1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2012 Alexander Block.  All rights reserved.
4  */
5 
6 #include <linux/bsearch.h>
7 #include <linux/fs.h>
8 #include <linux/file.h>
9 #include <linux/sort.h>
10 #include <linux/mount.h>
11 #include <linux/xattr.h>
12 #include <linux/posix_acl_xattr.h>
13 #include <linux/radix-tree.h>
14 #include <linux/vmalloc.h>
15 #include <linux/string.h>
16 #include <linux/compat.h>
17 #include <linux/crc32c.h>
18 
19 #include "send.h"
20 #include "backref.h"
21 #include "locking.h"
22 #include "disk-io.h"
23 #include "btrfs_inode.h"
24 #include "transaction.h"
25 #include "compression.h"
26 #include "xattr.h"
27 
28 /*
29  * Maximum number of references an extent can have in order for us to attempt to
30  * issue clone operations instead of write operations. This currently exists to
31  * avoid hitting limitations of the backreference walking code (taking a lot of
32  * time and using too much memory for extents with large number of references).
33  */
34 #define SEND_MAX_EXTENT_REFS	64
35 
36 /*
37  * A fs_path is a helper to dynamically build path names with unknown size.
38  * It reallocates the internal buffer on demand.
39  * It allows fast adding of path elements on the right side (normal path) and
40  * fast adding to the left side (reversed path). A reversed path can also be
41  * unreversed if needed.
42  */
43 struct fs_path {
44 	union {
45 		struct {
46 			char *start;
47 			char *end;
48 
49 			char *buf;
50 			unsigned short buf_len:15;
51 			unsigned short reversed:1;
52 			char inline_buf[];
53 		};
54 		/*
55 		 * Average path length does not exceed 200 bytes, we'll have
56 		 * better packing in the slab and higher chance to satisfy
57 		 * a allocation later during send.
58 		 */
59 		char pad[256];
60 	};
61 };
62 #define FS_PATH_INLINE_SIZE \
63 	(sizeof(struct fs_path) - offsetof(struct fs_path, inline_buf))
64 
65 
66 /* reused for each extent */
67 struct clone_root {
68 	struct btrfs_root *root;
69 	u64 ino;
70 	u64 offset;
71 
72 	u64 found_refs;
73 };
74 
75 #define SEND_CTX_MAX_NAME_CACHE_SIZE 128
76 #define SEND_CTX_NAME_CACHE_CLEAN_SIZE (SEND_CTX_MAX_NAME_CACHE_SIZE * 2)
77 
78 struct send_ctx {
79 	struct file *send_filp;
80 	loff_t send_off;
81 	char *send_buf;
82 	u32 send_size;
83 	u32 send_max_size;
84 	u64 total_send_size;
85 	u64 cmd_send_size[BTRFS_SEND_C_MAX + 1];
86 	u64 flags;	/* 'flags' member of btrfs_ioctl_send_args is u64 */
87 
88 	struct btrfs_root *send_root;
89 	struct btrfs_root *parent_root;
90 	struct clone_root *clone_roots;
91 	int clone_roots_cnt;
92 
93 	/* current state of the compare_tree call */
94 	struct btrfs_path *left_path;
95 	struct btrfs_path *right_path;
96 	struct btrfs_key *cmp_key;
97 
98 	/*
99 	 * infos of the currently processed inode. In case of deleted inodes,
100 	 * these are the values from the deleted inode.
101 	 */
102 	u64 cur_ino;
103 	u64 cur_inode_gen;
104 	int cur_inode_new;
105 	int cur_inode_new_gen;
106 	int cur_inode_deleted;
107 	u64 cur_inode_size;
108 	u64 cur_inode_mode;
109 	u64 cur_inode_rdev;
110 	u64 cur_inode_last_extent;
111 	u64 cur_inode_next_write_offset;
112 	bool ignore_cur_inode;
113 
114 	u64 send_progress;
115 
116 	struct list_head new_refs;
117 	struct list_head deleted_refs;
118 
119 	struct radix_tree_root name_cache;
120 	struct list_head name_cache_list;
121 	int name_cache_size;
122 
123 	struct file_ra_state ra;
124 
125 	/*
126 	 * We process inodes by their increasing order, so if before an
127 	 * incremental send we reverse the parent/child relationship of
128 	 * directories such that a directory with a lower inode number was
129 	 * the parent of a directory with a higher inode number, and the one
130 	 * becoming the new parent got renamed too, we can't rename/move the
131 	 * directory with lower inode number when we finish processing it - we
132 	 * must process the directory with higher inode number first, then
133 	 * rename/move it and then rename/move the directory with lower inode
134 	 * number. Example follows.
135 	 *
136 	 * Tree state when the first send was performed:
137 	 *
138 	 * .
139 	 * |-- a                   (ino 257)
140 	 *     |-- b               (ino 258)
141 	 *         |
142 	 *         |
143 	 *         |-- c           (ino 259)
144 	 *         |   |-- d       (ino 260)
145 	 *         |
146 	 *         |-- c2          (ino 261)
147 	 *
148 	 * Tree state when the second (incremental) send is performed:
149 	 *
150 	 * .
151 	 * |-- a                   (ino 257)
152 	 *     |-- b               (ino 258)
153 	 *         |-- c2          (ino 261)
154 	 *             |-- d2      (ino 260)
155 	 *                 |-- cc  (ino 259)
156 	 *
157 	 * The sequence of steps that lead to the second state was:
158 	 *
159 	 * mv /a/b/c/d /a/b/c2/d2
160 	 * mv /a/b/c /a/b/c2/d2/cc
161 	 *
162 	 * "c" has lower inode number, but we can't move it (2nd mv operation)
163 	 * before we move "d", which has higher inode number.
164 	 *
165 	 * So we just memorize which move/rename operations must be performed
166 	 * later when their respective parent is processed and moved/renamed.
167 	 */
168 
169 	/* Indexed by parent directory inode number. */
170 	struct rb_root pending_dir_moves;
171 
172 	/*
173 	 * Reverse index, indexed by the inode number of a directory that
174 	 * is waiting for the move/rename of its immediate parent before its
175 	 * own move/rename can be performed.
176 	 */
177 	struct rb_root waiting_dir_moves;
178 
179 	/*
180 	 * A directory that is going to be rm'ed might have a child directory
181 	 * which is in the pending directory moves index above. In this case,
182 	 * the directory can only be removed after the move/rename of its child
183 	 * is performed. Example:
184 	 *
185 	 * Parent snapshot:
186 	 *
187 	 * .                        (ino 256)
188 	 * |-- a/                   (ino 257)
189 	 *     |-- b/               (ino 258)
190 	 *         |-- c/           (ino 259)
191 	 *         |   |-- x/       (ino 260)
192 	 *         |
193 	 *         |-- y/           (ino 261)
194 	 *
195 	 * Send snapshot:
196 	 *
197 	 * .                        (ino 256)
198 	 * |-- a/                   (ino 257)
199 	 *     |-- b/               (ino 258)
200 	 *         |-- YY/          (ino 261)
201 	 *              |-- x/      (ino 260)
202 	 *
203 	 * Sequence of steps that lead to the send snapshot:
204 	 * rm -f /a/b/c/foo.txt
205 	 * mv /a/b/y /a/b/YY
206 	 * mv /a/b/c/x /a/b/YY
207 	 * rmdir /a/b/c
208 	 *
209 	 * When the child is processed, its move/rename is delayed until its
210 	 * parent is processed (as explained above), but all other operations
211 	 * like update utimes, chown, chgrp, etc, are performed and the paths
212 	 * that it uses for those operations must use the orphanized name of
213 	 * its parent (the directory we're going to rm later), so we need to
214 	 * memorize that name.
215 	 *
216 	 * Indexed by the inode number of the directory to be deleted.
217 	 */
218 	struct rb_root orphan_dirs;
219 };
220 
221 struct pending_dir_move {
222 	struct rb_node node;
223 	struct list_head list;
224 	u64 parent_ino;
225 	u64 ino;
226 	u64 gen;
227 	struct list_head update_refs;
228 };
229 
230 struct waiting_dir_move {
231 	struct rb_node node;
232 	u64 ino;
233 	/*
234 	 * There might be some directory that could not be removed because it
235 	 * was waiting for this directory inode to be moved first. Therefore
236 	 * after this directory is moved, we can try to rmdir the ino rmdir_ino.
237 	 */
238 	u64 rmdir_ino;
239 	u64 rmdir_gen;
240 	bool orphanized;
241 };
242 
243 struct orphan_dir_info {
244 	struct rb_node node;
245 	u64 ino;
246 	u64 gen;
247 	u64 last_dir_index_offset;
248 };
249 
250 struct name_cache_entry {
251 	struct list_head list;
252 	/*
253 	 * radix_tree has only 32bit entries but we need to handle 64bit inums.
254 	 * We use the lower 32bit of the 64bit inum to store it in the tree. If
255 	 * more then one inum would fall into the same entry, we use radix_list
256 	 * to store the additional entries. radix_list is also used to store
257 	 * entries where two entries have the same inum but different
258 	 * generations.
259 	 */
260 	struct list_head radix_list;
261 	u64 ino;
262 	u64 gen;
263 	u64 parent_ino;
264 	u64 parent_gen;
265 	int ret;
266 	int need_later_update;
267 	int name_len;
268 	char name[];
269 };
270 
271 #define ADVANCE							1
272 #define ADVANCE_ONLY_NEXT					-1
273 
274 enum btrfs_compare_tree_result {
275 	BTRFS_COMPARE_TREE_NEW,
276 	BTRFS_COMPARE_TREE_DELETED,
277 	BTRFS_COMPARE_TREE_CHANGED,
278 	BTRFS_COMPARE_TREE_SAME,
279 };
280 
281 __cold
inconsistent_snapshot_error(struct send_ctx *sctx, enum btrfs_compare_tree_result result, const char *what)282 static void inconsistent_snapshot_error(struct send_ctx *sctx,
283 					enum btrfs_compare_tree_result result,
284 					const char *what)
285 {
286 	const char *result_string;
287 
288 	switch (result) {
289 	case BTRFS_COMPARE_TREE_NEW:
290 		result_string = "new";
291 		break;
292 	case BTRFS_COMPARE_TREE_DELETED:
293 		result_string = "deleted";
294 		break;
295 	case BTRFS_COMPARE_TREE_CHANGED:
296 		result_string = "updated";
297 		break;
298 	case BTRFS_COMPARE_TREE_SAME:
299 		ASSERT(0);
300 		result_string = "unchanged";
301 		break;
302 	default:
303 		ASSERT(0);
304 		result_string = "unexpected";
305 	}
306 
307 	btrfs_err(sctx->send_root->fs_info,
308 		  "Send: inconsistent snapshot, found %s %s for inode %llu without updated inode item, send root is %llu, parent root is %llu",
309 		  result_string, what, sctx->cmp_key->objectid,
310 		  sctx->send_root->root_key.objectid,
311 		  (sctx->parent_root ?
312 		   sctx->parent_root->root_key.objectid : 0));
313 }
314 
315 static int is_waiting_for_move(struct send_ctx *sctx, u64 ino);
316 
317 static struct waiting_dir_move *
318 get_waiting_dir_move(struct send_ctx *sctx, u64 ino);
319 
320 static int is_waiting_for_rm(struct send_ctx *sctx, u64 dir_ino, u64 gen);
321 
need_send_hole(struct send_ctx *sctx)322 static int need_send_hole(struct send_ctx *sctx)
323 {
324 	return (sctx->parent_root && !sctx->cur_inode_new &&
325 		!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted &&
326 		S_ISREG(sctx->cur_inode_mode));
327 }
328 
fs_path_reset(struct fs_path *p)329 static void fs_path_reset(struct fs_path *p)
330 {
331 	if (p->reversed) {
332 		p->start = p->buf + p->buf_len - 1;
333 		p->end = p->start;
334 		*p->start = 0;
335 	} else {
336 		p->start = p->buf;
337 		p->end = p->start;
338 		*p->start = 0;
339 	}
340 }
341 
fs_path_alloc(void)342 static struct fs_path *fs_path_alloc(void)
343 {
344 	struct fs_path *p;
345 
346 	p = kmalloc(sizeof(*p), GFP_KERNEL);
347 	if (!p)
348 		return NULL;
349 	p->reversed = 0;
350 	p->buf = p->inline_buf;
351 	p->buf_len = FS_PATH_INLINE_SIZE;
352 	fs_path_reset(p);
353 	return p;
354 }
355 
fs_path_alloc_reversed(void)356 static struct fs_path *fs_path_alloc_reversed(void)
357 {
358 	struct fs_path *p;
359 
360 	p = fs_path_alloc();
361 	if (!p)
362 		return NULL;
363 	p->reversed = 1;
364 	fs_path_reset(p);
365 	return p;
366 }
367 
fs_path_free(struct fs_path *p)368 static void fs_path_free(struct fs_path *p)
369 {
370 	if (!p)
371 		return;
372 	if (p->buf != p->inline_buf)
373 		kfree(p->buf);
374 	kfree(p);
375 }
376 
fs_path_len(struct fs_path *p)377 static int fs_path_len(struct fs_path *p)
378 {
379 	return p->end - p->start;
380 }
381 
fs_path_ensure_buf(struct fs_path *p, int len)382 static int fs_path_ensure_buf(struct fs_path *p, int len)
383 {
384 	char *tmp_buf;
385 	int path_len;
386 	int old_buf_len;
387 
388 	len++;
389 
390 	if (p->buf_len >= len)
391 		return 0;
392 
393 	if (len > PATH_MAX) {
394 		WARN_ON(1);
395 		return -ENOMEM;
396 	}
397 
398 	path_len = p->end - p->start;
399 	old_buf_len = p->buf_len;
400 
401 	/*
402 	 * First time the inline_buf does not suffice
403 	 */
404 	if (p->buf == p->inline_buf) {
405 		tmp_buf = kmalloc(len, GFP_KERNEL);
406 		if (tmp_buf)
407 			memcpy(tmp_buf, p->buf, old_buf_len);
408 	} else {
409 		tmp_buf = krealloc(p->buf, len, GFP_KERNEL);
410 	}
411 	if (!tmp_buf)
412 		return -ENOMEM;
413 	p->buf = tmp_buf;
414 	/*
415 	 * The real size of the buffer is bigger, this will let the fast path
416 	 * happen most of the time
417 	 */
418 	p->buf_len = ksize(p->buf);
419 
420 	if (p->reversed) {
421 		tmp_buf = p->buf + old_buf_len - path_len - 1;
422 		p->end = p->buf + p->buf_len - 1;
423 		p->start = p->end - path_len;
424 		memmove(p->start, tmp_buf, path_len + 1);
425 	} else {
426 		p->start = p->buf;
427 		p->end = p->start + path_len;
428 	}
429 	return 0;
430 }
431 
fs_path_prepare_for_add(struct fs_path *p, int name_len, char **prepared)432 static int fs_path_prepare_for_add(struct fs_path *p, int name_len,
433 				   char **prepared)
434 {
435 	int ret;
436 	int new_len;
437 
438 	new_len = p->end - p->start + name_len;
439 	if (p->start != p->end)
440 		new_len++;
441 	ret = fs_path_ensure_buf(p, new_len);
442 	if (ret < 0)
443 		goto out;
444 
445 	if (p->reversed) {
446 		if (p->start != p->end)
447 			*--p->start = '/';
448 		p->start -= name_len;
449 		*prepared = p->start;
450 	} else {
451 		if (p->start != p->end)
452 			*p->end++ = '/';
453 		*prepared = p->end;
454 		p->end += name_len;
455 		*p->end = 0;
456 	}
457 
458 out:
459 	return ret;
460 }
461 
fs_path_add(struct fs_path *p, const char *name, int name_len)462 static int fs_path_add(struct fs_path *p, const char *name, int name_len)
463 {
464 	int ret;
465 	char *prepared;
466 
467 	ret = fs_path_prepare_for_add(p, name_len, &prepared);
468 	if (ret < 0)
469 		goto out;
470 	memcpy(prepared, name, name_len);
471 
472 out:
473 	return ret;
474 }
475 
fs_path_add_path(struct fs_path *p, struct fs_path *p2)476 static int fs_path_add_path(struct fs_path *p, struct fs_path *p2)
477 {
478 	int ret;
479 	char *prepared;
480 
481 	ret = fs_path_prepare_for_add(p, p2->end - p2->start, &prepared);
482 	if (ret < 0)
483 		goto out;
484 	memcpy(prepared, p2->start, p2->end - p2->start);
485 
486 out:
487 	return ret;
488 }
489 
fs_path_add_from_extent_buffer(struct fs_path *p, struct extent_buffer *eb, unsigned long off, int len)490 static int fs_path_add_from_extent_buffer(struct fs_path *p,
491 					  struct extent_buffer *eb,
492 					  unsigned long off, int len)
493 {
494 	int ret;
495 	char *prepared;
496 
497 	ret = fs_path_prepare_for_add(p, len, &prepared);
498 	if (ret < 0)
499 		goto out;
500 
501 	read_extent_buffer(eb, prepared, off, len);
502 
503 out:
504 	return ret;
505 }
506 
