level, 6978 left_root_level, 6979 advance_left != ADVANCE_ONLY_NEXT, 6980 &left_key); 6981 if (ret == -1) 6982 left_end_reached = ADVANCE; 6983 else if (ret < 0) 6984 goto out; 6985 advance_left = 0; 6986 } 6987 if (advance_right && !right_end_reached) { 6988 ret = tree_advance(right_path, &right_level, 6989 right_root_level, 6990 advance_right != ADVANCE_ONLY_NEXT, 6991 &right_key); 6992 if (ret == -1) 6993 right_end_reached = ADVANCE; 6994 else if (ret < 0) 6995 goto out; 6996 advance_right = 0; 6997 } 6998 6999 if (left_end_reached && right_end_reached) { 7000 ret = 0; 7001 goto out; 7002 } else if (left_end_reached) { 7003 if (right_level == 0) { 7004 ret = changed_cb(left_path, right_path, 7005 &right_key, 7006 BTRFS_COMPARE_TREE_DELETED, 7007 ctx); 7008 if (ret < 0) 7009 goto out; 7010 } 7011 advance_right = ADVANCE; 7012 continue; 7013 } else if (right_end_reached) { 7014 if (left_level == 0) { 7015 ret = changed_cb(left_path, right_path, 7016 &left_key, 7017 BTRFS_COMPARE_TREE_NEW, 7018 ctx); 7019 if (ret < 0) 7020 goto out; 7021 } 7022 advance_left = ADVANCE; 7023 continue; 7024 } 7025 7026 if (left_level == 0 && right_level == 0) { 7027 cmp = btrfs_comp_cpu_keys(&left_key, &right_key); 7028 if (cmp < 0) { 7029 ret = changed_cb(left_path, right_path, 7030 &left_key, 7031 BTRFS_COMPARE_TREE_NEW, 7032 ctx); 7033 if (ret < 0) 7034 goto out; 7035 advance_left = ADVANCE; 7036 } else if (cmp > 0) { 7037 ret = changed_cb(left_path, right_path, 7038 &right_key, 7039 BTRFS_COMPARE_TREE_DELETED, 7040 ctx); 7041 if (ret < 0) 7042 goto out; 7043 advance_right = ADVANCE; 7044 } else { 7045 enum btrfs_compare_tree_result result; 7046 7047 WARN_ON(!extent_buffer_uptodate(left_path->nodes[0])); 7048 ret = tree_compare_item(left_path, right_path, 7049 tmp_buf); 7050 if (ret) 7051 result = BTRFS_COMPARE_TREE_CHANGED; 7052 else 7053 result = BTRFS_COMPARE_TREE_SAME; 7054 ret = changed_cb(left_path, right_path, 7055 &left_key, result, ctx); 7056 if (ret < 0) 7057 goto out; 7058 advance_left = ADVANCE; 7059 advance_right = ADVANCE; 7060 } 7061 } else if (left_level == right_level) { 7062 cmp = btrfs_comp_cpu_keys(&left_key, &right_key); 7063 if (cmp < 0) { 7064 advance_left = ADVANCE; 7065 } else if (cmp > 0) { 7066 advance_right = ADVANCE; 7067 } else { 7068 left_blockptr = btrfs_node_blockptr( 7069 left_path->nodes[left_level], 7070 left_path->slots[left_level]); 7071 right_blockptr = btrfs_node_blockptr( 7072 right_path->nodes[right_level], 7073 right_path->slots[right_level]); 7074 left_gen = btrfs_node_ptr_generation( 7075 left_path->nodes[left_level], 7076 left_path->slots[left_level]); 7077 right_gen = btrfs_node_ptr_generation( 7078 right_path->nodes[right_level], 7079 right_path->slots[right_level]); 7080 if (left_blockptr == right_blockptr && 7081 left_gen == right_gen) { 7082 /* 7083 * As we're on a shared block, don't 7084 * allow to go deeper. 7085 */ 7086 advance_left = ADVANCE_ONLY_NEXT; 7087 advance_right = ADVANCE_ONLY_NEXT; 7088 } else { 7089 advance_left = ADVANCE; 7090 advance_right = ADVANCE; 7091 } 7092 } 7093 } else if (left_level < right_level) { 7094 advance_right = ADVANCE; 7095 } else { 7096 advance_left = ADVANCE; 7097 } 7098 } 7099 7100out: 7101 btrfs_free_path(left_path); 7102 btrfs_free_path(right_path); 7103 kvfree(tmp_buf); 7104 return ret; 7105} 7106 7107static int send_subvol(struct send_ctx *sctx) 7108{ 7109 int ret; 7110 7111 if (!