1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2012 Alexander Block. All rights reserved.
4 */
5
6 #include <linux/bsearch.h>
7 #include <linux/fs.h>
8 #include <linux/file.h>
9 #include <linux/sort.h>
10 #include <linux/mount.h>
11 #include <linux/xattr.h>
12 #include <linux/posix_acl_xattr.h>
13 #include <linux/radix-tree.h>
14 #include <linux/vmalloc.h>
15 #include <linux/string.h>
16 #include <linux/compat.h>
17 #include <linux/crc32c.h>
18
19 #include "send.h"
20 #include "backref.h"
21 #include "locking.h"
22 #include "disk-io.h"
23 #include "btrfs_inode.h"
24 #include "transaction.h"
25 #include "compression.h"
26 #include "xattr.h"
27
28 /*
29 * Maximum number of references an extent can have in order for us to attempt to
30 * issue clone operations instead of write operations. This currently exists to
31 * avoid hitting limitations of the backreference walking code (taking a lot of
32 * time and using too much memory for extents with large number of references).
33 */
34 #define SEND_MAX_EXTENT_REFS 64
35
36 /*
37 * A fs_path is a helper to dynamically build path names with unknown size.
38 * It reallocates the internal buffer on demand.
39 * It allows fast adding of path elements on the right side (normal path) and
40 * fast adding to the left side (reversed path). A reversed path can also be
41 * unreversed if needed.
42 */
43 struct fs_path {
44 union {
45 struct {
46 char *start;
47 char *end;
48
49 char *buf;
50 unsigned short buf_len:15;
51 unsigned short reversed:1;
52 char inline_buf[];
53 };
54 /*
55 * Average path length does not exceed 200 bytes, we'll have
56 * better packing in the slab and higher chance to satisfy
57 * a allocation later during send.
58 */
59 char pad[256];
60 };
61 };
62 #define FS_PATH_INLINE_SIZE \
63 (sizeof(struct fs_path) - offsetof(struct fs_path, inline_buf))
64
65
66 /* reused for each extent */
67 struct clone_root {
68 struct btrfs_root *root;
69 u64 ino;
70 u64 offset;
71
72 u64 found_refs;
73 };
74
75 #define SEND_CTX_MAX_NAME_CACHE_SIZE 128
76 #define SEND_CTX_NAME_CACHE_CLEAN_SIZE (SEND_CTX_MAX_NAME_CACHE_SIZE * 2)
77
78 struct send_ctx {
79 struct file *send_filp;
80 loff_t send_off;
81 char *send_buf;
82 u32 send_size;
83 u32 send_max_size;
84 u64 total_send_size;
85 u64 cmd_send_size[BTRFS_SEND_C_MAX + 1];
86 u64 flags; /* 'flags' member of btrfs_ioctl_send_args is u64 */
87
88 struct btrfs_root *send_root;
89 struct btrfs_root *parent_root;
90 struct clone_root *clone_roots;
91 int clone_roots_cnt;
92
93 /* current state of the compare_tree call */
94 struct btrfs_path *left_path;
95 struct btrfs_path *right_path;
96 struct btrfs_key *cmp_key;
97
98 /*
99 * infos of the currently processed inode. In case of deleted inodes,
100 * these are the values from the deleted inode.
101 */
102 u64 cur_ino;
103 u64 cur_inode_gen;
104 int cur_inode_new;
105 int cur_inode_new_gen;
106 int cur_inode_deleted;
107 u64 cur_inode_size;
108 u64 cur_inode_mode;
109 u64 cur_inode_rdev;
110 u64 cur_inode_last_extent;
111 u64 cur_inode_next_write_offset;
112 bool ignore_cur_inode;
113
114 u64 send_progress;
115
116 struct list_head new_refs;
117 struct list_head deleted_refs;
118
119 struct radix_tree_root name_cache;
120 struct list_head name_cache_list;
121 int name_cache_size;
122
123 struct file_ra_state ra;
124
125 /*
126 * We process inodes by their increasing order, so if before an
127 * incremental send we reverse the parent/child relationship of
128 * directories such that a directory with a lower inode number was
129 * the parent of a directory with a higher inode number, and the one
130 * becoming the new parent got renamed too, we can't rename/move the
131 * directory with lower inode number when we finish processing it - we
132 * must process the directory with higher inode number first, then
133 * rename/move it and then rename/move the directory with lower inode
134 * number. Example follows.
135 *
136 * Tree state when the first send was performed:
137 *
138 * .
139 * |-- a (ino 257)
140 * |-- b (ino 258)
141 * |
142 * |
143 * |-- c (ino 259)
144 * | |-- d (ino 260)
145 * |
146 * |-- c2 (ino 261)
147 *
148 * Tree state when the second (incremental) send is performed:
149 *
150 * .
151 * |-- a (ino 257)
152 * |-- b (ino 258)
153 * |-- c2 (ino 261)
154 * |-- d2 (ino 260)
155 * |-- cc (ino 259)
156 *
157 * The sequence of steps that lead to the second state was:
158 *
159 * mv /a/b/c/d /a/b/c2/d2
160 * mv /a/b/c /a/b/c2/d2/cc
161 *
162 * "c" has lower inode number, but we can't move it (2nd mv operation)
163 * before we move "d", which has higher inode number.
164 *
165 * So we just memorize which move/rename operations must be performed
166 * later when their respective parent is processed and moved/renamed.
167 */
168
169 /* Indexed by parent directory inode number. */
170 struct rb_root pending_dir_moves;
171
172 /*
173 * Reverse index, indexed by the inode number of a directory that
174 * is waiting for the move/rename of its immediate parent before its
175 * own move/rename can be performed.
176 */
177 struct rb_root waiting_dir_moves;
178
179 /*
180 * A directory that is going to be rm'ed might have a child directory
181 * which is in the pending directory moves index above. In this case,
182 * the directory can only be removed after the move/rename of its child
183 * is performed. Example:
184 *
185 * Parent snapshot:
186 *
187 * . (ino 256)
188 * |-- a/ (ino 257)
189 * |-- b/ (ino 258)
190 * |-- c/ (ino 259)
191 * | |-- x/ (ino 260)
192 * |
193 * |-- y/ (ino 261)
194 *
195 * Send snapshot:
196 *
197 * . (ino 256)
198 * |-- a/ (ino 257)
199 * |-- b/ (ino 258)
200 * |-- YY/ (ino 261)
201 * |-- x/ (ino 260)
202 *
203 * Sequence of steps that lead to the send snapshot:
204 * rm -f /a/b/c/foo.txt
205 * mv /a/b/y /a/b/YY
206 * mv /a/b/c/x /a/b/YY
207 * rmdir /a/b/c
208 *
209 * When the child is processed, its move/rename is delayed until its
210 * parent is processed (as explained above), but all other operations
211 * like update utimes, chown, chgrp, etc, are performed and the paths
212 * that it uses for those operations must use the orphanized name of
213 * its parent (the directory we're going to rm later), so we need to
214 * memorize that name.
215 *
216 * Indexed by the inode number of the directory to be deleted.
217 */
218 struct rb_root orphan_dirs;
219 };
220
221 struct pending_dir_move {
222 struct rb_node node;
223 struct list_head list;
224 u64 parent_ino;
225 u64 ino;
226 u64 gen;
227 struct list_head update_refs;
228 };
229
230 struct waiting_dir_move {
231 struct rb_node node;
232 u64 ino;
233 /*
234 * There might be some directory that could not be removed because it
235 * was waiting for this directory inode to be moved first. Therefore
236 * after this directory is moved, we can try to rmdir the ino rmdir_ino.
237 */
238 u64 rmdir_ino;
239 u64 rmdir_gen;
240 bool orphanized;
241 };
242
243 struct orphan_dir_info {
244 struct rb_node node;
245 u64 ino;
246 u64 gen;
247 u64 last_dir_index_offset;
248 };
249
250 struct name_cache_entry {
251 struct list_head list;
252 /*
253 * radix_tree has only 32bit entries but we need to handle 64bit inums.
254 * We use the lower 32bit of the 64bit inum to store it in the tree. If
255 * more then one inum would fall into the same entry, we use radix_list
256 * to store the additional entries. radix_list is also used to store
257 * entries where two entries have the same inum but different
258 * generations.
259 */
260 struct list_head radix_list;
261 u64 ino;
262 u64 gen;
263 u64 parent_ino;
264 u64 parent_gen;
265 int ret;
266 int need_later_update;
267 int name_len;
268 char name[];
269 };
270
271 #define ADVANCE 1
272 #define ADVANCE_ONLY_NEXT -1
273
274 enum btrfs_compare_tree_result {
275 BTRFS_COMPARE_TREE_NEW,
276 BTRFS_COMPARE_TREE_DELETED,
277 BTRFS_COMPARE_TREE_CHANGED,
278 BTRFS_COMPARE_TREE_SAME,
279 };
280
281 __cold
inconsistent_snapshot_error(struct send_ctx *sctx, enum btrfs_compare_tree_result result, const char *what)282 static void inconsistent_snapshot_error(struct send_ctx *sctx,
283 enum btrfs_compare_tree_result result,
284 const char *what)
285 {
286 const char *result_string;
287
288 switch (result) {
289 case BTRFS_COMPARE_TREE_NEW:
290 result_string = "new";
291 break;
292 case BTRFS_COMPARE_TREE_DELETED:
293 result_string = "deleted";
294 break;
295 case BTRFS_COMPARE_TREE_CHANGED:
296 result_string = "updated";
297 break;
298 case BTRFS_COMPARE_TREE_SAME:
299 ASSERT(0);
300 result_string = "unchanged";
301 break;
302 default:
303 ASSERT(0);
304 result_string = "unexpected";
305 }
306
307 btrfs_err(sctx->send_root->fs_info,
308 "Send: inconsistent snapshot, found %s %s for inode %llu without updated inode item, send root is %llu, parent root is %llu",
309 result_string, what, sctx->cmp_key->objectid,
310 sctx->send_root->root_key.objectid,
311 (sctx->parent_root ?
312 sctx->parent_root->root_key.objectid : 0));
313 }
314
315 static int is_waiting_for_move(struct send_ctx *sctx, u64 ino);
316
317 static struct waiting_dir_move *
318 get_waiting_dir_move(struct send_ctx *sctx, u64 ino);
319
320 static int is_waiting_for_rm(struct send_ctx *sctx, u64 dir_ino, u64 gen);
321
need_send_hole(struct send_ctx *sctx)322 static int need_send_hole(struct send_ctx *sctx)
323 {
324 return (sctx->parent_root && !sctx->cur_inode_new &&
325 !sctx->cur_inode_new_gen && !sctx->cur_inode_deleted &&
326 S_ISREG(sctx->cur_inode_mode));
327 }
328
fs_path_reset(struct fs_path *p)329 static void fs_path_reset(struct fs_path *p)
330 {
331 if (p->reversed) {
332 p->start = p->buf + p->buf_len - 1;
333 p->end = p->start;
334 *p->start = 0;
335 } else {
336 p->start = p->buf;
337 p->end = p->start;
338 *p->start = 0;
339 }
340 }
341
fs_path_alloc(void)342 static struct fs_path *fs_path_alloc(void)
343 {
344 struct fs_path *p;
345
346 p = kmalloc(sizeof(*p), GFP_KERNEL);
347 if (!p)
348 return NULL;
349 p->reversed = 0;
350 p->buf = p->inline_buf;
351 p->buf_len = FS_PATH_INLINE_SIZE;
352 fs_path_reset(p);
353 return p;
354 }
355
fs_path_alloc_reversed(void)356 static struct fs_path *fs_path_alloc_reversed(void)
357 {
358 struct fs_path *p;
359
360 p = fs_path_alloc();
361 if (!p)
362 return NULL;
363 p->reversed = 1;
364 fs_path_reset(p);
365 return p;
366 }
367
fs_path_free(struct fs_path *p)368 static void fs_path_free(struct fs_path *p)
369 {
370 if (!p)
371 return;
372 if (p->buf != p->inline_buf)
373 kfree(p->buf);
374 kfree(p);
375 }
376
fs_path_len(struct fs_path *p)377 static int fs_path_len(struct fs_path *p)
378 {
379 return p->end - p->start;
380 }
381
fs_path_ensure_buf(struct fs_path *p, int len)382 static int fs_path_ensure_buf(struct fs_path *p, int len)
383 {
384 char *tmp_buf;
385 int path_len;
386 int old_buf_len;
387
388 len++;
389
390 if (p->buf_len >= len)
391 return 0;
392
393 if (len > PATH_MAX) {
394 WARN_ON(1);
395 return -ENOMEM;
396 }
397
398 path_len = p->end - p->start;
399 old_buf_len = p->buf_len;
400
401 /*
402 * First time the inline_buf does not suffice
403 */
404 if (p->buf == p->inline_buf) {
405 tmp_buf = kmalloc(len, GFP_KERNEL);
406 if (tmp_buf)
407 memcpy(tmp_buf, p->buf, old_buf_len);
408 } else {
409 tmp_buf = krealloc(p->buf, len, GFP_KERNEL);
410 }
411 if (!tmp_buf)
412 return -ENOMEM;
413 p->buf = tmp_buf;
414 /*
415 * The real size of the buffer is bigger, this will let the fast path
416 * happen most of the time
417 */
418 p->buf_len = ksize(p->buf);
419
420 if (p->reversed) {
421 tmp_buf = p->buf + old_buf_len - path_len - 1;
422 p->end = p->buf + p->buf_len - 1;
423 p->start = p->end - path_len;
424 memmove(p->start, tmp_buf, path_len + 1);
425 } else {
426 p->start = p->buf;
427 p->end = p->start + path_len;
428 }
429 return 0;
430 }
431
fs_path_prepare_for_add(struct fs_path *p, int name_len, char **prepared)432 static int fs_path_prepare_for_add(struct fs_path *p, int name_len,
433 char **prepared)
434 {
435 int ret;
436 int new_len;
437
438 new_len = p->end - p->start + name_len;
439 if (p->start != p->end)
440 new_len++;
441 ret = fs_path_ensure_buf(p, new_len);
442 if (ret < 0)
443 goto out;
444
445 if (p->reversed) {
446 if (p->start != p->end)
447 *--p->start = '/';
448 p->start -= name_len;
449 *prepared = p->start;
450 } else {
451 if (p->start != p->end)
452 *p->end++ = '/';
453 *prepared = p->end;
454 p->end += name_len;
455 *p->end = 0;
456 }
457
458 out:
459 return ret;
460 }
461
fs_path_add(struct fs_path *p, const char *name, int name_len)462 static int fs_path_add(struct fs_path *p, const char *name, int name_len)
463 {
464 int ret;
465 char *prepared;
466
467 ret = fs_path_prepare_for_add(p, name_len, &prepared);
468 if (ret < 0)
469 goto out;
470 memcpy(prepared, name, name_len);
471
472 out:
473 return ret;
474 }
475
fs_path_add_path(struct fs_path *p, struct fs_path *p2)476 static int fs_path_add_path(struct fs_path *p, struct fs_path *p2)
477 {
478 int ret;
479 char *prepared;
480
481 ret = fs_path_prepare_for_add(p, p2->end - p2->start, &prepared);
482 if (ret < 0)
483 goto out;
484 memcpy(prepared, p2->start, p2->end - p2->start);
485
486 out:
487 return ret;
488 }
489
fs_path_add_from_extent_buffer(struct fs_path *p, struct extent_buffer *eb, unsigned long off, int len)490 static int fs_path_add_from_extent_buffer(struct fs_path *p,
491 struct extent_buffer *eb,
492 unsigned long off, int len)
493 {
494 int ret;
495 char *prepared;
496
497 ret = fs_path_prepare_for_add(p, len, &prepared);
498 if (ret < 0)
499 goto out;
500
501 read_extent_buffer(eb, prepared, off, len);
502
503 out:
504 return ret;
505 }
506
fs_path_copy(struct fs_path *p, struct fs_path *from)507 static int fs_path_copy(struct fs_path *p, struct fs_path *from)
508 {
509 int ret;
510
511 p->reversed = from->reversed;
512 fs_path_reset(p);
513
514 ret = fs_path_add_path(p, from);
515
516 return ret;
517 }
518
519
fs_path_unreverse(struct fs_path *p)520 static void fs_path_unreverse(struct fs_path *p)
521 {
522 char *tmp;
523 int len;
524
525 if (!p->reversed)
526 return;
527
528 tmp = p->start;
529 len = p->end - p->start;
530 p->start = p->buf;
531 p->end = p->start + len;
532 memmove(p->start, tmp, len + 1);
533 p->reversed = 0;
534 }
535
alloc_path_for_send(void)536 static struct btrfs_path *alloc_path_for_send(void)
537 {
538 struct btrfs_path *path;
539
540 path = btrfs_alloc_path();
541 if (!path)
542 return NULL;
543 path->search_commit_root = 1;
544 path->skip_locking = 1;
545 path->need_commit_sem = 1;
546 return path;
547 }
548
write_buf(struct file *filp, const void *buf, u32 len, loff_t *off)549 static int write_buf(struct file *filp, const void *buf, u32 len, loff_t *off)
550 {
551 int ret;
552 u32 pos = 0;
553
554 while (pos < len) {
555 ret = kernel_write(filp, buf + pos, len - pos, off);
556 /* TODO handle that correctly */
557 /*if (ret == -ERESTARTSYS) {
558 continue;
559 }*/
560 if (ret < 0)
561 return ret;
562 if (ret == 0) {
563 return -EIO;
564 }
565 pos += ret;
566 }
567
568 return 0;
569 }
570
tlv_put(struct send_ctx *sctx, u16 attr, const void *data, int len)571 static int tlv_put(struct send_ctx *sctx, u16 attr, const void *data, int len)
572 {
573 struct btrfs_tlv_header *hdr;
574 int total_len = sizeof(*hdr) + len;
575 int left = sctx->send_max_size - sctx->send_size;
576
577 if (unlikely(left < total_len))
578 return -EOVERFLOW;
579
580 hdr = (struct btrfs_tlv_header *) (sctx->send_buf + sctx->send_size);
581 put_unaligned_le16(attr, &hdr->tlv_type);
582 put_unaligned_le16(len, &hdr->tlv_len);
583 memcpy(hdr + 1, data, len);
584 sctx->send_size += total_len;
585
586 return 0;
587 }
588
589 #define TLV_PUT_DEFINE_INT(bits) \
590 static int tlv_put_u##bits(struct send_ctx *sctx, \
591 u##bits attr, u##bits value) \
592 { \
593 __le##bits __tmp = cpu_to_le##bits(value); \
594 return tlv_put(sctx, attr, &__tmp, sizeof(__tmp)); \
595 }
596
597 TLV_PUT_DEFINE_INT(64)
598
tlv_put_string(struct send_ctx *sctx, u16 attr, const char *str, int len)599 static int tlv_put_string(struct send_ctx *sctx, u16 attr,
600 const char *str, int len)
601 {
602 if (len == -1)
603 len = strlen(str);
604 return tlv_put(sctx, attr, str, len);
605 }
606
tlv_put_uuid(struct send_ctx *sctx, u16 attr, const u8 *uuid)607 static int tlv_put_uuid(struct send_ctx *sctx, u16 attr,
608 const u8 *uuid)
609 {
610 return tlv_put(sctx, attr, uuid, BTRFS_UUID_SIZE);
611 }
612
tlv_put_btrfs_timespec(struct send_ctx *sctx, u16 attr, struct extent_buffer *eb, struct btrfs_timespec *ts)613 static int tlv_put_btrfs_timespec(struct send_ctx *sctx, u16 attr,
614 struct extent_buffer *eb,
615 struct btrfs_timespec *ts)
616 {
617 struct btrfs_timespec bts;
618 read_extent_buffer(eb, &bts, (unsigned long)ts, sizeof(bts));
619 return tlv_put(sctx, attr, &bts, sizeof(bts));
620 }
621
622
623 #define TLV_PUT(sctx, attrtype, data, attrlen) \
624 do { \
625 ret = tlv_put(sctx, attrtype, data, attrlen); \
626 if (ret < 0) \
627 goto tlv_put_failure; \
628 } while (0)
629
630 #define TLV_PUT_INT(sctx, attrtype, bits, value) \
631 do { \
632 ret = tlv_put_u##bits(sctx, attrtype, value); \
633 if (ret < 0) \
634 goto tlv_put_failure; \
635 } while (0)
636
637 #define TLV_PUT_U8(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 8, data)
638 #define TLV_PUT_U16(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 16, data)
639 #define TLV_PUT_U32(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 32, data)
640 #define TLV_PUT_U64(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 64, data)
641 #define TLV_PUT_STRING(sctx, attrtype, str, len) \
642 do { \
643 ret = tlv_put_string(sctx, attrtype, str, len); \
644 if (ret < 0) \
645 goto tlv_put_failure; \
646 } while (0)
647 #define TLV_PUT_PATH(sctx, attrtype, p) \
648 do { \
649 ret = tlv_put_string(sctx, attrtype, p->start, \
650 p->end - p->start); \
651 if (ret < 0) \
652 goto tlv_put_failure; \
653 } while(0)
654 #define TLV_PUT_UUID(sctx, attrtype, uuid) \
655 do { \
656 ret = tlv_put_uuid(sctx, attrtype, uuid); \
657 if (ret < 0) \
658 goto tlv_put_failure; \
659 } while (0)
660 #define TLV_PUT_BTRFS_TIMESPEC(sctx, attrtype, eb, ts) \
661 do { \
662 ret = tlv_put_btrfs_timespec(sctx, attrtype, eb, ts); \
663 if (ret < 0) \
664 goto tlv_put_failure; \
665 } while (0)
666
send_header(struct send_ctx *sctx)667 static int send_header(struct send_ctx *sctx)
668 {
669 struct btrfs_stream_header hdr;
670
671 strcpy(hdr.magic, BTRFS_SEND_STREAM_MAGIC);
672 hdr.version = cpu_to_le32(BTRFS_SEND_STREAM_VERSION);
673
674 return write_buf(sctx->send_filp, &hdr, sizeof(hdr),
675 &sctx->send_off);
676 }
677
678 /*
679 * For each command/item we want to send to userspace, we call this function.
680 */
begin_cmd(struct send_ctx *sctx, int cmd)681 static int begin_cmd(struct send_ctx *sctx, int cmd)
682 {
683 struct btrfs_cmd_header *hdr;
684
685 if (WARN_ON(!sctx->send_buf))
686 return -EINVAL;
687
688 BUG_ON(sctx->send_size);
689
690 sctx->send_size += sizeof(*hdr);
691 hdr = (struct btrfs_cmd_header *)sctx->send_buf;
692 put_unaligned_le16(cmd, &hdr->cmd);
693
694 return 0;
695 }
696
send_cmd(struct send_ctx *sctx)697 static int send_cmd(struct send_ctx *sctx)
698 {
699 int ret;
700 struct btrfs_cmd_header *hdr;
701 u32 crc;
702
703 hdr = (struct btrfs_cmd_header *)sctx->send_buf;
704 put_unaligned_le32(sctx->send_size - sizeof(*hdr), &hdr->len);
705 put_unaligned_le32(0, &hdr->crc);
706
707 crc = btrfs_crc32c(0, (unsigned char *)sctx->send_buf, sctx->send_size);
708 put_unaligned_le32(crc, &hdr->crc);
709
710 ret = write_buf(sctx->send_filp, sctx->send_buf, sctx->send_size,
711 &sctx->send_off);
712
713 sctx->total_send_size += sctx->send_size;
714 sctx->cmd_send_size[get_unaligned_le16(&hdr->cmd)] += sctx->send_size;
715 sctx->send_size = 0;
716
717 return ret;
718 }
719
720 /*
721 * Sends a move instruction to user space
722 */
send_rename(struct send_ctx *sctx, struct fs_path *from, struct fs_path *to)723 static int send_rename(struct send_ctx *sctx,
724 struct fs_path *from, struct fs_path *to)
725 {
726 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
727 int ret;
728
729 btrfs_debug(fs_info, "send_rename %s -> %s", from->start, to->start);
730
731 ret = begin_cmd(sctx, BTRFS_SEND_C_RENAME);
732 if (ret < 0)
733 goto out;
734
735 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, from);
736 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_TO, to);
737
738 ret = send_cmd(sctx);
739
740 tlv_put_failure:
741 out:
742 return ret;
743 }
744
745 /*
746 * Sends a link instruction to user space
747 */
send_link(struct send_ctx *sctx, struct fs_path *path, struct fs_path *lnk)748 static int send_link(struct send_ctx *sctx,
749 struct fs_path *path, struct fs_path *lnk)
750 {
751 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
752 int ret;
753
754 btrfs_debug(fs_info, "send_link %s -> %s", path->start, lnk->start);
755
756 ret = begin_cmd(sctx, BTRFS_SEND_C_LINK);
757 if (ret < 0)
758 goto out;
759
760 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
761 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_LINK, lnk);
762
763 ret = send_cmd(sctx);
764
765 tlv_put_failure:
766 out:
767 return ret;
768 }
769
770 /*
771 * Sends an unlink instruction to user space
772 */
send_unlink(struct send_ctx *sctx, struct fs_path *path)773 static int send_unlink(struct send_ctx *sctx, struct fs_path *path)
774 {
775 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
776 int ret;
777
778 btrfs_debug(fs_info, "send_unlink %s", path->start);
779
780 ret = begin_cmd(sctx, BTRFS_SEND_C_UNLINK);
781 if (ret < 0)
782 goto out;
783
784 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
785
786 ret = send_cmd(sctx);
787
788 tlv_put_failure:
789 out:
790 return ret;
791 }
792
793 /*
794 * Sends a rmdir instruction to user space
795 */
send_rmdir(struct send_ctx *sctx, struct fs_path *path)796 static int send_rmdir(struct send_ctx *sctx, struct fs_path *path)
797 {
798 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
799 int ret;
800
801 btrfs_debug(fs_info, "send_rmdir %s", path->start);
802
803 ret = begin_cmd(sctx, BTRFS_SEND_C_RMDIR);
804 if (ret < 0)
805 goto out;
806
807 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
808
809 ret = send_cmd(sctx);
810
811 tlv_put_failure:
812 out:
813 return ret;
814 }
815
816 /*
817 * Helper function to retrieve some fields from an inode item.
818 */
__get_inode_info(struct btrfs_root *root, struct btrfs_path *path, u64 ino, u64 *size, u64 *gen, u64 *mode, u64 *uid, u64 *gid, u64 *rdev)819 static int __get_inode_info(struct btrfs_root *root, struct btrfs_path *path,
820 u64 ino, u64 *size, u64 *gen, u64 *mode, u64 *uid,
821 u64 *gid, u64 *rdev)
822 {
823 int ret;
824 struct btrfs_inode_item *ii;
825 struct btrfs_key key;
826
827 key.objectid = ino;
828 key.type = BTRFS_INODE_ITEM_KEY;
829 key.offset = 0;
830 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
831 if (ret) {
832 if (ret > 0)
833 ret = -ENOENT;
834 return ret;
835 }
836
837 ii = btrfs_item_ptr(path->nodes[0], path->slots[0],
838 struct btrfs_inode_item);
839 if (size)
840 *size = btrfs_inode_size(path->nodes[0], ii);
841 if (gen)
842 *gen = btrfs_inode_generation(path->nodes[0], ii);
843 if (mode)
844 *mode = btrfs_inode_mode(path->nodes[0], ii);
845 if (uid)
846 *uid = btrfs_inode_uid(path->nodes[0], ii);
847 if (gid)
848 *gid = btrfs_inode_gid(path->nodes[0], ii);
849 if (rdev)
850 *rdev = btrfs_inode_rdev(path->nodes[0], ii);
851
852 return ret;
853 }
854
get_inode_info(struct btrfs_root *root, u64 ino, u64 *size, u64 *gen, u64 *mode, u64 *uid, u64 *gid, u64 *rdev)855 static int get_inode_info(struct btrfs_root *root,
856 u64 ino, u64 *size, u64 *gen,
857 u64 *mode, u64 *uid, u64 *gid,
858 u64 *rdev)
859 {
860 struct btrfs_path *path;
861 int ret;
862
863 path = alloc_path_for_send();
864 if (!path)
865 return -ENOMEM;
866 ret = __get_inode_info(root, path, ino, size, gen, mode, uid, gid,
867 rdev);
868 btrfs_free_path(path);
869 return ret;
870 }
871
872 typedef int (*iterate_inode_ref_t)(int num, u64 dir, int index,
873 struct fs_path *p,
874 void *ctx);
875
876 /*
877 * Helper function to iterate the entries in ONE btrfs_inode_ref or
878 * btrfs_inode_extref.
879 * The iterate callback may return a non zero value to stop iteration. This can
880 * be a negative value for error codes or 1 to simply stop it.
881 *
882 * path must point to the INODE_REF or INODE_EXTREF when called.
883 */
iterate_inode_ref(struct btrfs_root *root, struct btrfs_path *path, struct btrfs_key *found_key, int resolve, iterate_inode_ref_t iterate, void *ctx)884 static int iterate_inode_ref(struct btrfs_root *root, struct btrfs_path *path,
885 struct btrfs_key *found_key, int resolve,
886 iterate_inode_ref_t iterate, void *ctx)
887 {
888 struct extent_buffer *eb = path->nodes[0];
889 struct btrfs_item *item;
890 struct btrfs_inode_ref *iref;
891 struct btrfs_inode_extref *extref;
892 struct btrfs_path *tmp_path;
893 struct fs_path *p;
894 u32 cur = 0;
895 u32 total;
896 int slot = path->slots[0];
897 u32 name_len;
898 char *start;
899 int ret = 0;
900 int num = 0;
901 int index;
902 u64 dir;
903 unsigned long name_off;
904 unsigned long elem_size;
905 unsigned long ptr;
906
907 p = fs_path_alloc_reversed();
908 if (!p)
909 return -ENOMEM;
910
911 tmp_path = alloc_path_for_send();
912 if (!tmp_path) {
913 fs_path_free(p);
914 return -ENOMEM;
915 }
916
917
918 if (found_key->type == BTRFS_INODE_REF_KEY) {
919 ptr = (unsigned long)btrfs_item_ptr(eb, slot,
920 struct btrfs_inode_ref);
921 item = btrfs_item_nr(slot);
922 total = btrfs_item_size(eb, item);
923 elem_size = sizeof(*iref);
924 } else {
925 ptr = btrfs_item_ptr_offset(eb, slot);
926 total = btrfs_item_size_nr(eb, slot);
927 elem_size = sizeof(*extref);
928 }
929
930 while (cur < total) {
931 fs_path_reset(p);
932
933 if (found_key->type == BTRFS_INODE_REF_KEY) {
934 iref = (struct btrfs_inode_ref *)(ptr + cur);
935 name_len = btrfs_inode_ref_name_len(eb, iref);
936 name_off = (unsigned long)(iref + 1);
937 index = btrfs_inode_ref_index(eb, iref);
938 dir = found_key->offset;
939 } else {
940 extref = (struct btrfs_inode_extref *)(ptr + cur);
941 name_len = btrfs_inode_extref_name_len(eb, extref);
942 name_off = (unsigned long)&extref->name;
943 index = btrfs_inode_extref_index(eb, extref);
944 dir = btrfs_inode_extref_parent(eb, extref);
945 }
946
947 if (resolve) {
948 start = btrfs_ref_to_path(root, tmp_path, name_len,
949 name_off, eb, dir,
950 p->buf, p->buf_len);
951 if (IS_ERR(start)) {
952 ret = PTR_ERR(start);
953 goto out;
954 }
955 if (start < p->buf) {
956 /* overflow , try again with larger buffer */
957 ret = fs_path_ensure_buf(p,
958 p->buf_len + p->buf - start);
959 if (ret < 0)
960 goto out;
961 start = btrfs_ref_to_path(root, tmp_path,
962 name_len, name_off,
963 eb, dir,
964 p->buf, p->buf_len);
965 if (IS_ERR(start)) {
966 ret = PTR_ERR(start);
967 goto out;
968 }
969 BUG_ON(start < p->buf);
970 }
971 p->start = start;
972 } else {
973 ret = fs_path_add_from_extent_buffer(p, eb, name_off,
974 name_len);
975 if (ret < 0)
976 goto out;
977 }
978
979 cur += elem_size + name_len;
980 ret = iterate(num, dir, index, p, ctx);
981 if (ret)
982 goto out;
983 num++;
984 }
985
986 out:
987 btrfs_free_path(tmp_path);
988 fs_path_free(p);
989 return ret;
990 }
991
992 typedef int (*iterate_dir_item_t)(int num, struct btrfs_key *di_key,
993 const char *name, int name_len,
994 const char *data, int data_len,
995 u8 type, void *ctx);
996
997 /*
998 * Helper function to iterate the entries in ONE btrfs_dir_item.
999 * The iterate callback may return a non zero value to stop iteration. This can
1000 * be a negative value for error codes or 1 to simply stop it.
1001 *
1002 * path must point to the dir item when called.
1003 */
iterate_dir_item(struct btrfs_root *root, struct btrfs_path *path, iterate_dir_item_t iterate, void *ctx)1004 static int iterate_dir_item(struct btrfs_root *root, struct btrfs_path *path,
1005 iterate_dir_item_t iterate, void *ctx)
1006 {
1007 int ret = 0;
1008 struct extent_buffer *eb;
1009 struct btrfs_item *item;
1010 struct btrfs_dir_item *di;
1011 struct btrfs_key di_key;
1012 char *buf = NULL;
1013 int buf_len;
1014 u32 name_len;
1015 u32 data_len;
1016 u32 cur;
1017 u32 len;
1018 u32 total;
1019 int slot;
1020 int num;
1021 u8 type;
1022
1023 /*
1024 * Start with a small buffer (1 page). If later we end up needing more
1025 * space, which can happen for xattrs on a fs with a leaf size greater
1026 * then the page size, attempt to increase the buffer. Typically xattr
1027 * values are small.