fs_path_copy(struct fs_path *p, struct fs_path *from)507 static int fs_path_copy(struct fs_path *p, struct fs_path *from)
508 {
509 	int ret;
510 
511 	p->reversed = from->reversed;
512 	fs_path_reset(p);
513 
514 	ret = fs_path_add_path(p, from);
515 
516 	return ret;
517 }
518 
519 
fs_path_unreverse(struct fs_path *p)520 static void fs_path_unreverse(struct fs_path *p)
521 {
522 	char *tmp;
523 	int len;
524 
525 	if (!p->reversed)
526 		return;
527 
528 	tmp = p->start;
529 	len = p->end - p->start;
530 	p->start = p->buf;
531 	p->end = p->start + len;
532 	memmove(p->start, tmp, len + 1);
533 	p->reversed = 0;
534 }
535 
alloc_path_for_send(void)536 static struct btrfs_path *alloc_path_for_send(void)
537 {
538 	struct btrfs_path *path;
539 
540 	path = btrfs_alloc_path();
541 	if (!path)
542 		return NULL;
543 	path->search_commit_root = 1;
544 	path->skip_locking = 1;
545 	path->need_commit_sem = 1;
546 	return path;
547 }
548 
write_buf(struct file *filp, const void *buf, u32 len, loff_t *off)549 static int write_buf(struct file *filp, const void *buf, u32 len, loff_t *off)
550 {
551 	int ret;
552 	u32 pos = 0;
553 
554 	while (pos < len) {
555 		ret = kernel_write(filp, buf + pos, len - pos, off);
556 		/* TODO handle that correctly */
557 		/*if (ret == -ERESTARTSYS) {
558 			continue;
559 		}*/
560 		if (ret < 0)
561 			return ret;
562 		if (ret == 0) {
563 			return -EIO;
564 		}
565 		pos += ret;
566 	}
567 
568 	return 0;
569 }
570 
tlv_put(struct send_ctx *sctx, u16 attr, const void *data, int len)571 static int tlv_put(struct send_ctx *sctx, u16 attr, const void *data, int len)
572 {
573 	struct btrfs_tlv_header *hdr;
574 	int total_len = sizeof(*hdr) + len;
575 	int left = sctx->send_max_size - sctx->send_size;
576 
577 	if (unlikely(left < total_len))
578 		return -EOVERFLOW;
579 
580 	hdr = (struct btrfs_tlv_header *) (sctx->send_buf + sctx->send_size);
581 	put_unaligned_le16(attr, &hdr->tlv_type);
582 	put_unaligned_le16(len, &hdr->tlv_len);
583 	memcpy(hdr + 1, data, len);
584 	sctx->send_size += total_len;
585 
586 	return 0;
587 }
588 
589 #define TLV_PUT_DEFINE_INT(bits) \
590 	static int tlv_put_u##bits(struct send_ctx *sctx,	 	\
591 			u##bits attr, u##bits value)			\
592 	{								\
593 		__le##bits __tmp = cpu_to_le##bits(value);		\
594 		return tlv_put(sctx, attr, &__tmp, sizeof(__tmp));	\
595 	}
596 
597 TLV_PUT_DEFINE_INT(64)
598 
tlv_put_string(struct send_ctx *sctx, u16 attr, const char *str, int len)599 static int tlv_put_string(struct send_ctx *sctx, u16 attr,
600 			  const char *str, int len)
601 {
602 	if (len == -1)
603 		len = strlen(str);
604 	return tlv_put(sctx, attr, str, len);
605 }
606 
tlv_put_uuid(struct send_ctx *sctx, u16 attr, const u8 *uuid)607 static int tlv_put_uuid(struct send_ctx *sctx, u16 attr,
608 			const u8 *uuid)
609 {
610 	return tlv_put(sctx, attr, uuid, BTRFS_UUID_SIZE);
611 }
612 
tlv_put_btrfs_timespec(struct send_ctx *sctx, u16 attr, struct extent_buffer *eb, struct btrfs_timespec *ts)613 static int tlv_put_btrfs_timespec(struct send_ctx *sctx, u16 attr,
614 				  struct extent_buffer *eb,
615 				  struct btrfs_timespec *ts)
616 {
617 	struct btrfs_timespec bts;
618 	read_extent_buffer(eb, &bts, (unsigned long)ts, sizeof(bts));
619 	return tlv_put(sctx, attr, &bts, sizeof(bts));
620 }
621 
622 
623 #define TLV_PUT(sctx, attrtype, data, attrlen) \
624 	do { \
625 		ret = tlv_put(sctx, attrtype, data, attrlen); \
626 		if (ret < 0) \
627 			goto tlv_put_failure; \
628 	} while (0)
629 
630 #define TLV_PUT_INT(sctx, attrtype, bits, value) \
631 	do { \
632 		ret = tlv_put_u##bits(sctx, attrtype, value); \
633 		if (ret < 0) \
634 			goto tlv_put_failure; \
635 	} while (0)
636 
637 #define TLV_PUT_U8(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 8, data)
638 #define TLV_PUT_U16(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 16, data)
639 #define TLV_PUT_U32(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 32, data)
640 #define TLV_PUT_U64(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 64, data)
641 #define TLV_PUT_STRING(sctx, attrtype, str, len) \
642 	do { \
643 		ret = tlv_put_string(sctx, attrtype, str, len); \
644 		if (ret < 0) \
645 			goto tlv_put_failure; \
646 	} while (0)
647 #define TLV_PUT_PATH(sctx, attrtype, p) \
648 	do { \
649 		ret = tlv_put_string(sctx, attrtype, p->start, \
650 			p->end - p->start); \
651 		if (ret < 0) \
652 			goto tlv_put_failure; \
653 	} while(0)
654 #define TLV_PUT_UUID(sctx, attrtype, uuid) \
655 	do { \
656 		ret = tlv_put_uuid(sctx, attrtype, uuid); \
657 		if (ret < 0) \
658 			goto tlv_put_failure; \
659 	} while (0)
660 #define TLV_PUT_BTRFS_TIMESPEC(sctx, attrtype, eb, ts) \
661 	do { \
662 		ret = tlv_put_btrfs_timespec(sctx, attrtype, eb, ts); \
663 		if (ret < 0) \
664 			goto tlv_put_failure; \
665 	} while (0)
666 
send_header(struct send_ctx *sctx)667 static int send_header(struct send_ctx *sctx)
668 {
669 	struct btrfs_stream_header hdr;
670 
671 	strcpy(hdr.magic, BTRFS_SEND_STREAM_MAGIC);
672 	hdr.version = cpu_to_le32(BTRFS_SEND_STREAM_VERSION);
673 
674 	return write_buf(sctx->send_filp, &hdr, sizeof(hdr),
675 					&sctx->send_off);
676 }
677 
678 /*
679  * For each command/item we want to send to userspace, we call this function.
680  */
begin_cmd(struct send_ctx *sctx, int cmd)681 static int begin_cmd(struct send_ctx *sctx, int cmd)
682 {
683 	struct btrfs_cmd_header *hdr;
684 
685 	if (WARN_ON(!sctx->send_buf))
686 		return -EINVAL;
687 
688 	BUG_ON(sctx->send_size);
689 
690 	sctx->send_size += sizeof(*hdr);
691 	hdr = (struct btrfs_cmd_header *)sctx->send_buf;
692 	put_unaligned_le16(cmd, &hdr->cmd);
693 
694 	return 0;
695 }
696 
send_cmd(struct send_ctx *sctx)697 static int send_cmd(struct send_ctx *sctx)
698 {
699 	int ret;
700 	struct btrfs_cmd_header *hdr;
701 	u32 crc;
702 
703 	hdr = (struct btrfs_cmd_header *)sctx->send_buf;
704 	put_unaligned_le32(sctx->send_size - sizeof(*hdr), &hdr->len);
705 	put_unaligned_le32(0, &hdr->crc);
706 
707 	crc = btrfs_crc32c(0, (unsigned char *)sctx->send_buf, sctx->send_size);
708 	put_unaligned_le32(crc, &hdr->crc);
709 
710 	ret = write_buf(sctx->send_filp, sctx->send_buf, sctx->send_size,
711 					&sctx->send_off);
712 
713 	sctx->total_send_size += sctx->send_size;
714 	sctx->cmd_send_size[get_unaligned_le16(&hdr->cmd)] += sctx->send_size;
715 	sctx->send_size = 0;
716 
717 	return ret;
718 }
719 
720 /*
721  * Sends a move instruction to user space
722  */
send_rename(struct send_ctx *sctx, struct fs_path *from, struct fs_path *to)723 static int send_rename(struct send_ctx *sctx,
724 		     struct fs_path *from, struct fs_path *to)
725 {
726 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
727 	int ret;
728 
729 	btrfs_debug(fs_info, "send_rename %s -> %s", from->start, to->start);
730 
731 	ret = begin_cmd(sctx, BTRFS_SEND_C_RENAME);
732 	if (ret < 0)
733 		goto out;
734 
735 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, from);
736 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_TO, to);
737 
738 	ret = send_cmd(sctx);
739 
740 tlv_put_failure:
741 out:
742 	return ret;
743 }
744 
745 /*
746  * Sends a link instruction to user space
747  */
send_link(struct send_ctx *sctx, struct fs_path *path, struct fs_path *lnk)748 static int send_link(struct send_ctx *sctx,
749 		     struct fs_path *path, struct fs_path *lnk)
750 {
751 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
752 	int ret;
753 
754 	btrfs_debug(fs_info, "send_link %s -> %s", path->start, lnk->start);
755 
756 	ret = begin_cmd(sctx, BTRFS_SEND_C_LINK);
757 	if (ret < 0)
758 		goto out;
759 
760 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
761 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_LINK, lnk);
762 
763 	ret = send_cmd(sctx);
764 
765 tlv_put_failure:
766 out:
767 	return ret;
768 }
769 
770 /*
771  * Sends an unlink instruction to user space
772  */
send_unlink(struct send_ctx *sctx, struct fs_path *path)773 static int send_unlink(struct send_ctx *sctx, struct fs_path *path)
774 {
775 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
776 	int ret;
777 
778 	btrfs_debug(fs_info, "send_unlink %s", path->start);
779 
780 	ret = begin_cmd(sctx, BTRFS_SEND_C_UNLINK);
781 	if (ret < 0)
782 		goto out;
783 
784 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
785 
786 	ret = send_cmd(sctx);
787 
788 tlv_put_failure:
789 out:
790 	return ret;
791 }
792 
793 /*
794  * Sends a rmdir instruction to user space
795  */
send_rmdir(struct send_ctx *sctx, struct fs_path *path)796 static int send_rmdir(struct send_ctx *sctx, struct fs_path *path)
797 {
798 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
799 	int ret;
800 
801 	btrfs_debug(fs_info, "send_rmdir %s", path->start);
802 
803 	ret = begin_cmd(sctx, BTRFS_SEND_C_RMDIR);
804 	if (ret < 0)
805 		goto out;
806 
807 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
808 
809 	ret = send_cmd(sctx);
810 
811 tlv_put_failure:
812 out:
813 	return ret;
814 }
815 
816 /*
817  * Helper function to retrieve some fields from an inode item.
818  */
__get_inode_info(struct btrfs_root *root, struct btrfs_path *path, u64 ino, u64 *size, u64 *gen, u64 *mode, u64 *uid, u64 *gid, u64 *rdev)819 static int __get_inode_info(struct btrfs_root *root, struct btrfs_path *path,
820 			  u64 ino, u64 *size, u64 *gen, u64 *mode, u64 *uid,
821 			  u64 *gid, u64 *rdev)
822 {
823 	int ret;
824 	struct btrfs_inode_item *ii;
825 	struct btrfs_key key;
826 
827 	key.objectid = ino;
828 	key.type = BTRFS_INODE_ITEM_KEY;
829 	key.offset = 0;
830 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
831 	if (ret) {
832 		if (ret > 0)
833 			ret = -ENOENT;
834 		return ret;
835 	}
836 
837 	ii = btrfs_item_ptr(path->nodes[0], path->slots[0],
838 			struct btrfs_inode_item);
839 	if (size)
840 		*size = btrfs_inode_size(path->nodes[0], ii);
841 	if (gen)
842 		*gen = btrfs_inode_generation(path->nodes[0], ii);
843 	if (mode)
844 		*mode = btrfs_inode_mode(path->nodes[0], ii);
845 	if (uid)
846 		*uid = btrfs_inode_uid(path->nodes[0], ii);
847 	if (gid)
848 		*gid = btrfs_inode_gid(path->nodes[0], ii);
849 	if (rdev)
850 		*rdev = btrfs_inode_rdev(path->nodes[0], ii);
851 
852 	return ret;
853 }
854 
get_inode_info(struct btrfs_root *root, u64 ino, u64 *size, u64 *gen, u64 *mode, u64 *uid, u64 *gid, u64 *rdev)855 static int get_inode_info(struct btrfs_root *root,
856 			  u64 ino, u64 *size, u64 *gen,
857 			  u64 *mode, u64 *uid, u64 *gid,
858 			  u64 *rdev)
859 {
860 	struct btrfs_path *path;
861 	int ret;
862 
863 	path = alloc_path_for_send();
864 	if (!path)
865 		return -ENOMEM;
866 	ret = __get_inode_info(root, path, ino, size, gen, mode, uid, gid,
867 			       rdev);
868 	btrfs_free_path(path);
869 	return ret;
870 }
871 
872 typedef int (*iterate_inode_ref_t)(int num, u64 dir, int index,
873 				   struct fs_path *p,
874 				   void *ctx);
875 
876 /*
877  * Helper function to iterate the entries in ONE btrfs_inode_ref or
878  * btrfs_inode_extref.
879  * The iterate callback may return a non zero value to stop iteration. This can
880  * be a negative value for error codes or 1 to simply stop it.
881  *
882  * path must point to the INODE_REF or INODE_EXTREF when called.
883  */
iterate_inode_ref(struct btrfs_root *root, struct btrfs_path *path, struct btrfs_key *found_key, int resolve, iterate_inode_ref_t iterate, void *ctx)884 static int iterate_inode_ref(struct btrfs_root *root, struct btrfs_path *path,
885 			     struct btrfs_key *found_key, int resolve,
886 			     iterate_inode_ref_t iterate, void *ctx)
887 {
888 	struct extent_buffer *eb = path->nodes[0];
889 	struct btrfs_item *item;
890 	struct btrfs_inode_ref *iref;
891 	struct btrfs_inode_extref *extref;
892 	struct btrfs_path *tmp_path;
893 	struct fs_path *p;
894 	u32 cur = 0;
895 	u32 total;
896 	int slot = path->slots[0];
897 	u32 name_len;
898 	char *start;
899 	int ret = 0;
900 	int num = 0;
901 	int index;
902 	u64 dir;
903 	unsigned long name_off;
904 	unsigned long elem_size;
905 	unsigned long ptr;
906 
907 	p = fs_path_alloc_reversed();
908 	if (!p)
909 		return -ENOMEM;
910 
911 	tmp_path = alloc_path_for_send();
912 	if (!tmp_path) {
913 		fs_path_free(p);
914 		return -ENOMEM;
915 	}
916 
917 
918 	if (found_key->type == BTRFS_INODE_REF_KEY) {
919 		ptr = (unsigned long)btrfs_item_ptr(eb, slot,
920 						    struct btrfs_inode_ref);
921 		item = btrfs_item_nr(slot);
922 		total = btrfs_item_size(eb, item);
923 		elem_size = sizeof(*iref);
924 	} else {
925 		ptr = btrfs_item_ptr_offset(eb, slot);
926 		total = btrfs_item_size_nr(eb, slot);
927 		elem_size = sizeof(*extref);
928 	}
929 
930 	while (cur < total) {
931 		fs_path_reset(p);
932 
933 		if (found_key->type == BTRFS_INODE_REF_KEY) {
934 			iref = (struct btrfs_inode_ref *)(ptr + cur);
935 			name_len = btrfs_inode_ref_name_len(eb, iref);
936 			name_off = (unsigned long)(iref + 1);
937 			index = btrfs_inode_ref_index(eb, iref);
938 			dir = found_key->offset;
939 		} else {
940 			extref = (struct btrfs_inode_extref *)(ptr + cur);
941 			name_len = btrfs_inode_extref_name_len(eb, extref);
942 			name_off = (unsigned long)&extref->name;
943 			index = btrfs_inode_extref_index(eb, extref);
944 			dir = btrfs_inode_extref_parent(eb, extref);
945 		}
946 
947 		if (resolve) {
948 			start = btrfs_ref_to_path(root, tmp_path, name_len,
949 						  name_off, eb, dir,
950 						  p->buf, p->buf_len);
951 			if (IS_ERR(start)) {
952 				ret = PTR_ERR(start);
953 				goto out;
954 			}
955 			if (start < p->buf) {
956 				/* overflow , try again with larger buffer */
957 				ret = fs_path_ensure_buf(p,
958 						p->buf_len + p->buf - start);
959 				if (ret < 0)
960 					goto out;
961 				start = btrfs_ref_to_path(root, tmp_path,
962 							  name_len, name_off,
963 							  eb, dir,
964 							  p->buf, p->buf_len);
965 				if (IS_ERR(start)) {
966 					ret = PTR_ERR(start);
967 					goto out;
968 				}
969 				BUG_ON(start < p->buf);
970 			}
971 			p->start = start;
972 		} else {
973 			ret = fs_path_add_from_extent_buffer(p, eb, name_off,
974 							     name_len);
975 			if (ret < 0)
976 				goto out;
977 		}
978 
979 		cur += elem_size + name_len;
980 		ret = iterate(num, dir, index, p, ctx);
981 		if (ret)
982 			goto out;
983 		num++;
984 	}
985 
986 out:
987 	btrfs_free_path(tmp_path);
988 	fs_path_free(p);
989 	return ret;
990 }
991 
992 typedef int (*iterate_dir_item_t)(int num, struct btrfs_key *di_key,
993 				  const char *name, int name_len,
994 				  const char *data, int data_len,
995 				  u8 type, void *ctx);
996 
997 /*
998  * Helper function to iterate the entries in ONE btrfs_dir_item.