(sctx->flags & BTRFS_SEND_FLAG_OMIT_STREAM_HEADER)) { 7112 ret = send_header(sctx); 7113 if (ret < 0) 7114 goto out; 7115 } 7116 7117 ret = send_subvol_begin(sctx); 7118 if (ret < 0) 7119 goto out; 7120 7121 if (sctx->parent_root) { 7122 ret = btrfs_compare_trees(sctx->send_root, sctx->parent_root, sctx); 7123 if (ret < 0) 7124 goto out; 7125 ret = finish_inode_if_needed(sctx, 1); 7126 if (ret < 0) 7127 goto out; 7128 } else { 7129 ret = full_send_tree(sctx); 7130 if (ret < 0) 7131 goto out; 7132 } 7133 7134out: 7135 free_recorded_refs(sctx); 7136 return ret; 7137} 7138 7139/* 7140 * If orphan cleanup did remove any orphans from a root, it means the tree 7141 * was modified and therefore the commit root is not the same as the current 7142 * root anymore. This is a problem, because send uses the commit root and 7143 * therefore can see inode items that don't exist in the current root anymore, 7144 * and for example make calls to btrfs_iget, which will do tree lookups based 7145 * on the current root and not on the commit root. Those lookups will fail, 7146 * returning a -ESTALE error, and making send fail with that error. So make 7147 * sure a send does not see any orphans we have just removed, and that it will 7148 * see the same inodes regardless of whether a transaction commit happened 7149 * before it started (meaning that the commit root will be the same as the 7150 * current root) or not. 7151 */ 7152static int ensure_commit_roots_uptodate(struct send_ctx *sctx) 7153{ 7154 int i; 7155 struct btrfs_trans_handle *trans = NULL; 7156 7157again: 7158 if (sctx->parent_root && 7159 sctx->parent_root->node != sctx->parent_root->commit_root) 7160 goto commit_trans; 7161 7162 for (i = 0; i < sctx->clone_roots_cnt; i++) 7163 if (sctx->clone_roots[i].root->node != 7164 sctx->clone_roots[i].root->commit_root) 7165 goto commit_trans; 7166 7167 if (trans) 7168 return btrfs_end_transaction(trans); 7169 7170 return 0; 7171 7172commit_trans: 7173 /* Use any root, all fs roots will get their commit roots updated. */ 7174 if (!trans) { 7175 trans = btrfs_join_transaction(sctx->send_root); 7176 if (IS_ERR(trans)) 7177 return PTR_ERR(trans); 7178 goto again; 7179 } 7180 7181 return btrfs_commit_transaction(trans); 7182} 7183 7184/* 7185 * Make sure any existing dellaloc is flushed for any root used by a send 7186 * operation so that we do not miss any data and we do not race with writeback 7187 * finishing and changing a tree while send is using the tree. This could 7188 * happen if a subvolume is in RW mode, has delalloc, is turned to RO mode and 7189 * a send operation then uses the subvolume. 7190 * After flushing delalloc ensure_commit_roots_uptodate() must be called. 