xref: /kernel/linux/linux-5.10/fs/btrfs/send.c (revision 8c2ecf20)
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (C) 2012 Alexander Block.  All rights reserved.
4 */
5
6#include <linux/bsearch.h>
7#include <linux/fs.h>
8#include <linux/file.h>
9#include <linux/sort.h>
10#include <linux/mount.h>
11#include <linux/xattr.h>
12#include <linux/posix_acl_xattr.h>
13#include <linux/radix-tree.h>
14#include <linux/vmalloc.h>
15#include <linux/string.h>
16#include <linux/compat.h>
17#include <linux/crc32c.h>
18
19#include "send.h"
20#include "backref.h"
21#include "locking.h"
22#include "disk-io.h"
23#include "btrfs_inode.h"
24#include "transaction.h"
25#include "compression.h"
26#include "xattr.h"
27
28/*
29 * Maximum number of references an extent can have in order for us to attempt to
30 * issue clone operations instead of write operations. This currently exists to
31 * avoid hitting limitations of the backreference walking code (taking a lot of
32 * time and using too much memory for extents with large number of references).
33 */
34#define SEND_MAX_EXTENT_REFS	64
35
36/*
37 * A fs_path is a helper to dynamically build path names with unknown size.
38 * It reallocates the internal buffer on demand.
39 * It allows fast adding of path elements on the right side (normal path) and
40 * fast adding to the left side (reversed path). A reversed path can also be
41 * unreversed if needed.
42 */
43struct fs_path {
44	union {
45		struct {
46			char *start;
47			char *end;
48
49			char *buf;
50			unsigned short buf_len:15;
51			unsigned short reversed:1;
52			char inline_buf[];
53		};
54		/*
55		 * Average path length does not exceed 200 bytes, we'll have
56		 * better packing in the slab and higher chance to satisfy
57		 * a allocation later during send.
58		 */
59		char pad[256];
60	};
61};
62#define FS_PATH_INLINE_SIZE \
63	(sizeof(struct fs_path) - offsetof(struct fs_path, inline_buf))
64
65
66/* reused for each extent */
67struct clone_root {
68	struct btrfs_root *root;
69	u64 ino;
70	u64 offset;
71
72	u64 found_refs;
73};
74
75#define SEND_CTX_MAX_NAME_CACHE_SIZE 128
76#define SEND_CTX_NAME_CACHE_CLEAN_SIZE (SEND_CTX_MAX_NAME_CACHE_SIZE * 2)
77
78struct send_ctx {
79	struct file *send_filp;
80	loff_t send_off;
81	char *send_buf;
82	u32 send_size;
83	u32 send_max_size;
84	u64 total_send_size;
85	u64 cmd_send_size[BTRFS_SEND_C_MAX + 1];
86	u64 flags;	/* 'flags' member of btrfs_ioctl_send_args is u64 */
87
88	struct btrfs_root *send_root;
89	struct btrfs_root *parent_root;
90	struct clone_root *clone_roots;
91	int clone_roots_cnt;
92
93	/* current state of the compare_tree call */
94	struct btrfs_path *left_path;
95	struct btrfs_path *right_path;
96	struct btrfs_key *cmp_key;
97
98	/*
99	 * infos of the currently processed inode. In case of deleted inodes,
100	 * these are the values from the deleted inode.
101	 */
102	u64 cur_ino;
103	u64 cur_inode_gen;
104	int cur_inode_new;
105	int cur_inode_new_gen;
106	int cur_inode_deleted;
107	u64 cur_inode_size;
108	u64 cur_inode_mode;
109	u64 cur_inode_rdev;
110	u64 cur_inode_last_extent;
111	u64 cur_inode_next_write_offset;
112	bool ignore_cur_inode;
113
114	u64 send_progress;
115
116	struct list_head new_refs;
117	struct list_head deleted_refs;
118
119	struct radix_tree_root name_cache;
120	struct list_head name_cache_list;
121	int name_cache_size;
122
123	struct file_ra_state ra;
124
125	/*
126	 * We process inodes by their increasing order, so if before an
127	 * incremental send we reverse the parent/child relationship of
128	 * directories such that a directory with a lower inode number was
129	 * the parent of a directory with a higher inode number, and the one
130	 * becoming the new parent got renamed too, we can't rename/move the
131	 * directory with lower inode number when we finish processing it - we
132	 * must process the directory with higher inode number first, then
133	 * rename/move it and then rename/move the directory with lower inode
134	 * number. Example follows.
135	 *
136	 * Tree state when the first send was performed:
137	 *
138	 * .
139	 * |-- a                   (ino 257)
140	 *     |-- b               (ino 258)
141	 *         |
142	 *         |
143	 *         |-- c           (ino 259)
144	 *         |   |-- d       (ino 260)
145	 *         |
146	 *         |-- c2          (ino 261)
147	 *
148	 * Tree state when the second (incremental) send is performed:
149	 *
150	 * .
151	 * |-- a                   (ino 257)
152	 *     |-- b               (ino 258)
153	 *         |-- c2          (ino 261)
154	 *             |-- d2      (ino 260)
155	 *                 |-- cc  (ino 259)
156	 *
157	 * The sequence of steps that lead to the second state was:
158	 *
159	 * mv /a/b/c/d /a/b/c2/d2
160	 * mv /a/b/c /a/b/c2/d2/cc
161	 *
162	 * "c" has lower inode number, but we can't move it (2nd mv operation)
163	 * before we move "d", which has higher inode number.
164	 *
165	 * So we just memorize which move/rename operations must be performed
166	 * later when their respective parent is processed and moved/renamed.
167	 */
168
169	/* Indexed by parent directory inode number. */
170	struct rb_root pending_dir_moves;
171
172	/*
173	 * Reverse index, indexed by the inode number of a directory that
174	 * is waiting for the move/rename of its immediate parent before its
175	 * own move/rename can be performed.
176	 */
177	struct rb_root waiting_dir_moves;
178
179	/*
180	 * A directory that is going to be rm'ed might have a child directory
181	 * which is in the pending directory moves index above. In this case,
182	 * the directory can only be removed after the move/rename of its child
183	 * is performed. Example:
184	 *
185	 * Parent snapshot:
186	 *
187	 * .                        (ino 256)
188	 * |-- a/                   (ino 257)
189	 *     |-- b/               (ino 258)
190	 *         |-- c/           (ino 259)
191	 *         |   |-- x/       (ino 260)
192	 *         |
193	 *         |-- y/           (ino 261)
194	 *
195	 * Send snapshot:
196	 *
197	 * .                        (ino 256)
198	 * |-- a/                   (ino 257)
199	 *     |-- b/               (ino 258)
200	 *         |-- YY/          (ino 261)
201	 *              |-- x/      (ino 260)
202	 *
203	 * Sequence of steps that lead to the send snapshot:
204	 * rm -f /a/b/c/foo.txt
205	 * mv /a/b/y /a/b/YY
206	 * mv /a/b/c/x /a/b/YY
207	 * rmdir /a/b/c
208	 *
209	 * When the child is processed, its move/rename is delayed until its
210	 * parent is processed (as explained above), but all other operations
211	 * like update utimes, chown, chgrp, etc, are performed and the paths
212	 * that it uses for those operations must use the orphanized name of
213	 * its parent (the directory we're going to rm later), so we need to
214	 * memorize that name.
215	 *
216	 * Indexed by the inode number of the directory to be deleted.
217	 */
218	struct rb_root orphan_dirs;
219};
220
221struct pending_dir_move {
222	struct rb_node node;
223	struct list_head list;
224	u64 parent_ino;
225	u64 ino;
226	u64 gen;
227	struct list_head update_refs;
228};
229
230struct waiting_dir_move {
231	struct rb_node node;
232	u64 ino;
233	/*
234	 * There might be some directory that could not be removed because it
235	 * was waiting for this directory inode to be moved first. Therefore
236	 * after this directory is moved, we can try to rmdir the ino rmdir_ino.
237	 */
238	u64 rmdir_ino;
239	u64 rmdir_gen;
240	bool orphanized;
241};
242
243struct orphan_dir_info {
244	struct rb_node node;
245	u64 ino;
246	u64 gen;
247	u64 last_dir_index_offset;
248};
249
250struct name_cache_entry {
251	struct list_head list;
252	/*
253	 * radix_tree has only 32bit entries but we need to handle 64bit inums.
254	 * We use the lower 32bit of the 64bit inum to store it in the tree. If
255	 * more then one inum would fall into the same entry, we use radix_list
256	 * to store the additional entries. radix_list is also used to store
257	 * entries where two entries have the same inum but different
258	 * generations.
259	 */
260	struct list_head radix_list;
261	u64 ino;
262	u64 gen;
263	u64 parent_ino;
264	u64 parent_gen;
265	int ret;
266	int need_later_update;
267	int name_len;
268	char name[];
269};
270
271#define ADVANCE							1
272#define ADVANCE_ONLY_NEXT					-1
273
274enum btrfs_compare_tree_result {
275	BTRFS_COMPARE_TREE_NEW,
276	BTRFS_COMPARE_TREE_DELETED,
277	BTRFS_COMPARE_TREE_CHANGED,
278	BTRFS_COMPARE_TREE_SAME,
279};
280
281__cold
282static void inconsistent_snapshot_error(struct send_ctx *sctx,
283					enum btrfs_compare_tree_result result,
284					const char *what)
285{
286	const char *result_string;
287
288	switch (result) {
289	case BTRFS_COMPARE_TREE_NEW:
290		result_string = "new";
291		break;
292	case BTRFS_COMPARE_TREE_DELETED:
293		result_string = "deleted";
294		break;
295	case BTRFS_COMPARE_TREE_CHANGED:
296		result_string = "updated";
297		break;
298	case BTRFS_COMPARE_TREE_SAME:
299		ASSERT(0);
300		result_string = "unchanged";
301		break;
302	default:
303		ASSERT(0);
304		result_string = "unexpected";
305	}
306
307	btrfs_err(sctx->send_root->fs_info,
308		  "Send: inconsistent snapshot, found %s %s for inode %llu without updated inode item, send root is %llu, parent root is %llu",
309		  result_string, what, sctx->cmp_key->objectid,
310		  sctx->send_root->root_key.objectid,
311		  (sctx->parent_root ?
312		   sctx->parent_root->root_key.objectid : 0));
313}
314
315static int is_waiting_for_move(struct send_ctx *sctx, u64 ino);
316
317static struct waiting_dir_move *
318get_waiting_dir_move(struct send_ctx *sctx, u64 ino);
319
320static int is_waiting_for_rm(struct send_ctx *sctx, u64 dir_ino, u64 gen);
321
322static int need_send_hole(struct send_ctx *sctx)
323{
324	return (sctx->parent_root && !sctx->cur_inode_new &&
325		!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted &&
326		S_ISREG(sctx->cur_inode_mode));
327}
328
329static void fs_path_reset(struct fs_path *p)
330{
331	if (p->reversed) {
332		p->start = p->buf + p->buf_len - 1;
333		p->end = p->start;
334		*p->start = 0;
335	} else {
336		p->start = p->buf;
337		p->end = p->start;
338		*p->start = 0;
339	}
340}
341
342static struct fs_path *fs_path_alloc(void)
343{
344	struct fs_path *p;
345
346	p = kmalloc(sizeof(*p), GFP_KERNEL);
347	if (!p)
348		return NULL;
349	p->reversed = 0;
350	p->buf = p->inline_buf;
351	p->buf_len = FS_PATH_INLINE_SIZE;
352	fs_path_reset(p);
353	return p;
354}
355
356static struct fs_path *fs_path_alloc_reversed(void)
357{
358	struct fs_path *p;
359
360	p = fs_path_alloc();
361	if (!p)
362		return NULL;
363	p->reversed = 1;
364	fs_path_reset(p);
365	return p;
366}
367
368static void fs_path_free(struct fs_path *p)
369{
370	if (!p)
371		return;
372	if (p->buf != p->inline_buf)
373		kfree(p->buf);
374	kfree(p);
375}
376
377static int fs_path_len(struct fs_path *p)
378{
379	return p->end - p->start;
380}
381
382static int fs_path_ensure_buf(struct fs_path *p, int len)
383{
384	char *tmp_buf;
385	int path_len;
386	int old_buf_len;
387
388	len++;
389
390	if (p->buf_len >= len)
391		return 0;
392
393	if (len > PATH_MAX) {
394		WARN_ON(1);
395		return -ENOMEM;
396	}
397
398	path_len = p->end - p->start;
399	old_buf_len = p->buf_len;
400
401	/*
402	 * First time the inline_buf does not suffice
403	 */
404	if (p->buf == p->inline_buf) {
405		tmp_buf = kmalloc(len, GFP_KERNEL);
406		if (tmp_buf)
407			memcpy(tmp_buf, p->buf, old_buf_len);
408	} else {
409		tmp_buf = krealloc(p->buf, len, GFP_KERNEL);
410	}
411	if (!tmp_buf)
412		return -ENOMEM;
413	p->buf = tmp_buf;
414	/*
415	 * The real size of the buffer is bigger, this will let the fast path
416	 * happen most of the time
417	 */
418	p->buf_len = ksize(p->buf);
419
420	if (p->reversed) {
421		tmp_buf = p->buf + old_buf_len - path_len - 1;
422		p->end = p->buf + p->buf_len - 1;
423		p->start = p->end - path_len;
424		memmove(p->start, tmp_buf, path_len + 1);
425	} else {
426		p->start = p->buf;
427		p->end = p->start + path_len;
428	}
429	return 0;
430}
431
432static int fs_path_prepare_for_add(struct fs_path *p, int name_len,
433				   char **prepared)
434{
435	int ret;
436	int new_len;
437
438	new_len = p->end - p->start + name_len;
439	if (p->start != p->end)
440		new_len++;
441	ret = fs_path_ensure_buf(p, new_len);
442	if (ret < 0)
443		goto out;
444
445	if (p->reversed) {
446		if (p->start != p->end)
447			*--p->start = '/';
448		p->start -= name_len;
449		*prepared = p->start;
450	} else {
451		if (p->start != p->end)
452			*p->end++ = '/';
453		*prepared = p->end;
454		p->end += name_len;
455		*p->end = 0;
456	}
457
458out:
459	return ret;
460}
461
462static int fs_path_add(struct fs_path *p, const char *name, int name_len)
463{
464	int ret;
465	char *prepared;
466
467	ret = fs_path_prepare_for_add(p, name_len, &prepared);
468	if (ret < 0)
469		goto out;
470	memcpy(prepared, name, name_len);
471
472out:
473	return ret;
474}
475
476static int fs_path_add_path(struct fs_path *p, struct fs_path *p2)
477{
478	int ret;
479	char *prepared;
480
481	ret = fs_path_prepare_for_add(p, p2->end - p2->start, &prepared);
482	if (ret < 0)
483		goto out;
484	memcpy(prepared, p2->start, p2->end - p2->start);
485
486out:
487	return ret;
488}
489
490static int fs_path_add_from_extent_buffer(struct fs_path *p,
491					  struct extent_buffer *eb,
492					  unsigned long off, int len)
493{
494	int ret;
495	char *prepared;
496
497	ret = fs_path_prepare_for_add(p, len, &prepared);
498	if (ret < 0)
499		goto out;
500
501	read_extent_buffer(eb, prepared, off, len);
502
503out:
504	return ret;
505}
506
507static int fs_path_copy(struct fs_path *p, struct fs_path *from)
508{
509	int ret;
510
511	p->reversed = from->reversed;
512	fs_path_reset(p);
513
514	ret = fs_path_add_path(p, from);
515
516	return ret;
517}
518
519
520static void fs_path_unreverse(struct fs_path *p)
521{
522	char *tmp;
523	int len;
524
525	if (!p->reversed)
526		return;
527
528	tmp = p->start;
529	len = p->end - p->start;
530	p->start = p->buf;
531	p->end = p->start + len;
532	memmove(p->start, tmp, len + 1);
533	p->reversed = 0;
534}
535
536static struct btrfs_path *alloc_path_for_send(void)
537{
538	struct btrfs_path *path;
539
540	path = btrfs_alloc_path();
541	if (!path)
542		return NULL;
543	path->search_commit_root = 1;
544	path->skip_locking = 1;
545	path->need_commit_sem = 1;
546	return path;
547}
548
549static int write_buf(struct file *filp, const void *buf, u32 len, loff_t *off)
550{
551	int ret;
552	u32 pos = 0;
553
554	while (pos < len) {
555		ret = kernel_write(filp, buf + pos, len - pos, off);
556		/* TODO handle that correctly */
557		/*if (ret == -ERESTARTSYS) {
558			continue;
559		}*/
560		if (ret < 0)
561			return ret;
562		if (ret == 0) {
563			return -EIO;
564		}
565		pos += ret;
566	}
567
568	return 0;
569}
570
571static int tlv_put(struct send_ctx *sctx, u16 attr, const void *data, int len)
572{
573	struct btrfs_tlv_header *hdr;
574	int total_len = sizeof(*hdr) + len;
575	int left = sctx->send_max_size - sctx->send_size;
576
577	if (unlikely(left < total_len))
578		return -EOVERFLOW;
579
580	hdr = (struct btrfs_tlv_header *) (sctx->send_buf + sctx->send_size);
581	put_unaligned_le16(attr, &hdr->tlv_type);
582	put_unaligned_le16(len, &hdr->tlv_len);
583	memcpy(hdr + 1, data, len);
584	sctx->send_size += total_len;
585
586	return 0;
587}
588
589#define TLV_PUT_DEFINE_INT(bits) \
590	static int tlv_put_u##bits(struct send_ctx *sctx,	 	\
591			u##bits attr, u##bits value)			\
592	{								\
593		__le##bits __tmp = cpu_to_le##bits(value);		\
594		return tlv_put(sctx, attr, &__tmp, sizeof(__tmp));	\
595	}
596
597TLV_PUT_DEFINE_INT(64)
598
599static int tlv_put_string(struct send_ctx *sctx, u16 attr,
600			  const char *str, int len)
601{
602	if (len == -1)
603		len = strlen(str);
604	return tlv_put(sctx, attr, str, len);
605}
606
607static int tlv_put_uuid(struct send_ctx *sctx, u16 attr,
608			const u8 *uuid)
609{
610	return tlv_put(sctx, attr, uuid, BTRFS_UUID_SIZE);
611}
612
613static int tlv_put_btrfs_timespec(struct send_ctx *sctx, u16 attr,
614				  struct extent_buffer *eb,
615				  struct btrfs_timespec *ts)
616{
617	struct btrfs_timespec bts;
618	read_extent_buffer(eb, &bts, (unsigned long)ts, sizeof(bts));
619	return tlv_put(sctx, attr, &bts, sizeof(bts));
620}
621
622
623#define TLV_PUT(sctx, attrtype, data, attrlen) \
624	do { \
625		ret = tlv_put(sctx, attrtype, data, attrlen); \
626		if (ret < 0) \
627			goto tlv_put_failure; \
628	} while (0)
629
630#define TLV_PUT_INT(sctx, attrtype, bits, value) \
631	do { \
632		ret = tlv_put_u##bits(sctx, attrtype, value); \
633		if (ret < 0) \
634			goto tlv_put_failure; \
635	} while (0)
636
637#define TLV_PUT_U8(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 8, data)
638#define TLV_PUT_U16(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 16, data)
639#define TLV_PUT_U32(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 32, data)
640#define TLV_PUT_U64(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 64, data)
641#define TLV_PUT_STRING(sctx, attrtype, str, len) \
642	do { \
643		ret = tlv_put_string(sctx, attrtype, str, len); \
644		if (ret < 0) \
645			goto tlv_put_failure; \
646	} while (0)
647#define TLV_PUT_PATH(sctx, attrtype, p) \
648	do { \
649		ret = tlv_put_string(sctx, attrtype, p->start, \
650			p->end - p->start); \
651		if (ret < 0) \
652			goto tlv_put_failure; \
653	} while(0)
654#define TLV_PUT_UUID(sctx, attrtype, uuid) \
655	do { \
656		ret = tlv_put_uuid(sctx, attrtype, uuid); \
657		if (ret < 0) \
658			goto tlv_put_failure; \
659	} while (0)
660#define TLV_PUT_BTRFS_TIMESPEC(sctx, attrtype, eb, ts) \
661	do { \
662		ret = tlv_put_btrfs_timespec(sctx, attrtype, eb, ts); \
663		if (ret < 0) \
664			goto tlv_put_failure; \
665	} while (0)
666
667static int send_header(struct send_ctx *sctx)
668{
669	struct btrfs_stream_header hdr;
670
671	strcpy(hdr.magic, BTRFS_SEND_STREAM_MAGIC);
672	hdr.version = cpu_to_le32(BTRFS_SEND_STREAM_VERSION);
673
674	return write_buf(sctx->send_filp, &hdr, sizeof(hdr),
675					&sctx->send_off);
676}
677
678/*
679 * For each command/item we want to send to userspace, we call this function.
680 */
681static int begin_cmd(struct send_ctx *sctx, int cmd)
682{
683	struct btrfs_cmd_header *hdr;
684
685	if (WARN_ON(!sctx->send_buf))
686		return -EINVAL;
687
688	BUG_ON(sctx->send_size);
689
690	sctx->send_size += sizeof(*hdr);
691	hdr = (struct btrfs_cmd_header *)sctx->send_buf;
692	put_unaligned_le16(cmd, &hdr->cmd);
693
694	return 0;
695}
696
697static int send_cmd(struct send_ctx *sctx)
698{
699	int ret;
700	struct btrfs_cmd_header *hdr;
701	u32 crc;
702
703	hdr = (struct btrfs_cmd_header *)sctx->send_buf;
704	put_unaligned_le32(sctx->send_size - sizeof(*hdr), &hdr->len);
705	put_unaligned_le32(0, &hdr->crc);
706
707	crc = btrfs_crc32c(0, (unsigned char *)sctx->send_buf, sctx->send_size);
708	put_unaligned_le32(crc, &hdr->crc);
709
710	ret = write_buf(sctx->send_filp, sctx->send_buf, sctx->send_size,
711					&sctx->send_off);
712
713	sctx->total_send_size += sctx->send_size;
714	sctx->cmd_send_size[get_unaligned_le16(&hdr->cmd)] += sctx->send_size;
715	sctx->send_size = 0;
716
717	return ret;
718}
719
720/*
721 * Sends a move instruction to user space
722 */
723static int send_rename(struct send_ctx *sctx,
724		     struct fs_path *from, struct fs_path *to)
725{
726	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
727	int ret;
728
729	btrfs_debug(fs_info, "send_rename %s -> %s", from->start, to->start);
730
731	ret = begin_cmd(sctx, BTRFS_SEND_C_RENAME);
732	if (ret < 0)
733		goto out;
734
735	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, from);
736	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_TO, to);
737
738	ret = send_cmd(sctx);
739
740tlv_put_failure:
741out:
742	return ret;
743}
744
745/*
746 * Sends a link instruction to user space
747 */
748static int send_link(struct send_ctx *sctx,
749		     struct fs_path *path, struct fs_path *lnk)
750{
751	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
752	int ret;
753
754	btrfs_debug(fs_info, "send_link %s -> %s", path->start, lnk->start);
755
756	ret = begin_cmd(sctx, BTRFS_SEND_C_LINK);
757	if (ret < 0)
758		goto out;
759
760	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
761	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_LINK, lnk);
762
763	ret = send_cmd(sctx);
764
765tlv_put_failure:
766out:
767	return ret;
768}
769
770/*
771 * Sends an unlink instruction to user space
772 */
773static int send_unlink(struct send_ctx *sctx, struct fs_path *path)
774{
775	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
776	int ret;
777
778	btrfs_debug(fs_info, "send_unlink %s", path->start);
779
780	ret = begin_cmd(sctx, BTRFS_SEND_C_UNLINK);
781	if (ret < 0)
782		goto out;
783
784	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
785
786	ret = send_cmd(sctx);
787
788tlv_put_failure:
789out:
790	return ret;
791}
792
793/*
794 * Sends a rmdir instruction to user space
795 */
796static int send_rmdir(struct send_ctx *sctx, struct fs_path *path)
797{
798	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
799	int ret;
800
801	btrfs_debug(fs_info, "send_rmdir %s", path->start);
802
803	ret = begin_cmd(sctx, BTRFS_SEND_C_RMDIR);
804	if (ret < 0)
805		goto out;
806
807	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
808
809	ret = send_cmd(sctx);
810
811tlv_put_failure:
812out:
813	return ret;
814}
815
816/*
817 * Helper function to retrieve some fields from an inode item.
818 */
819static int __get_inode_info(struct btrfs_root *root, struct btrfs_path *path,
820			  u64 ino, u64 *size, u64 *gen, u64 *mode, u64 *uid,
821			  u64 *gid, u64 *rdev)
822{
823	int ret;
824	struct btrfs_inode_item *ii;
825	struct btrfs_key key;
826
827	key.objectid = ino;
828	key.type = BTRFS_INODE_ITEM_KEY;
829	key.offset = 0;
830	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
831	if (ret) {
832		if (ret > 0)
833			ret = -ENOENT;
834		return ret;
835	}
836
837	ii = btrfs_item_ptr(path->nodes[0], path->slots[0],
838			struct btrfs_inode_item);
839	if (size)
840		*size = btrfs_inode_size(path->nodes[0], ii);
841	if (gen)
842		*gen = btrfs_inode_generation(path->nodes[0], ii);
843	if (mode)
844		*mode = btrfs_inode_mode(path->nodes[0], ii);
845	if (uid)
846		*uid = btrfs_inode_uid(path->nodes[0], ii);
847	if (gid)
848		*gid = btrfs_inode_gid(path->nodes[0], ii);
849	if (rdev)
850		*rdev = btrfs_inode_rdev(path->nodes[0], ii);
851
852	return ret;
853}
854
855static int get_inode_info(struct btrfs_root *root,
856			  u64 ino, u64 *size, u64 *gen,
857			  u64 *mode, u64 *uid, u64 *gid,
858			  u64 *rdev)
859{
860	struct btrfs_path *path;
861	int ret;
862
863	path = alloc_path_for_send();
864	if (!path)
865		return -ENOMEM;
866	ret = __get_inode_info(root, path, ino, size, gen, mode, uid, gid,
867			       rdev);
868	btrfs_free_path(path);
869	return ret;
870}
871
872typedef int (*iterate_inode_ref_t)(int num, u64 dir, int index,
873				   struct fs_path *p,
874				   void *ctx);
875
876/*
877 * Helper function to iterate the entries in ONE btrfs_inode_ref or
878 * btrfs_inode_extref.
879 * The iterate callback may return a non zero value to stop iteration. This can
880 * be a negative value for error codes or 1 to simply stop it.
881 *
882 * path must point to the INODE_REF or INODE_EXTREF when called.
883 */
884static int iterate_inode_ref(struct btrfs_root *root, struct btrfs_path *path,
885			     struct btrfs_key *found_key, int resolve,
886			     iterate_inode_ref_t iterate, void *ctx)
887{
888	struct extent_buffer *eb = path->nodes[0];
889	struct btrfs_item *item;
890	struct btrfs_inode_ref *iref;
891	struct btrfs_inode_extref *extref;
892	struct btrfs_path *tmp_path;
893	struct fs_path *p;
894	u32 cur = 0;
895	u32 total;
896	int slot = path->slots[0];
897	u32 name_len;
898	char *start;
899	int ret = 0;
900	int num = 0;
901	int index;
902	u64 dir;
903	unsigned long name_off;
904	unsigned long elem_size;
905	unsigned long ptr;
906
907	p = fs_path_alloc_reversed();
908	if (!p)
909		return -ENOMEM;
910
911	tmp_path = alloc_path_for_send();
912	if (!tmp_path) {
913		fs_path_free(p);
914		return -ENOMEM;
915	}
916
917
918	if (found_key->type == BTRFS_INODE_REF_KEY) {
919		ptr = (unsigned long)btrfs_item_ptr(eb, slot,
920						    struct btrfs_inode_ref);
921		item = btrfs_item_nr(slot);
922		total = btrfs_item_size(eb, item);
923		elem_size = sizeof(*iref);
924	} else {
925		ptr = btrfs_item_ptr_offset(eb, slot);
926		total = btrfs_item_size_nr(eb, slot);
927		elem_size = sizeof(*extref);
928	}
929
930	while (cur < total) {
931		fs_path_reset(p);
932
933		if (found_key->type == BTRFS_INODE_REF_KEY) {
934			iref = (struct btrfs_inode_ref *)(ptr + cur);
935			name_len = btrfs_inode_ref_name_len(eb, iref);
936			name_off = (unsigned long)(iref + 1);
937			index = btrfs_inode_ref_index(eb, iref);
938			dir = found_key->offset;
939		} else {
940			extref = (struct btrfs_inode_extref *)(ptr + cur);
941			name_len = btrfs_inode_extref_name_len(eb, extref);
942			name_off = (unsigned long)&extref->name;
943			index = btrfs_inode_extref_index(eb, extref);
944			dir = btrfs_inode_extref_parent(eb, extref);
945		}
946
947		if (resolve) {
948			start = btrfs_ref_to_path(root, tmp_path, name_len,
949						  name_off, eb, dir,
950						  p->buf, p->buf_len);
951			if (IS_ERR(start)) {
952				ret = PTR_ERR(start);
953				goto out;
954			}
955			if (start < p->buf) {
956				/* overflow , try again with larger buffer */
957				ret = fs_path_ensure_buf(p,
958						p->buf_len + p->buf - start);
959				if (ret < 0)
960					goto out;
961				start = btrfs_ref_to_path(root, tmp_path,
962							  name_len, name_off,
963							  eb, dir,
964							  p->buf, p->buf_len);
965				if (IS_ERR(start)) {
966					ret = PTR_ERR(start);
967					goto out;
968				}
969				BUG_ON(start < p->buf);
970			}
971			p->start = start;
972		} else {
973			ret = fs_path_add_from_extent_buffer(p, eb, name_off,
974							     name_len);
975			if (ret < 0)
976				goto out;
977		}
978
979		cur += elem_size + name_len;
980		ret = iterate(num, dir, index, p, ctx);
981		if (ret)
982			goto out;
983		num++;
984	}
985
986out:
987	btrfs_free_path(tmp_path);
988	fs_path_free(p);
989	return ret;
990}
991
992typedef int (*iterate_dir_item_t)(int num, struct btrfs_key *di_key,
993				  const char *name, int name_len,
994				  const char *data, int data_len,
995				  u8 type, void *ctx);
996
997/*
998 * Helper function to iterate the entries in ONE btrfs_dir_item.
999 * The iterate callback may return a non zero value to stop iteration. This can
1000 * be a negative value for error codes or 1 to simply stop it.
1001 *
1002 * path must point to the dir item when called.
1003 */
1004static int iterate_dir_item(struct btrfs_root *root, struct btrfs_path *path,
1005			    iterate_dir_item_t iterate, void *ctx)
1006{
1007	int ret = 0;
1008	struct extent_buffer *eb;
1009	struct btrfs_item *item;
1010	struct btrfs_dir_item *di;
1011	struct btrfs_key di_key;
1012	char *buf = NULL;
1013	int buf_len;
1014	u32 name_len;
1015	u32 data_len;
1016	u32 cur;
1017	u32 len;
1018	u32 total;
1019	int slot;
1020	int num;
1021	u8 type;
1022
1023	/*
1024	 * Start with a small buffer (1 page). If later we end up needing more
1025	 * space, which can happen for xattrs on a fs with a leaf size greater
1026	 * then the page size, attempt to increase the buffer. Typically xattr
1027	 * values are small.