999  * The iterate callback may return a non zero value to stop iteration. This can
1000  * be a negative value for error codes or 1 to simply stop it.
1001  *
1002  * path must point to the dir item when called.
1003  */
iterate_dir_item(struct btrfs_root *root, struct btrfs_path *path, iterate_dir_item_t iterate, void *ctx)1004 static int iterate_dir_item(struct btrfs_root *root, struct btrfs_path *path,
1005 			    iterate_dir_item_t iterate, void *ctx)
1006 {
1007 	int ret = 0;
1008 	struct extent_buffer *eb;
1009 	struct btrfs_item *item;
1010 	struct btrfs_dir_item *di;
1011 	struct btrfs_key di_key;
1012 	char *buf = NULL;
1013 	int buf_len;
1014 	u32 name_len;
1015 	u32 data_len;
1016 	u32 cur;
1017 	u32 len;
1018 	u32 total;
1019 	int slot;
1020 	int num;
1021 	u8 type;
1022 
1023 	/*
1024 	 * Start with a small buffer (1 page). If later we end up needing more
1025 	 * space, which can happen for xattrs on a fs with a leaf size greater
1026 	 * then the page size, attempt to increase the buffer. Typically xattr
1027 	 * values are small.
1028 	 */
1029 	buf_len = PATH_MAX;
1030 	buf = kmalloc(buf_len, GFP_KERNEL);
1031 	if (!buf) {
1032 		ret = -ENOMEM;
1033 		goto out;
1034 	}
1035 
1036 	eb = path->nodes[0];
1037 	slot = path->slots[0];
1038 	item = btrfs_item_nr(slot);
1039 	di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item);
1040 	cur = 0;
1041 	len = 0;
1042 	total = btrfs_item_size(eb, item);
1043 
1044 	num = 0;
1045 	while (cur < total) {
1046 		name_len = btrfs_dir_name_len(eb, di);
1047 		data_len = btrfs_dir_data_len(eb, di);
1048 		type = btrfs_dir_type(eb, di);
1049 		btrfs_dir_item_key_to_cpu(eb, di, &di_key);
1050 
1051 		if (type == BTRFS_FT_XATTR) {
1052 			if (name_len > XATTR_NAME_MAX) {
1053 				ret = -ENAMETOOLONG;
1054 				goto out;
1055 			}
1056 			if (name_len + data_len >
1057 					BTRFS_MAX_XATTR_SIZE(root->fs_info)) {
1058 				ret = -E2BIG;
1059 				goto out;
1060 			}
1061 		} else {
1062 			/*
1063 			 * Path too long
1064 			 */
1065 			if (name_len + data_len > PATH_MAX) {
1066 				ret = -ENAMETOOLONG;
1067 				goto out;
1068 			}
1069 		}
1070 
1071 		if (name_len + data_len > buf_len) {
1072 			buf_len = name_len + data_len;
1073 			if (is_vmalloc_addr(buf)) {
1074 				vfree(buf);
1075 				buf = NULL;
1076 			} else {
1077 				char *tmp = krealloc(buf, buf_len,
1078 						GFP_KERNEL | __GFP_NOWARN);
1079 
1080 				if (!tmp)
1081 					kfree(buf);
1082 				buf = tmp;
1083 			}
1084 			if (!buf) {
1085 				buf = kvmalloc(buf_len, GFP_KERNEL);
1086 				if (!buf) {
1087 					ret = -ENOMEM;
1088 					goto out;
1089 				}
1090 			}
1091 		}
1092 
1093 		read_extent_buffer(eb, buf, (unsigned long)(di + 1),
1094 				name_len + data_len);
1095 
1096 		len = sizeof(*di) + name_len + data_len;
1097 		di = (struct btrfs_dir_item *)((char *)di + len);
1098 		cur += len;
1099 
1100 		ret = iterate(num, &di_key, buf, name_len, buf + name_len,
1101 				data_len, type, ctx);
1102 		if (ret < 0)
1103 			goto out;
1104 		if (ret) {
1105 			ret = 0;
1106 			goto out;
1107 		}
1108 
1109 		num++;
1110 	}
1111 
1112 out:
1113 	kvfree(buf);
1114 	return ret;
1115 }
1116 
__copy_first_ref(int num, u64 dir, int index, struct fs_path *p, void *ctx)1117 static int __copy_first_ref(int num, u64 dir, int index,
1118 			    struct fs_path *p, void *ctx)
1119 {
1120 	int ret;
1121 	struct fs_path *pt = ctx;
1122 
1123 	ret = fs_path_copy(pt, p);
1124 	if (ret < 0)
1125 		return ret;
1126 
1127 	/* we want the first only */
1128 	return 1;
1129 }
1130 
1131 /*
1132  * Retrieve the first path of an inode. If an inode has more then one
1133  * ref/hardlink, this is ignored.
1134  */
get_inode_path(struct btrfs_root *root, u64 ino, struct fs_path *path)1135 static int get_inode_path(struct btrfs_root *root,
1136 			  u64 ino, struct fs_path *path)
1137 {
1138 	int ret;
1139 	struct btrfs_key key, found_key;
1140 	struct btrfs_path *p;
1141 
1142 	p = alloc_path_for_send();
1143 	if (!p)
1144 		return -ENOMEM;
1145 
1146 	fs_path_reset(path);
1147 
1148 	key.objectid = ino;
1149 	key.type = BTRFS_INODE_REF_KEY;
1150 	key.offset = 0;
1151 
1152 	ret = btrfs_search_slot_for_read(root, &key, p, 1, 0);
1153 	if (ret < 0)
1154 		goto out;
1155 	if (ret) {
1156 		ret = 1;
1157 		goto out;
1158 	}
1159 	btrfs_item_key_to_cpu(p->nodes[0], &found_key, p->slots[0]);
1160 	if (found_key.objectid != ino ||
1161 	    (found_key.type != BTRFS_INODE_REF_KEY &&
1162 	     found_key.type != BTRFS_INODE_EXTREF_KEY)) {
1163 		ret = -ENOENT;
1164 		goto out;
1165 	}
1166 
1167 	ret = iterate_inode_ref(root, p, &found_key, 1,
1168 				__copy_first_ref, path);
1169 	if (ret < 0)
1170 		goto out;
1171 	ret = 0;
1172 
1173 out:
1174 	btrfs_free_path(p);
1175 	return ret;
1176 }
1177 
1178 struct backref_ctx {
1179 	struct send_ctx *sctx;
1180 
1181 	/* number of total found references */
1182 	u64 found;
1183 
1184 	/*
1185 	 * used for clones found in send_root. clones found behind cur_objectid
1186 	 * and cur_offset are not considered as allowed clones.
1187 	 */
1188 	u64 cur_objectid;
1189 	u64 cur_offset;
1190 
1191 	/* may be truncated in case it's the last extent in a file */
1192 	u64 extent_len;
1193 
1194 	/* data offset in the file extent item */
1195 	u64 data_offset;
1196 
1197 	/* Just to check for bugs in backref resolving */
1198 	int found_itself;
1199 };
1200 
__clone_root_cmp_bsearch(const void *key, const void *elt)1201 static int __clone_root_cmp_bsearch(const void *key, const void *elt)
1202 {
1203 	u64 root = (u64)(uintptr_t)key;
1204 	struct clone_root *cr = (struct clone_root *)elt;
1205 
1206 	if (root < cr->root->root_key.objectid)
1207 		return -1;
1208 	if (root > cr->root->root_key.objectid)
1209 		return 1;
1210 	return 0;
1211 }
1212 
__clone_root_cmp_sort(const void *e1, const void *e2)1213 static int __clone_root_cmp_sort(const void *e1, const void *e2)
1214 {
1215 	struct clone_root *cr1 = (struct clone_root *)e1;
1216 	struct clone_root *cr2 = (struct clone_root *)e2;
1217 
1218 	if (cr1->root->root_key.objectid < cr2->root->root_key.objectid)
1219 		return -1;
1220 	if (cr1->root->root_key.objectid > cr2->root->root_key.objectid)
1221 		return 1;
1222 	return 0;
1223 }
1224 
1225 /*
1226  * Called for every backref that is found for the current extent.
1227  * Results are collected in sctx->clone_roots->ino/offset/found_refs
1228  */
__iterate_backrefs(u64 ino, u64 offset, u64 root, void *ctx_)1229 static int __iterate_backrefs(u64 ino, u64 offset, u64 root, void *ctx_)
1230 {
1231 	struct backref_ctx *bctx = ctx_;
1232 	struct clone_root *found;
1233 
1234 	/* First check if the root is in the list of accepted clone sources */
1235 	found = bsearch((void *)(uintptr_t)root, bctx->sctx->clone_roots,
1236 			bctx->sctx->clone_roots_cnt,
1237 			sizeof(struct clone_root),
1238 			__clone_root_cmp_bsearch);
1239 	if (!found)
1240 		return 0;
1241 
1242 	if (found->root == bctx->sctx->send_root &&
1243 	    ino == bctx->cur_objectid &&
1244 	    offset == bctx->cur_offset) {
1245 		bctx->found_itself = 1;
1246 	}
1247 
1248 	/*
1249 	 * Make sure we don't consider clones from send_root that are
1250 	 * behind the current inode/offset.
1251 	 */
1252 	if (found->root == bctx->sctx->send_root) {
1253 		/*
1254 		 * If the source inode was not yet processed we can't issue a
1255 		 * clone operation, as the source extent does not exist yet at
1256 		 * the destination of the stream.
1257 		 */
1258 		if (ino > bctx->cur_objectid)
1259 			return 0;
1260 		/*
1261 		 * We clone from the inode currently being sent as long as the
1262 		 * source extent is already processed, otherwise we could try
1263 		 * to clone from an extent that does not exist yet at the
1264 		 * destination of the stream.
1265 		 */
1266 		if (ino == bctx->cur_objectid &&
1267 		    offset + bctx->extent_len >
1268 		    bctx->sctx->cur_inode_next_write_offset)
1269 			return 0;
1270 	}
1271 
1272 	bctx->found++;
1273 	found->found_refs++;
1274 	if (ino < found->ino) {
1275 		found->ino = ino;
1276 		found->offset = offset;
1277 	} else if (found->ino == ino) {
1278 		/*
1279 		 * same extent found more then once in the same file.
1280 		 */
1281 		if (found->offset > offset + bctx->extent_len)
1282 			found->offset = offset;
1283 	}
1284 
1285 	return 0;
1286 }
1287 
1288 /*
1289  * Given an inode, offset and extent item, it finds a good clone for a clone
1290  * instruction. Returns -ENOENT when none could be found. The function makes
1291  * sure that the returned clone is usable at the point where sending is at the
1292  * moment. This means, that no clones are accepted which lie behind the current
1293  * inode+offset.
1294  *
1295  * path must point to the extent item when called.
1296  */
find_extent_clone(struct send_ctx *sctx, struct btrfs_path *path, u64 ino, u64 data_offset, u64 ino_size, struct clone_root **found)1297 static int find_extent_clone(struct send_ctx *sctx,
1298 			     struct btrfs_path *path,
1299 			     u64 ino, u64 data_offset,
1300 			     u64 ino_size,
1301 			     struct clone_root **found)
1302 {
1303 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
1304 	int ret;
1305 	int extent_type;
1306 	u64 logical;
1307 	u64 disk_byte;
1308 	u64 num_bytes;
1309 	u64 extent_item_pos;
1310 	u64 flags = 0;
1311 	struct btrfs_file_extent_item *fi;
1312 	struct extent_buffer *eb = path->nodes[0];
1313 	struct backref_ctx *backref_ctx = NULL;
1314 	struct clone_root *cur_clone_root;
1315 	struct btrfs_key found_key;
1316 	struct btrfs_path *tmp_path;
1317 	struct btrfs_extent_item *ei;
1318 	int compressed;
1319 	u32 i;
1320 
1321 	tmp_path = alloc_path_for_send();
1322 	if (!tmp_path)
1323 		return -ENOMEM;
1324 
1325 	/* We only use this path under the commit sem */
1326 	tmp_path->need_commit_sem = 0;
1327 
1328 	backref_ctx = kmalloc(sizeof(*backref_ctx), GFP_KERNEL);
1329 	if (!backref_ctx) {
1330 		ret = -ENOMEM;
1331 		goto out;
1332 	}
1333 
1334 	if (data_offset >= ino_size) {
1335 		/*
1336 		 * There may be extents that lie behind the file's size.
1337 		 * I at least had this in combination with snapshotting while
1338 		 * writing large files.
1339 		 */
1340 		ret = 0;
1341 		goto out;
1342 	}
1343 
1344 	fi = btrfs_item_ptr(eb, path->slots[0],
1345 			struct btrfs_file_extent_item);
1346 	extent_type = btrfs_file_extent_type(eb, fi);
1347 	if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1348 		ret = -ENOENT;
1349 		goto out;
1350 	}
1351 	compressed = btrfs_file_extent_compression(eb, fi);
1352 
1353 	num_bytes = btrfs_file_extent_num_bytes(eb, fi);
1354 	disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
1355 	if (disk_byte == 0) {
1356 		ret = -ENOENT;
1357 		goto out;
1358 	}
1359 	logical = disk_byte + btrfs_file_extent_offset(eb, fi);
1360 
1361 	down_read(&fs_info->commit_root_sem);
1362 	ret = extent_from_logical(fs_info, disk_byte, tmp_path,
1363 				  &found_key, &flags);
1364 	up_read(&fs_info->commit_root_sem);
1365 
1366 	if (ret < 0)
1367 		goto out;
1368 	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
1369 		ret = -EIO;
1370 		goto out;
1371 	}
1372 
1373 	ei = btrfs_item_ptr(tmp_path->nodes[0], tmp_path->slots[0],
1374 			    struct btrfs_extent_item);
1375 	/*
1376 	 * Backreference walking (iterate_extent_inodes() below) is currently
1377 	 * too expensive when an extent has a large number of references, both
1378 	 * in time spent and used memory. So for now just fallback to write
1379 	 * operations instead of clone operations when an extent has more than
1380 	 * a certain amount of references.
1381 	 */
1382 	if (btrfs_extent_refs(tmp_path->nodes[0], ei) > SEND_MAX_EXTENT_REFS) {
1383 		ret = -ENOENT;
1384 		goto out;
1385 	}
1386 	btrfs_release_path(tmp_path);
1387 
1388 	/*
1389 	 * Setup the clone roots.
1390 	 */
1391 	for (i = 0; i < sctx->clone_roots_cnt; i++) {
1392 		cur_clone_root = sctx->clone_roots + i;
1393 		cur_clone_root->ino = (u64)-1;
1394 		cur_clone_root->offset = 0;
1395 		cur_clone_root->found_refs = 0;
1396 	}
1397 
1398 	backref_ctx->sctx = sctx;
1399 	backref_ctx->found = 0;
1400 	backref_ctx->cur_objectid = ino;
1401 	backref_ctx->cur_offset = data_offset;
1402 	backref_ctx->found_itself = 0;
1403 	backref_ctx->extent_len = num_bytes;
1404 	/*
1405 	 * For non-compressed extents iterate_extent_inodes() gives us extent
1406 	 * offsets that already take into account the data offset, but not for
1407 	 * compressed extents, since the offset is logical and not relative to
1408 	 * the physical extent locations. We must take this into account to
1409 	 * avoid sending clone offsets that go beyond the source file's size,
1410 	 * which would result in the clone ioctl failing with -EINVAL on the
1411 	 * receiving end.
1412 	 */
1413 	if (compressed == BTRFS_COMPRESS_NONE)
1414 		backref_ctx->data_offset = 0;
1415 	else
1416 		backref_ctx->data_offset = btrfs_file_extent_offset(eb, fi);
1417 
1418 	/*
1419 	 * The last extent of a file may be too large due to page alignment.