1028 */
1029 buf_len = PATH_MAX;
1030 buf = kmalloc(buf_len, GFP_KERNEL);
1031 if (!buf) {
1032 ret = -ENOMEM;
1033 goto out;
1034 }
1035
1036 eb = path->nodes[0];
1037 slot = path->slots[0];
1038 item = btrfs_item_nr(slot);
1039 di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item);
1040 cur = 0;
1041 len = 0;
1042 total = btrfs_item_size(eb, item);
1043
1044 num = 0;
1045 while (cur < total) {
1046 name_len = btrfs_dir_name_len(eb, di);
1047 data_len = btrfs_dir_data_len(eb, di);
1048 type = btrfs_dir_type(eb, di);
1049 btrfs_dir_item_key_to_cpu(eb, di, &di_key);
1050
1051 if (type == BTRFS_FT_XATTR) {
1052 if (name_len > XATTR_NAME_MAX) {
1053 ret = -ENAMETOOLONG;
1054 goto out;
1055 }
1056 if (name_len + data_len >
1057 BTRFS_MAX_XATTR_SIZE(root->fs_info)) {
1058 ret = -E2BIG;
1059 goto out;
1060 }
1061 } else {
1062 /*
1063 * Path too long
1064 */
1065 if (name_len + data_len > PATH_MAX) {
1066 ret = -ENAMETOOLONG;
1067 goto out;
1068 }
1069 }
1070
1071 if (name_len + data_len > buf_len) {
1072 buf_len = name_len + data_len;
1073 if (is_vmalloc_addr(buf)) {
1074 vfree(buf);
1075 buf = NULL;
1076 } else {
1077 char *tmp = krealloc(buf, buf_len,
1078 GFP_KERNEL | __GFP_NOWARN);
1079
1080 if (!tmp)
1081 kfree(buf);
1082 buf = tmp;
1083 }
1084 if (!buf) {
1085 buf = kvmalloc(buf_len, GFP_KERNEL);
1086 if (!buf) {
1087 ret = -ENOMEM;
1088 goto out;
1089 }
1090 }
1091 }
1092
1093 read_extent_buffer(eb, buf, (unsigned long)(di + 1),
1094 name_len + data_len);
1095
1096 len = sizeof(*di) + name_len + data_len;
1097 di = (struct btrfs_dir_item *)((char *)di + len);
1098 cur += len;
1099
1100 ret = iterate(num, &di_key, buf, name_len, buf + name_len,
1101 data_len, type, ctx);
1102 if (ret < 0)
1103 goto out;
1104 if (ret) {
1105 ret = 0;
1106 goto out;
1107 }
1108
1109 num++;
1110 }
1111
1112 out:
1113 kvfree(buf);
1114 return ret;
1115 }
1116
__copy_first_ref(int num, u64 dir, int index, struct fs_path *p, void *ctx)1117 static int __copy_first_ref(int num, u64 dir, int index,
1118 struct fs_path *p, void *ctx)
1119 {
1120 int ret;
1121 struct fs_path *pt = ctx;
1122
1123 ret = fs_path_copy(pt, p);
1124 if (ret < 0)
1125 return ret;
1126
1127 /* we want the first only */
1128 return 1;
1129 }
1130
1131 /*
1132 * Retrieve the first path of an inode. If an inode has more then one
1133 * ref/hardlink, this is ignored.
1134 */
get_inode_path(struct btrfs_root *root, u64 ino, struct fs_path *path)1135 static int get_inode_path(struct btrfs_root *root,
1136 u64 ino, struct fs_path *path)
1137 {
1138 int ret;
1139 struct btrfs_key key, found_key;
1140 struct btrfs_path *p;
1141
1142 p = alloc_path_for_send();
1143 if (!p)
1144 return -ENOMEM;
1145
1146 fs_path_reset(path);
1147
1148 key.objectid = ino;
1149 key.type = BTRFS_INODE_REF_KEY;
1150 key.offset = 0;
1151
1152 ret = btrfs_search_slot_for_read(root, &key, p, 1, 0);
1153 if (ret < 0)
1154 goto out;
1155 if (ret) {
1156 ret = 1;
1157 goto out;
1158 }
1159 btrfs_item_key_to_cpu(p->nodes[0], &found_key, p->slots[0]);
1160 if (found_key.objectid != ino ||
1161 (found_key.type != BTRFS_INODE_REF_KEY &&
1162 found_key.type != BTRFS_INODE_EXTREF_KEY)) {
1163 ret = -ENOENT;
1164 goto out;
1165 }
1166
1167 ret = iterate_inode_ref(root, p, &found_key, 1,
1168 __copy_first_ref, path);
1169 if (ret < 0)
1170 goto out;
1171 ret = 0;
1172
1173 out:
1174 btrfs_free_path(p);
1175 return ret;
1176 }
1177
1178 struct backref_ctx {
1179 struct send_ctx *sctx;
1180
1181 /* number of total found references */
1182 u64 found;
1183
1184 /*
1185 * used for clones found in send_root. clones found behind cur_objectid
1186 * and cur_offset are not considered as allowed clones.
1187 */
1188 u64 cur_objectid;
1189 u64 cur_offset;
1190
1191 /* may be truncated in case it's the last extent in a file */
1192 u64 extent_len;
1193
1194 /* data offset in the file extent item */
1195 u64 data_offset;
1196
1197 /* Just to check for bugs in backref resolving */
1198 int found_itself;
1199 };
1200
__clone_root_cmp_bsearch(const void *key, const void *elt)1201 static int __clone_root_cmp_bsearch(const void *key, const void *elt)
1202 {
1203 u64 root = (u64)(uintptr_t)key;
1204 struct clone_root *cr = (struct clone_root *)elt;
1205
1206 if (root < cr->root->root_key.objectid)
1207 return -1;
1208 if (root > cr->root->root_key.objectid)
1209 return 1;
1210 return 0;
1211 }
1212
__clone_root_cmp_sort(const void *e1, const void *e2)1213 static int __clone_root_cmp_sort(const void *e1, const void *e2)
1214 {
1215 struct clone_root *cr1 = (struct clone_root *)e1;
1216 struct clone_root *cr2 = (struct clone_root *)e2;
1217
1218 if (cr1->root->root_key.objectid < cr2->root->root_key.objectid)
1219 return -1;
1220 if (cr1->root->root_key.objectid > cr2->root->root_key.objectid)
1221 return 1;
1222 return 0;
1223 }
1224
1225 /*
1226 * Called for every backref that is found for the current extent.
1227 * Results are collected in sctx->clone_roots->ino/offset/found_refs
1228 */
__iterate_backrefs(u64 ino, u64 offset, u64 root, void *ctx_)1229 static int __iterate_backrefs(u64 ino, u64 offset, u64 root, void *ctx_)
1230 {
1231 struct backref_ctx *bctx = ctx_;
1232 struct clone_root *found;
1233
1234 /* First check if the root is in the list of accepted clone sources */
1235 found = bsearch((void *)(uintptr_t)root, bctx->sctx->clone_roots,
1236 bctx->sctx->clone_roots_cnt,
1237 sizeof(struct clone_root),
1238 __clone_root_cmp_bsearch);
1239 if (!found)
1240 return 0;
1241
1242 if (found->root == bctx->sctx->send_root &&
1243 ino == bctx->cur_objectid &&
1244 offset == bctx->cur_offset) {
1245 bctx->found_itself = 1;
1246 }
1247
1248 /*
1249 * Make sure we don't consider clones from send_root that are
1250 * behind the current inode/offset.
1251 */
1252 if (found->root == bctx->sctx->send_root) {
1253 /*
1254 * If the source inode was not yet processed we can't issue a
1255 * clone operation, as the source extent does not exist yet at
1256 * the destination of the stream.
1257 */
1258 if (ino > bctx->cur_objectid)
1259 return 0;
1260 /*
1261 * We clone from the inode currently being sent as long as the
1262 * source extent is already processed, otherwise we could try
1263 * to clone from an extent that does not exist yet at the
1264 * destination of the stream.
1265 */
1266 if (ino == bctx->cur_objectid &&
1267 offset + bctx->extent_len >
1268 bctx->sctx->cur_inode_next_write_offset)
1269 return 0;
1270 }
1271
1272 bctx->found++;
1273 found->found_refs++;
1274 if (ino < found->ino) {
1275 found->ino = ino;
1276 found->offset = offset;
1277 } else if (found->ino == ino) {
1278 /*
1279 * same extent found more then once in the same file.
1280 */
1281 if (found->offset > offset + bctx->extent_len)
1282 found->offset = offset;
1283 }
1284
1285 return 0;
1286 }
1287
1288 /*
1289 * Given an inode, offset and extent item, it finds a good clone for a clone
1290 * instruction. Returns -ENOENT when none could be found. The function makes
1291 * sure that the returned clone is usable at the point where sending is at the
1292 * moment. This means, that no clones are accepted which lie behind the current
1293 * inode+offset.
1294 *
1295 * path must point to the extent item when called.
1296 */
find_extent_clone(struct send_ctx *sctx, struct btrfs_path *path, u64 ino, u64 data_offset, u64 ino_size, struct clone_root **found)1297 static int find_extent_clone(struct send_ctx *sctx,
1298 struct btrfs_path *path,
1299 u64 ino, u64 data_offset,
1300 u64 ino_size,
1301 struct clone_root **found)
1302 {
1303 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
1304 int ret;
1305 int extent_type;
1306 u64 logical;
1307 u64 disk_byte;
1308 u64 num_bytes;
1309 u64 extent_item_pos;
1310 u64 flags = 0;
1311 struct btrfs_file_extent_item *fi;
1312 struct extent_buffer *eb = path->nodes[0];
1313 struct backref_ctx *backref_ctx = NULL;
1314 struct clone_root *cur_clone_root;
1315 struct btrfs_key found_key;
1316 struct btrfs_path *tmp_path;
1317 struct btrfs_extent_item *ei;
1318 int compressed;
1319 u32 i;
1320
1321 tmp_path = alloc_path_for_send();
1322 if (!tmp_path)
1323 return -ENOMEM;
1324
1325 /* We only use this path under the commit sem */
1326 tmp_path->need_commit_sem = 0;
1327
1328 backref_ctx = kmalloc(sizeof(*backref_ctx), GFP_KERNEL);
1329 if (!backref_ctx) {
1330 ret = -ENOMEM;
1331 goto out;
1332 }
1333
1334 if (data_offset >= ino_size) {
1335 /*
1336 * There may be extents that lie behind the file's size.
1337 * I at least had this in combination with snapshotting while
1338 * writing large files.
1339 */
1340 ret = 0;
1341 goto out;
1342 }
1343
1344 fi = btrfs_item_ptr(eb, path->slots[0],
1345 struct btrfs_file_extent_item);
1346 extent_type = btrfs_file_extent_type(eb, fi);
1347 if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1348 ret = -ENOENT;
1349 goto out;
1350 }
1351 compressed = btrfs_file_extent_compression(eb, fi);
1352
1353 num_bytes = btrfs_file_extent_num_bytes(eb, fi);
1354 disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
1355 if (disk_byte == 0) {
1356 ret = -ENOENT;
1357 goto out;
1358 }
1359 logical = disk_byte + btrfs_file_extent_offset(eb, fi);
1360
1361 down_read(&fs_info->commit_root_sem);
1362 ret = extent_from_logical(fs_info, disk_byte, tmp_path,
1363 &found_key, &flags);
1364 up_read(&fs_info->commit_root_sem);
1365
1366 if (ret < 0)
1367 goto out;
1368 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
1369 ret = -EIO;
1370 goto out;
1371 }
1372
1373 ei = btrfs_item_ptr(tmp_path->nodes[0], tmp_path->slots[0],
1374 struct btrfs_extent_item);
1375 /*
1376 * Backreference walking (iterate_extent_inodes() below) is currently
1377 * too expensive when an extent has a large number of references, both
1378 * in time spent and used memory. So for now just fallback to write
1379 * operations instead of clone operations when an extent has more than
1380 * a certain amount of references.
1381 */
1382 if (btrfs_extent_refs(tmp_path->nodes[0], ei) > SEND_MAX_EXTENT_REFS) {
1383 ret = -ENOENT;
1384 goto out;
1385 }
1386 btrfs_release_path(tmp_path);
1387
1388 /*
1389 * Setup the clone roots.
1390 */
1391 for (i = 0; i < sctx->clone_roots_cnt; i++) {
1392 cur_clone_root = sctx->clone_roots + i;
1393 cur_clone_root->ino = (u64)-1;
1394 cur_clone_root->offset = 0;
1395 cur_clone_root->found_refs = 0;
1396 }
1397
1398 backref_ctx->sctx = sctx;
1399 backref_ctx->found = 0;
1400 backref_ctx->cur_objectid = ino;
1401 backref_ctx->cur_offset = data_offset;
1402 backref_ctx->found_itself = 0;
1403 backref_ctx->extent_len = num_bytes;
1404 /*
1405 * For non-compressed extents iterate_extent_inodes() gives us extent
1406 * offsets that already take into account the data offset, but not for
1407 * compressed extents, since the offset is logical and not relative to
1408 * the physical extent locations. We must take this into account to
1409 * avoid sending clone offsets that go beyond the source file's size,
1410 * which would result in the clone ioctl failing with -EINVAL on the
1411 * receiving end.
1412 */
1413 if (compressed == BTRFS_COMPRESS_NONE)
1414 backref_ctx->data_offset = 0;
1415 else
1416 backref_ctx->data_offset = btrfs_file_extent_offset(eb, fi);
1417
1418 /*
1419 * The last extent of a file may be too large due to page alignment.
1420 * We need to adjust extent_len in this case so that the checks in
1421 * __iterate_backrefs work.
1422 */
1423 if (data_offset + num_bytes >= ino_size)
1424 backref_ctx->extent_len = ino_size - data_offset;
1425
1426 /*
1427 * Now collect all backrefs.
1428 */
1429 if (compressed == BTRFS_COMPRESS_NONE)
1430 extent_item_pos = logical - found_key.objectid;
1431 else
1432 extent_item_pos = 0;
1433 ret = iterate_extent_inodes(fs_info, found_key.objectid,
1434 extent_item_pos, 1, __iterate_backrefs,
1435 backref_ctx, false);
1436
1437 if (ret < 0)
1438 goto out;
1439
1440 if (!backref_ctx->found_itself) {
1441 /* found a bug in backref code? */
1442 ret = -EIO;
1443 btrfs_err(fs_info,
1444 "did not find backref in send_root. inode=%llu, offset=%llu, disk_byte=%llu found extent=%llu",
1445 ino, data_offset, disk_byte, found_key.objectid);
1446 goto out;
1447 }
1448
1449 btrfs_debug(fs_info,
1450 "find_extent_clone: data_offset=%llu, ino=%llu, num_bytes=%llu, logical=%llu",
1451 data_offset, ino, num_bytes, logical);
1452
1453 if (!backref_ctx->found)
1454 btrfs_debug(fs_info, "no clones found");
1455
1456 cur_clone_root = NULL;
1457 for (i = 0; i < sctx->clone_roots_cnt; i++) {
1458 if (sctx->clone_roots[i].found_refs) {
1459 if (!cur_clone_root)
1460 cur_clone_root = sctx->clone_roots + i;
1461 else if (sctx->clone_roots[i].root == sctx->send_root)
1462 /* prefer clones from send_root over others */
1463 cur_clone_root = sctx->clone_roots + i;
1464 }
1465
1466 }
1467
1468 if (cur_clone_root) {
1469 *found = cur_clone_root;
1470 ret = 0;
1471 } else {
1472 ret = -ENOENT;
1473 }
1474
1475 out:
1476 btrfs_free_path(tmp_path);
1477 kfree(backref_ctx);
1478 return ret;
1479 }
1480
read_symlink(struct btrfs_root *root, u64 ino, struct fs_path *dest)1481 static int read_symlink(struct btrfs_root *root,
1482 u64 ino,
1483 struct fs_path *dest)
1484 {
1485 int ret;
1486 struct btrfs_path *path;
1487 struct btrfs_key key;
1488 struct btrfs_file_extent_item *ei;
1489 u8 type;
1490 u8 compression;
1491 unsigned long off;
1492 int len;
1493
1494 path = alloc_path_for_send();
1495 if (!path)
1496 return -ENOMEM;
1497
1498 key.objectid = ino;
1499 key.type = BTRFS_EXTENT_DATA_KEY;
1500 key.offset = 0;
1501 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1502 if (ret < 0)
1503 goto out;
1504 if (ret) {
1505 /*
1506 * An empty symlink inode. Can happen in rare error paths when
1507 * creating a symlink (transaction committed before the inode
1508 * eviction handler removed the symlink inode items and a crash
1509 * happened in between or the subvol was snapshoted in between).
1510 * Print an informative message to dmesg/syslog so that the user
1511 * can delete the symlink.
1512 */
1513 btrfs_err(root->fs_info,
1514 "Found empty symlink inode %llu at root %llu",
1515 ino, root->root_key.objectid);
1516 ret = -EIO;
1517 goto out;
1518 }
1519
1520 ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
1521 struct btrfs_file_extent_item);
1522 type = btrfs_file_extent_type(path->nodes[0], ei);
1523 compression = btrfs_file_extent_compression(path->nodes[0], ei);
1524 BUG_ON(type != BTRFS_FILE_EXTENT_INLINE);
1525 BUG_ON(compression);
1526
1527 off = btrfs_file_extent_inline_start(ei);
1528 len = btrfs_file_extent_ram_bytes(path->nodes[0], ei);
1529
1530 ret = fs_path_add_from_extent_buffer(dest, path->nodes[0], off, len);
1531
1532 out:
1533 btrfs_free_path(path);
1534 return ret;
1535 }
1536
1537 /*
1538 * Helper function to generate a file name that is unique in the root of
1539 * send_root and parent_root. This is used to generate names for orphan inodes.
1540 */
gen_unique_name(struct send_ctx *sctx, u64 ino, u64 gen, struct fs_path *dest)1541 static int gen_unique_name(struct send_ctx *sctx,
1542 u64 ino, u64 gen,
1543 struct fs_path *dest)
1544 {
1545 int ret = 0;
1546 struct btrfs_path *path;
1547 struct btrfs_dir_item *di;
1548 char tmp[64];
1549 int len;
1550 u64 idx = 0;
1551
1552 path = alloc_path_for_send();
1553 if (!path)
1554 return -ENOMEM;
1555
1556 while (1) {
1557 len = snprintf(tmp, sizeof(tmp), "o%llu-%llu-%llu",
1558 ino, gen, idx);
1559 ASSERT(len < sizeof(tmp));
1560
1561 di = btrfs_lookup_dir_item(NULL, sctx->send_root,
1562 path, BTRFS_FIRST_FREE_OBJECTID,
1563 tmp, strlen(tmp), 0);
1564 btrfs_release_path(path);
1565 if (IS_ERR(di)) {
1566 ret = PTR_ERR(di);
1567 goto out;
1568 }
1569 if (di) {
1570 /* not unique, try again */
1571 idx++;
1572 continue;
1573 }
1574
1575 if (!sctx->parent_root) {
1576 /* unique */
1577 ret = 0;
1578 break;
1579 }
1580
1581 di = btrfs_lookup_dir_item(NULL, sctx->parent_root,
1582 path, BTRFS_FIRST_FREE_OBJECTID,
1583 tmp, strlen(tmp), 0);
1584 btrfs_release_path(path);
1585 if (IS_ERR(di)) {
1586 ret = PTR_ERR(di);
1587 goto out;
1588 }
1589 if (di) {
1590 /* not unique, try again */
1591 idx++;
1592 continue;
1593 }
1594 /* unique */
1595 break;
1596 }
1597
1598 ret = fs_path_add(dest, tmp, strlen(tmp));
1599
1600 out:
1601 btrfs_free_path(path);
1602 return ret;
1603 }
1604
1605 enum inode_state {
1606 inode_state_no_change,
1607 inode_state_will_create,
1608 inode_state_did_create,
1609 inode_state_will_delete,
1610 inode_state_did_delete,
1611 };
1612
get_cur_inode_state(struct send_ctx *sctx, u64 ino, u64 gen)1613 static int get_cur_inode_state(struct send_ctx *sctx, u64 ino, u64 gen)
1614 {
1615 int ret;
1616 int left_ret;
1617 int right_ret;
1618 u64 left_gen;
1619 u64 right_gen;
1620
1621 ret = get_inode_info(sctx->send_root, ino, NULL, &left_gen, NULL, NULL,
1622 NULL, NULL);
1623 if (ret < 0 && ret != -ENOENT)
1624 goto out;
1625 left_ret = ret;
1626
1627 if (!sctx->parent_root) {
1628 right_ret = -ENOENT;
1629 } else {
1630 ret = get_inode_info(sctx->parent_root, ino, NULL, &right_gen,
1631 NULL, NULL, NULL, NULL);
1632 if (ret < 0 && ret != -ENOENT)
1633 goto out;
1634 right_ret = ret;
1635 }
1636
1637 if (!left_ret && !right_ret) {
1638 if (left_gen == gen && right_gen == gen) {
1639 ret = inode_state_no_change;
1640 } else if (left_gen == gen) {
1641 if (ino < sctx->send_progress)
1642 ret = inode_state_did_create;
1643 else
1644 ret = inode_state_will_create;
1645 } else if (right_gen == gen) {
1646 if (ino < sctx->send_progress)
1647 ret = inode_state_did_delete;
1648 else
1649 ret = inode_state_will_delete;
1650 } else {
1651 ret = -ENOENT;
1652 }
1653 } else if (!left_ret) {
1654 if (left_gen == gen) {
1655 if (ino < sctx->send_progress)
1656 ret = inode_state_did_create;
1657 else
1658 ret = inode_state_will_create;
1659 } else {
1660 ret = -ENOENT;
1661 }
1662 } else if (!right_ret) {
1663 if (right_gen == gen) {
1664 if (ino < sctx->send_progress)
1665 ret = inode_state_did_delete;
1666 else
1667 ret = inode_state_will_delete;
1668 } else {
1669 ret = -ENOENT;
1670 }
1671 } else {
1672 ret = -ENOENT;
1673 }
1674
1675 out:
1676 return ret;
1677 }
1678
is_inode_existent(struct send_ctx *sctx, u64 ino, u64 gen)1679 static int is_inode_existent(struct send_ctx *sctx, u64 ino, u64 gen)
1680 {
1681 int ret;
1682
1683 if (ino == BTRFS_FIRST_FREE_OBJECTID)
1684 return 1;
1685
1686 ret = get_cur_inode_state(sctx, ino, gen);
1687 if (ret < 0)
1688 goto out;
1689
1690 if (ret == inode_state_no_change ||
1691 ret == inode_state_did_create ||
1692 ret == inode_state_will_delete)
1693 ret = 1;
1694 else
1695 ret = 0;
1696
1697 out:
1698 return ret;
1699 }
1700
1701 /*
1702 * Helper function to lookup a dir item in a dir.
1703 */
lookup_dir_item_inode(struct btrfs_root *root, u64 dir, const char *name, int name_len, u64 *found_inode, u8 *found_type)1704 static int lookup_dir_item_inode(struct btrfs_root *root,
1705 u64 dir, const char *name, int name_len,
1706 u64 *found_inode,
1707 u8 *found_type)
1708 {
1709 int ret = 0;
1710 struct btrfs_dir_item *di;
1711 struct btrfs_key key;
1712 struct btrfs_path *path;
1713
1714 path = alloc_path_for_send();
1715 if (!path)
1716 return -ENOMEM;
1717
1718 di = btrfs_lookup_dir_item(NULL, root, path,
1719 dir, name, name_len, 0);
1720 if (IS_ERR_OR_NULL(di)) {
1721 ret = di ? PTR_ERR(di) : -ENOENT;
1722 goto out;
1723 }
1724 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key);
1725 if (key.type == BTRFS_ROOT_ITEM_KEY) {
1726 ret = -ENOENT;
1727 goto out;
1728 }
1729 *found_inode = key.objectid;
1730 *found_type = btrfs_dir_type(path->nodes[0], di);
1731
1732 out:
1733 btrfs_free_path(path);
1734 return ret;
1735 }
1736
1737 /*
1738 * Looks up the first btrfs_inode_ref of a given ino. It returns the parent dir,
1739 * generation of the parent dir and the name of the dir entry.
1740 */
get_first_ref(struct btrfs_root *root, u64 ino, u64 *dir, u64 *dir_gen, struct fs_path *name)1741 static int get_first_ref(struct btrfs_root *root, u64 ino,
1742 u64 *dir, u64 *dir_gen, struct fs_path *name)
1743 {
1744 int ret;
1745 struct btrfs_key key;
1746 struct btrfs_key found_key;
1747 struct btrfs_path *path;
1748 int len;
1749 u64 parent_dir;
1750
1751 path = alloc_path_for_send();
1752 if (!path)
1753 return -ENOMEM;
1754
1755 key.objectid = ino;
1756 key.type = BTRFS_INODE_REF_KEY;
1757 key.offset = 0;
1758
1759 ret = btrfs_search_slot_for_read(root, &key, path, 1, 0);
1760 if (ret < 0)
1761 goto out;
1762 if (!ret)
1763 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1764 path->slots[0]);
1765 if (ret || found_key.objectid != ino ||
1766 (found_key.type != BTRFS_INODE_REF_KEY &&
1767 found_key.type != BTRFS_INODE_EXTREF_KEY)) {
1768 ret = -ENOENT;
1769 goto out;
1770 }
1771
1772 if (found_key.type == BTRFS_INODE_REF_KEY) {
1773 struct btrfs_inode_ref *iref;
1774 iref = btrfs_item_ptr(path->nodes[0], path->slots[0],
1775 struct btrfs_inode_ref);
1776 len = btrfs_inode_ref_name_len(path->nodes[0], iref);
1777 ret = fs_path_add_from_extent_buffer(name, path->nodes[0],
1778 (unsigned long)(iref + 1),
1779 len);
1780 parent_dir = found_key.offset;
1781 } else {
1782 struct btrfs_inode_extref *extref;
1783 extref = btrfs_item_ptr(path->nodes[0], path->slots[0],
1784 struct btrfs_inode_extref);
1785 len = btrfs_inode_extref_name_len(path->nodes[0], extref);
1786 ret = fs_path_add_from_extent_buffer(name, path->nodes[0],
1787 (unsigned long)&extref->name, len);
1788 parent_dir = btrfs_inode_extref_parent(path->nodes[0], extref);
1789 }
1790 if (ret < 0)
1791 goto out;
1792 btrfs_release_path(path);
1793
1794 if (dir_gen) {
1795 ret = get_inode_info(root, parent_dir, NULL, dir_gen, NULL,
1796 NULL, NULL, NULL);
1797 if (ret < 0)
1798 goto out;
1799 }
1800
1801 *dir = parent_dir;
1802
1803 out:
1804 btrfs_free_path(path);
1805 return ret;
1806 }
1807
is_first_ref(struct btrfs_root *root, u64 ino, u64 dir, const char *name, int name_len)1808 static int is_first_ref(struct btrfs_root *root,
1809 u64 ino, u64 dir,
1810 const char *name, int name_len)
1811 {
1812 int ret;
1813 struct fs_path *tmp_name;
1814 u64 tmp_dir;
1815
1816 tmp_name = fs_path_alloc();
1817 if (!tmp_name)
1818 return -ENOMEM;
1819
1820 ret = get_first_ref(root, ino, &tmp_dir, NULL, tmp_name);
1821 if (ret < 0)
1822 goto out;
1823
1824 if (dir != tmp_dir || name_len != fs_path_len(tmp_name)) {
1825 ret = 0;
1826 goto out;
1827 }
1828
1829 ret = !memcmp(tmp_name->start, name, name_len);
1830
1831 out:
1832 fs_path_free(tmp_name);
1833 return ret;
1834 }
1835
1836 /*
1837 * Used by process_recorded_refs to determine if a new ref would overwrite an
1838 * already existing ref. In case it detects an overwrite, it returns the
1839 * inode/gen in who_ino/who_gen.
1840 * When an overwrite is detected, process_recorded_refs does proper orphanizing
1841 * to make sure later references to the overwritten inode are possible.
1842 * Orphanizing is however only required for the first ref of an inode.
1843 * process_recorded_refs does an additional is_first_ref check to see if
1844 * orphanizing is really required.
1845 */
will_overwrite_ref(struct send_ctx *sctx, u64 dir, u64 dir_gen, const char *name, int name_len, u64 *who_ino, u64 *who_gen, u64 *who_mode)1846 static int will_overwrite_ref(struct send_ctx *sctx, u64 dir, u64 dir_gen,
1847 const char *name, int name_len,
1848 u64 *who_ino, u64 *who_gen, u64 *who_mode)
1849 {
1850 int ret = 0;
1851 u64 gen;
1852 u64 other_inode = 0;
1853 u8 other_type = 0;
1854
1855 if (!sctx->parent_root)
1856 goto out;
1857
1858 ret = is_inode_existent(sctx, dir, dir_gen);
1859 if (ret <= 0)
1860 goto out;
1861
1862 /*
1863 * If we have a parent root we need to verify that the parent dir was
1864 * not deleted and then re-created, if it was then we have no overwrite
1865 * and we can just unlink this entry.
1866 */
1867 if (sctx->parent_root && dir != BTRFS_FIRST_FREE_OBJECTID) {
1868 ret = get_inode_info(sctx->parent_root, dir, NULL, &gen, NULL,
1869 NULL, NULL, NULL);
1870 if (ret < 0 && ret != -ENOENT)
1871 goto out;
1872 if (ret) {
1873 ret = 0;
1874 goto out;
1875 }
1876 if (gen != dir_gen)
1877 goto out;
1878 }
1879
1880 ret = lookup_dir_item_inode(sctx->parent_root, dir, name, name_len,
1881 &other_inode, &other_type);
1882 if (ret < 0 && ret != -ENOENT)
1883 goto out;
1884 if (ret) {
1885 ret = 0;
1886 goto out;
1887 }
1888
1889 /*
1890 * Check if the overwritten ref was already processed. If yes, the ref
1891 * was already unlinked/moved, so we can safely assume that we will not
1892 * overwrite anything at this point in time.
1893 */
1894 if (other_inode > sctx->send_progress ||
1895 is_waiting_for_move(sctx, other_inode)) {
1896 ret = get_inode_info(sctx->parent_root, other_inode, NULL,
1897 who_gen, who_mode, NULL, NULL, NULL);
1898 if (ret < 0)
1899 goto out;
1900
1901 ret = 1;
1902 *who_ino = other_inode;
1903 } else {
1904 ret = 0;
1905 }
1906
1907 out:
1908 return ret;
1909 }
1910
1911 /*
1912 * Checks if the ref was overwritten by an already processed inode. This is
1913 * used by __get_cur_name_and_parent to find out if the ref was orphanized and
1914 * thus the orphan name needs be used.
1915 * process_recorded_refs also uses it to avoid unlinking of refs that were
1916 * overwritten.
1917 */
did_overwrite_ref(struct send_ctx *sctx, u64 dir, u64 dir_gen, u64 ino, u64 ino_gen, const char *name, int name_len)1918 static int did_overwrite_ref(struct send_ctx *sctx,
1919 u64 dir, u64 dir_gen,
1920 u64 ino, u64 ino_gen,
1921 const char *name, int name_len)
1922 {
1923 int ret = 0;
1924 u64 gen;
1925 u64 ow_inode;
1926 u8 other_type;
1927
1928 if (!sctx->parent_root)
1929 goto out;
1930
1931 ret = is_inode_existent(sctx, dir, dir_gen);
1932 if (ret <= 0)
1933 goto out;
1934
1935 if (dir != BTRFS_FIRST_FREE_OBJECTID) {
1936 ret = get_inode_info(sctx->send_root, dir, NULL, &gen, NULL,
1937 NULL, NULL, NULL);
1938 if (ret < 0 && ret != -ENOENT)
1939 goto out;
1940 if (ret) {
1941 ret = 0;
1942 goto out;
1943 }
1944 if (gen != dir_gen)
1945 goto out;
1946 }
1947
1948 /* check if the ref was overwritten by another ref */
1949 ret = lookup_dir_item_inode(sctx->send_root, dir, name, name_len,
1950 &ow_inode, &other_type);
1951 if (ret < 0 && ret != -ENOENT)
1952 goto out;
1953 if (ret) {
1954 /* was never and will never be overwritten */
1955 ret = 0;
1956 goto out;
1957 }
1958
1959 ret = get_inode_info(sctx->send_root, ow_inode, NULL, &gen, NULL, NULL,
1960 NULL, NULL);
1961 if (ret < 0)
1962 goto out;
1963
1964 if (ow_inode == ino && gen == ino_gen) {
1965 ret = 0;
1966 goto out;
1967 }
1968
1969 /*
1970 * We know that it is or will be overwritten. Check this now.
1971 * The current inode being processed might have been the one that caused
1972 * inode 'ino' to be orphanized, therefore check if ow_inode matches
1973 * the current inode being processed.
1974 */
1975 if ((ow_inode < sctx->send_progress) ||
1976 (ino != sctx->cur_ino && ow_inode == sctx->cur_ino &&
1977 gen == sctx->cur_inode_gen))
1978 ret = 1;
1979 else
1980 ret = 0;
1981
1982 out:
1983 return ret;
1984 }
1985
1986 /*
1987 * Same as did_overwrite_ref, but also checks if it is the first ref of an inode
1988 * that got overwritten. This is used by process_recorded_refs to determine
1989 * if it has to use the path as returned by get_cur_path or the orphan name.