7191 */ 7192static int flush_delalloc_roots(struct send_ctx *sctx) 7193{ 7194 struct btrfs_root *root = sctx->parent_root; 7195 int ret; 7196 int i; 7197 7198 if (root) { 7199 ret = btrfs_start_delalloc_snapshot(root); 7200 if (ret) 7201 return ret; 7202 btrfs_wait_ordered_extents(root, U64_MAX, 0, U64_MAX); 7203 } 7204 7205 for (i = 0; i < sctx->clone_roots_cnt; i++) { 7206 root = sctx->clone_roots[i].root; 7207 ret = btrfs_start_delalloc_snapshot(root); 7208 if (ret) 7209 return ret; 7210 btrfs_wait_ordered_extents(root, U64_MAX, 0, U64_MAX); 7211 } 7212 7213 return 0; 7214} 7215 7216static void btrfs_root_dec_send_in_progress(struct btrfs_root* root) 7217{ 7218 spin_lock(&root->root_item_lock); 7219 root->send_in_progress--; 7220 /* 7221 * Not much left to do, we don't know why it's unbalanced and 7222 * can't blindly reset it to 0. 7223 */ 7224 if (root->send_in_progress < 0) 7225 btrfs_err(root->fs_info, 7226 "send_in_progress unbalanced %d root %llu", 7227 root->send_in_progress, root->root_key.objectid); 7228 spin_unlock(&root->root_item_lock); 7229} 7230 7231static void dedupe_in_progress_warn(const struct btrfs_root *root) 7232{ 7233 btrfs_warn_rl(root->fs_info, 7234"cannot use root %llu for send while deduplications on it are in progress (%d in progress)", 7235 root->root_key.objectid, root->dedupe_in_progress); 7236} 7237 7238long btrfs_ioctl_send(struct file *mnt_file, struct btrfs_ioctl_send_args *arg) 7239{ 7240 int ret = 0; 7241 struct btrfs_root *send_root = BTRFS_I(file_inode(mnt_file))->root; 7242 struct btrfs_fs_info *fs_info = send_root->fs_info; 7243 struct btrfs_root *clone_root; 7244 struct send_ctx *sctx = NULL; 7245 u32 i; 7246 u64 *clone_sources_tmp = NULL; 7247 int clone_sources_to_rollback = 0; 7248 size_t alloc_size; 7249 int sort_clone_roots = 0; 7250 7251 if (!capable(CAP_SYS_ADMIN)) 7252 return -EPERM; 7253 7254 /* 7255 * The subvolume must remain read-only during send, protect against 7256 * making it RW. This also protects against deletion. 7257 */ 7258 spin_lock(&send_root->root_item_lock); 7259 if (btrfs_root_readonly(send_root) && send_root->dedupe_in_progress) { 7260 dedupe_in_progress_warn(send_root); 7261 spin_unlock(&send_root->root_item_lock); 7262 return -EAGAIN; 7263 } 7264 send_root->send_in_progress++; 7265 spin_unlock(&send_root->root_item_lock); 7266 7267 /* 7268 * Userspace tools do the checks and warn the user if it's 7269 * not RO. 7270 */ 7271 if (!btrfs_root_readonly(send_root)) { 7272 ret = -EPERM; 7273 goto out; 7274 } 7275 7276 /* 7277 * Check that we don't overflow at later allocations, we request 7278 * clone_sources_count + 1 items, and compare to unsigned long inside 7279 * access_ok. Also set an upper limit for allocation size so this can't 7280 * easily exhaust memory. Max number of clone sources is about 200K. 7281 */ 7282 if (arg->clone_sources_count > SZ_8M / sizeof(struct clone_root)) { 7283 ret = -EINVAL; 7284 goto out; 7285 } 7286 7287 if (arg->flags & ~BTRFS_SEND_FLAG_MASK) { 7288 ret = -EOPNOTSUPP; 7289 goto out; 7290 } 7291 7292 sctx = kzalloc(sizeof(struct send_ctx), GFP_KERNEL); 7293 if (!sctx) { 7294 ret = -ENOMEM; 7295 goto out; 7296 } 7297 7298 INIT_LIST_HEAD(&sctx->new_refs); 7299 INIT_LIST_HEAD(&sctx->deleted_refs); 7300 INIT_RADIX_TREE(&sctx->name_cache, GFP_KERNEL); 7301 INIT_LIST_HEAD(&sctx->name_cache_list); 7302 7303 sctx->flags = arg->flags; 7304 7305 sctx->send_filp = fget(arg->send_fd); 7306 if (!sctx->send_filp || !