1420 	 * We need to adjust extent_len in this case so that the checks in
1421 	 * __iterate_backrefs work.
1422 	 */
1423 	if (data_offset + num_bytes >= ino_size)
1424 		backref_ctx->extent_len = ino_size - data_offset;
1425 
1426 	/*
1427 	 * Now collect all backrefs.
1428 	 */
1429 	if (compressed == BTRFS_COMPRESS_NONE)
1430 		extent_item_pos = logical - found_key.objectid;
1431 	else
1432 		extent_item_pos = 0;
1433 	ret = iterate_extent_inodes(fs_info, found_key.objectid,
1434 				    extent_item_pos, 1, __iterate_backrefs,
1435 				    backref_ctx, false);
1436 
1437 	if (ret < 0)
1438 		goto out;
1439 
1440 	if (!backref_ctx->found_itself) {
1441 		/* found a bug in backref code? */
1442 		ret = -EIO;
1443 		btrfs_err(fs_info,
1444 			  "did not find backref in send_root. inode=%llu, offset=%llu, disk_byte=%llu found extent=%llu",
1445 			  ino, data_offset, disk_byte, found_key.objectid);
1446 		goto out;
1447 	}
1448 
1449 	btrfs_debug(fs_info,
1450 		    "find_extent_clone: data_offset=%llu, ino=%llu, num_bytes=%llu, logical=%llu",
1451 		    data_offset, ino, num_bytes, logical);
1452 
1453 	if (!backref_ctx->found)
1454 		btrfs_debug(fs_info, "no clones found");
1455 
1456 	cur_clone_root = NULL;
1457 	for (i = 0; i < sctx->clone_roots_cnt; i++) {
1458 		if (sctx->clone_roots[i].found_refs) {
1459 			if (!cur_clone_root)
1460 				cur_clone_root = sctx->clone_roots + i;
1461 			else if (sctx->clone_roots[i].root == sctx->send_root)
1462 				/* prefer clones from send_root over others */
1463 				cur_clone_root = sctx->clone_roots + i;
1464 		}
1465 
1466 	}
1467 
1468 	if (cur_clone_root) {
1469 		*found = cur_clone_root;
1470 		ret = 0;
1471 	} else {
1472 		ret = -ENOENT;
1473 	}
1474 
1475 out:
1476 	btrfs_free_path(tmp_path);
1477 	kfree(backref_ctx);
1478 	return ret;
1479 }
1480 
read_symlink(struct btrfs_root *root, u64 ino, struct fs_path *dest)1481 static int read_symlink(struct btrfs_root *root,
1482 			u64 ino,
1483 			struct fs_path *dest)
1484 {
1485 	int ret;
1486 	struct btrfs_path *path;
1487 	struct btrfs_key key;
1488 	struct btrfs_file_extent_item *ei;
1489 	u8 type;
1490 	u8 compression;
1491 	unsigned long off;
1492 	int len;
1493 
1494 	path = alloc_path_for_send();
1495 	if (!path)
1496 		return -ENOMEM;
1497 
1498 	key.objectid = ino;
1499 	key.type = BTRFS_EXTENT_DATA_KEY;
1500 	key.offset = 0;
1501 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1502 	if (ret < 0)
1503 		goto out;
1504 	if (ret) {
1505 		/*
1506 		 * An empty symlink inode. Can happen in rare error paths when
1507 		 * creating a symlink (transaction committed before the inode
1508 		 * eviction handler removed the symlink inode items and a crash
1509 		 * happened in between or the subvol was snapshoted in between).
1510 		 * Print an informative message to dmesg/syslog so that the user
1511 		 * can delete the symlink.
1512 		 */
1513 		btrfs_err(root->fs_info,
1514 			  "Found empty symlink inode %llu at root %llu",
1515 			  ino, root->root_key.objectid);
1516 		ret = -EIO;
1517 		goto out;
1518 	}
1519 
1520 	ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
1521 			struct btrfs_file_extent_item);
1522 	type = btrfs_file_extent_type(path->nodes[0], ei);
1523 	compression = btrfs_file_extent_compression(path->nodes[0], ei);
1524 	BUG_ON(type != BTRFS_FILE_EXTENT_INLINE);
1525 	BUG_ON(compression);
1526 
1527 	off = btrfs_file_extent_inline_start(ei);
1528 	len = btrfs_file_extent_ram_bytes(path->nodes[0], ei);
1529 
1530 	ret = fs_path_add_from_extent_buffer(dest, path->nodes[0], off, len);
1531 
1532 out:
1533 	btrfs_free_path(path);
1534 	return ret;
1535 }
1536 
1537 /*
1538  * Helper function to generate a file name that is unique in the root of
1539  * send_root and parent_root. This is used to generate names for orphan inodes.
1540  */
gen_unique_name(struct send_ctx *sctx, u64 ino, u64 gen, struct fs_path *dest)1541 static int gen_unique_name(struct send_ctx *sctx,
1542 			   u64 ino, u64 gen,
1543 			   struct fs_path *dest)
1544 {
1545 	int ret = 0;
1546 	struct btrfs_path *path;
1547 	struct btrfs_dir_item *di;
1548 	char tmp[64];
1549 	int len;
1550 	u64 idx = 0;
1551 
1552 	path = alloc_path_for_send();
1553 	if (!path)
1554 		return -ENOMEM;
1555 
1556 	while (1) {
1557 		len = snprintf(tmp, sizeof(tmp), "o%llu-%llu-%llu",
1558 				ino, gen, idx);
1559 		ASSERT(len < sizeof(tmp));
1560 
1561 		di = btrfs_lookup_dir_item(NULL, sctx->send_root,
1562 				path, BTRFS_FIRST_FREE_OBJECTID,
1563 				tmp, strlen(tmp), 0);
1564 		btrfs_release_path(path);
1565 		if (IS_ERR(di)) {
1566 			ret = PTR_ERR(di);
1567 			goto out;
1568 		}
1569 		if (di) {
1570 			/* not unique, try again */
1571 			idx++;
1572 			continue;
1573 		}
1574 
1575 		if (!sctx->parent_root) {
1576 			/* unique */
1577 			ret = 0;
1578 			break;
1579 		}
1580 
1581 		di = btrfs_lookup_dir_item(NULL, sctx->parent_root,
1582 				path, BTRFS_FIRST_FREE_OBJECTID,
1583 				tmp, strlen(tmp), 0);
1584 		btrfs_release_path(path);
1585 		if (IS_ERR(di)) {
1586 			ret = PTR_ERR(di);
1587 			goto out;
1588 		}
1589 		if (di) {
1590 			/* not unique, try again */
1591 			idx++;
1592 			continue;
1593 		}
1594 		/* unique */
1595 		break;
1596 	}
1597 
1598 	ret = fs_path_add(dest, tmp, strlen(tmp));
1599 
1600 out:
1601 	btrfs_free_path(path);
1602 	return ret;
1603 }
1604 
1605 enum inode_state {
1606 	inode_state_no_change,
1607 	inode_state_will_create,
1608 	inode_state_did_create,
1609 	inode_state_will_delete,
1610 	inode_state_did_delete,
1611 };
1612 
get_cur_inode_state(struct send_ctx *sctx, u64 ino, u64 gen)1613 static int get_cur_inode_state(struct send_ctx *sctx, u64 ino, u64 gen)
1614 {
1615 	int ret;
1616 	int left_ret;
1617 	int right_ret;
1618 	u64 left_gen;
1619 	u64 right_gen;
1620 
1621 	ret = get_inode_info(sctx->send_root, ino, NULL, &left_gen, NULL, NULL,
1622 			NULL, NULL);
1623 	if (ret < 0 && ret != -ENOENT)
1624 		goto out;
1625 	left_ret = ret;
1626 
1627 	if (!sctx->parent_root) {
1628 		right_ret = -ENOENT;
1629 	} else {
1630 		ret = get_inode_info(sctx->parent_root, ino, NULL, &right_gen,
1631 				NULL, NULL, NULL, NULL);
1632 		if (ret < 0 && ret != -ENOENT)
1633 			goto out;
1634 		right_ret = ret;
1635 	}
1636 
1637 	if (!left_ret && !right_ret) {
1638 		if (left_gen == gen && right_gen == gen) {
1639 			ret = inode_state_no_change;
1640 		} else if (left_gen == gen) {
1641 			if (ino < sctx->send_progress)
1642 				ret = inode_state_did_create;
1643 			else
1644 				ret = inode_state_will_create;
1645 		} else if (right_gen == gen) {
1646 			if (ino < sctx->send_progress)
1647 				ret = inode_state_did_delete;
1648 			else
1649 				ret = inode_state_will_delete;
1650 		} else  {
1651 			ret = -ENOENT;
1652 		}
1653 	} else if (!left_ret) {
1654 		if (left_gen == gen) {
1655 			if (ino < sctx->send_progress)
1656 				ret = inode_state_did_create;
1657 			else
1658 				ret = inode_state_will_create;
1659 		} else {
1660 			ret = -ENOENT;
1661 		}
1662 	} else if (!right_ret) {
1663 		if (right_gen == gen) {
1664 			if (ino < sctx->send_progress)
1665 				ret = inode_state_did_delete;
1666 			else
1667 				ret = inode_state_will_delete;
1668 		} else {
1669 			ret = -ENOENT;
1670 		}
1671 	} else {
1672 		ret = -ENOENT;
1673 	}
1674 
1675 out:
1676 	return ret;
1677 }
1678 
is_inode_existent(struct send_ctx *sctx, u64 ino, u64 gen)1679 static int is_inode_existent(struct send_ctx *sctx, u64 ino, u64 gen)
1680 {
1681 	int ret;
1682 
1683 	if (ino == BTRFS_FIRST_FREE_OBJECTID)
1684 		return 1;
1685 
1686 	ret = get_cur_inode_state(sctx, ino, gen);
1687 	if (ret < 0)
1688 		goto out;
1689 
1690 	if (ret == inode_state_no_change ||
1691 	    ret == inode_state_did_create ||
1692 	    ret == inode_state_will_delete)
1693 		ret = 1;
1694 	else
1695 		ret = 0;
1696 
1697 out:
1698 	return ret;
1699 }
1700 
1701 /*
1702  * Helper function to lookup a dir item in a dir.
1703  */
lookup_dir_item_inode(struct btrfs_root *root, u64 dir, const char *name, int name_len, u64 *found_inode, u8 *found_type)1704 static int lookup_dir_item_inode(struct btrfs_root *root,
1705 				 u64 dir, const char *name, int name_len,
1706 				 u64 *found_inode,
1707 				 u8 *found_type)
1708 {
1709 	int ret = 0;
1710 	struct btrfs_dir_item *di;
1711 	struct btrfs_key key;
1712 	struct btrfs_path *path;
1713 
1714 	path = alloc_path_for_send();
1715 	if (!path)
1716 		return -ENOMEM;
1717 
1718 	di = btrfs_lookup_dir_item(NULL, root, path,
1719 			dir, name, name_len, 0);
1720 	if (IS_ERR_OR_NULL(di)) {
1721 		ret = di ? PTR_ERR(di) : -ENOENT;
1722 		goto out;
1723 	}
1724 	btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key);
1725 	if (key.type == BTRFS_ROOT_ITEM_KEY) {
1726 		ret = -ENOENT;
1727 		goto out;
1728 	}
1729 	*found_inode = key.objectid;
1730 	*found_type = btrfs_dir_type(path->nodes[0], di);
1731 
1732 out:
1733 	btrfs_free_path(path);
1734 	return ret;
1735 }
1736 
1737 /*
1738  * Looks up the first btrfs_inode_ref of a given ino. It returns the parent dir,
1739  * generation of the parent dir and the name of the dir entry.
1740  */
get_first_ref(struct btrfs_root *root, u64 ino, u64 *dir, u64 *dir_gen, struct fs_path *name)1741 static int get_first_ref(struct btrfs_root *root, u64 ino,
1742 			 u64 *dir, u64 *dir_gen, struct fs_path *name)
1743 {
1744 	int ret;
1745 	struct btrfs_key key;
1746 	struct btrfs_key found_key;
1747 	struct btrfs_path *path;
1748 	int len;
1749 	u64 parent_dir;
1750 
1751 	path = alloc_path_for_send();
1752 	if (!path)
1753 		return -ENOMEM;
1754 
1755 	key.objectid = ino;
1756 	key.type = BTRFS_INODE_REF_KEY;
1757 	key.offset = 0;
1758 
1759 	ret = btrfs_search_slot_for_read(root, &key, path, 1, 0);
1760 	if (ret < 0)
1761 		goto out;
1762 	if (!ret)
1763 		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1764 				path->slots[0]);
1765 	if (ret || found_key.objectid != ino ||
1766 	    (found_key.type != BTRFS_INODE_REF_KEY &&
1767 	     found_key.type != BTRFS_INODE_EXTREF_KEY)) {
1768 		ret = -ENOENT;
1769 		goto out;
1770 	}
1771 
1772 	if (found_key.type == BTRFS_INODE_REF_KEY) {
1773 		struct btrfs_inode_ref *iref;
1774 		iref = btrfs_item_ptr(path->nodes[0], path->slots[0],
1775 				      struct btrfs_inode_ref);
1776 		len = btrfs_inode_ref_name_len(path->nodes[0], iref);
1777 		ret = fs_path_add_from_extent_buffer(name, path->nodes[0],
1778 						     (unsigned long)(iref + 1),
1779 						     len);
1780 		parent_dir = found_key.offset;
1781 	} else {
1782 		struct btrfs_inode_extref *extref;
1783 		extref = btrfs_item_ptr(path->nodes[0], path->slots[0],
1784 					struct btrfs_inode_extref);
1785 		len = btrfs_inode_extref_name_len(path->nodes[0], extref);
1786 		ret = fs_path_add_from_extent_buffer(name, path->nodes[0],
1787 					(unsigned long)&extref->name, len);
1788 		parent_dir = btrfs_inode_extref_parent(path->nodes[0], extref);
1789 	}
1790 	if (ret < 0)
1791 		goto out;
1792 	btrfs_release_path(path);
1793 
1794 	if (dir_gen) {
1795 		ret = get_inode_info(root, parent_dir, NULL, dir_gen, NULL,
1796 				     NULL, NULL, NULL);
1797 		if (ret < 0)
1798 			goto out;
1799 	}
1800 
1801 	*dir = parent_dir;
1802 
1803 out:
1804 	btrfs_free_path(path);
1805 	return ret;
1806 }
1807 
is_first_ref(struct btrfs_root *root, u64 ino, u64 dir, const char *name, int name_len)1808 static int is_first_ref(struct btrfs_root *root,
1809 			u64 ino, u64 dir,
1810 			const char *name, int name_len)
1811 {
1812 	int ret;
1813 	struct fs_path *tmp_name;
1814 	u64 tmp_dir;
1815 
1816 	tmp_name = fs_path_alloc();
1817 	if (!tmp_name)
1818 		return -ENOMEM;
1819 
1820 	ret = get_first_ref(root, ino, &tmp_dir, NULL, tmp_name);
1821 	if (ret < 0)
1822 		goto out;
1823 
1824 	if (dir != tmp_dir || name_len != fs_path_len(tmp_name)) {
1825 		ret = 0;
1826 		goto out;
1827 	}
1828 
1829 	ret = !memcmp(tmp_name->start, name, name_len);
1830 
1831 out:
1832 	fs_path_free(tmp_name);
1833 	return ret;
1834 }
1835 
1836 /*
1837  * Used by process_recorded_refs to determine if a new ref would overwrite an
1838  * already existing ref. In case it detects an overwrite, it returns the
1839  * inode/gen in who_ino/who_gen.
1840  * When an overwrite is detected, process_recorded_refs does proper orphanizing
1841  * to make sure later references to the overwritten inode are possible.
1842  * Orphanizing is however only required for the first ref of an inode.
1843  * process_recorded_refs does an additional is_first_ref check to see if
1844  * orphanizing is really required.
1845  */
will_overwrite_ref(struct send_ctx *sctx, u64 dir, u64 dir_gen, const char *name, int name_len, u64 *who_ino, u64 *who_gen, u64 *who_mode)1846 static int will_overwrite_ref(struct send_ctx *sctx, u64 dir, u64 dir_gen,
1847 			      const char *name, int name_len,
1848 			      u64 *who_ino, u64 *who_gen, u64 *who_mode)
1849 {
1850 	int ret = 0;
1851 	u64 gen;
1852 	u64 other_inode = 0;
1853 	u8 other_type = 0;
1854 
1855 	if (!sctx->parent_root)
1856 		goto out;
1857 
1858 	ret = is_inode_existent(sctx, dir, dir_gen);
1859 	if (ret <= 0)
1860 		goto out;
1861 
1862 	/*
1863 	 * If we have a parent root we need to verify that the parent dir was
1864 	 * not deleted and then re-created, if it was then we have no overwrite
1865 	 * and we can just unlink this entry.