1990 */
did_overwrite_first_ref(struct send_ctx *sctx, u64 ino, u64 gen)1991 static int did_overwrite_first_ref(struct send_ctx *sctx, u64 ino, u64 gen)
1992 {
1993 int ret = 0;
1994 struct fs_path *name = NULL;
1995 u64 dir;
1996 u64 dir_gen;
1997
1998 if (!sctx->parent_root)
1999 goto out;
2000
2001 name = fs_path_alloc();
2002 if (!name)
2003 return -ENOMEM;
2004
2005 ret = get_first_ref(sctx->parent_root, ino, &dir, &dir_gen, name);
2006 if (ret < 0)
2007 goto out;
2008
2009 ret = did_overwrite_ref(sctx, dir, dir_gen, ino, gen,
2010 name->start, fs_path_len(name));
2011
2012 out:
2013 fs_path_free(name);
2014 return ret;
2015 }
2016
2017 /*
2018 * Insert a name cache entry. On 32bit kernels the radix tree index is 32bit,
2019 * so we need to do some special handling in case we have clashes. This function
2020 * takes care of this with the help of name_cache_entry::radix_list.
2021 * In case of error, nce is kfreed.
2022 */
name_cache_insert(struct send_ctx *sctx, struct name_cache_entry *nce)2023 static int name_cache_insert(struct send_ctx *sctx,
2024 struct name_cache_entry *nce)
2025 {
2026 int ret = 0;
2027 struct list_head *nce_head;
2028
2029 nce_head = radix_tree_lookup(&sctx->name_cache,
2030 (unsigned long)nce->ino);
2031 if (!nce_head) {
2032 nce_head = kmalloc(sizeof(*nce_head), GFP_KERNEL);
2033 if (!nce_head) {
2034 kfree(nce);
2035 return -ENOMEM;
2036 }
2037 INIT_LIST_HEAD(nce_head);
2038
2039 ret = radix_tree_insert(&sctx->name_cache, nce->ino, nce_head);
2040 if (ret < 0) {
2041 kfree(nce_head);
2042 kfree(nce);
2043 return ret;
2044 }
2045 }
2046 list_add_tail(&nce->radix_list, nce_head);
2047 list_add_tail(&nce->list, &sctx->name_cache_list);
2048 sctx->name_cache_size++;
2049
2050 return ret;
2051 }
2052
name_cache_delete(struct send_ctx *sctx, struct name_cache_entry *nce)2053 static void name_cache_delete(struct send_ctx *sctx,
2054 struct name_cache_entry *nce)
2055 {
2056 struct list_head *nce_head;
2057
2058 nce_head = radix_tree_lookup(&sctx->name_cache,
2059 (unsigned long)nce->ino);
2060 if (!nce_head) {
2061 btrfs_err(sctx->send_root->fs_info,
2062 "name_cache_delete lookup failed ino %llu cache size %d, leaking memory",
2063 nce->ino, sctx->name_cache_size);
2064 }
2065
2066 list_del(&nce->radix_list);
2067 list_del(&nce->list);
2068 sctx->name_cache_size--;
2069
2070 /*
2071 * We may not get to the final release of nce_head if the lookup fails
2072 */
2073 if (nce_head && list_empty(nce_head)) {
2074 radix_tree_delete(&sctx->name_cache, (unsigned long)nce->ino);
2075 kfree(nce_head);
2076 }
2077 }
2078
name_cache_search(struct send_ctx *sctx, u64 ino, u64 gen)2079 static struct name_cache_entry *name_cache_search(struct send_ctx *sctx,
2080 u64 ino, u64 gen)
2081 {
2082 struct list_head *nce_head;
2083 struct name_cache_entry *cur;
2084
2085 nce_head = radix_tree_lookup(&sctx->name_cache, (unsigned long)ino);
2086 if (!nce_head)
2087 return NULL;
2088
2089 list_for_each_entry(cur, nce_head, radix_list) {
2090 if (cur->ino == ino && cur->gen == gen)
2091 return cur;
2092 }
2093 return NULL;
2094 }
2095
2096 /*
2097 * Removes the entry from the list and adds it back to the end. This marks the
2098 * entry as recently used so that name_cache_clean_unused does not remove it.
2099 */
name_cache_used(struct send_ctx *sctx, struct name_cache_entry *nce)2100 static void name_cache_used(struct send_ctx *sctx, struct name_cache_entry *nce)
2101 {
2102 list_del(&nce->list);
2103 list_add_tail(&nce->list, &sctx->name_cache_list);
2104 }
2105
2106 /*
2107 * Remove some entries from the beginning of name_cache_list.
2108 */
name_cache_clean_unused(struct send_ctx *sctx)2109 static void name_cache_clean_unused(struct send_ctx *sctx)
2110 {
2111 struct name_cache_entry *nce;
2112
2113 if (sctx->name_cache_size < SEND_CTX_NAME_CACHE_CLEAN_SIZE)
2114 return;
2115
2116 while (sctx->name_cache_size > SEND_CTX_MAX_NAME_CACHE_SIZE) {
2117 nce = list_entry(sctx->name_cache_list.next,
2118 struct name_cache_entry, list);
2119 name_cache_delete(sctx, nce);
2120 kfree(nce);
2121 }
2122 }
2123
name_cache_free(struct send_ctx *sctx)2124 static void name_cache_free(struct send_ctx *sctx)
2125 {
2126 struct name_cache_entry *nce;
2127
2128 while (!list_empty(&sctx->name_cache_list)) {
2129 nce = list_entry(sctx->name_cache_list.next,
2130 struct name_cache_entry, list);
2131 name_cache_delete(sctx, nce);
2132 kfree(nce);
2133 }
2134 }
2135
2136 /*
2137 * Used by get_cur_path for each ref up to the root.
2138 * Returns 0 if it succeeded.
2139 * Returns 1 if the inode is not existent or got overwritten. In that case, the
2140 * name is an orphan name. This instructs get_cur_path to stop iterating. If 1
2141 * is returned, parent_ino/parent_gen are not guaranteed to be valid.
2142 * Returns <0 in case of error.
2143 */
__get_cur_name_and_parent(struct send_ctx *sctx, u64 ino, u64 gen, u64 *parent_ino, u64 *parent_gen, struct fs_path *dest)2144 static int __get_cur_name_and_parent(struct send_ctx *sctx,
2145 u64 ino, u64 gen,
2146 u64 *parent_ino,
2147 u64 *parent_gen,
2148 struct fs_path *dest)
2149 {
2150 int ret;
2151 int nce_ret;
2152 struct name_cache_entry *nce = NULL;
2153
2154 /*
2155 * First check if we already did a call to this function with the same
2156 * ino/gen. If yes, check if the cache entry is still up-to-date. If yes
2157 * return the cached result.
2158 */
2159 nce = name_cache_search(sctx, ino, gen);
2160 if (nce) {
2161 if (ino < sctx->send_progress && nce->need_later_update) {
2162 name_cache_delete(sctx, nce);
2163 kfree(nce);
2164 nce = NULL;
2165 } else {
2166 name_cache_used(sctx, nce);
2167 *parent_ino = nce->parent_ino;
2168 *parent_gen = nce->parent_gen;
2169 ret = fs_path_add(dest, nce->name, nce->name_len);
2170 if (ret < 0)
2171 goto out;
2172 ret = nce->ret;
2173 goto out;
2174 }
2175 }
2176
2177 /*
2178 * If the inode is not existent yet, add the orphan name and return 1.
2179 * This should only happen for the parent dir that we determine in
2180 * __record_new_ref
2181 */
2182 ret = is_inode_existent(sctx, ino, gen);
2183 if (ret < 0)
2184 goto out;
2185
2186 if (!ret) {
2187 ret = gen_unique_name(sctx, ino, gen, dest);
2188 if (ret < 0)
2189 goto out;
2190 ret = 1;
2191 goto out_cache;
2192 }
2193
2194 /*
2195 * Depending on whether the inode was already processed or not, use
2196 * send_root or parent_root for ref lookup.
2197 */
2198 if (ino < sctx->send_progress)
2199 ret = get_first_ref(sctx->send_root, ino,
2200 parent_ino, parent_gen, dest);
2201 else
2202 ret = get_first_ref(sctx->parent_root, ino,
2203 parent_ino, parent_gen, dest);
2204 if (ret < 0)
2205 goto out;
2206
2207 /*
2208 * Check if the ref was overwritten by an inode's ref that was processed
2209 * earlier. If yes, treat as orphan and return 1.
2210 */
2211 ret = did_overwrite_ref(sctx, *parent_ino, *parent_gen, ino, gen,
2212 dest->start, dest->end - dest->start);
2213 if (ret < 0)
2214 goto out;
2215 if (ret) {
2216 fs_path_reset(dest);
2217 ret = gen_unique_name(sctx, ino, gen, dest);
2218 if (ret < 0)
2219 goto out;
2220 ret = 1;
2221 }
2222
2223 out_cache:
2224 /*
2225 * Store the result of the lookup in the name cache.
2226 */
2227 nce = kmalloc(sizeof(*nce) + fs_path_len(dest) + 1, GFP_KERNEL);
2228 if (!nce) {
2229 ret = -ENOMEM;
2230 goto out;
2231 }
2232
2233 nce->ino = ino;
2234 nce->gen = gen;
2235 nce->parent_ino = *parent_ino;
2236 nce->parent_gen = *parent_gen;
2237 nce->name_len = fs_path_len(dest);
2238 nce->ret = ret;
2239 strcpy(nce->name, dest->start);
2240
2241 if (ino < sctx->send_progress)
2242 nce->need_later_update = 0;
2243 else
2244 nce->need_later_update = 1;
2245
2246 nce_ret = name_cache_insert(sctx, nce);
2247 if (nce_ret < 0)
2248 ret = nce_ret;
2249 name_cache_clean_unused(sctx);
2250
2251 out:
2252 return ret;
2253 }
2254
2255 /*
2256 * Magic happens here. This function returns the first ref to an inode as it
2257 * would look like while receiving the stream at this point in time.
2258 * We walk the path up to the root. For every inode in between, we check if it
2259 * was already processed/sent. If yes, we continue with the parent as found
2260 * in send_root. If not, we continue with the parent as found in parent_root.
2261 * If we encounter an inode that was deleted at this point in time, we use the
2262 * inodes "orphan" name instead of the real name and stop. Same with new inodes
2263 * that were not created yet and overwritten inodes/refs.
2264 *
2265 * When do we have orphan inodes:
2266 * 1. When an inode is freshly created and thus no valid refs are available yet
2267 * 2. When a directory lost all it's refs (deleted) but still has dir items
2268 * inside which were not processed yet (pending for move/delete). If anyone
2269 * tried to get the path to the dir items, it would get a path inside that
2270 * orphan directory.
2271 * 3. When an inode is moved around or gets new links, it may overwrite the ref
2272 * of an unprocessed inode. If in that case the first ref would be
2273 * overwritten, the overwritten inode gets "orphanized". Later when we
2274 * process this overwritten inode, it is restored at a new place by moving
2275 * the orphan inode.
2276 *
2277 * sctx->send_progress tells this function at which point in time receiving
2278 * would be.
2279 */
get_cur_path(struct send_ctx *sctx, u64 ino, u64 gen, struct fs_path *dest)2280 static int get_cur_path(struct send_ctx *sctx, u64 ino, u64 gen,
2281 struct fs_path *dest)
2282 {
2283 int ret = 0;
2284 struct fs_path *name = NULL;
2285 u64 parent_inode = 0;
2286 u64 parent_gen = 0;
2287 int stop = 0;
2288
2289 name = fs_path_alloc();
2290 if (!name) {
2291 ret = -ENOMEM;
2292 goto out;
2293 }
2294
2295 dest->reversed = 1;
2296 fs_path_reset(dest);
2297
2298 while (!stop && ino != BTRFS_FIRST_FREE_OBJECTID) {
2299 struct waiting_dir_move *wdm;
2300
2301 fs_path_reset(name);
2302
2303 if (is_waiting_for_rm(sctx, ino, gen)) {
2304 ret = gen_unique_name(sctx, ino, gen, name);
2305 if (ret < 0)
2306 goto out;
2307 ret = fs_path_add_path(dest, name);
2308 break;
2309 }
2310
2311 wdm = get_waiting_dir_move(sctx, ino);
2312 if (wdm && wdm->orphanized) {
2313 ret = gen_unique_name(sctx, ino, gen, name);
2314 stop = 1;
2315 } else if (wdm) {
2316 ret = get_first_ref(sctx->parent_root, ino,
2317 &parent_inode, &parent_gen, name);
2318 } else {
2319 ret = __get_cur_name_and_parent(sctx, ino, gen,
2320 &parent_inode,
2321 &parent_gen, name);
2322 if (ret)
2323 stop = 1;
2324 }
2325
2326 if (ret < 0)
2327 goto out;
2328
2329 ret = fs_path_add_path(dest, name);
2330 if (ret < 0)
2331 goto out;
2332
2333 ino = parent_inode;
2334 gen = parent_gen;
2335 }
2336
2337 out:
2338 fs_path_free(name);
2339 if (!ret)
2340 fs_path_unreverse(dest);
2341 return ret;
2342 }
2343
2344 /*
2345 * Sends a BTRFS_SEND_C_SUBVOL command/item to userspace
2346 */
send_subvol_begin(struct send_ctx *sctx)2347 static int send_subvol_begin(struct send_ctx *sctx)
2348 {
2349 int ret;
2350 struct btrfs_root *send_root = sctx->send_root;
2351 struct btrfs_root *parent_root = sctx->parent_root;
2352 struct btrfs_path *path;
2353 struct btrfs_key key;
2354 struct btrfs_root_ref *ref;
2355 struct extent_buffer *leaf;
2356 char *name = NULL;
2357 int namelen;
2358
2359 path = btrfs_alloc_path();
2360 if (!path)
2361 return -ENOMEM;
2362
2363 name = kmalloc(BTRFS_PATH_NAME_MAX, GFP_KERNEL);
2364 if (!name) {
2365 btrfs_free_path(path);
2366 return -ENOMEM;
2367 }
2368
2369 key.objectid = send_root->root_key.objectid;
2370 key.type = BTRFS_ROOT_BACKREF_KEY;
2371 key.offset = 0;
2372
2373 ret = btrfs_search_slot_for_read(send_root->fs_info->tree_root,
2374 &key, path, 1, 0);
2375 if (ret < 0)
2376 goto out;
2377 if (ret) {
2378 ret = -ENOENT;
2379 goto out;
2380 }
2381
2382 leaf = path->nodes[0];
2383 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2384 if (key.type != BTRFS_ROOT_BACKREF_KEY ||
2385 key.objectid != send_root->root_key.objectid) {
2386 ret = -ENOENT;
2387 goto out;
2388 }
2389 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
2390 namelen = btrfs_root_ref_name_len(leaf, ref);
2391 read_extent_buffer(leaf, name, (unsigned long)(ref + 1), namelen);
2392 btrfs_release_path(path);
2393
2394 if (parent_root) {
2395 ret = begin_cmd(sctx, BTRFS_SEND_C_SNAPSHOT);
2396 if (ret < 0)
2397 goto out;
2398 } else {
2399 ret = begin_cmd(sctx, BTRFS_SEND_C_SUBVOL);
2400 if (ret < 0)
2401 goto out;
2402 }
2403
2404 TLV_PUT_STRING(sctx, BTRFS_SEND_A_PATH, name, namelen);
2405
2406 if (!btrfs_is_empty_uuid(sctx->send_root->root_item.received_uuid))
2407 TLV_PUT_UUID(sctx, BTRFS_SEND_A_UUID,
2408 sctx->send_root->root_item.received_uuid);
2409 else
2410 TLV_PUT_UUID(sctx, BTRFS_SEND_A_UUID,
2411 sctx->send_root->root_item.uuid);
2412
2413 TLV_PUT_U64(sctx, BTRFS_SEND_A_CTRANSID,
2414 le64_to_cpu(sctx->send_root->root_item.ctransid));
2415 if (parent_root) {
2416 if (!btrfs_is_empty_uuid(parent_root->root_item.received_uuid))
2417 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
2418 parent_root->root_item.received_uuid);
2419 else
2420 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
2421 parent_root->root_item.uuid);
2422 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_CTRANSID,
2423 le64_to_cpu(sctx->parent_root->root_item.ctransid));
2424 }
2425
2426 ret = send_cmd(sctx);
2427
2428 tlv_put_failure:
2429 out:
2430 btrfs_free_path(path);
2431 kfree(name);
2432 return ret;
2433 }
2434
send_truncate(struct send_ctx *sctx, u64 ino, u64 gen, u64 size)2435 static int send_truncate(struct send_ctx *sctx, u64 ino, u64 gen, u64 size)
2436 {
2437 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2438 int ret = 0;
2439 struct fs_path *p;
2440
2441 btrfs_debug(fs_info, "send_truncate %llu size=%llu", ino, size);
2442
2443 p = fs_path_alloc();
2444 if (!p)
2445 return -ENOMEM;
2446
2447 ret = begin_cmd(sctx, BTRFS_SEND_C_TRUNCATE);
2448 if (ret < 0)
2449 goto out;
2450
2451 ret = get_cur_path(sctx, ino, gen, p);
2452 if (ret < 0)
2453 goto out;
2454 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2455 TLV_PUT_U64(sctx, BTRFS_SEND_A_SIZE, size);
2456
2457 ret = send_cmd(sctx);
2458
2459 tlv_put_failure:
2460 out:
2461 fs_path_free(p);
2462 return ret;
2463 }
2464
send_chmod(struct send_ctx *sctx, u64 ino, u64 gen, u64 mode)2465 static int send_chmod(struct send_ctx *sctx, u64 ino, u64 gen, u64 mode)
2466 {
2467 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2468 int ret = 0;
2469 struct fs_path *p;
2470
2471 btrfs_debug(fs_info, "send_chmod %llu mode=%llu", ino, mode);
2472
2473 p = fs_path_alloc();
2474 if (!p)
2475 return -ENOMEM;
2476
2477 ret = begin_cmd(sctx, BTRFS_SEND_C_CHMOD);
2478 if (ret < 0)
2479 goto out;
2480
2481 ret = get_cur_path(sctx, ino, gen, p);
2482 if (ret < 0)
2483 goto out;
2484 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2485 TLV_PUT_U64(sctx, BTRFS_SEND_A_MODE, mode & 07777);
2486
2487 ret = send_cmd(sctx);
2488
2489 tlv_put_failure:
2490 out:
2491 fs_path_free(p);
2492 return ret;
2493 }
2494
send_chown(struct send_ctx *sctx, u64 ino, u64 gen, u64 uid, u64 gid)2495 static int send_chown(struct send_ctx *sctx, u64 ino, u64 gen, u64 uid, u64 gid)
2496 {
2497 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2498 int ret = 0;
2499 struct fs_path *p;
2500
2501 btrfs_debug(fs_info, "send_chown %llu uid=%llu, gid=%llu",
2502 ino, uid, gid);
2503
2504 p = fs_path_alloc();
2505 if (!p)
2506 return -ENOMEM;
2507
2508 ret = begin_cmd(sctx, BTRFS_SEND_C_CHOWN);
2509 if (ret < 0)
2510 goto out;
2511
2512 ret = get_cur_path(sctx, ino, gen, p);
2513 if (ret < 0)
2514 goto out;
2515 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2516 TLV_PUT_U64(sctx, BTRFS_SEND_A_UID, uid);
2517 TLV_PUT_U64(sctx, BTRFS_SEND_A_GID, gid);
2518
2519 ret = send_cmd(sctx);
2520
2521 tlv_put_failure:
2522 out:
2523 fs_path_free(p);
2524 return ret;
2525 }
2526
send_utimes(struct send_ctx *sctx, u64 ino, u64 gen)2527 static int send_utimes(struct send_ctx *sctx, u64 ino, u64 gen)
2528 {
2529 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2530 int ret = 0;
2531 struct fs_path *p = NULL;
2532 struct btrfs_inode_item *ii;
2533 struct btrfs_path *path = NULL;
2534 struct extent_buffer *eb;
2535 struct btrfs_key key;
2536 int slot;
2537
2538 btrfs_debug(fs_info, "send_utimes %llu", ino);
2539
2540 p = fs_path_alloc();
2541 if (!p)
2542 return -ENOMEM;
2543
2544 path = alloc_path_for_send();
2545 if (!path) {
2546 ret = -ENOMEM;
2547 goto out;
2548 }
2549
2550 key.objectid = ino;
2551 key.type = BTRFS_INODE_ITEM_KEY;
2552 key.offset = 0;
2553 ret = btrfs_search_slot(NULL, sctx->send_root, &key, path, 0, 0);
2554 if (ret > 0)
2555 ret = -ENOENT;
2556 if (ret < 0)
2557 goto out;
2558
2559 eb = path->nodes[0];
2560 slot = path->slots[0];
2561 ii = btrfs_item_ptr(eb, slot, struct btrfs_inode_item);
2562
2563 ret = begin_cmd(sctx, BTRFS_SEND_C_UTIMES);
2564 if (ret < 0)
2565 goto out;
2566
2567 ret = get_cur_path(sctx, ino, gen, p);
2568 if (ret < 0)
2569 goto out;
2570 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2571 TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_ATIME, eb, &ii->atime);
2572 TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_MTIME, eb, &ii->mtime);
2573 TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_CTIME, eb, &ii->ctime);
2574 /* TODO Add otime support when the otime patches get into upstream */
2575
2576 ret = send_cmd(sctx);
2577
2578 tlv_put_failure:
2579 out:
2580 fs_path_free(p);
2581 btrfs_free_path(path);
2582 return ret;
2583 }
2584
2585 /*
2586 * Sends a BTRFS_SEND_C_MKXXX or SYMLINK command to user space. We don't have
2587 * a valid path yet because we did not process the refs yet. So, the inode
2588 * is created as orphan.
2589 */
send_create_inode(struct send_ctx *sctx, u64 ino)2590 static int send_create_inode(struct send_ctx *sctx, u64 ino)
2591 {
2592 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2593 int ret = 0;
2594 struct fs_path *p;
2595 int cmd;
2596 u64 gen;
2597 u64 mode;
2598 u64 rdev;
2599
2600 btrfs_debug(fs_info, "send_create_inode %llu", ino);
2601
2602 p = fs_path_alloc();
2603 if (!p)
2604 return -ENOMEM;
2605
2606 if (ino != sctx->cur_ino) {
2607 ret = get_inode_info(sctx->send_root, ino, NULL, &gen, &mode,
2608 NULL, NULL, &rdev);
2609 if (ret < 0)
2610 goto out;
2611 } else {
2612 gen = sctx->cur_inode_gen;
2613 mode = sctx->cur_inode_mode;
2614 rdev = sctx->cur_inode_rdev;
2615 }
2616
2617 if (S_ISREG(mode)) {
2618 cmd = BTRFS_SEND_C_MKFILE;
2619 } else if (S_ISDIR(mode)) {
2620 cmd = BTRFS_SEND_C_MKDIR;
2621 } else if (S_ISLNK(mode)) {
2622 cmd = BTRFS_SEND_C_SYMLINK;
2623 } else if (S_ISCHR(mode) || S_ISBLK(mode)) {
2624 cmd = BTRFS_SEND_C_MKNOD;
2625 } else if (S_ISFIFO(mode)) {
2626 cmd = BTRFS_SEND_C_MKFIFO;
2627 } else if (S_ISSOCK(mode)) {
2628 cmd = BTRFS_SEND_C_MKSOCK;
2629 } else {
2630 btrfs_warn(sctx->send_root->fs_info, "unexpected inode type %o",
2631 (int)(mode & S_IFMT));
2632 ret = -EOPNOTSUPP;
2633 goto out;
2634 }
2635
2636 ret = begin_cmd(sctx, cmd);
2637 if (ret < 0)
2638 goto out;
2639
2640 ret = gen_unique_name(sctx, ino, gen, p);
2641 if (ret < 0)
2642 goto out;
2643
2644 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2645 TLV_PUT_U64(sctx, BTRFS_SEND_A_INO, ino);
2646
2647 if (S_ISLNK(mode)) {
2648 fs_path_reset(p);
2649 ret = read_symlink(sctx->send_root, ino, p);
2650 if (ret < 0)
2651 goto out;
2652 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_LINK, p);
2653 } else if (S_ISCHR(mode) || S_ISBLK(mode) ||
2654 S_ISFIFO(mode) || S_ISSOCK(mode)) {
2655 TLV_PUT_U64(sctx, BTRFS_SEND_A_RDEV, new_encode_dev(rdev));
2656 TLV_PUT_U64(sctx, BTRFS_SEND_A_MODE, mode);
2657 }
2658
2659 ret = send_cmd(sctx);
2660 if (ret < 0)
2661 goto out;
2662
2663
2664 tlv_put_failure:
2665 out:
2666 fs_path_free(p);
2667 return ret;
2668 }
2669
2670 /*
2671 * We need some special handling for inodes that get processed before the parent
2672 * directory got created. See process_recorded_refs for details.
2673 * This function does the check if we already created the dir out of order.
2674 */
did_create_dir(struct send_ctx *sctx, u64 dir)2675 static int did_create_dir(struct send_ctx *sctx, u64 dir)
2676 {
2677 int ret = 0;
2678 struct btrfs_path *path = NULL;
2679 struct btrfs_key key;
2680 struct btrfs_key found_key;
2681 struct btrfs_key di_key;
2682 struct extent_buffer *eb;
2683 struct btrfs_dir_item *di;
2684 int slot;
2685
2686 path = alloc_path_for_send();
2687 if (!path) {
2688 ret = -ENOMEM;
2689 goto out;
2690 }
2691
2692 key.objectid = dir;
2693 key.type = BTRFS_DIR_INDEX_KEY;
2694 key.offset = 0;
2695 ret = btrfs_search_slot(NULL, sctx->send_root, &key, path, 0, 0);
2696 if (ret < 0)
2697 goto out;
2698
2699 while (1) {
2700 eb = path->nodes[0];
2701 slot = path->slots[0];
2702 if (slot >= btrfs_header_nritems(eb)) {
2703 ret = btrfs_next_leaf(sctx->send_root, path);
2704 if (ret < 0) {
2705 goto out;
2706 } else if (ret > 0) {
2707 ret = 0;
2708 break;
2709 }
2710 continue;
2711 }
2712
2713 btrfs_item_key_to_cpu(eb, &found_key, slot);
2714 if (found_key.objectid != key.objectid ||
2715 found_key.type != key.type) {
2716 ret = 0;
2717 goto out;
2718 }
2719
2720 di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item);
2721 btrfs_dir_item_key_to_cpu(eb, di, &di_key);
2722
2723 if (di_key.type != BTRFS_ROOT_ITEM_KEY &&
2724 di_key.objectid < sctx->send_progress) {
2725 ret = 1;
2726 goto out;
2727 }
2728
2729 path->slots[0]++;
2730 }
2731
2732 out:
2733 btrfs_free_path(path);
2734 return ret;
2735 }
2736
2737 /*
2738 * Only creates the inode if it is:
2739 * 1. Not a directory
2740 * 2. Or a directory which was not created already due to out of order
2741 * directories. See did_create_dir and process_recorded_refs for details.
2742 */
send_create_inode_if_needed(struct send_ctx *sctx)2743 static int send_create_inode_if_needed(struct send_ctx *sctx)
2744 {
2745 int ret;
2746
2747 if (S_ISDIR(sctx->cur_inode_mode)) {
2748 ret = did_create_dir(sctx, sctx->cur_ino);
2749 if (ret < 0)
2750 goto out;
2751 if (ret) {
2752 ret = 0;
2753 goto out;
2754 }
2755 }
2756
2757 ret = send_create_inode(sctx, sctx->cur_ino);
2758 if (ret < 0)
2759 goto out;
2760
2761 out:
2762 return ret;
2763 }
2764
2765 struct recorded_ref {
2766 struct list_head list;
2767 char *name;
2768 struct fs_path *full_path;
2769 u64 dir;
2770 u64 dir_gen;
2771 int name_len;
2772 };
2773
set_ref_path(struct recorded_ref *ref, struct fs_path *path)2774 static void set_ref_path(struct recorded_ref *ref, struct fs_path *path)
2775 {
2776 ref->full_path = path;
2777 ref->name = (char *)kbasename(ref->full_path->start);
2778 ref->name_len = ref->full_path->end - ref->name;
2779 }
2780
2781 /*
2782 * We need to process new refs before deleted refs, but compare_tree gives us
2783 * everything mixed. So we first record all refs and later process them.
2784 * This function is a helper to record one ref.
2785 */
__record_ref(struct list_head *head, u64 dir, u64 dir_gen, struct fs_path *path)2786 static int __record_ref(struct list_head *head, u64 dir,
2787 u64 dir_gen, struct fs_path *path)
2788 {
2789 struct recorded_ref *ref;
2790
2791 ref = kmalloc(sizeof(*ref), GFP_KERNEL);
2792 if (!ref)
2793 return -ENOMEM;
2794
2795 ref->dir = dir;
2796 ref->dir_gen = dir_gen;
2797 set_ref_path(ref, path);
2798 list_add_tail(&ref->list, head);
2799 return 0;
2800 }
2801
dup_ref(struct recorded_ref *ref, struct list_head *list)2802 static int dup_ref(struct recorded_ref *ref, struct list_head *list)
2803 {
2804 struct recorded_ref *new;
2805
2806 new = kmalloc(sizeof(*ref), GFP_KERNEL);
2807 if (!new)
2808 return -ENOMEM;
2809
2810 new->dir = ref->dir;
2811 new->dir_gen = ref->dir_gen;
2812 new->full_path = NULL;
2813 INIT_LIST_HEAD(&new->list);
2814 list_add_tail(&new->list, list);
2815 return 0;
2816 }
2817
__free_recorded_refs(struct list_head *head)2818 static void __free_recorded_refs(struct list_head *head)
2819 {
2820 struct recorded_ref *cur;
2821
2822 while (!list_empty(head)) {
2823 cur = list_entry(head->next, struct recorded_ref, list);
2824 fs_path_free(cur->full_path);
2825 list_del(&cur->list);
2826 kfree(cur);
2827 }
2828 }
2829
free_recorded_refs(struct send_ctx *sctx)2830 static void free_recorded_refs(struct send_ctx *sctx)
2831 {
2832 __free_recorded_refs(&sctx->new_refs);
2833 __free_recorded_refs(&sctx->deleted_refs);
2834 }
2835
2836 /*
2837 * Renames/moves a file/dir to its orphan name. Used when the first
2838 * ref of an unprocessed inode gets overwritten and for all non empty
2839 * directories.
2840 */
orphanize_inode(struct send_ctx *sctx, u64 ino, u64 gen, struct fs_path *path)2841 static int orphanize_inode(struct send_ctx *sctx, u64 ino, u64 gen,
2842 struct fs_path *path)
2843 {
2844 int ret;
2845 struct fs_path *orphan;
2846
2847 orphan = fs_path_alloc();
2848 if (!orphan)
2849 return -ENOMEM;
2850
2851 ret = gen_unique_name(sctx, ino, gen, orphan);
2852 if (ret < 0)
2853 goto out;
2854
2855 ret = send_rename(sctx, path, orphan);
2856
2857 out:
2858 fs_path_free(orphan);
2859 return ret;
2860 }
2861
add_orphan_dir_info(struct send_ctx *sctx, u64 dir_ino, u64 dir_gen)2862 static struct orphan_dir_info *add_orphan_dir_info(struct send_ctx *sctx,
2863 u64 dir_ino, u64 dir_gen)
2864 {
2865 struct rb_node **p = &sctx->orphan_dirs.rb_node;
2866 struct rb_node *parent = NULL;
2867 struct orphan_dir_info *entry, *odi;
2868
2869 while (*p) {
2870 parent = *p;
2871 entry = rb_entry(parent, struct orphan_dir_info, node);
2872 if (dir_ino < entry->ino)
2873 p = &(*p)->rb_left;
2874 else if (dir_ino > entry->ino)
2875 p = &(*p)->rb_right;
2876 else if (dir_gen < entry->gen)
2877 p = &(*p)->rb_left;
2878 else if (dir_gen > entry->gen)
2879 p = &(*p)->rb_right;
2880 else
2881 return entry;
2882 }
2883
2884 odi = kmalloc(sizeof(*odi), GFP_KERNEL);
2885 if (!odi)
2886 return ERR_PTR(-ENOMEM);
2887 odi->ino = dir_ino;
2888 odi->gen = dir_gen;
2889 odi->last_dir_index_offset = 0;
2890
2891 rb_link_node(&odi->node, parent, p);
2892 rb_insert_color(&odi->node, &sctx->orphan_dirs);
2893 return odi;
2894 }
2895
get_orphan_dir_info(struct send_ctx *sctx, u64 dir_ino, u64 gen)2896 static struct orphan_dir_info *get_orphan_dir_info(struct send_ctx *sctx,
2897 u64 dir_ino, u64 gen)
2898 {
2899 struct rb_node *n = sctx->orphan_dirs.rb_node;
2900 struct orphan_dir_info *entry;
2901
2902 while (n) {
2903 entry = rb_entry(n, struct orphan_dir_info, node);
2904 if (dir_ino < entry->ino)
2905 n = n->rb_left;
2906 else if (dir_ino > entry->ino)
2907 n = n->rb_right;
2908 else if (gen < entry->gen)
2909 n = n->rb_left;
2910 else if (gen > entry->gen)
2911 n = n->rb_right;
2912 else
2913 return entry;
2914 }
2915 return NULL;
2916 }
2917
is_waiting_for_rm(struct send_ctx *sctx, u64 dir_ino, u64 gen)2918 static int is_waiting_for_rm(struct send_ctx *sctx, u64 dir_ino, u64 gen)
2919 {
2920 struct orphan_dir_info *odi = get_orphan_dir_info(sctx, dir_ino, gen);
2921
2922 return odi != NULL;
2923 }
2924
free_orphan_dir_info(struct send_ctx *sctx, struct orphan_dir_info *odi)2925 static void free_orphan_dir_info(struct send_ctx *sctx,
2926 struct orphan_dir_info *odi)
2927 {
2928 if (!odi)
2929 return;
2930 rb_erase(&odi->node, &sctx->orphan_dirs);
2931 kfree(odi);
2932 }
2933
2934 /*
2935 * Returns 1 if a directory can be removed at this point in time.