1028	 */
1029	buf_len = PATH_MAX;
1030	buf = kmalloc(buf_len, GFP_KERNEL);
1031	if (!buf) {
1032		ret = -ENOMEM;
1033		goto out;
1034	}
1035
1036	eb = path->nodes[0];
1037	slot = path->slots[0];
1038	item = btrfs_item_nr(slot);
1039	di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item);
1040	cur = 0;
1041	len = 0;
1042	total = btrfs_item_size(eb, item);
1043
1044	num = 0;
1045	while (cur < total) {
1046		name_len = btrfs_dir_name_len(eb, di);
1047		data_len = btrfs_dir_data_len(eb, di);
1048		type = btrfs_dir_type(eb, di);
1049		btrfs_dir_item_key_to_cpu(eb, di, &di_key);
1050
1051		if (type == BTRFS_FT_XATTR) {
1052			if (name_len > XATTR_NAME_MAX) {
1053				ret = -ENAMETOOLONG;
1054				goto out;
1055			}
1056			if (name_len + data_len >
1057					BTRFS_MAX_XATTR_SIZE(root->fs_info)) {
1058				ret = -E2BIG;
1059				goto out;
1060			}
1061		} else {
1062			/*
1063			 * Path too long
1064			 */
1065			if (name_len + data_len > PATH_MAX) {
1066				ret = -ENAMETOOLONG;
1067				goto out;
1068			}
1069		}
1070
1071		if (name_len + data_len > buf_len) {
1072			buf_len = name_len + data_len;
1073			if (is_vmalloc_addr(buf)) {
1074				vfree(buf);
1075				buf = NULL;
1076			} else {
1077				char *tmp = krealloc(buf, buf_len,
1078						GFP_KERNEL | __GFP_NOWARN);
1079
1080				if (!tmp)
1081					kfree(buf);
1082				buf = tmp;
1083			}
1084			if (!buf) {
1085				buf = kvmalloc(buf_len, GFP_KERNEL);
1086				if (!buf) {
1087					ret = -ENOMEM;
1088					goto out;
1089				}
1090			}
1091		}
1092
1093		read_extent_buffer(eb, buf, (unsigned long)(di + 1),
1094				name_len + data_len);
1095
1096		len = sizeof(*di) + name_len + data_len;
1097		di = (struct btrfs_dir_item *)((char *)di + len);
1098		cur += len;
1099
1100		ret = iterate(num, &di_key, buf, name_len, buf + name_len,
1101				data_len, type, ctx);
1102		if (ret < 0)
1103			goto out;
1104		if (ret) {
1105			ret = 0;
1106			goto out;
1107		}
1108
1109		num++;
1110	}
1111
1112out:
1113	kvfree(buf);
1114	return ret;
1115}
1116
1117static int __copy_first_ref(int num, u64 dir, int index,
1118			    struct fs_path *p, void *ctx)
1119{
1120	int ret;
1121	struct fs_path *pt = ctx;
1122
1123	ret = fs_path_copy(pt, p);
1124	if (ret < 0)
1125		return ret;
1126
1127	/* we want the first only */
1128	return 1;
1129}
1130
1131/*
1132 * Retrieve the first path of an inode. If an inode has more then one
1133 * ref/hardlink, this is ignored.
1134 */
1135static int get_inode_path(struct btrfs_root *root,
1136			  u64 ino, struct fs_path *path)
1137{
1138	int ret;
1139	struct btrfs_key key, found_key;
1140	struct btrfs_path *p;
1141
1142	p = alloc_path_for_send();
1143	if (!p)
1144		return -ENOMEM;
1145
1146	fs_path_reset(path);
1147
1148	key.objectid = ino;
1149	key.type = BTRFS_INODE_REF_KEY;
1150	key.offset = 0;
1151
1152	ret = btrfs_search_slot_for_read(root, &key, p, 1, 0);
1153	if (ret < 0)
1154		goto out;
1155	if (ret) {
1156		ret = 1;
1157		goto out;
1158	}
1159	btrfs_item_key_to_cpu(p->nodes[0], &found_key, p->slots[0]);
1160	if (found_key.objectid != ino ||
1161	    (found_key.type != BTRFS_INODE_REF_KEY &&
1162	     found_key.type != BTRFS_INODE_EXTREF_KEY)) {
1163		ret = -ENOENT;
1164		goto out;
1165	}
1166
1167	ret = iterate_inode_ref(root, p, &found_key, 1,
1168				__copy_first_ref, path);
1169	if (ret < 0)
1170		goto out;
1171	ret = 0;
1172
1173out:
1174	btrfs_free_path(p);
1175	return ret;
1176}
1177
1178struct backref_ctx {
1179	struct send_ctx *sctx;
1180
1181	/* number of total found references */
1182	u64 found;
1183
1184	/*
1185	 * used for clones found in send_root. clones found behind cur_objectid
1186	 * and cur_offset are not considered as allowed clones.
1187	 */
1188	u64 cur_objectid;
1189	u64 cur_offset;
1190
1191	/* may be truncated in case it's the last extent in a file */
1192	u64 extent_len;
1193
1194	/* data offset in the file extent item */
1195	u64 data_offset;
1196
1197	/* Just to check for bugs in backref resolving */
1198	int found_itself;
1199};
1200
1201static int __clone_root_cmp_bsearch(const void *key, const void *elt)
1202{
1203	u64 root = (u64)(uintptr_t)key;
1204	struct clone_root *cr = (struct clone_root *)elt;
1205
1206	if (root < cr->root->root_key.objectid)
1207		return -1;
1208	if (root > cr->root->root_key.objectid)
1209		return 1;
1210	return 0;
1211}
1212
1213static int __clone_root_cmp_sort(const void *e1, const void *e2)
1214{
1215	struct clone_root *cr1 = (struct clone_root *)e1;
1216	struct clone_root *cr2 = (struct clone_root *)e2;
1217
1218	if (cr1->root->root_key.objectid < cr2->root->root_key.objectid)
1219		return -1;
1220	if (cr1->root->root_key.objectid > cr2->root->root_key.objectid)
1221		return 1;
1222	return 0;
1223}
1224
1225/*
1226 * Called for every backref that is found for the current extent.
1227 * Results are collected in sctx->clone_roots->ino/offset/found_refs
1228 */
1229static int __iterate_backrefs(u64 ino, u64 offset, u64 root, void *ctx_)
1230{
1231	struct backref_ctx *bctx = ctx_;
1232	struct clone_root *found;
1233
1234	/* First check if the root is in the list of accepted clone sources */
1235	found = bsearch((void *)(uintptr_t)root, bctx->sctx->clone_roots,
1236			bctx->sctx->clone_roots_cnt,
1237			sizeof(struct clone_root),
1238			__clone_root_cmp_bsearch);
1239	if (!found)
1240		return 0;
1241
1242	if (found->root == bctx->sctx->send_root &&
1243	    ino == bctx->cur_objectid &&
1244	    offset == bctx->cur_offset) {
1245		bctx->found_itself = 1;
1246	}
1247
1248	/*
1249	 * Make sure we don't consider clones from send_root that are
1250	 * behind the current inode/offset.
1251	 */
1252	if (found->root == bctx->sctx->send_root) {
1253		/*
1254		 * If the source inode was not yet processed we can't issue a
1255		 * clone operation, as the source extent does not exist yet at
1256		 * the destination of the stream.
1257		 */
1258		if (ino > bctx->cur_objectid)
1259			return 0;
1260		/*
1261		 * We clone from the inode currently being sent as long as the
1262		 * source extent is already processed, otherwise we could try
1263		 * to clone from an extent that does not exist yet at the
1264		 * destination of the stream.
1265		 */
1266		if (ino == bctx->cur_objectid &&
1267		    offset + bctx->extent_len >
1268		    bctx->sctx->cur_inode_next_write_offset)
1269			return 0;
1270	}
1271
1272	bctx->found++;
1273	found->found_refs++;
1274	if (ino < found->ino) {
1275		found->ino = ino;
1276		found->offset = offset;
1277	} else if (found->ino == ino) {
1278		/*
1279		 * same extent found more then once in the same file.
1280		 */
1281		if (found->offset > offset + bctx->extent_len)
1282			found->offset = offset;
1283	}
1284
1285	return 0;
1286}
1287
1288/*
1289 * Given an inode, offset and extent item, it finds a good clone for a clone
1290 * instruction. Returns -ENOENT when none could be found. The function makes
1291 * sure that the returned clone is usable at the point where sending is at the
1292 * moment. This means, that no clones are accepted which lie behind the current
1293 * inode+offset.
1294 *
1295 * path must point to the extent item when called.
1296 */
1297static int find_extent_clone(struct send_ctx *sctx,
1298			     struct btrfs_path *path,
1299			     u64 ino, u64 data_offset,
1300			     u64 ino_size,
1301			     struct clone_root **found)
1302{
1303	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
1304	int ret;
1305	int extent_type;
1306	u64 logical;
1307	u64 disk_byte;
1308	u64 num_bytes;
1309	u64 extent_item_pos;
1310	u64 flags = 0;
1311	struct btrfs_file_extent_item *fi;
1312	struct extent_buffer *eb = path->nodes[0];
1313	struct backref_ctx *backref_ctx = NULL;
1314	struct clone_root *cur_clone_root;
1315	struct btrfs_key found_key;
1316	struct btrfs_path *tmp_path;
1317	struct btrfs_extent_item *ei;
1318	int compressed;
1319	u32 i;
1320
1321	tmp_path = alloc_path_for_send();
1322	if (!tmp_path)
1323		return -ENOMEM;
1324
1325	/* We only use this path under the commit sem */
1326	tmp_path->need_commit_sem = 0;
1327
1328	backref_ctx = kmalloc(sizeof(*backref_ctx), GFP_KERNEL);
1329	if (!backref_ctx) {
1330		ret = -ENOMEM;
1331		goto out;
1332	}
1333
1334	if (data_offset >= ino_size) {
1335		/*
1336		 * There may be extents that lie behind the file's size.
1337		 * I at least had this in combination with snapshotting while
1338		 * writing large files.
1339		 */
1340		ret = 0;
1341		goto out;
1342	}
1343
1344	fi = btrfs_item_ptr(eb, path->slots[0],
1345			struct btrfs_file_extent_item);
1346	extent_type = btrfs_file_extent_type(eb, fi);
1347	if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1348		ret = -ENOENT;
1349		goto out;
1350	}
1351	compressed = btrfs_file_extent_compression(eb, fi);
1352
1353	num_bytes = btrfs_file_extent_num_bytes(eb, fi);
1354	disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
1355	if (disk_byte == 0) {
1356		ret = -ENOENT;
1357		goto out;
1358	}
1359	logical = disk_byte + btrfs_file_extent_offset(eb, fi);
1360
1361	down_read(&fs_info->commit_root_sem);
1362	ret = extent_from_logical(fs_info, disk_byte, tmp_path,
1363				  &found_key, &flags);
1364	up_read(&fs_info->commit_root_sem);
1365
1366	if (ret < 0)
1367		goto out;
1368	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
1369		ret = -EIO;
1370		goto out;
1371	}
1372
1373	ei = btrfs_item_ptr(tmp_path->nodes[0], tmp_path->slots[0],
1374			    struct btrfs_extent_item);
1375	/*
1376	 * Backreference walking (iterate_extent_inodes() below) is currently
1377	 * too expensive when an extent has a large number of references, both
1378	 * in time spent and used memory. So for now just fallback to write
1379	 * operations instead of clone operations when an extent has more than
1380	 * a certain amount of references.
1381	 */
1382	if (btrfs_extent_refs(tmp_path->nodes[0], ei) > SEND_MAX_EXTENT_REFS) {
1383		ret = -ENOENT;
1384		goto out;
1385	}
1386	btrfs_release_path(tmp_path);
1387
1388	/*
1389	 * Setup the clone roots.
1390	 */
1391	for (i = 0; i < sctx->clone_roots_cnt; i++) {
1392		cur_clone_root = sctx->clone_roots + i;
1393		cur_clone_root->ino = (u64)-1;
1394		cur_clone_root->offset = 0;
1395		cur_clone_root->found_refs = 0;
1396	}
1397
1398	backref_ctx->sctx = sctx;
1399	backref_ctx->found = 0;
1400	backref_ctx->cur_objectid = ino;
1401	backref_ctx->cur_offset = data_offset;
1402	backref_ctx->found_itself = 0;
1403	backref_ctx->extent_len = num_bytes;
1404	/*
1405	 * For non-compressed extents iterate_extent_inodes() gives us extent
1406	 * offsets that already take into account the data offset, but not for
1407	 * compressed extents, since the offset is logical and not relative to
1408	 * the physical extent locations. We must take this into account to
1409	 * avoid sending clone offsets that go beyond the source file's size,
1410	 * which would result in the clone ioctl failing with -EINVAL on the
1411	 * receiving end.
1412	 */
1413	if (compressed == BTRFS_COMPRESS_NONE)
1414		backref_ctx->data_offset = 0;
1415	else
1416		backref_ctx->data_offset = btrfs_file_extent_offset(eb, fi);
1417
1418	/*
1419	 * The last extent of a file may be too large due to page alignment.
1420	 * We need to adjust extent_len in this case so that the checks in
1421	 * __iterate_backrefs work.
1422	 */
1423	if (data_offset + num_bytes >= ino_size)
1424		backref_ctx->extent_len = ino_size - data_offset;
1425
1426	/*
1427	 * Now collect all backrefs.
1428	 */
1429	if (compressed == BTRFS_COMPRESS_NONE)
1430		extent_item_pos = logical - found_key.objectid;
1431	else
1432		extent_item_pos = 0;
1433	ret = iterate_extent_inodes(fs_info, found_key.objectid,
1434				    extent_item_pos, 1, __iterate_backrefs,
1435				    backref_ctx, false);
1436
1437	if (ret < 0)
1438		goto out;
1439
1440	if (!backref_ctx->found_itself) {
1441		/* found a bug in backref code? */
1442		ret = -EIO;
1443		btrfs_err(fs_info,
1444			  "did not find backref in send_root. inode=%llu, offset=%llu, disk_byte=%llu found extent=%llu",
1445			  ino, data_offset, disk_byte, found_key.objectid);
1446		goto out;
1447	}
1448
1449	btrfs_debug(fs_info,
1450		    "find_extent_clone: data_offset=%llu, ino=%llu, num_bytes=%llu, logical=%llu",
1451		    data_offset, ino, num_bytes, logical);
1452
1453	if (!backref_ctx->found)
1454		btrfs_debug(fs_info, "no clones found");
1455
1456	cur_clone_root = NULL;
1457	for (i = 0; i < sctx->clone_roots_cnt; i++) {
1458		if (sctx->clone_roots[i].found_refs) {
1459			if (!cur_clone_root)
1460				cur_clone_root = sctx->clone_roots + i;
1461			else if (sctx->clone_roots[i].root == sctx->send_root)
1462				/* prefer clones from send_root over others */
1463				cur_clone_root = sctx->clone_roots + i;
1464		}
1465
1466	}
1467
1468	if (cur_clone_root) {
1469		*found = cur_clone_root;
1470		ret = 0;
1471	} else {
1472		ret = -ENOENT;
1473	}
1474
1475out:
1476	btrfs_free_path(tmp_path);
1477	kfree(backref_ctx);
1478	return ret;
1479}
1480
1481static int read_symlink(struct btrfs_root *root,
1482			u64 ino,
1483			struct fs_path *dest)
1484{
1485	int ret;
1486	struct btrfs_path *path;
1487	struct btrfs_key key;
1488	struct btrfs_file_extent_item *ei;
1489	u8 type;
1490	u8 compression;
1491	unsigned long off;
1492	int len;
1493
1494	path = alloc_path_for_send();
1495	if (!path)
1496		return -ENOMEM;
1497
1498	key.objectid = ino;
1499	key.type = BTRFS_EXTENT_DATA_KEY;
1500	key.offset = 0;
1501	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1502	if (ret < 0)
1503		goto out;
1504	if (ret) {
1505		/*
1506		 * An empty symlink inode. Can happen in rare error paths when
1507		 * creating a symlink (transaction committed before the inode
1508		 * eviction handler removed the symlink inode items and a crash
1509		 * happened in between or the subvol was snapshoted in between).
1510		 * Print an informative message to dmesg/syslog so that the user
1511		 * can delete the symlink.
1512		 */
1513		btrfs_err(root->fs_info,
1514			  "Found empty symlink inode %llu at root %llu",
1515			  ino, root->root_key.objectid);
1516		ret = -EIO;
1517		goto out;
1518	}
1519
1520	ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
1521			struct btrfs_file_extent_item);
1522	type = btrfs_file_extent_type(path->nodes[0], ei);
1523	compression = btrfs_file_extent_compression(path->nodes[0], ei);
1524	BUG_ON(type != BTRFS_FILE_EXTENT_INLINE);
1525	BUG_ON(compression);
1526
1527	off = btrfs_file_extent_inline_start(ei);
1528	len = btrfs_file_extent_ram_bytes(path->nodes[0], ei);
1529
1530	ret = fs_path_add_from_extent_buffer(dest, path->nodes[0], off, len);
1531
1532out:
1533	btrfs_free_path(path);
1534	return ret;
1535}
1536
1537/*
1538 * Helper function to generate a file name that is unique in the root of
1539 * send_root and parent_root. This is used to generate names for orphan inodes.
1540 */
1541static int gen_unique_name(struct send_ctx *sctx,
1542			   u64 ino, u64 gen,
1543			   struct fs_path *dest)
1544{
1545	int ret = 0;
1546	struct btrfs_path *path;
1547	struct btrfs_dir_item *di;
1548	char tmp[64];
1549	int len;
1550	u64 idx = 0;
1551
1552	path = alloc_path_for_send();
1553	if (!path)
1554		return -ENOMEM;
1555
1556	while (1) {
1557		len = snprintf(tmp, sizeof(tmp), "o%llu-%llu-%llu",
1558				ino, gen, idx);
1559		ASSERT(len < sizeof(tmp));
1560
1561		di = btrfs_lookup_dir_item(NULL, sctx->send_root,
1562				path, BTRFS_FIRST_FREE_OBJECTID,
1563				tmp, strlen(tmp), 0);
1564		btrfs_release_path(path);
1565		if (IS_ERR(di)) {
1566			ret = PTR_ERR(di);
1567			goto out;
1568		}
1569		if (di) {
1570			/* not unique, try again */
1571			idx++;
1572			continue;
1573		}
1574
1575		if (!sctx->parent_root) {
1576			/* unique */
1577			ret = 0;
1578			break;
1579		}
1580
1581		di = btrfs_lookup_dir_item(NULL, sctx->parent_root,
1582				path, BTRFS_FIRST_FREE_OBJECTID,
1583				tmp, strlen(tmp), 0);
1584		btrfs_release_path(path);
1585		if (IS_ERR(di)) {
1586			ret = PTR_ERR(di);
1587			goto out;
1588		}
1589		if (di) {
1590			/* not unique, try again */
1591			idx++;
1592			continue;
1593		}
1594		/* unique */
1595		break;
1596	}
1597
1598	ret = fs_path_add(dest, tmp, strlen(tmp));
1599
1600out:
1601	btrfs_free_path(path);
1602	return ret;
1603}
1604
1605enum inode_state {
1606	inode_state_no_change,
1607	inode_state_will_create,
1608	inode_state_did_create,
1609	inode_state_will_delete,
1610	inode_state_did_delete,
1611};
1612
1613static int get_cur_inode_state(struct send_ctx *sctx, u64 ino, u64 gen)
1614{
1615	int ret;
1616	int left_ret;
1617	int right_ret;
1618	u64 left_gen;
1619	u64 right_gen;
1620
1621	ret = get_inode_info(sctx->send_root, ino, NULL, &left_gen, NULL, NULL,
1622			NULL, NULL);
1623	if (ret < 0 && ret != -ENOENT)
1624		goto out;
1625	left_ret = ret;
1626
1627	if (!sctx->parent_root) {
1628		right_ret = -ENOENT;
1629	} else {
1630		ret = get_inode_info(sctx->parent_root, ino, NULL, &right_gen,
1631				NULL, NULL, NULL, NULL);
1632		if (ret < 0 && ret != -ENOENT)
1633			goto out;
1634		right_ret = ret;
1635	}
1636
1637	if (!left_ret && !right_ret) {
1638		if (left_gen == gen && right_gen == gen) {
1639			ret = inode_state_no_change;
1640		} else if (left_gen == gen) {
1641			if (ino < sctx->send_progress)
1642				ret = inode_state_did_create;
1643			else
1644				ret = inode_state_will_create;
1645		} else if (right_gen == gen) {
1646			if (ino < sctx->send_progress)
1647				ret = inode_state_did_delete;
1648			else
1649				ret = inode_state_will_delete;
1650		} else  {
1651			ret = -ENOENT;
1652		}
1653	} else if (!left_ret) {
1654		if (left_gen == gen) {
1655			if (ino < sctx->send_progress)
1656				ret = inode_state_did_create;
1657			else
1658				ret = inode_state_will_create;
1659		} else {
1660			ret = -ENOENT;
1661		}
1662	} else if (!right_ret) {
1663		if (right_gen == gen) {
1664			if (ino < sctx->send_progress)
1665				ret = inode_state_did_delete;
1666			else
1667				ret = inode_state_will_delete;
1668		} else {
1669			ret = -ENOENT;
1670		}
1671	} else {
1672		ret = -ENOENT;
1673	}
1674
1675out:
1676	return ret;
1677}
1678
1679static int is_inode_existent(struct send_ctx *sctx, u64 ino, u64 gen)
1680{
1681	int ret;
1682
1683	if (ino == BTRFS_FIRST_FREE_OBJECTID)
1684		return 1;
1685
1686	ret = get_cur_inode_state(sctx, ino, gen);
1687	if (ret < 0)
1688		goto out;
1689
1690	if (ret == inode_state_no_change ||
1691	    ret == inode_state_did_create ||
1692	    ret == inode_state_will_delete)
1693		ret = 1;
1694	else
1695		ret = 0;
1696
1697out:
1698	return ret;
1699}
1700
1701/*
1702 * Helper function to lookup a dir item in a dir.
1703 */
1704static int lookup_dir_item_inode(struct btrfs_root *root,
1705				 u64 dir, const char *name, int name_len,
1706				 u64 *found_inode,
1707				 u8 *found_type)
1708{
1709	int ret = 0;
1710	struct btrfs_dir_item *di;
1711	struct btrfs_key key;
1712	struct btrfs_path *path;
1713
1714	path = alloc_path_for_send();
1715	if (!path)
1716		return -ENOMEM;
1717
1718	di = btrfs_lookup_dir_item(NULL, root, path,
1719			dir, name, name_len, 0);
1720	if (IS_ERR_OR_NULL(di)) {
1721		ret = di ? PTR_ERR(di) : -ENOENT;
1722		goto out;
1723	}
1724	btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key);
1725	if (key.type == BTRFS_ROOT_ITEM_KEY) {
1726		ret = -ENOENT;
1727		goto out;
1728	}
1729	*found_inode = key.objectid;
1730	*found_type = btrfs_dir_type(path->nodes[0], di);
1731
1732out:
1733	btrfs_free_path(path);
1734	return ret;
1735}
1736
1737/*
1738 * Looks up the first btrfs_inode_ref of a given ino. It returns the parent dir,
1739 * generation of the parent dir and the name of the dir entry.
1740 */
1741static int get_first_ref(struct btrfs_root *root, u64 ino,
1742			 u64 *dir, u64 *dir_gen, struct fs_path *name)
1743{
1744	int ret;
1745	struct btrfs_key key;
1746	struct btrfs_key found_key;
1747	struct btrfs_path *path;
1748	int len;
1749	u64 parent_dir;
1750
1751	path = alloc_path_for_send();
1752	if (!path)
1753		return -ENOMEM;
1754
1755	key.objectid = ino;
1756	key.type = BTRFS_INODE_REF_KEY;
1757	key.offset = 0;
1758
1759	ret = btrfs_search_slot_for_read(root, &key, path, 1, 0);
1760	if (ret < 0)
1761		goto out;
1762	if (!ret)
1763		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1764				path->slots[0]);
1765	if (ret || found_key.objectid != ino ||
1766	    (found_key.type != BTRFS_INODE_REF_KEY &&
1767	     found_key.type != BTRFS_INODE_EXTREF_KEY)) {
1768		ret = -ENOENT;
1769		goto out;
1770	}
1771
1772	if (found_key.type == BTRFS_INODE_REF_KEY) {
1773		struct btrfs_inode_ref *iref;
1774		iref = btrfs_item_ptr(path->nodes[0], path->slots[0],
1775				      struct btrfs_inode_ref);
1776		len = btrfs_inode_ref_name_len(path->nodes[0], iref);
1777		ret = fs_path_add_from_extent_buffer(name, path->nodes[0],
1778						     (unsigned long)(iref + 1),
1779						     len);
1780		parent_dir = found_key.offset;
1781	} else {
1782		struct btrfs_inode_extref *extref;
1783		extref = btrfs_item_ptr(path->nodes[0], path->slots[0],
1784					struct btrfs_inode_extref);
1785		len = btrfs_inode_extref_name_len(path->nodes[0], extref);
1786		ret = fs_path_add_from_extent_buffer(name, path->nodes[0],
1787					(unsigned long)&extref->name, len);
1788		parent_dir = btrfs_inode_extref_parent(path->nodes[0], extref);
1789	}
1790	if (ret < 0)
1791		goto out;
1792	btrfs_release_path(path);
1793
1794	if (dir_gen) {
1795		ret = get_inode_info(root, parent_dir, NULL, dir_gen, NULL,
1796				     NULL, NULL, NULL);
1797		if (ret < 0)
1798			goto out;
1799	}
1800
1801	*dir = parent_dir;
1802
1803out:
1804	btrfs_free_path(path);
1805	return ret;
1806}
1807
1808static int is_first_ref(struct btrfs_root *root,
1809			u64 ino, u64 dir,
1810			const char *name, int name_len)
1811{
1812	int ret;
1813	struct fs_path *tmp_name;
1814	u64 tmp_dir;
1815
1816	tmp_name = fs_path_alloc();
1817	if (!tmp_name)
1818		return -ENOMEM;
1819
1820	ret = get_first_ref(root, ino, &tmp_dir, NULL, tmp_name);
1821	if (ret < 0)
1822		goto out;
1823
1824	if (dir != tmp_dir || name_len != fs_path_len(tmp_name)) {
1825		ret = 0;
1826		goto out;
1827	}
1828
1829	ret = !memcmp(tmp_name->start, name, name_len);
1830
1831out:
1832	fs_path_free(tmp_name);
1833	return ret;
1834}
1835
1836/*
1837 * Used by process_recorded_refs to determine if a new ref would overwrite an
1838 * already existing ref. In case it detects an overwrite, it returns the
1839 * inode/gen in who_ino/who_gen.
1840 * When an overwrite is detected, process_recorded_refs does proper orphanizing
1841 * to make sure later references to the overwritten inode are possible.
1842 * Orphanizing is however only required for the first ref of an inode.
1843 * process_recorded_refs does an additional is_first_ref check to see if
1844 * orphanizing is really required.
1845 */
1846static int will_overwrite_ref(struct send_ctx *sctx, u64 dir, u64 dir_gen,
1847			      const char *name, int name_len,
1848			      u64 *who_ino, u64 *who_gen, u64 *who_mode)
1849{
1850	int ret = 0;
1851	u64 gen;
1852	u64 other_inode = 0;
1853	u8 other_type = 0;
1854
1855	if (!sctx->parent_root)
1856		goto out;
1857
1858	ret = is_inode_existent(sctx, dir, dir_gen);
1859	if (ret <= 0)
1860		goto out;
1861
1862	/*
1863	 * If we have a parent root we need to verify that the parent dir was
1864	 * not deleted and then re-created, if it was then we have no overwrite
1865	 * and we can just unlink this entry.
1866	 */
1867	if (sctx->parent_root && dir != BTRFS_FIRST_FREE_OBJECTID) {
1868		ret = get_inode_info(sctx->parent_root, dir, NULL, &gen, NULL,
1869				     NULL, NULL, NULL);
1870		if (ret < 0 && ret != -ENOENT)
1871			goto out;
1872		if (ret) {
1873			ret = 0;
1874			goto out;
1875		}
1876		if (gen != dir_gen)
1877			goto out;
1878	}
1879
1880	ret = lookup_dir_item_inode(sctx->parent_root, dir, name, name_len,
1881			&other_inode, &other_type);
1882	if (ret < 0 && ret != -ENOENT)
1883		goto out;
1884	if (ret) {
1885		ret = 0;
1886		goto out;
1887	}
1888
1889	/*
1890	 * Check if the overwritten ref was already processed. If yes, the ref
1891	 * was already unlinked/moved, so we can safely assume that we will not
1892	 * overwrite anything at this point in time.
1893	 */
1894	if (other_inode > sctx->send_progress ||
1895	    is_waiting_for_move(sctx, other_inode)) {
1896		ret = get_inode_info(sctx->parent_root, other_inode, NULL,
1897				who_gen, who_mode, NULL, NULL, NULL);
1898		if (ret < 0)
1899			goto out;
1900
1901		ret = 1;
1902		*who_ino = other_inode;
1903	} else {
1904		ret = 0;
1905	}
1906
1907out:
1908	return ret;
1909}
1910
1911/*
1912 * Checks if the ref was overwritten by an already processed inode. This is
1913 * used by __get_cur_name_and_parent to find out if the ref was orphanized and
1914 * thus the orphan name needs be used.
1915 * process_recorded_refs also uses it to avoid unlinking of refs that were
1916 * overwritten.
1917 */
1918static int did_overwrite_ref(struct send_ctx *sctx,
1919			    u64 dir, u64 dir_gen,
1920			    u64 ino, u64 ino_gen,
1921			    const char *name, int name_len)
1922{
1923	int ret = 0;
1924	u64 gen;
1925	u64 ow_inode;
1926	u8 other_type;
1927
1928	if (!sctx->parent_root)
1929		goto out;
1930
1931	ret = is_inode_existent(sctx, dir, dir_gen);
1932	if (ret <= 0)
1933		goto out;
1934
1935	if (dir != BTRFS_FIRST_FREE_OBJECTID) {
1936		ret = get_inode_info(sctx->send_root, dir, NULL, &gen, NULL,
1937				     NULL, NULL, NULL);
1938		if (ret < 0 && ret != -ENOENT)
1939			goto out;
1940		if (ret) {
1941			ret = 0;
1942			goto out;
1943		}
1944		if (gen != dir_gen)
1945			goto out;
1946	}
1947
1948	/* check if the ref was overwritten by another ref */
1949	ret = lookup_dir_item_inode(sctx->send_root, dir, name, name_len,
1950			&ow_inode, &other_type);
1951	if (ret < 0 && ret != -ENOENT)
1952		goto out;
1953	if (ret) {
1954		/* was never and will never be overwritten */
1955		ret = 0;
1956		goto out;
1957	}
1958
1959	ret = get_inode_info(sctx->send_root, ow_inode, NULL, &gen, NULL, NULL,
1960			NULL, NULL);
1961	if (ret < 0)
1962		goto out;
1963
1964	if (ow_inode == ino && gen == ino_gen) {
1965		ret = 0;
1966		goto out;
1967	}
1968
1969	/*
1970	 * We know that it is or will be overwritten. Check this now.
1971	 * The current inode being processed might have been the one that caused
1972	 * inode 'ino' to be orphanized, therefore check if ow_inode matches
1973	 * the current inode being processed.
1974	 */
1975	if ((ow_inode < sctx->send_progress) ||
1976	    (ino != sctx->cur_ino && ow_inode == sctx->cur_ino &&
1977	     gen == sctx->cur_inode_gen))
1978		ret = 1;
1979	else
1980		ret = 0;
1981
1982out:
1983	return ret;
1984}
1985
1986/*
1987 * Same as did_overwrite_ref, but also checks if it is the first ref of an inode
1988 * that got overwritten. This is used by process_recorded_refs to determine
1989 * if it has to use the path as returned by get_cur_path or the orphan name.
1990 */
1991static int did_overwrite_first_ref(struct send_ctx *sctx, u64 ino, u64 gen)
1992{
1993	int ret = 0;
1994	struct fs_path *name = NULL;
1995	u64 dir;
1996	u64 dir_gen;
1997
1998	if (!sctx->parent_root)
1999		goto out;
2000
2001	name = fs_path_alloc();
2002	if (!name)
2003		return -ENOMEM;
2004
2005	ret = get_first_ref(sctx->parent_root, ino, &dir, &dir_gen, name);
2006	if (ret < 0)
2007		goto out;
2008
2009	ret = did_overwrite_ref(sctx, dir, dir_gen, ino, gen,
2010			name->start, fs_path_len(name));
2011
2012out:
2013	fs_path_free(name);
2014	return ret;
2015}
2016
2017/*
2018 * Insert a name cache entry. On 32bit kernels the radix tree index is 32bit,
2019 * so we need to do some special handling in case we have clashes. This function
2020 * takes care of this with the help of name_cache_entry::radix_list.