1866 	 */
1867 	if (sctx->parent_root && dir != BTRFS_FIRST_FREE_OBJECTID) {
1868 		ret = get_inode_info(sctx->parent_root, dir, NULL, &gen, NULL,
1869 				     NULL, NULL, NULL);
1870 		if (ret < 0 && ret != -ENOENT)
1871 			goto out;
1872 		if (ret) {
1873 			ret = 0;
1874 			goto out;
1875 		}
1876 		if (gen != dir_gen)
1877 			goto out;
1878 	}
1879 
1880 	ret = lookup_dir_item_inode(sctx->parent_root, dir, name, name_len,
1881 			&other_inode, &other_type);
1882 	if (ret < 0 && ret != -ENOENT)
1883 		goto out;
1884 	if (ret) {
1885 		ret = 0;
1886 		goto out;
1887 	}
1888 
1889 	/*
1890 	 * Check if the overwritten ref was already processed. If yes, the ref
1891 	 * was already unlinked/moved, so we can safely assume that we will not
1892 	 * overwrite anything at this point in time.
1893 	 */
1894 	if (other_inode > sctx->send_progress ||
1895 	    is_waiting_for_move(sctx, other_inode)) {
1896 		ret = get_inode_info(sctx->parent_root, other_inode, NULL,
1897 				who_gen, who_mode, NULL, NULL, NULL);
1898 		if (ret < 0)
1899 			goto out;
1900 
1901 		ret = 1;
1902 		*who_ino = other_inode;
1903 	} else {
1904 		ret = 0;
1905 	}
1906 
1907 out:
1908 	return ret;
1909 }
1910 
1911 /*
1912  * Checks if the ref was overwritten by an already processed inode. This is
1913  * used by __get_cur_name_and_parent to find out if the ref was orphanized and
1914  * thus the orphan name needs be used.
1915  * process_recorded_refs also uses it to avoid unlinking of refs that were
1916  * overwritten.
1917  */
did_overwrite_ref(struct send_ctx *sctx, u64 dir, u64 dir_gen, u64 ino, u64 ino_gen, const char *name, int name_len)1918 static int did_overwrite_ref(struct send_ctx *sctx,
1919 			    u64 dir, u64 dir_gen,
1920 			    u64 ino, u64 ino_gen,
1921 			    const char *name, int name_len)
1922 {
1923 	int ret = 0;
1924 	u64 gen;
1925 	u64 ow_inode;
1926 	u8 other_type;
1927 
1928 	if (!sctx->parent_root)
1929 		goto out;
1930 
1931 	ret = is_inode_existent(sctx, dir, dir_gen);
1932 	if (ret <= 0)
1933 		goto out;
1934 
1935 	if (dir != BTRFS_FIRST_FREE_OBJECTID) {
1936 		ret = get_inode_info(sctx->send_root, dir, NULL, &gen, NULL,
1937 				     NULL, NULL, NULL);
1938 		if (ret < 0 && ret != -ENOENT)
1939 			goto out;
1940 		if (ret) {
1941 			ret = 0;
1942 			goto out;
1943 		}
1944 		if (gen != dir_gen)
1945 			goto out;
1946 	}
1947 
1948 	/* check if the ref was overwritten by another ref */
1949 	ret = lookup_dir_item_inode(sctx->send_root, dir, name, name_len,
1950 			&ow_inode, &other_type);
1951 	if (ret < 0 && ret != -ENOENT)
1952 		goto out;
1953 	if (ret) {
1954 		/* was never and will never be overwritten */
1955 		ret = 0;
1956 		goto out;
1957 	}
1958 
1959 	ret = get_inode_info(sctx->send_root, ow_inode, NULL, &gen, NULL, NULL,
1960 			NULL, NULL);
1961 	if (ret < 0)
1962 		goto out;
1963 
1964 	if (ow_inode == ino && gen == ino_gen) {
1965 		ret = 0;
1966 		goto out;
1967 	}
1968 
1969 	/*
1970 	 * We know that it is or will be overwritten. Check this now.
1971 	 * The current inode being processed might have been the one that caused
1972 	 * inode 'ino' to be orphanized, therefore check if ow_inode matches
1973 	 * the current inode being processed.
1974 	 */
1975 	if ((ow_inode < sctx->send_progress) ||
1976 	    (ino != sctx->cur_ino && ow_inode == sctx->cur_ino &&
1977 	     gen == sctx->cur_inode_gen))
1978 		ret = 1;
1979 	else
1980 		ret = 0;
1981 
1982 out:
1983 	return ret;
1984 }
1985 
1986 /*
1987  * Same as did_overwrite_ref, but also checks if it is the first ref of an inode
1988  * that got overwritten. This is used by process_recorded_refs to determine
1989  * if it has to use the path as returned by get_cur_path or the orphan name.
1990  */
did_overwrite_first_ref(struct send_ctx *sctx, u64 ino, u64 gen)1991 static int did_overwrite_first_ref(struct send_ctx *sctx, u64 ino, u64 gen)
1992 {
1993 	int ret = 0;
1994 	struct fs_path *name = NULL;
1995 	u64 dir;
1996 	u64 dir_gen;
1997 
1998 	if (!sctx->parent_root)
1999 		goto out;
2000 
2001 	name = fs_path_alloc();
2002 	if (!name)
2003 		return -ENOMEM;
2004 
2005 	ret = get_first_ref(sctx->parent_root, ino, &dir, &dir_gen, name);
2006 	if (ret < 0)
2007 		goto out;
2008 
2009 	ret = did_overwrite_ref(sctx, dir, dir_gen, ino, gen,
2010 			name->start, fs_path_len(name));
2011 
2012 out:
2013 	fs_path_free(name);
2014 	return ret;
2015 }
2016 
2017 /*
2018  * Insert a name cache entry. On 32bit kernels the radix tree index is 32bit,
2019  * so we need to do some special handling in case we have clashes. This function
2020  * takes care of this with the help of name_cache_entry::radix_list.
2021  * In case of error, nce is kfreed.
2022  */
name_cache_insert(struct send_ctx *sctx, struct name_cache_entry *nce)2023 static int name_cache_insert(struct send_ctx *sctx,
2024 			     struct name_cache_entry *nce)
2025 {
2026 	int ret = 0;
2027 	struct list_head *nce_head;
2028 
2029 	nce_head = radix_tree_lookup(&sctx->name_cache,
2030 			(unsigned long)nce->ino);
2031 	if (!nce_head) {
2032 		nce_head = kmalloc(sizeof(*nce_head), GFP_KERNEL);
2033 		if (!nce_head) {
2034 			kfree(nce);
2035 			return -ENOMEM;
2036 		}
2037 		INIT_LIST_HEAD(nce_head);
2038 
2039 		ret = radix_tree_insert(&sctx->name_cache, nce->ino, nce_head);
2040 		if (ret < 0) {
2041 			kfree(nce_head);
2042 			kfree(nce);
2043 			return ret;
2044 		}
2045 	}
2046 	list_add_tail(&nce->radix_list, nce_head);
2047 	list_add_tail(&nce->list, &sctx->name_cache_list);
2048 	sctx->name_cache_size++;
2049 
2050 	return ret;
2051 }
2052 
name_cache_delete(struct send_ctx *sctx, struct name_cache_entry *nce)2053 static void name_cache_delete(struct send_ctx *sctx,
2054 			      struct name_cache_entry *nce)
2055 {
2056 	struct list_head *nce_head;
2057 
2058 	nce_head = radix_tree_lookup(&sctx->name_cache,
2059 			(unsigned long)nce->ino);
2060 	if (!nce_head) {
2061 		btrfs_err(sctx->send_root->fs_info,
2062 	      "name_cache_delete lookup failed ino %llu cache size %d, leaking memory",
2063 			nce->ino, sctx->name_cache_size);
2064 	}
2065 
2066 	list_del(&nce->radix_list);
2067 	list_del(&nce->list);
2068 	sctx->name_cache_size--;
2069 
2070 	/*
2071 	 * We may not get to the final release of nce_head if the lookup fails
2072 	 */
2073 	if (nce_head && list_empty(nce_head)) {
2074 		radix_tree_delete(&sctx->name_cache, (unsigned long)nce->ino);
2075 		kfree(nce_head);
2076 	}
2077 }
2078 
name_cache_search(struct send_ctx *sctx, u64 ino, u64 gen)2079 static struct name_cache_entry *name_cache_search(struct send_ctx *sctx,
2080 						    u64 ino, u64 gen)
2081 {
2082 	struct list_head *nce_head;
2083 	struct name_cache_entry *cur;
2084 
2085 	nce_head = radix_tree_lookup(&sctx->name_cache, (unsigned long)ino);
2086 	if (!nce_head)
2087 		return NULL;
2088 
2089 	list_for_each_entry(cur, nce_head, radix_list) {
2090 		if (cur->ino == ino && cur->gen == gen)
2091 			return cur;
2092 	}
2093 	return NULL;
2094 }
2095 
2096 /*
2097  * Removes the entry from the list and adds it back to the end. This marks the
2098  * entry as recently used so that name_cache_clean_unused does not remove it.
2099  */
name_cache_used(struct send_ctx *sctx, struct name_cache_entry *nce)2100 static void name_cache_used(struct send_ctx *sctx, struct name_cache_entry *nce)
2101 {
2102 	list_del(&nce->list);
2103 	list_add_tail(&nce->list, &sctx->name_cache_list);
2104 }
2105 
2106 /*
2107  * Remove some entries from the beginning of name_cache_list.
2108  */
name_cache_clean_unused(struct send_ctx *sctx)2109 static void name_cache_clean_unused(struct send_ctx *sctx)
2110 {
2111 	struct name_cache_entry *nce;
2112 
2113 	if (sctx->name_cache_size < SEND_CTX_NAME_CACHE_CLEAN_SIZE)
2114 		return;
2115 
2116 	while (sctx->name_cache_size > SEND_CTX_MAX_NAME_CACHE_SIZE) {
2117 		nce = list_entry(sctx->name_cache_list.next,
2118 				struct name_cache_entry, list);
2119 		name_cache_delete(sctx, nce);
2120 		kfree(nce);
2121 	}
2122 }
2123 
name_cache_free(struct send_ctx *sctx)2124 static void name_cache_free(struct send_ctx *sctx)
2125 {
2126 	struct name_cache_entry *nce;
2127 
2128 	while (!list_empty(&sctx->name_cache_list)) {
2129 		nce = list_entry(sctx->name_cache_list.next,
2130 				struct name_cache_entry, list);
2131 		name_cache_delete(sctx, nce);
2132 		kfree(nce);
2133 	}
2134 }
2135 
2136 /*
2137  * Used by get_cur_path for each ref up to the root.
2138  * Returns 0 if it succeeded.
2139  * Returns 1 if the inode is not existent or got overwritten. In that case, the
2140  * name is an orphan name. This instructs get_cur_path to stop iterating. If 1
2141  * is returned, parent_ino/parent_gen are not guaranteed to be valid.
2142  * Returns <0 in case of error.
2143  */
__get_cur_name_and_parent(struct send_ctx *sctx, u64 ino, u64 gen, u64 *parent_ino, u64 *parent_gen, struct fs_path *dest)2144 static int __get_cur_name_and_parent(struct send_ctx *sctx,
2145 				     u64 ino, u64 gen,
2146 				     u64 *parent_ino,
2147 				     u64 *parent_gen,
2148 				     struct fs_path *dest)
2149 {
2150 	int ret;
2151 	int nce_ret;
2152 	struct name_cache_entry *nce = NULL;
2153 
2154 	/*
2155 	 * First check if we already did a call to this function with the same
2156 	 * ino/gen. If yes, check if the cache entry is still up-to-date. If yes
2157 	 * return the cached result.
2158 	 */
2159 	nce = name_cache_search(sctx, ino, gen);
2160 	if (nce) {
2161 		if (ino < sctx->send_progress && nce->need_later_update) {
2162 			name_cache_delete(sctx, nce);
2163 			kfree(nce);
2164 			nce = NULL;
2165 		} else {
2166 			name_cache_used(sctx, nce);
2167 			*parent_ino = nce->parent_ino;
2168 			*parent_gen = nce->parent_gen;
2169 			ret = fs_path_add(dest, nce->name, nce->name_len);
2170 			if (ret < 0)
2171 				goto out;
2172 			ret = nce->ret;
2173 			goto out;
2174 		}
2175 	}
2176 
2177 	/*
2178 	 * If the inode is not existent yet, add the orphan name and return 1.
2179 	 * This should only happen for the parent dir that we determine in
2180 	 * __record_new_ref
2181 	 */
2182 	ret = is_inode_existent(sctx, ino, gen);
2183 	if (ret < 0)
2184 		goto out;
2185 
2186 	if (!ret) {
2187 		ret = gen_unique_name(sctx, ino, gen, dest);
2188 		if (ret < 0)
2189 			goto out;
2190 		ret = 1;
2191 		goto out_cache;
2192 	}
2193 
2194 	/*
2195 	 * Depending on whether the inode was already processed or not, use
2196 	 * send_root or parent_root for ref lookup.
2197 	 */
2198 	if (ino < sctx->send_progress)
2199 		ret = get_first_ref(sctx->send_root, ino,
2200 				    parent_ino, parent_gen, dest);
2201 	else
2202 		ret = get_first_ref(sctx->parent_root, ino,
2203 				    parent_ino, parent_gen, dest);
2204 	if (ret < 0)
2205 		goto out;
2206 
2207 	/*
2208 	 * Check if the ref was overwritten by an inode's ref that was processed
2209 	 * earlier. If yes, treat as orphan and return 1.
2210 	 */
2211 	ret = did_overwrite_ref(sctx, *parent_ino, *parent_gen, ino, gen,
2212 			dest->start, dest->end - dest->start);
2213 	if (ret < 0)
2214 		goto out;
2215 	if (ret) {
2216 		fs_path_reset(dest);
2217 		ret = gen_unique_name(sctx, ino, gen, dest);
2218 		if (ret < 0)
2219 			goto out;
2220 		ret = 1;
2221 	}
2222 
2223 out_cache:
2224 	/*
2225 	 * Store the result of the lookup in the name cache.
2226 	 */
2227 	nce = kmalloc(sizeof(*nce) + fs_path_len(dest) + 1, GFP_KERNEL);
2228 	if (!nce) {
2229 		ret = -ENOMEM;
2230 		goto out;
2231 	}
2232 
2233 	nce->ino = ino;
2234 	nce->gen = gen;
2235 	nce->parent_ino = *parent_ino;
2236 	nce->parent_gen = *parent_gen;
2237 	nce->name_len = fs_path_len(dest);
2238 	nce->ret = ret;
2239 	strcpy(nce->name, dest->start);
2240 
2241 	if (ino < sctx->send_progress)
2242 		nce->need_later_update = 0;
2243 	else
2244 		nce->need_later_update = 1;
2245 
2246 	nce_ret = name_cache_insert(sctx, nce);
2247 	if (nce_ret < 0)
2248 		ret = nce_ret;
2249 	name_cache_clean_unused(sctx);
2250 
2251 out:
2252 	return ret;
2253 }
2254 
2255 /*
2256  * Magic happens here. This function returns the first ref to an inode as it
2257  * would look like while receiving the stream at this point in time.
2258  * We walk the path up to the root. For every inode in between, we check if it
2259  * was already processed/sent. If yes, we continue with the parent as found
2260  * in send_root. If not, we continue with the parent as found in parent_root.
2261  * If we encounter an inode that was deleted at this point in time, we use the
2262  * inodes "orphan" name instead of the real name and stop. Same with new inodes
2263  * that were not created yet and overwritten inodes/refs.
2264  *
2265  * When do we have orphan inodes:
2266  * 1. When an inode is freshly created and thus no valid refs are available yet
2267  * 2. When a directory lost all it's refs (deleted) but still has dir items
2268  *    inside which were not processed yet (pending for move/delete). If anyone
2269  *    tried to get the path to the dir items, it would get a path inside that
2270  *    orphan directory.
2271  * 3. When an inode is moved around or gets new links, it may overwrite the ref
2272  *    of an unprocessed inode. If in that case the first ref would be
2273  *    overwritten, the overwritten inode gets "orphanized". Later when we
2274  *    process this overwritten inode, it is restored at a new place by moving
2275  *    the orphan inode.
2276  *
2277  * sctx->send_progress tells this function at which point in time receiving
2278  * would be.