2936 * We check this by iterating all dir items and checking if the inode behind
2937 * the dir item was already processed.
2938 */
can_rmdir(struct send_ctx *sctx, u64 dir, u64 dir_gen, u64 send_progress)2939 static int can_rmdir(struct send_ctx *sctx, u64 dir, u64 dir_gen,
2940 u64 send_progress)
2941 {
2942 int ret = 0;
2943 struct btrfs_root *root = sctx->parent_root;
2944 struct btrfs_path *path;
2945 struct btrfs_key key;
2946 struct btrfs_key found_key;
2947 struct btrfs_key loc;
2948 struct btrfs_dir_item *di;
2949 struct orphan_dir_info *odi = NULL;
2950
2951 /*
2952 * Don't try to rmdir the top/root subvolume dir.
2953 */
2954 if (dir == BTRFS_FIRST_FREE_OBJECTID)
2955 return 0;
2956
2957 path = alloc_path_for_send();
2958 if (!path)
2959 return -ENOMEM;
2960
2961 key.objectid = dir;
2962 key.type = BTRFS_DIR_INDEX_KEY;
2963 key.offset = 0;
2964
2965 odi = get_orphan_dir_info(sctx, dir, dir_gen);
2966 if (odi)
2967 key.offset = odi->last_dir_index_offset;
2968
2969 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2970 if (ret < 0)
2971 goto out;
2972
2973 while (1) {
2974 struct waiting_dir_move *dm;
2975
2976 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
2977 ret = btrfs_next_leaf(root, path);
2978 if (ret < 0)
2979 goto out;
2980 else if (ret > 0)
2981 break;
2982 continue;
2983 }
2984 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2985 path->slots[0]);
2986 if (found_key.objectid != key.objectid ||
2987 found_key.type != key.type)
2988 break;
2989
2990 di = btrfs_item_ptr(path->nodes[0], path->slots[0],
2991 struct btrfs_dir_item);
2992 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &loc);
2993
2994 dm = get_waiting_dir_move(sctx, loc.objectid);
2995 if (dm) {
2996 odi = add_orphan_dir_info(sctx, dir, dir_gen);
2997 if (IS_ERR(odi)) {
2998 ret = PTR_ERR(odi);
2999 goto out;
3000 }
3001 odi->gen = dir_gen;
3002 odi->last_dir_index_offset = found_key.offset;
3003 dm->rmdir_ino = dir;
3004 dm->rmdir_gen = dir_gen;
3005 ret = 0;
3006 goto out;
3007 }
3008
3009 if (loc.objectid > send_progress) {
3010 odi = add_orphan_dir_info(sctx, dir, dir_gen);
3011 if (IS_ERR(odi)) {
3012 ret = PTR_ERR(odi);
3013 goto out;
3014 }
3015 odi->gen = dir_gen;
3016 odi->last_dir_index_offset = found_key.offset;
3017 ret = 0;
3018 goto out;
3019 }
3020
3021 path->slots[0]++;
3022 }
3023 free_orphan_dir_info(sctx, odi);
3024
3025 ret = 1;
3026
3027 out:
3028 btrfs_free_path(path);
3029 return ret;
3030 }
3031
is_waiting_for_move(struct send_ctx *sctx, u64 ino)3032 static int is_waiting_for_move(struct send_ctx *sctx, u64 ino)
3033 {
3034 struct waiting_dir_move *entry = get_waiting_dir_move(sctx, ino);
3035
3036 return entry != NULL;
3037 }
3038
add_waiting_dir_move(struct send_ctx *sctx, u64 ino, bool orphanized)3039 static int add_waiting_dir_move(struct send_ctx *sctx, u64 ino, bool orphanized)
3040 {
3041 struct rb_node **p = &sctx->waiting_dir_moves.rb_node;
3042 struct rb_node *parent = NULL;
3043 struct waiting_dir_move *entry, *dm;
3044
3045 dm = kmalloc(sizeof(*dm), GFP_KERNEL);
3046 if (!dm)
3047 return -ENOMEM;
3048 dm->ino = ino;
3049 dm->rmdir_ino = 0;
3050 dm->rmdir_gen = 0;
3051 dm->orphanized = orphanized;
3052
3053 while (*p) {
3054 parent = *p;
3055 entry = rb_entry(parent, struct waiting_dir_move, node);
3056 if (ino < entry->ino) {
3057 p = &(*p)->rb_left;
3058 } else if (ino > entry->ino) {
3059 p = &(*p)->rb_right;
3060 } else {
3061 kfree(dm);
3062 return -EEXIST;
3063 }
3064 }
3065
3066 rb_link_node(&dm->node, parent, p);
3067 rb_insert_color(&dm->node, &sctx->waiting_dir_moves);
3068 return 0;
3069 }
3070
3071 static struct waiting_dir_move *
get_waiting_dir_move(struct send_ctx *sctx, u64 ino)3072 get_waiting_dir_move(struct send_ctx *sctx, u64 ino)
3073 {
3074 struct rb_node *n = sctx->waiting_dir_moves.rb_node;
3075 struct waiting_dir_move *entry;
3076
3077 while (n) {
3078 entry = rb_entry(n, struct waiting_dir_move, node);
3079 if (ino < entry->ino)
3080 n = n->rb_left;
3081 else if (ino > entry->ino)
3082 n = n->rb_right;
3083 else
3084 return entry;
3085 }
3086 return NULL;
3087 }
3088
free_waiting_dir_move(struct send_ctx *sctx, struct waiting_dir_move *dm)3089 static void free_waiting_dir_move(struct send_ctx *sctx,
3090 struct waiting_dir_move *dm)
3091 {
3092 if (!dm)
3093 return;
3094 rb_erase(&dm->node, &sctx->waiting_dir_moves);
3095 kfree(dm);
3096 }
3097
add_pending_dir_move(struct send_ctx *sctx, u64 ino, u64 ino_gen, u64 parent_ino, struct list_head *new_refs, struct list_head *deleted_refs, const bool is_orphan)3098 static int add_pending_dir_move(struct send_ctx *sctx,
3099 u64 ino,
3100 u64 ino_gen,
3101 u64 parent_ino,
3102 struct list_head *new_refs,
3103 struct list_head *deleted_refs,
3104 const bool is_orphan)
3105 {
3106 struct rb_node **p = &sctx->pending_dir_moves.rb_node;
3107 struct rb_node *parent = NULL;
3108 struct pending_dir_move *entry = NULL, *pm;
3109 struct recorded_ref *cur;
3110 int exists = 0;
3111 int ret;
3112
3113 pm = kmalloc(sizeof(*pm), GFP_KERNEL);
3114 if (!pm)
3115 return -ENOMEM;
3116 pm->parent_ino = parent_ino;
3117 pm->ino = ino;
3118 pm->gen = ino_gen;
3119 INIT_LIST_HEAD(&pm->list);
3120 INIT_LIST_HEAD(&pm->update_refs);
3121 RB_CLEAR_NODE(&pm->node);
3122
3123 while (*p) {
3124 parent = *p;
3125 entry = rb_entry(parent, struct pending_dir_move, node);
3126 if (parent_ino < entry->parent_ino) {
3127 p = &(*p)->rb_left;
3128 } else if (parent_ino > entry->parent_ino) {
3129 p = &(*p)->rb_right;
3130 } else {
3131 exists = 1;
3132 break;
3133 }
3134 }
3135
3136 list_for_each_entry(cur, deleted_refs, list) {
3137 ret = dup_ref(cur, &pm->update_refs);
3138 if (ret < 0)
3139 goto out;
3140 }
3141 list_for_each_entry(cur, new_refs, list) {
3142 ret = dup_ref(cur, &pm->update_refs);
3143 if (ret < 0)
3144 goto out;
3145 }
3146
3147 ret = add_waiting_dir_move(sctx, pm->ino, is_orphan);
3148 if (ret)
3149 goto out;
3150
3151 if (exists) {
3152 list_add_tail(&pm->list, &entry->list);
3153 } else {
3154 rb_link_node(&pm->node, parent, p);
3155 rb_insert_color(&pm->node, &sctx->pending_dir_moves);
3156 }
3157 ret = 0;
3158 out:
3159 if (ret) {
3160 __free_recorded_refs(&pm->update_refs);
3161 kfree(pm);
3162 }
3163 return ret;
3164 }
3165
get_pending_dir_moves(struct send_ctx *sctx, u64 parent_ino)3166 static struct pending_dir_move *get_pending_dir_moves(struct send_ctx *sctx,
3167 u64 parent_ino)
3168 {
3169 struct rb_node *n = sctx->pending_dir_moves.rb_node;
3170 struct pending_dir_move *entry;
3171
3172 while (n) {
3173 entry = rb_entry(n, struct pending_dir_move, node);
3174 if (parent_ino < entry->parent_ino)
3175 n = n->rb_left;
3176 else if (parent_ino > entry->parent_ino)
3177 n = n->rb_right;
3178 else
3179 return entry;
3180 }
3181 return NULL;
3182 }
3183
path_loop(struct send_ctx *sctx, struct fs_path *name, u64 ino, u64 gen, u64 *ancestor_ino)3184 static int path_loop(struct send_ctx *sctx, struct fs_path *name,
3185 u64 ino, u64 gen, u64 *ancestor_ino)
3186 {
3187 int ret = 0;
3188 u64 parent_inode = 0;
3189 u64 parent_gen = 0;
3190 u64 start_ino = ino;
3191
3192 *ancestor_ino = 0;
3193 while (ino != BTRFS_FIRST_FREE_OBJECTID) {
3194 fs_path_reset(name);
3195
3196 if (is_waiting_for_rm(sctx, ino, gen))
3197 break;
3198 if (is_waiting_for_move(sctx, ino)) {
3199 if (*ancestor_ino == 0)
3200 *ancestor_ino = ino;
3201 ret = get_first_ref(sctx->parent_root, ino,
3202 &parent_inode, &parent_gen, name);
3203 } else {
3204 ret = __get_cur_name_and_parent(sctx, ino, gen,
3205 &parent_inode,
3206 &parent_gen, name);
3207 if (ret > 0) {
3208 ret = 0;
3209 break;
3210 }
3211 }
3212 if (ret < 0)
3213 break;
3214 if (parent_inode == start_ino) {
3215 ret = 1;
3216 if (*ancestor_ino == 0)
3217 *ancestor_ino = ino;
3218 break;
3219 }
3220 ino = parent_inode;
3221 gen = parent_gen;
3222 }
3223 return ret;
3224 }
3225
apply_dir_move(struct send_ctx *sctx, struct pending_dir_move *pm)3226 static int apply_dir_move(struct send_ctx *sctx, struct pending_dir_move *pm)
3227 {
3228 struct fs_path *from_path = NULL;
3229 struct fs_path *to_path = NULL;
3230 struct fs_path *name = NULL;
3231 u64 orig_progress = sctx->send_progress;
3232 struct recorded_ref *cur;
3233 u64 parent_ino, parent_gen;
3234 struct waiting_dir_move *dm = NULL;
3235 u64 rmdir_ino = 0;
3236 u64 rmdir_gen;
3237 u64 ancestor;
3238 bool is_orphan;
3239 int ret;
3240
3241 name = fs_path_alloc();
3242 from_path = fs_path_alloc();
3243 if (!name || !from_path) {
3244 ret = -ENOMEM;
3245 goto out;
3246 }
3247
3248 dm = get_waiting_dir_move(sctx, pm->ino);
3249 ASSERT(dm);
3250 rmdir_ino = dm->rmdir_ino;
3251 rmdir_gen = dm->rmdir_gen;
3252 is_orphan = dm->orphanized;
3253 free_waiting_dir_move(sctx, dm);
3254
3255 if (is_orphan) {
3256 ret = gen_unique_name(sctx, pm->ino,
3257 pm->gen, from_path);
3258 } else {
3259 ret = get_first_ref(sctx->parent_root, pm->ino,
3260 &parent_ino, &parent_gen, name);
3261 if (ret < 0)
3262 goto out;
3263 ret = get_cur_path(sctx, parent_ino, parent_gen,
3264 from_path);
3265 if (ret < 0)
3266 goto out;
3267 ret = fs_path_add_path(from_path, name);
3268 }
3269 if (ret < 0)
3270 goto out;
3271
3272 sctx->send_progress = sctx->cur_ino + 1;
3273 ret = path_loop(sctx, name, pm->ino, pm->gen, &ancestor);
3274 if (ret < 0)
3275 goto out;
3276 if (ret) {
3277 LIST_HEAD(deleted_refs);
3278 ASSERT(ancestor > BTRFS_FIRST_FREE_OBJECTID);
3279 ret = add_pending_dir_move(sctx, pm->ino, pm->gen, ancestor,
3280 &pm->update_refs, &deleted_refs,
3281 is_orphan);
3282 if (ret < 0)
3283 goto out;
3284 if (rmdir_ino) {
3285 dm = get_waiting_dir_move(sctx, pm->ino);
3286 ASSERT(dm);
3287 dm->rmdir_ino = rmdir_ino;
3288 dm->rmdir_gen = rmdir_gen;
3289 }
3290 goto out;
3291 }
3292 fs_path_reset(name);
3293 to_path = name;
3294 name = NULL;
3295 ret = get_cur_path(sctx, pm->ino, pm->gen, to_path);
3296 if (ret < 0)
3297 goto out;
3298
3299 ret = send_rename(sctx, from_path, to_path);
3300 if (ret < 0)
3301 goto out;
3302
3303 if (rmdir_ino) {
3304 struct orphan_dir_info *odi;
3305 u64 gen;
3306
3307 odi = get_orphan_dir_info(sctx, rmdir_ino, rmdir_gen);
3308 if (!odi) {
3309 /* already deleted */
3310 goto finish;
3311 }
3312 gen = odi->gen;
3313
3314 ret = can_rmdir(sctx, rmdir_ino, gen, sctx->cur_ino);
3315 if (ret < 0)
3316 goto out;
3317 if (!ret)
3318 goto finish;
3319
3320 name = fs_path_alloc();
3321 if (!name) {
3322 ret = -ENOMEM;
3323 goto out;
3324 }
3325 ret = get_cur_path(sctx, rmdir_ino, gen, name);
3326 if (ret < 0)
3327 goto out;
3328 ret = send_rmdir(sctx, name);
3329 if (ret < 0)
3330 goto out;
3331 }
3332
3333 finish:
3334 ret = send_utimes(sctx, pm->ino, pm->gen);
3335 if (ret < 0)
3336 goto out;
3337
3338 /*
3339 * After rename/move, need to update the utimes of both new parent(s)
3340 * and old parent(s).
3341 */
3342 list_for_each_entry(cur, &pm->update_refs, list) {
3343 /*
3344 * The parent inode might have been deleted in the send snapshot
3345 */
3346 ret = get_inode_info(sctx->send_root, cur->dir, NULL,
3347 NULL, NULL, NULL, NULL, NULL);
3348 if (ret == -ENOENT) {
3349 ret = 0;
3350 continue;
3351 }
3352 if (ret < 0)
3353 goto out;
3354
3355 ret = send_utimes(sctx, cur->dir, cur->dir_gen);
3356 if (ret < 0)
3357 goto out;
3358 }
3359
3360 out:
3361 fs_path_free(name);
3362 fs_path_free(from_path);
3363 fs_path_free(to_path);
3364 sctx->send_progress = orig_progress;
3365
3366 return ret;
3367 }
3368
free_pending_move(struct send_ctx *sctx, struct pending_dir_move *m)3369 static void free_pending_move(struct send_ctx *sctx, struct pending_dir_move *m)
3370 {
3371 if (!list_empty(&m->list))
3372 list_del(&m->list);
3373 if (!RB_EMPTY_NODE(&m->node))
3374 rb_erase(&m->node, &sctx->pending_dir_moves);
3375 __free_recorded_refs(&m->update_refs);
3376 kfree(m);
3377 }
3378
tail_append_pending_moves(struct send_ctx *sctx, struct pending_dir_move *moves, struct list_head *stack)3379 static void tail_append_pending_moves(struct send_ctx *sctx,
3380 struct pending_dir_move *moves,
3381 struct list_head *stack)
3382 {
3383 if (list_empty(&moves->list)) {
3384 list_add_tail(&moves->list, stack);
3385 } else {
3386 LIST_HEAD(list);
3387 list_splice_init(&moves->list, &list);
3388 list_add_tail(&moves->list, stack);
3389 list_splice_tail(&list, stack);
3390 }
3391 if (!RB_EMPTY_NODE(&moves->node)) {
3392 rb_erase(&moves->node, &sctx->pending_dir_moves);
3393 RB_CLEAR_NODE(&moves->node);
3394 }
3395 }
3396
apply_children_dir_moves(struct send_ctx *sctx)3397 static int apply_children_dir_moves(struct send_ctx *sctx)
3398 {
3399 struct pending_dir_move *pm;
3400 struct list_head stack;
3401 u64 parent_ino = sctx->cur_ino;
3402 int ret = 0;
3403
3404 pm = get_pending_dir_moves(sctx, parent_ino);
3405 if (!pm)
3406 return 0;
3407
3408 INIT_LIST_HEAD(&stack);
3409 tail_append_pending_moves(sctx, pm, &stack);
3410
3411 while (!list_empty(&stack)) {
3412 pm = list_first_entry(&stack, struct pending_dir_move, list);
3413 parent_ino = pm->ino;
3414 ret = apply_dir_move(sctx, pm);
3415 free_pending_move(sctx, pm);
3416 if (ret)
3417 goto out;
3418 pm = get_pending_dir_moves(sctx, parent_ino);
3419 if (pm)
3420 tail_append_pending_moves(sctx, pm, &stack);
3421 }
3422 return 0;
3423
3424 out:
3425 while (!list_empty(&stack)) {
3426 pm = list_first_entry(&stack, struct pending_dir_move, list);
3427 free_pending_move(sctx, pm);
3428 }
3429 return ret;
3430 }
3431
3432 /*
3433 * We might need to delay a directory rename even when no ancestor directory
3434 * (in the send root) with a higher inode number than ours (sctx->cur_ino) was
3435 * renamed. This happens when we rename a directory to the old name (the name
3436 * in the parent root) of some other unrelated directory that got its rename
3437 * delayed due to some ancestor with higher number that got renamed.
3438 *
3439 * Example:
3440 *
3441 * Parent snapshot:
3442 * . (ino 256)
3443 * |---- a/ (ino 257)
3444 * | |---- file (ino 260)
3445 * |
3446 * |---- b/ (ino 258)
3447 * |---- c/ (ino 259)
3448 *
3449 * Send snapshot:
3450 * . (ino 256)
3451 * |---- a/ (ino 258)
3452 * |---- x/ (ino 259)
3453 * |---- y/ (ino 257)
3454 * |----- file (ino 260)
3455 *
3456 * Here we can not rename 258 from 'b' to 'a' without the rename of inode 257
3457 * from 'a' to 'x/y' happening first, which in turn depends on the rename of
3458 * inode 259 from 'c' to 'x'. So the order of rename commands the send stream
3459 * must issue is:
3460 *
3461 * 1 - rename 259 from 'c' to 'x'
3462 * 2 - rename 257 from 'a' to 'x/y'
3463 * 3 - rename 258 from 'b' to 'a'
3464 *
3465 * Returns 1 if the rename of sctx->cur_ino needs to be delayed, 0 if it can
3466 * be done right away and < 0 on error.
3467 */
wait_for_dest_dir_move(struct send_ctx *sctx, struct recorded_ref *parent_ref, const bool is_orphan)3468 static int wait_for_dest_dir_move(struct send_ctx *sctx,
3469 struct recorded_ref *parent_ref,
3470 const bool is_orphan)
3471 {
3472 struct btrfs_fs_info *fs_info = sctx->parent_root->fs_info;
3473 struct btrfs_path *path;
3474 struct btrfs_key key;
3475 struct btrfs_key di_key;
3476 struct btrfs_dir_item *di;
3477 u64 left_gen;
3478 u64 right_gen;
3479 int ret = 0;
3480 struct waiting_dir_move *wdm;
3481
3482 if (RB_EMPTY_ROOT(&sctx->waiting_dir_moves))
3483 return 0;
3484
3485 path = alloc_path_for_send();
3486 if (!path)
3487 return -ENOMEM;
3488
3489 key.objectid = parent_ref->dir;
3490 key.type = BTRFS_DIR_ITEM_KEY;
3491 key.offset = btrfs_name_hash(parent_ref->name, parent_ref->name_len);
3492
3493 ret = btrfs_search_slot(NULL, sctx->parent_root, &key, path, 0, 0);
3494 if (ret < 0) {
3495 goto out;
3496 } else if (ret > 0) {
3497 ret = 0;
3498 goto out;
3499 }
3500
3501 di = btrfs_match_dir_item_name(fs_info, path, parent_ref->name,
3502 parent_ref->name_len);
3503 if (!di) {
3504 ret = 0;
3505 goto out;
3506 }
3507 /*
3508 * di_key.objectid has the number of the inode that has a dentry in the
3509 * parent directory with the same name that sctx->cur_ino is being
3510 * renamed to. We need to check if that inode is in the send root as
3511 * well and if it is currently marked as an inode with a pending rename,
3512 * if it is, we need to delay the rename of sctx->cur_ino as well, so
3513 * that it happens after that other inode is renamed.
3514 */
3515 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &di_key);
3516 if (di_key.type != BTRFS_INODE_ITEM_KEY) {
3517 ret = 0;
3518 goto out;
3519 }
3520
3521 ret = get_inode_info(sctx->parent_root, di_key.objectid, NULL,
3522 &left_gen, NULL, NULL, NULL, NULL);
3523 if (ret < 0)
3524 goto out;
3525 ret = get_inode_info(sctx->send_root, di_key.objectid, NULL,
3526 &right_gen, NULL, NULL, NULL, NULL);
3527 if (ret < 0) {
3528 if (ret == -ENOENT)
3529 ret = 0;
3530 goto out;
3531 }
3532
3533 /* Different inode, no need to delay the rename of sctx->cur_ino */
3534 if (right_gen != left_gen) {
3535 ret = 0;
3536 goto out;
3537 }
3538
3539 wdm = get_waiting_dir_move(sctx, di_key.objectid);
3540 if (wdm && !wdm->orphanized) {
3541 ret = add_pending_dir_move(sctx,
3542 sctx->cur_ino,
3543 sctx->cur_inode_gen,
3544 di_key.objectid,
3545 &sctx->new_refs,
3546 &sctx->deleted_refs,
3547 is_orphan);
3548 if (!ret)
3549 ret = 1;
3550 }
3551 out:
3552 btrfs_free_path(path);
3553 return ret;
3554 }
3555
3556 /*
3557 * Check if inode ino2, or any of its ancestors, is inode ino1.
3558 * Return 1 if true, 0 if false and < 0 on error.
3559 */
check_ino_in_path(struct btrfs_root *root, const u64 ino1, const u64 ino1_gen, const u64 ino2, const u64 ino2_gen, struct fs_path *fs_path)3560 static int check_ino_in_path(struct btrfs_root *root,
3561 const u64 ino1,
3562 const u64 ino1_gen,
3563 const u64 ino2,
3564 const u64 ino2_gen,
3565 struct fs_path *fs_path)
3566 {
3567 u64 ino = ino2;
3568
3569 if (ino1 == ino2)
3570 return ino1_gen == ino2_gen;
3571
3572 while (ino > BTRFS_FIRST_FREE_OBJECTID) {
3573 u64 parent;
3574 u64 parent_gen;
3575 int ret;
3576
3577 fs_path_reset(fs_path);
3578 ret = get_first_ref(root, ino, &parent, &parent_gen, fs_path);
3579 if (ret < 0)
3580 return ret;
3581 if (parent == ino1)
3582 return parent_gen == ino1_gen;
3583 ino = parent;
3584 }
3585 return 0;
3586 }
3587
3588 /*
3589 * Check if ino ino1 is an ancestor of inode ino2 in the given root for any
3590 * possible path (in case ino2 is not a directory and has multiple hard links).
3591 * Return 1 if true, 0 if false and < 0 on error.
3592 */
is_ancestor(struct btrfs_root *root, const u64 ino1, const u64 ino1_gen, const u64 ino2, struct fs_path *fs_path)3593 static int is_ancestor(struct btrfs_root *root,
3594 const u64 ino1,
3595 const u64 ino1_gen,
3596 const u64 ino2,
3597 struct fs_path *fs_path)
3598 {
3599 bool free_fs_path = false;
3600 int ret = 0;
3601 struct btrfs_path *path = NULL;
3602 struct btrfs_key key;
3603
3604 if (!fs_path) {
3605 fs_path = fs_path_alloc();
3606 if (!fs_path)
3607 return -ENOMEM;
3608 free_fs_path = true;
3609 }
3610
3611 path = alloc_path_for_send();
3612 if (!path) {
3613 ret = -ENOMEM;
3614 goto out;
3615 }
3616
3617 key.objectid = ino2;
3618 key.type = BTRFS_INODE_REF_KEY;
3619 key.offset = 0;
3620
3621 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3622 if (ret < 0)
3623 goto out;
3624
3625 while (true) {
3626 struct extent_buffer *leaf = path->nodes[0];
3627 int slot = path->slots[0];
3628 u32 cur_offset = 0;
3629 u32 item_size;
3630
3631 if (slot >= btrfs_header_nritems(leaf)) {
3632 ret = btrfs_next_leaf(root, path);
3633 if (ret < 0)
3634 goto out;
3635 if (ret > 0)
3636 break;
3637 continue;
3638 }
3639
3640 btrfs_item_key_to_cpu(leaf, &key, slot);
3641 if (key.objectid != ino2)
3642 break;
3643 if (key.type != BTRFS_INODE_REF_KEY &&
3644 key.type != BTRFS_INODE_EXTREF_KEY)
3645 break;
3646
3647 item_size = btrfs_item_size_nr(leaf, slot);
3648 while (cur_offset < item_size) {
3649 u64 parent;
3650 u64 parent_gen;
3651
3652 if (key.type == BTRFS_INODE_EXTREF_KEY) {
3653 unsigned long ptr;
3654 struct btrfs_inode_extref *extref;
3655
3656 ptr = btrfs_item_ptr_offset(leaf, slot);
3657 extref = (struct btrfs_inode_extref *)
3658 (ptr + cur_offset);
3659 parent = btrfs_inode_extref_parent(leaf,
3660 extref);
3661 cur_offset += sizeof(*extref);
3662 cur_offset += btrfs_inode_extref_name_len(leaf,
3663 extref);
3664 } else {
3665 parent = key.offset;
3666 cur_offset = item_size;
3667 }
3668
3669 ret = get_inode_info(root, parent, NULL, &parent_gen,
3670 NULL, NULL, NULL, NULL);
3671 if (ret < 0)
3672 goto out;
3673 ret = check_ino_in_path(root, ino1, ino1_gen,
3674 parent, parent_gen, fs_path);
3675 if (ret)
3676 goto out;
3677 }
3678 path->slots[0]++;
3679 }
3680 ret = 0;
3681 out:
3682 btrfs_free_path(path);
3683 if (free_fs_path)
3684 fs_path_free(fs_path);
3685 return ret;
3686 }
3687
wait_for_parent_move(struct send_ctx *sctx, struct recorded_ref *parent_ref, const bool is_orphan)3688 static int wait_for_parent_move(struct send_ctx *sctx,
3689 struct recorded_ref *parent_ref,
3690 const bool is_orphan)
3691 {
3692 int ret = 0;
3693 u64 ino = parent_ref->dir;
3694 u64 ino_gen = parent_ref->dir_gen;
3695 u64 parent_ino_before, parent_ino_after;
3696 struct fs_path *path_before = NULL;
3697 struct fs_path *path_after = NULL;
3698 int len1, len2;
3699
3700 path_after = fs_path_alloc();
3701 path_before = fs_path_alloc();
3702 if (!path_after || !path_before) {
3703 ret = -ENOMEM;
3704 goto out;
3705 }
3706
3707 /*
3708 * Our current directory inode may not yet be renamed/moved because some
3709 * ancestor (immediate or not) has to be renamed/moved first. So find if
3710 * such ancestor exists and make sure our own rename/move happens after
3711 * that ancestor is processed to avoid path build infinite loops (done
3712 * at get_cur_path()).
3713 */
3714 while (ino > BTRFS_FIRST_FREE_OBJECTID) {
3715 u64 parent_ino_after_gen;
3716
3717 if (is_waiting_for_move(sctx, ino)) {
3718 /*
3719 * If the current inode is an ancestor of ino in the
3720 * parent root, we need to delay the rename of the
3721 * current inode, otherwise don't delayed the rename
3722 * because we can end up with a circular dependency
3723 * of renames, resulting in some directories never
3724 * getting the respective rename operations issued in
3725 * the send stream or getting into infinite path build
3726 * loops.
3727 */
3728 ret = is_ancestor(sctx->parent_root,
3729 sctx->cur_ino, sctx->cur_inode_gen,
3730 ino, path_before);
3731 if (ret)
3732 break;
3733 }
3734
3735 fs_path_reset(path_before);
3736 fs_path_reset(path_after);
3737
3738 ret = get_first_ref(sctx->send_root, ino, &parent_ino_after,
3739 &parent_ino_after_gen, path_after);
3740 if (ret < 0)
3741 goto out;
3742 ret = get_first_ref(sctx->parent_root, ino, &parent_ino_before,
3743 NULL, path_before);
3744 if (ret < 0 && ret != -ENOENT) {
3745 goto out;
3746 } else if (ret == -ENOENT) {
3747 ret = 0;
3748 break;
3749 }
3750
3751 len1 = fs_path_len(path_before);
3752 len2 = fs_path_len(path_after);
3753 if (ino > sctx->cur_ino &&
3754 (parent_ino_before != parent_ino_after || len1 != len2 ||
3755 memcmp(path_before->start, path_after->start, len1))) {
3756 u64 parent_ino_gen;
3757
3758 ret = get_inode_info(sctx->parent_root, ino, NULL,
3759 &parent_ino_gen, NULL, NULL, NULL,
3760 NULL);
3761 if (ret < 0)
3762 goto out;
3763 if (ino_gen == parent_ino_gen) {
3764 ret = 1;
3765 break;
3766 }
3767 }
3768 ino = parent_ino_after;
3769 ino_gen = parent_ino_after_gen;
3770 }
3771
3772 out:
3773 fs_path_free(path_before);
3774 fs_path_free(path_after);
3775
3776 if (ret == 1) {
3777 ret = add_pending_dir_move(sctx,
3778 sctx->cur_ino,
3779 sctx->cur_inode_gen,
3780 ino,
3781 &sctx->new_refs,
3782 &sctx->deleted_refs,
3783 is_orphan);
3784 if (!ret)
3785 ret = 1;
3786 }
3787
3788 return ret;
3789 }
3790
update_ref_path(struct send_ctx *sctx, struct recorded_ref *ref)3791 static int update_ref_path(struct send_ctx *sctx, struct recorded_ref *ref)
3792 {
3793 int ret;
3794 struct fs_path *new_path;
3795
3796 /*
3797 * Our reference's name member points to its full_path member string, so
3798 * we use here a new path.
3799 */
3800 new_path = fs_path_alloc();
3801 if (!new_path)
3802 return -ENOMEM;
3803
3804 ret = get_cur_path(sctx, ref->dir, ref->dir_gen, new_path);
3805 if (ret < 0) {
3806 fs_path_free(new_path);
3807 return ret;
3808 }
3809 ret = fs_path_add(new_path, ref->name, ref->name_len);
3810 if (ret < 0) {
3811 fs_path_free(new_path);
3812 return ret;
3813 }
3814
3815 fs_path_free(ref->full_path);
3816 set_ref_path(ref, new_path);
3817
3818 return 0;
3819 }
3820
3821 /*
3822 * When processing the new references for an inode we may orphanize an existing
3823 * directory inode because its old name conflicts with one of the new references
3824 * of the current inode. Later, when processing another new reference of our
3825 * inode, we might need to orphanize another inode, but the path we have in the
3826 * reference reflects the pre-orphanization name of the directory we previously
3827 * orphanized. For example:
3828 *
3829 * parent snapshot looks like:
3830 *
3831 * . (ino 256)
3832 * |----- f1 (ino 257)
3833 * |----- f2 (ino 258)
3834 * |----- d1/ (ino 259)
3835 * |----- d2/ (ino 260)
3836 *
3837 * send snapshot looks like:
3838 *
3839 * . (ino 256)
3840 * |----- d1 (ino 258)
3841 * |----- f2/ (ino 259)
3842 * |----- f2_link/ (ino 260)
3843 * | |----- f1 (ino 257)
3844 * |
3845 * |----- d2 (ino 258)
3846 *
3847 * When processing inode 257 we compute the name for inode 259 as "d1", and we
3848 * cache it in the name cache. Later when we start processing inode 258, when
3849 * collecting all its new references we set a full path of "d1/d2" for its new
3850 * reference with name "d2". When we start processing the new references we
3851 * start by processing the new reference with name "d1", and this results in
3852 * orphanizing inode 259, since its old reference causes a conflict. Then we
3853 * move on the next new reference, with name "d2", and we find out we must
3854 * orphanize inode 260, as its old reference conflicts with ours - but for the
3855 * orphanization we use a source path corresponding to the path we stored in the
3856 * new reference, which is "d1/d2" and not "o259-6-0/d2" - this makes the
3857 * receiver fail since the path component "d1/" no longer exists, it was renamed
3858 * to "o259-6-0/" when processing the previous new reference. So in this case we
3859 * must recompute the path in the new reference and use it for the new
3860 * orphanization operation.