(sctx->send_filp->f_mode & FMODE_WRITE)) { 7307 ret = -EBADF; 7308 goto out; 7309 } 7310 7311 sctx->send_root = send_root; 7312 /* 7313 * Unlikely but possible, if the subvolume is marked for deletion but 7314 * is slow to remove the directory entry, send can still be started 7315 */ 7316 if (btrfs_root_dead(sctx->send_root)) { 7317 ret = -EPERM; 7318 goto out; 7319 } 7320 7321 sctx->clone_roots_cnt = arg->clone_sources_count; 7322 7323 sctx->send_max_size = BTRFS_SEND_BUF_SIZE; 7324 sctx->send_buf = kvmalloc(sctx->send_max_size, GFP_KERNEL); 7325 if (!sctx->send_buf) { 7326 ret = -ENOMEM; 7327 goto out; 7328 } 7329 7330 sctx->pending_dir_moves = RB_ROOT; 7331 sctx->waiting_dir_moves = RB_ROOT; 7332 sctx->orphan_dirs = RB_ROOT; 7333 7334 sctx->clone_roots = kvcalloc(sizeof(*sctx->clone_roots), 7335 arg->clone_sources_count + 1, 7336 GFP_KERNEL); 7337 if (!sctx->clone_roots) { 7338 ret = -ENOMEM; 7339 goto out; 7340 } 7341 7342 alloc_size = array_size(sizeof(*arg->clone_sources), 7343 arg->clone_sources_count); 7344 7345 if (arg->clone_sources_count) { 7346 clone_sources_tmp = kvmalloc(alloc_size, GFP_KERNEL); 7347 if (!clone_sources_tmp) { 7348 ret = -ENOMEM; 7349 goto out; 7350 } 7351 7352 ret = copy_from_user(clone_sources_tmp, arg->clone_sources, 7353 alloc_size); 7354 if (ret) { 7355 ret = -EFAULT; 7356 goto out; 7357 } 7358 7359 for (i = 0; i < arg->clone_sources_count; i++) { 7360 clone_root = btrfs_get_fs_root(fs_info, 7361 clone_sources_tmp[i], true); 7362 if (IS_ERR(clone_root)) { 7363 ret = PTR_ERR(clone_root); 7364 goto out; 7365 } 7366 spin_lock(&clone_root->root_item_lock); 7367 if (!btrfs_root_readonly(clone_root) || 7368 btrfs_root_dead(clone_root)) { 7369 spin_unlock(&clone_root->root_item_lock); 7370 btrfs_put_root(clone_root); 7371 ret = -EPERM; 7372 goto out; 7373 } 7374 if (clone_root->dedupe_in_progress) { 7375 dedupe_in_progress_warn(clone_root); 7376 spin_unlock(&clone_root->root_item_lock); 7377 btrfs_put_root(clone_root); 7378 ret = -EAGAIN; 7379 goto out; 7380 } 7381 clone_root->send_in_progress++; 7382 spin_unlock(&clone_root->root_item_lock); 7383 7384 sctx->clone_roots[i].root = clone_root; 7385 clone_sources_to_rollback = i + 1; 7386 } 7387 kvfree(clone_sources_tmp); 7388 clone_sources_tmp = NULL; 7389 } 7390 7391 if (arg->parent_root) { 7392 sctx->parent_root = btrfs_get_fs_root(fs_info, arg->parent_root, 7393 true); 7394 if (IS_ERR(sctx->parent_root)) { 7395 ret = PTR_ERR(sctx->parent_root); 7396 goto out; 7397 } 7398 7399 spin_lock(&sctx->parent_root->root_item_lock); 7400 sctx->parent_root->send_in_progress++; 7401 if (!btrfs_root_readonly(sctx->parent_root) || 7402 btrfs_root_dead(sctx->parent_root)) { 7403 spin_unlock(&sctx->parent_root->root_item_lock); 7404 ret = -EPERM; 7405 goto out; 7406 } 7407 if (sctx->parent_root->dedupe_in_progress) { 7408 dedupe_in_progress_warn(sctx->parent_root); 7409 spin_unlock(&sctx->parent_root->root_item_lock); 7410 ret = -EAGAIN; 7411 goto out; 7412 } 7413 spin_unlock(&sctx->parent_root->root_item_lock); 7414 } 7415 7416 /* 7417 * Clones from send_root are allowed, but only if the clone source 7418 * is behind the current send position. This is checked while searching 7419 * for possible clone sources. 