2279  */
get_cur_path(struct send_ctx *sctx, u64 ino, u64 gen, struct fs_path *dest)2280 static int get_cur_path(struct send_ctx *sctx, u64 ino, u64 gen,
2281 			struct fs_path *dest)
2282 {
2283 	int ret = 0;
2284 	struct fs_path *name = NULL;
2285 	u64 parent_inode = 0;
2286 	u64 parent_gen = 0;
2287 	int stop = 0;
2288 
2289 	name = fs_path_alloc();
2290 	if (!name) {
2291 		ret = -ENOMEM;
2292 		goto out;
2293 	}
2294 
2295 	dest->reversed = 1;
2296 	fs_path_reset(dest);
2297 
2298 	while (!stop && ino != BTRFS_FIRST_FREE_OBJECTID) {
2299 		struct waiting_dir_move *wdm;
2300 
2301 		fs_path_reset(name);
2302 
2303 		if (is_waiting_for_rm(sctx, ino, gen)) {
2304 			ret = gen_unique_name(sctx, ino, gen, name);
2305 			if (ret < 0)
2306 				goto out;
2307 			ret = fs_path_add_path(dest, name);
2308 			break;
2309 		}
2310 
2311 		wdm = get_waiting_dir_move(sctx, ino);
2312 		if (wdm && wdm->orphanized) {
2313 			ret = gen_unique_name(sctx, ino, gen, name);
2314 			stop = 1;
2315 		} else if (wdm) {
2316 			ret = get_first_ref(sctx->parent_root, ino,
2317 					    &parent_inode, &parent_gen, name);
2318 		} else {
2319 			ret = __get_cur_name_and_parent(sctx, ino, gen,
2320 							&parent_inode,
2321 							&parent_gen, name);
2322 			if (ret)
2323 				stop = 1;
2324 		}
2325 
2326 		if (ret < 0)
2327 			goto out;
2328 
2329 		ret = fs_path_add_path(dest, name);
2330 		if (ret < 0)
2331 			goto out;
2332 
2333 		ino = parent_inode;
2334 		gen = parent_gen;
2335 	}
2336 
2337 out:
2338 	fs_path_free(name);
2339 	if (!ret)
2340 		fs_path_unreverse(dest);
2341 	return ret;
2342 }
2343 
2344 /*
2345  * Sends a BTRFS_SEND_C_SUBVOL command/item to userspace
2346  */
send_subvol_begin(struct send_ctx *sctx)2347 static int send_subvol_begin(struct send_ctx *sctx)
2348 {
2349 	int ret;
2350 	struct btrfs_root *send_root = sctx->send_root;
2351 	struct btrfs_root *parent_root = sctx->parent_root;
2352 	struct btrfs_path *path;
2353 	struct btrfs_key key;
2354 	struct btrfs_root_ref *ref;
2355 	struct extent_buffer *leaf;
2356 	char *name = NULL;
2357 	int namelen;
2358 
2359 	path = btrfs_alloc_path();
2360 	if (!path)
2361 		return -ENOMEM;
2362 
2363 	name = kmalloc(BTRFS_PATH_NAME_MAX, GFP_KERNEL);
2364 	if (!name) {
2365 		btrfs_free_path(path);
2366 		return -ENOMEM;
2367 	}
2368 
2369 	key.objectid = send_root->root_key.objectid;
2370 	key.type = BTRFS_ROOT_BACKREF_KEY;
2371 	key.offset = 0;
2372 
2373 	ret = btrfs_search_slot_for_read(send_root->fs_info->tree_root,
2374 				&key, path, 1, 0);
2375 	if (ret < 0)
2376 		goto out;
2377 	if (ret) {
2378 		ret = -ENOENT;
2379 		goto out;
2380 	}
2381 
2382 	leaf = path->nodes[0];
2383 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2384 	if (key.type != BTRFS_ROOT_BACKREF_KEY ||
2385 	    key.objectid != send_root->root_key.objectid) {
2386 		ret = -ENOENT;
2387 		goto out;
2388 	}
2389 	ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
2390 	namelen = btrfs_root_ref_name_len(leaf, ref);
2391 	read_extent_buffer(leaf, name, (unsigned long)(ref + 1), namelen);
2392 	btrfs_release_path(path);
2393 
2394 	if (parent_root) {
2395 		ret = begin_cmd(sctx, BTRFS_SEND_C_SNAPSHOT);
2396 		if (ret < 0)
2397 			goto out;
2398 	} else {
2399 		ret = begin_cmd(sctx, BTRFS_SEND_C_SUBVOL);
2400 		if (ret < 0)
2401 			goto out;
2402 	}
2403 
2404 	TLV_PUT_STRING(sctx, BTRFS_SEND_A_PATH, name, namelen);
2405 
2406 	if (!btrfs_is_empty_uuid(sctx->send_root->root_item.received_uuid))
2407 		TLV_PUT_UUID(sctx, BTRFS_SEND_A_UUID,
2408 			    sctx->send_root->root_item.received_uuid);
2409 	else
2410 		TLV_PUT_UUID(sctx, BTRFS_SEND_A_UUID,
2411 			    sctx->send_root->root_item.uuid);
2412 
2413 	TLV_PUT_U64(sctx, BTRFS_SEND_A_CTRANSID,
2414 		    le64_to_cpu(sctx->send_root->root_item.ctransid));
2415 	if (parent_root) {
2416 		if (!btrfs_is_empty_uuid(parent_root->root_item.received_uuid))
2417 			TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
2418 				     parent_root->root_item.received_uuid);
2419 		else
2420 			TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
2421 				     parent_root->root_item.uuid);
2422 		TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_CTRANSID,
2423 			    le64_to_cpu(sctx->parent_root->root_item.ctransid));
2424 	}
2425 
2426 	ret = send_cmd(sctx);
2427 
2428 tlv_put_failure:
2429 out:
2430 	btrfs_free_path(path);
2431 	kfree(name);
2432 	return ret;
2433 }
2434 
send_truncate(struct send_ctx *sctx, u64 ino, u64 gen, u64 size)2435 static int send_truncate(struct send_ctx *sctx, u64 ino, u64 gen, u64 size)
2436 {
2437 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2438 	int ret = 0;
2439 	struct fs_path *p;
2440 
2441 	btrfs_debug(fs_info, "send_truncate %llu size=%llu", ino, size);
2442 
2443 	p = fs_path_alloc();
2444 	if (!p)
2445 		return -ENOMEM;
2446 
2447 	ret = begin_cmd(sctx, BTRFS_SEND_C_TRUNCATE);
2448 	if (ret < 0)
2449 		goto out;
2450 
2451 	ret = get_cur_path(sctx, ino, gen, p);
2452 	if (ret < 0)
2453 		goto out;
2454 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2455 	TLV_PUT_U64(sctx, BTRFS_SEND_A_SIZE, size);
2456 
2457 	ret = send_cmd(sctx);
2458 
2459 tlv_put_failure:
2460 out:
2461 	fs_path_free(p);
2462 	return ret;
2463 }
2464 
send_chmod(struct send_ctx *sctx, u64 ino, u64 gen, u64 mode)2465 static int send_chmod(struct send_ctx *sctx, u64 ino, u64 gen, u64 mode)
2466 {
2467 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2468 	int ret = 0;
2469 	struct fs_path *p;
2470 
2471 	btrfs_debug(fs_info, "send_chmod %llu mode=%llu", ino, mode);
2472 
2473 	p = fs_path_alloc();
2474 	if (!p)
2475 		return -ENOMEM;
2476 
2477 	ret = begin_cmd(sctx, BTRFS_SEND_C_CHMOD);
2478 	if (ret < 0)
2479 		goto out;
2480 
2481 	ret = get_cur_path(sctx, ino, gen, p);
2482 	if (ret < 0)
2483 		goto out;
2484 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2485 	TLV_PUT_U64(sctx, BTRFS_SEND_A_MODE, mode & 07777);
2486 
2487 	ret = send_cmd(sctx);
2488 
2489 tlv_put_failure:
2490 out:
2491 	fs_path_free(p);
2492 	return ret;
2493 }
2494 
send_chown(struct send_ctx *sctx, u64 ino, u64 gen, u64 uid, u64 gid)2495 static int send_chown(struct send_ctx *sctx, u64 ino, u64 gen, u64 uid, u64 gid)
2496 {
2497 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2498 	int ret = 0;
2499 	struct fs_path *p;
2500 
2501 	btrfs_debug(fs_info, "send_chown %llu uid=%llu, gid=%llu",
2502 		    ino, uid, gid);
2503 
2504 	p = fs_path_alloc();
2505 	if (!p)
2506 		return -ENOMEM;
2507 
2508 	ret = begin_cmd(sctx, BTRFS_SEND_C_CHOWN);
2509 	if (ret < 0)
2510 		goto out;
2511 
2512 	ret = get_cur_path(sctx, ino, gen, p);
2513 	if (ret < 0)
2514 		goto out;
2515 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2516 	TLV_PUT_U64(sctx, BTRFS_SEND_A_UID, uid);
2517 	TLV_PUT_U64(sctx, BTRFS_SEND_A_GID, gid);
2518 
2519 	ret = send_cmd(sctx);
2520 
2521 tlv_put_failure:
2522 out:
2523 	fs_path_free(p);
2524 	return ret;
2525 }
2526 
send_utimes(struct send_ctx *sctx, u64 ino, u64 gen)2527 static int send_utimes(struct send_ctx *sctx, u64 ino, u64 gen)
2528 {
2529 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2530 	int ret = 0;
2531 	struct fs_path *p = NULL;
2532 	struct btrfs_inode_item *ii;
2533 	struct btrfs_path *path = NULL;
2534 	struct extent_buffer *eb;
2535 	struct btrfs_key key;
2536 	int slot;
2537 
2538 	btrfs_debug(fs_info, "send_utimes %llu", ino);
2539 
2540 	p = fs_path_alloc();
2541 	if (!p)
2542 		return -ENOMEM;
2543 
2544 	path = alloc_path_for_send();
2545 	if (!path) {
2546 		ret = -ENOMEM;
2547 		goto out;
2548 	}
2549 
2550 	key.objectid = ino;
2551 	key.type = BTRFS_INODE_ITEM_KEY;
2552 	key.offset = 0;
2553 	ret = btrfs_search_slot(NULL, sctx->send_root, &key, path, 0, 0);
2554 	if (ret > 0)
2555 		ret = -ENOENT;
2556 	if (ret < 0)
2557 		goto out;
2558 
2559 	eb = path->nodes[0];
2560 	slot = path->slots[0];
2561 	ii = btrfs_item_ptr(eb, slot, struct btrfs_inode_item);
2562 
2563 	ret = begin_cmd(sctx, BTRFS_SEND_C_UTIMES);
2564 	if (ret < 0)
2565 		goto out;
2566 
2567 	ret = get_cur_path(sctx, ino, gen, p);
2568 	if (ret < 0)
2569 		goto out;
2570 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2571 	TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_ATIME, eb, &ii->atime);
2572 	TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_MTIME, eb, &ii->mtime);
2573 	TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_CTIME, eb, &ii->ctime);
2574 	/* TODO Add otime support when the otime patches get into upstream */
2575 
2576 	ret = send_cmd(sctx);
2577 
2578 tlv_put_failure:
2579 out:
2580 	fs_path_free(p);
2581 	btrfs_free_path(path);
2582 	return ret;
2583 }
2584 
2585 /*
2586  * Sends a BTRFS_SEND_C_MKXXX or SYMLINK command to user space. We don't have
2587  * a valid path yet because we did not process the refs yet. So, the inode
2588  * is created as orphan.
2589  */
send_create_inode(struct send_ctx *sctx, u64 ino)2590 static int send_create_inode(struct send_ctx *sctx, u64 ino)
2591 {
2592 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2593 	int ret = 0;
2594 	struct fs_path *p;
2595 	int cmd;
2596 	u64 gen;
2597 	u64 mode;
2598 	u64 rdev;
2599 
2600 	btrfs_debug(fs_info, "send_create_inode %llu", ino);
2601 
2602 	p = fs_path_alloc();
2603 	if (!p)
2604 		return -ENOMEM;
2605 
2606 	if (ino != sctx->cur_ino) {
2607 		ret = get_inode_info(sctx->send_root, ino, NULL, &gen, &mode,
2608 				     NULL, NULL, &rdev);
2609 		if (ret < 0)
2610 			goto out;
2611 	} else {
2612 		gen = sctx->cur_inode_gen;
2613 		mode = sctx->cur_inode_mode;
2614 		rdev = sctx->cur_inode_rdev;
2615 	}
2616 
2617 	if (S_ISREG(mode)) {
2618 		cmd = BTRFS_SEND_C_MKFILE;
2619 	} else if (S_ISDIR(mode)) {
2620 		cmd = BTRFS_SEND_C_MKDIR;
2621 	} else if (S_ISLNK(mode)) {
2622 		cmd = BTRFS_SEND_C_SYMLINK;
2623 	} else if (S_ISCHR(mode) || S_ISBLK(mode)) {
2624 		cmd = BTRFS_SEND_C_MKNOD;
2625 	} else if (S_ISFIFO(mode)) {
2626 		cmd = BTRFS_SEND_C_MKFIFO;
2627 	} else if (S_ISSOCK(mode)) {
2628 		cmd = BTRFS_SEND_C_MKSOCK;
2629 	} else {
2630 		btrfs_warn(sctx->send_root->fs_info, "unexpected inode type %o",
2631 				(int)(mode & S_IFMT));
2632 		ret = -EOPNOTSUPP;
2633 		goto out;
2634 	}
2635 
2636 	ret = begin_cmd(sctx, cmd);
2637 	if (ret < 0)
2638 		goto out;
2639 
2640 	ret = gen_unique_name(sctx, ino, gen, p);
2641 	if (ret < 0)
2642 		goto out;
2643 
2644 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2645 	TLV_PUT_U64(sctx, BTRFS_SEND_A_INO, ino);
2646 
2647 	if (S_ISLNK(mode)) {
2648 		fs_path_reset(p);
2649 		ret = read_symlink(sctx->send_root, ino, p);
2650 		if (ret < 0)
2651 			goto out;
2652 		TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_LINK, p);
2653 	} else if (S_ISCHR(mode) || S_ISBLK(mode) ||
2654 		   S_ISFIFO(mode) || S_ISSOCK(mode)) {
2655 		TLV_PUT_U64(sctx, BTRFS_SEND_A_RDEV, new_encode_dev(rdev));
2656 		TLV_PUT_U64(sctx, BTRFS_SEND_A_MODE, mode);
2657 	}
2658 
2659 	ret = send_cmd(sctx);
2660 	if (ret < 0)
2661 		goto out;
2662 
2663 
2664 tlv_put_failure:
2665 out:
2666 	fs_path_free(p);
2667 	return ret;
2668 }
2669 
2670 /*
2671  * We need some special handling for inodes that get processed before the parent
2672  * directory got created. See process_recorded_refs for details.
2673  * This function does the check if we already created the dir out of order.
2674  */
did_create_dir(struct send_ctx *sctx, u64 dir)2675 static int did_create_dir(struct send_ctx *sctx, u64 dir)
2676 {
2677 	int ret = 0;
2678 	struct btrfs_path *path = NULL;
2679 	struct btrfs_key key;
2680 	struct btrfs_key found_key;
2681 	struct btrfs_key di_key;
2682 	struct extent_buffer *eb;
2683 	struct btrfs_dir_item *di;
2684 	int slot;
2685 
2686 	path = alloc_path_for_send();
2687 	if (!path) {
2688 		ret = -ENOMEM;
2689 		goto out;
2690 	}
2691 
2692 	key.objectid = dir;
2693 	key.type = BTRFS_DIR_INDEX_KEY;
2694 	key.offset = 0;
2695 	ret = btrfs_search_slot(NULL, sctx->send_root, &key, path, 0, 0);
2696 	if (ret < 0)
2697 		goto out;
2698 
2699 	while (1) {
2700 		eb = path->nodes[0];
2701 		slot = path->slots[0];
2702 		if (slot >= btrfs_header_nritems(eb)) {
2703 			ret = btrfs_next_leaf(sctx->send_root, path);
2704 			if (ret < 0) {
2705 				goto out;
2706 			} else if (ret > 0) {
2707 				ret = 0;
2708 				break;
2709 			}
2710 			continue;
2711 		}
2712 
2713 		btrfs_item_key_to_cpu(eb, &found_key, slot);
2714 		if (found_key.objectid != key.objectid ||
2715 		    found_key.type != key.type) {
2716 			ret = 0;
2717 			goto out;
2718 		}
2719 
2720 		di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item);
2721 		btrfs_dir_item_key_to_cpu(eb, di, &di_key);
2722 
2723 		if (di_key.type != BTRFS_ROOT_ITEM_KEY &&
2724 		    di_key.objectid < sctx->send_progress) {
2725 			ret = 1;
2726 			goto out;
2727 		}
2728 
2729 		path->slots[0]++;
2730 	}
2731 
2732 out:
2733 	btrfs_free_path(path);
2734 	return ret;
2735 }
2736 
2737 /*
2738  * Only creates the inode if it is:
2739  * 1. Not a directory
2740  * 2. Or a directory which was not created already due to out of order
2741  *    directories. See did_create_dir and process_recorded_refs for details.