3861 */
refresh_ref_path(struct send_ctx *sctx, struct recorded_ref *ref)3862 static int refresh_ref_path(struct send_ctx *sctx, struct recorded_ref *ref)
3863 {
3864 char *name;
3865 int ret;
3866
3867 name = kmemdup(ref->name, ref->name_len, GFP_KERNEL);
3868 if (!name)
3869 return -ENOMEM;
3870
3871 fs_path_reset(ref->full_path);
3872 ret = get_cur_path(sctx, ref->dir, ref->dir_gen, ref->full_path);
3873 if (ret < 0)
3874 goto out;
3875
3876 ret = fs_path_add(ref->full_path, name, ref->name_len);
3877 if (ret < 0)
3878 goto out;
3879
3880 /* Update the reference's base name pointer. */
3881 set_ref_path(ref, ref->full_path);
3882 out:
3883 kfree(name);
3884 return ret;
3885 }
3886
3887 /*
3888 * This does all the move/link/unlink/rmdir magic.
3889 */
process_recorded_refs(struct send_ctx *sctx, int *pending_move)3890 static int process_recorded_refs(struct send_ctx *sctx, int *pending_move)
3891 {
3892 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
3893 int ret = 0;
3894 struct recorded_ref *cur;
3895 struct recorded_ref *cur2;
3896 struct list_head check_dirs;
3897 struct fs_path *valid_path = NULL;
3898 u64 ow_inode = 0;
3899 u64 ow_gen;
3900 u64 ow_mode;
3901 int did_overwrite = 0;
3902 int is_orphan = 0;
3903 u64 last_dir_ino_rm = 0;
3904 bool can_rename = true;
3905 bool orphanized_dir = false;
3906 bool orphanized_ancestor = false;
3907
3908 btrfs_debug(fs_info, "process_recorded_refs %llu", sctx->cur_ino);
3909
3910 /*
3911 * This should never happen as the root dir always has the same ref
3912 * which is always '..'
3913 */
3914 BUG_ON(sctx->cur_ino <= BTRFS_FIRST_FREE_OBJECTID);
3915 INIT_LIST_HEAD(&check_dirs);
3916
3917 valid_path = fs_path_alloc();
3918 if (!valid_path) {
3919 ret = -ENOMEM;
3920 goto out;
3921 }
3922
3923 /*
3924 * First, check if the first ref of the current inode was overwritten
3925 * before. If yes, we know that the current inode was already orphanized
3926 * and thus use the orphan name. If not, we can use get_cur_path to
3927 * get the path of the first ref as it would like while receiving at
3928 * this point in time.
3929 * New inodes are always orphan at the beginning, so force to use the
3930 * orphan name in this case.
3931 * The first ref is stored in valid_path and will be updated if it
3932 * gets moved around.
3933 */
3934 if (!sctx->cur_inode_new) {
3935 ret = did_overwrite_first_ref(sctx, sctx->cur_ino,
3936 sctx->cur_inode_gen);
3937 if (ret < 0)
3938 goto out;
3939 if (ret)
3940 did_overwrite = 1;
3941 }
3942 if (sctx->cur_inode_new || did_overwrite) {
3943 ret = gen_unique_name(sctx, sctx->cur_ino,
3944 sctx->cur_inode_gen, valid_path);
3945 if (ret < 0)
3946 goto out;
3947 is_orphan = 1;
3948 } else {
3949 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen,
3950 valid_path);
3951 if (ret < 0)
3952 goto out;
3953 }
3954
3955 /*
3956 * Before doing any rename and link operations, do a first pass on the
3957 * new references to orphanize any unprocessed inodes that may have a
3958 * reference that conflicts with one of the new references of the current
3959 * inode. This needs to happen first because a new reference may conflict
3960 * with the old reference of a parent directory, so we must make sure
3961 * that the path used for link and rename commands don't use an
3962 * orphanized name when an ancestor was not yet orphanized.
3963 *
3964 * Example:
3965 *
3966 * Parent snapshot:
3967 *
3968 * . (ino 256)
3969 * |----- testdir/ (ino 259)
3970 * | |----- a (ino 257)
3971 * |
3972 * |----- b (ino 258)
3973 *
3974 * Send snapshot:
3975 *
3976 * . (ino 256)
3977 * |----- testdir_2/ (ino 259)
3978 * | |----- a (ino 260)
3979 * |
3980 * |----- testdir (ino 257)
3981 * |----- b (ino 257)
3982 * |----- b2 (ino 258)
3983 *
3984 * Processing the new reference for inode 257 with name "b" may happen
3985 * before processing the new reference with name "testdir". If so, we
3986 * must make sure that by the time we send a link command to create the
3987 * hard link "b", inode 259 was already orphanized, since the generated
3988 * path in "valid_path" already contains the orphanized name for 259.
3989 * We are processing inode 257, so only later when processing 259 we do
3990 * the rename operation to change its temporary (orphanized) name to
3991 * "testdir_2".
3992 */
3993 list_for_each_entry(cur, &sctx->new_refs, list) {
3994 ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen);
3995 if (ret < 0)
3996 goto out;
3997 if (ret == inode_state_will_create)
3998 continue;
3999
4000 /*
4001 * Check if this new ref would overwrite the first ref of another
4002 * unprocessed inode. If yes, orphanize the overwritten inode.
4003 * If we find an overwritten ref that is not the first ref,
4004 * simply unlink it.
4005 */
4006 ret = will_overwrite_ref(sctx, cur->dir, cur->dir_gen,
4007 cur->name, cur->name_len,
4008 &ow_inode, &ow_gen, &ow_mode);
4009 if (ret < 0)
4010 goto out;
4011 if (ret) {
4012 ret = is_first_ref(sctx->parent_root,
4013 ow_inode, cur->dir, cur->name,
4014 cur->name_len);
4015 if (ret < 0)
4016 goto out;
4017 if (ret) {
4018 struct name_cache_entry *nce;
4019 struct waiting_dir_move *wdm;
4020
4021 if (orphanized_dir) {
4022 ret = refresh_ref_path(sctx, cur);
4023 if (ret < 0)
4024 goto out;
4025 }
4026
4027 ret = orphanize_inode(sctx, ow_inode, ow_gen,
4028 cur->full_path);
4029 if (ret < 0)
4030 goto out;
4031 if (S_ISDIR(ow_mode))
4032 orphanized_dir = true;
4033
4034 /*
4035 * If ow_inode has its rename operation delayed
4036 * make sure that its orphanized name is used in
4037 * the source path when performing its rename
4038 * operation.
4039 */
4040 if (is_waiting_for_move(sctx, ow_inode)) {
4041 wdm = get_waiting_dir_move(sctx,
4042 ow_inode);
4043 ASSERT(wdm);
4044 wdm->orphanized = true;
4045 }
4046
4047 /*
4048 * Make sure we clear our orphanized inode's
4049 * name from the name cache. This is because the
4050 * inode ow_inode might be an ancestor of some
4051 * other inode that will be orphanized as well
4052 * later and has an inode number greater than
4053 * sctx->send_progress. We need to prevent
4054 * future name lookups from using the old name
4055 * and get instead the orphan name.
4056 */
4057 nce = name_cache_search(sctx, ow_inode, ow_gen);
4058 if (nce) {
4059 name_cache_delete(sctx, nce);
4060 kfree(nce);
4061 }
4062
4063 /*
4064 * ow_inode might currently be an ancestor of
4065 * cur_ino, therefore compute valid_path (the
4066 * current path of cur_ino) again because it
4067 * might contain the pre-orphanization name of
4068 * ow_inode, which is no longer valid.
4069 */
4070 ret = is_ancestor(sctx->parent_root,
4071 ow_inode, ow_gen,
4072 sctx->cur_ino, NULL);
4073 if (ret > 0) {
4074 orphanized_ancestor = true;
4075 fs_path_reset(valid_path);
4076 ret = get_cur_path(sctx, sctx->cur_ino,
4077 sctx->cur_inode_gen,
4078 valid_path);
4079 }
4080 if (ret < 0)
4081 goto out;
4082 } else {
4083 /*
4084 * If we previously orphanized a directory that
4085 * collided with a new reference that we already
4086 * processed, recompute the current path because
4087 * that directory may be part of the path.
4088 */
4089 if (orphanized_dir) {
4090 ret = refresh_ref_path(sctx, cur);
4091 if (ret < 0)
4092 goto out;
4093 }
4094 ret = send_unlink(sctx, cur->full_path);
4095 if (ret < 0)
4096 goto out;
4097 }
4098 }
4099
4100 }
4101
4102 list_for_each_entry(cur, &sctx->new_refs, list) {
4103 /*
4104 * We may have refs where the parent directory does not exist
4105 * yet. This happens if the parent directories inum is higher
4106 * than the current inum. To handle this case, we create the
4107 * parent directory out of order. But we need to check if this
4108 * did already happen before due to other refs in the same dir.
4109 */
4110 ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen);
4111 if (ret < 0)
4112 goto out;
4113 if (ret == inode_state_will_create) {
4114 ret = 0;
4115 /*
4116 * First check if any of the current inodes refs did
4117 * already create the dir.
4118 */
4119 list_for_each_entry(cur2, &sctx->new_refs, list) {
4120 if (cur == cur2)
4121 break;
4122 if (cur2->dir == cur->dir) {
4123 ret = 1;
4124 break;
4125 }
4126 }
4127
4128 /*
4129 * If that did not happen, check if a previous inode
4130 * did already create the dir.
4131 */
4132 if (!ret)
4133 ret = did_create_dir(sctx, cur->dir);
4134 if (ret < 0)
4135 goto out;
4136 if (!ret) {
4137 ret = send_create_inode(sctx, cur->dir);
4138 if (ret < 0)
4139 goto out;
4140 }
4141 }
4142
4143 if (S_ISDIR(sctx->cur_inode_mode) && sctx->parent_root) {
4144 ret = wait_for_dest_dir_move(sctx, cur, is_orphan);
4145 if (ret < 0)
4146 goto out;
4147 if (ret == 1) {
4148 can_rename = false;
4149 *pending_move = 1;
4150 }
4151 }
4152
4153 if (S_ISDIR(sctx->cur_inode_mode) && sctx->parent_root &&
4154 can_rename) {
4155 ret = wait_for_parent_move(sctx, cur, is_orphan);
4156 if (ret < 0)
4157 goto out;
4158 if (ret == 1) {
4159 can_rename = false;
4160 *pending_move = 1;
4161 }
4162 }
4163
4164 /*
4165 * link/move the ref to the new place. If we have an orphan
4166 * inode, move it and update valid_path. If not, link or move
4167 * it depending on the inode mode.
4168 */
4169 if (is_orphan && can_rename) {
4170 ret = send_rename(sctx, valid_path, cur->full_path);
4171 if (ret < 0)
4172 goto out;
4173 is_orphan = 0;
4174 ret = fs_path_copy(valid_path, cur->full_path);
4175 if (ret < 0)
4176 goto out;
4177 } else if (can_rename) {
4178 if (S_ISDIR(sctx->cur_inode_mode)) {
4179 /*
4180 * Dirs can't be linked, so move it. For moved
4181 * dirs, we always have one new and one deleted
4182 * ref. The deleted ref is ignored later.
4183 */
4184 ret = send_rename(sctx, valid_path,
4185 cur->full_path);
4186 if (!ret)
4187 ret = fs_path_copy(valid_path,
4188 cur->full_path);
4189 if (ret < 0)
4190 goto out;
4191 } else {
4192 /*
4193 * We might have previously orphanized an inode
4194 * which is an ancestor of our current inode,
4195 * so our reference's full path, which was
4196 * computed before any such orphanizations, must
4197 * be updated.
4198 */
4199 if (orphanized_dir) {
4200 ret = update_ref_path(sctx, cur);
4201 if (ret < 0)
4202 goto out;
4203 }
4204 ret = send_link(sctx, cur->full_path,
4205 valid_path);
4206 if (ret < 0)
4207 goto out;
4208 }
4209 }
4210 ret = dup_ref(cur, &check_dirs);
4211 if (ret < 0)
4212 goto out;
4213 }
4214
4215 if (S_ISDIR(sctx->cur_inode_mode) && sctx->cur_inode_deleted) {
4216 /*
4217 * Check if we can already rmdir the directory. If not,
4218 * orphanize it. For every dir item inside that gets deleted
4219 * later, we do this check again and rmdir it then if possible.
4220 * See the use of check_dirs for more details.
4221 */
4222 ret = can_rmdir(sctx, sctx->cur_ino, sctx->cur_inode_gen,
4223 sctx->cur_ino);
4224 if (ret < 0)
4225 goto out;
4226 if (ret) {
4227 ret = send_rmdir(sctx, valid_path);
4228 if (ret < 0)
4229 goto out;
4230 } else if (!is_orphan) {
4231 ret = orphanize_inode(sctx, sctx->cur_ino,
4232 sctx->cur_inode_gen, valid_path);
4233 if (ret < 0)
4234 goto out;
4235 is_orphan = 1;
4236 }
4237
4238 list_for_each_entry(cur, &sctx->deleted_refs, list) {
4239 ret = dup_ref(cur, &check_dirs);
4240 if (ret < 0)
4241 goto out;
4242 }
4243 } else if (S_ISDIR(sctx->cur_inode_mode) &&
4244 !list_empty(&sctx->deleted_refs)) {
4245 /*
4246 * We have a moved dir. Add the old parent to check_dirs
4247 */
4248 cur = list_entry(sctx->deleted_refs.next, struct recorded_ref,
4249 list);
4250 ret = dup_ref(cur, &check_dirs);
4251 if (ret < 0)
4252 goto out;
4253 } else if (!S_ISDIR(sctx->cur_inode_mode)) {
4254 /*
4255 * We have a non dir inode. Go through all deleted refs and
4256 * unlink them if they were not already overwritten by other
4257 * inodes.
4258 */
4259 list_for_each_entry(cur, &sctx->deleted_refs, list) {
4260 ret = did_overwrite_ref(sctx, cur->dir, cur->dir_gen,
4261 sctx->cur_ino, sctx->cur_inode_gen,
4262 cur->name, cur->name_len);
4263 if (ret < 0)
4264 goto out;
4265 if (!ret) {
4266 /*
4267 * If we orphanized any ancestor before, we need
4268 * to recompute the full path for deleted names,
4269 * since any such path was computed before we
4270 * processed any references and orphanized any
4271 * ancestor inode.
4272 */
4273 if (orphanized_ancestor) {
4274 ret = update_ref_path(sctx, cur);
4275 if (ret < 0)
4276 goto out;
4277 }
4278 ret = send_unlink(sctx, cur->full_path);
4279 if (ret < 0)
4280 goto out;
4281 }
4282 ret = dup_ref(cur, &check_dirs);
4283 if (ret < 0)
4284 goto out;
4285 }
4286 /*
4287 * If the inode is still orphan, unlink the orphan. This may
4288 * happen when a previous inode did overwrite the first ref
4289 * of this inode and no new refs were added for the current
4290 * inode. Unlinking does not mean that the inode is deleted in
4291 * all cases. There may still be links to this inode in other
4292 * places.
4293 */
4294 if (is_orphan) {
4295 ret = send_unlink(sctx, valid_path);
4296 if (ret < 0)
4297 goto out;
4298 }
4299 }
4300
4301 /*
4302 * We did collect all parent dirs where cur_inode was once located. We
4303 * now go through all these dirs and check if they are pending for
4304 * deletion and if it's finally possible to perform the rmdir now.
4305 * We also update the inode stats of the parent dirs here.
4306 */
4307 list_for_each_entry(cur, &check_dirs, list) {
4308 /*
4309 * In case we had refs into dirs that were not processed yet,
4310 * we don't need to do the utime and rmdir logic for these dirs.
4311 * The dir will be processed later.
4312 */
4313 if (cur->dir > sctx->cur_ino)
4314 continue;
4315
4316 ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen);
4317 if (ret < 0)
4318 goto out;
4319
4320 if (ret == inode_state_did_create ||
4321 ret == inode_state_no_change) {
4322 /* TODO delayed utimes */
4323 ret = send_utimes(sctx, cur->dir, cur->dir_gen);
4324 if (ret < 0)
4325 goto out;
4326 } else if (ret == inode_state_did_delete &&
4327 cur->dir != last_dir_ino_rm) {
4328 ret = can_rmdir(sctx, cur->dir, cur->dir_gen,
4329 sctx->cur_ino);
4330 if (ret < 0)
4331 goto out;
4332 if (ret) {
4333 ret = get_cur_path(sctx, cur->dir,
4334 cur->dir_gen, valid_path);
4335 if (ret < 0)
4336 goto out;
4337 ret = send_rmdir(sctx, valid_path);
4338 if (ret < 0)
4339 goto out;
4340 last_dir_ino_rm = cur->dir;
4341 }
4342 }
4343 }
4344
4345 ret = 0;
4346
4347 out:
4348 __free_recorded_refs(&check_dirs);
4349 free_recorded_refs(sctx);
4350 fs_path_free(valid_path);
4351 return ret;
4352 }
4353
record_ref(struct btrfs_root *root, u64 dir, struct fs_path *name, void *ctx, struct list_head *refs)4354 static int record_ref(struct btrfs_root *root, u64 dir, struct fs_path *name,
4355 void *ctx, struct list_head *refs)
4356 {
4357 int ret = 0;
4358 struct send_ctx *sctx = ctx;
4359 struct fs_path *p;
4360 u64 gen;
4361
4362 p = fs_path_alloc();
4363 if (!p)
4364 return -ENOMEM;
4365
4366 ret = get_inode_info(root, dir, NULL, &gen, NULL, NULL,
4367 NULL, NULL);
4368 if (ret < 0)
4369 goto out;
4370
4371 ret = get_cur_path(sctx, dir, gen, p);
4372 if (ret < 0)
4373 goto out;
4374 ret = fs_path_add_path(p, name);
4375 if (ret < 0)
4376 goto out;
4377
4378 ret = __record_ref(refs, dir, gen, p);
4379
4380 out:
4381 if (ret)
4382 fs_path_free(p);
4383 return ret;
4384 }
4385
__record_new_ref(int num, u64 dir, int index, struct fs_path *name, void *ctx)4386 static int __record_new_ref(int num, u64 dir, int index,
4387 struct fs_path *name,
4388 void *ctx)
4389 {
4390 struct send_ctx *sctx = ctx;
4391 return record_ref(sctx->send_root, dir, name, ctx, &sctx->new_refs);
4392 }
4393
4394
__record_deleted_ref(int num, u64 dir, int index, struct fs_path *name, void *ctx)4395 static int __record_deleted_ref(int num, u64 dir, int index,
4396 struct fs_path *name,
4397 void *ctx)
4398 {
4399 struct send_ctx *sctx = ctx;
4400 return record_ref(sctx->parent_root, dir, name, ctx,
4401 &sctx->deleted_refs);
4402 }
4403
record_new_ref(struct send_ctx *sctx)4404 static int record_new_ref(struct send_ctx *sctx)
4405 {
4406 int ret;
4407
4408 ret = iterate_inode_ref(sctx->send_root, sctx->left_path,
4409 sctx->cmp_key, 0, __record_new_ref, sctx);
4410 if (ret < 0)
4411 goto out;
4412 ret = 0;
4413
4414 out:
4415 return ret;
4416 }
4417
record_deleted_ref(struct send_ctx *sctx)4418 static int record_deleted_ref(struct send_ctx *sctx)
4419 {
4420 int ret;
4421
4422 ret = iterate_inode_ref(sctx->parent_root, sctx->right_path,
4423 sctx->cmp_key, 0, __record_deleted_ref, sctx);
4424 if (ret < 0)
4425 goto out;
4426 ret = 0;
4427
4428 out:
4429 return ret;
4430 }
4431
4432 struct find_ref_ctx {
4433 u64 dir;
4434 u64 dir_gen;
4435 struct btrfs_root *root;
4436 struct fs_path *name;
4437 int found_idx;
4438 };
4439
__find_iref(int num, u64 dir, int index, struct fs_path *name, void *ctx_)4440 static int __find_iref(int num, u64 dir, int index,
4441 struct fs_path *name,
4442 void *ctx_)
4443 {
4444 struct find_ref_ctx *ctx = ctx_;
4445 u64 dir_gen;
4446 int ret;
4447
4448 if (dir == ctx->dir && fs_path_len(name) == fs_path_len(ctx->name) &&
4449 strncmp(name->start, ctx->name->start, fs_path_len(name)) == 0) {
4450 /*
4451 * To avoid doing extra lookups we'll only do this if everything
4452 * else matches.
4453 */
4454 ret = get_inode_info(ctx->root, dir, NULL, &dir_gen, NULL,
4455 NULL, NULL, NULL);
4456 if (ret)
4457 return ret;
4458 if (dir_gen != ctx->dir_gen)
4459 return 0;
4460 ctx->found_idx = num;
4461 return 1;
4462 }
4463 return 0;
4464 }
4465
find_iref(struct btrfs_root *root, struct btrfs_path *path, struct btrfs_key *key, u64 dir, u64 dir_gen, struct fs_path *name)4466 static int find_iref(struct btrfs_root *root,
4467 struct btrfs_path *path,
4468 struct btrfs_key *key,
4469 u64 dir, u64 dir_gen, struct fs_path *name)
4470 {
4471 int ret;
4472 struct find_ref_ctx ctx;
4473
4474 ctx.dir = dir;
4475 ctx.name = name;
4476 ctx.dir_gen = dir_gen;
4477 ctx.found_idx = -1;
4478 ctx.root = root;
4479
4480 ret = iterate_inode_ref(root, path, key, 0, __find_iref, &ctx);
4481 if (ret < 0)
4482 return ret;
4483
4484 if (ctx.found_idx == -1)
4485 return -ENOENT;
4486
4487 return ctx.found_idx;
4488 }
4489
__record_changed_new_ref(int num, u64 dir, int index, struct fs_path *name, void *ctx)4490 static int __record_changed_new_ref(int num, u64 dir, int index,
4491 struct fs_path *name,
4492 void *ctx)
4493 {
4494 u64 dir_gen;
4495 int ret;
4496 struct send_ctx *sctx = ctx;
4497
4498 ret = get_inode_info(sctx->send_root, dir, NULL, &dir_gen, NULL,
4499 NULL, NULL, NULL);
4500 if (ret)
4501 return ret;
4502
4503 ret = find_iref(sctx->parent_root, sctx->right_path,
4504 sctx->cmp_key, dir, dir_gen, name);
4505 if (ret == -ENOENT)
4506 ret = __record_new_ref(num, dir, index, name, sctx);
4507 else if (ret > 0)
4508 ret = 0;
4509
4510 return ret;
4511 }
4512
__record_changed_deleted_ref(int num, u64 dir, int index, struct fs_path *name, void *ctx)4513 static int __record_changed_deleted_ref(int num, u64 dir, int index,
4514 struct fs_path *name,
4515 void *ctx)
4516 {
4517 u64 dir_gen;
4518 int ret;
4519 struct send_ctx *sctx = ctx;
4520
4521 ret = get_inode_info(sctx->parent_root, dir, NULL, &dir_gen, NULL,
4522 NULL, NULL, NULL);
4523 if (ret)
4524 return ret;
4525
4526 ret = find_iref(sctx->send_root, sctx->left_path, sctx->cmp_key,
4527 dir, dir_gen, name);
4528 if (ret == -ENOENT)
4529 ret = __record_deleted_ref(num, dir, index, name, sctx);
4530 else if (ret > 0)
4531 ret = 0;
4532
4533 return ret;
4534 }
4535
record_changed_ref(struct send_ctx *sctx)4536 static int record_changed_ref(struct send_ctx *sctx)
4537 {
4538 int ret = 0;
4539
4540 ret = iterate_inode_ref(sctx->send_root, sctx->left_path,
4541 sctx->cmp_key, 0, __record_changed_new_ref, sctx);
4542 if (ret < 0)
4543 goto out;
4544 ret = iterate_inode_ref(sctx->parent_root, sctx->right_path,
4545 sctx->cmp_key, 0, __record_changed_deleted_ref, sctx);
4546 if (ret < 0)
4547 goto out;
4548 ret = 0;
4549
4550 out:
4551 return ret;
4552 }
4553
4554 /*
4555 * Record and process all refs at once. Needed when an inode changes the
4556 * generation number, which means that it was deleted and recreated.
4557 */
process_all_refs(struct send_ctx *sctx, enum btrfs_compare_tree_result cmd)4558 static int process_all_refs(struct send_ctx *sctx,
4559 enum btrfs_compare_tree_result cmd)
4560 {
4561 int ret;
4562 struct btrfs_root *root;
4563 struct btrfs_path *path;
4564 struct btrfs_key key;
4565 struct btrfs_key found_key;
4566 struct extent_buffer *eb;
4567 int slot;
4568 iterate_inode_ref_t cb;
4569 int pending_move = 0;
4570
4571 path = alloc_path_for_send();
4572 if (!path)
4573 return -ENOMEM;
4574
4575 if (cmd == BTRFS_COMPARE_TREE_NEW) {
4576 root = sctx->send_root;
4577 cb = __record_new_ref;
4578 } else if (cmd == BTRFS_COMPARE_TREE_DELETED) {
4579 root = sctx->parent_root;
4580 cb = __record_deleted_ref;
4581 } else {
4582 btrfs_err(sctx->send_root->fs_info,
4583 "Wrong command %d in process_all_refs", cmd);
4584 ret = -EINVAL;
4585 goto out;
4586 }
4587
4588 key.objectid = sctx->cmp_key->objectid;
4589 key.type = BTRFS_INODE_REF_KEY;
4590 key.offset = 0;
4591 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4592 if (ret < 0)
4593 goto out;
4594
4595 while (1) {
4596 eb = path->nodes[0];
4597 slot = path->slots[0];
4598 if (slot >= btrfs_header_nritems(eb)) {
4599 ret = btrfs_next_leaf(root, path);
4600 if (ret < 0)
4601 goto out;
4602 else if (ret > 0)
4603 break;
4604 continue;
4605 }
4606
4607 btrfs_item_key_to_cpu(eb, &found_key, slot);
4608
4609 if (found_key.objectid != key.objectid ||
4610 (found_key.type != BTRFS_INODE_REF_KEY &&
4611 found_key.type != BTRFS_INODE_EXTREF_KEY))
4612 break;
4613
4614 ret = iterate_inode_ref(root, path, &found_key, 0, cb, sctx);
4615 if (ret < 0)
4616 goto out;
4617
4618 path->slots[0]++;
4619 }
4620 btrfs_release_path(path);
4621
4622 /*
4623 * We don't actually care about pending_move as we are simply
4624 * re-creating this inode and will be rename'ing it into place once we
4625 * rename the parent directory.
4626 */
4627 ret = process_recorded_refs(sctx, &pending_move);
4628 out:
4629 btrfs_free_path(path);
4630 return ret;
4631 }
4632
send_set_xattr(struct send_ctx *sctx, struct fs_path *path, const char *name, int name_len, const char *data, int data_len)4633 static int send_set_xattr(struct send_ctx *sctx,
4634 struct fs_path *path,
4635 const char *name, int name_len,
4636 const char *data, int data_len)
4637 {
4638 int ret = 0;
4639
4640 ret = begin_cmd(sctx, BTRFS_SEND_C_SET_XATTR);
4641 if (ret < 0)
4642 goto out;
4643
4644 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
4645 TLV_PUT_STRING(sctx, BTRFS_SEND_A_XATTR_NAME, name, name_len);
4646 TLV_PUT(sctx, BTRFS_SEND_A_XATTR_DATA, data, data_len);
4647
4648 ret = send_cmd(sctx);
4649
4650 tlv_put_failure:
4651 out:
4652 return ret;
4653 }
4654
send_remove_xattr(struct send_ctx *sctx, struct fs_path *path, const char *name, int name_len)4655 static int send_remove_xattr(struct send_ctx *sctx,
4656 struct fs_path *path,
4657 const char *name, int name_len)
4658 {
4659 int ret = 0;
4660
4661 ret = begin_cmd(sctx, BTRFS_SEND_C_REMOVE_XATTR);
4662 if (ret < 0)
4663 goto out;
4664
4665 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
4666 TLV_PUT_STRING(sctx, BTRFS_SEND_A_XATTR_NAME, name, name_len);
4667
4668 ret = send_cmd(sctx);
4669
4670 tlv_put_failure:
4671 out:
4672 return ret;
4673 }
4674
__process_new_xattr(int num, struct btrfs_key *di_key, const char *name, int name_len, const char *data, int data_len, u8 type, void *ctx)4675 static int __process_new_xattr(int num, struct btrfs_key *di_key,
4676 const char *name, int name_len,
4677 const char *data, int data_len,
4678 u8 type, void *ctx)
4679 {
4680 int ret;
4681 struct send_ctx *sctx = ctx;
4682 struct fs_path *p;
4683 struct posix_acl_xattr_header dummy_acl;
4684
4685 /* Capabilities are emitted by finish_inode_if_needed */
4686 if (!strncmp(name, XATTR_NAME_CAPS, name_len))
4687 return 0;
4688
4689 p = fs_path_alloc();
4690 if (!p)
4691 return -ENOMEM;
4692
4693 /*
4694 * This hack is needed because empty acls are stored as zero byte
4695 * data in xattrs. Problem with that is, that receiving these zero byte
4696 * acls will fail later. To fix this, we send a dummy acl list that
4697 * only contains the version number and no entries.