2021 * In case of error, nce is kfreed.
2022 */
2023static int name_cache_insert(struct send_ctx *sctx,
2024			     struct name_cache_entry *nce)
2025{
2026	int ret = 0;
2027	struct list_head *nce_head;
2028
2029	nce_head = radix_tree_lookup(&sctx->name_cache,
2030			(unsigned long)nce->ino);
2031	if (!nce_head) {
2032		nce_head = kmalloc(sizeof(*nce_head), GFP_KERNEL);
2033		if (!nce_head) {
2034			kfree(nce);
2035			return -ENOMEM;
2036		}
2037		INIT_LIST_HEAD(nce_head);
2038
2039		ret = radix_tree_insert(&sctx->name_cache, nce->ino, nce_head);
2040		if (ret < 0) {
2041			kfree(nce_head);
2042			kfree(nce);
2043			return ret;
2044		}
2045	}
2046	list_add_tail(&nce->radix_list, nce_head);
2047	list_add_tail(&nce->list, &sctx->name_cache_list);
2048	sctx->name_cache_size++;
2049
2050	return ret;
2051}
2052
2053static void name_cache_delete(struct send_ctx *sctx,
2054			      struct name_cache_entry *nce)
2055{
2056	struct list_head *nce_head;
2057
2058	nce_head = radix_tree_lookup(&sctx->name_cache,
2059			(unsigned long)nce->ino);
2060	if (!nce_head) {
2061		btrfs_err(sctx->send_root->fs_info,
2062	      "name_cache_delete lookup failed ino %llu cache size %d, leaking memory",
2063			nce->ino, sctx->name_cache_size);
2064	}
2065
2066	list_del(&nce->radix_list);
2067	list_del(&nce->list);
2068	sctx->name_cache_size--;
2069
2070	/*
2071	 * We may not get to the final release of nce_head if the lookup fails
2072	 */
2073	if (nce_head && list_empty(nce_head)) {
2074		radix_tree_delete(&sctx->name_cache, (unsigned long)nce->ino);
2075		kfree(nce_head);
2076	}
2077}
2078
2079static struct name_cache_entry *name_cache_search(struct send_ctx *sctx,
2080						    u64 ino, u64 gen)
2081{
2082	struct list_head *nce_head;
2083	struct name_cache_entry *cur;
2084
2085	nce_head = radix_tree_lookup(&sctx->name_cache, (unsigned long)ino);
2086	if (!nce_head)
2087		return NULL;
2088
2089	list_for_each_entry(cur, nce_head, radix_list) {
2090		if (cur->ino == ino && cur->gen == gen)
2091			return cur;
2092	}
2093	return NULL;
2094}
2095
2096/*
2097 * Removes the entry from the list and adds it back to the end. This marks the
2098 * entry as recently used so that name_cache_clean_unused does not remove it.
2099 */
2100static void name_cache_used(struct send_ctx *sctx, struct name_cache_entry *nce)
2101{
2102	list_del(&nce->list);
2103	list_add_tail(&nce->list, &sctx->name_cache_list);
2104}
2105
2106/*
2107 * Remove some entries from the beginning of name_cache_list.
2108 */
2109static void name_cache_clean_unused(struct send_ctx *sctx)
2110{
2111	struct name_cache_entry *nce;
2112
2113	if (sctx->name_cache_size < SEND_CTX_NAME_CACHE_CLEAN_SIZE)
2114		return;
2115
2116	while (sctx->name_cache_size > SEND_CTX_MAX_NAME_CACHE_SIZE) {
2117		nce = list_entry(sctx->name_cache_list.next,
2118				struct name_cache_entry, list);
2119		name_cache_delete(sctx, nce);
2120		kfree(nce);
2121	}
2122}
2123
2124static void name_cache_free(struct send_ctx *sctx)
2125{
2126	struct name_cache_entry *nce;
2127
2128	while (!list_empty(&sctx->name_cache_list)) {
2129		nce = list_entry(sctx->name_cache_list.next,
2130				struct name_cache_entry, list);
2131		name_cache_delete(sctx, nce);
2132		kfree(nce);
2133	}
2134}
2135
2136/*
2137 * Used by get_cur_path for each ref up to the root.
2138 * Returns 0 if it succeeded.
2139 * Returns 1 if the inode is not existent or got overwritten. In that case, the
2140 * name is an orphan name. This instructs get_cur_path to stop iterating. If 1
2141 * is returned, parent_ino/parent_gen are not guaranteed to be valid.
2142 * Returns <0 in case of error.
2143 */
2144static int __get_cur_name_and_parent(struct send_ctx *sctx,
2145				     u64 ino, u64 gen,
2146				     u64 *parent_ino,
2147				     u64 *parent_gen,
2148				     struct fs_path *dest)
2149{
2150	int ret;
2151	int nce_ret;
2152	struct name_cache_entry *nce = NULL;
2153
2154	/*
2155	 * First check if we already did a call to this function with the same
2156	 * ino/gen. If yes, check if the cache entry is still up-to-date. If yes
2157	 * return the cached result.
2158	 */
2159	nce = name_cache_search(sctx, ino, gen);
2160	if (nce) {
2161		if (ino < sctx->send_progress && nce->need_later_update) {
2162			name_cache_delete(sctx, nce);
2163			kfree(nce);
2164			nce = NULL;
2165		} else {
2166			name_cache_used(sctx, nce);
2167			*parent_ino = nce->parent_ino;
2168			*parent_gen = nce->parent_gen;
2169			ret = fs_path_add(dest, nce->name, nce->name_len);
2170			if (ret < 0)
2171				goto out;
2172			ret = nce->ret;
2173			goto out;
2174		}
2175	}
2176
2177	/*
2178	 * If the inode is not existent yet, add the orphan name and return 1.
2179	 * This should only happen for the parent dir that we determine in
2180	 * __record_new_ref
2181	 */
2182	ret = is_inode_existent(sctx, ino, gen);
2183	if (ret < 0)
2184		goto out;
2185
2186	if (!ret) {
2187		ret = gen_unique_name(sctx, ino, gen, dest);
2188		if (ret < 0)
2189			goto out;
2190		ret = 1;
2191		goto out_cache;
2192	}
2193
2194	/*
2195	 * Depending on whether the inode was already processed or not, use
2196	 * send_root or parent_root for ref lookup.
2197	 */
2198	if (ino < sctx->send_progress)
2199		ret = get_first_ref(sctx->send_root, ino,
2200				    parent_ino, parent_gen, dest);
2201	else
2202		ret = get_first_ref(sctx->parent_root, ino,
2203				    parent_ino, parent_gen, dest);
2204	if (ret < 0)
2205		goto out;
2206
2207	/*
2208	 * Check if the ref was overwritten by an inode's ref that was processed
2209	 * earlier. If yes, treat as orphan and return 1.
2210	 */
2211	ret = did_overwrite_ref(sctx, *parent_ino, *parent_gen, ino, gen,
2212			dest->start, dest->end - dest->start);
2213	if (ret < 0)
2214		goto out;
2215	if (ret) {
2216		fs_path_reset(dest);
2217		ret = gen_unique_name(sctx, ino, gen, dest);
2218		if (ret < 0)
2219			goto out;
2220		ret = 1;
2221	}
2222
2223out_cache:
2224	/*
2225	 * Store the result of the lookup in the name cache.
2226	 */
2227	nce = kmalloc(sizeof(*nce) + fs_path_len(dest) + 1, GFP_KERNEL);
2228	if (!nce) {
2229		ret = -ENOMEM;
2230		goto out;
2231	}
2232
2233	nce->ino = ino;
2234	nce->gen = gen;
2235	nce->parent_ino = *parent_ino;
2236	nce->parent_gen = *parent_gen;
2237	nce->name_len = fs_path_len(dest);
2238	nce->ret = ret;
2239	strcpy(nce->name, dest->start);
2240
2241	if (ino < sctx->send_progress)
2242		nce->need_later_update = 0;
2243	else
2244		nce->need_later_update = 1;
2245
2246	nce_ret = name_cache_insert(sctx, nce);
2247	if (nce_ret < 0)
2248		ret = nce_ret;
2249	name_cache_clean_unused(sctx);
2250
2251out:
2252	return ret;
2253}
2254
2255/*
2256 * Magic happens here. This function returns the first ref to an inode as it
2257 * would look like while receiving the stream at this point in time.
2258 * We walk the path up to the root. For every inode in between, we check if it
2259 * was already processed/sent. If yes, we continue with the parent as found
2260 * in send_root. If not, we continue with the parent as found in parent_root.
2261 * If we encounter an inode that was deleted at this point in time, we use the
2262 * inodes "orphan" name instead of the real name and stop. Same with new inodes
2263 * that were not created yet and overwritten inodes/refs.
2264 *
2265 * When do we have orphan inodes:
2266 * 1. When an inode is freshly created and thus no valid refs are available yet
2267 * 2. When a directory lost all it's refs (deleted) but still has dir items
2268 *    inside which were not processed yet (pending for move/delete). If anyone
2269 *    tried to get the path to the dir items, it would get a path inside that
2270 *    orphan directory.
2271 * 3. When an inode is moved around or gets new links, it may overwrite the ref
2272 *    of an unprocessed inode. If in that case the first ref would be
2273 *    overwritten, the overwritten inode gets "orphanized". Later when we
2274 *    process this overwritten inode, it is restored at a new place by moving
2275 *    the orphan inode.
2276 *
2277 * sctx->send_progress tells this function at which point in time receiving
2278 * would be.
2279 */
2280static int get_cur_path(struct send_ctx *sctx, u64 ino, u64 gen,
2281			struct fs_path *dest)
2282{
2283	int ret = 0;
2284	struct fs_path *name = NULL;
2285	u64 parent_inode = 0;
2286	u64 parent_gen = 0;
2287	int stop = 0;
2288
2289	name = fs_path_alloc();
2290	if (!name) {
2291		ret = -ENOMEM;
2292		goto out;
2293	}
2294
2295	dest->reversed = 1;
2296	fs_path_reset(dest);
2297
2298	while (!stop && ino != BTRFS_FIRST_FREE_OBJECTID) {
2299		struct waiting_dir_move *wdm;
2300
2301		fs_path_reset(name);
2302
2303		if (is_waiting_for_rm(sctx, ino, gen)) {
2304			ret = gen_unique_name(sctx, ino, gen, name);
2305			if (ret < 0)
2306				goto out;
2307			ret = fs_path_add_path(dest, name);
2308			break;
2309		}
2310
2311		wdm = get_waiting_dir_move(sctx, ino);
2312		if (wdm && wdm->orphanized) {
2313			ret = gen_unique_name(sctx, ino, gen, name);
2314			stop = 1;
2315		} else if (wdm) {
2316			ret = get_first_ref(sctx->parent_root, ino,
2317					    &parent_inode, &parent_gen, name);
2318		} else {
2319			ret = __get_cur_name_and_parent(sctx, ino, gen,
2320							&parent_inode,
2321							&parent_gen, name);
2322			if (ret)
2323				stop = 1;
2324		}
2325
2326		if (ret < 0)
2327			goto out;
2328
2329		ret = fs_path_add_path(dest, name);
2330		if (ret < 0)
2331			goto out;
2332
2333		ino = parent_inode;
2334		gen = parent_gen;
2335	}
2336
2337out:
2338	fs_path_free(name);
2339	if (!ret)
2340		fs_path_unreverse(dest);
2341	return ret;
2342}
2343
2344/*
2345 * Sends a BTRFS_SEND_C_SUBVOL command/item to userspace
2346 */
2347static int send_subvol_begin(struct send_ctx *sctx)
2348{
2349	int ret;
2350	struct btrfs_root *send_root = sctx->send_root;
2351	struct btrfs_root *parent_root = sctx->parent_root;
2352	struct btrfs_path *path;
2353	struct btrfs_key key;
2354	struct btrfs_root_ref *ref;
2355	struct extent_buffer *leaf;
2356	char *name = NULL;
2357	int namelen;
2358
2359	path = btrfs_alloc_path();
2360	if (!path)
2361		return -ENOMEM;
2362
2363	name = kmalloc(BTRFS_PATH_NAME_MAX, GFP_KERNEL);
2364	if (!name) {
2365		btrfs_free_path(path);
2366		return -ENOMEM;
2367	}
2368
2369	key.objectid = send_root->root_key.objectid;
2370	key.type = BTRFS_ROOT_BACKREF_KEY;
2371	key.offset = 0;
2372
2373	ret = btrfs_search_slot_for_read(send_root->fs_info->tree_root,
2374				&key, path, 1, 0);
2375	if (ret < 0)
2376		goto out;
2377	if (ret) {
2378		ret = -ENOENT;
2379		goto out;
2380	}
2381
2382	leaf = path->nodes[0];
2383	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2384	if (key.type != BTRFS_ROOT_BACKREF_KEY ||
2385	    key.objectid != send_root->root_key.objectid) {
2386		ret = -ENOENT;
2387		goto out;
2388	}
2389	ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
2390	namelen = btrfs_root_ref_name_len(leaf, ref);
2391	read_extent_buffer(leaf, name, (unsigned long)(ref + 1), namelen);
2392	btrfs_release_path(path);
2393
2394	if (parent_root) {
2395		ret = begin_cmd(sctx, BTRFS_SEND_C_SNAPSHOT);
2396		if (ret < 0)
2397			goto out;
2398	} else {
2399		ret = begin_cmd(sctx, BTRFS_SEND_C_SUBVOL);
2400		if (ret < 0)
2401			goto out;
2402	}
2403
2404	TLV_PUT_STRING(sctx, BTRFS_SEND_A_PATH, name, namelen);
2405
2406	if (!btrfs_is_empty_uuid(sctx->send_root->root_item.received_uuid))
2407		TLV_PUT_UUID(sctx, BTRFS_SEND_A_UUID,
2408			    sctx->send_root->root_item.received_uuid);
2409	else
2410		TLV_PUT_UUID(sctx, BTRFS_SEND_A_UUID,
2411			    sctx->send_root->root_item.uuid);
2412
2413	TLV_PUT_U64(sctx, BTRFS_SEND_A_CTRANSID,
2414		    le64_to_cpu(sctx->send_root->root_item.ctransid));
2415	if (parent_root) {
2416		if (!btrfs_is_empty_uuid(parent_root->root_item.received_uuid))
2417			TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
2418				     parent_root->root_item.received_uuid);
2419		else
2420			TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
2421				     parent_root->root_item.uuid);
2422		TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_CTRANSID,
2423			    le64_to_cpu(sctx->parent_root->root_item.ctransid));
2424	}
2425
2426	ret = send_cmd(sctx);
2427
2428tlv_put_failure:
2429out:
2430	btrfs_free_path(path);
2431	kfree(name);
2432	return ret;
2433}
2434
2435static int send_truncate(struct send_ctx *sctx, u64 ino, u64 gen, u64 size)
2436{
2437	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2438	int ret = 0;
2439	struct fs_path *p;
2440
2441	btrfs_debug(fs_info, "send_truncate %llu size=%llu", ino, size);
2442
2443	p = fs_path_alloc();
2444	if (!p)
2445		return -ENOMEM;
2446
2447	ret = begin_cmd(sctx, BTRFS_SEND_C_TRUNCATE);
2448	if (ret < 0)
2449		goto out;
2450
2451	ret = get_cur_path(sctx, ino, gen, p);
2452	if (ret < 0)
2453		goto out;
2454	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2455	TLV_PUT_U64(sctx, BTRFS_SEND_A_SIZE, size);
2456
2457	ret = send_cmd(sctx);
2458
2459tlv_put_failure:
2460out:
2461	fs_path_free(p);
2462	return ret;
2463}
2464
2465static int send_chmod(struct send_ctx *sctx, u64 ino, u64 gen, u64 mode)
2466{
2467	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2468	int ret = 0;
2469	struct fs_path *p;
2470
2471	btrfs_debug(fs_info, "send_chmod %llu mode=%llu", ino, mode);
2472
2473	p = fs_path_alloc();
2474	if (!p)
2475		return -ENOMEM;
2476
2477	ret = begin_cmd(sctx, BTRFS_SEND_C_CHMOD);
2478	if (ret < 0)
2479		goto out;
2480
2481	ret = get_cur_path(sctx, ino, gen, p);
2482	if (ret < 0)
2483		goto out;
2484	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2485	TLV_PUT_U64(sctx, BTRFS_SEND_A_MODE, mode & 07777);
2486
2487	ret = send_cmd(sctx);
2488
2489tlv_put_failure:
2490out:
2491	fs_path_free(p);
2492	return ret;
2493}
2494
2495static int send_chown(struct send_ctx *sctx, u64 ino, u64 gen, u64 uid, u64 gid)
2496{
2497	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2498	int ret = 0;
2499	struct fs_path *p;
2500
2501	btrfs_debug(fs_info, "send_chown %llu uid=%llu, gid=%llu",
2502		    ino, uid, gid);
2503
2504	p = fs_path_alloc();
2505	if (!p)
2506		return -ENOMEM;
2507
2508	ret = begin_cmd(sctx, BTRFS_SEND_C_CHOWN);
2509	if (ret < 0)
2510		goto out;
2511
2512	ret = get_cur_path(sctx, ino, gen, p);
2513	if (ret < 0)
2514		goto out;
2515	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2516	TLV_PUT_U64(sctx, BTRFS_SEND_A_UID, uid);
2517	TLV_PUT_U64(sctx, BTRFS_SEND_A_GID, gid);
2518
2519	ret = send_cmd(sctx);
2520
2521tlv_put_failure:
2522out:
2523	fs_path_free(p);
2524	return ret;
2525}
2526
2527static int send_utimes(struct send_ctx *sctx, u64 ino, u64 gen)
2528{
2529	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2530	int ret = 0;
2531	struct fs_path *p = NULL;
2532	struct btrfs_inode_item *ii;
2533	struct btrfs_path *path = NULL;
2534	struct extent_buffer *eb;
2535	struct btrfs_key key;
2536	int slot;
2537
2538	btrfs_debug(fs_info, "send_utimes %llu", ino);
2539
2540	p = fs_path_alloc();
2541	if (!p)
2542		return -ENOMEM;
2543
2544	path = alloc_path_for_send();
2545	if (!path) {
2546		ret = -ENOMEM;
2547		goto out;
2548	}
2549
2550	key.objectid = ino;
2551	key.type = BTRFS_INODE_ITEM_KEY;
2552	key.offset = 0;
2553	ret = btrfs_search_slot(NULL, sctx->send_root, &key, path, 0, 0);
2554	if (ret > 0)
2555		ret = -ENOENT;
2556	if (ret < 0)
2557		goto out;
2558
2559	eb = path->nodes[0];
2560	slot = path->slots[0];
2561	ii = btrfs_item_ptr(eb, slot, struct btrfs_inode_item);
2562
2563	ret = begin_cmd(sctx, BTRFS_SEND_C_UTIMES);
2564	if (ret < 0)
2565		goto out;
2566
2567	ret = get_cur_path(sctx, ino, gen, p);
2568	if (ret < 0)
2569		goto out;
2570	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2571	TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_ATIME, eb, &ii->atime);
2572	TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_MTIME, eb, &ii->mtime);
2573	TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_CTIME, eb, &ii->ctime);
2574	/* TODO Add otime support when the otime patches get into upstream */
2575
2576	ret = send_cmd(sctx);
2577
2578tlv_put_failure:
2579out:
2580	fs_path_free(p);
2581	btrfs_free_path(path);
2582	return ret;
2583}
2584
2585/*
2586 * Sends a BTRFS_SEND_C_MKXXX or SYMLINK command to user space. We don't have
2587 * a valid path yet because we did not process the refs yet. So, the inode
2588 * is created as orphan.
2589 */
2590static int send_create_inode(struct send_ctx *sctx, u64 ino)
2591{
2592	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2593	int ret = 0;
2594	struct fs_path *p;
2595	int cmd;
2596	u64 gen;
2597	u64 mode;
2598	u64 rdev;
2599
2600	btrfs_debug(fs_info, "send_create_inode %llu", ino);
2601
2602	p = fs_path_alloc();
2603	if (!p)
2604		return -ENOMEM;
2605
2606	if (ino != sctx->cur_ino) {
2607		ret = get_inode_info(sctx->send_root, ino, NULL, &gen, &mode,
2608				     NULL, NULL, &rdev);
2609		if (ret < 0)
2610			goto out;
2611	} else {
2612		gen = sctx->cur_inode_gen;
2613		mode = sctx->cur_inode_mode;
2614		rdev = sctx->cur_inode_rdev;
2615	}
2616
2617	if (S_ISREG(mode)) {
2618		cmd = BTRFS_SEND_C_MKFILE;
2619	} else if (S_ISDIR(mode)) {
2620		cmd = BTRFS_SEND_C_MKDIR;
2621	} else if (S_ISLNK(mode)) {
2622		cmd = BTRFS_SEND_C_SYMLINK;
2623	} else if (S_ISCHR(mode) || S_ISBLK(mode)) {
2624		cmd = BTRFS_SEND_C_MKNOD;
2625	} else if (S_ISFIFO(mode)) {
2626		cmd = BTRFS_SEND_C_MKFIFO;
2627	} else if (S_ISSOCK(mode)) {
2628		cmd = BTRFS_SEND_C_MKSOCK;
2629	} else {
2630		btrfs_warn(sctx->send_root->fs_info, "unexpected inode type %o",
2631				(int)(mode & S_IFMT));
2632		ret = -EOPNOTSUPP;
2633		goto out;
2634	}
2635
2636	ret = begin_cmd(sctx, cmd);
2637	if (ret < 0)
2638		goto out;
2639
2640	ret = gen_unique_name(sctx, ino, gen, p);
2641	if (ret < 0)
2642		goto out;
2643
2644	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2645	TLV_PUT_U64(sctx, BTRFS_SEND_A_INO, ino);
2646
2647	if (S_ISLNK(mode)) {
2648		fs_path_reset(p);
2649		ret = read_symlink(sctx->send_root, ino, p);
2650		if (ret < 0)
2651			goto out;
2652		TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_LINK, p);
2653	} else if (S_ISCHR(mode) || S_ISBLK(mode) ||
2654		   S_ISFIFO(mode) || S_ISSOCK(mode)) {
2655		TLV_PUT_U64(sctx, BTRFS_SEND_A_RDEV, new_encode_dev(rdev));
2656		TLV_PUT_U64(sctx, BTRFS_SEND_A_MODE, mode);
2657	}
2658
2659	ret = send_cmd(sctx);
2660	if (ret < 0)
2661		goto out;
2662
2663
2664tlv_put_failure:
2665out:
2666	fs_path_free(p);
2667	return ret;
2668}
2669
2670/*
2671 * We need some special handling for inodes that get processed before the parent
2672 * directory got created. See process_recorded_refs for details.
2673 * This function does the check if we already created the dir out of order.
2674 */
2675static int did_create_dir(struct send_ctx *sctx, u64 dir)
2676{
2677	int ret = 0;
2678	struct btrfs_path *path = NULL;
2679	struct btrfs_key key;
2680	struct btrfs_key found_key;
2681	struct btrfs_key di_key;
2682	struct extent_buffer *eb;
2683	struct btrfs_dir_item *di;
2684	int slot;
2685
2686	path = alloc_path_for_send();
2687	if (!path) {
2688		ret = -ENOMEM;
2689		goto out;
2690	}
2691
2692	key.objectid = dir;
2693	key.type = BTRFS_DIR_INDEX_KEY;
2694	key.offset = 0;
2695	ret = btrfs_search_slot(NULL, sctx->send_root, &key, path, 0, 0);
2696	if (ret < 0)
2697		goto out;
2698
2699	while (1) {
2700		eb = path->nodes[0];
2701		slot = path->slots[0];
2702		if (slot >= btrfs_header_nritems(eb)) {
2703			ret = btrfs_next_leaf(sctx->send_root, path);
2704			if (ret < 0) {
2705				goto out;
2706			} else if (ret > 0) {
2707				ret = 0;
2708				break;
2709			}
2710			continue;
2711		}
2712
2713		btrfs_item_key_to_cpu(eb, &found_key, slot);
2714		if (found_key.objectid != key.objectid ||
2715		    found_key.type != key.type) {
2716			ret = 0;
2717			goto out;
2718		}
2719
2720		di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item);
2721		btrfs_dir_item_key_to_cpu(eb, di, &di_key);
2722
2723		if (di_key.type != BTRFS_ROOT_ITEM_KEY &&
2724		    di_key.objectid < sctx->send_progress) {
2725			ret = 1;
2726			goto out;
2727		}
2728
2729		path->slots[0]++;
2730	}
2731
2732out:
2733	btrfs_free_path(path);
2734	return ret;
2735}
2736
2737/*
2738 * Only creates the inode if it is:
2739 * 1. Not a directory
2740 * 2. Or a directory which was not created already due to out of order
2741 *    directories. See did_create_dir and process_recorded_refs for details.
2742 */
2743static int send_create_inode_if_needed(struct send_ctx *sctx)
2744{
2745	int ret;
2746
2747	if (S_ISDIR(sctx->cur_inode_mode)) {
2748		ret = did_create_dir(sctx, sctx->cur_ino);
2749		if (ret < 0)
2750			goto out;
2751		if (ret) {
2752			ret = 0;
2753			goto out;
2754		}
2755	}
2756
2757	ret = send_create_inode(sctx, sctx->cur_ino);
2758	if (ret < 0)
2759		goto out;
2760
2761out:
2762	return ret;
2763}
2764
2765struct recorded_ref {
2766	struct list_head list;
2767	char *name;
2768	struct fs_path *full_path;
2769	u64 dir;
2770	u64 dir_gen;
2771	int name_len;
2772};
2773
2774static void set_ref_path(struct recorded_ref *ref, struct fs_path *path)
2775{
2776	ref->full_path = path;
2777	ref->name = (char *)kbasename(ref->full_path->start);
2778	ref->name_len = ref->full_path->end - ref->name;
2779}
2780
2781/*
2782 * We need to process new refs before deleted refs, but compare_tree gives us
2783 * everything mixed. So we first record all refs and later process them.
2784 * This function is a helper to record one ref.
2785 */
2786static int __record_ref(struct list_head *head, u64 dir,
2787		      u64 dir_gen, struct fs_path *path)
2788{
2789	struct recorded_ref *ref;
2790
2791	ref = kmalloc(sizeof(*ref), GFP_KERNEL);
2792	if (!ref)
2793		return -ENOMEM;
2794
2795	ref->dir = dir;
2796	ref->dir_gen = dir_gen;
2797	set_ref_path(ref, path);
2798	list_add_tail(&ref->list, head);
2799	return 0;
2800}
2801
2802static int dup_ref(struct recorded_ref *ref, struct list_head *list)
2803{
2804	struct recorded_ref *new;
2805
2806	new = kmalloc(sizeof(*ref), GFP_KERNEL);
2807	if (!new)
2808		return -ENOMEM;
2809
2810	new->dir = ref->dir;
2811	new->dir_gen = ref->dir_gen;
2812	new->full_path = NULL;
2813	INIT_LIST_HEAD(&new->list);
2814	list_add_tail(&new->list, list);
2815	return 0;
2816}
2817
2818static void __free_recorded_refs(struct list_head *head)
2819{
2820	struct recorded_ref *cur;
2821
2822	while (!list_empty(head)) {
2823		cur = list_entry(head->next, struct recorded_ref, list);
2824		fs_path_free(cur->full_path);
2825		list_del(&cur->list);
2826		kfree(cur);
2827	}
2828}
2829
2830static void free_recorded_refs(struct send_ctx *sctx)
2831{
2832	__free_recorded_refs(&sctx->new_refs);
2833	__free_recorded_refs(&sctx->deleted_refs);
2834}
2835
2836/*
2837 * Renames/moves a file/dir to its orphan name. Used when the first
2838 * ref of an unprocessed inode gets overwritten and for all non empty
2839 * directories.
2840 */
2841static int orphanize_inode(struct send_ctx *sctx, u64 ino, u64 gen,
2842			  struct fs_path *path)
2843{
2844	int ret;
2845	struct fs_path *orphan;
2846
2847	orphan = fs_path_alloc();
2848	if (!orphan)
2849		return -ENOMEM;
2850
2851	ret = gen_unique_name(sctx, ino, gen, orphan);
2852	if (ret < 0)
2853		goto out;
2854
2855	ret = send_rename(sctx, path, orphan);
2856
2857out:
2858	fs_path_free(orphan);
2859	return ret;
2860}
2861
2862static struct orphan_dir_info *add_orphan_dir_info(struct send_ctx *sctx,
2863						   u64 dir_ino, u64 dir_gen)
2864{
2865	struct rb_node **p = &sctx->orphan_dirs.rb_node;
2866	struct rb_node *parent = NULL;
2867	struct orphan_dir_info *entry, *odi;
2868
2869	while (*p) {
2870		parent = *p;
2871		entry = rb_entry(parent, struct orphan_dir_info, node);
2872		if (dir_ino < entry->ino)
2873			p = &(*p)->rb_left;
2874		else if (dir_ino > entry->ino)
2875			p = &(*p)->rb_right;
2876		else if (dir_gen < entry->gen)
2877			p = &(*p)->rb_left;
2878		else if (dir_gen > entry->gen)
2879			p = &(*p)->rb_right;
2880		else
2881			return entry;
2882	}
2883
2884	odi = kmalloc(sizeof(*odi), GFP_KERNEL);
2885	if (!odi)
2886		return ERR_PTR(-ENOMEM);
2887	odi->ino = dir_ino;
2888	odi->gen = dir_gen;
2889	odi->last_dir_index_offset = 0;
2890
2891	rb_link_node(&odi->node, parent, p);
2892	rb_insert_color(&odi->node, &sctx->orphan_dirs);
2893	return odi;
2894}
2895
2896static struct orphan_dir_info *get_orphan_dir_info(struct send_ctx *sctx,
2897						   u64 dir_ino, u64 gen)
2898{
2899	struct rb_node *n = sctx->orphan_dirs.rb_node;
2900	struct orphan_dir_info *entry;
2901
2902	while (n) {
2903		entry = rb_entry(n, struct orphan_dir_info, node);
2904		if (dir_ino < entry->ino)
2905			n = n->rb_left;
2906		else if (dir_ino > entry->ino)
2907			n = n->rb_right;
2908		else if (gen < entry->gen)
2909			n = n->rb_left;
2910		else if (gen > entry->gen)
2911			n = n->rb_right;
2912		else
2913			return entry;
2914	}
2915	return NULL;
2916}
2917
2918static int is_waiting_for_rm(struct send_ctx *sctx, u64 dir_ino, u64 gen)
2919{
2920	struct orphan_dir_info *odi = get_orphan_dir_info(sctx, dir_ino, gen);
2921
2922	return odi != NULL;
2923}
2924
2925static void free_orphan_dir_info(struct send_ctx *sctx,
2926				 struct orphan_dir_info *odi)
2927{
2928	if (!odi)
2929		return;
2930	rb_erase(&odi->node, &sctx->orphan_dirs);
2931	kfree(odi);
2932}
2933
2934/*
2935 * Returns 1 if a directory can be removed at this point in time.
2936 * We check this by iterating all dir items and checking if the inode behind
2937 * the dir item was already processed.
2938 */
2939static int can_rmdir(struct send_ctx *sctx, u64 dir, u64 dir_gen,
2940		     u64 send_progress)
2941{
2942	int ret = 0;
2943	struct btrfs_root *root = sctx->parent_root;
2944	struct btrfs_path *path;
2945	struct btrfs_key key;
2946	struct btrfs_key found_key;
2947	struct btrfs_key loc;
2948	struct btrfs_dir_item *di;
2949	struct orphan_dir_info *odi = NULL;
2950
2951	/*
2952	 * Don't try to rmdir the top/root subvolume dir.