2742  */
send_create_inode_if_needed(struct send_ctx *sctx)2743 static int send_create_inode_if_needed(struct send_ctx *sctx)
2744 {
2745 	int ret;
2746 
2747 	if (S_ISDIR(sctx->cur_inode_mode)) {
2748 		ret = did_create_dir(sctx, sctx->cur_ino);
2749 		if (ret < 0)
2750 			goto out;
2751 		if (ret) {
2752 			ret = 0;
2753 			goto out;
2754 		}
2755 	}
2756 
2757 	ret = send_create_inode(sctx, sctx->cur_ino);
2758 	if (ret < 0)
2759 		goto out;
2760 
2761 out:
2762 	return ret;
2763 }
2764 
2765 struct recorded_ref {
2766 	struct list_head list;
2767 	char *name;
2768 	struct fs_path *full_path;
2769 	u64 dir;
2770 	u64 dir_gen;
2771 	int name_len;
2772 };
2773 
set_ref_path(struct recorded_ref *ref, struct fs_path *path)2774 static void set_ref_path(struct recorded_ref *ref, struct fs_path *path)
2775 {
2776 	ref->full_path = path;
2777 	ref->name = (char *)kbasename(ref->full_path->start);
2778 	ref->name_len = ref->full_path->end - ref->name;
2779 }
2780 
2781 /*
2782  * We need to process new refs before deleted refs, but compare_tree gives us
2783  * everything mixed. So we first record all refs and later process them.
2784  * This function is a helper to record one ref.
2785  */
__record_ref(struct list_head *head, u64 dir, u64 dir_gen, struct fs_path *path)2786 static int __record_ref(struct list_head *head, u64 dir,
2787 		      u64 dir_gen, struct fs_path *path)
2788 {
2789 	struct recorded_ref *ref;
2790 
2791 	ref = kmalloc(sizeof(*ref), GFP_KERNEL);
2792 	if (!ref)
2793 		return -ENOMEM;
2794 
2795 	ref->dir = dir;
2796 	ref->dir_gen = dir_gen;
2797 	set_ref_path(ref, path);
2798 	list_add_tail(&ref->list, head);
2799 	return 0;
2800 }
2801 
dup_ref(struct recorded_ref *ref, struct list_head *list)2802 static int dup_ref(struct recorded_ref *ref, struct list_head *list)
2803 {
2804 	struct recorded_ref *new;
2805 
2806 	new = kmalloc(sizeof(*ref), GFP_KERNEL);
2807 	if (!new)
2808 		return -ENOMEM;
2809 
2810 	new->dir = ref->dir;
2811 	new->dir_gen = ref->dir_gen;
2812 	new->full_path = NULL;
2813 	INIT_LIST_HEAD(&new->list);
2814 	list_add_tail(&new->list, list);
2815 	return 0;
2816 }
2817 
__free_recorded_refs(struct list_head *head)2818 static void __free_recorded_refs(struct list_head *head)
2819 {
2820 	struct recorded_ref *cur;
2821 
2822 	while (!list_empty(head)) {
2823 		cur = list_entry(head->next, struct recorded_ref, list);
2824 		fs_path_free(cur->full_path);
2825 		list_del(&cur->list);
2826 		kfree(cur);
2827 	}
2828 }
2829 
free_recorded_refs(struct send_ctx *sctx)2830 static void free_recorded_refs(struct send_ctx *sctx)
2831 {
2832 	__free_recorded_refs(&sctx->new_refs);
2833 	__free_recorded_refs(&sctx->deleted_refs);
2834 }
2835 
2836 /*
2837  * Renames/moves a file/dir to its orphan name. Used when the first
2838  * ref of an unprocessed inode gets overwritten and for all non empty
2839  * directories.
2840  */
orphanize_inode(struct send_ctx *sctx, u64 ino, u64 gen, struct fs_path *path)2841 static int orphanize_inode(struct send_ctx *sctx, u64 ino, u64 gen,
2842 			  struct fs_path *path)
2843 {
2844 	int ret;
2845 	struct fs_path *orphan;
2846 
2847 	orphan = fs_path_alloc();
2848 	if (!orphan)
2849 		return -ENOMEM;
2850 
2851 	ret = gen_unique_name(sctx, ino, gen, orphan);
2852 	if (ret < 0)
2853 		goto out;
2854 
2855 	ret = send_rename(sctx, path, orphan);
2856 
2857 out:
2858 	fs_path_free(orphan);
2859 	return ret;
2860 }
2861 
add_orphan_dir_info(struct send_ctx *sctx, u64 dir_ino, u64 dir_gen)2862 static struct orphan_dir_info *add_orphan_dir_info(struct send_ctx *sctx,
2863 						   u64 dir_ino, u64 dir_gen)
2864 {
2865 	struct rb_node **p = &sctx->orphan_dirs.rb_node;
2866 	struct rb_node *parent = NULL;
2867 	struct orphan_dir_info *entry, *odi;
2868 
2869 	while (*p) {
2870 		parent = *p;
2871 		entry = rb_entry(parent, struct orphan_dir_info, node);
2872 		if (dir_ino < entry->ino)
2873 			p = &(*p)->rb_left;
2874 		else if (dir_ino > entry->ino)
2875 			p = &(*p)->rb_right;
2876 		else if (dir_gen < entry->gen)
2877 			p = &(*p)->rb_left;
2878 		else if (dir_gen > entry->gen)
2879 			p = &(*p)->rb_right;
2880 		else
2881 			return entry;
2882 	}
2883 
2884 	odi = kmalloc(sizeof(*odi), GFP_KERNEL);
2885 	if (!odi)
2886 		return ERR_PTR(-ENOMEM);
2887 	odi->ino = dir_ino;
2888 	odi->gen = dir_gen;
2889 	odi->last_dir_index_offset = 0;
2890 
2891 	rb_link_node(&odi->node, parent, p);
2892 	rb_insert_color(&odi->node, &sctx->orphan_dirs);
2893 	return odi;
2894 }
2895 
get_orphan_dir_info(struct send_ctx *sctx, u64 dir_ino, u64 gen)2896 static struct orphan_dir_info *get_orphan_dir_info(struct send_ctx *sctx,
2897 						   u64 dir_ino, u64 gen)
2898 {
2899 	struct rb_node *n = sctx->orphan_dirs.rb_node;
2900 	struct orphan_dir_info *entry;
2901 
2902 	while (n) {
2903 		entry = rb_entry(n, struct orphan_dir_info, node);
2904 		if (dir_ino < entry->ino)
2905 			n = n->rb_left;
2906 		else if (dir_ino > entry->ino)
2907 			n = n->rb_right;
2908 		else if (gen < entry->gen)
2909 			n = n->rb_left;
2910 		else if (gen > entry->gen)
2911 			n = n->rb_right;
2912 		else
2913 			return entry;
2914 	}
2915 	return NULL;
2916 }
2917 
is_waiting_for_rm(struct send_ctx *sctx, u64 dir_ino, u64 gen)2918 static int is_waiting_for_rm(struct send_ctx *sctx, u64 dir_ino, u64 gen)
2919 {
2920 	struct orphan_dir_info *odi = get_orphan_dir_info(sctx, dir_ino, gen);
2921 
2922 	return odi != NULL;
2923 }
2924 
free_orphan_dir_info(struct send_ctx *sctx, struct orphan_dir_info *odi)2925 static void free_orphan_dir_info(struct send_ctx *sctx,
2926 				 struct orphan_dir_info *odi)
2927 {
2928 	if (!odi)
2929 		return;
2930 	rb_erase(&odi->node, &sctx->orphan_dirs);
2931 	kfree(odi);
2932 }
2933 
2934 /*
2935  * Returns 1 if a directory can be removed at this point in time.
2936  * We check this by iterating all dir items and checking if the inode behind
2937  * the dir item was already processed.
2938  */
can_rmdir(struct send_ctx *sctx, u64 dir, u64 dir_gen, u64 send_progress)2939 static int can_rmdir(struct send_ctx *sctx, u64 dir, u64 dir_gen,
2940 		     u64 send_progress)
2941 {
2942 	int ret = 0;
2943 	struct btrfs_root *root = sctx->parent_root;
2944 	struct btrfs_path *path;
2945 	struct btrfs_key key;
2946 	struct btrfs_key found_key;
2947 	struct btrfs_key loc;
2948 	struct btrfs_dir_item *di;
2949 	struct orphan_dir_info *odi = NULL;
2950 
2951 	/*
2952 	 * Don't try to rmdir the top/root subvolume dir.
2953 	 */
2954 	if (dir == BTRFS_FIRST_FREE_OBJECTID)
2955 		return 0;
2956 
2957 	path = alloc_path_for_send();
2958 	if (!path)
2959 		return -ENOMEM;
2960 
2961 	key.objectid = dir;
2962 	key.type = BTRFS_DIR_INDEX_KEY;
2963 	key.offset = 0;
2964 
2965 	odi = get_orphan_dir_info(sctx, dir, dir_gen);
2966 	if (odi)
2967 		key.offset = odi->last_dir_index_offset;
2968 
2969 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2970 	if (ret < 0)
2971 		goto out;
2972 
2973 	while (1) {
2974 		struct waiting_dir_move *dm;
2975 
2976 		if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
2977 			ret = btrfs_next_leaf(root, path);
2978 			if (ret < 0)
2979 				goto out;
2980 			else if (ret > 0)
2981 				break;
2982 			continue;
2983 		}
2984 		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2985 				      path->slots[0]);
2986 		if (found_key.objectid != key.objectid ||
2987 		    found_key.type != key.type)
2988 			break;
2989 
2990 		di = btrfs_item_ptr(path->nodes[0], path->slots[0],
2991 				struct btrfs_dir_item);
2992 		btrfs_dir_item_key_to_cpu(path->nodes[0], di, &loc);
2993 
2994 		dm = get_waiting_dir_move(sctx, loc.objectid);
2995 		if (dm) {
2996 			odi = add_orphan_dir_info(sctx, dir, dir_gen);
2997 			if (IS_ERR(odi)) {
2998 				ret = PTR_ERR(odi);
2999 				goto out;
3000 			}
3001 			odi->gen = dir_gen;
3002 			odi->last_dir_index_offset = found_key.offset;
3003 			dm->rmdir_ino = dir;
3004 			dm->rmdir_gen = dir_gen;
3005 			ret = 0;
3006 			goto out;
3007 		}
3008 
3009 		if (loc.objectid > send_progress) {
3010 			odi = add_orphan_dir_info(sctx, dir, dir_gen);
3011 			if (IS_ERR(odi)) {
3012 				ret = PTR_ERR(odi);
3013 				goto out;
3014 			}
3015 			odi->gen = dir_gen;
3016 			odi->last_dir_index_offset = found_key.offset;
3017 			ret = 0;
3018 			goto out;
3019 		}
3020 
3021 		path->slots[0]++;
3022 	}
3023 	free_orphan_dir_info(sctx, odi);
3024 
3025 	ret = 1;
3026 
3027 out:
3028 	btrfs_free_path(path);
3029 	return ret;
3030 }
3031 
is_waiting_for_move(struct send_ctx *sctx, u64 ino)3032 static int is_waiting_for_move(struct send_ctx *sctx, u64 ino)
3033 {
3034 	struct waiting_dir_move *entry = get_waiting_dir_move(sctx, ino);
3035 
3036 	return entry != NULL;
3037 }
3038 
add_waiting_dir_move(struct send_ctx *sctx, u64 ino, bool orphanized)3039 static int add_waiting_dir_move(struct send_ctx *sctx, u64 ino, bool orphanized)
3040 {
3041 	struct rb_node **p = &sctx->waiting_dir_moves.rb_node;
3042 	struct rb_node *parent = NULL;
3043 	struct waiting_dir_move *entry, *dm;
3044 
3045 	dm = kmalloc(sizeof(*dm), GFP_KERNEL);
3046 	if (!dm)
3047 		return -ENOMEM;
3048 	dm->ino = ino;
3049 	dm->rmdir_ino = 0;
3050 	dm->rmdir_gen = 0;
3051 	dm->orphanized = orphanized;
3052 
3053 	while (*p) {
3054 		parent = *p;
3055 		entry = rb_entry(parent, struct waiting_dir_move, node);
3056 		if (ino < entry->ino) {
3057 			p = &(*p)->rb_left;
3058 		} else if (ino > entry->ino) {
3059 			p = &(*p)->rb_right;
3060 		} else {
3061 			kfree(dm);
3062 			return -EEXIST;
3063 		}
3064 	}
3065 
3066 	rb_link_node(&dm->node, parent, p);
3067 	rb_insert_color(&dm->node, &sctx->waiting_dir_moves);
3068 	return 0;
3069 }
3070 
3071 static struct waiting_dir_move *
get_waiting_dir_move(struct send_ctx *sctx, u64 ino)3072 get_waiting_dir_move(struct send_ctx *sctx, u64 ino)
3073 {
3074 	struct rb_node *n = sctx->waiting_dir_moves.rb_node;
3075 	struct waiting_dir_move *entry;
3076 
3077 	while (n) {
3078 		entry = rb_entry(n, struct waiting_dir_move, node);
3079 		if (ino < entry->ino)
3080 			n = n->rb_left;
3081 		else if (ino > entry->ino)
3082 			n = n->rb_right;
3083 		else
3084 			return entry;
3085 	}
3086 	return NULL;
3087 }
3088 
free_waiting_dir_move(struct send_ctx *sctx, struct waiting_dir_move *dm)3089 static void free_waiting_dir_move(struct send_ctx *sctx,
3090 				  struct waiting_dir_move *dm)
3091 {
3092 	if (!dm)
3093 		return;
3094 	rb_erase(&dm->node, &sctx->waiting_dir_moves);
3095 	kfree(dm);
3096 }
3097 
add_pending_dir_move(struct send_ctx *sctx, u64 ino, u64 ino_gen, u64 parent_ino, struct list_head *new_refs, struct list_head *deleted_refs, const bool is_orphan)3098 static int add_pending_dir_move(struct send_ctx *sctx,
3099 				u64 ino,
3100 				u64 ino_gen,
3101 				u64 parent_ino,
3102 				struct list_head *new_refs,
3103 				struct list_head *deleted_refs,
3104 				const bool is_orphan)
3105 {
3106 	struct rb_node **p = &sctx->pending_dir_moves.rb_node;
3107 	struct rb_node *parent = NULL;
3108 	struct pending_dir_move *entry = NULL, *pm;
3109 	struct recorded_ref *cur;
3110 	int exists = 0;
3111 	int ret;
3112 
3113 	pm = kmalloc(sizeof(*pm), GFP_KERNEL);
3114 	if (!pm)
3115 		return -ENOMEM;
3116 	pm->parent_ino = parent_ino;
3117 	pm->ino = ino;
3118 	pm->gen = ino_gen;
3119 	INIT_LIST_HEAD(&pm->list);
3120 	INIT_LIST_HEAD(&pm->update_refs);
3121 	RB_CLEAR_NODE(&pm->node);
3122 
3123 	while (*p) {
3124 		parent = *p;
3125 		entry = rb_entry(parent, struct pending_dir_move, node);
3126 		if (parent_ino < entry->parent_ino) {
3127 			p = &(*p)->rb_left;
3128 		} else if (parent_ino > entry->parent_ino) {
3129 			p = &(*p)->rb_right;
3130 		} else {
3131 			exists = 1;
3132 			break;
3133 		}
3134 	}
3135 
3136 	list_for_each_entry(cur, deleted_refs, list) {
3137 		ret = dup_ref(cur, &pm->update_refs);
3138 		if (ret < 0)
3139 			goto out;
3140 	}
3141 	list_for_each_entry(cur, new_refs, list) {
3142 		ret = dup_ref(cur, &pm->update_refs);
3143 		if (ret < 0)
3144 			goto out;
3145 	}
3146 
3147 	ret = add_waiting_dir_move(sctx, pm->ino, is_orphan);
3148 	if (ret)
3149 		goto out;
3150 
3151 	if (exists) {
3152 		list_add_tail(&pm->list, &entry->list);
3153 	} else {
3154 		rb_link_node(&pm->node, parent, p);
3155 		rb_insert_color(&pm->node, &sctx->pending_dir_moves);
3156 	}
3157 	ret = 0;
3158 out:
3159 	if (ret) {
3160 		__free_recorded_refs(&pm->update_refs);
3161 		kfree(pm);
3162 	}
3163 	return ret;
3164 }
3165 
get_pending_dir_moves(struct send_ctx *sctx, u64 parent_ino)3166 static struct pending_dir_move *get_pending_dir_moves(struct send_ctx *sctx,
3167 						      u64 parent_ino)
3168 {
3169 	struct rb_node *n = sctx->pending_dir_moves.rb_node;
3170 	struct pending_dir_move *entry;
3171 
3172 	while (n) {
3173 		entry = rb_entry(n, struct pending_dir_move, node);
3174 		if (parent_ino < entry->parent_ino)
3175 			n = n->rb_left;
3176 		else if (parent_ino > entry->parent_ino)
3177 			n = n->rb_right;
3178 		else
3179 			return entry;
3180 	}
3181 	return NULL;
3182 }
3183 
path_loop(struct send_ctx *sctx, struct fs_path *name, u64 ino, u64 gen, u64 *ancestor_ino)3184 static int path_loop(struct send_ctx *sctx, struct fs_path *name,
3185 		     u64 ino, u64 gen, u64 *ancestor_ino)
3186 {
3187 	int ret = 0;
3188 	u64 parent_inode = 0;