4698 */
4699 if (!strncmp(name, XATTR_NAME_POSIX_ACL_ACCESS, name_len) ||
4700 !strncmp(name, XATTR_NAME_POSIX_ACL_DEFAULT, name_len)) {
4701 if (data_len == 0) {
4702 dummy_acl.a_version =
4703 cpu_to_le32(POSIX_ACL_XATTR_VERSION);
4704 data = (char *)&dummy_acl;
4705 data_len = sizeof(dummy_acl);
4706 }
4707 }
4708
4709 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4710 if (ret < 0)
4711 goto out;
4712
4713 ret = send_set_xattr(sctx, p, name, name_len, data, data_len);
4714
4715 out:
4716 fs_path_free(p);
4717 return ret;
4718 }
4719
__process_deleted_xattr(int num, struct btrfs_key *di_key, const char *name, int name_len, const char *data, int data_len, u8 type, void *ctx)4720 static int __process_deleted_xattr(int num, struct btrfs_key *di_key,
4721 const char *name, int name_len,
4722 const char *data, int data_len,
4723 u8 type, void *ctx)
4724 {
4725 int ret;
4726 struct send_ctx *sctx = ctx;
4727 struct fs_path *p;
4728
4729 p = fs_path_alloc();
4730 if (!p)
4731 return -ENOMEM;
4732
4733 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4734 if (ret < 0)
4735 goto out;
4736
4737 ret = send_remove_xattr(sctx, p, name, name_len);
4738
4739 out:
4740 fs_path_free(p);
4741 return ret;
4742 }
4743
process_new_xattr(struct send_ctx *sctx)4744 static int process_new_xattr(struct send_ctx *sctx)
4745 {
4746 int ret = 0;
4747
4748 ret = iterate_dir_item(sctx->send_root, sctx->left_path,
4749 __process_new_xattr, sctx);
4750
4751 return ret;
4752 }
4753
process_deleted_xattr(struct send_ctx *sctx)4754 static int process_deleted_xattr(struct send_ctx *sctx)
4755 {
4756 return iterate_dir_item(sctx->parent_root, sctx->right_path,
4757 __process_deleted_xattr, sctx);
4758 }
4759
4760 struct find_xattr_ctx {
4761 const char *name;
4762 int name_len;
4763 int found_idx;
4764 char *found_data;
4765 int found_data_len;
4766 };
4767
__find_xattr(int num, struct btrfs_key *di_key, const char *name, int name_len, const char *data, int data_len, u8 type, void *vctx)4768 static int __find_xattr(int num, struct btrfs_key *di_key,
4769 const char *name, int name_len,
4770 const char *data, int data_len,
4771 u8 type, void *vctx)
4772 {
4773 struct find_xattr_ctx *ctx = vctx;
4774
4775 if (name_len == ctx->name_len &&
4776 strncmp(name, ctx->name, name_len) == 0) {
4777 ctx->found_idx = num;
4778 ctx->found_data_len = data_len;
4779 ctx->found_data = kmemdup(data, data_len, GFP_KERNEL);
4780 if (!ctx->found_data)
4781 return -ENOMEM;
4782 return 1;
4783 }
4784 return 0;
4785 }
4786
find_xattr(struct btrfs_root *root, struct btrfs_path *path, struct btrfs_key *key, const char *name, int name_len, char **data, int *data_len)4787 static int find_xattr(struct btrfs_root *root,
4788 struct btrfs_path *path,
4789 struct btrfs_key *key,
4790 const char *name, int name_len,
4791 char **data, int *data_len)
4792 {
4793 int ret;
4794 struct find_xattr_ctx ctx;
4795
4796 ctx.name = name;
4797 ctx.name_len = name_len;
4798 ctx.found_idx = -1;
4799 ctx.found_data = NULL;
4800 ctx.found_data_len = 0;
4801
4802 ret = iterate_dir_item(root, path, __find_xattr, &ctx);
4803 if (ret < 0)
4804 return ret;
4805
4806 if (ctx.found_idx == -1)
4807 return -ENOENT;
4808 if (data) {
4809 *data = ctx.found_data;
4810 *data_len = ctx.found_data_len;
4811 } else {
4812 kfree(ctx.found_data);
4813 }
4814 return ctx.found_idx;
4815 }
4816
4817
__process_changed_new_xattr(int num, struct btrfs_key *di_key, const char *name, int name_len, const char *data, int data_len, u8 type, void *ctx)4818 static int __process_changed_new_xattr(int num, struct btrfs_key *di_key,
4819 const char *name, int name_len,
4820 const char *data, int data_len,
4821 u8 type, void *ctx)
4822 {
4823 int ret;
4824 struct send_ctx *sctx = ctx;
4825 char *found_data = NULL;
4826 int found_data_len = 0;
4827
4828 ret = find_xattr(sctx->parent_root, sctx->right_path,
4829 sctx->cmp_key, name, name_len, &found_data,
4830 &found_data_len);
4831 if (ret == -ENOENT) {
4832 ret = __process_new_xattr(num, di_key, name, name_len, data,
4833 data_len, type, ctx);
4834 } else if (ret >= 0) {
4835 if (data_len != found_data_len ||
4836 memcmp(data, found_data, data_len)) {
4837 ret = __process_new_xattr(num, di_key, name, name_len,
4838 data, data_len, type, ctx);
4839 } else {
4840 ret = 0;
4841 }
4842 }
4843
4844 kfree(found_data);
4845 return ret;
4846 }
4847
__process_changed_deleted_xattr(int num, struct btrfs_key *di_key, const char *name, int name_len, const char *data, int data_len, u8 type, void *ctx)4848 static int __process_changed_deleted_xattr(int num, struct btrfs_key *di_key,
4849 const char *name, int name_len,
4850 const char *data, int data_len,
4851 u8 type, void *ctx)
4852 {
4853 int ret;
4854 struct send_ctx *sctx = ctx;
4855
4856 ret = find_xattr(sctx->send_root, sctx->left_path, sctx->cmp_key,
4857 name, name_len, NULL, NULL);
4858 if (ret == -ENOENT)
4859 ret = __process_deleted_xattr(num, di_key, name, name_len, data,
4860 data_len, type, ctx);
4861 else if (ret >= 0)
4862 ret = 0;
4863
4864 return ret;
4865 }
4866
process_changed_xattr(struct send_ctx *sctx)4867 static int process_changed_xattr(struct send_ctx *sctx)
4868 {
4869 int ret = 0;
4870
4871 ret = iterate_dir_item(sctx->send_root, sctx->left_path,
4872 __process_changed_new_xattr, sctx);
4873 if (ret < 0)
4874 goto out;
4875 ret = iterate_dir_item(sctx->parent_root, sctx->right_path,
4876 __process_changed_deleted_xattr, sctx);
4877
4878 out:
4879 return ret;
4880 }
4881
process_all_new_xattrs(struct send_ctx *sctx)4882 static int process_all_new_xattrs(struct send_ctx *sctx)
4883 {
4884 int ret;
4885 struct btrfs_root *root;
4886 struct btrfs_path *path;
4887 struct btrfs_key key;
4888 struct btrfs_key found_key;
4889 struct extent_buffer *eb;
4890 int slot;
4891
4892 path = alloc_path_for_send();
4893 if (!path)
4894 return -ENOMEM;
4895
4896 root = sctx->send_root;
4897
4898 key.objectid = sctx->cmp_key->objectid;
4899 key.type = BTRFS_XATTR_ITEM_KEY;
4900 key.offset = 0;
4901 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4902 if (ret < 0)
4903 goto out;
4904
4905 while (1) {
4906 eb = path->nodes[0];
4907 slot = path->slots[0];
4908 if (slot >= btrfs_header_nritems(eb)) {
4909 ret = btrfs_next_leaf(root, path);
4910 if (ret < 0) {
4911 goto out;
4912 } else if (ret > 0) {
4913 ret = 0;
4914 break;
4915 }
4916 continue;
4917 }
4918
4919 btrfs_item_key_to_cpu(eb, &found_key, slot);
4920 if (found_key.objectid != key.objectid ||
4921 found_key.type != key.type) {
4922 ret = 0;
4923 goto out;
4924 }
4925
4926 ret = iterate_dir_item(root, path, __process_new_xattr, sctx);
4927 if (ret < 0)
4928 goto out;
4929
4930 path->slots[0]++;
4931 }
4932
4933 out:
4934 btrfs_free_path(path);
4935 return ret;
4936 }
4937
max_send_read_size(const struct send_ctx *sctx)4938 static inline u64 max_send_read_size(const struct send_ctx *sctx)
4939 {
4940 return sctx->send_max_size - SZ_16K;
4941 }
4942
put_data_header(struct send_ctx *sctx, u32 len)4943 static int put_data_header(struct send_ctx *sctx, u32 len)
4944 {
4945 struct btrfs_tlv_header *hdr;
4946
4947 if (sctx->send_max_size - sctx->send_size < sizeof(*hdr) + len)
4948 return -EOVERFLOW;
4949 hdr = (struct btrfs_tlv_header *)(sctx->send_buf + sctx->send_size);
4950 put_unaligned_le16(BTRFS_SEND_A_DATA, &hdr->tlv_type);
4951 put_unaligned_le16(len, &hdr->tlv_len);
4952 sctx->send_size += sizeof(*hdr);
4953 return 0;
4954 }
4955
put_file_data(struct send_ctx *sctx, u64 offset, u32 len)4956 static int put_file_data(struct send_ctx *sctx, u64 offset, u32 len)
4957 {
4958 struct btrfs_root *root = sctx->send_root;
4959 struct btrfs_fs_info *fs_info = root->fs_info;
4960 struct inode *inode;
4961 struct page *page;
4962 char *addr;
4963 pgoff_t index = offset >> PAGE_SHIFT;
4964 pgoff_t last_index;
4965 unsigned pg_offset = offset_in_page(offset);
4966 int ret;
4967
4968 ret = put_data_header(sctx, len);
4969 if (ret)
4970 return ret;
4971
4972 inode = btrfs_iget(fs_info->sb, sctx->cur_ino, root);
4973 if (IS_ERR(inode))
4974 return PTR_ERR(inode);
4975
4976 last_index = (offset + len - 1) >> PAGE_SHIFT;
4977
4978 /* initial readahead */
4979 memset(&sctx->ra, 0, sizeof(struct file_ra_state));
4980 file_ra_state_init(&sctx->ra, inode->i_mapping);
4981
4982 while (index <= last_index) {
4983 unsigned cur_len = min_t(unsigned, len,
4984 PAGE_SIZE - pg_offset);
4985
4986 page = find_lock_page(inode->i_mapping, index);
4987 if (!page) {
4988 page_cache_sync_readahead(inode->i_mapping, &sctx->ra,
4989 NULL, index, last_index + 1 - index);
4990
4991 page = find_or_create_page(inode->i_mapping, index,
4992 GFP_KERNEL);
4993 if (!page) {
4994 ret = -ENOMEM;
4995 break;
4996 }
4997 }
4998
4999 if (PageReadahead(page)) {
5000 page_cache_async_readahead(inode->i_mapping, &sctx->ra,
5001 NULL, page, index, last_index + 1 - index);
5002 }
5003
5004 if (!PageUptodate(page)) {
5005 btrfs_readpage(NULL, page);
5006 lock_page(page);
5007 if (!PageUptodate(page)) {
5008 unlock_page(page);
5009 btrfs_err(fs_info,
5010 "send: IO error at offset %llu for inode %llu root %llu",
5011 page_offset(page), sctx->cur_ino,
5012 sctx->send_root->root_key.objectid);
5013 put_page(page);
5014 ret = -EIO;
5015 break;
5016 }
5017 }
5018
5019 addr = kmap(page);
5020 memcpy(sctx->send_buf + sctx->send_size, addr + pg_offset,
5021 cur_len);
5022 kunmap(page);
5023 unlock_page(page);
5024 put_page(page);
5025 index++;
5026 pg_offset = 0;
5027 len -= cur_len;
5028 sctx->send_size += cur_len;
5029 }
5030 iput(inode);
5031 return ret;
5032 }
5033
5034 /*
5035 * Read some bytes from the current inode/file and send a write command to
5036 * user space.
5037 */
send_write(struct send_ctx *sctx, u64 offset, u32 len)5038 static int send_write(struct send_ctx *sctx, u64 offset, u32 len)
5039 {
5040 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
5041 int ret = 0;
5042 struct fs_path *p;
5043
5044 p = fs_path_alloc();
5045 if (!p)
5046 return -ENOMEM;
5047
5048 btrfs_debug(fs_info, "send_write offset=%llu, len=%d", offset, len);
5049
5050 ret = begin_cmd(sctx, BTRFS_SEND_C_WRITE);
5051 if (ret < 0)
5052 goto out;
5053
5054 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
5055 if (ret < 0)
5056 goto out;
5057
5058 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
5059 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
5060 ret = put_file_data(sctx, offset, len);
5061 if (ret < 0)
5062 goto out;
5063
5064 ret = send_cmd(sctx);
5065
5066 tlv_put_failure:
5067 out:
5068 fs_path_free(p);
5069 return ret;
5070 }
5071
5072 /*
5073 * Send a clone command to user space.
5074 */
send_clone(struct send_ctx *sctx, u64 offset, u32 len, struct clone_root *clone_root)5075 static int send_clone(struct send_ctx *sctx,
5076 u64 offset, u32 len,
5077 struct clone_root *clone_root)
5078 {
5079 int ret = 0;
5080 struct fs_path *p;
5081 u64 gen;
5082
5083 btrfs_debug(sctx->send_root->fs_info,
5084 "send_clone offset=%llu, len=%d, clone_root=%llu, clone_inode=%llu, clone_offset=%llu",
5085 offset, len, clone_root->root->root_key.objectid,
5086 clone_root->ino, clone_root->offset);
5087
5088 p = fs_path_alloc();
5089 if (!p)
5090 return -ENOMEM;
5091
5092 ret = begin_cmd(sctx, BTRFS_SEND_C_CLONE);
5093 if (ret < 0)
5094 goto out;
5095
5096 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
5097 if (ret < 0)
5098 goto out;
5099
5100 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
5101 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_LEN, len);
5102 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
5103
5104 if (clone_root->root == sctx->send_root) {
5105 ret = get_inode_info(sctx->send_root, clone_root->ino, NULL,
5106 &gen, NULL, NULL, NULL, NULL);
5107 if (ret < 0)
5108 goto out;
5109 ret = get_cur_path(sctx, clone_root->ino, gen, p);
5110 } else {
5111 ret = get_inode_path(clone_root->root, clone_root->ino, p);
5112 }
5113 if (ret < 0)
5114 goto out;
5115
5116 /*
5117 * If the parent we're using has a received_uuid set then use that as
5118 * our clone source as that is what we will look for when doing a
5119 * receive.
5120 *
5121 * This covers the case that we create a snapshot off of a received
5122 * subvolume and then use that as the parent and try to receive on a
5123 * different host.
5124 */
5125 if (!btrfs_is_empty_uuid(clone_root->root->root_item.received_uuid))
5126 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
5127 clone_root->root->root_item.received_uuid);
5128 else
5129 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
5130 clone_root->root->root_item.uuid);
5131 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_CTRANSID,
5132 le64_to_cpu(clone_root->root->root_item.ctransid));
5133 TLV_PUT_PATH(sctx, BTRFS_SEND_A_CLONE_PATH, p);
5134 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_OFFSET,
5135 clone_root->offset);
5136
5137 ret = send_cmd(sctx);
5138
5139 tlv_put_failure:
5140 out:
5141 fs_path_free(p);
5142 return ret;
5143 }
5144
5145 /*
5146 * Send an update extent command to user space.
5147 */
send_update_extent(struct send_ctx *sctx, u64 offset, u32 len)5148 static int send_update_extent(struct send_ctx *sctx,
5149 u64 offset, u32 len)
5150 {
5151 int ret = 0;
5152 struct fs_path *p;
5153
5154 p = fs_path_alloc();
5155 if (!p)
5156 return -ENOMEM;
5157
5158 ret = begin_cmd(sctx, BTRFS_SEND_C_UPDATE_EXTENT);
5159 if (ret < 0)
5160 goto out;
5161
5162 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
5163 if (ret < 0)
5164 goto out;
5165
5166 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
5167 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
5168 TLV_PUT_U64(sctx, BTRFS_SEND_A_SIZE, len);
5169
5170 ret = send_cmd(sctx);
5171
5172 tlv_put_failure:
5173 out:
5174 fs_path_free(p);
5175 return ret;
5176 }
5177
send_hole(struct send_ctx *sctx, u64 end)5178 static int send_hole(struct send_ctx *sctx, u64 end)
5179 {
5180 struct fs_path *p = NULL;
5181 u64 read_size = max_send_read_size(sctx);
5182 u64 offset = sctx->cur_inode_last_extent;
5183 int ret = 0;
5184
5185 /*
5186 * A hole that starts at EOF or beyond it. Since we do not yet support
5187 * fallocate (for extent preallocation and hole punching), sending a
5188 * write of zeroes starting at EOF or beyond would later require issuing
5189 * a truncate operation which would undo the write and achieve nothing.
5190 */
5191 if (offset >= sctx->cur_inode_size)
5192 return 0;
5193
5194 /*
5195 * Don't go beyond the inode's i_size due to prealloc extents that start
5196 * after the i_size.
5197 */
5198 end = min_t(u64, end, sctx->cur_inode_size);
5199
5200 if (sctx->flags & BTRFS_SEND_FLAG_NO_FILE_DATA)
5201 return send_update_extent(sctx, offset, end - offset);
5202
5203 p = fs_path_alloc();
5204 if (!p)
5205 return -ENOMEM;
5206 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
5207 if (ret < 0)
5208 goto tlv_put_failure;
5209 while (offset < end) {
5210 u64 len = min(end - offset, read_size);
5211
5212 ret = begin_cmd(sctx, BTRFS_SEND_C_WRITE);
5213 if (ret < 0)
5214 break;
5215 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
5216 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
5217 ret = put_data_header(sctx, len);
5218 if (ret < 0)
5219 break;
5220 memset(sctx->send_buf + sctx->send_size, 0, len);
5221 sctx->send_size += len;
5222 ret = send_cmd(sctx);
5223 if (ret < 0)
5224 break;
5225 offset += len;
5226 }
5227 sctx->cur_inode_next_write_offset = offset;
5228 tlv_put_failure:
5229 fs_path_free(p);
5230 return ret;
5231 }
5232
send_extent_data(struct send_ctx *sctx, const u64 offset, const u64 len)5233 static int send_extent_data(struct send_ctx *sctx,
5234 const u64 offset,
5235 const u64 len)
5236 {
5237 u64 read_size = max_send_read_size(sctx);
5238 u64 sent = 0;
5239
5240 if (sctx->flags & BTRFS_SEND_FLAG_NO_FILE_DATA)
5241 return send_update_extent(sctx, offset, len);
5242
5243 while (sent < len) {
5244 u64 size = min(len - sent, read_size);
5245 int ret;
5246
5247 ret = send_write(sctx, offset + sent, size);
5248 if (ret < 0)
5249 return ret;
5250 sent += size;
5251 }
5252 return 0;
5253 }
5254
5255 /*
5256 * Search for a capability xattr related to sctx->cur_ino. If the capability is
5257 * found, call send_set_xattr function to emit it.
5258 *
5259 * Return 0 if there isn't a capability, or when the capability was emitted
5260 * successfully, or < 0 if an error occurred.
5261 */
send_capabilities(struct send_ctx *sctx)5262 static int send_capabilities(struct send_ctx *sctx)
5263 {
5264 struct fs_path *fspath = NULL;
5265 struct btrfs_path *path;
5266 struct btrfs_dir_item *di;
5267 struct extent_buffer *leaf;
5268 unsigned long data_ptr;
5269 char *buf = NULL;
5270 int buf_len;
5271 int ret = 0;
5272
5273 path = alloc_path_for_send();
5274 if (!path)
5275 return -ENOMEM;
5276
5277 di = btrfs_lookup_xattr(NULL, sctx->send_root, path, sctx->cur_ino,
5278 XATTR_NAME_CAPS, strlen(XATTR_NAME_CAPS), 0);
5279 if (!di) {
5280 /* There is no xattr for this inode */
5281 goto out;
5282 } else if (IS_ERR(di)) {
5283 ret = PTR_ERR(di);
5284 goto out;
5285 }
5286
5287 leaf = path->nodes[0];
5288 buf_len = btrfs_dir_data_len(leaf, di);
5289
5290 fspath = fs_path_alloc();
5291 buf = kmalloc(buf_len, GFP_KERNEL);
5292 if (!fspath || !buf) {
5293 ret = -ENOMEM;
5294 goto out;
5295 }
5296
5297 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, fspath);
5298 if (ret < 0)
5299 goto out;
5300
5301 data_ptr = (unsigned long)(di + 1) + btrfs_dir_name_len(leaf, di);
5302 read_extent_buffer(leaf, buf, data_ptr, buf_len);
5303
5304 ret = send_set_xattr(sctx, fspath, XATTR_NAME_CAPS,
5305 strlen(XATTR_NAME_CAPS), buf, buf_len);
5306 out:
5307 kfree(buf);
5308 fs_path_free(fspath);
5309 btrfs_free_path(path);
5310 return ret;
5311 }
5312
clone_range(struct send_ctx *sctx, struct clone_root *clone_root, const u64 disk_byte, u64 data_offset, u64 offset, u64 len)5313 static int clone_range(struct send_ctx *sctx,
5314 struct clone_root *clone_root,
5315 const u64 disk_byte,
5316 u64 data_offset,
5317 u64 offset,
5318 u64 len)
5319 {
5320 struct btrfs_path *path;
5321 struct btrfs_key key;
5322 int ret;
5323 u64 clone_src_i_size = 0;
5324
5325 /*
5326 * Prevent cloning from a zero offset with a length matching the sector
5327 * size because in some scenarios this will make the receiver fail.
5328 *
5329 * For example, if in the source filesystem the extent at offset 0
5330 * has a length of sectorsize and it was written using direct IO, then
5331 * it can never be an inline extent (even if compression is enabled).
5332 * Then this extent can be cloned in the original filesystem to a non
5333 * zero file offset, but it may not be possible to clone in the
5334 * destination filesystem because it can be inlined due to compression
5335 * on the destination filesystem (as the receiver's write operations are
5336 * always done using buffered IO). The same happens when the original
5337 * filesystem does not have compression enabled but the destination
5338 * filesystem has.
5339 */
5340 if (clone_root->offset == 0 &&
5341 len == sctx->send_root->fs_info->sectorsize)
5342 return send_extent_data(sctx, offset, len);
5343
5344 path = alloc_path_for_send();
5345 if (!path)
5346 return -ENOMEM;
5347
5348 /*
5349 * There are inodes that have extents that lie behind its i_size. Don't
5350 * accept clones from these extents.
5351 */
5352 ret = __get_inode_info(clone_root->root, path, clone_root->ino,
5353 &clone_src_i_size, NULL, NULL, NULL, NULL, NULL);
5354 btrfs_release_path(path);
5355 if (ret < 0)
5356 goto out;
5357
5358 /*
5359 * We can't send a clone operation for the entire range if we find
5360 * extent items in the respective range in the source file that
5361 * refer to different extents or if we find holes.
5362 * So check for that and do a mix of clone and regular write/copy
5363 * operations if needed.
5364 *
5365 * Example:
5366 *
5367 * mkfs.btrfs -f /dev/sda
5368 * mount /dev/sda /mnt
5369 * xfs_io -f -c "pwrite -S 0xaa 0K 100K" /mnt/foo
5370 * cp --reflink=always /mnt/foo /mnt/bar
5371 * xfs_io -c "pwrite -S 0xbb 50K 50K" /mnt/foo
5372 * btrfs subvolume snapshot -r /mnt /mnt/snap
5373 *
5374 * If when we send the snapshot and we are processing file bar (which
5375 * has a higher inode number than foo) we blindly send a clone operation
5376 * for the [0, 100K[ range from foo to bar, the receiver ends up getting
5377 * a file bar that matches the content of file foo - iow, doesn't match
5378 * the content from bar in the original filesystem.
5379 */
5380 key.objectid = clone_root->ino;
5381 key.type = BTRFS_EXTENT_DATA_KEY;
5382 key.offset = clone_root->offset;
5383 ret = btrfs_search_slot(NULL, clone_root->root, &key, path, 0, 0);
5384 if (ret < 0)
5385 goto out;
5386 if (ret > 0 && path->slots[0] > 0) {
5387 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0] - 1);
5388 if (key.objectid == clone_root->ino &&
5389 key.type == BTRFS_EXTENT_DATA_KEY)
5390 path->slots[0]--;
5391 }
5392
5393 while (true) {
5394 struct extent_buffer *leaf = path->nodes[0];
5395 int slot = path->slots[0];
5396 struct btrfs_file_extent_item *ei;
5397 u8 type;
5398 u64 ext_len;
5399 u64 clone_len;
5400 u64 clone_data_offset;
5401 bool crossed_src_i_size = false;
5402
5403 if (slot >= btrfs_header_nritems(leaf)) {
5404 ret = btrfs_next_leaf(clone_root->root, path);
5405 if (ret < 0)
5406 goto out;
5407 else if (ret > 0)
5408 break;
5409 continue;
5410 }
5411
5412 btrfs_item_key_to_cpu(leaf, &key, slot);
5413
5414 /*
5415 * We might have an implicit trailing hole (NO_HOLES feature
5416 * enabled). We deal with it after leaving this loop.
5417 */
5418 if (key.objectid != clone_root->ino ||
5419 key.type != BTRFS_EXTENT_DATA_KEY)
5420 break;
5421
5422 ei = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
5423 type = btrfs_file_extent_type(leaf, ei);
5424 if (type == BTRFS_FILE_EXTENT_INLINE) {
5425 ext_len = btrfs_file_extent_ram_bytes(leaf, ei);
5426 ext_len = PAGE_ALIGN(ext_len);
5427 } else {
5428 ext_len = btrfs_file_extent_num_bytes(leaf, ei);
5429 }
5430
5431 if (key.offset + ext_len <= clone_root->offset)
5432 goto next;
5433
5434 if (key.offset > clone_root->offset) {
5435 /* Implicit hole, NO_HOLES feature enabled. */
5436 u64 hole_len = key.offset - clone_root->offset;
5437
5438 if (hole_len > len)
5439 hole_len = len;
5440 ret = send_extent_data(sctx, offset, hole_len);
5441 if (ret < 0)
5442 goto out;
5443
5444 len -= hole_len;
5445 if (len == 0)
5446 break;
5447 offset += hole_len;
5448 clone_root->offset += hole_len;
5449 data_offset += hole_len;
5450 }
5451
5452 if (key.offset >= clone_root->offset + len)
5453 break;
5454
5455 if (key.offset >= clone_src_i_size)
5456 break;
5457
5458 if (key.offset + ext_len > clone_src_i_size) {
5459 ext_len = clone_src_i_size - key.offset;
5460 crossed_src_i_size = true;
5461 }
5462
5463 clone_data_offset = btrfs_file_extent_offset(leaf, ei);
5464 if (btrfs_file_extent_disk_bytenr(leaf, ei) == disk_byte) {
5465 clone_root->offset = key.offset;
5466 if (clone_data_offset < data_offset &&
5467 clone_data_offset + ext_len > data_offset) {
5468 u64 extent_offset;
5469
5470 extent_offset = data_offset - clone_data_offset;
5471 ext_len -= extent_offset;
5472 clone_data_offset += extent_offset;
5473 clone_root->offset += extent_offset;
5474 }
5475 }
5476
5477 clone_len = min_t(u64, ext_len, len);
5478
5479 if (btrfs_file_extent_disk_bytenr(leaf, ei) == disk_byte &&
5480 clone_data_offset == data_offset) {
5481 const u64 src_end = clone_root->offset + clone_len;
5482 const u64 sectorsize = SZ_64K;
5483
5484 /*
5485 * We can't clone the last block, when its size is not
5486 * sector size aligned, into the middle of a file. If we
5487 * do so, the receiver will get a failure (-EINVAL) when
5488 * trying to clone or will silently corrupt the data in
5489 * the destination file if it's on a kernel without the
5490 * fix introduced by commit ac765f83f1397646
5491 * ("Btrfs: fix data corruption due to cloning of eof
5492 * block).
5493 *
5494 * So issue a clone of the aligned down range plus a
5495 * regular write for the eof block, if we hit that case.
5496 *
5497 * Also, we use the maximum possible sector size, 64K,
5498 * because we don't know what's the sector size of the
5499 * filesystem that receives the stream, so we have to
5500 * assume the largest possible sector size.
5501 */
5502 if (src_end == clone_src_i_size &&
5503 !IS_ALIGNED(src_end, sectorsize) &&
5504 offset + clone_len < sctx->cur_inode_size) {
5505 u64 slen;
5506
5507 slen = ALIGN_DOWN(src_end - clone_root->offset,
5508 sectorsize);
5509 if (slen > 0) {
5510 ret = send_clone(sctx, offset, slen,
5511 clone_root);
5512 if (ret < 0)
5513 goto out;
5514 }
5515 ret = send_extent_data(sctx, offset + slen,
5516 clone_len - slen);
5517 } else {
5518 ret = send_clone(sctx, offset, clone_len,
5519 clone_root);
5520 }
5521 } else if (crossed_src_i_size && clone_len < len) {
5522 /*
5523 * If we are at i_size of the clone source inode and we
5524 * can not clone from it, terminate the loop. This is
5525 * to avoid sending two write operations, one with a
5526 * length matching clone_len and the final one after
5527 * this loop with a length of len - clone_len.
5528 *
5529 * When using encoded writes (BTRFS_SEND_FLAG_COMPRESSED
5530 * was passed to the send ioctl), this helps avoid
5531 * sending an encoded write for an offset that is not
5532 * sector size aligned, in case the i_size of the source
5533 * inode is not sector size aligned. That will make the
5534 * receiver fallback to decompression of the data and
5535 * writing it using regular buffered IO, therefore while
5536 * not incorrect, it's not optimal due decompression and
5537 * possible re-compression at the receiver.
5538 */
5539 break;
5540 } else {
5541 ret = send_extent_data(sctx, offset, clone_len);
5542 }
5543
5544 if (ret < 0)
5545 goto out;
5546
5547 len -= clone_len;
5548 if (len == 0)
5549 break;
5550 offset += clone_len;
5551 clone_root->offset += clone_len;
5552
5553 /*
5554 * If we are cloning from the file we are currently processing,
5555 * and using the send root as the clone root, we must stop once
5556 * the current clone offset reaches the current eof of the file
5557 * at the receiver, otherwise we would issue an invalid clone
5558 * operation (source range going beyond eof) and cause the
5559 * receiver to fail. So if we reach the current eof, bail out
5560 * and fallback to a regular write.
5561 */
5562 if (clone_root->root == sctx->send_root &&
5563 clone_root->ino == sctx->cur_ino &&
5564 clone_root->offset >= sctx->cur_inode_next_write_offset)
5565 break;
5566
5567 data_offset += clone_len;
5568 next:
5569 path->slots[0]++;
5570 }
5571
5572 if (len > 0)
5573 ret = send_extent_data(sctx, offset, len);
5574 else
5575 ret = 0;
5576 out:
5577 btrfs_free_path(path);
5578 return ret;
5579 }
5580
send_write_or_clone(struct send_ctx *sctx, struct btrfs_path *path, struct btrfs_key *key, struct clone_root *clone_root)5581 static int send_write_or_clone(struct send_ctx *sctx,
5582 struct btrfs_path *path,
5583 struct btrfs_key *key,
5584 struct clone_root *clone_root)
5585 {
5586 int ret = 0;
5587 u64 offset = key->offset;
5588 u64 end;
5589 u64 bs = sctx->send_root->fs_info->sb->s_blocksize;
5590
5591 end = min_t(u64, btrfs_file_extent_end(path), sctx->cur_inode_size);
5592 if (offset >= end)
5593 return 0;
5594
5595 if (clone_root && IS_ALIGNED(end, bs)) {
5596 struct btrfs_file_extent_item *ei;
5597 u64 disk_byte;
5598 u64 data_offset;
5599
5600 ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
5601 struct btrfs_file_extent_item);
5602 disk_byte = btrfs_file_extent_disk_bytenr(path->nodes[0], ei);
5603 data_offset = btrfs_file_extent_offset(path->nodes[0], ei);
5604 ret = clone_range(sctx, clone_root, disk_byte, data_offset,
5605 offset, end - offset);
5606 } else {
5607 ret = send_extent_data(sctx, offset, end - offset);
5608 }
5609 sctx->cur_inode_next_write_offset = end;
5610 return ret;
5611 }
5612
is_extent_unchanged(struct send_ctx *sctx, struct btrfs_path *left_path, struct btrfs_key *ekey)5613 static int is_extent_unchanged(struct send_ctx *sctx,
5614 struct btrfs_path *left_path,
5615 struct btrfs_key *ekey)
5616 {
5617 int ret = 0;
5618 struct btrfs_key key;
5619 struct btrfs_path *path = NULL;
5620 struct extent_buffer *eb;
5621 int slot;
5622 struct btrfs_key found_key;
5623 struct btrfs_file_extent_item *ei;
5624 u64 left_disknr;
5625 u64 right_disknr;
5626 u64 left_offset;
5627 u64 right_offset;
5628 u64 left_offset_fixed;
5629 u64 left_len;
5630 u64 right_len;
5631 u64 left_gen;
5632 u64 right_gen;
5633 u8 left_type;
5634 u8 right_type;
5635
5636 path = alloc_path_for_send();
5637 if (!path)
5638 return -ENOMEM;
5639
5640 eb = left_path->nodes[0];
5641 slot = left_path->slots[0];
5642 ei = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
5643 left_type = btrfs_file_extent_type(eb, ei);
5644
5645 if (left_type != BTRFS_FILE_EXTENT_REG) {
5646 ret = 0;
5647 goto out;
5648 }
5649 left_disknr = btrfs_file_extent_disk_bytenr(eb, ei);
5650 left_len = btrfs_file_extent_num_bytes(eb, ei);
5651 left_offset = btrfs_file_extent_offset(eb, ei);
5652 left_gen = btrfs_file_extent_generation(eb, ei);
5653
5654 /*
5655 * Following comments will refer to these graphics. L is the left
5656 * extents which we are checking at the moment. 1-8 are the right
5657 * extents that we iterate.
5658 *
5659 * |-----L-----|
5660 * |-1-|-2a-|-3-|-4-|-5-|-6-|
5661 *
5662 * |-----L-----|
5663 * |--1--|-2b-|...(same as above)
5664 *
5665 * Alternative situation. Happens on files where extents got split.
5666 * |-----L-----|
5667 * |-----------7-----------|-6-|
5668 *
5669 * Alternative situation. Happens on files which got larger.
5670 * |-----L-----|
5671 * |-8-|
5672 * Nothing follows after 8.
5673 */
5674
5675 key.objectid = ekey->objectid;
5676 key.type = BTRFS_EXTENT_DATA_KEY;
5677 key.offset = ekey->offset;
5678 ret = btrfs_search_slot_for_read(sctx->parent_root, &key, path, 0, 0);
5679 if (ret < 0)
5680 goto out;
5681 if (ret) {
5682 ret = 0;
5683 goto out;
5684 }
5685
5686 /*
5687 * Handle special case where the right side has no extents at all.
5688 */
5689 eb = path->nodes[0];
5690 slot = path->slots[0];
5691 btrfs_item_key_to_cpu(eb, &found_key, slot);
5692 if (found_key.objectid != key.objectid ||
5693 found_key.type != key.type) {
5694 /* If we're a hole then just pretend nothing changed */
5695 ret = (left_disknr) ? 0 : 1;
5696 goto out;
5697 }
5698
5699 /*
5700 * We're now on 2a, 2b or 7.
5701 */
5702 key = found_key;
5703 while (key.offset < ekey->offset + left_len) {
5704 ei = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
5705 right_type = btrfs_file_extent_type(eb, ei);
5706 if (right_type != BTRFS_FILE_EXTENT_REG &&
5707 right_type != BTRFS_FILE_EXTENT_INLINE) {
5708 ret = 0;
5709 goto out;
5710 }
5711
5712 if (right_type == BTRFS_FILE_EXTENT_INLINE) {
5713 right_len = btrfs_file_extent_ram_bytes(eb, ei);
5714 right_len = PAGE_ALIGN(right_len);
5715 } else {
5716 right_len = btrfs_file_extent_num_bytes(eb, ei);
5717 }
5718
5719 /*
5720 * Are we at extent 8? If yes, we know the extent is changed.
5721 * This may only happen on the first iteration.
5722 */
5723 if (found_key.offset + right_len <= ekey->offset) {
5724 /* If we're a hole just pretend nothing changed */
5725 ret = (left_disknr) ? 0 : 1;
5726 goto out;
5727 }
5728
5729 /*
5730 * We just wanted to see if when we have an inline extent, what
5731 * follows it is a regular extent (wanted to check the above
5732 * condition for inline extents too). This should normally not
5733 * happen but it's possible for example when we have an inline
5734 * compressed extent representing data with a size matching
5735 * the page size (currently the same as sector size).