2953	 */
2954	if (dir == BTRFS_FIRST_FREE_OBJECTID)
2955		return 0;
2956
2957	path = alloc_path_for_send();
2958	if (!path)
2959		return -ENOMEM;
2960
2961	key.objectid = dir;
2962	key.type = BTRFS_DIR_INDEX_KEY;
2963	key.offset = 0;
2964
2965	odi = get_orphan_dir_info(sctx, dir, dir_gen);
2966	if (odi)
2967		key.offset = odi->last_dir_index_offset;
2968
2969	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2970	if (ret < 0)
2971		goto out;
2972
2973	while (1) {
2974		struct waiting_dir_move *dm;
2975
2976		if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
2977			ret = btrfs_next_leaf(root, path);
2978			if (ret < 0)
2979				goto out;
2980			else if (ret > 0)
2981				break;
2982			continue;
2983		}
2984		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2985				      path->slots[0]);
2986		if (found_key.objectid != key.objectid ||
2987		    found_key.type != key.type)
2988			break;
2989
2990		di = btrfs_item_ptr(path->nodes[0], path->slots[0],
2991				struct btrfs_dir_item);
2992		btrfs_dir_item_key_to_cpu(path->nodes[0], di, &loc);
2993
2994		dm = get_waiting_dir_move(sctx, loc.objectid);
2995		if (dm) {
2996			odi = add_orphan_dir_info(sctx, dir, dir_gen);
2997			if (IS_ERR(odi)) {
2998				ret = PTR_ERR(odi);
2999				goto out;
3000			}
3001			odi->gen = dir_gen;
3002			odi->last_dir_index_offset = found_key.offset;
3003			dm->rmdir_ino = dir;
3004			dm->rmdir_gen = dir_gen;
3005			ret = 0;
3006			goto out;
3007		}
3008
3009		if (loc.objectid > send_progress) {
3010			odi = add_orphan_dir_info(sctx, dir, dir_gen);
3011			if (IS_ERR(odi)) {
3012				ret = PTR_ERR(odi);
3013				goto out;
3014			}
3015			odi->gen = dir_gen;
3016			odi->last_dir_index_offset = found_key.offset;
3017			ret = 0;
3018			goto out;
3019		}
3020
3021		path->slots[0]++;
3022	}
3023	free_orphan_dir_info(sctx, odi);
3024
3025	ret = 1;
3026
3027out:
3028	btrfs_free_path(path);
3029	return ret;
3030}
3031
3032static int is_waiting_for_move(struct send_ctx *sctx, u64 ino)
3033{
3034	struct waiting_dir_move *entry = get_waiting_dir_move(sctx, ino);
3035
3036	return entry != NULL;
3037}
3038
3039static int add_waiting_dir_move(struct send_ctx *sctx, u64 ino, bool orphanized)
3040{
3041	struct rb_node **p = &sctx->waiting_dir_moves.rb_node;
3042	struct rb_node *parent = NULL;
3043	struct waiting_dir_move *entry, *dm;
3044
3045	dm = kmalloc(sizeof(*dm), GFP_KERNEL);
3046	if (!dm)
3047		return -ENOMEM;
3048	dm->ino = ino;
3049	dm->rmdir_ino = 0;
3050	dm->rmdir_gen = 0;
3051	dm->orphanized = orphanized;
3052
3053	while (*p) {
3054		parent = *p;
3055		entry = rb_entry(parent, struct waiting_dir_move, node);
3056		if (ino < entry->ino) {
3057			p = &(*p)->rb_left;
3058		} else if (ino > entry->ino) {
3059			p = &(*p)->rb_right;
3060		} else {
3061			kfree(dm);
3062			return -EEXIST;
3063		}
3064	}
3065
3066	rb_link_node(&dm->node, parent, p);
3067	rb_insert_color(&dm->node, &sctx->waiting_dir_moves);
3068	return 0;
3069}
3070
3071static struct waiting_dir_move *
3072get_waiting_dir_move(struct send_ctx *sctx, u64 ino)
3073{
3074	struct rb_node *n = sctx->waiting_dir_moves.rb_node;
3075	struct waiting_dir_move *entry;
3076
3077	while (n) {
3078		entry = rb_entry(n, struct waiting_dir_move, node);
3079		if (ino < entry->ino)
3080			n = n->rb_left;
3081		else if (ino > entry->ino)
3082			n = n->rb_right;
3083		else
3084			return entry;
3085	}
3086	return NULL;
3087}
3088
3089static void free_waiting_dir_move(struct send_ctx *sctx,
3090				  struct waiting_dir_move *dm)
3091{
3092	if (!dm)
3093		return;
3094	rb_erase(&dm->node, &sctx->waiting_dir_moves);
3095	kfree(dm);
3096}
3097
3098static int add_pending_dir_move(struct send_ctx *sctx,
3099				u64 ino,
3100				u64 ino_gen,
3101				u64 parent_ino,
3102				struct list_head *new_refs,
3103				struct list_head *deleted_refs,
3104				const bool is_orphan)
3105{
3106	struct rb_node **p = &sctx->pending_dir_moves.rb_node;
3107	struct rb_node *parent = NULL;
3108	struct pending_dir_move *entry = NULL, *pm;
3109	struct recorded_ref *cur;
3110	int exists = 0;
3111	int ret;
3112
3113	pm = kmalloc(sizeof(*pm), GFP_KERNEL);
3114	if (!pm)
3115		return -ENOMEM;
3116	pm->parent_ino = parent_ino;
3117	pm->ino = ino;
3118	pm->gen = ino_gen;
3119	INIT_LIST_HEAD(&pm->list);
3120	INIT_LIST_HEAD(&pm->update_refs);
3121	RB_CLEAR_NODE(&pm->node);
3122
3123	while (*p) {
3124		parent = *p;
3125		entry = rb_entry(parent, struct pending_dir_move, node);
3126		if (parent_ino < entry->parent_ino) {
3127			p = &(*p)->rb_left;
3128		} else if (parent_ino > entry->parent_ino) {
3129			p = &(*p)->rb_right;
3130		} else {
3131			exists = 1;
3132			break;
3133		}
3134	}
3135
3136	list_for_each_entry(cur, deleted_refs, list) {
3137		ret = dup_ref(cur, &pm->update_refs);
3138		if (ret < 0)
3139			goto out;
3140	}
3141	list_for_each_entry(cur, new_refs, list) {
3142		ret = dup_ref(cur, &pm->update_refs);
3143		if (ret < 0)
3144			goto out;
3145	}
3146
3147	ret = add_waiting_dir_move(sctx, pm->ino, is_orphan);
3148	if (ret)
3149		goto out;
3150
3151	if (exists) {
3152		list_add_tail(&pm->list, &entry->list);
3153	} else {
3154		rb_link_node(&pm->node, parent, p);
3155		rb_insert_color(&pm->node, &sctx->pending_dir_moves);
3156	}
3157	ret = 0;
3158out:
3159	if (ret) {
3160		__free_recorded_refs(&pm->update_refs);
3161		kfree(pm);
3162	}
3163	return ret;
3164}
3165
3166static struct pending_dir_move *get_pending_dir_moves(struct send_ctx *sctx,
3167						      u64 parent_ino)
3168{
3169	struct rb_node *n = sctx->pending_dir_moves.rb_node;
3170	struct pending_dir_move *entry;
3171
3172	while (n) {
3173		entry = rb_entry(n, struct pending_dir_move, node);
3174		if (parent_ino < entry->parent_ino)
3175			n = n->rb_left;
3176		else if (parent_ino > entry->parent_ino)
3177			n = n->rb_right;
3178		else
3179			return entry;
3180	}
3181	return NULL;
3182}
3183
3184static int path_loop(struct send_ctx *sctx, struct fs_path *name,
3185		     u64 ino, u64 gen, u64 *ancestor_ino)
3186{
3187	int ret = 0;
3188	u64 parent_inode = 0;
3189	u64 parent_gen = 0;
3190	u64 start_ino = ino;
3191
3192	*ancestor_ino = 0;
3193	while (ino != BTRFS_FIRST_FREE_OBJECTID) {
3194		fs_path_reset(name);
3195
3196		if (is_waiting_for_rm(sctx, ino, gen))
3197			break;
3198		if (is_waiting_for_move(sctx, ino)) {
3199			if (*ancestor_ino == 0)
3200				*ancestor_ino = ino;
3201			ret = get_first_ref(sctx->parent_root, ino,
3202					    &parent_inode, &parent_gen, name);
3203		} else {
3204			ret = __get_cur_name_and_parent(sctx, ino, gen,
3205							&parent_inode,
3206							&parent_gen, name);
3207			if (ret > 0) {
3208				ret = 0;
3209				break;
3210			}
3211		}
3212		if (ret < 0)
3213			break;
3214		if (parent_inode == start_ino) {
3215			ret = 1;
3216			if (*ancestor_ino == 0)
3217				*ancestor_ino = ino;
3218			break;
3219		}
3220		ino = parent_inode;
3221		gen = parent_gen;
3222	}
3223	return ret;
3224}
3225
3226static int apply_dir_move(struct send_ctx *sctx, struct pending_dir_move *pm)
3227{
3228	struct fs_path *from_path = NULL;
3229	struct fs_path *to_path = NULL;
3230	struct fs_path *name = NULL;
3231	u64 orig_progress = sctx->send_progress;
3232	struct recorded_ref *cur;
3233	u64 parent_ino, parent_gen;
3234	struct waiting_dir_move *dm = NULL;
3235	u64 rmdir_ino = 0;
3236	u64 rmdir_gen;
3237	u64 ancestor;
3238	bool is_orphan;
3239	int ret;
3240
3241	name = fs_path_alloc();
3242	from_path = fs_path_alloc();
3243	if (!name || !from_path) {
3244		ret = -ENOMEM;
3245		goto out;
3246	}
3247
3248	dm = get_waiting_dir_move(sctx, pm->ino);
3249	ASSERT(dm);
3250	rmdir_ino = dm->rmdir_ino;
3251	rmdir_gen = dm->rmdir_gen;
3252	is_orphan = dm->orphanized;
3253	free_waiting_dir_move(sctx, dm);
3254
3255	if (is_orphan) {
3256		ret = gen_unique_name(sctx, pm->ino,
3257				      pm->gen, from_path);
3258	} else {
3259		ret = get_first_ref(sctx->parent_root, pm->ino,
3260				    &parent_ino, &parent_gen, name);
3261		if (ret < 0)
3262			goto out;
3263		ret = get_cur_path(sctx, parent_ino, parent_gen,
3264				   from_path);
3265		if (ret < 0)
3266			goto out;
3267		ret = fs_path_add_path(from_path, name);
3268	}
3269	if (ret < 0)
3270		goto out;
3271
3272	sctx->send_progress = sctx->cur_ino + 1;
3273	ret = path_loop(sctx, name, pm->ino, pm->gen, &ancestor);
3274	if (ret < 0)
3275		goto out;
3276	if (ret) {
3277		LIST_HEAD(deleted_refs);
3278		ASSERT(ancestor > BTRFS_FIRST_FREE_OBJECTID);
3279		ret = add_pending_dir_move(sctx, pm->ino, pm->gen, ancestor,
3280					   &pm->update_refs, &deleted_refs,
3281					   is_orphan);
3282		if (ret < 0)
3283			goto out;
3284		if (rmdir_ino) {
3285			dm = get_waiting_dir_move(sctx, pm->ino);
3286			ASSERT(dm);
3287			dm->rmdir_ino = rmdir_ino;
3288			dm->rmdir_gen = rmdir_gen;
3289		}
3290		goto out;
3291	}
3292	fs_path_reset(name);
3293	to_path = name;
3294	name = NULL;
3295	ret = get_cur_path(sctx, pm->ino, pm->gen, to_path);
3296	if (ret < 0)
3297		goto out;
3298
3299	ret = send_rename(sctx, from_path, to_path);
3300	if (ret < 0)
3301		goto out;
3302
3303	if (rmdir_ino) {
3304		struct orphan_dir_info *odi;
3305		u64 gen;
3306
3307		odi = get_orphan_dir_info(sctx, rmdir_ino, rmdir_gen);
3308		if (!odi) {
3309			/* already deleted */
3310			goto finish;
3311		}
3312		gen = odi->gen;
3313
3314		ret = can_rmdir(sctx, rmdir_ino, gen, sctx->cur_ino);
3315		if (ret < 0)
3316			goto out;
3317		if (!ret)
3318			goto finish;
3319
3320		name = fs_path_alloc();
3321		if (!name) {
3322			ret = -ENOMEM;
3323			goto out;
3324		}
3325		ret = get_cur_path(sctx, rmdir_ino, gen, name);
3326		if (ret < 0)
3327			goto out;
3328		ret = send_rmdir(sctx, name);
3329		if (ret < 0)
3330			goto out;
3331	}
3332
3333finish:
3334	ret = send_utimes(sctx, pm->ino, pm->gen);
3335	if (ret < 0)
3336		goto out;
3337
3338	/*
3339	 * After rename/move, need to update the utimes of both new parent(s)
3340	 * and old parent(s).
3341	 */
3342	list_for_each_entry(cur, &pm->update_refs, list) {
3343		/*
3344		 * The parent inode might have been deleted in the send snapshot
3345		 */
3346		ret = get_inode_info(sctx->send_root, cur->dir, NULL,
3347				     NULL, NULL, NULL, NULL, NULL);
3348		if (ret == -ENOENT) {
3349			ret = 0;
3350			continue;
3351		}
3352		if (ret < 0)
3353			goto out;
3354
3355		ret = send_utimes(sctx, cur->dir, cur->dir_gen);
3356		if (ret < 0)
3357			goto out;
3358	}
3359
3360out:
3361	fs_path_free(name);
3362	fs_path_free(from_path);
3363	fs_path_free(to_path);
3364	sctx->send_progress = orig_progress;
3365
3366	return ret;
3367}
3368
3369static void free_pending_move(struct send_ctx *sctx, struct pending_dir_move *m)
3370{
3371	if (!list_empty(&m->list))
3372		list_del(&m->list);
3373	if (!RB_EMPTY_NODE(&m->node))
3374		rb_erase(&m->node, &sctx->pending_dir_moves);
3375	__free_recorded_refs(&m->update_refs);
3376	kfree(m);
3377}
3378
3379static void tail_append_pending_moves(struct send_ctx *sctx,
3380				      struct pending_dir_move *moves,
3381				      struct list_head *stack)
3382{
3383	if (list_empty(&moves->list)) {
3384		list_add_tail(&moves->list, stack);
3385	} else {
3386		LIST_HEAD(list);
3387		list_splice_init(&moves->list, &list);
3388		list_add_tail(&moves->list, stack);
3389		list_splice_tail(&list, stack);
3390	}
3391	if (!RB_EMPTY_NODE(&moves->node)) {
3392		rb_erase(&moves->node, &sctx->pending_dir_moves);
3393		RB_CLEAR_NODE(&moves->node);
3394	}
3395}
3396
3397static int apply_children_dir_moves(struct send_ctx *sctx)
3398{
3399	struct pending_dir_move *pm;
3400	struct list_head stack;
3401	u64 parent_ino = sctx->cur_ino;
3402	int ret = 0;
3403
3404	pm = get_pending_dir_moves(sctx, parent_ino);
3405	if (!pm)
3406		return 0;
3407
3408	INIT_LIST_HEAD(&stack);
3409	tail_append_pending_moves(sctx, pm, &stack);
3410
3411	while (!list_empty(&stack)) {
3412		pm = list_first_entry(&stack, struct pending_dir_move, list);
3413		parent_ino = pm->ino;
3414		ret = apply_dir_move(sctx, pm);
3415		free_pending_move(sctx, pm);
3416		if (ret)
3417			goto out;
3418		pm = get_pending_dir_moves(sctx, parent_ino);
3419		if (pm)
3420			tail_append_pending_moves(sctx, pm, &stack);
3421	}
3422	return 0;
3423
3424out:
3425	while (!list_empty(&stack)) {
3426		pm = list_first_entry(&stack, struct pending_dir_move, list);
3427		free_pending_move(sctx, pm);
3428	}
3429	return ret;
3430}
3431
3432/*
3433 * We might need to delay a directory rename even when no ancestor directory
3434 * (in the send root) with a higher inode number than ours (sctx->cur_ino) was
3435 * renamed. This happens when we rename a directory to the old name (the name
3436 * in the parent root) of some other unrelated directory that got its rename
3437 * delayed due to some ancestor with higher number that got renamed.
3438 *
3439 * Example:
3440 *
3441 * Parent snapshot:
3442 * .                                       (ino 256)
3443 * |---- a/                                (ino 257)
3444 * |     |---- file                        (ino 260)
3445 * |
3446 * |---- b/                                (ino 258)
3447 * |---- c/                                (ino 259)
3448 *
3449 * Send snapshot:
3450 * .                                       (ino 256)
3451 * |---- a/                                (ino 258)
3452 * |---- x/                                (ino 259)
3453 *       |---- y/                          (ino 257)
3454 *             |----- file                 (ino 260)
3455 *
3456 * Here we can not rename 258 from 'b' to 'a' without the rename of inode 257
3457 * from 'a' to 'x/y' happening first, which in turn depends on the rename of
3458 * inode 259 from 'c' to 'x'. So the order of rename commands the send stream
3459 * must issue is:
3460 *
3461 * 1 - rename 259 from 'c' to 'x'
3462 * 2 - rename 257 from 'a' to 'x/y'
3463 * 3 - rename 258 from 'b' to 'a'
3464 *
3465 * Returns 1 if the rename of sctx->cur_ino needs to be delayed, 0 if it can
3466 * be done right away and < 0 on error.
3467 */
3468static int wait_for_dest_dir_move(struct send_ctx *sctx,
3469				  struct recorded_ref *parent_ref,
3470				  const bool is_orphan)
3471{
3472	struct btrfs_fs_info *fs_info = sctx->parent_root->fs_info;
3473	struct btrfs_path *path;
3474	struct btrfs_key key;
3475	struct btrfs_key di_key;
3476	struct btrfs_dir_item *di;
3477	u64 left_gen;
3478	u64 right_gen;
3479	int ret = 0;
3480	struct waiting_dir_move *wdm;
3481
3482	if (RB_EMPTY_ROOT(&sctx->waiting_dir_moves))
3483		return 0;
3484
3485	path = alloc_path_for_send();
3486	if (!path)
3487		return -ENOMEM;
3488
3489	key.objectid = parent_ref->dir;
3490	key.type = BTRFS_DIR_ITEM_KEY;
3491	key.offset = btrfs_name_hash(parent_ref->name, parent_ref->name_len);
3492
3493	ret = btrfs_search_slot(NULL, sctx->parent_root, &key, path, 0, 0);
3494	if (ret < 0) {
3495		goto out;
3496	} else if (ret > 0) {
3497		ret = 0;
3498		goto out;
3499	}
3500
3501	di = btrfs_match_dir_item_name(fs_info, path, parent_ref->name,
3502				       parent_ref->name_len);
3503	if (!di) {
3504		ret = 0;
3505		goto out;
3506	}
3507	/*
3508	 * di_key.objectid has the number of the inode that has a dentry in the
3509	 * parent directory with the same name that sctx->cur_ino is being
3510	 * renamed to. We need to check if that inode is in the send root as
3511	 * well and if it is currently marked as an inode with a pending rename,
3512	 * if it is, we need to delay the rename of sctx->cur_ino as well, so
3513	 * that it happens after that other inode is renamed.
3514	 */
3515	btrfs_dir_item_key_to_cpu(path->nodes[0], di, &di_key);
3516	if (di_key.type != BTRFS_INODE_ITEM_KEY) {
3517		ret = 0;
3518		goto out;
3519	}
3520
3521	ret = get_inode_info(sctx->parent_root, di_key.objectid, NULL,
3522			     &left_gen, NULL, NULL, NULL, NULL);
3523	if (ret < 0)
3524		goto out;
3525	ret = get_inode_info(sctx->send_root, di_key.objectid, NULL,
3526			     &right_gen, NULL, NULL, NULL, NULL);
3527	if (ret < 0) {
3528		if (ret == -ENOENT)
3529			ret = 0;
3530		goto out;
3531	}
3532
3533	/* Different inode, no need to delay the rename of sctx->cur_ino */
3534	if (right_gen != left_gen) {
3535		ret = 0;
3536		goto out;
3537	}
3538
3539	wdm = get_waiting_dir_move(sctx, di_key.objectid);
3540	if (wdm && !wdm->orphanized) {
3541		ret = add_pending_dir_move(sctx,
3542					   sctx->cur_ino,
3543					   sctx->cur_inode_gen,
3544					   di_key.objectid,
3545					   &sctx->new_refs,
3546					   &sctx->deleted_refs,
3547					   is_orphan);
3548		if (!ret)
3549			ret = 1;
3550	}
3551out:
3552	btrfs_free_path(path);
3553	return ret;
3554}
3555
3556/*
3557 * Check if inode ino2, or any of its ancestors, is inode ino1.
3558 * Return 1 if true, 0 if false and < 0 on error.
3559 */
3560static int check_ino_in_path(struct btrfs_root *root,
3561			     const u64 ino1,
3562			     const u64 ino1_gen,
3563			     const u64 ino2,
3564			     const u64 ino2_gen,
3565			     struct fs_path *fs_path)
3566{
3567	u64 ino = ino2;
3568
3569	if (ino1 == ino2)
3570		return ino1_gen == ino2_gen;
3571
3572	while (ino > BTRFS_FIRST_FREE_OBJECTID) {
3573		u64 parent;
3574		u64 parent_gen;
3575		int ret;
3576
3577		fs_path_reset(fs_path);
3578		ret = get_first_ref(root, ino, &parent, &parent_gen, fs_path);
3579		if (ret < 0)
3580			return ret;
3581		if (parent == ino1)
3582			return parent_gen == ino1_gen;
3583		ino = parent;
3584	}
3585	return 0;
3586}
3587
3588/*
3589 * Check if ino ino1 is an ancestor of inode ino2 in the given root for any
3590 * possible path (in case ino2 is not a directory and has multiple hard links).
3591 * Return 1 if true, 0 if false and < 0 on error.
3592 */
3593static int is_ancestor(struct btrfs_root *root,
3594		       const u64 ino1,
3595		       const u64 ino1_gen,
3596		       const u64 ino2,
3597		       struct fs_path *fs_path)
3598{
3599	bool free_fs_path = false;
3600	int ret = 0;
3601	struct btrfs_path *path = NULL;
3602	struct btrfs_key key;
3603
3604	if (!fs_path) {
3605		fs_path = fs_path_alloc();
3606		if (!fs_path)
3607			return -ENOMEM;
3608		free_fs_path = true;
3609	}
3610
3611	path = alloc_path_for_send();
3612	if (!path) {
3613		ret = -ENOMEM;
3614		goto out;
3615	}
3616
3617	key.objectid = ino2;
3618	key.type = BTRFS_INODE_REF_KEY;
3619	key.offset = 0;
3620
3621	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3622	if (ret < 0)
3623		goto out;
3624
3625	while (true) {
3626		struct extent_buffer *leaf = path->nodes[0];
3627		int slot = path->slots[0];
3628		u32 cur_offset = 0;
3629		u32 item_size;
3630
3631		if (slot >= btrfs_header_nritems(leaf)) {
3632			ret = btrfs_next_leaf(root, path);
3633			if (ret < 0)
3634				goto out;
3635			if (ret > 0)
3636				break;
3637			continue;
3638		}
3639
3640		btrfs_item_key_to_cpu(leaf, &key, slot);
3641		if (key.objectid != ino2)
3642			break;
3643		if (key.type != BTRFS_INODE_REF_KEY &&
3644		    key.type != BTRFS_INODE_EXTREF_KEY)
3645			break;
3646
3647		item_size = btrfs_item_size_nr(leaf, slot);
3648		while (cur_offset < item_size) {
3649			u64 parent;
3650			u64 parent_gen;
3651
3652			if (key.type == BTRFS_INODE_EXTREF_KEY) {
3653				unsigned long ptr;
3654				struct btrfs_inode_extref *extref;
3655
3656				ptr = btrfs_item_ptr_offset(leaf, slot);
3657				extref = (struct btrfs_inode_extref *)
3658					(ptr + cur_offset);
3659				parent = btrfs_inode_extref_parent(leaf,
3660								   extref);
3661				cur_offset += sizeof(*extref);
3662				cur_offset += btrfs_inode_extref_name_len(leaf,
3663								  extref);
3664			} else {
3665				parent = key.offset;
3666				cur_offset = item_size;
3667			}
3668
3669			ret = get_inode_info(root, parent, NULL, &parent_gen,
3670					     NULL, NULL, NULL, NULL);
3671			if (ret < 0)
3672				goto out;
3673			ret = check_ino_in_path(root, ino1, ino1_gen,
3674						parent, parent_gen, fs_path);
3675			if (ret)
3676				goto out;
3677		}
3678		path->slots[0]++;
3679	}
3680	ret = 0;
3681 out:
3682	btrfs_free_path(path);
3683	if (free_fs_path)
3684		fs_path_free(fs_path);
3685	return ret;
3686}
3687
3688static int wait_for_parent_move(struct send_ctx *sctx,
3689				struct recorded_ref *parent_ref,
3690				const bool is_orphan)
3691{
3692	int ret = 0;
3693	u64 ino = parent_ref->dir;
3694	u64 ino_gen = parent_ref->dir_gen;
3695	u64 parent_ino_before, parent_ino_after;
3696	struct fs_path *path_before = NULL;
3697	struct fs_path *path_after = NULL;
3698	int len1, len2;
3699
3700	path_after = fs_path_alloc();
3701	path_before = fs_path_alloc();
3702	if (!path_after || !path_before) {
3703		ret = -ENOMEM;
3704		goto out;
3705	}
3706
3707	/*
3708	 * Our current directory inode may not yet be renamed/moved because some
3709	 * ancestor (immediate or not) has to be renamed/moved first. So find if
3710	 * such ancestor exists and make sure our own rename/move happens after
3711	 * that ancestor is processed to avoid path build infinite loops (done
3712	 * at get_cur_path()).
3713	 */
3714	while (ino > BTRFS_FIRST_FREE_OBJECTID) {
3715		u64 parent_ino_after_gen;
3716
3717		if (is_waiting_for_move(sctx, ino)) {
3718			/*
3719			 * If the current inode is an ancestor of ino in the
3720			 * parent root, we need to delay the rename of the
3721			 * current inode, otherwise don't delayed the rename
3722			 * because we can end up with a circular dependency
3723			 * of renames, resulting in some directories never
3724			 * getting the respective rename operations issued in
3725			 * the send stream or getting into infinite path build
3726			 * loops.
3727			 */
3728			ret = is_ancestor(sctx->parent_root,
3729					  sctx->cur_ino, sctx->cur_inode_gen,
3730					  ino, path_before);
3731			if (ret)
3732				break;
3733		}
3734
3735		fs_path_reset(path_before);
3736		fs_path_reset(path_after);
3737
3738		ret = get_first_ref(sctx->send_root, ino, &parent_ino_after,
3739				    &parent_ino_after_gen, path_after);
3740		if (ret < 0)
3741			goto out;
3742		ret = get_first_ref(sctx->parent_root, ino, &parent_ino_before,
3743				    NULL, path_before);
3744		if (ret < 0 && ret != -ENOENT) {
3745			goto out;
3746		} else if (ret == -ENOENT) {
3747			ret = 0;
3748			break;
3749		}
3750
3751		len1 = fs_path_len(path_before);
3752		len2 = fs_path_len(path_after);
3753		if (ino > sctx->cur_ino &&
3754		    (parent_ino_before != parent_ino_after || len1 != len2 ||
3755		     memcmp(path_before->start, path_after->start, len1))) {
3756			u64 parent_ino_gen;
3757
3758			ret = get_inode_info(sctx->parent_root, ino, NULL,
3759					     &parent_ino_gen, NULL, NULL, NULL,
3760					     NULL);
3761			if (ret < 0)
3762				goto out;
3763			if (ino_gen == parent_ino_gen) {
3764				ret = 1;
3765				break;
3766			}
3767		}
3768		ino = parent_ino_after;
3769		ino_gen = parent_ino_after_gen;
3770	}
3771
3772out:
3773	fs_path_free(path_before);
3774	fs_path_free(path_after);
3775
3776	if (ret == 1) {
3777		ret = add_pending_dir_move(sctx,
3778					   sctx->cur_ino,
3779					   sctx->cur_inode_gen,
3780					   ino,
3781					   &sctx->new_refs,
3782					   &sctx->deleted_refs,
3783					   is_orphan);
3784		if (!ret)
3785			ret = 1;
3786	}
3787
3788	return ret;
3789}
3790
3791static int update_ref_path(struct send_ctx *sctx, struct recorded_ref *ref)
3792{
3793	int ret;
3794	struct fs_path *new_path;
3795
3796	/*
3797	 * Our reference's name member points to its full_path member string, so
3798	 * we use here a new path.
3799	 */
3800	new_path = fs_path_alloc();
3801	if (!new_path)
3802		return -ENOMEM;
3803
3804	ret = get_cur_path(sctx, ref->dir, ref->dir_gen, new_path);
3805	if (ret < 0) {
3806		fs_path_free(new_path);
3807		return ret;
3808	}
3809	ret = fs_path_add(new_path, ref->name, ref->name_len);
3810	if (ret < 0) {
3811		fs_path_free(new_path);
3812		return ret;
3813	}
3814
3815	fs_path_free(ref->full_path);
3816	set_ref_path(ref, new_path);
3817
3818	return 0;
3819}
3820
3821/*
3822 * When processing the new references for an inode we may orphanize an existing
3823 * directory inode because its old name conflicts with one of the new references
3824 * of the current inode. Later, when processing another new reference of our
3825 * inode, we might need to orphanize another inode, but the path we have in the
3826 * reference reflects the pre-orphanization name of the directory we previously
3827 * orphanized. For example:
3828 *
3829 * parent snapshot looks like:
3830 *
3831 * .                                     (ino 256)
3832 * |----- f1                             (ino 257)
3833 * |----- f2                             (ino 258)
3834 * |----- d1/                            (ino 259)
3835 *        |----- d2/                     (ino 260)
3836 *
3837 * send snapshot looks like:
3838 *
3839 * .                                     (ino 256)
3840 * |----- d1                             (ino 258)
3841 * |----- f2/                            (ino 259)
3842 *        |----- f2_link/                (ino 260)
3843 *        |       |----- f1              (ino 257)
3844 *        |
3845 *        |----- d2                      (ino 258)
3846 *
3847 * When processing inode 257 we compute the name for inode 259 as "d1", and we
3848 * cache it in the name cache. Later when we start processing inode 258, when
3849 * collecting all its new references we set a full path of "d1/d2" for its new
3850 * reference with name "d2". When we start processing the new references we
3851 * start by processing the new reference with name "d1", and this results in
3852 * orphanizing inode 259, since its old reference causes a conflict. Then we
3853 * move on the next new reference, with name "d2", and we find out we must
3854 * orphanize inode 260, as its old reference conflicts with ours - but for the
3855 * orphanization we use a source path corresponding to the path we stored in the
3856 * new reference, which is "d1/d2" and not "o259-6-0/d2" - this makes the
3857 * receiver fail since the path component "d1/" no longer exists, it was renamed
3858 * to "o259-6-0/" when processing the previous new reference. So in this case we
3859 * must recompute the path in the new reference and use it for the new
3860 * orphanization operation.
3861 */
3862static int refresh_ref_path(struct send_ctx *sctx, struct recorded_ref *ref)
3863{
3864	char *name;
3865	int ret;
3866
3867	name = kmemdup(ref->name, ref->name_len, GFP_KERNEL);
3868	if (!name)
3869		return -ENOMEM;
3870
3871	fs_path_reset(ref->full_path);
3872	ret = get_cur_path(sctx, ref->dir, ref->dir_gen, ref->full_path);
3873	if (ret < 0)
3874		goto out;
3875
3876	ret = fs_path_add(ref->full_path, name, ref->name_len);
3877	if (ret < 0)
3878		goto out;
3879
3880	/* Update the reference's base name pointer. */
3881	set_ref_path(ref, ref->full_path);
3882out:
3883	kfree(name);
3884	return ret;
3885}
3886
3887/*
3888 * This does all the move/link/unlink/rmdir magic.