7420 */ 7421 sctx->clone_roots[sctx->clone_roots_cnt++].root = 7422 btrfs_grab_root(sctx->send_root); 7423 7424 /* We do a bsearch later */ 7425 sort(sctx->clone_roots, sctx->clone_roots_cnt, 7426 sizeof(*sctx->clone_roots), __clone_root_cmp_sort, 7427 NULL); 7428 sort_clone_roots = 1; 7429 7430 ret = flush_delalloc_roots(sctx); 7431 if (ret) 7432 goto out; 7433 7434 ret = ensure_commit_roots_uptodate(sctx); 7435 if (ret) 7436 goto out; 7437 7438 mutex_lock(&fs_info->balance_mutex); 7439 if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) { 7440 mutex_unlock(&fs_info->balance_mutex); 7441 btrfs_warn_rl(fs_info, 7442 "cannot run send because a balance operation is in progress"); 7443 ret = -EAGAIN; 7444 goto out; 7445 } 7446 fs_info->send_in_progress++; 7447 mutex_unlock(&fs_info->balance_mutex); 7448 7449 current->journal_info = BTRFS_SEND_TRANS_STUB; 7450 ret = send_subvol(sctx); 7451 current->journal_info = NULL; 7452 mutex_lock(&fs_info->balance_mutex); 7453 fs_info->send_in_progress--; 7454 mutex_unlock(&fs_info->balance_mutex); 7455 if (ret < 0) 7456 goto out; 7457 7458 if (!(sctx->flags & BTRFS_SEND_FLAG_OMIT_END_CMD)) { 7459 ret = begin_cmd(sctx, BTRFS_SEND_C_END); 7460 if (ret < 0) 7461 goto out; 7462 ret = send_cmd(sctx); 7463 if (ret < 0) 7464 goto out; 7465 } 7466 7467out: 7468 WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->pending_dir_moves)); 7469 while (sctx && !RB_EMPTY_ROOT(&sctx->pending_dir_moves)) { 7470 struct rb_node *n; 7471 struct pending_dir_move *pm; 7472 7473 n = rb_first(&sctx->pending_dir_moves); 7474 pm = rb_entry(n, struct pending_dir_move, node); 7475 while (!list_empty(&pm->list)) { 7476 struct pending_dir_move *pm2; 7477 7478 pm2 = list_first_entry(&pm->list, 7479 struct pending_dir_move, list); 7480 free_pending_move(sctx, pm2); 7481 } 7482 free_pending_move(sctx, pm); 7483 } 7484 7485 WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->waiting_dir_moves)); 7486 while (sctx && !RB_EMPTY_ROOT(&sctx->waiting_dir_moves)) { 7487 struct rb_node *n; 7488 struct waiting_dir_move *dm; 7489 7490 n = rb_first(&sctx->waiting_dir_moves); 7491 dm = rb_entry(n, struct waiting_dir_move, node); 7492 rb_erase(&dm->node, &sctx->waiting_dir_moves); 7493 kfree(dm); 7494 } 7495 7496 WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->orphan_dirs)); 7497 while (sctx && !RB_EMPTY_ROOT(&sctx->orphan_dirs)) { 7498 struct rb_node *n; 7499 struct orphan_dir_info *odi; 7500 7501 n = rb_first(&sctx->orphan_dirs); 7502 odi = rb_entry(n, struct orphan_dir_info, node); 7503 free_orphan_dir_info(sctx, odi); 7504 } 7505 7506 if (sort_clone_roots) { 7507 for (i = 0; i < sctx->clone_roots_cnt; i++) { 7508 btrfs_root_dec_send_in_progress( 7509 sctx->clone_roots[i].root); 7510 btrfs_put_root(sctx->clone_roots[i].root); 7511 } 7512 } else { 7513 for (i = 0; sctx && i < clone_sources_to_rollback; i++) { 7514 btrfs_root_dec_send_in_progress( 7515 sctx->clone_roots[i].root); 7516 btrfs_put_root(sctx->clone_roots[i].root); 7517 } 7518 7519 btrfs_root_dec_send_in_progress(send_root); 7520 } 7521 if (sctx && !IS_ERR_OR_NULL(sctx->parent_root)) { 7522 btrfs_root_dec_send_in_progress(sctx->parent_root); 7523 btrfs_put_root(sctx->parent_root); 7524 } 7525 7526 kvfree(clone_sources_tmp); 7527 7528 if (sctx) { 7529 if (sctx->send_filp) 7530 fput(sctx->send_filp); 7531 7532 kvfree(sctx->clone_roots); 7533 kvfree(sctx->send_buf); 7534 7535 name_cache_free(sctx); 7536 7537 kfree(sctx); 7538 } 7539 7540 return ret; 7541} 7542