5736 */
5737 if (right_type == BTRFS_FILE_EXTENT_INLINE) {
5738 ret = 0;
5739 goto out;
5740 }
5741
5742 right_disknr = btrfs_file_extent_disk_bytenr(eb, ei);
5743 right_offset = btrfs_file_extent_offset(eb, ei);
5744 right_gen = btrfs_file_extent_generation(eb, ei);
5745
5746 left_offset_fixed = left_offset;
5747 if (key.offset < ekey->offset) {
5748 /* Fix the right offset for 2a and 7. */
5749 right_offset += ekey->offset - key.offset;
5750 } else {
5751 /* Fix the left offset for all behind 2a and 2b */
5752 left_offset_fixed += key.offset - ekey->offset;
5753 }
5754
5755 /*
5756 * Check if we have the same extent.
5757 */
5758 if (left_disknr != right_disknr ||
5759 left_offset_fixed != right_offset ||
5760 left_gen != right_gen) {
5761 ret = 0;
5762 goto out;
5763 }
5764
5765 /*
5766 * Go to the next extent.
5767 */
5768 ret = btrfs_next_item(sctx->parent_root, path);
5769 if (ret < 0)
5770 goto out;
5771 if (!ret) {
5772 eb = path->nodes[0];
5773 slot = path->slots[0];
5774 btrfs_item_key_to_cpu(eb, &found_key, slot);
5775 }
5776 if (ret || found_key.objectid != key.objectid ||
5777 found_key.type != key.type) {
5778 key.offset += right_len;
5779 break;
5780 }
5781 if (found_key.offset != key.offset + right_len) {
5782 ret = 0;
5783 goto out;
5784 }
5785 key = found_key;
5786 }
5787
5788 /*
5789 * We're now behind the left extent (treat as unchanged) or at the end
5790 * of the right side (treat as changed).
5791 */
5792 if (key.offset >= ekey->offset + left_len)
5793 ret = 1;
5794 else
5795 ret = 0;
5796
5797
5798 out:
5799 btrfs_free_path(path);
5800 return ret;
5801 }
5802
get_last_extent(struct send_ctx *sctx, u64 offset)5803 static int get_last_extent(struct send_ctx *sctx, u64 offset)
5804 {
5805 struct btrfs_path *path;
5806 struct btrfs_root *root = sctx->send_root;
5807 struct btrfs_key key;
5808 int ret;
5809
5810 path = alloc_path_for_send();
5811 if (!path)
5812 return -ENOMEM;
5813
5814 sctx->cur_inode_last_extent = 0;
5815
5816 key.objectid = sctx->cur_ino;
5817 key.type = BTRFS_EXTENT_DATA_KEY;
5818 key.offset = offset;
5819 ret = btrfs_search_slot_for_read(root, &key, path, 0, 1);
5820 if (ret < 0)
5821 goto out;
5822 ret = 0;
5823 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
5824 if (key.objectid != sctx->cur_ino || key.type != BTRFS_EXTENT_DATA_KEY)
5825 goto out;
5826
5827 sctx->cur_inode_last_extent = btrfs_file_extent_end(path);
5828 out:
5829 btrfs_free_path(path);
5830 return ret;
5831 }
5832
range_is_hole_in_parent(struct send_ctx *sctx, const u64 start, const u64 end)5833 static int range_is_hole_in_parent(struct send_ctx *sctx,
5834 const u64 start,
5835 const u64 end)
5836 {
5837 struct btrfs_path *path;
5838 struct btrfs_key key;
5839 struct btrfs_root *root = sctx->parent_root;
5840 u64 search_start = start;
5841 int ret;
5842
5843 path = alloc_path_for_send();
5844 if (!path)
5845 return -ENOMEM;
5846
5847 key.objectid = sctx->cur_ino;
5848 key.type = BTRFS_EXTENT_DATA_KEY;
5849 key.offset = search_start;
5850 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5851 if (ret < 0)
5852 goto out;
5853 if (ret > 0 && path->slots[0] > 0)
5854 path->slots[0]--;
5855
5856 while (search_start < end) {
5857 struct extent_buffer *leaf = path->nodes[0];
5858 int slot = path->slots[0];
5859 struct btrfs_file_extent_item *fi;
5860 u64 extent_end;
5861
5862 if (slot >= btrfs_header_nritems(leaf)) {
5863 ret = btrfs_next_leaf(root, path);
5864 if (ret < 0)
5865 goto out;
5866 else if (ret > 0)
5867 break;
5868 continue;
5869 }
5870
5871 btrfs_item_key_to_cpu(leaf, &key, slot);
5872 if (key.objectid < sctx->cur_ino ||
5873 key.type < BTRFS_EXTENT_DATA_KEY)
5874 goto next;
5875 if (key.objectid > sctx->cur_ino ||
5876 key.type > BTRFS_EXTENT_DATA_KEY ||
5877 key.offset >= end)
5878 break;
5879
5880 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
5881 extent_end = btrfs_file_extent_end(path);
5882 if (extent_end <= start)
5883 goto next;
5884 if (btrfs_file_extent_disk_bytenr(leaf, fi) == 0) {
5885 search_start = extent_end;
5886 goto next;
5887 }
5888 ret = 0;
5889 goto out;
5890 next:
5891 path->slots[0]++;
5892 }
5893 ret = 1;
5894 out:
5895 btrfs_free_path(path);
5896 return ret;
5897 }
5898
maybe_send_hole(struct send_ctx *sctx, struct btrfs_path *path, struct btrfs_key *key)5899 static int maybe_send_hole(struct send_ctx *sctx, struct btrfs_path *path,
5900 struct btrfs_key *key)
5901 {
5902 int ret = 0;
5903
5904 if (sctx->cur_ino != key->objectid || !need_send_hole(sctx))
5905 return 0;
5906
5907 if (sctx->cur_inode_last_extent == (u64)-1) {
5908 ret = get_last_extent(sctx, key->offset - 1);
5909 if (ret)
5910 return ret;
5911 }
5912
5913 if (path->slots[0] == 0 &&
5914 sctx->cur_inode_last_extent < key->offset) {
5915 /*
5916 * We might have skipped entire leafs that contained only
5917 * file extent items for our current inode. These leafs have
5918 * a generation number smaller (older) than the one in the
5919 * current leaf and the leaf our last extent came from, and
5920 * are located between these 2 leafs.
5921 */
5922 ret = get_last_extent(sctx, key->offset - 1);
5923 if (ret)
5924 return ret;
5925 }
5926
5927 if (sctx->cur_inode_last_extent < key->offset) {
5928 ret = range_is_hole_in_parent(sctx,
5929 sctx->cur_inode_last_extent,
5930 key->offset);
5931 if (ret < 0)
5932 return ret;
5933 else if (ret == 0)
5934 ret = send_hole(sctx, key->offset);
5935 else
5936 ret = 0;
5937 }
5938 sctx->cur_inode_last_extent = btrfs_file_extent_end(path);
5939 return ret;
5940 }
5941
process_extent(struct send_ctx *sctx, struct btrfs_path *path, struct btrfs_key *key)5942 static int process_extent(struct send_ctx *sctx,
5943 struct btrfs_path *path,
5944 struct btrfs_key *key)
5945 {
5946 struct clone_root *found_clone = NULL;
5947 int ret = 0;
5948
5949 if (S_ISLNK(sctx->cur_inode_mode))
5950 return 0;
5951
5952 if (sctx->parent_root && !sctx->cur_inode_new) {
5953 ret = is_extent_unchanged(sctx, path, key);
5954 if (ret < 0)
5955 goto out;
5956 if (ret) {
5957 ret = 0;
5958 goto out_hole;
5959 }
5960 } else {
5961 struct btrfs_file_extent_item *ei;
5962 u8 type;
5963
5964 ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
5965 struct btrfs_file_extent_item);
5966 type = btrfs_file_extent_type(path->nodes[0], ei);
5967 if (type == BTRFS_FILE_EXTENT_PREALLOC ||
5968 type == BTRFS_FILE_EXTENT_REG) {
5969 /*
5970 * The send spec does not have a prealloc command yet,
5971 * so just leave a hole for prealloc'ed extents until
5972 * we have enough commands queued up to justify rev'ing
5973 * the send spec.
5974 */
5975 if (type == BTRFS_FILE_EXTENT_PREALLOC) {
5976 ret = 0;
5977 goto out;
5978 }
5979
5980 /* Have a hole, just skip it. */
5981 if (btrfs_file_extent_disk_bytenr(path->nodes[0], ei) == 0) {
5982 ret = 0;
5983 goto out;
5984 }
5985 }
5986 }
5987
5988 ret = find_extent_clone(sctx, path, key->objectid, key->offset,
5989 sctx->cur_inode_size, &found_clone);
5990 if (ret != -ENOENT && ret < 0)
5991 goto out;
5992
5993 ret = send_write_or_clone(sctx, path, key, found_clone);
5994 if (ret)
5995 goto out;
5996 out_hole:
5997 ret = maybe_send_hole(sctx, path, key);
5998 out:
5999 return ret;
6000 }
6001
process_all_extents(struct send_ctx *sctx)6002 static int process_all_extents(struct send_ctx *sctx)
6003 {
6004 int ret;
6005 struct btrfs_root *root;
6006 struct btrfs_path *path;
6007 struct btrfs_key key;
6008 struct btrfs_key found_key;
6009 struct extent_buffer *eb;
6010 int slot;
6011
6012 root = sctx->send_root;
6013 path = alloc_path_for_send();
6014 if (!path)
6015 return -ENOMEM;
6016
6017 key.objectid = sctx->cmp_key->objectid;
6018 key.type = BTRFS_EXTENT_DATA_KEY;
6019 key.offset = 0;
6020 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6021 if (ret < 0)
6022 goto out;
6023
6024 while (1) {
6025 eb = path->nodes[0];
6026 slot = path->slots[0];
6027
6028 if (slot >= btrfs_header_nritems(eb)) {
6029 ret = btrfs_next_leaf(root, path);
6030 if (ret < 0) {
6031 goto out;
6032 } else if (ret > 0) {
6033 ret = 0;
6034 break;
6035 }
6036 continue;
6037 }
6038
6039 btrfs_item_key_to_cpu(eb, &found_key, slot);
6040
6041 if (found_key.objectid != key.objectid ||
6042 found_key.type != key.type) {
6043 ret = 0;
6044 goto out;
6045 }
6046
6047 ret = process_extent(sctx, path, &found_key);
6048 if (ret < 0)
6049 goto out;
6050
6051 path->slots[0]++;
6052 }
6053
6054 out:
6055 btrfs_free_path(path);
6056 return ret;
6057 }
6058
process_recorded_refs_if_needed(struct send_ctx *sctx, int at_end, int *pending_move, int *refs_processed)6059 static int process_recorded_refs_if_needed(struct send_ctx *sctx, int at_end,
6060 int *pending_move,
6061 int *refs_processed)
6062 {
6063 int ret = 0;
6064
6065 if (sctx->cur_ino == 0)
6066 goto out;
6067 if (!at_end && sctx->cur_ino == sctx->cmp_key->objectid &&
6068 sctx->cmp_key->type <= BTRFS_INODE_EXTREF_KEY)
6069 goto out;
6070 if (list_empty(&sctx->new_refs) && list_empty(&sctx->deleted_refs))
6071 goto out;
6072
6073 ret = process_recorded_refs(sctx, pending_move);
6074 if (ret < 0)
6075 goto out;
6076
6077 *refs_processed = 1;
6078 out:
6079 return ret;
6080 }
6081
finish_inode_if_needed(struct send_ctx *sctx, int at_end)6082 static int finish_inode_if_needed(struct send_ctx *sctx, int at_end)
6083 {
6084 int ret = 0;
6085 u64 left_mode;
6086 u64 left_uid;
6087 u64 left_gid;
6088 u64 right_mode;
6089 u64 right_uid;
6090 u64 right_gid;
6091 int need_chmod = 0;
6092 int need_chown = 0;
6093 int need_truncate = 1;
6094 int pending_move = 0;
6095 int refs_processed = 0;
6096
6097 if (sctx->ignore_cur_inode)
6098 return 0;
6099
6100 ret = process_recorded_refs_if_needed(sctx, at_end, &pending_move,
6101 &refs_processed);
6102 if (ret < 0)
6103 goto out;
6104
6105 /*
6106 * We have processed the refs and thus need to advance send_progress.
6107 * Now, calls to get_cur_xxx will take the updated refs of the current
6108 * inode into account.
6109 *
6110 * On the other hand, if our current inode is a directory and couldn't
6111 * be moved/renamed because its parent was renamed/moved too and it has
6112 * a higher inode number, we can only move/rename our current inode
6113 * after we moved/renamed its parent. Therefore in this case operate on
6114 * the old path (pre move/rename) of our current inode, and the
6115 * move/rename will be performed later.
6116 */
6117 if (refs_processed && !pending_move)
6118 sctx->send_progress = sctx->cur_ino + 1;
6119
6120 if (sctx->cur_ino == 0 || sctx->cur_inode_deleted)
6121 goto out;
6122 if (!at_end && sctx->cmp_key->objectid == sctx->cur_ino)
6123 goto out;
6124
6125 ret = get_inode_info(sctx->send_root, sctx->cur_ino, NULL, NULL,
6126 &left_mode, &left_uid, &left_gid, NULL);
6127 if (ret < 0)
6128 goto out;
6129
6130 if (!sctx->parent_root || sctx->cur_inode_new) {
6131 need_chown = 1;
6132 if (!S_ISLNK(sctx->cur_inode_mode))
6133 need_chmod = 1;
6134 if (sctx->cur_inode_next_write_offset == sctx->cur_inode_size)
6135 need_truncate = 0;
6136 } else {
6137 u64 old_size;
6138
6139 ret = get_inode_info(sctx->parent_root, sctx->cur_ino,
6140 &old_size, NULL, &right_mode, &right_uid,
6141 &right_gid, NULL);
6142 if (ret < 0)
6143 goto out;
6144
6145 if (left_uid != right_uid || left_gid != right_gid)
6146 need_chown = 1;
6147 if (!S_ISLNK(sctx->cur_inode_mode) && left_mode != right_mode)
6148 need_chmod = 1;
6149 if ((old_size == sctx->cur_inode_size) ||
6150 (sctx->cur_inode_size > old_size &&
6151 sctx->cur_inode_next_write_offset == sctx->cur_inode_size))
6152 need_truncate = 0;
6153 }
6154
6155 if (S_ISREG(sctx->cur_inode_mode)) {
6156 if (need_send_hole(sctx)) {
6157 if (sctx->cur_inode_last_extent == (u64)-1 ||
6158 sctx->cur_inode_last_extent <
6159 sctx->cur_inode_size) {
6160 ret = get_last_extent(sctx, (u64)-1);
6161 if (ret)
6162 goto out;
6163 }
6164 if (sctx->cur_inode_last_extent <
6165 sctx->cur_inode_size) {
6166 ret = send_hole(sctx, sctx->cur_inode_size);
6167 if (ret)
6168 goto out;
6169 }
6170 }
6171 if (need_truncate) {
6172 ret = send_truncate(sctx, sctx->cur_ino,
6173 sctx->cur_inode_gen,
6174 sctx->cur_inode_size);
6175 if (ret < 0)
6176 goto out;
6177 }
6178 }
6179
6180 if (need_chown) {
6181 ret = send_chown(sctx, sctx->cur_ino, sctx->cur_inode_gen,
6182 left_uid, left_gid);
6183 if (ret < 0)
6184 goto out;
6185 }
6186 if (need_chmod) {
6187 ret = send_chmod(sctx, sctx->cur_ino, sctx->cur_inode_gen,
6188 left_mode);
6189 if (ret < 0)
6190 goto out;
6191 }
6192
6193 ret = send_capabilities(sctx);
6194 if (ret < 0)
6195 goto out;
6196
6197 /*
6198 * If other directory inodes depended on our current directory
6199 * inode's move/rename, now do their move/rename operations.
6200 */
6201 if (!is_waiting_for_move(sctx, sctx->cur_ino)) {
6202 ret = apply_children_dir_moves(sctx);
6203 if (ret)
6204 goto out;
6205 /*
6206 * Need to send that every time, no matter if it actually
6207 * changed between the two trees as we have done changes to
6208 * the inode before. If our inode is a directory and it's
6209 * waiting to be moved/renamed, we will send its utimes when
6210 * it's moved/renamed, therefore we don't need to do it here.
6211 */
6212 sctx->send_progress = sctx->cur_ino + 1;
6213 ret = send_utimes(sctx, sctx->cur_ino, sctx->cur_inode_gen);
6214 if (ret < 0)
6215 goto out;
6216 }
6217
6218 out:
6219 return ret;
6220 }
6221
6222 struct parent_paths_ctx {
6223 struct list_head *refs;
6224 struct send_ctx *sctx;
6225 };
6226
record_parent_ref(int num, u64 dir, int index, struct fs_path *name, void *ctx)6227 static int record_parent_ref(int num, u64 dir, int index, struct fs_path *name,
6228 void *ctx)
6229 {
6230 struct parent_paths_ctx *ppctx = ctx;
6231
6232 return record_ref(ppctx->sctx->parent_root, dir, name, ppctx->sctx,
6233 ppctx->refs);
6234 }
6235
6236 /*
6237 * Issue unlink operations for all paths of the current inode found in the
6238 * parent snapshot.
6239 */
btrfs_unlink_all_paths(struct send_ctx *sctx)6240 static int btrfs_unlink_all_paths(struct send_ctx *sctx)
6241 {
6242 LIST_HEAD(deleted_refs);
6243 struct btrfs_path *path;
6244 struct btrfs_key key;
6245 struct parent_paths_ctx ctx;
6246 int ret;
6247
6248 path = alloc_path_for_send();
6249 if (!path)
6250 return -ENOMEM;
6251
6252 key.objectid = sctx->cur_ino;
6253 key.type = BTRFS_INODE_REF_KEY;
6254 key.offset = 0;
6255 ret = btrfs_search_slot(NULL, sctx->parent_root, &key, path, 0, 0);
6256 if (ret < 0)
6257 goto out;
6258
6259 ctx.refs = &deleted_refs;
6260 ctx.sctx = sctx;
6261
6262 while (true) {
6263 struct extent_buffer *eb = path->nodes[0];
6264 int slot = path->slots[0];
6265
6266 if (slot >= btrfs_header_nritems(eb)) {
6267 ret = btrfs_next_leaf(sctx->parent_root, path);
6268 if (ret < 0)
6269 goto out;
6270 else if (ret > 0)
6271 break;
6272 continue;
6273 }
6274
6275 btrfs_item_key_to_cpu(eb, &key, slot);
6276 if (key.objectid != sctx->cur_ino)
6277 break;
6278 if (key.type != BTRFS_INODE_REF_KEY &&
6279 key.type != BTRFS_INODE_EXTREF_KEY)
6280 break;
6281
6282 ret = iterate_inode_ref(sctx->parent_root, path, &key, 1,
6283 record_parent_ref, &ctx);
6284 if (ret < 0)
6285 goto out;
6286
6287 path->slots[0]++;
6288 }
6289
6290 while (!list_empty(&deleted_refs)) {
6291 struct recorded_ref *ref;
6292
6293 ref = list_first_entry(&deleted_refs, struct recorded_ref, list);
6294 ret = send_unlink(sctx, ref->full_path);
6295 if (ret < 0)
6296 goto out;
6297 fs_path_free(ref->full_path);
6298 list_del(&ref->list);
6299 kfree(ref);
6300 }
6301 ret = 0;
6302 out:
6303 btrfs_free_path(path);
6304 if (ret)
6305 __free_recorded_refs(&deleted_refs);
6306 return ret;
6307 }
6308
changed_inode(struct send_ctx *sctx, enum btrfs_compare_tree_result result)6309 static int changed_inode(struct send_ctx *sctx,
6310 enum btrfs_compare_tree_result result)
6311 {
6312 int ret = 0;
6313 struct btrfs_key *key = sctx->cmp_key;
6314 struct btrfs_inode_item *left_ii = NULL;
6315 struct btrfs_inode_item *right_ii = NULL;
6316 u64 left_gen = 0;
6317 u64 right_gen = 0;
6318
6319 sctx->cur_ino = key->objectid;
6320 sctx->cur_inode_new_gen = 0;
6321 sctx->cur_inode_last_extent = (u64)-1;
6322 sctx->cur_inode_next_write_offset = 0;
6323 sctx->ignore_cur_inode = false;
6324
6325 /*
6326 * Set send_progress to current inode. This will tell all get_cur_xxx
6327 * functions that the current inode's refs are not updated yet. Later,
6328 * when process_recorded_refs is finished, it is set to cur_ino + 1.
6329 */
6330 sctx->send_progress = sctx->cur_ino;
6331
6332 if (result == BTRFS_COMPARE_TREE_NEW ||
6333 result == BTRFS_COMPARE_TREE_CHANGED) {
6334 left_ii = btrfs_item_ptr(sctx->left_path->nodes[0],
6335 sctx->left_path->slots[0],
6336 struct btrfs_inode_item);
6337 left_gen = btrfs_inode_generation(sctx->left_path->nodes[0],
6338 left_ii);
6339 } else {
6340 right_ii = btrfs_item_ptr(sctx->right_path->nodes[0],
6341 sctx->right_path->slots[0],
6342 struct btrfs_inode_item);
6343 right_gen = btrfs_inode_generation(sctx->right_path->nodes[0],
6344 right_ii);
6345 }
6346 if (result == BTRFS_COMPARE_TREE_CHANGED) {
6347 right_ii = btrfs_item_ptr(sctx->right_path->nodes[0],
6348 sctx->right_path->slots[0],
6349 struct btrfs_inode_item);
6350
6351 right_gen = btrfs_inode_generation(sctx->right_path->nodes[0],
6352 right_ii);
6353
6354 /*
6355 * The cur_ino = root dir case is special here. We can't treat
6356 * the inode as deleted+reused because it would generate a
6357 * stream that tries to delete/mkdir the root dir.
6358 */
6359 if (left_gen != right_gen &&
6360 sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID)
6361 sctx->cur_inode_new_gen = 1;
6362 }
6363
6364 /*
6365 * Normally we do not find inodes with a link count of zero (orphans)
6366 * because the most common case is to create a snapshot and use it
6367 * for a send operation. However other less common use cases involve
6368 * using a subvolume and send it after turning it to RO mode just
6369 * after deleting all hard links of a file while holding an open
6370 * file descriptor against it or turning a RO snapshot into RW mode,
6371 * keep an open file descriptor against a file, delete it and then
6372 * turn the snapshot back to RO mode before using it for a send
6373 * operation. So if we find such cases, ignore the inode and all its
6374 * items completely if it's a new inode, or if it's a changed inode
6375 * make sure all its previous paths (from the parent snapshot) are all
6376 * unlinked and all other the inode items are ignored.
6377 */
6378 if (result == BTRFS_COMPARE_TREE_NEW ||
6379 result == BTRFS_COMPARE_TREE_CHANGED) {
6380 u32 nlinks;
6381
6382 nlinks = btrfs_inode_nlink(sctx->left_path->nodes[0], left_ii);
6383 if (nlinks == 0) {
6384 sctx->ignore_cur_inode = true;
6385 if (result == BTRFS_COMPARE_TREE_CHANGED)
6386 ret = btrfs_unlink_all_paths(sctx);
6387 goto out;
6388 }
6389 }
6390
6391 if (result == BTRFS_COMPARE_TREE_NEW) {
6392 sctx->cur_inode_gen = left_gen;
6393 sctx->cur_inode_new = 1;
6394 sctx->cur_inode_deleted = 0;
6395 sctx->cur_inode_size = btrfs_inode_size(
6396 sctx->left_path->nodes[0], left_ii);
6397 sctx->cur_inode_mode = btrfs_inode_mode(
6398 sctx->left_path->nodes[0], left_ii);
6399 sctx->cur_inode_rdev = btrfs_inode_rdev(
6400 sctx->left_path->nodes[0], left_ii);
6401 if (sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID)
6402 ret = send_create_inode_if_needed(sctx);
6403 } else if (result == BTRFS_COMPARE_TREE_DELETED) {
6404 sctx->cur_inode_gen = right_gen;
6405 sctx->cur_inode_new = 0;
6406 sctx->cur_inode_deleted = 1;
6407 sctx->cur_inode_size = btrfs_inode_size(
6408 sctx->right_path->nodes[0], right_ii);
6409 sctx->cur_inode_mode = btrfs_inode_mode(
6410 sctx->right_path->nodes[0], right_ii);
6411 } else if (result == BTRFS_COMPARE_TREE_CHANGED) {
6412 /*
6413 * We need to do some special handling in case the inode was
6414 * reported as changed with a changed generation number. This
6415 * means that the original inode was deleted and new inode
6416 * reused the same inum. So we have to treat the old inode as
6417 * deleted and the new one as new.
6418 */
6419 if (sctx->cur_inode_new_gen) {
6420 /*
6421 * First, process the inode as if it was deleted.
6422 */
6423 sctx->cur_inode_gen = right_gen;
6424 sctx->cur_inode_new = 0;
6425 sctx->cur_inode_deleted = 1;
6426 sctx->cur_inode_size = btrfs_inode_size(
6427 sctx->right_path->nodes[0], right_ii);
6428 sctx->cur_inode_mode = btrfs_inode_mode(
6429 sctx->right_path->nodes[0], right_ii);
6430 ret = process_all_refs(sctx,
6431 BTRFS_COMPARE_TREE_DELETED);
6432 if (ret < 0)
6433 goto out;
6434
6435 /*
6436 * Now process the inode as if it was new.
6437 */
6438 sctx->cur_inode_gen = left_gen;
6439 sctx->cur_inode_new = 1;
6440 sctx->cur_inode_deleted = 0;
6441 sctx->cur_inode_size = btrfs_inode_size(
6442 sctx->left_path->nodes[0], left_ii);
6443 sctx->cur_inode_mode = btrfs_inode_mode(
6444 sctx->left_path->nodes[0], left_ii);
6445 sctx->cur_inode_rdev = btrfs_inode_rdev(
6446 sctx->left_path->nodes[0], left_ii);
6447 ret = send_create_inode_if_needed(sctx);
6448 if (ret < 0)
6449 goto out;
6450
6451 ret = process_all_refs(sctx, BTRFS_COMPARE_TREE_NEW);
6452 if (ret < 0)
6453 goto out;
6454 /*
6455 * Advance send_progress now as we did not get into
6456 * process_recorded_refs_if_needed in the new_gen case.
6457 */
6458 sctx->send_progress = sctx->cur_ino + 1;
6459
6460 /*
6461 * Now process all extents and xattrs of the inode as if
6462 * they were all new.
6463 */
6464 ret = process_all_extents(sctx);
6465 if (ret < 0)
6466 goto out;
6467 ret = process_all_new_xattrs(sctx);
6468 if (ret < 0)
6469 goto out;
6470 } else {
6471 sctx->cur_inode_gen = left_gen;
6472 sctx->cur_inode_new = 0;
6473 sctx->cur_inode_new_gen = 0;
6474 sctx->cur_inode_deleted = 0;
6475 sctx->cur_inode_size = btrfs_inode_size(
6476 sctx->left_path->nodes[0], left_ii);
6477 sctx->cur_inode_mode = btrfs_inode_mode(
6478 sctx->left_path->nodes[0], left_ii);
6479 }
6480 }
6481
6482 out:
6483 return ret;
6484 }
6485
6486 /*
6487 * We have to process new refs before deleted refs, but compare_trees gives us
6488 * the new and deleted refs mixed. To fix this, we record the new/deleted refs
6489 * first and later process them in process_recorded_refs.
6490 * For the cur_inode_new_gen case, we skip recording completely because
6491 * changed_inode did already initiate processing of refs. The reason for this is
6492 * that in this case, compare_tree actually compares the refs of 2 different
6493 * inodes. To fix this, process_all_refs is used in changed_inode to handle all
6494 * refs of the right tree as deleted and all refs of the left tree as new.
6495 */
changed_ref(struct send_ctx *sctx, enum btrfs_compare_tree_result result)6496 static int changed_ref(struct send_ctx *sctx,
6497 enum btrfs_compare_tree_result result)
6498 {
6499 int ret = 0;
6500
6501 if (sctx->cur_ino != sctx->cmp_key->objectid) {
6502 inconsistent_snapshot_error(sctx, result, "reference");
6503 return -EIO;
6504 }
6505
6506 if (!sctx->cur_inode_new_gen &&
6507 sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID) {
6508 if (result == BTRFS_COMPARE_TREE_NEW)
6509 ret = record_new_ref(sctx);
6510 else if (result == BTRFS_COMPARE_TREE_DELETED)
6511 ret = record_deleted_ref(sctx);
6512 else if (result == BTRFS_COMPARE_TREE_CHANGED)
6513 ret = record_changed_ref(sctx);
6514 }
6515
6516 return ret;
6517 }
6518
6519 /*
6520 * Process new/deleted/changed xattrs. We skip processing in the
6521 * cur_inode_new_gen case because changed_inode did already initiate processing
6522 * of xattrs. The reason is the same as in changed_ref
6523 */
changed_xattr(struct send_ctx *sctx, enum btrfs_compare_tree_result result)6524 static int changed_xattr(struct send_ctx *sctx,
6525 enum btrfs_compare_tree_result result)
6526 {
6527 int ret = 0;
6528
6529 if (sctx->cur_ino != sctx->cmp_key->objectid) {
6530 inconsistent_snapshot_error(sctx, result, "xattr");
6531 return -EIO;
6532 }
6533
6534 if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) {
6535 if (result == BTRFS_COMPARE_TREE_NEW)
6536 ret = process_new_xattr(sctx);
6537 else if (result == BTRFS_COMPARE_TREE_DELETED)
6538 ret = process_deleted_xattr(sctx);
6539 else if (result == BTRFS_COMPARE_TREE_CHANGED)
6540 ret = process_changed_xattr(sctx);
6541 }
6542
6543 return ret;
6544 }
6545
6546 /*
6547 * Process new/deleted/changed extents. We skip processing in the
6548 * cur_inode_new_gen case because changed_inode did already initiate processing
6549 * of extents. The reason is the same as in changed_ref
6550 */
changed_extent(struct send_ctx *sctx, enum btrfs_compare_tree_result result)6551 static int changed_extent(struct send_ctx *sctx,
6552 enum btrfs_compare_tree_result result)
6553 {
6554 int ret = 0;
6555
6556 /*
6557 * We have found an extent item that changed without the inode item
6558 * having changed. This can happen either after relocation (where the
6559 * disk_bytenr of an extent item is replaced at
6560 * relocation.c:replace_file_extents()) or after deduplication into a
6561 * file in both the parent and send snapshots (where an extent item can
6562 * get modified or replaced with a new one). Note that deduplication
6563 * updates the inode item, but it only changes the iversion (sequence
6564 * field in the inode item) of the inode, so if a file is deduplicated
6565 * the same amount of times in both the parent and send snapshots, its
6566 * iversion becames the same in both snapshots, whence the inode item is
6567 * the same on both snapshots.
6568 */
6569 if (sctx->cur_ino != sctx->cmp_key->objectid)
6570 return 0;
6571
6572 if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) {
6573 if (result != BTRFS_COMPARE_TREE_DELETED)
6574 ret = process_extent(sctx, sctx->left_path,
6575 sctx->cmp_key);
6576 }
6577
6578 return ret;
6579 }
6580
dir_changed(struct send_ctx *sctx, u64 dir)6581 static int dir_changed(struct send_ctx *sctx, u64 dir)
6582 {
6583 u64 orig_gen, new_gen;
6584 int ret;
6585
6586 ret = get_inode_info(sctx->send_root, dir, NULL, &new_gen, NULL, NULL,
6587 NULL, NULL);
6588 if (ret)
6589 return ret;
6590
6591 ret = get_inode_info(sctx->parent_root, dir, NULL, &orig_gen, NULL,
6592 NULL, NULL, NULL);
6593 if (ret)
6594 return ret;
6595
6596 return (orig_gen != new_gen) ? 1 : 0;
6597 }
6598
compare_refs(struct send_ctx *sctx, struct btrfs_path *path, struct btrfs_key *key)6599 static int compare_refs(struct send_ctx *sctx, struct btrfs_path *path,
6600 struct btrfs_key *key)
6601 {
6602 struct btrfs_inode_extref *extref;
6603 struct extent_buffer *leaf;
6604 u64 dirid = 0, last_dirid = 0;
6605 unsigned long ptr;
6606 u32 item_size;
6607 u32 cur_offset = 0;
6608 int ref_name_len;
6609 int ret = 0;
6610
6611 /* Easy case, just check this one dirid */
6612 if (key->type == BTRFS_INODE_REF_KEY) {
6613 dirid = key->offset;
6614
6615 ret = dir_changed(sctx, dirid);
6616 goto out;
6617 }
6618
6619 leaf = path->nodes[0];
6620 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
6621 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
6622 while (cur_offset < item_size) {
6623 extref = (struct btrfs_inode_extref *)(ptr +
6624 cur_offset);
6625 dirid = btrfs_inode_extref_parent(leaf, extref);
6626 ref_name_len = btrfs_inode_extref_name_len(leaf, extref);
6627 cur_offset += ref_name_len + sizeof(*extref);
6628 if (dirid == last_dirid)
6629 continue;
6630 ret = dir_changed(sctx, dirid);
6631 if (ret)
6632 break;
6633 last_dirid = dirid;
6634 }
6635 out:
6636 return ret;
6637 }
6638
6639 /*
6640 * Updates compare related fields in sctx and simply forwards to the actual
6641 * changed_xxx functions.