3889 */
3890static int process_recorded_refs(struct send_ctx *sctx, int *pending_move)
3891{
3892	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
3893	int ret = 0;
3894	struct recorded_ref *cur;
3895	struct recorded_ref *cur2;
3896	struct list_head check_dirs;
3897	struct fs_path *valid_path = NULL;
3898	u64 ow_inode = 0;
3899	u64 ow_gen;
3900	u64 ow_mode;
3901	int did_overwrite = 0;
3902	int is_orphan = 0;
3903	u64 last_dir_ino_rm = 0;
3904	bool can_rename = true;
3905	bool orphanized_dir = false;
3906	bool orphanized_ancestor = false;
3907
3908	btrfs_debug(fs_info, "process_recorded_refs %llu", sctx->cur_ino);
3909
3910	/*
3911	 * This should never happen as the root dir always has the same ref
3912	 * which is always '..'
3913	 */
3914	BUG_ON(sctx->cur_ino <= BTRFS_FIRST_FREE_OBJECTID);
3915	INIT_LIST_HEAD(&check_dirs);
3916
3917	valid_path = fs_path_alloc();
3918	if (!valid_path) {
3919		ret = -ENOMEM;
3920		goto out;
3921	}
3922
3923	/*
3924	 * First, check if the first ref of the current inode was overwritten
3925	 * before. If yes, we know that the current inode was already orphanized
3926	 * and thus use the orphan name. If not, we can use get_cur_path to
3927	 * get the path of the first ref as it would like while receiving at
3928	 * this point in time.
3929	 * New inodes are always orphan at the beginning, so force to use the
3930	 * orphan name in this case.
3931	 * The first ref is stored in valid_path and will be updated if it
3932	 * gets moved around.
3933	 */
3934	if (!sctx->cur_inode_new) {
3935		ret = did_overwrite_first_ref(sctx, sctx->cur_ino,
3936				sctx->cur_inode_gen);
3937		if (ret < 0)
3938			goto out;
3939		if (ret)
3940			did_overwrite = 1;
3941	}
3942	if (sctx->cur_inode_new || did_overwrite) {
3943		ret = gen_unique_name(sctx, sctx->cur_ino,
3944				sctx->cur_inode_gen, valid_path);
3945		if (ret < 0)
3946			goto out;
3947		is_orphan = 1;
3948	} else {
3949		ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen,
3950				valid_path);
3951		if (ret < 0)
3952			goto out;
3953	}
3954
3955	/*
3956	 * Before doing any rename and link operations, do a first pass on the
3957	 * new references to orphanize any unprocessed inodes that may have a
3958	 * reference that conflicts with one of the new references of the current
3959	 * inode. This needs to happen first because a new reference may conflict
3960	 * with the old reference of a parent directory, so we must make sure
3961	 * that the path used for link and rename commands don't use an
3962	 * orphanized name when an ancestor was not yet orphanized.
3963	 *
3964	 * Example:
3965	 *
3966	 * Parent snapshot:
3967	 *
3968	 * .                                                      (ino 256)
3969	 * |----- testdir/                                        (ino 259)
3970	 * |          |----- a                                    (ino 257)
3971	 * |
3972	 * |----- b                                               (ino 258)
3973	 *
3974	 * Send snapshot:
3975	 *
3976	 * .                                                      (ino 256)
3977	 * |----- testdir_2/                                      (ino 259)
3978	 * |          |----- a                                    (ino 260)
3979	 * |
3980	 * |----- testdir                                         (ino 257)
3981	 * |----- b                                               (ino 257)
3982	 * |----- b2                                              (ino 258)
3983	 *
3984	 * Processing the new reference for inode 257 with name "b" may happen
3985	 * before processing the new reference with name "testdir". If so, we
3986	 * must make sure that by the time we send a link command to create the
3987	 * hard link "b", inode 259 was already orphanized, since the generated
3988	 * path in "valid_path" already contains the orphanized name for 259.
3989	 * We are processing inode 257, so only later when processing 259 we do
3990	 * the rename operation to change its temporary (orphanized) name to
3991	 * "testdir_2".
3992	 */
3993	list_for_each_entry(cur, &sctx->new_refs, list) {
3994		ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen);
3995		if (ret < 0)
3996			goto out;
3997		if (ret == inode_state_will_create)
3998			continue;
3999
4000		/*
4001		 * Check if this new ref would overwrite the first ref of another
4002		 * unprocessed inode. If yes, orphanize the overwritten inode.
4003		 * If we find an overwritten ref that is not the first ref,
4004		 * simply unlink it.
4005		 */
4006		ret = will_overwrite_ref(sctx, cur->dir, cur->dir_gen,
4007				cur->name, cur->name_len,
4008				&ow_inode, &ow_gen, &ow_mode);
4009		if (ret < 0)
4010			goto out;
4011		if (ret) {
4012			ret = is_first_ref(sctx->parent_root,
4013					   ow_inode, cur->dir, cur->name,
4014					   cur->name_len);
4015			if (ret < 0)
4016				goto out;
4017			if (ret) {
4018				struct name_cache_entry *nce;
4019				struct waiting_dir_move *wdm;
4020
4021				if (orphanized_dir) {
4022					ret = refresh_ref_path(sctx, cur);
4023					if (ret < 0)
4024						goto out;
4025				}
4026
4027				ret = orphanize_inode(sctx, ow_inode, ow_gen,
4028						cur->full_path);
4029				if (ret < 0)
4030					goto out;
4031				if (S_ISDIR(ow_mode))
4032					orphanized_dir = true;
4033
4034				/*
4035				 * If ow_inode has its rename operation delayed
4036				 * make sure that its orphanized name is used in
4037				 * the source path when performing its rename
4038				 * operation.
4039				 */
4040				if (is_waiting_for_move(sctx, ow_inode)) {
4041					wdm = get_waiting_dir_move(sctx,
4042								   ow_inode);
4043					ASSERT(wdm);
4044					wdm->orphanized = true;
4045				}
4046
4047				/*
4048				 * Make sure we clear our orphanized inode's
4049				 * name from the name cache. This is because the
4050				 * inode ow_inode might be an ancestor of some
4051				 * other inode that will be orphanized as well
4052				 * later and has an inode number greater than
4053				 * sctx->send_progress. We need to prevent
4054				 * future name lookups from using the old name
4055				 * and get instead the orphan name.
4056				 */
4057				nce = name_cache_search(sctx, ow_inode, ow_gen);
4058				if (nce) {
4059					name_cache_delete(sctx, nce);
4060					kfree(nce);
4061				}
4062
4063				/*
4064				 * ow_inode might currently be an ancestor of
4065				 * cur_ino, therefore compute valid_path (the
4066				 * current path of cur_ino) again because it
4067				 * might contain the pre-orphanization name of
4068				 * ow_inode, which is no longer valid.
4069				 */
4070				ret = is_ancestor(sctx->parent_root,
4071						  ow_inode, ow_gen,
4072						  sctx->cur_ino, NULL);
4073				if (ret > 0) {
4074					orphanized_ancestor = true;
4075					fs_path_reset(valid_path);
4076					ret = get_cur_path(sctx, sctx->cur_ino,
4077							   sctx->cur_inode_gen,
4078							   valid_path);
4079				}
4080				if (ret < 0)
4081					goto out;
4082			} else {
4083				/*
4084				 * If we previously orphanized a directory that
4085				 * collided with a new reference that we already
4086				 * processed, recompute the current path because
4087				 * that directory may be part of the path.
4088				 */
4089				if (orphanized_dir) {
4090					ret = refresh_ref_path(sctx, cur);
4091					if (ret < 0)
4092						goto out;
4093				}
4094				ret = send_unlink(sctx, cur->full_path);
4095				if (ret < 0)
4096					goto out;
4097			}
4098		}
4099
4100	}
4101
4102	list_for_each_entry(cur, &sctx->new_refs, list) {
4103		/*
4104		 * We may have refs where the parent directory does not exist
4105		 * yet. This happens if the parent directories inum is higher
4106		 * than the current inum. To handle this case, we create the
4107		 * parent directory out of order. But we need to check if this
4108		 * did already happen before due to other refs in the same dir.
4109		 */
4110		ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen);
4111		if (ret < 0)
4112			goto out;
4113		if (ret == inode_state_will_create) {
4114			ret = 0;
4115			/*
4116			 * First check if any of the current inodes refs did
4117			 * already create the dir.
4118			 */
4119			list_for_each_entry(cur2, &sctx->new_refs, list) {
4120				if (cur == cur2)
4121					break;
4122				if (cur2->dir == cur->dir) {
4123					ret = 1;
4124					break;
4125				}
4126			}
4127
4128			/*
4129			 * If that did not happen, check if a previous inode
4130			 * did already create the dir.
4131			 */
4132			if (!ret)
4133				ret = did_create_dir(sctx, cur->dir);
4134			if (ret < 0)
4135				goto out;
4136			if (!ret) {
4137				ret = send_create_inode(sctx, cur->dir);
4138				if (ret < 0)
4139					goto out;
4140			}
4141		}
4142
4143		if (S_ISDIR(sctx->cur_inode_mode) && sctx->parent_root) {
4144			ret = wait_for_dest_dir_move(sctx, cur, is_orphan);
4145			if (ret < 0)
4146				goto out;
4147			if (ret == 1) {
4148				can_rename = false;
4149				*pending_move = 1;
4150			}
4151		}
4152
4153		if (S_ISDIR(sctx->cur_inode_mode) && sctx->parent_root &&
4154		    can_rename) {
4155			ret = wait_for_parent_move(sctx, cur, is_orphan);
4156			if (ret < 0)
4157				goto out;
4158			if (ret == 1) {
4159				can_rename = false;
4160				*pending_move = 1;
4161			}
4162		}
4163
4164		/*
4165		 * link/move the ref to the new place. If we have an orphan
4166		 * inode, move it and update valid_path. If not, link or move
4167		 * it depending on the inode mode.
4168		 */
4169		if (is_orphan && can_rename) {
4170			ret = send_rename(sctx, valid_path, cur->full_path);
4171			if (ret < 0)
4172				goto out;
4173			is_orphan = 0;
4174			ret = fs_path_copy(valid_path, cur->full_path);
4175			if (ret < 0)
4176				goto out;
4177		} else if (can_rename) {
4178			if (S_ISDIR(sctx->cur_inode_mode)) {
4179				/*
4180				 * Dirs can't be linked, so move it. For moved
4181				 * dirs, we always have one new and one deleted
4182				 * ref. The deleted ref is ignored later.
4183				 */
4184				ret = send_rename(sctx, valid_path,
4185						  cur->full_path);
4186				if (!ret)
4187					ret = fs_path_copy(valid_path,
4188							   cur->full_path);
4189				if (ret < 0)
4190					goto out;
4191			} else {
4192				/*
4193				 * We might have previously orphanized an inode
4194				 * which is an ancestor of our current inode,
4195				 * so our reference's full path, which was
4196				 * computed before any such orphanizations, must
4197				 * be updated.
4198				 */
4199				if (orphanized_dir) {
4200					ret = update_ref_path(sctx, cur);
4201					if (ret < 0)
4202						goto out;
4203				}
4204				ret = send_link(sctx, cur->full_path,
4205						valid_path);
4206				if (ret < 0)
4207					goto out;
4208			}
4209		}
4210		ret = dup_ref(cur, &check_dirs);
4211		if (ret < 0)
4212			goto out;
4213	}
4214
4215	if (S_ISDIR(sctx->cur_inode_mode) && sctx->cur_inode_deleted) {
4216		/*
4217		 * Check if we can already rmdir the directory. If not,
4218		 * orphanize it. For every dir item inside that gets deleted
4219		 * later, we do this check again and rmdir it then if possible.
4220		 * See the use of check_dirs for more details.
4221		 */
4222		ret = can_rmdir(sctx, sctx->cur_ino, sctx->cur_inode_gen,
4223				sctx->cur_ino);
4224		if (ret < 0)
4225			goto out;
4226		if (ret) {
4227			ret = send_rmdir(sctx, valid_path);
4228			if (ret < 0)
4229				goto out;
4230		} else if (!is_orphan) {
4231			ret = orphanize_inode(sctx, sctx->cur_ino,
4232					sctx->cur_inode_gen, valid_path);
4233			if (ret < 0)
4234				goto out;
4235			is_orphan = 1;
4236		}
4237
4238		list_for_each_entry(cur, &sctx->deleted_refs, list) {
4239			ret = dup_ref(cur, &check_dirs);
4240			if (ret < 0)
4241				goto out;
4242		}
4243	} else if (S_ISDIR(sctx->cur_inode_mode) &&
4244		   !list_empty(&sctx->deleted_refs)) {
4245		/*
4246		 * We have a moved dir. Add the old parent to check_dirs
4247		 */
4248		cur = list_entry(sctx->deleted_refs.next, struct recorded_ref,
4249				list);
4250		ret = dup_ref(cur, &check_dirs);
4251		if (ret < 0)
4252			goto out;
4253	} else if (!S_ISDIR(sctx->cur_inode_mode)) {
4254		/*
4255		 * We have a non dir inode. Go through all deleted refs and
4256		 * unlink them if they were not already overwritten by other
4257		 * inodes.
4258		 */
4259		list_for_each_entry(cur, &sctx->deleted_refs, list) {
4260			ret = did_overwrite_ref(sctx, cur->dir, cur->dir_gen,
4261					sctx->cur_ino, sctx->cur_inode_gen,
4262					cur->name, cur->name_len);
4263			if (ret < 0)
4264				goto out;
4265			if (!ret) {
4266				/*
4267				 * If we orphanized any ancestor before, we need
4268				 * to recompute the full path for deleted names,
4269				 * since any such path was computed before we
4270				 * processed any references and orphanized any
4271				 * ancestor inode.
4272				 */
4273				if (orphanized_ancestor) {
4274					ret = update_ref_path(sctx, cur);
4275					if (ret < 0)
4276						goto out;
4277				}
4278				ret = send_unlink(sctx, cur->full_path);
4279				if (ret < 0)
4280					goto out;
4281			}
4282			ret = dup_ref(cur, &check_dirs);
4283			if (ret < 0)
4284				goto out;
4285		}
4286		/*
4287		 * If the inode is still orphan, unlink the orphan. This may
4288		 * happen when a previous inode did overwrite the first ref
4289		 * of this inode and no new refs were added for the current
4290		 * inode. Unlinking does not mean that the inode is deleted in
4291		 * all cases. There may still be links to this inode in other
4292		 * places.
4293		 */
4294		if (is_orphan) {
4295			ret = send_unlink(sctx, valid_path);
4296			if (ret < 0)
4297				goto out;
4298		}
4299	}
4300
4301	/*
4302	 * We did collect all parent dirs where cur_inode was once located. We
4303	 * now go through all these dirs and check if they are pending for
4304	 * deletion and if it's finally possible to perform the rmdir now.
4305	 * We also update the inode stats of the parent dirs here.
4306	 */
4307	list_for_each_entry(cur, &check_dirs, list) {
4308		/*
4309		 * In case we had refs into dirs that were not processed yet,
4310		 * we don't need to do the utime and rmdir logic for these dirs.
4311		 * The dir will be processed later.
4312		 */
4313		if (cur->dir > sctx->cur_ino)
4314			continue;
4315
4316		ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen);
4317		if (ret < 0)
4318			goto out;
4319
4320		if (ret == inode_state_did_create ||
4321		    ret == inode_state_no_change) {
4322			/* TODO delayed utimes */
4323			ret = send_utimes(sctx, cur->dir, cur->dir_gen);
4324			if (ret < 0)
4325				goto out;
4326		} else if (ret == inode_state_did_delete &&
4327			   cur->dir != last_dir_ino_rm) {
4328			ret = can_rmdir(sctx, cur->dir, cur->dir_gen,
4329					sctx->cur_ino);
4330			if (ret < 0)
4331				goto out;
4332			if (ret) {
4333				ret = get_cur_path(sctx, cur->dir,
4334						   cur->dir_gen, valid_path);
4335				if (ret < 0)
4336					goto out;
4337				ret = send_rmdir(sctx, valid_path);
4338				if (ret < 0)
4339					goto out;
4340				last_dir_ino_rm = cur->dir;
4341			}
4342		}
4343	}
4344
4345	ret = 0;
4346
4347out:
4348	__free_recorded_refs(&check_dirs);
4349	free_recorded_refs(sctx);
4350	fs_path_free(valid_path);
4351	return ret;
4352}
4353
4354static int record_ref(struct btrfs_root *root, u64 dir, struct fs_path *name,
4355		      void *ctx, struct list_head *refs)
4356{
4357	int ret = 0;
4358	struct send_ctx *sctx = ctx;
4359	struct fs_path *p;
4360	u64 gen;
4361
4362	p = fs_path_alloc();
4363	if (!p)
4364		return -ENOMEM;
4365
4366	ret = get_inode_info(root, dir, NULL, &gen, NULL, NULL,
4367			NULL, NULL);
4368	if (ret < 0)
4369		goto out;
4370
4371	ret = get_cur_path(sctx, dir, gen, p);
4372	if (ret < 0)
4373		goto out;
4374	ret = fs_path_add_path(p, name);
4375	if (ret < 0)
4376		goto out;
4377
4378	ret = __record_ref(refs, dir, gen, p);
4379
4380out:
4381	if (ret)
4382		fs_path_free(p);
4383	return ret;
4384}
4385
4386static int __record_new_ref(int num, u64 dir, int index,
4387			    struct fs_path *name,
4388			    void *ctx)
4389{
4390	struct send_ctx *sctx = ctx;
4391	return record_ref(sctx->send_root, dir, name, ctx, &sctx->new_refs);
4392}
4393
4394
4395static int __record_deleted_ref(int num, u64 dir, int index,
4396				struct fs_path *name,
4397				void *ctx)
4398{
4399	struct send_ctx *sctx = ctx;
4400	return record_ref(sctx->parent_root, dir, name, ctx,
4401			  &sctx->deleted_refs);
4402}
4403
4404static int record_new_ref(struct send_ctx *sctx)
4405{
4406	int ret;
4407
4408	ret = iterate_inode_ref(sctx->send_root, sctx->left_path,
4409				sctx->cmp_key, 0, __record_new_ref, sctx);
4410	if (ret < 0)
4411		goto out;
4412	ret = 0;
4413
4414out:
4415	return ret;
4416}
4417
4418static int record_deleted_ref(struct send_ctx *sctx)
4419{
4420	int ret;
4421
4422	ret = iterate_inode_ref(sctx->parent_root, sctx->right_path,
4423				sctx->cmp_key, 0, __record_deleted_ref, sctx);
4424	if (ret < 0)
4425		goto out;
4426	ret = 0;
4427
4428out:
4429	return ret;
4430}
4431
4432struct find_ref_ctx {
4433	u64 dir;
4434	u64 dir_gen;
4435	struct btrfs_root *root;
4436	struct fs_path *name;
4437	int found_idx;
4438};
4439
4440static int __find_iref(int num, u64 dir, int index,
4441		       struct fs_path *name,
4442		       void *ctx_)
4443{
4444	struct find_ref_ctx *ctx = ctx_;
4445	u64 dir_gen;
4446	int ret;
4447
4448	if (dir == ctx->dir && fs_path_len(name) == fs_path_len(ctx->name) &&
4449	    strncmp(name->start, ctx->name->start, fs_path_len(name)) == 0) {
4450		/*
4451		 * To avoid doing extra lookups we'll only do this if everything
4452		 * else matches.
4453		 */
4454		ret = get_inode_info(ctx->root, dir, NULL, &dir_gen, NULL,
4455				     NULL, NULL, NULL);
4456		if (ret)
4457			return ret;
4458		if (dir_gen != ctx->dir_gen)
4459			return 0;
4460		ctx->found_idx = num;
4461		return 1;
4462	}
4463	return 0;
4464}
4465
4466static int find_iref(struct btrfs_root *root,
4467		     struct btrfs_path *path,
4468		     struct btrfs_key *key,
4469		     u64 dir, u64 dir_gen, struct fs_path *name)
4470{
4471	int ret;
4472	struct find_ref_ctx ctx;
4473
4474	ctx.dir = dir;
4475	ctx.name = name;
4476	ctx.dir_gen = dir_gen;
4477	ctx.found_idx = -1;
4478	ctx.root = root;
4479
4480	ret = iterate_inode_ref(root, path, key, 0, __find_iref, &ctx);
4481	if (ret < 0)
4482		return ret;
4483
4484	if (ctx.found_idx == -1)
4485		return -ENOENT;
4486
4487	return ctx.found_idx;
4488}
4489
4490static int __record_changed_new_ref(int num, u64 dir, int index,
4491				    struct fs_path *name,
4492				    void *ctx)
4493{
4494	u64 dir_gen;
4495	int ret;
4496	struct send_ctx *sctx = ctx;
4497
4498	ret = get_inode_info(sctx->send_root, dir, NULL, &dir_gen, NULL,
4499			     NULL, NULL, NULL);
4500	if (ret)
4501		return ret;
4502
4503	ret = find_iref(sctx->parent_root, sctx->right_path,
4504			sctx->cmp_key, dir, dir_gen, name);
4505	if (ret == -ENOENT)
4506		ret = __record_new_ref(num, dir, index, name, sctx);
4507	else if (ret > 0)
4508		ret = 0;
4509
4510	return ret;
4511}
4512
4513static int __record_changed_deleted_ref(int num, u64 dir, int index,
4514					struct fs_path *name,
4515					void *ctx)
4516{
4517	u64 dir_gen;
4518	int ret;
4519	struct send_ctx *sctx = ctx;
4520
4521	ret = get_inode_info(sctx->parent_root, dir, NULL, &dir_gen, NULL,
4522			     NULL, NULL, NULL);
4523	if (ret)
4524		return ret;
4525
4526	ret = find_iref(sctx->send_root, sctx->left_path, sctx->cmp_key,
4527			dir, dir_gen, name);
4528	if (ret == -ENOENT)
4529		ret = __record_deleted_ref(num, dir, index, name, sctx);
4530	else if (ret > 0)
4531		ret = 0;
4532
4533	return ret;
4534}
4535
4536static int record_changed_ref(struct send_ctx *sctx)
4537{
4538	int ret = 0;
4539
4540	ret = iterate_inode_ref(sctx->send_root, sctx->left_path,
4541			sctx->cmp_key, 0, __record_changed_new_ref, sctx);
4542	if (ret < 0)
4543		goto out;
4544	ret = iterate_inode_ref(sctx->parent_root, sctx->right_path,
4545			sctx->cmp_key, 0, __record_changed_deleted_ref, sctx);
4546	if (ret < 0)
4547		goto out;
4548	ret = 0;
4549
4550out:
4551	return ret;
4552}
4553
4554/*
4555 * Record and process all refs at once. Needed when an inode changes the
4556 * generation number, which means that it was deleted and recreated.
4557 */
4558static int process_all_refs(struct send_ctx *sctx,
4559			    enum btrfs_compare_tree_result cmd)
4560{
4561	int ret;
4562	struct btrfs_root *root;
4563	struct btrfs_path *path;
4564	struct btrfs_key key;
4565	struct btrfs_key found_key;
4566	struct extent_buffer *eb;
4567	int slot;
4568	iterate_inode_ref_t cb;
4569	int pending_move = 0;
4570
4571	path = alloc_path_for_send();
4572	if (!path)
4573		return -ENOMEM;
4574
4575	if (cmd == BTRFS_COMPARE_TREE_NEW) {
4576		root = sctx->send_root;
4577		cb = __record_new_ref;
4578	} else if (cmd == BTRFS_COMPARE_TREE_DELETED) {
4579		root = sctx->parent_root;
4580		cb = __record_deleted_ref;
4581	} else {
4582		btrfs_err(sctx->send_root->fs_info,
4583				"Wrong command %d in process_all_refs", cmd);
4584		ret = -EINVAL;
4585		goto out;
4586	}
4587
4588	key.objectid = sctx->cmp_key->objectid;
4589	key.type = BTRFS_INODE_REF_KEY;
4590	key.offset = 0;
4591	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4592	if (ret < 0)
4593		goto out;
4594
4595	while (1) {
4596		eb = path->nodes[0];
4597		slot = path->slots[0];
4598		if (slot >= btrfs_header_nritems(eb)) {
4599			ret = btrfs_next_leaf(root, path);
4600			if (ret < 0)
4601				goto out;
4602			else if (ret > 0)
4603				break;
4604			continue;
4605		}
4606
4607		btrfs_item_key_to_cpu(eb, &found_key, slot);
4608
4609		if (found_key.objectid != key.objectid ||
4610		    (found_key.type != BTRFS_INODE_REF_KEY &&
4611		     found_key.type != BTRFS_INODE_EXTREF_KEY))
4612			break;
4613
4614		ret = iterate_inode_ref(root, path, &found_key, 0, cb, sctx);
4615		if (ret < 0)
4616			goto out;
4617
4618		path->slots[0]++;
4619	}
4620	btrfs_release_path(path);
4621
4622	/*
4623	 * We don't actually care about pending_move as we are simply
4624	 * re-creating this inode and will be rename'ing it into place once we
4625	 * rename the parent directory.
4626	 */
4627	ret = process_recorded_refs(sctx, &pending_move);
4628out:
4629	btrfs_free_path(path);
4630	return ret;
4631}
4632
4633static int send_set_xattr(struct send_ctx *sctx,
4634			  struct fs_path *path,
4635			  const char *name, int name_len,
4636			  const char *data, int data_len)
4637{
4638	int ret = 0;
4639
4640	ret = begin_cmd(sctx, BTRFS_SEND_C_SET_XATTR);
4641	if (ret < 0)
4642		goto out;
4643
4644	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
4645	TLV_PUT_STRING(sctx, BTRFS_SEND_A_XATTR_NAME, name, name_len);
4646	TLV_PUT(sctx, BTRFS_SEND_A_XATTR_DATA, data, data_len);
4647
4648	ret = send_cmd(sctx);
4649
4650tlv_put_failure:
4651out:
4652	return ret;
4653}
4654
4655static int send_remove_xattr(struct send_ctx *sctx,
4656			  struct fs_path *path,
4657			  const char *name, int name_len)
4658{
4659	int ret = 0;
4660
4661	ret = begin_cmd(sctx, BTRFS_SEND_C_REMOVE_XATTR);
4662	if (ret < 0)
4663		goto out;
4664
4665	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
4666	TLV_PUT_STRING(sctx, BTRFS_SEND_A_XATTR_NAME, name, name_len);
4667
4668	ret = send_cmd(sctx);
4669
4670tlv_put_failure:
4671out:
4672	return ret;
4673}
4674
4675static int __process_new_xattr(int num, struct btrfs_key *di_key,
4676			       const char *name, int name_len,
4677			       const char *data, int data_len,
4678			       u8 type, void *ctx)
4679{
4680	int ret;
4681	struct send_ctx *sctx = ctx;
4682	struct fs_path *p;
4683	struct posix_acl_xattr_header dummy_acl;
4684
4685	/* Capabilities are emitted by finish_inode_if_needed */
4686	if (!strncmp(name, XATTR_NAME_CAPS, name_len))
4687		return 0;
4688
4689	p = fs_path_alloc();
4690	if (!p)
4691		return -ENOMEM;
4692
4693	/*
4694	 * This hack is needed because empty acls are stored as zero byte
4695	 * data in xattrs. Problem with that is, that receiving these zero byte
4696	 * acls will fail later. To fix this, we send a dummy acl list that
4697	 * only contains the version number and no entries.
4698	 */
4699	if (!strncmp(name, XATTR_NAME_POSIX_ACL_ACCESS, name_len) ||
4700	    !strncmp(name, XATTR_NAME_POSIX_ACL_DEFAULT, name_len)) {
4701		if (data_len == 0) {
4702			dummy_acl.a_version =
4703					cpu_to_le32(POSIX_ACL_XATTR_VERSION);
4704			data = (char *)&dummy_acl;
4705			data_len = sizeof(dummy_acl);
4706		}
4707	}
4708
4709	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4710	if (ret < 0)
4711		goto out;
4712
4713	ret = send_set_xattr(sctx, p, name, name_len, data, data_len);
4714
4715out:
4716	fs_path_free(p);
4717	return ret;
4718}
4719
4720static int __process_deleted_xattr(int num, struct btrfs_key *di_key,
4721				   const char *name, int name_len,
4722				   const char *data, int data_len,
4723				   u8 type, void *ctx)
4724{
4725	int ret;
4726	struct send_ctx *sctx = ctx;
4727	struct fs_path *p;
4728
4729	p = fs_path_alloc();
4730	if (!p)
4731		return -ENOMEM;
4732
4733	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4734	if (ret < 0)
4735		goto out;
4736
4737	ret = send_remove_xattr(sctx, p, name, name_len);
4738
4739out:
4740	fs_path_free(p);
4741	return ret;
4742}
4743
4744static int process_new_xattr(struct send_ctx *sctx)
4745{
4746	int ret = 0;
4747
4748	ret = iterate_dir_item(sctx->send_root, sctx->left_path,
4749			       __process_new_xattr, sctx);
4750
4751	return ret;
4752}
4753
4754static int process_deleted_xattr(struct send_ctx *sctx)
4755{
4756	return iterate_dir_item(sctx->parent_root, sctx->right_path,
4757				__process_deleted_xattr, sctx);
4758}
4759
4760struct find_xattr_ctx {
4761	const char *name;
4762	int name_len;
4763	int found_idx;
4764	char *found_data;
4765	int found_data_len;
4766};
4767
4768static int __find_xattr(int num, struct btrfs_key *di_key,
4769			const char *name, int name_len,
4770			const char *data, int data_len,
4771			u8 type, void *vctx)
4772{
4773	struct find_xattr_ctx *ctx = vctx;
4774
4775	if (name_len == ctx->name_len &&
4776	    strncmp(name, ctx->name, name_len) == 0) {
4777		ctx->found_idx = num;
4778		ctx->found_data_len = data_len;
4779		ctx->found_data = kmemdup(data, data_len, GFP_KERNEL);
4780		if (!ctx->found_data)
4781			return -ENOMEM;
4782		return 1;
4783	}
4784	return 0;
4785}
4786
4787static int find_xattr(struct btrfs_root *root,
4788		      struct btrfs_path *path,
4789		      struct btrfs_key *key,
4790		      const char *name, int name_len,
4791		      char **data, int *data_len)
4792{
4793	int ret;
4794	struct find_xattr_ctx ctx;
4795
4796	ctx.name = name;
4797	ctx.name_len = name_len;
4798	ctx.found_idx = -1;
4799	ctx.found_data = NULL;
4800	ctx.found_data_len = 0;
4801
4802	ret = iterate_dir_item(root, path, __find_xattr, &ctx);
4803	if (ret < 0)
4804		return ret;
4805
4806	if (ctx.found_idx == -1)
4807		return -ENOENT;
4808	if (data) {
4809		*data = ctx.found_data;
4810		*data_len = ctx.found_data_len;
4811	} else {
4812		kfree(ctx.found_data);
4813	}
4814	return ctx.found_idx;
4815}
4816
4817
4818static int __process_changed_new_xattr(int num, struct btrfs_key *di_key,
4819				       const char *name, int name_len,
4820				       const char *data, int data_len,
4821				       u8 type, void *ctx)
4822{
4823	int ret;
4824	struct send_ctx *sctx = ctx;
4825	char *found_data = NULL;
4826	int found_data_len  = 0;
4827
4828	ret = find_xattr(sctx->parent_root, sctx->right_path,
4829			 sctx->cmp_key, name, name_len, &found_data,
4830			 &found_data_len);
4831	if (ret == -ENOENT) {
4832		ret = __process_new_xattr(num, di_key, name, name_len, data,
4833				data_len, type, ctx);
4834	} else if (ret >= 0) {
4835		if (data_len != found_data_len ||
4836		    memcmp(data, found_data, data_len)) {
4837			ret = __process_new_xattr(num, di_key, name, name_len,
4838					data, data_len, type, ctx);
4839		} else {
4840			ret = 0;
4841		}
4842	}
4843
4844	kfree(found_data);
4845	return ret;
4846}
4847
4848static int __process_changed_deleted_xattr(int num, struct btrfs_key *di_key,
4849					   const char *name, int name_len,
4850					   const char *data, int data_len,
4851					   u8 type, void *ctx)
4852{
4853	int ret;
4854	struct send_ctx *sctx = ctx;
4855
4856	ret = find_xattr(sctx->send_root, sctx->left_path, sctx->cmp_key,
4857			 name, name_len, NULL, NULL);
4858	if (ret == -ENOENT)
4859		ret = __process_deleted_xattr(num, di_key, name, name_len, data,
4860				data_len, type, ctx);
4861	else if (ret >= 0)
4862		ret = 0;
4863
4864	return ret;
4865}
4866
4867static int process_changed_xattr(struct send_ctx *sctx)
4868{
4869	int ret = 0;
4870
4871	ret = iterate_dir_item(sctx->send_root, sctx->left_path,
4872			__process_changed_new_xattr, sctx);
4873	if (ret < 0)
4874		goto out;
4875	ret = iterate_dir_item(sctx->parent_root, sctx->right_path,
4876			__process_changed_deleted_xattr, sctx);
4877
4878out:
4879	return ret;
4880}
4881
4882static int process_all_new_xattrs(struct send_ctx *sctx)
4883{
4884	int ret;
4885	struct btrfs_root *root;
4886	struct btrfs_path *path;
4887	struct btrfs_key key;
4888	struct btrfs_key found_key;
4889	struct extent_buffer *eb;
4890	int slot;
4891
4892	path = alloc_path_for_send();
4893	if (!path)
4894		return -ENOMEM;
4895
4896	root = sctx->send_root;
4897
4898	key.objectid = sctx->cmp_key->objectid;
4899	key.type = BTRFS_XATTR_ITEM_KEY;
4900	key.offset = 0;
4901	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4902	if (ret < 0)
4903		goto out;
4904
4905	while (1) {
4906		eb = path->nodes[0];
4907		slot = path->slots[0];
4908		if (slot >= btrfs_header_nritems(eb)) {
4909			ret = btrfs_next_leaf(root, path);
4910			if (ret < 0) {
4911				goto out;
4912			} else if (ret > 0) {
4913				ret = 0;
4914				break;
4915			}
4916			continue;
4917		}
4918
4919		btrfs_item_key_to_cpu(eb, &found_key, slot);
4920		if (found_key.objectid != key.objectid ||
4921		    found_key.type != key.type) {
4922			ret = 0;
4923			goto out;
4924		}
4925
4926		ret = iterate_dir_item(root, path, __process_new_xattr, sctx);
4927		if (ret < 0)
4928			goto out;
4929
4930		path->slots[0]++;
4931	}
4932
4933out:
4934	btrfs_free_path(path);
4935	return ret;
4936}
4937
4938static inline u64 max_send_read_size(const struct send_ctx *sctx)
4939{
4940	return sctx->send_max_size - SZ_16K;
4941}
4942
4943static int put_data_header(struct send_ctx *sctx, u32 len)
4944{
4945	struct btrfs_tlv_header *hdr;
4946
4947	if (sctx->send_max_size - sctx->send_size < sizeof(*hdr) + len)
4948		return -EOVERFLOW;
4949	hdr = (struct btrfs_tlv_header *)(sctx->send_buf + sctx->send_size);
4950	put_unaligned_le16(BTRFS_SEND_A_DATA, &hdr->tlv_type);
4951	put_unaligned_le16(len, &hdr->tlv_len);
4952	sctx->send_size += sizeof(*hdr);
4953	return 0;
4954}
4955
4956static int put_file_data(struct send_ctx *sctx, u64 offset, u32 len)
4957{
4958	struct btrfs_root *root = sctx->send_root;
4959	struct btrfs_fs_info *fs_info = root->fs_info;
4960	struct inode *inode;
4961	struct page *page;
4962	char *addr;
4963	pgoff_t index = offset >> PAGE_SHIFT;
4964	pgoff_t last_index;
4965	unsigned pg_offset = offset_in_page(offset);
4966	int ret;
4967
4968	ret = put_data_header(sctx, len);
4969	if (ret)
4970		return ret;
4971
4972	inode = btrfs_iget(fs_info->sb, sctx->cur_ino, root);
4973	if (IS_ERR(inode))
4974		return PTR_ERR(inode);
4975
4976	last_index = (offset + len - 1) >> PAGE_SHIFT;
4977
4978	/* initial readahead */
4979	memset(&sctx->ra, 0, sizeof(struct file_ra_state));
4980	file_ra_state_init(&sctx->ra, inode->i_mapping);
4981
4982	while (index <= last_index) {
4983		unsigned cur_len = min_t(unsigned, len,
4984					 PAGE_SIZE - pg_offset);
4985
4986		page = find_lock_page(inode->i_mapping, index);
4987		if (!page) {
4988			page_cache_sync_readahead(inode->i_mapping, &sctx->ra,
4989				NULL, index, last_index + 1 - index);
4990
4991			page = find_or_create_page(inode->i_mapping, index,
4992					GFP_KERNEL);
4993			if (!page) {
4994				ret = -ENOMEM;
4995				break;
4996			}
4997		}
4998
4999		if (PageReadahead(page)) {
5000			page_cache_async_readahead(inode->i_mapping, &sctx->ra,
5001				NULL, page, index, last_index + 1 - index);
5002		}
5003
5004		if (!PageUptodate(page)) {
5005			btrfs_readpage(NULL, page);
5006			lock_page(page);
5007			if (!PageUptodate(page)) {
5008				unlock_page(page);
5009				btrfs_err(fs_info,
5010			"send: IO error at offset %llu for inode %llu root %llu",
5011					page_offset(page), sctx->cur_ino,
5012					sctx->send_root->root_key.objectid);
5013				put_page(page);
5014				ret = -EIO;
5015				break;
5016			}
5017		}
5018
5019		addr = kmap(page);
5020		memcpy(sctx->send_buf + sctx->send_size, addr + pg_offset,
5021		       cur_len);
5022		kunmap(page);
5023		unlock_page(page);
5024		put_page(page);
5025		index++;
5026		pg_offset = 0;
5027		len -= cur_len;
5028		sctx->send_size += cur_len;
5029	}
5030	iput(inode);
5031	return ret;
5032}
5033
5034/*
5035 * Read some bytes from the current inode/file and send a write command to
5036 * user space.
5037 */
5038static int send_write(struct send_ctx *sctx, u64 offset, u32 len)
5039{
5040	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
5041	int ret = 0;
5042	struct fs_path *p;
5043
5044	p = fs_path_alloc();
5045	if (!p)
5046		return -ENOMEM;
5047
5048	btrfs_debug(fs_info, "send_write offset=%llu, len=%d", offset, len);
5049
5050	ret = begin_cmd(sctx, BTRFS_SEND_C_WRITE);
5051	if (ret < 0)
5052		goto out;
5053
5054	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
5055	if (ret < 0)
5056		goto out;
5057
5058	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
5059	TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
5060	ret = put_file_data(sctx, offset, len);
5061	if (ret < 0)
5062		goto out;
5063
5064	ret = send_cmd(sctx);
5065
5066tlv_put_failure:
5067out:
5068	fs_path_free(p);
5069	return ret;
5070}
5071
5072/*
5073 * Send a clone command to user space.
5074 */
5075static int send_clone(struct send_ctx *sctx,
5076		      u64 offset, u32 len,
5077		      struct clone_root *clone_root)
5078{
5079	int ret = 0;
5080	struct fs_path *p;
5081	u64 gen;
5082
5083	btrfs_debug(sctx->send_root->fs_info,
5084		    "send_clone offset=%llu, len=%d, clone_root=%llu, clone_inode=%llu, clone_offset=%llu",
5085		    offset, len, clone_root->root->root_key.objectid,
5086		    clone_root->ino, clone_root->offset);
5087
5088	p = fs_path_alloc();
5089	if (!p)
5090		return -ENOMEM;
5091
5092	ret = begin_cmd(sctx, BTRFS_SEND_C_CLONE);
5093	if (ret < 0)
5094		goto out;
5095
5096	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
5097	if (ret < 0)
5098		goto out;
5099
5100	TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
5101	TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_LEN, len);
5102	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
5103
5104	if (clone_root->root == sctx->send_root) {
5105		ret = get_inode_info(sctx->send_root, clone_root->ino, NULL,
5106				&gen, NULL, NULL, NULL, NULL);
5107		if (ret < 0)
5108			goto out;
5109		ret = get_cur_path(sctx, clone_root->ino, gen, p);
5110	} else {
5111		ret = get_inode_path(clone_root->root, clone_root->ino, p);
5112	}
5113	if (ret < 0)
5114		goto out;
5115
5116	/*
5117	 * If the parent we're using has a received_uuid set then use that as
5118	 * our clone source as that is what we will look for when doing a
5119	 * receive.
5120	 *
5121	 * This covers the case that we create a snapshot off of a received
5122	 * subvolume and then use that as the parent and try to receive on a
5123	 * different host.
5124	 */
5125	if (!btrfs_is_empty_uuid(clone_root->root->root_item.received_uuid))
5126		TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
5127			     clone_root->root->root_item.received_uuid);
5128	else
5129		TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
5130			     clone_root->root->root_item.uuid);
5131	TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_CTRANSID,
5132		    le64_to_cpu(clone_root->root->root_item.ctransid));
5133	TLV_PUT_PATH(sctx, BTRFS_SEND_A_CLONE_PATH, p);
5134	TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_OFFSET,
5135			clone_root->offset);
5136
5137	ret = send_cmd(sctx);
5138
5139tlv_put_failure:
5140out:
5141	fs_path_free(p);
5142	return ret;
5143}
5144
5145/*
5146 * Send an update extent command to user space.
5147 */
5148static int send_update_extent(struct send_ctx *sctx,
5149			      u64 offset, u32 len)
5150{
5151	int ret = 0;
5152	struct fs_path *p;
5153
5154	p = fs_path_alloc();
5155	if (!p)
5156		return -ENOMEM;
5157
5158	ret = begin_cmd(sctx, BTRFS_SEND_C_UPDATE_EXTENT);
5159	if (ret < 0)
5160		goto out;
5161
5162	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
5163	if (ret < 0)
5164		goto out;
5165
5166	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
5167	TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
5168	TLV_PUT_U64(sctx, BTRFS_SEND_A_SIZE, len);
5169
5170	ret = send_cmd(sctx);
5171
5172tlv_put_failure:
5173out:
5174	fs_path_free(p);
5175	return ret;
5176}
5177
5178static int send_hole(struct send_ctx *sctx, u64 end)
5179{
5180	struct fs_path *p = NULL;
5181	u64 read_size = max_send_read_size(sctx);
5182	u64 offset = sctx->cur_inode_last_extent;
5183	int ret = 0;
5184
5185	/*
5186	 * A hole that starts at EOF or beyond it. Since we do not yet support
5187	 * fallocate (for extent preallocation and hole punching), sending a
5188	 * write of zeroes starting at EOF or beyond would later require issuing
5189	 * a truncate operation which would undo the write and achieve nothing.
5190	 */
5191	if (offset >= sctx->cur_inode_size)
5192		return 0;
5193
5194	/*
5195	 * Don't go beyond the inode's i_size due to prealloc extents that start
5196	 * after the i_size.
5197	 */
5198	end = min_t(u64, end, sctx->cur_inode_size);
5199
5200	if (sctx->flags & BTRFS_SEND_FLAG_NO_FILE_DATA)
5201		return send_update_extent(sctx, offset, end - offset);
5202
5203	p = fs_path_alloc();
5204	if (!p)
5205		return -ENOMEM;
5206	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
5207	if (ret < 0)
5208		goto tlv_put_failure;
5209	while (offset < end) {
5210		u64 len = min(end - offset, read_size);
5211
5212		ret = begin_cmd(sctx, BTRFS_SEND_C_WRITE);
5213		if (ret < 0)
5214			break;
5215		TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
5216		TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
5217		ret = put_data_header(sctx, len);
5218		if (ret < 0)
5219			break;
5220		memset(sctx->send_buf + sctx->send_size, 0, len);
5221		sctx->send_size += len;
5222		ret = send_cmd(sctx);
5223		if (ret < 0)
5224			break;
5225		offset += len;
5226	}
5227	sctx->cur_inode_next_write_offset = offset;
5228tlv_put_failure:
5229	fs_path_free(p);
5230	return ret;
5231}
5232
5233static int send_extent_data(struct send_ctx *sctx,
5234			    const u64 offset,
5235			    const u64 len)
5236{
5237	u64 read_size = max_send_read_size(sctx);
5238	u64 sent = 0;
5239
5240	if (sctx->flags & BTRFS_SEND_FLAG_NO_FILE_DATA)
5241		return send_update_extent(sctx, offset, len);
5242
5243	while (sent < len) {
5244		u64 size = min(len - sent, read_size);
5245		int ret;
5246
5247		ret = send_write(sctx, offset + sent, size);
5248		if (ret < 0)
5249			return ret;
5250		sent += size;
5251	}
5252	return 0;
5253}
5254
5255/*
5256 * Search for a capability xattr related to sctx->cur_ino. If the capability is
5257 * found, call send_set_xattr function to emit it.
5258 *
5259 * Return 0 if there isn't a capability, or when the capability was emitted
5260 * successfully, or < 0 if an error occurred.
5261 */
5262static int send_capabilities(struct send_ctx *sctx)
5263{
5264	struct fs_path *fspath = NULL;
5265	struct btrfs_path *path;
5266	struct btrfs_dir_item *di;
5267	struct extent_buffer *leaf;
5268	unsigned long data_ptr;
5269	char *buf = NULL;
5270	int buf_len;
5271	int ret = 0;
5272
5273	path = alloc_path_for_send();
5274	if (!path)
5275		return -ENOMEM;
5276
5277	di = btrfs_lookup_xattr(NULL, sctx->send_root, path, sctx->cur_ino,
5278				XATTR_NAME_CAPS, strlen(XATTR_NAME_CAPS), 0);
5279	if (!di) {
5280		/* There is no xattr for this inode */
5281		goto out;
5282	} else if (IS_ERR(di)) {
5283		ret = PTR_ERR(di);
5284		goto out;
5285	}
5286
5287	leaf = path->nodes[0];
5288	buf_len = btrfs_dir_data_len(leaf, di);
5289
5290	fspath = fs_path_alloc();
5291	buf = kmalloc(buf_len, GFP_KERNEL);
5292	if (!fspath || !buf) {
5293		ret = -ENOMEM;
5294		goto out;
5295	}
5296
5297	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, fspath);
5298	if (ret < 0)
5299		goto out;
5300
5301	data_ptr = (unsigned long)(di + 1) + btrfs_dir_name_len(leaf, di);
5302	read_extent_buffer(leaf, buf, data_ptr, buf_len);
5303
5304	ret = send_set_xattr(sctx, fspath, XATTR_NAME_CAPS,
5305			strlen(XATTR_NAME_CAPS), buf, buf_len);
5306out:
5307	kfree(buf);
5308	fs_path_free(fspath);
5309	btrfs_free_path(path);
5310	return ret;
5311}
5312
5313static int clone_range(struct send_ctx *sctx,
5314		       struct clone_root *clone_root,
5315		       const u64 disk_byte,
5316		       u64 data_offset,
5317		       u64 offset,
5318		       u64 len)
5319{
5320	struct btrfs_path *path;
5321	struct btrfs_key key;
5322	int ret;
5323	u64 clone_src_i_size = 0;
5324
5325	/*
5326	 * Prevent cloning from a zero offset with a length matching the sector
5327	 * size because in some scenarios this will make the receiver fail.
5328	 *
5329	 * For example, if in the source filesystem the extent at offset 0
5330	 * has a length of sectorsize and it was written using direct IO, then
5331	 * it can never be an inline extent (even if compression is enabled).
5332	 * Then this extent can be cloned in the original filesystem to a non
5333	 * zero file offset, but it may not be possible to clone in the
5334	 * destination filesystem because it can be inlined due to compression
5335	 * on the destination filesystem (as the receiver's write operations are
5336	 * always done using buffered IO). The same happens when the original
5337	 * filesystem does not have compression enabled but the destination
5338	 * filesystem has.
5339	 */
5340	if (clone_root->offset == 0 &&
5341	    len == sctx->send_root->fs_info->sectorsize)
5342		return send_extent_data(sctx, offset, len);
5343
5344	path = alloc_path_for_send();
5345	if (!path)
5346		return -ENOMEM;
5347
5348	/*
5349	 * There are inodes that have extents that lie behind its i_size. Don't
5350	 * accept clones from these extents.
5351	 */
5352	ret = __get_inode_info(clone_root->root, path, clone_root->ino,
5353			       &clone_src_i_size, NULL, NULL, NULL, NULL, NULL);
5354	btrfs_release_path(path);
5355	if (ret < 0)
5356		goto out;
5357
5358	/*
5359	 * We can't send a clone operation for the entire range if we find
5360	 * extent items in the respective range in the source file that
5361	 * refer to different extents or if we find holes.
5362	 * So check for that and do a mix of clone and regular write/copy
5363	 * operations if needed.
5364	 *
5365	 * Example:
5366	 *
5367	 * mkfs.btrfs -f /dev/sda
5368	 * mount /dev/sda /mnt
5369	 * xfs_io -f -c "pwrite -S 0xaa 0K 100K" /mnt/foo
5370	 * cp --reflink=always /mnt/foo /mnt/bar
5371	 * xfs_io -c "pwrite -S 0xbb 50K 50K" /mnt/foo
5372	 * btrfs subvolume snapshot -r /mnt /mnt/snap
5373	 *
5374	 * If when we send the snapshot and we are processing file bar (which
5375	 * has a higher inode number than foo) we blindly send a clone operation
5376	 * for the [0, 100K[ range from foo to bar, the receiver ends up getting
5377	 * a file bar that matches the content of file foo - iow, doesn't match
5378	 * the content from bar in the original filesystem.
5379	 */
5380	key.objectid = clone_root->ino;
5381	key.type = BTRFS_EXTENT_DATA_KEY;
5382	key.offset = clone_root->offset;
5383	ret = btrfs_search_slot(NULL, clone_root->root, &key, path, 0, 0);
5384	if (ret < 0)
5385		goto out;
5386	if (ret > 0 && path->slots[0] > 0) {
5387		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0] - 1);
5388		if (key.objectid == clone_root->ino &&
5389		    key.type == BTRFS_EXTENT_DATA_KEY)
5390			path->slots[0]--;
5391	}
5392
5393	while (true) {
5394		struct extent_buffer *leaf = path->nodes[0];
5395		int slot = path->slots[0];
5396		struct btrfs_file_extent_item *ei;
5397		u8 type;
5398		u64 ext_len;
5399		u64 clone_len;
5400		u64 clone_data_offset;
5401		bool crossed_src_i_size = false;
5402
5403		if (slot >= btrfs_header_nritems(leaf)) {
5404			ret = btrfs_next_leaf(clone_root->root, path);
5405			if (ret < 0)
5406				goto out;
5407			else if (ret > 0)
5408				break;
5409			continue;
5410		}
5411
5412		btrfs_item_key_to_cpu(leaf, &key, slot);
5413
5414		/*
5415		 * We might have an implicit trailing hole (NO_HOLES feature
5416		 * enabled). We deal with it after leaving this loop.
5417		 */
5418		if (key.objectid != clone_root->ino ||
5419		    key.type != BTRFS_EXTENT_DATA_KEY)
5420			break;
5421
5422		ei = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
5423		type = btrfs_file_extent_type(leaf, ei);
5424		if (type == BTRFS_FILE_EXTENT_INLINE) {
5425			ext_len = btrfs_file_extent_ram_bytes(leaf, ei);
5426			ext_len = PAGE_ALIGN(ext_len);
5427		} else {
5428			ext_len = btrfs_file_extent_num_bytes(leaf, ei);
5429		}
5430
5431		if (key.offset + ext_len <= clone_root->offset)
5432			goto next;
5433
5434		if (key.offset > clone_root->offset) {
5435			/* Implicit hole, NO_HOLES feature enabled. */
5436			u64 hole_len = key.offset - clone_root->offset;
5437
5438			if (hole_len > len)
5439				hole_len = len;
5440			ret = send_extent_data(sctx, offset, hole_len);
5441			if (ret < 0)
5442				goto out;
5443
5444			len -= hole_len;
5445			if (len == 0)
5446				break;
5447			offset += hole_len;
5448			clone_root->offset += hole_len;
5449			data_offset += hole_len;
5450		}
5451
5452		if (key.offset >= clone_root->offset + len)
5453			break;
5454
5455		if (key.offset >= clone_src_i_size)
5456			break;
5457
5458		if (key.offset + ext_len > clone_src_i_size) {
5459			ext_len = clone_src_i_size - key.offset;
5460			crossed_src_i_size = true;
5461		}
5462
5463		clone_data_offset = btrfs_file_extent_offset(leaf, ei);
5464		if (btrfs_file_extent_disk_bytenr(leaf, ei) == disk_byte) {
5465			clone_root->offset = key.offset;
5466			if (clone_data_offset < data_offset &&
5467				clone_data_offset + ext_len > data_offset) {
5468				u64 extent_offset;
5469
5470				extent_offset = data_offset - clone_data_offset;
5471				ext_len -= extent_offset;
5472				clone_data_offset += extent_offset;
5473				clone_root->offset += extent_offset;
5474			}
5475		}
5476
5477		clone_len = min_t(u64, ext_len, len);
5478
5479		if (btrfs_file_extent_disk_bytenr(leaf, ei) == disk_byte &&
5480		    clone_data_offset == data_offset) {
5481			const u64 src_end = clone_root->offset + clone_len;
5482			const u64 sectorsize = SZ_64K;
5483
5484			/*
5485			 * We can't clone the last block, when its size is not
5486			 * sector size aligned, into the middle of a file. If we
5487			 * do so, the receiver will get a failure (-EINVAL) when
5488			 * trying to clone or will silently corrupt the data in
5489			 * the destination file if it's on a kernel without the
5490			 * fix introduced by commit ac765f83f1397646
5491			 * ("Btrfs: fix data corruption due to cloning of eof
5492			 * block).
5493			 *
5494			 * So issue a clone of the aligned down range plus a
5495			 * regular write for the eof block, if we hit that case.
5496			 *
5497			 * Also, we use the maximum possible sector size, 64K,
5498			 * because we don't know what's the sector size of the
5499			 * filesystem that receives the stream, so we have to
5500			 * assume the largest possible sector size.
5501			 */
5502			if (src_end == clone_src_i_size &&
5503			    !IS_ALIGNED(src_end, sectorsize) &&
5504			    offset + clone_len < sctx->cur_inode_size) {
5505				u64 slen;
5506
5507				slen = ALIGN_DOWN(src_end - clone_root->offset,
5508						  sectorsize);
5509				if (slen > 0) {
5510					ret = send_clone(sctx, offset, slen,
5511							 clone_root);
5512					if (ret < 0)
5513						goto out;
5514				}
5515				ret = send_extent_data(sctx, offset + slen,
5516						       clone_len - slen);
5517			} else {
5518				ret = send_clone(sctx, offset, clone_len,
5519						 clone_root);
5520			}
5521		} else if (crossed_src_i_size && clone_len < len) {
5522			/*
5523			 * If we are at i_size of the clone source inode and we
5524			 * can not clone from it, terminate the loop. This is
5525			 * to avoid sending two write operations, one with a
5526			 * length matching clone_len and the final one after
5527			 * this loop with a length of len - clone_len.
5528			 *
5529			 * When using encoded writes (BTRFS_SEND_FLAG_COMPRESSED
5530			 * was passed to the send ioctl), this helps avoid
5531			 * sending an encoded write for an offset that is not
5532			 * sector size aligned, in case the i_size of the source
5533			 * inode is not sector size aligned. That will make the
5534			 * receiver fallback to decompression of the data and
5535			 * writing it using regular buffered IO, therefore while
5536			 * not incorrect, it's not optimal due decompression and
5537			 * possible re-compression at the receiver.
5538			 */
5539			break;
5540		} else {
5541			ret = send_extent_data(sctx, offset, clone_len);
5542		}
5543
5544		if (ret < 0)
5545			goto out;
5546
5547		len -= clone_len;
5548		if (len == 0)
5549			break;
5550		offset += clone_len;
5551		clone_root->offset += clone_len;
5552
5553		/*
5554		 * If we are cloning from the file we are currently processing,
5555		 * and using the send root as the clone root, we must stop once
5556		 * the current clone offset reaches the current eof of the file
5557		 * at the receiver, otherwise we would issue an invalid clone
5558		 * operation (source range going beyond eof) and cause the
5559		 * receiver to fail. So if we reach the current eof, bail out
5560		 * and fallback to a regular write.
5561		 */
5562		if (clone_root->root == sctx->send_root &&
5563		    clone_root->ino == sctx->cur_ino &&
5564		    clone_root->offset >= sctx->cur_inode_next_write_offset)
5565			break;
5566
5567		data_offset += clone_len;
5568next:
5569		path->slots[0]++;
5570	}
5571
5572	if (len > 0)
5573		ret = send_extent_data(sctx, offset, len);
5574	else
5575		ret = 0;
5576out:
5577	btrfs_free_path(path);
5578	return ret;
5579}
5580
5581static int send_write_or_clone(struct send_ctx *sctx,
5582			       struct btrfs_path *path,
5583			       struct btrfs_key *key,
5584			       struct clone_root *clone_root)
5585{
5586	int ret = 0;
5587	u64 offset = key->offset;
5588	u64 end;
5589	u64 bs = sctx->send_root->fs_info->sb->s_blocksize;
5590
5591	end = min_t(u64, btrfs_file_extent_end(path), sctx->cur_inode_size);
5592	if (offset >= end)
5593		return 0;
5594
5595	if (clone_root && IS_ALIGNED(end, bs)) {
5596		struct btrfs_file_extent_item *ei;
5597		u64 disk_byte;
5598		u64 data_offset;
5599
5600		ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
5601				    struct btrfs_file_extent_item);
5602		disk_byte = btrfs_file_extent_disk_bytenr(path->nodes[0], ei);
5603		data_offset = btrfs_file_extent_offset(path->nodes[0], ei);
5604		ret = clone_range(sctx, clone_root, disk_byte, data_offset,
5605				  offset, end - offset);
5606	} else {
5607		ret = send_extent_data(sctx, offset, end - offset);
5608	}
5609	sctx->cur_inode_next_write_offset = end;
5610	return ret;
5611}
5612
5613static int is_extent_unchanged(struct send_ctx *sctx,
5614			       struct btrfs_path *left_path,
5615			       struct btrfs_key *ekey)
5616{
5617	int ret = 0;
5618	struct btrfs_key key;
5619	struct btrfs_path *path = NULL;
5620	struct extent_buffer *eb;
5621	int slot;
5622	struct btrfs_key found_key;
5623	struct btrfs_file_extent_item *ei;
5624	u64 left_disknr;
5625	u64 right_disknr;
5626	u64 left_offset;
5627	u64 right_offset;
5628	u64 left_offset_fixed;
5629	u64 left_len;
5630	u64 right_len;
5631	u64 left_gen;
5632	u64 right_gen;
5633	u8 left_type;
5634	u8 right_type;
5635
5636	path = alloc_path_for_send();
5637	if (!path)
5638		return -ENOMEM;
5639
5640	eb = left_path->nodes[0];
5641	slot = left_path->slots[0];
5642	ei = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
5643	left_type = btrfs_file_extent_type(eb, ei);
5644
5645	if (left_type != BTRFS_FILE_EXTENT_REG) {
5646		ret = 0;
5647		goto out;
5648	}
5649	left_disknr = btrfs_file_extent_disk_bytenr(eb, ei);
5650	left_len = btrfs_file_extent_num_bytes(eb, ei);
5651	left_offset = btrfs_file_extent_offset(eb, ei);
5652	left_gen = btrfs_file_extent_generation(eb, ei);
5653
5654	/*
5655	 * Following comments will refer to these graphics. L is the left
5656	 * extents which we are checking at the moment. 1-8 are the right
5657	 * extents that we iterate.
5658	 *
5659	 *       |-----L-----|
5660	 * |-1-|-2a-|-3-|-4-|-5-|-6-|
5661	 *
5662	 *       |-----L-----|
5663	 * |--1--|-2b-|...(same as above)
5664	 *
5665	 * Alternative situation. Happens on files where extents got split.
5666	 *       |-----L-----|
5667	 * |-----------7-----------|-6-|
5668	 *
5669	 * Alternative situation. Happens on files which got larger.
5670	 *       |-----L-----|
5671	 * |-8-|
5672	 * Nothing follows after 8.
5673	 */
5674
5675	key.objectid = ekey->objectid;
5676	key.type = BTRFS_EXTENT_DATA_KEY;
5677	key.offset = ekey->offset;
5678	ret = btrfs_search_slot_for_read(sctx->parent_root, &key, path, 0, 0);
5679	if (ret < 0)
5680		goto out;
5681	if (ret) {
5682		ret = 0;
5683		goto out;
5684	}
5685
5686	/*
5687	 * Handle special case where the right side has no extents at all.
5688	 */
5689	eb = path->nodes[0];
5690	slot = path->slots[0];
5691	btrfs_item_key_to_cpu(eb, &found_key, slot);
5692	if (found_key.objectid != key.objectid ||
5693	    found_key.type != key.type) {
5694		/* If we're a hole then just pretend nothing changed */
5695		ret = (left_disknr) ? 0 : 1;
5696		goto out;
5697	}
5698
5699	/*
5700	 * We're now on 2a, 2b or 7.
5701	 */
5702	key = found_key;
5703	while (key.offset < ekey->offset + left_len) {
5704		ei = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
5705		right_type = btrfs_file_extent_type(eb, ei);
5706		if (right_type != BTRFS_FILE_EXTENT_REG &&
5707		    right_type != BTRFS_FILE_EXTENT_INLINE) {
5708			ret = 0;
5709			goto out;
5710		}
5711
5712		if (right_type == BTRFS_FILE_EXTENT_INLINE) {
5713			right_len = btrfs_file_extent_ram_bytes(eb, ei);
5714			right_len = PAGE_ALIGN(right_len);
5715		} else {
5716			right_len = btrfs_file_extent_num_bytes(eb, ei);
5717		}
5718
5719		/*
5720		 * Are we at extent 8? If yes, we know the extent is changed.
5721		 * This may only happen on the first iteration.
5722		 */
5723		if (found_key.offset + right_len <= ekey->offset) {
5724			/* If we're a hole just pretend nothing changed */
5725			ret = (left_disknr) ? 0 : 1;
5726			goto out;
5727		}
5728
5729		/*
5730		 * We just wanted to see if when we have an inline extent, what
5731		 * follows it is a regular extent (wanted to check the above
5732		 * condition for inline extents too). This should normally not
5733		 * happen but it's possible for example when we have an inline
5734		 * compressed extent representing data with a size matching
5735		 * the page size (currently the same as sector size).
5736		 */
5737		if (right_type == BTRFS_FILE_EXTENT_INLINE) {
5738			ret = 0;
5739			goto out;
5740		}
5741
5742		right_disknr = btrfs_file_extent_disk_bytenr(eb, ei);
5743		right_offset = btrfs_file_extent_offset(eb, ei);
5744		right_gen = btrfs_file_extent_generation(eb, ei);
5745
5746		left_offset_fixed = left_offset;
5747		if (key.offset < ekey->offset) {
5748			/* Fix the right offset for 2a and 7. */
5749			right_offset += ekey->offset - key.offset;
5750		} else {
5751			/* Fix the left offset for all behind 2a and 2b */
5752			left_offset_fixed += key.offset - ekey->offset;
5753		}
5754
5755		/*
5756		 * Check if we have the same extent.
5757		 */
5758		if (left_disknr != right_disknr ||
5759		    left_offset_fixed != right_offset ||
5760		    left_gen != right_gen) {
5761			ret = 0;
5762			goto out;
5763		}
5764
5765		/*
5766		 * Go to the next extent.