6642 */
changed_cb(struct btrfs_path *left_path, struct btrfs_path *right_path, struct btrfs_key *key, enum btrfs_compare_tree_result result, void *ctx)6643 static int changed_cb(struct btrfs_path *left_path,
6644 struct btrfs_path *right_path,
6645 struct btrfs_key *key,
6646 enum btrfs_compare_tree_result result,
6647 void *ctx)
6648 {
6649 int ret = 0;
6650 struct send_ctx *sctx = ctx;
6651
6652 if (result == BTRFS_COMPARE_TREE_SAME) {
6653 if (key->type == BTRFS_INODE_REF_KEY ||
6654 key->type == BTRFS_INODE_EXTREF_KEY) {
6655 ret = compare_refs(sctx, left_path, key);
6656 if (!ret)
6657 return 0;
6658 if (ret < 0)
6659 return ret;
6660 } else if (key->type == BTRFS_EXTENT_DATA_KEY) {
6661 return maybe_send_hole(sctx, left_path, key);
6662 } else {
6663 return 0;
6664 }
6665 result = BTRFS_COMPARE_TREE_CHANGED;
6666 ret = 0;
6667 }
6668
6669 sctx->left_path = left_path;
6670 sctx->right_path = right_path;
6671 sctx->cmp_key = key;
6672
6673 ret = finish_inode_if_needed(sctx, 0);
6674 if (ret < 0)
6675 goto out;
6676
6677 /* Ignore non-FS objects */
6678 if (key->objectid == BTRFS_FREE_INO_OBJECTID ||
6679 key->objectid == BTRFS_FREE_SPACE_OBJECTID)
6680 goto out;
6681
6682 if (key->type == BTRFS_INODE_ITEM_KEY) {
6683 ret = changed_inode(sctx, result);
6684 } else if (!sctx->ignore_cur_inode) {
6685 if (key->type == BTRFS_INODE_REF_KEY ||
6686 key->type == BTRFS_INODE_EXTREF_KEY)
6687 ret = changed_ref(sctx, result);
6688 else if (key->type == BTRFS_XATTR_ITEM_KEY)
6689 ret = changed_xattr(sctx, result);
6690 else if (key->type == BTRFS_EXTENT_DATA_KEY)
6691 ret = changed_extent(sctx, result);
6692 }
6693
6694 out:
6695 return ret;
6696 }
6697
full_send_tree(struct send_ctx *sctx)6698 static int full_send_tree(struct send_ctx *sctx)
6699 {
6700 int ret;
6701 struct btrfs_root *send_root = sctx->send_root;
6702 struct btrfs_key key;
6703 struct btrfs_path *path;
6704 struct extent_buffer *eb;
6705 int slot;
6706
6707 path = alloc_path_for_send();
6708 if (!path)
6709 return -ENOMEM;
6710
6711 key.objectid = BTRFS_FIRST_FREE_OBJECTID;
6712 key.type = BTRFS_INODE_ITEM_KEY;
6713 key.offset = 0;
6714
6715 ret = btrfs_search_slot_for_read(send_root, &key, path, 1, 0);
6716 if (ret < 0)
6717 goto out;
6718 if (ret)
6719 goto out_finish;
6720
6721 while (1) {
6722 eb = path->nodes[0];
6723 slot = path->slots[0];
6724 btrfs_item_key_to_cpu(eb, &key, slot);
6725
6726 ret = changed_cb(path, NULL, &key,
6727 BTRFS_COMPARE_TREE_NEW, sctx);
6728 if (ret < 0)
6729 goto out;
6730
6731 ret = btrfs_next_item(send_root, path);
6732 if (ret < 0)
6733 goto out;
6734 if (ret) {
6735 ret = 0;
6736 break;
6737 }
6738 }
6739
6740 out_finish:
6741 ret = finish_inode_if_needed(sctx, 1);
6742
6743 out:
6744 btrfs_free_path(path);
6745 return ret;
6746 }
6747
tree_move_down(struct btrfs_path *path, int *level)6748 static int tree_move_down(struct btrfs_path *path, int *level)
6749 {
6750 struct extent_buffer *eb;
6751
6752 BUG_ON(*level == 0);
6753 eb = btrfs_read_node_slot(path->nodes[*level], path->slots[*level]);
6754 if (IS_ERR(eb))
6755 return PTR_ERR(eb);
6756
6757 path->nodes[*level - 1] = eb;
6758 path->slots[*level - 1] = 0;
6759 (*level)--;
6760 return 0;
6761 }
6762
tree_move_next_or_upnext(struct btrfs_path *path, int *level, int root_level)6763 static int tree_move_next_or_upnext(struct btrfs_path *path,
6764 int *level, int root_level)
6765 {
6766 int ret = 0;
6767 int nritems;
6768 nritems = btrfs_header_nritems(path->nodes[*level]);
6769
6770 path->slots[*level]++;
6771
6772 while (path->slots[*level] >= nritems) {
6773 if (*level == root_level)
6774 return -1;
6775
6776 /* move upnext */
6777 path->slots[*level] = 0;
6778 free_extent_buffer(path->nodes[*level]);
6779 path->nodes[*level] = NULL;
6780 (*level)++;
6781 path->slots[*level]++;
6782
6783 nritems = btrfs_header_nritems(path->nodes[*level]);
6784 ret = 1;
6785 }
6786 return ret;
6787 }
6788
6789 /*
6790 * Returns 1 if it had to move up and next. 0 is returned if it moved only next
6791 * or down.
6792 */
tree_advance(struct btrfs_path *path, int *level, int root_level, int allow_down, struct btrfs_key *key)6793 static int tree_advance(struct btrfs_path *path,
6794 int *level, int root_level,
6795 int allow_down,
6796 struct btrfs_key *key)
6797 {
6798 int ret;
6799
6800 if (*level == 0 || !allow_down) {
6801 ret = tree_move_next_or_upnext(path, level, root_level);
6802 } else {
6803 ret = tree_move_down(path, level);
6804 }
6805 if (ret >= 0) {
6806 if (*level == 0)
6807 btrfs_item_key_to_cpu(path->nodes[*level], key,
6808 path->slots[*level]);
6809 else
6810 btrfs_node_key_to_cpu(path->nodes[*level], key,
6811 path->slots[*level]);
6812 }
6813 return ret;
6814 }
6815
tree_compare_item(struct btrfs_path *left_path, struct btrfs_path *right_path, char *tmp_buf)6816 static int tree_compare_item(struct btrfs_path *left_path,
6817 struct btrfs_path *right_path,
6818 char *tmp_buf)
6819 {
6820 int cmp;
6821 int len1, len2;
6822 unsigned long off1, off2;
6823
6824 len1 = btrfs_item_size_nr(left_path->nodes[0], left_path->slots[0]);
6825 len2 = btrfs_item_size_nr(right_path->nodes[0], right_path->slots[0]);
6826 if (len1 != len2)
6827 return 1;
6828
6829 off1 = btrfs_item_ptr_offset(left_path->nodes[0], left_path->slots[0]);
6830 off2 = btrfs_item_ptr_offset(right_path->nodes[0],
6831 right_path->slots[0]);
6832
6833 read_extent_buffer(left_path->nodes[0], tmp_buf, off1, len1);
6834
6835 cmp = memcmp_extent_buffer(right_path->nodes[0], tmp_buf, off2, len1);
6836 if (cmp)
6837 return 1;
6838 return 0;
6839 }
6840
6841 /*
6842 * This function compares two trees and calls the provided callback for
6843 * every changed/new/deleted item it finds.
6844 * If shared tree blocks are encountered, whole subtrees are skipped, making
6845 * the compare pretty fast on snapshotted subvolumes.
6846 *
6847 * This currently works on commit roots only. As commit roots are read only,
6848 * we don't do any locking. The commit roots are protected with transactions.
6849 * Transactions are ended and rejoined when a commit is tried in between.
6850 *
6851 * This function checks for modifications done to the trees while comparing.
6852 * If it detects a change, it aborts immediately.
6853 */
btrfs_compare_trees(struct btrfs_root *left_root, struct btrfs_root *right_root, void *ctx)6854 static int btrfs_compare_trees(struct btrfs_root *left_root,
6855 struct btrfs_root *right_root, void *ctx)
6856 {
6857 struct btrfs_fs_info *fs_info = left_root->fs_info;
6858 int ret;
6859 int cmp;
6860 struct btrfs_path *left_path = NULL;
6861 struct btrfs_path *right_path = NULL;
6862 struct btrfs_key left_key;
6863 struct btrfs_key right_key;
6864 char *tmp_buf = NULL;
6865 int left_root_level;
6866 int right_root_level;
6867 int left_level;
6868 int right_level;
6869 int left_end_reached;
6870 int right_end_reached;
6871 int advance_left;
6872 int advance_right;
6873 u64 left_blockptr;
6874 u64 right_blockptr;
6875 u64 left_gen;
6876 u64 right_gen;
6877
6878 left_path = btrfs_alloc_path();
6879 if (!left_path) {
6880 ret = -ENOMEM;
6881 goto out;
6882 }
6883 right_path = btrfs_alloc_path();
6884 if (!right_path) {
6885 ret = -ENOMEM;
6886 goto out;
6887 }
6888
6889 tmp_buf = kvmalloc(fs_info->nodesize, GFP_KERNEL);
6890 if (!tmp_buf) {
6891 ret = -ENOMEM;
6892 goto out;
6893 }
6894
6895 left_path->search_commit_root = 1;
6896 left_path->skip_locking = 1;
6897 right_path->search_commit_root = 1;
6898 right_path->skip_locking = 1;
6899
6900 /*
6901 * Strategy: Go to the first items of both trees. Then do
6902 *
6903 * If both trees are at level 0
6904 * Compare keys of current items
6905 * If left < right treat left item as new, advance left tree
6906 * and repeat
6907 * If left > right treat right item as deleted, advance right tree
6908 * and repeat
6909 * If left == right do deep compare of items, treat as changed if
6910 * needed, advance both trees and repeat
6911 * If both trees are at the same level but not at level 0
6912 * Compare keys of current nodes/leafs
6913 * If left < right advance left tree and repeat
6914 * If left > right advance right tree and repeat
6915 * If left == right compare blockptrs of the next nodes/leafs
6916 * If they match advance both trees but stay at the same level
6917 * and repeat
6918 * If they don't match advance both trees while allowing to go
6919 * deeper and repeat
6920 * If tree levels are different
6921 * Advance the tree that needs it and repeat
6922 *
6923 * Advancing a tree means:
6924 * If we are at level 0, try to go to the next slot. If that's not
6925 * possible, go one level up and repeat. Stop when we found a level
6926 * where we could go to the next slot. We may at this point be on a
6927 * node or a leaf.
6928 *
6929 * If we are not at level 0 and not on shared tree blocks, go one
6930 * level deeper.
6931 *
6932 * If we are not at level 0 and on shared tree blocks, go one slot to
6933 * the right if possible or go up and right.
6934 */
6935
6936 down_read(&fs_info->commit_root_sem);
6937 left_level = btrfs_header_level(left_root->commit_root);
6938 left_root_level = left_level;
6939 left_path->nodes[left_level] =
6940 btrfs_clone_extent_buffer(left_root->commit_root);
6941 if (!left_path->nodes[left_level]) {
6942 up_read(&fs_info->commit_root_sem);
6943 ret = -ENOMEM;
6944 goto out;
6945 }
6946
6947 right_level = btrfs_header_level(right_root->commit_root);
6948 right_root_level = right_level;
6949 right_path->nodes[right_level] =
6950 btrfs_clone_extent_buffer(right_root->commit_root);
6951 if (!right_path->nodes[right_level]) {
6952 up_read(&fs_info->commit_root_sem);
6953 ret = -ENOMEM;
6954 goto out;
6955 }
6956 up_read(&fs_info->commit_root_sem);
6957
6958 if (left_level == 0)
6959 btrfs_item_key_to_cpu(left_path->nodes[left_level],
6960 &left_key, left_path->slots[left_level]);
6961 else
6962 btrfs_node_key_to_cpu(left_path->nodes[left_level],
6963 &left_key, left_path->slots[left_level]);
6964 if (right_level == 0)
6965 btrfs_item_key_to_cpu(right_path->nodes[right_level],
6966 &right_key, right_path->slots[right_level]);
6967 else
6968 btrfs_node_key_to_cpu(right_path->nodes[right_level],
6969 &right_key, right_path->slots[right_level]);
6970
6971 left_end_reached = right_end_reached = 0;
6972 advance_left = advance_right = 0;
6973
6974 while (1) {
6975 cond_resched();
6976 if (advance_left && !left_end_reached) {
6977 ret = tree_advance(left_path, &left_level,
6978 left_root_level,
6979 advance_left != ADVANCE_ONLY_NEXT,
6980 &left_key);
6981 if (ret == -1)
6982 left_end_reached = ADVANCE;
6983 else if (ret < 0)
6984 goto out;
6985 advance_left = 0;
6986 }
6987 if (advance_right && !right_end_reached) {
6988 ret = tree_advance(right_path, &right_level,
6989 right_root_level,
6990 advance_right != ADVANCE_ONLY_NEXT,
6991 &right_key);
6992 if (ret == -1)
6993 right_end_reached = ADVANCE;
6994 else if (ret < 0)
6995 goto out;
6996 advance_right = 0;
6997 }
6998
6999 if (left_end_reached && right_end_reached) {
7000 ret = 0;
7001 goto out;
7002 } else if (left_end_reached) {
7003 if (right_level == 0) {
7004 ret = changed_cb(left_path, right_path,
7005 &right_key,
7006 BTRFS_COMPARE_TREE_DELETED,
7007 ctx);
7008 if (ret < 0)
7009 goto out;
7010 }
7011 advance_right = ADVANCE;
7012 continue;
7013 } else if (right_end_reached) {
7014 if (left_level == 0) {
7015 ret = changed_cb(left_path, right_path,
7016 &left_key,
7017 BTRFS_COMPARE_TREE_NEW,
7018 ctx);
7019 if (ret < 0)
7020 goto out;
7021 }
7022 advance_left = ADVANCE;
7023 continue;
7024 }
7025
7026 if (left_level == 0 && right_level == 0) {
7027 cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
7028 if (cmp < 0) {
7029 ret = changed_cb(left_path, right_path,
7030 &left_key,
7031 BTRFS_COMPARE_TREE_NEW,
7032 ctx);
7033 if (ret < 0)
7034 goto out;
7035 advance_left = ADVANCE;
7036 } else if (cmp > 0) {
7037 ret = changed_cb(left_path, right_path,
7038 &right_key,
7039 BTRFS_COMPARE_TREE_DELETED,
7040 ctx);
7041 if (ret < 0)
7042 goto out;
7043 advance_right = ADVANCE;
7044 } else {
7045 enum btrfs_compare_tree_result result;
7046
7047 WARN_ON(!extent_buffer_uptodate(left_path->nodes[0]));
7048 ret = tree_compare_item(left_path, right_path,
7049 tmp_buf);
7050 if (ret)
7051 result = BTRFS_COMPARE_TREE_CHANGED;
7052 else
7053 result = BTRFS_COMPARE_TREE_SAME;
7054 ret = changed_cb(left_path, right_path,
7055 &left_key, result, ctx);
7056 if (ret < 0)
7057 goto out;
7058 advance_left = ADVANCE;
7059 advance_right = ADVANCE;
7060 }
7061 } else if (left_level == right_level) {
7062 cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
7063 if (cmp < 0) {
7064 advance_left = ADVANCE;
7065 } else if (cmp > 0) {
7066 advance_right = ADVANCE;
7067 } else {
7068 left_blockptr = btrfs_node_blockptr(
7069 left_path->nodes[left_level],
7070 left_path->slots[left_level]);
7071 right_blockptr = btrfs_node_blockptr(
7072 right_path->nodes[right_level],
7073 right_path->slots[right_level]);
7074 left_gen = btrfs_node_ptr_generation(
7075 left_path->nodes[left_level],
7076 left_path->slots[left_level]);
7077 right_gen = btrfs_node_ptr_generation(
7078 right_path->nodes[right_level],
7079 right_path->slots[right_level]);
7080 if (left_blockptr == right_blockptr &&
7081 left_gen == right_gen) {
7082 /*
7083 * As we're on a shared block, don't
7084 * allow to go deeper.
7085 */
7086 advance_left = ADVANCE_ONLY_NEXT;
7087 advance_right = ADVANCE_ONLY_NEXT;
7088 } else {
7089 advance_left = ADVANCE;
7090 advance_right = ADVANCE;
7091 }
7092 }
7093 } else if (left_level < right_level) {
7094 advance_right = ADVANCE;
7095 } else {
7096 advance_left = ADVANCE;
7097 }
7098 }
7099
7100 out:
7101 btrfs_free_path(left_path);
7102 btrfs_free_path(right_path);
7103 kvfree(tmp_buf);
7104 return ret;
7105 }
7106
send_subvol(struct send_ctx *sctx)7107 static int send_subvol(struct send_ctx *sctx)
7108 {
7109 int ret;
7110
7111 if (!(sctx->flags & BTRFS_SEND_FLAG_OMIT_STREAM_HEADER)) {
7112 ret = send_header(sctx);
7113 if (ret < 0)
7114 goto out;
7115 }
7116
7117 ret = send_subvol_begin(sctx);
7118 if (ret < 0)
7119 goto out;
7120
7121 if (sctx->parent_root) {
7122 ret = btrfs_compare_trees(sctx->send_root, sctx->parent_root, sctx);
7123 if (ret < 0)
7124 goto out;
7125 ret = finish_inode_if_needed(sctx, 1);
7126 if (ret < 0)
7127 goto out;
7128 } else {
7129 ret = full_send_tree(sctx);
7130 if (ret < 0)
7131 goto out;
7132 }
7133
7134 out:
7135 free_recorded_refs(sctx);
7136 return ret;
7137 }
7138
7139 /*
7140 * If orphan cleanup did remove any orphans from a root, it means the tree
7141 * was modified and therefore the commit root is not the same as the current
7142 * root anymore. This is a problem, because send uses the commit root and
7143 * therefore can see inode items that don't exist in the current root anymore,
7144 * and for example make calls to btrfs_iget, which will do tree lookups based
7145 * on the current root and not on the commit root. Those lookups will fail,
7146 * returning a -ESTALE error, and making send fail with that error. So make
7147 * sure a send does not see any orphans we have just removed, and that it will
7148 * see the same inodes regardless of whether a transaction commit happened
7149 * before it started (meaning that the commit root will be the same as the
7150 * current root) or not.
7151 */
ensure_commit_roots_uptodate(struct send_ctx *sctx)7152 static int ensure_commit_roots_uptodate(struct send_ctx *sctx)
7153 {
7154 int i;
7155 struct btrfs_trans_handle *trans = NULL;
7156
7157 again:
7158 if (sctx->parent_root &&
7159 sctx->parent_root->node != sctx->parent_root->commit_root)
7160 goto commit_trans;
7161
7162 for (i = 0; i < sctx->clone_roots_cnt; i++)
7163 if (sctx->clone_roots[i].root->node !=
7164 sctx->clone_roots[i].root->commit_root)
7165 goto commit_trans;
7166
7167 if (trans)
7168 return btrfs_end_transaction(trans);
7169
7170 return 0;
7171
7172 commit_trans:
7173 /* Use any root, all fs roots will get their commit roots updated. */
7174 if (!trans) {
7175 trans = btrfs_join_transaction(sctx->send_root);
7176 if (IS_ERR(trans))
7177 return PTR_ERR(trans);
7178 goto again;
7179 }
7180
7181 return btrfs_commit_transaction(trans);
7182 }
7183
7184 /*
7185 * Make sure any existing dellaloc is flushed for any root used by a send
7186 * operation so that we do not miss any data and we do not race with writeback
7187 * finishing and changing a tree while send is using the tree. This could
7188 * happen if a subvolume is in RW mode, has delalloc, is turned to RO mode and
7189 * a send operation then uses the subvolume.
7190 * After flushing delalloc ensure_commit_roots_uptodate() must be called.
7191 */
flush_delalloc_roots(struct send_ctx *sctx)7192 static int flush_delalloc_roots(struct send_ctx *sctx)
7193 {
7194 struct btrfs_root *root = sctx->parent_root;
7195 int ret;
7196 int i;
7197
7198 if (root) {
7199 ret = btrfs_start_delalloc_snapshot(root);
7200 if (ret)
7201 return ret;
7202 btrfs_wait_ordered_extents(root, U64_MAX, 0, U64_MAX);
7203 }
7204
7205 for (i = 0; i < sctx->clone_roots_cnt; i++) {
7206 root = sctx->clone_roots[i].root;
7207 ret = btrfs_start_delalloc_snapshot(root);
7208 if (ret)
7209 return ret;
7210 btrfs_wait_ordered_extents(root, U64_MAX, 0, U64_MAX);
7211 }
7212
7213 return 0;
7214 }
7215
btrfs_root_dec_send_in_progress(struct btrfs_root* root)7216 static void btrfs_root_dec_send_in_progress(struct btrfs_root* root)
7217 {
7218 spin_lock(&root->root_item_lock);
7219 root->send_in_progress--;
7220 /*
7221 * Not much left to do, we don't know why it's unbalanced and
7222 * can't blindly reset it to 0.
7223 */
7224 if (root->send_in_progress < 0)
7225 btrfs_err(root->fs_info,
7226 "send_in_progress unbalanced %d root %llu",
7227 root->send_in_progress, root->root_key.objectid);
7228 spin_unlock(&root->root_item_lock);
7229 }
7230
dedupe_in_progress_warn(const struct btrfs_root *root)7231 static void dedupe_in_progress_warn(const struct btrfs_root *root)
7232 {
7233 btrfs_warn_rl(root->fs_info,
7234 "cannot use root %llu for send while deduplications on it are in progress (%d in progress)",
7235 root->root_key.objectid, root->dedupe_in_progress);
7236 }
7237
btrfs_ioctl_send(struct file *mnt_file, struct btrfs_ioctl_send_args *arg)7238 long btrfs_ioctl_send(struct file *mnt_file, struct btrfs_ioctl_send_args *arg)
7239 {
7240 int ret = 0;
7241 struct btrfs_root *send_root = BTRFS_I(file_inode(mnt_file))->root;
7242 struct btrfs_fs_info *fs_info = send_root->fs_info;
7243 struct btrfs_root *clone_root;
7244 struct send_ctx *sctx = NULL;
7245 u32 i;
7246 u64 *clone_sources_tmp = NULL;
7247 int clone_sources_to_rollback = 0;
7248 size_t alloc_size;
7249 int sort_clone_roots = 0;
7250
7251 if (!capable(CAP_SYS_ADMIN))
7252 return -EPERM;
7253
7254 /*
7255 * The subvolume must remain read-only during send, protect against
7256 * making it RW. This also protects against deletion.
7257 */
7258 spin_lock(&send_root->root_item_lock);
7259 if (btrfs_root_readonly(send_root) && send_root->dedupe_in_progress) {
7260 dedupe_in_progress_warn(send_root);
7261 spin_unlock(&send_root->root_item_lock);
7262 return -EAGAIN;
7263 }
7264 send_root->send_in_progress++;
7265 spin_unlock(&send_root->root_item_lock);
7266
7267 /*
7268 * Userspace tools do the checks and warn the user if it's
7269 * not RO.
7270 */
7271 if (!btrfs_root_readonly(send_root)) {
7272 ret = -EPERM;
7273 goto out;
7274 }
7275
7276 /*
7277 * Check that we don't overflow at later allocations, we request
7278 * clone_sources_count + 1 items, and compare to unsigned long inside
7279 * access_ok. Also set an upper limit for allocation size so this can't
7280 * easily exhaust memory. Max number of clone sources is about 200K.
7281 */
7282 if (arg->clone_sources_count > SZ_8M / sizeof(struct clone_root)) {
7283 ret = -EINVAL;
7284 goto out;
7285 }
7286
7287 if (arg->flags & ~BTRFS_SEND_FLAG_MASK) {
7288 ret = -EOPNOTSUPP;
7289 goto out;
7290 }
7291
7292 sctx = kzalloc(sizeof(struct send_ctx), GFP_KERNEL);
7293 if (!sctx) {
7294 ret = -ENOMEM;
7295 goto out;
7296 }
7297
7298 INIT_LIST_HEAD(&sctx->new_refs);
7299 INIT_LIST_HEAD(&sctx->deleted_refs);
7300 INIT_RADIX_TREE(&sctx->name_cache, GFP_KERNEL);
7301 INIT_LIST_HEAD(&sctx->name_cache_list);
7302
7303 sctx->flags = arg->flags;
7304
7305 sctx->send_filp = fget(arg->send_fd);
7306 if (!sctx->send_filp || !(sctx->send_filp->f_mode & FMODE_WRITE)) {
7307 ret = -EBADF;
7308 goto out;
7309 }
7310
7311 sctx->send_root = send_root;
7312 /*
7313 * Unlikely but possible, if the subvolume is marked for deletion but
7314 * is slow to remove the directory entry, send can still be started
7315 */
7316 if (btrfs_root_dead(sctx->send_root)) {
7317 ret = -EPERM;
7318 goto out;
7319 }
7320
7321 sctx->clone_roots_cnt = arg->clone_sources_count;
7322
7323 sctx->send_max_size = BTRFS_SEND_BUF_SIZE;
7324 sctx->send_buf = kvmalloc(sctx->send_max_size, GFP_KERNEL);
7325 if (!sctx->send_buf) {
7326 ret = -ENOMEM;
7327 goto out;
7328 }
7329
7330 sctx->pending_dir_moves = RB_ROOT;
7331 sctx->waiting_dir_moves = RB_ROOT;
7332 sctx->orphan_dirs = RB_ROOT;
7333
7334 sctx->clone_roots = kvcalloc(sizeof(*sctx->clone_roots),
7335 arg->clone_sources_count + 1,
7336 GFP_KERNEL);
7337 if (!sctx->clone_roots) {
7338 ret = -ENOMEM;
7339 goto out;
7340 }
7341
7342 alloc_size = array_size(sizeof(*arg->clone_sources),
7343 arg->clone_sources_count);
7344
7345 if (arg->clone_sources_count) {
7346 clone_sources_tmp = kvmalloc(alloc_size, GFP_KERNEL);
7347 if (!clone_sources_tmp) {
7348 ret = -ENOMEM;
7349 goto out;
7350 }
7351
7352 ret = copy_from_user(clone_sources_tmp, arg->clone_sources,
7353 alloc_size);
7354 if (ret) {
7355 ret = -EFAULT;
7356 goto out;
7357 }
7358
7359 for (i = 0; i < arg->clone_sources_count; i++) {
7360 clone_root = btrfs_get_fs_root(fs_info,
7361 clone_sources_tmp[i], true);
7362 if (IS_ERR(clone_root)) {
7363 ret = PTR_ERR(clone_root);
7364 goto out;
7365 }
7366 spin_lock(&clone_root->root_item_lock);
7367 if (!btrfs_root_readonly(clone_root) ||
7368 btrfs_root_dead(clone_root)) {
7369 spin_unlock(&clone_root->root_item_lock);
7370 btrfs_put_root(clone_root);
7371 ret = -EPERM;
7372 goto out;
7373 }
7374 if (clone_root->dedupe_in_progress) {
7375 dedupe_in_progress_warn(clone_root);
7376 spin_unlock(&clone_root->root_item_lock);
7377 btrfs_put_root(clone_root);
7378 ret = -EAGAIN;
7379 goto out;
7380 }
7381 clone_root->send_in_progress++;
7382 spin_unlock(&clone_root->root_item_lock);
7383
7384 sctx->clone_roots[i].root = clone_root;
7385 clone_sources_to_rollback = i + 1;
7386 }
7387 kvfree(clone_sources_tmp);
7388 clone_sources_tmp = NULL;
7389 }
7390
7391 if (arg->parent_root) {
7392 sctx->parent_root = btrfs_get_fs_root(fs_info, arg->parent_root,
7393 true);
7394 if (IS_ERR(sctx->parent_root)) {
7395 ret = PTR_ERR(sctx->parent_root);
7396 goto out;
7397 }
7398
7399 spin_lock(&sctx->parent_root->root_item_lock);
7400 sctx->parent_root->send_in_progress++;
7401 if (!btrfs_root_readonly(sctx->parent_root) ||
7402 btrfs_root_dead(sctx->parent_root)) {
7403 spin_unlock(&sctx->parent_root->root_item_lock);
7404 ret = -EPERM;
7405 goto out;
7406 }
7407 if (sctx->parent_root->dedupe_in_progress) {
7408 dedupe_in_progress_warn(sctx->parent_root);
7409 spin_unlock(&sctx->parent_root->root_item_lock);
7410 ret = -EAGAIN;
7411 goto out;
7412 }
7413 spin_unlock(&sctx->parent_root->root_item_lock);
7414 }
7415
7416 /*
7417 * Clones from send_root are allowed, but only if the clone source
7418 * is behind the current send position. This is checked while searching
7419 * for possible clone sources.
7420 */
7421 sctx->clone_roots[sctx->clone_roots_cnt++].root =
7422 btrfs_grab_root(sctx->send_root);
7423
7424 /* We do a bsearch later */
7425 sort(sctx->clone_roots, sctx->clone_roots_cnt,
7426 sizeof(*sctx->clone_roots), __clone_root_cmp_sort,
7427 NULL);
7428 sort_clone_roots = 1;
7429
7430 ret = flush_delalloc_roots(sctx);
7431 if (ret)
7432 goto out;
7433
7434 ret = ensure_commit_roots_uptodate(sctx);
7435 if (ret)
7436 goto out;
7437
7438 mutex_lock(&fs_info->balance_mutex);
7439 if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
7440 mutex_unlock(&fs_info->balance_mutex);
7441 btrfs_warn_rl(fs_info,
7442 "cannot run send because a balance operation is in progress");
7443 ret = -EAGAIN;
7444 goto out;
7445 }
7446 fs_info->send_in_progress++;
7447 mutex_unlock(&fs_info->balance_mutex);
7448
7449 current->journal_info = BTRFS_SEND_TRANS_STUB;
7450 ret = send_subvol(sctx);
7451 current->journal_info = NULL;
7452 mutex_lock(&fs_info->balance_mutex);
7453 fs_info->send_in_progress--;
7454 mutex_unlock(&fs_info->balance_mutex);
7455 if (ret < 0)
7456 goto out;
7457
7458 if (!(sctx->flags & BTRFS_SEND_FLAG_OMIT_END_CMD)) {
7459 ret = begin_cmd(sctx, BTRFS_SEND_C_END);
7460 if (ret < 0)
7461 goto out;
7462 ret = send_cmd(sctx);
7463 if (ret < 0)
7464 goto out;
7465 }
7466
7467 out:
7468 WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->pending_dir_moves));
7469 while (sctx && !RB_EMPTY_ROOT(&sctx->pending_dir_moves)) {
7470 struct rb_node *n;
7471 struct pending_dir_move *pm;
7472
7473 n = rb_first(&sctx->pending_dir_moves);
7474 pm = rb_entry(n, struct pending_dir_move, node);
7475 while (!list_empty(&pm->list)) {
7476 struct pending_dir_move *pm2;
7477
7478 pm2 = list_first_entry(&pm->list,
7479 struct pending_dir_move, list);
7480 free_pending_move(sctx, pm2);
7481 }
7482 free_pending_move(sctx, pm);
7483 }
7484
7485 WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->waiting_dir_moves));
7486 while (sctx && !RB_EMPTY_ROOT(&sctx->waiting_dir_moves)) {
7487 struct rb_node *n;
7488 struct waiting_dir_move *dm;
7489
7490 n = rb_first(&sctx->waiting_dir_moves);
7491 dm = rb_entry(n, struct waiting_dir_move, node);
7492 rb_erase(&dm->node, &sctx->waiting_dir_moves);
7493 kfree(dm);
7494 }
7495
7496 WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->orphan_dirs));
7497 while (sctx && !RB_EMPTY_ROOT(&sctx->orphan_dirs)) {
7498 struct rb_node *n;
7499 struct orphan_dir_info *odi;
7500
7501 n = rb_first(&sctx->orphan_dirs);
7502 odi = rb_entry(n, struct orphan_dir_info, node);
7503 free_orphan_dir_info(sctx, odi);
7504 }
7505
7506 if (sort_clone_roots) {
7507 for (i = 0; i < sctx->clone_roots_cnt; i++) {
7508 btrfs_root_dec_send_in_progress(
7509 sctx->clone_roots[i].root);
7510 btrfs_put_root(sctx->clone_roots[i].root);
7511 }
7512 } else {
7513 for (i = 0; sctx && i < clone_sources_to_rollback; i++) {
7514 btrfs_root_dec_send_in_progress(
7515 sctx->clone_roots[i].root);
7516 btrfs_put_root(sctx->clone_roots[i].root);
7517 }
7518
7519 btrfs_root_dec_send_in_progress(send_root);
7520 }
7521 if (sctx && !IS_ERR_OR_NULL(sctx->parent_root)) {
7522 btrfs_root_dec_send_in_progress(sctx->parent_root);
7523 btrfs_put_root(sctx->parent_root);
7524 }
7525
7526 kvfree(clone_sources_tmp);
7527
7528 if (sctx) {
7529 if (sctx->send_filp)
7530 fput(sctx->send_filp);
7531
7532 kvfree(sctx->clone_roots);
7533 kvfree(sctx->send_buf);
7534
7535 name_cache_free(sctx);
7536
7537 kfree(sctx);
7538 }
7539
7540 return ret;
7541 }
7542