5767		 */
5768		ret = btrfs_next_item(sctx->parent_root, path);
5769		if (ret < 0)
5770			goto out;
5771		if (!ret) {
5772			eb = path->nodes[0];
5773			slot = path->slots[0];
5774			btrfs_item_key_to_cpu(eb, &found_key, slot);
5775		}
5776		if (ret || found_key.objectid != key.objectid ||
5777		    found_key.type != key.type) {
5778			key.offset += right_len;
5779			break;
5780		}
5781		if (found_key.offset != key.offset + right_len) {
5782			ret = 0;
5783			goto out;
5784		}
5785		key = found_key;
5786	}
5787
5788	/*
5789	 * We're now behind the left extent (treat as unchanged) or at the end
5790	 * of the right side (treat as changed).
5791	 */
5792	if (key.offset >= ekey->offset + left_len)
5793		ret = 1;
5794	else
5795		ret = 0;
5796
5797
5798out:
5799	btrfs_free_path(path);
5800	return ret;
5801}
5802
5803static int get_last_extent(struct send_ctx *sctx, u64 offset)
5804{
5805	struct btrfs_path *path;
5806	struct btrfs_root *root = sctx->send_root;
5807	struct btrfs_key key;
5808	int ret;
5809
5810	path = alloc_path_for_send();
5811	if (!path)
5812		return -ENOMEM;
5813
5814	sctx->cur_inode_last_extent = 0;
5815
5816	key.objectid = sctx->cur_ino;
5817	key.type = BTRFS_EXTENT_DATA_KEY;
5818	key.offset = offset;
5819	ret = btrfs_search_slot_for_read(root, &key, path, 0, 1);
5820	if (ret < 0)
5821		goto out;
5822	ret = 0;
5823	btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
5824	if (key.objectid != sctx->cur_ino || key.type != BTRFS_EXTENT_DATA_KEY)
5825		goto out;
5826
5827	sctx->cur_inode_last_extent = btrfs_file_extent_end(path);
5828out:
5829	btrfs_free_path(path);
5830	return ret;
5831}
5832
5833static int range_is_hole_in_parent(struct send_ctx *sctx,
5834				   const u64 start,
5835				   const u64 end)
5836{
5837	struct btrfs_path *path;
5838	struct btrfs_key key;
5839	struct btrfs_root *root = sctx->parent_root;
5840	u64 search_start = start;
5841	int ret;
5842
5843	path = alloc_path_for_send();
5844	if (!path)
5845		return -ENOMEM;
5846
5847	key.objectid = sctx->cur_ino;
5848	key.type = BTRFS_EXTENT_DATA_KEY;
5849	key.offset = search_start;
5850	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5851	if (ret < 0)
5852		goto out;
5853	if (ret > 0 && path->slots[0] > 0)
5854		path->slots[0]--;
5855
5856	while (search_start < end) {
5857		struct extent_buffer *leaf = path->nodes[0];
5858		int slot = path->slots[0];
5859		struct btrfs_file_extent_item *fi;
5860		u64 extent_end;
5861
5862		if (slot >= btrfs_header_nritems(leaf)) {
5863			ret = btrfs_next_leaf(root, path);
5864			if (ret < 0)
5865				goto out;
5866			else if (ret > 0)
5867				break;
5868			continue;
5869		}
5870
5871		btrfs_item_key_to_cpu(leaf, &key, slot);
5872		if (key.objectid < sctx->cur_ino ||
5873		    key.type < BTRFS_EXTENT_DATA_KEY)
5874			goto next;
5875		if (key.objectid > sctx->cur_ino ||
5876		    key.type > BTRFS_EXTENT_DATA_KEY ||
5877		    key.offset >= end)
5878			break;
5879
5880		fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
5881		extent_end = btrfs_file_extent_end(path);
5882		if (extent_end <= start)
5883			goto next;
5884		if (btrfs_file_extent_disk_bytenr(leaf, fi) == 0) {
5885			search_start = extent_end;
5886			goto next;
5887		}
5888		ret = 0;
5889		goto out;
5890next:
5891		path->slots[0]++;
5892	}
5893	ret = 1;
5894out:
5895	btrfs_free_path(path);
5896	return ret;
5897}
5898
5899static int maybe_send_hole(struct send_ctx *sctx, struct btrfs_path *path,
5900			   struct btrfs_key *key)
5901{
5902	int ret = 0;
5903
5904	if (sctx->cur_ino != key->objectid || !need_send_hole(sctx))
5905		return 0;
5906
5907	if (sctx->cur_inode_last_extent == (u64)-1) {
5908		ret = get_last_extent(sctx, key->offset - 1);
5909		if (ret)
5910			return ret;
5911	}
5912
5913	if (path->slots[0] == 0 &&
5914	    sctx->cur_inode_last_extent < key->offset) {
5915		/*
5916		 * We might have skipped entire leafs that contained only
5917		 * file extent items for our current inode. These leafs have
5918		 * a generation number smaller (older) than the one in the
5919		 * current leaf and the leaf our last extent came from, and
5920		 * are located between these 2 leafs.
5921		 */
5922		ret = get_last_extent(sctx, key->offset - 1);
5923		if (ret)
5924			return ret;
5925	}
5926
5927	if (sctx->cur_inode_last_extent < key->offset) {
5928		ret = range_is_hole_in_parent(sctx,
5929					      sctx->cur_inode_last_extent,
5930					      key->offset);
5931		if (ret < 0)
5932			return ret;
5933		else if (ret == 0)
5934			ret = send_hole(sctx, key->offset);
5935		else
5936			ret = 0;
5937	}
5938	sctx->cur_inode_last_extent = btrfs_file_extent_end(path);
5939	return ret;
5940}
5941
5942static int process_extent(struct send_ctx *sctx,
5943			  struct btrfs_path *path,
5944			  struct btrfs_key *key)
5945{
5946	struct clone_root *found_clone = NULL;
5947	int ret = 0;
5948
5949	if (S_ISLNK(sctx->cur_inode_mode))
5950		return 0;
5951
5952	if (sctx->parent_root && !sctx->cur_inode_new) {
5953		ret = is_extent_unchanged(sctx, path, key);
5954		if (ret < 0)
5955			goto out;
5956		if (ret) {
5957			ret = 0;
5958			goto out_hole;
5959		}
5960	} else {
5961		struct btrfs_file_extent_item *ei;
5962		u8 type;
5963
5964		ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
5965				    struct btrfs_file_extent_item);
5966		type = btrfs_file_extent_type(path->nodes[0], ei);
5967		if (type == BTRFS_FILE_EXTENT_PREALLOC ||
5968		    type == BTRFS_FILE_EXTENT_REG) {
5969			/*
5970			 * The send spec does not have a prealloc command yet,
5971			 * so just leave a hole for prealloc'ed extents until
5972			 * we have enough commands queued up to justify rev'ing
5973			 * the send spec.
5974			 */
5975			if (type == BTRFS_FILE_EXTENT_PREALLOC) {
5976				ret = 0;
5977				goto out;
5978			}
5979
5980			/* Have a hole, just skip it. */
5981			if (btrfs_file_extent_disk_bytenr(path->nodes[0], ei) == 0) {
5982				ret = 0;
5983				goto out;
5984			}
5985		}
5986	}
5987
5988	ret = find_extent_clone(sctx, path, key->objectid, key->offset,
5989			sctx->cur_inode_size, &found_clone);
5990	if (ret != -ENOENT && ret < 0)
5991		goto out;
5992
5993	ret = send_write_or_clone(sctx, path, key, found_clone);
5994	if (ret)
5995		goto out;
5996out_hole:
5997	ret = maybe_send_hole(sctx, path, key);
5998out:
5999	return ret;
6000}
6001
6002static int process_all_extents(struct send_ctx *sctx)
6003{
6004	int ret;
6005	struct btrfs_root *root;
6006	struct btrfs_path *path;
6007	struct btrfs_key key;
6008	struct btrfs_key found_key;
6009	struct extent_buffer *eb;
6010	int slot;
6011
6012	root = sctx->send_root;
6013	path = alloc_path_for_send();
6014	if (!path)
6015		return -ENOMEM;
6016
6017	key.objectid = sctx->cmp_key->objectid;
6018	key.type = BTRFS_EXTENT_DATA_KEY;
6019	key.offset = 0;
6020	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6021	if (ret < 0)
6022		goto out;
6023
6024	while (1) {
6025		eb = path->nodes[0];
6026		slot = path->slots[0];
6027
6028		if (slot >= btrfs_header_nritems(eb)) {
6029			ret = btrfs_next_leaf(root, path);
6030			if (ret < 0) {
6031				goto out;
6032			} else if (ret > 0) {
6033				ret = 0;
6034				break;
6035			}
6036			continue;
6037		}
6038
6039		btrfs_item_key_to_cpu(eb, &found_key, slot);
6040
6041		if (found_key.objectid != key.objectid ||
6042		    found_key.type != key.type) {
6043			ret = 0;
6044			goto out;
6045		}
6046
6047		ret = process_extent(sctx, path, &found_key);
6048		if (ret < 0)
6049			goto out;
6050
6051		path->slots[0]++;
6052	}
6053
6054out:
6055	btrfs_free_path(path);
6056	return ret;
6057}
6058
6059static int process_recorded_refs_if_needed(struct send_ctx *sctx, int at_end,
6060					   int *pending_move,
6061					   int *refs_processed)
6062{
6063	int ret = 0;
6064
6065	if (sctx->cur_ino == 0)
6066		goto out;
6067	if (!at_end && sctx->cur_ino == sctx->cmp_key->objectid &&
6068	    sctx->cmp_key->type <= BTRFS_INODE_EXTREF_KEY)
6069		goto out;
6070	if (list_empty(&sctx->new_refs) && list_empty(&sctx->deleted_refs))
6071		goto out;
6072
6073	ret = process_recorded_refs(sctx, pending_move);
6074	if (ret < 0)
6075		goto out;
6076
6077	*refs_processed = 1;
6078out:
6079	return ret;
6080}
6081
6082static int finish_inode_if_needed(struct send_ctx *sctx, int at_end)
6083{
6084	int ret = 0;
6085	u64 left_mode;
6086	u64 left_uid;
6087	u64 left_gid;
6088	u64 right_mode;
6089	u64 right_uid;
6090	u64 right_gid;
6091	int need_chmod = 0;
6092	int need_chown = 0;
6093	int need_truncate = 1;
6094	int pending_move = 0;
6095	int refs_processed = 0;
6096
6097	if (sctx->ignore_cur_inode)
6098		return 0;
6099
6100	ret = process_recorded_refs_if_needed(sctx, at_end, &pending_move,
6101					      &refs_processed);
6102	if (ret < 0)
6103		goto out;
6104
6105	/*
6106	 * We have processed the refs and thus need to advance send_progress.
6107	 * Now, calls to get_cur_xxx will take the updated refs of the current
6108	 * inode into account.
6109	 *
6110	 * On the other hand, if our current inode is a directory and couldn't
6111	 * be moved/renamed because its parent was renamed/moved too and it has
6112	 * a higher inode number, we can only move/rename our current inode
6113	 * after we moved/renamed its parent. Therefore in this case operate on
6114	 * the old path (pre move/rename) of our current inode, and the
6115	 * move/rename will be performed later.
6116	 */
6117	if (refs_processed && !pending_move)
6118		sctx->send_progress = sctx->cur_ino + 1;
6119
6120	if (sctx->cur_ino == 0 || sctx->cur_inode_deleted)
6121		goto out;
6122	if (!at_end && sctx->cmp_key->objectid == sctx->cur_ino)
6123		goto out;
6124
6125	ret = get_inode_info(sctx->send_root, sctx->cur_ino, NULL, NULL,
6126			&left_mode, &left_uid, &left_gid, NULL);
6127	if (ret < 0)
6128		goto out;
6129
6130	if (!sctx->parent_root || sctx->cur_inode_new) {
6131		need_chown = 1;
6132		if (!S_ISLNK(sctx->cur_inode_mode))
6133			need_chmod = 1;
6134		if (sctx->cur_inode_next_write_offset == sctx->cur_inode_size)
6135			need_truncate = 0;
6136	} else {
6137		u64 old_size;
6138
6139		ret = get_inode_info(sctx->parent_root, sctx->cur_ino,
6140				&old_size, NULL, &right_mode, &right_uid,
6141				&right_gid, NULL);
6142		if (ret < 0)
6143			goto out;
6144
6145		if (left_uid != right_uid || left_gid != right_gid)
6146			need_chown = 1;
6147		if (!S_ISLNK(sctx->cur_inode_mode) && left_mode != right_mode)
6148			need_chmod = 1;
6149		if ((old_size == sctx->cur_inode_size) ||
6150		    (sctx->cur_inode_size > old_size &&
6151		     sctx->cur_inode_next_write_offset == sctx->cur_inode_size))
6152			need_truncate = 0;
6153	}
6154
6155	if (S_ISREG(sctx->cur_inode_mode)) {
6156		if (need_send_hole(sctx)) {
6157			if (sctx->cur_inode_last_extent == (u64)-1 ||
6158			    sctx->cur_inode_last_extent <
6159			    sctx->cur_inode_size) {
6160				ret = get_last_extent(sctx, (u64)-1);
6161				if (ret)
6162					goto out;
6163			}
6164			if (sctx->cur_inode_last_extent <
6165			    sctx->cur_inode_size) {
6166				ret = send_hole(sctx, sctx->cur_inode_size);
6167				if (ret)
6168					goto out;
6169			}
6170		}
6171		if (need_truncate) {
6172			ret = send_truncate(sctx, sctx->cur_ino,
6173					    sctx->cur_inode_gen,
6174					    sctx->cur_inode_size);
6175			if (ret < 0)
6176				goto out;
6177		}
6178	}
6179
6180	if (need_chown) {
6181		ret = send_chown(sctx, sctx->cur_ino, sctx->cur_inode_gen,
6182				left_uid, left_gid);
6183		if (ret < 0)
6184			goto out;
6185	}
6186	if (need_chmod) {
6187		ret = send_chmod(sctx, sctx->cur_ino, sctx->cur_inode_gen,
6188				left_mode);
6189		if (ret < 0)
6190			goto out;
6191	}
6192
6193	ret = send_capabilities(sctx);
6194	if (ret < 0)
6195		goto out;
6196
6197	/*
6198	 * If other directory inodes depended on our current directory
6199	 * inode's move/rename, now do their move/rename operations.
6200	 */
6201	if (!is_waiting_for_move(sctx, sctx->cur_ino)) {
6202		ret = apply_children_dir_moves(sctx);
6203		if (ret)
6204			goto out;
6205		/*
6206		 * Need to send that every time, no matter if it actually
6207		 * changed between the two trees as we have done changes to
6208		 * the inode before. If our inode is a directory and it's
6209		 * waiting to be moved/renamed, we will send its utimes when
6210		 * it's moved/renamed, therefore we don't need to do it here.
6211		 */
6212		sctx->send_progress = sctx->cur_ino + 1;
6213		ret = send_utimes(sctx, sctx->cur_ino, sctx->cur_inode_gen);
6214		if (ret < 0)
6215			goto out;
6216	}
6217
6218out:
6219	return ret;
6220}
6221
6222struct parent_paths_ctx {
6223	struct list_head *refs;
6224	struct send_ctx *sctx;
6225};
6226
6227static int record_parent_ref(int num, u64 dir, int index, struct fs_path *name,
6228			     void *ctx)
6229{
6230	struct parent_paths_ctx *ppctx = ctx;
6231
6232	return record_ref(ppctx->sctx->parent_root, dir, name, ppctx->sctx,
6233			  ppctx->refs);
6234}
6235
6236/*
6237 * Issue unlink operations for all paths of the current inode found in the
6238 * parent snapshot.
6239 */
6240static int btrfs_unlink_all_paths(struct send_ctx *sctx)
6241{
6242	LIST_HEAD(deleted_refs);
6243	struct btrfs_path *path;
6244	struct btrfs_key key;
6245	struct parent_paths_ctx ctx;
6246	int ret;
6247
6248	path = alloc_path_for_send();
6249	if (!path)
6250		return -ENOMEM;
6251
6252	key.objectid = sctx->cur_ino;
6253	key.type = BTRFS_INODE_REF_KEY;
6254	key.offset = 0;
6255	ret = btrfs_search_slot(NULL, sctx->parent_root, &key, path, 0, 0);
6256	if (ret < 0)
6257		goto out;
6258
6259	ctx.refs = &deleted_refs;
6260	ctx.sctx = sctx;
6261
6262	while (true) {
6263		struct extent_buffer *eb = path->nodes[0];
6264		int slot = path->slots[0];
6265
6266		if (slot >= btrfs_header_nritems(eb)) {
6267			ret = btrfs_next_leaf(sctx->parent_root, path);
6268			if (ret < 0)
6269				goto out;
6270			else if (ret > 0)
6271				break;
6272			continue;
6273		}
6274
6275		btrfs_item_key_to_cpu(eb, &key, slot);
6276		if (key.objectid != sctx->cur_ino)
6277			break;
6278		if (key.type != BTRFS_INODE_REF_KEY &&
6279		    key.type != BTRFS_INODE_EXTREF_KEY)
6280			break;
6281
6282		ret = iterate_inode_ref(sctx->parent_root, path, &key, 1,
6283					record_parent_ref, &ctx);
6284		if (ret < 0)
6285			goto out;
6286
6287		path->slots[0]++;
6288	}
6289
6290	while (!list_empty(&deleted_refs)) {
6291		struct recorded_ref *ref;
6292
6293		ref = list_first_entry(&deleted_refs, struct recorded_ref, list);
6294		ret = send_unlink(sctx, ref->full_path);
6295		if (ret < 0)
6296			goto out;
6297		fs_path_free(ref->full_path);
6298		list_del(&ref->list);
6299		kfree(ref);
6300	}
6301	ret = 0;
6302out:
6303	btrfs_free_path(path);
6304	if (ret)
6305		__free_recorded_refs(&deleted_refs);
6306	return ret;
6307}
6308
6309static int changed_inode(struct send_ctx *sctx,
6310			 enum btrfs_compare_tree_result result)
6311{
6312	int ret = 0;
6313	struct btrfs_key *key = sctx->cmp_key;
6314	struct btrfs_inode_item *left_ii = NULL;
6315	struct btrfs_inode_item *right_ii = NULL;
6316	u64 left_gen = 0;
6317	u64 right_gen = 0;
6318
6319	sctx->cur_ino = key->objectid;
6320	sctx->cur_inode_new_gen = 0;
6321	sctx->cur_inode_last_extent = (u64)-1;
6322	sctx->cur_inode_next_write_offset = 0;
6323	sctx->ignore_cur_inode = false;
6324
6325	/*
6326	 * Set send_progress to current inode. This will tell all get_cur_xxx
6327	 * functions that the current inode's refs are not updated yet. Later,
6328	 * when process_recorded_refs is finished, it is set to cur_ino + 1.
6329	 */
6330	sctx->send_progress = sctx->cur_ino;
6331
6332	if (result == BTRFS_COMPARE_TREE_NEW ||
6333	    result == BTRFS_COMPARE_TREE_CHANGED) {
6334		left_ii = btrfs_item_ptr(sctx->left_path->nodes[0],
6335				sctx->left_path->slots[0],
6336				struct btrfs_inode_item);
6337		left_gen = btrfs_inode_generation(sctx->left_path->nodes[0],
6338				left_ii);
6339	} else {
6340		right_ii = btrfs_item_ptr(sctx->right_path->nodes[0],
6341				sctx->right_path->slots[0],
6342				struct btrfs_inode_item);
6343		right_gen = btrfs_inode_generation(sctx->right_path->nodes[0],
6344				right_ii);
6345	}
6346	if (result == BTRFS_COMPARE_TREE_CHANGED) {
6347		right_ii = btrfs_item_ptr(sctx->right_path->nodes[0],
6348				sctx->right_path->slots[0],
6349				struct btrfs_inode_item);
6350
6351		right_gen = btrfs_inode_generation(sctx->right_path->nodes[0],
6352				right_ii);
6353
6354		/*
6355		 * The cur_ino = root dir case is special here. We can't treat
6356		 * the inode as deleted+reused because it would generate a
6357		 * stream that tries to delete/mkdir the root dir.
6358		 */
6359		if (left_gen != right_gen &&
6360		    sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID)
6361			sctx->cur_inode_new_gen = 1;
6362	}
6363
6364	/*
6365	 * Normally we do not find inodes with a link count of zero (orphans)
6366	 * because the most common case is to create a snapshot and use it
6367	 * for a send operation. However other less common use cases involve
6368	 * using a subvolume and send it after turning it to RO mode just
6369	 * after deleting all hard links of a file while holding an open
6370	 * file descriptor against it or turning a RO snapshot into RW mode,
6371	 * keep an open file descriptor against a file, delete it and then
6372	 * turn the snapshot back to RO mode before using it for a send
6373	 * operation. So if we find such cases, ignore the inode and all its
6374	 * items completely if it's a new inode, or if it's a changed inode
6375	 * make sure all its previous paths (from the parent snapshot) are all
6376	 * unlinked and all other the inode items are ignored.
6377	 */
6378	if (result == BTRFS_COMPARE_TREE_NEW ||
6379	    result == BTRFS_COMPARE_TREE_CHANGED) {
6380		u32 nlinks;
6381
6382		nlinks = btrfs_inode_nlink(sctx->left_path->nodes[0], left_ii);
6383		if (nlinks == 0) {
6384			sctx->ignore_cur_inode = true;
6385			if (result == BTRFS_COMPARE_TREE_CHANGED)
6386				ret = btrfs_unlink_all_paths(sctx);
6387			goto out;
6388		}
6389	}
6390
6391	if (result == BTRFS_COMPARE_TREE_NEW) {
6392		sctx->cur_inode_gen = left_gen;
6393		sctx->cur_inode_new = 1;
6394		sctx->cur_inode_deleted = 0;
6395		sctx->cur_inode_size = btrfs_inode_size(
6396				sctx->left_path->nodes[0], left_ii);
6397		sctx->cur_inode_mode = btrfs_inode_mode(
6398				sctx->left_path->nodes[0], left_ii);
6399		sctx->cur_inode_rdev = btrfs_inode_rdev(
6400				sctx->left_path->nodes[0], left_ii);
6401		if (sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID)
6402			ret = send_create_inode_if_needed(sctx);
6403	} else if (result == BTRFS_COMPARE_TREE_DELETED) {
6404		sctx->cur_inode_gen = right_gen;
6405		sctx->cur_inode_new = 0;
6406		sctx->cur_inode_deleted = 1;
6407		sctx->cur_inode_size = btrfs_inode_size(
6408				sctx->right_path->nodes[0], right_ii);
6409		sctx->cur_inode_mode = btrfs_inode_mode(
6410				sctx->right_path->nodes[0], right_ii);
6411	} else if (result == BTRFS_COMPARE_TREE_CHANGED) {
6412		/*
6413		 * We need to do some special handling in case the inode was
6414		 * reported as changed with a changed generation number. This
6415		 * means that the original inode was deleted and new inode
6416		 * reused the same inum. So we have to treat the old inode as
6417		 * deleted and the new one as new.
6418		 */
6419		if (sctx->cur_inode_new_gen) {
6420			/*
6421			 * First, process the inode as if it was deleted.
6422			 */
6423			sctx->cur_inode_gen = right_gen;
6424			sctx->cur_inode_new = 0;
6425			sctx->cur_inode_deleted = 1;
6426			sctx->cur_inode_size = btrfs_inode_size(
6427					sctx->right_path->nodes[0], right_ii);
6428			sctx->cur_inode_mode = btrfs_inode_mode(
6429					sctx->right_path->nodes[0], right_ii);
6430			ret = process_all_refs(sctx,
6431					BTRFS_COMPARE_TREE_DELETED);
6432			if (ret < 0)
6433				goto out;
6434
6435			/*
6436			 * Now process the inode as if it was new.
6437			 */
6438			sctx->cur_inode_gen = left_gen;
6439			sctx->cur_inode_new = 1;
6440			sctx->cur_inode_deleted = 0;
6441			sctx->cur_inode_size = btrfs_inode_size(
6442					sctx->left_path->nodes[0], left_ii);
6443			sctx->cur_inode_mode = btrfs_inode_mode(
6444					sctx->left_path->nodes[0], left_ii);
6445			sctx->cur_inode_rdev = btrfs_inode_rdev(
6446					sctx->left_path->nodes[0], left_ii);
6447			ret = send_create_inode_if_needed(sctx);
6448			if (ret < 0)
6449				goto out;
6450
6451			ret = process_all_refs(sctx, BTRFS_COMPARE_TREE_NEW);
6452			if (ret < 0)
6453				goto out;
6454			/*
6455			 * Advance send_progress now as we did not get into
6456			 * process_recorded_refs_if_needed in the new_gen case.
6457			 */
6458			sctx->send_progress = sctx->cur_ino + 1;
6459
6460			/*
6461			 * Now process all extents and xattrs of the inode as if
6462			 * they were all new.
6463			 */
6464			ret = process_all_extents(sctx);
6465			if (ret < 0)
6466				goto out;
6467			ret = process_all_new_xattrs(sctx);
6468			if (ret < 0)
6469				goto out;
6470		} else {
6471			sctx->cur_inode_gen = left_gen;
6472			sctx->cur_inode_new = 0;
6473			sctx->cur_inode_new_gen = 0;
6474			sctx->cur_inode_deleted = 0;
6475			sctx->cur_inode_size = btrfs_inode_size(
6476					sctx->left_path->nodes[0], left_ii);
6477			sctx->cur_inode_mode = btrfs_inode_mode(
6478					sctx->left_path->nodes[0], left_ii);
6479		}
6480	}
6481
6482out:
6483	return ret;
6484}
6485
6486/*
6487 * We have to process new refs before deleted refs, but compare_trees gives us
6488 * the new and deleted refs mixed. To fix this, we record the new/deleted refs
6489 * first and later process them in process_recorded_refs.
6490 * For the cur_inode_new_gen case, we skip recording completely because
6491 * changed_inode did already initiate processing of refs. The reason for this is
6492 * that in this case, compare_tree actually compares the refs of 2 different
6493 * inodes. To fix this, process_all_refs is used in changed_inode to handle all
6494 * refs of the right tree as deleted and all refs of the left tree as new.
6495 */
6496static int changed_ref(struct send_ctx *sctx,
6497		       enum btrfs_compare_tree_result result)
6498{
6499	int ret = 0;
6500
6501	if (sctx->cur_ino != sctx->cmp_key->objectid) {
6502		inconsistent_snapshot_error(sctx, result, "reference");
6503		return -EIO;
6504	}
6505
6506	if (!sctx->cur_inode_new_gen &&
6507	    sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID) {
6508		if (result == BTRFS_COMPARE_TREE_NEW)
6509			ret = record_new_ref(sctx);
6510		else if (result == BTRFS_COMPARE_TREE_DELETED)
6511			ret = record_deleted_ref(sctx);
6512		else if (result == BTRFS_COMPARE_TREE_CHANGED)
6513			ret = record_changed_ref(sctx);
6514	}
6515
6516	return ret;
6517}
6518
6519/*
6520 * Process new/deleted/changed xattrs. We skip processing in the
6521 * cur_inode_new_gen case because changed_inode did already initiate processing
6522 * of xattrs. The reason is the same as in changed_ref
6523 */
6524static int changed_xattr(struct send_ctx *sctx,
6525			 enum btrfs_compare_tree_result result)
6526{
6527	int ret = 0;
6528
6529	if (sctx->cur_ino != sctx->cmp_key->objectid) {
6530		inconsistent_snapshot_error(sctx, result, "xattr");
6531		return -EIO;
6532	}
6533
6534	if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) {
6535		if (result == BTRFS_COMPARE_TREE_NEW)
6536			ret = process_new_xattr(sctx);
6537		else if (result == BTRFS_COMPARE_TREE_DELETED)
6538			ret = process_deleted_xattr(sctx);
6539		else if (result == BTRFS_COMPARE_TREE_CHANGED)
6540			ret = process_changed_xattr(sctx);
6541	}
6542
6543	return ret;
6544}
6545
6546/*
6547 * Process new/deleted/changed extents. We skip processing in the
6548 * cur_inode_new_gen case because changed_inode did already initiate processing
6549 * of extents. The reason is the same as in changed_ref
6550 */
6551static int changed_extent(struct send_ctx *sctx,
6552			  enum btrfs_compare_tree_result result)
6553{
6554	int ret = 0;
6555
6556	/*
6557	 * We have found an extent item that changed without the inode item
6558	 * having changed. This can happen either after relocation (where the
6559	 * disk_bytenr of an extent item is replaced at
6560	 * relocation.c:replace_file_extents()) or after deduplication into a
6561	 * file in both the parent and send snapshots (where an extent item can
6562	 * get modified or replaced with a new one). Note that deduplication
6563	 * updates the inode item, but it only changes the iversion (sequence
6564	 * field in the inode item) of the inode, so if a file is deduplicated
6565	 * the same amount of times in both the parent and send snapshots, its
6566	 * iversion becames the same in both snapshots, whence the inode item is
6567	 * the same on both snapshots.
6568	 */
6569	if (sctx->cur_ino != sctx->cmp_key->objectid)
6570		return 0;
6571
6572	if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) {
6573		if (result != BTRFS_COMPARE_TREE_DELETED)
6574			ret = process_extent(sctx, sctx->left_path,
6575					sctx->cmp_key);
6576	}
6577
6578	return ret;
6579}
6580
6581static int dir_changed(struct send_ctx *sctx, u64 dir)
6582{
6583	u64 orig_gen, new_gen;
6584	int ret;
6585
6586	ret = get_inode_info(sctx->send_root, dir, NULL, &new_gen, NULL, NULL,
6587			     NULL, NULL);
6588	if (ret)
6589		return ret;
6590
6591	ret = get_inode_info(sctx->parent_root, dir, NULL, &orig_gen, NULL,
6592			     NULL, NULL, NULL);
6593	if (ret)
6594		return ret;
6595
6596	return (orig_gen != new_gen) ? 1 : 0;
6597}
6598
6599static int compare_refs(struct send_ctx *sctx, struct btrfs_path *path,
6600			struct btrfs_key *key)
6601{
6602	struct btrfs_inode_extref *extref;
6603	struct extent_buffer *leaf;
6604	u64 dirid = 0, last_dirid = 0;
6605	unsigned long ptr;
6606	u32 item_size;
6607	u32 cur_offset = 0;
6608	int ref_name_len;
6609	int ret = 0;
6610
6611	/* Easy case, just check this one dirid */
6612	if (key->type == BTRFS_INODE_REF_KEY) {
6613		dirid = key->offset;
6614
6615		ret = dir_changed(sctx, dirid);
6616		goto out;
6617	}
6618
6619	leaf = path->nodes[0];
6620	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
6621	ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
6622	while (cur_offset < item_size) {
6623		extref = (struct btrfs_inode_extref *)(ptr +
6624						       cur_offset);
6625		dirid = btrfs_inode_extref_parent(leaf, extref);
6626		ref_name_len = btrfs_inode_extref_name_len(leaf, extref);
6627		cur_offset += ref_name_len + sizeof(*extref);
6628		if (dirid == last_dirid)
6629			continue;
6630		ret = dir_changed(sctx, dirid);
6631		if (ret)
6632			break;
6633		last_dirid = dirid;
6634	}
6635out:
6636	return ret;
6637}
6638
6639/*
6640 * Updates compare related fields in sctx and simply forwards to the actual
6641 * changed_xxx functions.
6642 */
6643static int changed_cb(struct btrfs_path *left_path,
6644		      struct btrfs_path *right_path,
6645		      struct btrfs_key *key,
6646		      enum btrfs_compare_tree_result result,
6647		      void *ctx)
6648{
6649	int ret = 0;
6650	struct send_ctx *sctx = ctx;
6651
6652	if (result == BTRFS_COMPARE_TREE_SAME) {
6653		if (key->type == BTRFS_INODE_REF_KEY ||
6654		    key->type == BTRFS_INODE_EXTREF_KEY) {
6655			ret = compare_refs(sctx, left_path, key);
6656			if (!ret)
6657				return 0;
6658			if (ret < 0)
6659				return ret;
6660		} else if (key->type == BTRFS_EXTENT_DATA_KEY) {
6661			return maybe_send_hole(sctx, left_path, key);
6662		} else {
6663			return 0;
6664		}
6665		result = BTRFS_COMPARE_TREE_CHANGED;
6666		ret = 0;
6667	}
6668
6669	sctx->left_path = left_path;
6670	sctx->right_path = right_path;
6671	sctx->cmp_key = key;
6672
6673	ret = finish_inode_if_needed(sctx, 0);
6674	if (ret < 0)
6675		goto out;
6676
6677	/* Ignore non-FS objects */
6678	if (key->objectid == BTRFS_FREE_INO_OBJECTID ||
6679	    key->objectid == BTRFS_FREE_SPACE_OBJECTID)
6680		goto out;
6681
6682	if (key->type == BTRFS_INODE_ITEM_KEY) {
6683		ret = changed_inode(sctx, result);
6684	} else if (!sctx->ignore_cur_inode) {
6685		if (key->type == BTRFS_INODE_REF_KEY ||
6686		    key->type == BTRFS_INODE_EXTREF_KEY)
6687			ret = changed_ref(sctx, result);
6688		else if (key->type == BTRFS_XATTR_ITEM_KEY)
6689			ret = changed_xattr(sctx, result);
6690		else if (key->type == BTRFS_EXTENT_DATA_KEY)
6691			ret = changed_extent(sctx, result);
6692	}
6693
6694out:
6695	return ret;
6696}
6697
6698static int full_send_tree(struct send_ctx *sctx)
6699{
6700	int ret;
6701	struct btrfs_root *send_root = sctx->send_root;
6702	struct btrfs_key key;
6703	struct btrfs_path *path;
6704	struct extent_buffer *eb;
6705	int slot;
6706
6707	path = alloc_path_for_send();
6708	if (!path)
6709		return -ENOMEM;
6710
6711	key.objectid = BTRFS_FIRST_FREE_OBJECTID;
6712	key.type = BTRFS_INODE_ITEM_KEY;
6713	key.offset = 0;
6714
6715	ret = btrfs_search_slot_for_read(send_root, &key, path, 1, 0);
6716	if (ret < 0)
6717		goto out;
6718	if (ret)
6719		goto out_finish;
6720
6721	while (1) {
6722		eb = path->nodes[0];
6723		slot = path->slots[0];
6724		btrfs_item_key_to_cpu(eb, &key, slot);
6725
6726		ret = changed_cb(path, NULL, &key,
6727				 BTRFS_COMPARE_TREE_NEW, sctx);
6728		if (ret < 0)
6729			goto out;
6730
6731		ret = btrfs_next_item(send_root, path);
6732		if (ret < 0)
6733			goto out;
6734		if (ret) {
6735			ret  = 0;
6736			break;
6737		}
6738	}
6739
6740out_finish:
6741	ret = finish_inode_if_needed(sctx, 1);
6742
6743out:
6744	btrfs_free_path(path);
6745	return ret;
6746}
6747
6748static int tree_move_down(struct btrfs_path *path, int *level)
6749{
6750	struct extent_buffer *eb;
6751
6752	BUG_ON(*level == 0);
6753	eb = btrfs_read_node_slot(path->nodes[*level], path->slots[*level]);
6754	if (IS_ERR(eb))
6755		return PTR_ERR(eb);
6756
6757	path->nodes[*level - 1] = eb;
6758	path->slots[*level - 1] = 0;
6759	(*level)--;
6760	return 0;
6761}
6762
6763static int tree_move_next_or_upnext(struct btrfs_path *path,
6764				    int *level, int root_level)
6765{
6766	int ret = 0;
6767	int nritems;
6768	nritems = btrfs_header_nritems(path->nodes[*level]);
6769
6770	path->slots[*level]++;
6771
6772	while (path->slots[*level] >= nritems) {
6773		if (*level == root_level)
6774			return -1;
6775
6776		/* move upnext */
6777		path->slots[*level] = 0;
6778		free_extent_buffer(path->nodes[*level]);
6779		path->nodes[*level] = NULL;
6780		(*level)++;
6781		path->slots[*level]++;
6782
6783		nritems = btrfs_header_nritems(path->nodes[*level]);
6784		ret = 1;
6785	}
6786	return ret;
6787}
6788
6789/*
6790 * Returns 1 if it had to move up and next. 0 is returned if it moved only next
6791 * or down.
6792 */
6793static int tree_advance(struct btrfs_path *path,
6794			int *level, int root_level,
6795			int allow_down,
6796			struct btrfs_key *key)
6797{
6798	int ret;
6799
6800	if (*level == 0 || !allow_down) {
6801		ret = tree_move_next_or_upnext(path, level, root_level);
6802	} else {
6803		ret = tree_move_down(path, level);
6804	}
6805	if (ret >= 0) {
6806		if (*level == 0)
6807			btrfs_item_key_to_cpu(path->nodes[*level], key,
6808					path->slots[*level]);
6809		else
6810			btrfs_node_key_to_cpu(path->nodes[*level], key,
6811					path->slots[*level]);
6812	}
6813	return ret;
6814}
6815
6816static int tree_compare_item(struct btrfs_path *left_path,
6817			     struct btrfs_path *right_path,
6818			     char *tmp_buf)
6819{
6820	int cmp;
6821	int len1, len2;
6822	unsigned long off1, off2;
6823
6824	len1 = btrfs_item_size_nr(left_path->nodes[0], left_path->slots[0]);
6825	len2 = btrfs_item_size_nr(right_path->nodes[0], right_path->slots[0]);
6826	if (len1 != len2)
6827		return 1;
6828
6829	off1 = btrfs_item_ptr_offset(left_path->nodes[0], left_path->slots[0]);
6830	off2 = btrfs_item_ptr_offset(right_path->nodes[0],
6831				right_path->slots[0]);
6832
6833	read_extent_buffer(left_path->nodes[0], tmp_buf, off1, len1);
6834
6835	cmp = memcmp_extent_buffer(right_path->nodes[0], tmp_buf, off2, len1);
6836	if (cmp)
6837		return 1;
6838	return 0;
6839}
6840
6841/*
6842 * This function compares two trees and calls the provided callback for
6843 * every changed/new/deleted item it finds.
6844 * If shared tree blocks are encountered, whole subtrees are skipped, making
6845 * the compare pretty fast on snapshotted subvolumes.
6846 *
6847 * This currently works on commit roots only. As commit roots are read only,
6848 * we don't do any locking. The commit roots are protected with transactions.
6849 * Transactions are ended and rejoined when a commit is tried in between.
6850 *
6851 * This function checks for modifications done to the trees while comparing.
6852 * If it detects a change, it aborts immediately.
6853 */
6854static int btrfs_compare_trees(struct btrfs_root *left_root,
6855			struct btrfs_root *right_root, void *ctx)
6856{
6857	struct btrfs_fs_info *fs_info = left_root->fs_info;
6858	int ret;
6859	int cmp;
6860	struct btrfs_path *left_path = NULL;
6861	struct btrfs_path *right_path = NULL;
6862	struct btrfs_key left_key;
6863	struct btrfs_key right_key;
6864	char *tmp_buf = NULL;
6865	int left_root_level;
6866	int right_root_level;
6867	int left_level;
6868	int right_level;
6869	int left_end_reached;
6870	int right_end_reached;
6871	int advance_left;
6872	int advance_right;
6873	u64 left_blockptr;
6874	u64 right_blockptr;
6875	u64 left_gen;
6876	u64 right_gen;
6877
6878	left_path = btrfs_alloc_path();
6879	if (!left_path) {
6880		ret = -ENOMEM;
6881		goto out;
6882	}
6883	right_path = btrfs_alloc_path();
6884	if (!right_path) {
6885		ret = -ENOMEM;
6886		goto out;
6887	}
6888
6889	tmp_buf = kvmalloc(fs_info->nodesize, GFP_KERNEL);
6890	if (!tmp_buf) {
6891		ret = -ENOMEM;
6892		goto out;
6893	}
6894
6895	left_path->search_commit_root = 1;
6896	left_path->skip_locking = 1;
6897	right_path->search_commit_root = 1;
6898	right_path->skip_locking = 1;
6899
6900	/*
6901	 * Strategy: Go to the first items of both trees. Then do
6902	 *
6903	 * If both trees are at level 0
6904	 *   Compare keys of current items
6905	 *     If left < right treat left item as new, advance left tree
6906	 *       and repeat
6907	 *     If left > right treat right item as deleted, advance right tree
6908	 *       and repeat
6909	 *     If left == right do deep compare of items, treat as changed if
6910	 *       needed, advance both trees and repeat
6911	 * If both trees are at the same level but not at level 0
6912	 *   Compare keys of current nodes/leafs
6913	 *     If left < right advance left tree and repeat
6914	 *     If left > right advance right tree and repeat
6915	 *     If left == right compare blockptrs of the next nodes/leafs
6916	 *       If they match advance both trees but stay at the same level
6917	 *         and repeat
6918	 *       If they don't match advance both trees while allowing to go
6919	 *         deeper and repeat
6920	 * If tree levels are different
6921	 *   Advance the tree that needs it and repeat
6922	 *
6923	 * Advancing a tree means:
6924	 *   If we are at level 0, try to go to the next slot. If that's not
6925	 *   possible, go one level up and repeat. Stop when we found a level
6926	 *   where we could go to the next slot. We may at this point be on a
6927	 *   node or a leaf.
6928	 *
6929	 *   If we are not at level 0 and not on shared tree blocks, go one
6930	 *   level deeper.
6931	 *
6932	 *   If we are not at level 0 and on shared tree blocks, go one slot to
6933	 *   the right if possible or go up and right.
6934	 */
6935
6936	down_read(&fs_info->commit_root_sem);
6937	left_level = btrfs_header_level(left_root->commit_root);
6938	left_root_level = left_level;
6939	left_path->nodes[left_level] =
6940			btrfs_clone_extent_buffer(left_root->commit_root);
6941	if (!left_path->nodes[left_level]) {
6942		up_read(&fs_info->commit_root_sem);
6943		ret = -ENOMEM;
6944		goto out;
6945	}
6946
6947	right_level = btrfs_header_level(right_root->commit_root);
6948	right_root_level = right_level;
6949	right_path->nodes[right_level] =
6950			btrfs_clone_extent_buffer(right_root->commit_root);
6951	if (!right_path->nodes[right_level]) {
6952		up_read(&fs_info->commit_root_sem);
6953		ret = -ENOMEM;
6954		goto out;
6955	}
6956	up_read(&fs_info->commit_root_sem);
6957
6958	if (left_level == 0)
6959		btrfs_item_key_to_cpu(left_path->nodes[left_level],
6960				&left_key, left_path->slots[left_level]);
6961	else
6962		btrfs_node_key_to_cpu(left_path->nodes[left_level],
6963				&left_key, left_path->slots[left_level]);
6964	if (right_level == 0)
6965		btrfs_item_key_to_cpu(right_path->nodes[right_level],
6966				&right_key, right_path->slots[right_level]);
6967	else
6968		btrfs_node_key_to_cpu(right_path->nodes[right_level],
6969				&right_key, right_path->slots[right_level]);
6970
6971	left_end_reached = right_end_reached = 0;
6972	advance_left = advance_right = 0;
6973
6974	while (1) {
6975		cond_resched();
6976		if (advance_left && !left_end_reached) {
6977			ret = tree_advance(left_path, &left_level,
6978					left_root_level,
6979					advance_left != ADVANCE_ONLY_NEXT,
6980					&left_key);
6981			if (ret == -1)
6982				left_end_reached = ADVANCE;
6983			else if (ret < 0)
6984				goto out;
6985			advance_left = 0;
6986		}
6987		if (advance_right && !right_end_reached) {
6988			ret = tree_advance(right_path, &right_level,
6989					right_root_level,
6990					advance_right != ADVANCE_ONLY_NEXT,
6991					&right_key);
6992			if (ret == -1)
6993				right_end_reached = ADVANCE;
6994			else if (ret < 0)
6995				goto out;
6996			advance_right = 0;
6997		}
6998
6999		if (left_end_reached && right_end_reached) {
7000			ret = 0;
7001			goto out;
7002		} else if (left_end_reached) {
7003			if (right_level == 0) {
7004				ret = changed_cb(left_path, right_path,
7005						&right_key,
7006						BTRFS_COMPARE_TREE_DELETED,
7007						ctx);
7008				if (ret < 0)
7009					goto out;
7010			}
7011			advance_right = ADVANCE;
7012			continue;
7013		} else if (right_end_reached) {
7014			if (left_level == 0) {
7015				ret = changed_cb(left_path, right_path,
7016						&left_key,
7017						BTRFS_COMPARE_TREE_NEW,
7018						ctx);
7019				if (ret < 0)
7020					goto out;
7021			}
7022			advance_left = ADVANCE;
7023			continue;
7024		}
7025
7026		if (left_level == 0 && right_level == 0) {
7027			cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
7028			if (cmp < 0) {
7029				ret = changed_cb(left_path, right_path,
7030						&left_key,
7031						BTRFS_COMPARE_TREE_NEW,
7032						ctx);
7033				if (ret < 0)
7034					goto out;
7035				advance_left = ADVANCE;
7036			} else if (cmp > 0) {
7037				ret = changed_cb(left_path, right_path,
7038						&right_key,
7039						BTRFS_COMPARE_TREE_DELETED,
7040						ctx);
7041				if (ret < 0)
7042					goto out;
7043				advance_right = ADVANCE;
7044			} else {
7045				enum btrfs_compare_tree_result result;
7046
7047				WARN_ON(!extent_buffer_uptodate(left_path->nodes[0]));
7048				ret = tree_compare_item(left_path, right_path,
7049							tmp_buf);
7050				if (ret)
7051					result = BTRFS_COMPARE_TREE_CHANGED;
7052				else
7053					result = BTRFS_COMPARE_TREE_SAME;
7054				ret = changed_cb(left_path, right_path,
7055						 &left_key, result, ctx);
7056				if (ret < 0)
7057					goto out;
7058				advance_left = ADVANCE;
7059				advance_right = ADVANCE;
7060			}
7061		} else if (left_level == right_level) {
7062			cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
7063			if (cmp < 0) {
7064				advance_left = ADVANCE;
7065			} else if (cmp > 0) {
7066				advance_right = ADVANCE;
7067			} else {
7068				left_blockptr = btrfs_node_blockptr(
7069						left_path->nodes[left_level],
7070						left_path->slots[left_level]);
7071				right_blockptr = btrfs_node_blockptr(
7072						right_path->nodes[right_level],
7073						right_path->slots[right_level]);
7074				left_gen = btrfs_node_ptr_generation(
7075						left_path->nodes[left_level],
7076						left_path->slots[left_level]);
7077				right_gen = btrfs_node_ptr_generation(
7078						right_path->nodes[right_level],
7079						right_path->slots[right_level]);
7080				if (left_blockptr == right_blockptr &&
7081				    left_gen == right_gen) {
7082					/*
7083					 * As we're on a shared block, don't
7084					 * allow to go deeper.
7085					 */
7086					advance_left = ADVANCE_ONLY_NEXT;
7087					advance_right = ADVANCE_ONLY_NEXT;
7088				} else {
7089					advance_left = ADVANCE;
7090					advance_right = ADVANCE;
7091				}
7092			}
7093		} else if (left_level < right_level) {
7094			advance_right = ADVANCE;
7095		} else {
7096			advance_left = ADVANCE;
7097		}
7098	}
7099
7100out:
7101	btrfs_free_path(left_path);
7102	btrfs_free_path(right_path);
7103	kvfree(tmp_buf);
7104	return ret;
7105}
7106
7107static int send_subvol(struct send_ctx *sctx)
7108{
7109	int ret;
7110
7111	if (!(sctx->flags & BTRFS_SEND_FLAG_OMIT_STREAM_HEADER)) {
7112		ret = send_header(sctx);
7113		if (ret < 0)
7114			goto out;
7115	}
7116
7117	ret = send_subvol_begin(sctx);
7118	if (ret < 0)
7119		goto out;
7120
7121	if (sctx->parent_root) {
7122		ret = btrfs_compare_trees(sctx->send_root, sctx->parent_root, sctx);
7123		if (ret < 0)
7124			goto out;
7125		ret = finish_inode_if_needed(sctx, 1);
7126		if (ret < 0)
7127			goto out;
7128	} else {
7129		ret = full_send_tree(sctx);
7130		if (ret < 0)
7131			goto out;
7132	}
7133
7134out:
7135	free_recorded_refs(sctx);
7136	return ret;
7137}
7138
7139/*
7140 * If orphan cleanup did remove any orphans from a root, it means the tree
7141 * was modified and therefore the commit root is not the same as the current
7142 * root anymore. This is a problem, because send uses the commit root and
7143 * therefore can see inode items that don't exist in the current root anymore,
7144 * and for example make calls to btrfs_iget, which will do tree lookups based
7145 * on the current root and not on the commit root. Those lookups will fail,
7146 * returning a -ESTALE error, and making send fail with that error. So make
7147 * sure a send does not see any orphans we have just removed, and that it will
7148 * see the same inodes regardless of whether a transaction commit happened
7149 * before it started (meaning that the commit root will be the same as the
7150 * current root) or not.
7151 */
7152static int ensure_commit_roots_uptodate(struct send_ctx *sctx)
7153{
7154	int i;
7155	struct btrfs_trans_handle *trans = NULL;
7156
7157again:
7158	if (sctx->parent_root &&
7159	    sctx->parent_root->node != sctx->parent_root->commit_root)
7160		goto commit_trans;
7161
7162	for (i = 0; i < sctx->clone_roots_cnt; i++)
7163		if (sctx->clone_roots[i].root->node !=
7164		    sctx->clone_roots[i].root->commit_root)
7165			goto commit_trans;
7166
7167	if (trans)
7168		return btrfs_end_transaction(trans);
7169
7170	return 0;
7171
7172commit_trans:
7173	/* Use any root, all fs roots will get their commit roots updated. */
7174	if (!trans) {
7175		trans = btrfs_join_transaction(sctx->send_root);
7176		if (IS_ERR(trans))
7177			return PTR_ERR(trans);
7178		goto again;
7179	}
7180
7181	return btrfs_commit_transaction(trans);
7182}
7183
7184/*
7185 * Make sure any existing dellaloc is flushed for any root used by a send
7186 * operation so that we do not miss any data and we do not race with writeback
7187 * finishing and changing a tree while send is using the tree. This could
7188 * happen if a subvolume is in RW mode, has delalloc, is turned to RO mode and
7189 * a send operation then uses the subvolume.
7190 * After flushing delalloc ensure_commit_roots_uptodate() must be called.
7191 */
7192static int flush_delalloc_roots(struct send_ctx *sctx)
7193{
7194	struct btrfs_root *root = sctx->parent_root;
7195	int ret;
7196	int i;
7197
7198	if (root) {
7199		ret = btrfs_start_delalloc_snapshot(root);
7200		if (ret)
7201			return ret;
7202		btrfs_wait_ordered_extents(root, U64_MAX, 0, U64_MAX);
7203	}
7204
7205	for (i = 0; i < sctx->clone_roots_cnt; i++) {
7206		root = sctx->clone_roots[i].root;
7207		ret = btrfs_start_delalloc_snapshot(root);
7208		if (ret)
7209			return ret;
7210		btrfs_wait_ordered_extents(root, U64_MAX, 0, U64_MAX);
7211	}
7212
7213	return 0;
7214}
7215
7216static void btrfs_root_dec_send_in_progress(struct btrfs_root* root)
7217{
7218	spin_lock(&root->root_item_lock);
7219	root->send_in_progress--;
7220	/*
7221	 * Not much left to do, we don't know why it's unbalanced and
7222	 * can't blindly reset it to 0.
7223	 */
7224	if (root->send_in_progress < 0)
7225		btrfs_err(root->fs_info,
7226			  "send_in_progress unbalanced %d root %llu",
7227			  root->send_in_progress, root->root_key.objectid);
7228	spin_unlock(&root->root_item_lock);
7229}
7230
7231static void dedupe_in_progress_warn(const struct btrfs_root *root)
7232{
7233	btrfs_warn_rl(root->fs_info,
7234"cannot use root %llu for send while deduplications on it are in progress (%d in progress)",
7235		      root->root_key.objectid, root->dedupe_in_progress);
7236}
7237
7238long btrfs_ioctl_send(struct file *mnt_file, struct btrfs_ioctl_send_args *arg)
7239{
7240	int ret = 0;
7241	struct btrfs_root *send_root = BTRFS_I(file_inode(mnt_file))->root;
7242	struct btrfs_fs_info *fs_info = send_root->fs_info;
7243	struct btrfs_root *clone_root;
7244	struct send_ctx *sctx = NULL;
7245	u32 i;
7246	u64 *clone_sources_tmp = NULL;
7247	int clone_sources_to_rollback = 0;
7248	size_t alloc_size;
7249	int sort_clone_roots = 0;
7250
7251	if (!capable(CAP_SYS_ADMIN))
7252		return -EPERM;
7253
7254	/*
7255	 * The subvolume must remain read-only during send, protect against
7256	 * making it RW. This also protects against deletion.
7257	 */
7258	spin_lock(&send_root->root_item_lock);
7259	if (btrfs_root_readonly(send_root) && send_root->dedupe_in_progress) {
7260		dedupe_in_progress_warn(send_root);
7261		spin_unlock(&send_root->root_item_lock);
7262		return -EAGAIN;
7263	}
7264	send_root->send_in_progress++;
7265	spin_unlock(&send_root->root_item_lock);
7266
7267	/*
7268	 * Userspace tools do the checks and warn the user if it's
7269	 * not RO.
7270	 */
7271	if (!btrfs_root_readonly(send_root)) {
7272		ret = -EPERM;
7273		goto out;
7274	}
7275
7276	/*
7277	 * Check that we don't overflow at later allocations, we request
7278	 * clone_sources_count + 1 items, and compare to unsigned long inside
7279	 * access_ok. Also set an upper limit for allocation size so this can't
7280	 * easily exhaust memory. Max number of clone sources is about 200K.
7281	 */
7282	if (arg->clone_sources_count > SZ_8M / sizeof(struct clone_root)) {
7283		ret = -EINVAL;
7284		goto out;
7285	}
7286
7287	if (arg->flags & ~BTRFS_SEND_FLAG_MASK) {
7288		ret = -EOPNOTSUPP;
7289		goto out;
7290	}
7291
7292	sctx = kzalloc(sizeof(struct send_ctx), GFP_KERNEL);
7293	if (!sctx) {
7294		ret = -ENOMEM;
7295		goto out;
7296	}
7297
7298	INIT_LIST_HEAD(&sctx->new_refs);
7299	INIT_LIST_HEAD(&sctx->deleted_refs);
7300	INIT_RADIX_TREE(&sctx->name_cache, GFP_KERNEL);
7301	INIT_LIST_HEAD(&sctx->name_cache_list);
7302
7303	sctx->flags = arg->flags;
7304
7305	sctx->send_filp = fget(arg->send_fd);
7306	if (!sctx->send_filp || !(sctx->send_filp->f_mode & FMODE_WRITE)) {
7307		ret = -EBADF;
7308		goto out;
7309	}
7310
7311	sctx->send_root = send_root;
7312	/*
7313	 * Unlikely but possible, if the subvolume is marked for deletion but
7314	 * is slow to remove the directory entry, send can still be started
7315	 */
7316	if (btrfs_root_dead(sctx->send_root)) {
7317		ret = -EPERM;
7318		goto out;
7319	}
7320
7321	sctx->clone_roots_cnt = arg->clone_sources_count;
7322
7323	sctx->send_max_size = BTRFS_SEND_BUF_SIZE;
7324	sctx->send_buf = kvmalloc(sctx->send_max_size, GFP_KERNEL);
7325	if (!sctx->send_buf) {
7326		ret = -ENOMEM;
7327		goto out;
7328	}
7329
7330	sctx->pending_dir_moves = RB_ROOT;
7331	sctx->waiting_dir_moves = RB_ROOT;
7332	sctx->orphan_dirs = RB_ROOT;
7333
7334	sctx->clone_roots = kvcalloc(sizeof(*sctx->clone_roots),
7335				     arg->clone_sources_count + 1,
7336				     GFP_KERNEL);
7337	if (!sctx->clone_roots) {
7338		ret = -ENOMEM;
7339		goto out;
7340	}
7341
7342	alloc_size = array_size(sizeof(*arg->clone_sources),
7343				arg->clone_sources_count);
7344
7345	if (arg->clone_sources_count) {
7346		clone_sources_tmp = kvmalloc(alloc_size, GFP_KERNEL);
7347		if (!clone_sources_tmp) {
7348			ret = -ENOMEM;
7349			goto out;
7350		}
7351
7352		ret = copy_from_user(clone_sources_tmp, arg->clone_sources,
7353				alloc_size);
7354		if (ret) {
7355			ret = -EFAULT;
7356			goto out;
7357		}
7358
7359		for (i = 0; i < arg->clone_sources_count; i++) {
7360			clone_root = btrfs_get_fs_root(fs_info,
7361						clone_sources_tmp[i], true);
7362			if (IS_ERR(clone_root)) {
7363				ret = PTR_ERR(clone_root);
7364				goto out;
7365			}
7366			spin_lock(&clone_root->root_item_lock);
7367			if (!btrfs_root_readonly(clone_root) ||
7368			    btrfs_root_dead(clone_root)) {
7369				spin_unlock(&clone_root->root_item_lock);
7370				btrfs_put_root(clone_root);
7371				ret = -EPERM;
7372				goto out;
7373			}
7374			if (clone_root->dedupe_in_progress) {
7375				dedupe_in_progress_warn(clone_root);
7376				spin_unlock(&clone_root->root_item_lock);
7377				btrfs_put_root(clone_root);
7378				ret = -EAGAIN;
7379				goto out;
7380			}
7381			clone_root->send_in_progress++;
7382			spin_unlock(&clone_root->root_item_lock);
7383
7384			sctx->clone_roots[i].root = clone_root;
7385			clone_sources_to_rollback = i + 1;
7386		}
7387		kvfree(clone_sources_tmp);
7388		clone_sources_tmp = NULL;
7389	}
7390
7391	if (arg->parent_root) {
7392		sctx->parent_root = btrfs_get_fs_root(fs_info, arg->parent_root,
7393						      true);
7394		if (IS_ERR(sctx->parent_root)) {
7395			ret = PTR_ERR(sctx->parent_root);
7396			goto out;
7397		}
7398
7399		spin_lock(&sctx->parent_root->root_item_lock);
7400		sctx->parent_root->send_in_progress++;
7401		if (!btrfs_root_readonly(sctx->parent_root) ||
7402				btrfs_root_dead(sctx->parent_root)) {
7403			spin_unlock(&sctx->parent_root->root_item_lock);
7404			ret = -EPERM;
7405			goto out;
7406		}
7407		if (sctx->parent_root->dedupe_in_progress) {
7408			dedupe_in_progress_warn(sctx->parent_root);
7409			spin_unlock(&sctx->parent_root->root_item_lock);
7410			ret = -EAGAIN;
7411			goto out;
7412		}
7413		spin_unlock(&sctx->parent_root->root_item_lock);
7414	}
7415
7416	/*
7417	 * Clones from send_root are allowed, but only if the clone source
7418	 * is behind the current send position. This is checked while searching
7419	 * for possible clone sources.
7420	 */
7421	sctx->clone_roots[sctx->clone_roots_cnt++].root =
7422		btrfs_grab_root(sctx->send_root);
7423
7424	/* We do a bsearch later */
7425	sort(sctx->clone_roots, sctx->clone_roots_cnt,
7426			sizeof(*sctx->clone_roots), __clone_root_cmp_sort,
7427			NULL);
7428	sort_clone_roots = 1;
7429
7430	ret = flush_delalloc_roots(sctx);
7431	if (ret)
7432		goto out;
7433
7434	ret = ensure_commit_roots_uptodate(sctx);
7435	if (ret)
7436		goto out;
7437
7438	mutex_lock(&fs_info->balance_mutex);
7439	if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
7440		mutex_unlock(&fs_info->balance_mutex);
7441		btrfs_warn_rl(fs_info,
7442		"cannot run send because a balance operation is in progress");
7443		ret = -EAGAIN;
7444		goto out;
7445	}
7446	fs_info->send_in_progress++;
7447	mutex_unlock(&fs_info->balance_mutex);
7448
7449	current->journal_info = BTRFS_SEND_TRANS_STUB;
7450	ret = send_subvol(sctx);
7451	current->journal_info = NULL;
7452	mutex_lock(&fs_info->balance_mutex);
7453	fs_info->send_in_progress--;
7454	mutex_unlock(&fs_info->balance_mutex);
7455	if (ret < 0)
7456		goto out;
7457
7458	if (!(sctx->flags & BTRFS_SEND_FLAG_OMIT_END_CMD)) {
7459		ret = begin_cmd(sctx, BTRFS_SEND_C_END);
7460		if (ret < 0)
7461			goto out;
7462		ret = send_cmd(sctx);
7463		if (ret < 0)
7464			goto out;
7465	}
7466
7467out:
7468	WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->pending_dir_moves));
7469	while (sctx && !RB_EMPTY_ROOT(&sctx->pending_dir_moves)) {
7470		struct rb_node *n;
7471		struct pending_dir_move *pm;
7472
7473		n = rb_first(&sctx->pending_dir_moves);
7474		pm = rb_entry(n, struct pending_dir_move, node);
7475		while (!list_empty(&pm->list)) {
7476			struct pending_dir_move *pm2;
7477
7478			pm2 = list_first_entry(&pm->list,
7479					       struct pending_dir_move, list);
7480			free_pending_move(sctx, pm2);
7481		}
7482		free_pending_move(sctx, pm);
7483	}
7484
7485	WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->waiting_dir_moves));
7486	while (sctx && !RB_EMPTY_ROOT(&sctx->waiting_dir_moves)) {
7487		struct rb_node *n;
7488		struct waiting_dir_move *dm;
7489
7490		n = rb_first(&sctx->waiting_dir_moves);
7491		dm = rb_entry(n, struct waiting_dir_move, node);
7492		rb_erase(&dm->node, &sctx->waiting_dir_moves);
7493		kfree(dm);
7494	}
7495
7496	WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->orphan_dirs));
7497	while (sctx && !RB_EMPTY_ROOT(&sctx->orphan_dirs)) {
7498		struct rb_node *n;
7499		struct orphan_dir_info *odi;
7500
7501		n = rb_first(&sctx->orphan_dirs);
7502		odi = rb_entry(n, struct orphan_dir_info, node);
7503		free_orphan_dir_info(sctx, odi);
7504	}
7505
7506	if (sort_clone_roots) {
7507		for (i = 0; i < sctx->clone_roots_cnt; i++) {
7508			btrfs_root_dec_send_in_progress(
7509					sctx->clone_roots[i].root);
7510			btrfs_put_root(sctx->clone_roots[i].root);
7511		}
7512	} else {
7513		for (i = 0; sctx && i < clone_sources_to_rollback; i++) {
7514			btrfs_root_dec_send_in_progress(
7515					sctx->clone_roots[i].root);
7516			btrfs_put_root(sctx->clone_roots[i].root);
7517		}
7518
7519		btrfs_root_dec_send_in_progress(send_root);
7520	}
7521	if (sctx && !IS_ERR_OR_NULL(sctx->parent_root)) {
7522		btrfs_root_dec_send_in_progress(sctx->parent_root);
7523		btrfs_put_root(sctx->parent_root);
7524	}
7525
7526	kvfree(clone_sources_tmp);
7527
7528	if (sctx) {
7529		if (sctx->send_filp)
7530			fput(sctx->send_filp);
7531
7532		kvfree(sctx->clone_roots);
7533		kvfree(sctx->send_buf);
7534
7535		name_cache_free(sctx);
7536
7537		kfree(sctx);
7538	}
7539
7540	return ret;
7541}
7542