3189 	u64 parent_gen = 0;
3190 	u64 start_ino = ino;
3191 
3192 	*ancestor_ino = 0;
3193 	while (ino != BTRFS_FIRST_FREE_OBJECTID) {
3194 		fs_path_reset(name);
3195 
3196 		if (is_waiting_for_rm(sctx, ino, gen))
3197 			break;
3198 		if (is_waiting_for_move(sctx, ino)) {
3199 			if (*ancestor_ino == 0)
3200 				*ancestor_ino = ino;
3201 			ret = get_first_ref(sctx->parent_root, ino,
3202 					    &parent_inode, &parent_gen, name);
3203 		} else {
3204 			ret = __get_cur_name_and_parent(sctx, ino, gen,
3205 							&parent_inode,
3206 							&parent_gen, name);
3207 			if (ret > 0) {
3208 				ret = 0;
3209 				break;
3210 			}
3211 		}
3212 		if (ret < 0)
3213 			break;
3214 		if (parent_inode == start_ino) {
3215 			ret = 1;
3216 			if (*ancestor_ino == 0)
3217 				*ancestor_ino = ino;
3218 			break;
3219 		}
3220 		ino = parent_inode;
3221 		gen = parent_gen;
3222 	}
3223 	return ret;
3224 }
3225 
apply_dir_move(struct send_ctx *sctx, struct pending_dir_move *pm)3226 static int apply_dir_move(struct send_ctx *sctx, struct pending_dir_move *pm)
3227 {
3228 	struct fs_path *from_path = NULL;
3229 	struct fs_path *to_path = NULL;
3230 	struct fs_path *name = NULL;
3231 	u64 orig_progress = sctx->send_progress;
3232 	struct recorded_ref *cur;
3233 	u64 parent_ino, parent_gen;
3234 	struct waiting_dir_move *dm = NULL;
3235 	u64 rmdir_ino = 0;
3236 	u64 rmdir_gen;
3237 	u64 ancestor;
3238 	bool is_orphan;
3239 	int ret;
3240 
3241 	name = fs_path_alloc();
3242 	from_path = fs_path_alloc();
3243 	if (!name || !from_path) {
3244 		ret = -ENOMEM;
3245 		goto out;
3246 	}
3247 
3248 	dm = get_waiting_dir_move(sctx, pm->ino);
3249 	ASSERT(dm);
3250 	rmdir_ino = dm->rmdir_ino;
3251 	rmdir_gen = dm->rmdir_gen;
3252 	is_orphan = dm->orphanized;
3253 	free_waiting_dir_move(sctx, dm);
3254 
3255 	if (is_orphan) {
3256 		ret = gen_unique_name(sctx, pm->ino,
3257 				      pm->gen, from_path);
3258 	} else {
3259 		ret = get_first_ref(sctx->parent_root, pm->ino,
3260 				    &parent_ino, &parent_gen, name);
3261 		if (ret < 0)
3262 			goto out;
3263 		ret = get_cur_path(sctx, parent_ino, parent_gen,
3264 				   from_path);
3265 		if (ret < 0)
3266 			goto out;
3267 		ret = fs_path_add_path(from_path, name);
3268 	}
3269 	if (ret < 0)
3270 		goto out;
3271 
3272 	sctx->send_progress = sctx->cur_ino + 1;
3273 	ret = path_loop(sctx, name, pm->ino, pm->gen, &ancestor);
3274 	if (ret < 0)
3275 		goto out;
3276 	if (ret) {
3277 		LIST_HEAD(deleted_refs);
3278 		ASSERT(ancestor > BTRFS_FIRST_FREE_OBJECTID);
3279 		ret = add_pending_dir_move(sctx, pm->ino, pm->gen, ancestor,
3280 					   &pm->update_refs, &deleted_refs,
3281 					   is_orphan);
3282 		if (ret < 0)
3283 			goto out;
3284 		if (rmdir_ino) {
3285 			dm = get_waiting_dir_move(sctx, pm->ino);
3286 			ASSERT(dm);
3287 			dm->rmdir_ino = rmdir_ino;
3288 			dm->rmdir_gen = rmdir_gen;
3289 		}
3290 		goto out;
3291 	}
3292 	fs_path_reset(name);
3293 	to_path = name;
3294 	name = NULL;
3295 	ret = get_cur_path(sctx, pm->ino, pm->gen, to_path);
3296 	if (ret < 0)
3297 		goto out;
3298 
3299 	ret = send_rename(sctx, from_path, to_path);
3300 	if (ret < 0)
3301 		goto out;
3302 
3303 	if (rmdir_ino) {
3304 		struct orphan_dir_info *odi;
3305 		u64 gen;
3306 
3307 		odi = get_orphan_dir_info(sctx, rmdir_ino, rmdir_gen);
3308 		if (!odi) {
3309 			/* already deleted */
3310 			goto finish;
3311 		}
3312 		gen = odi->gen;
3313 
3314 		ret = can_rmdir(sctx, rmdir_ino, gen, sctx->cur_ino);
3315 		if (ret < 0)
3316 			goto out;
3317 		if (!ret)
3318 			goto finish;
3319 
3320 		name = fs_path_alloc();
3321 		if (!name) {
3322 			ret = -ENOMEM;
3323 			goto out;
3324 		}
3325 		ret = get_cur_path(sctx, rmdir_ino, gen, name);
3326 		if (ret < 0)
3327 			goto out;
3328 		ret = send_rmdir(sctx, name);
3329 		if (ret < 0)
3330 			goto out;
3331 	}
3332 
3333 finish:
3334 	ret = send_utimes(sctx, pm->ino, pm->gen);
3335 	if (ret < 0)
3336 		goto out;
3337 
3338 	/*
3339 	 * After rename/move, need to update the utimes of both new parent(s)
3340 	 * and old parent(s).
3341 	 */
3342 	list_for_each_entry(cur, &pm->update_refs, list) {
3343 		/*
3344 		 * The parent inode might have been deleted in the send snapshot
3345 		 */
3346 		ret = get_inode_info(sctx->send_root, cur->dir, NULL,
3347 				     NULL, NULL, NULL, NULL, NULL);
3348 		if (ret == -ENOENT) {
3349 			ret = 0;
3350 			continue;
3351 		}
3352 		if (ret < 0)
3353 			goto out;
3354 
3355 		ret = send_utimes(sctx, cur->dir, cur->dir_gen);
3356 		if (ret < 0)
3357 			goto out;
3358 	}
3359 
3360 out:
3361 	fs_path_free(name);
3362 	fs_path_free(from_path);
3363 	fs_path_free(to_path);
3364 	sctx->send_progress = orig_progress;
3365 
3366 	return ret;
3367 }
3368 
free_pending_move(struct send_ctx *sctx, struct pending_dir_move *m)3369 static void free_pending_move(struct send_ctx *sctx, struct pending_dir_move *m)
3370 {
3371 	if (!list_empty(&m->list))
3372 		list_del(&m->list);
3373 	if (!RB_EMPTY_NODE(&m->node))
3374 		rb_erase(&m->node, &sctx->pending_dir_moves);
3375 	__free_recorded_refs(&m->update_refs);
3376 	kfree(m);
3377 }
3378 
tail_append_pending_moves(struct send_ctx *sctx, struct pending_dir_move *moves, struct list_head *stack)3379 static void tail_append_pending_moves(struct send_ctx *sctx,
3380 				      struct pending_dir_move *moves,
3381 				      struct list_head *stack)
3382 {
3383 	if (list_empty(&moves->list)) {
3384 		list_add_tail(&moves->list, stack);
3385 	} else {
3386 		LIST_HEAD(list);
3387 		list_splice_init(&moves->list, &list);
3388 		list_add_tail(&moves->list, stack);
3389 		list_splice_tail(&list, stack);
3390 	}
3391 	if (!RB_EMPTY_NODE(&moves->node)) {
3392 		rb_erase(&moves->node, &sctx->pending_dir_moves);
3393 		RB_CLEAR_NODE(&moves->node);
3394 	}
3395 }
3396 
apply_children_dir_moves(struct send_ctx *sctx)3397 static int apply_children_dir_moves(struct send_ctx *sctx)
3398 {
3399 	struct pending_dir_move *pm;
3400 	struct list_head stack;
3401 	u64 parent_ino = sctx->cur_ino;
3402 	int ret = 0;
3403 
3404 	pm = get_pending_dir_moves(sctx, parent_ino);
3405 	if (!pm)
3406 		return 0;
3407 
3408 	INIT_LIST_HEAD(&stack);
3409 	tail_append_pending_moves(sctx, pm, &stack);
3410 
3411 	while (!list_empty(&stack)) {
3412 		pm = list_first_entry(&stack, struct pending_dir_move, list);
3413 		parent_ino = pm->ino;
3414 		ret = apply_dir_move(sctx, pm);
3415 		free_pending_move(sctx, pm);
3416 		if (ret)
3417 			goto out;
3418 		pm = get_pending_dir_moves(sctx, parent_ino);
3419 		if (pm)
3420 			tail_append_pending_moves(sctx, pm, &stack);
3421 	}
3422 	return 0;
3423 
3424 out:
3425 	while (!list_empty(&stack)) {
3426 		pm = list_first_entry(&stack, struct pending_dir_move, list);
3427 		free_pending_move(sctx, pm);
3428 	}
3429 	return ret;
3430 }
3431 
3432 /*
3433  * We might need to delay a directory rename even when no ancestor directory
3434  * (in the send root) with a higher inode number than ours (sctx->cur_ino) was
3435  * renamed. This happens when we rename a directory to the old name (the name
3436  * in the parent root) of some other unrelated directory that got its rename
3437  * delayed due to some ancestor with higher number that got renamed.
3438  *
3439  * Example:
3440  *
3441  * Parent snapshot:
3442  * .                                       (ino 256)
3443  * |---- a/                                (ino 257)
3444  * |     |---- file                        (ino 260)
3445  * |
3446  * |---- b/                                (ino 258)
3447  * |---- c/                                (ino 259)
3448  *
3449  * Send snapshot:
3450  * .                                       (ino 256)
3451  * |---- a/                                (ino 258)
3452  * |---- x/                                (ino 259)
3453  *       |---- y/                          (ino 257)
3454  *             |----- file                 (ino 260)
3455  *
3456  * Here we can not rename 258 from 'b' to 'a' without the rename of inode 257
3457  * from 'a' to 'x/y' happening first, which in turn depends on the rename of
3458  * inode 259 from 'c' to 'x'. So the order of rename commands the send stream
3459  * must issue is:
3460  *
3461  * 1 - rename 259 from 'c' to 'x'
3462  * 2 - rename 257 from 'a' to 'x/y'
3463  * 3 - rename 258 from 'b' to 'a'
3464  *
3465  * Returns 1 if the rename of sctx->cur_ino needs to be delayed, 0 if it can
3466  * be done right away and < 0 on error.
3467  */
wait_for_dest_dir_move(struct send_ctx *sctx, struct recorded_ref *parent_ref, const bool is_orphan)3468 static int wait_for_dest_dir_move(struct send_ctx *sctx,
3469 				  struct recorded_ref *parent_ref,
3470 				  const bool is_orphan)
3471 {
3472 	struct btrfs_fs_info *fs_info = sctx->parent_root->fs_info;
3473 	struct btrfs_path *path;
3474 	struct btrfs_key key;
3475 	struct btrfs_key di_key;
3476 	struct btrfs_dir_item *di;
3477 	u64 left_gen;
3478 	u64 right_gen;
3479 	int ret = 0;
3480 	struct waiting_dir_move *wdm;
3481 
3482 	if (RB_EMPTY_ROOT(&sctx->waiting_dir_moves))
3483 		return 0;
3484 
3485 	path = alloc_path_for_send();
3486 	if (!path)
3487 		return -ENOMEM;
3488 
3489 	key.objectid = parent_ref->dir;
3490 	key.type = BTRFS_DIR_ITEM_KEY;
3491 	key.offset = btrfs_name_hash(parent_ref->name, parent_ref->name_len);
3492 
3493 	ret = btrfs_search_slot(NULL, sctx->parent_root, &key, path, 0, 0);
3494 	if (ret < 0) {
3495 		goto out;
3496 	} else if (ret > 0) {
3497 		ret = 0;
3498 		goto out;
3499 	}
3500 
3501 	di = btrfs_match_dir_item_name(fs_info, path, parent_ref->name,
3502 				       parent_ref->name_len);
3503 	if (!di) {
3504 		ret = 0;
3505 		goto out;
3506 	}
3507 	/*
3508 	 * di_key.objectid has the number of the inode that has a dentry in the
3509 	 * parent directory with the same name that sctx->cur_ino is being
3510 	 * renamed to. We need to check if that inode is in the send root as
3511 	 * well and if it is currently marked as an inode with a pending rename,
3512 	 * if it is, we need to delay the rename of sctx->cur_ino as well, so
3513 	 * that it happens after that other inode is renamed.
3514 	 */
3515 	btrfs_dir_item_key_to_cpu(path->nodes[0], di, &di_key);
3516 	if (di_key.type != BTRFS_INODE_ITEM_KEY) {
3517 		ret = 0;
3518 		goto out;
3519 	}
3520 
3521 	ret = get_inode_info(sctx->parent_root, di_key.objectid, NULL,
3522 			     &left_gen, NULL, NULL, NULL, NULL);
3523 	if (ret < 0)
3524 		goto out;
3525 	ret = get_inode_info(sctx->send_root, di_key.objectid, NULL,
3526 			     &right_gen, NULL, NULL, NULL, NULL);
3527 	if (ret < 0) {
3528 		if (ret == -ENOENT)
3529 			ret = 0;
3530 		goto out;
3531 	}
3532 
3533 	/* Different inode, no need to delay the rename of sctx->cur_ino */
3534 	if (right_gen != left_gen) {
3535 		ret = 0;
3536 		goto out;
3537 	}
3538 
3539 	wdm = get_waiting_dir_move(sctx, di_key.objectid);
3540 	if (wdm && !wdm->orphanized) {
3541 		ret = add_pending_dir_move(sctx,
3542 					   sctx->cur_ino,
3543 					   sctx->cur_inode_gen,
3544 					   di_key.objectid,
3545 					   &sctx->new_refs,
3546 					   &sctx->deleted_refs,
3547 					   is_orphan);
3548 		if (!ret)
3549 			ret = 1;
3550 	}
3551 out:
3552 	btrfs_free_path(path);
3553 	return ret;
3554 }
3555 
3556 /*
3557  * Check if inode ino2, or any of its ancestors, is inode ino1.
3558  * Return 1 if true, 0 if false and < 0 on error.
3559  */
check_ino_in_path(struct btrfs_root *root, const u64 ino1, const u64 ino1_gen, const u64 ino2, const u64 ino2_gen, struct fs_path *fs_path)3560 static int check_ino_in_path(struct btrfs_root *root,
3561 			     const u64 ino1,
3562 			     const u64 ino1_gen,
3563 			     const u64 ino2,
3564 			     const u64 ino2_gen,
3565 			     struct fs_path *fs_path)
3566 {
3567 	u64 ino = ino2;
3568 
3569 	if (ino1 == ino2)
3570 		return ino1_gen == ino2_gen;
3571 
3572 	while (ino > BTRFS_FIRST_FREE_OBJECTID) {
3573 		u64 parent;
3574 		u64 parent_gen;
3575 		int ret;
3576 
3577 		fs_path_reset(fs_path);
3578 		ret = get_first_ref(root, ino, &parent, &parent_gen, fs_path);
3579 		if (ret < 0)
3580 			return ret;
3581 		if (parent == ino1)
3582 			return parent_gen == ino1_gen;
3583 		ino = parent;
3584 	}
3585 	return 0;
3586 }
3587 
3588 /*
3589  * Check if ino ino1 is an ancestor of inode ino2 in the given root for any
3590  * possible path (in case ino2 is not a directory and has multiple hard links).
3591  * Return 1 if true, 0 if false and < 0 on error.
3592  */
is_ancestor(struct btrfs_root *root, const u64 ino1, const u64 ino1_gen, const u64 ino2, struct fs_path *fs_path)3593 static int is_ancestor(struct btrfs_root *root,
3594 		       const u64 ino1,
3595 		       const u64 ino1_gen,
3596 		       const u64 ino2,
3597 		       struct fs_path *fs_path)
3598 {
3599 	bool free_fs_path = false;
3600 	int ret = 0;
3601 	struct btrfs_path *path = NULL;
3602 	struct btrfs_key key;
3603 
3604 	if (!fs_path) {
3605 		fs_path = fs_path_alloc();
3606 		if (!fs_path)
3607 			return -ENOMEM;
3608 		free_fs_path = true;
3609 	}
3610 
3611 	path = alloc_path_for_send();
3612 	if (!path) {
3613 		ret = -ENOMEM;
3614 		goto out;
3615 	}
3616 
3617 	key.objectid = ino2;
3618 	key.type = BTRFS_INODE_REF_KEY;
3619 	key.offset = 0;
3620 
3621 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3622 	if (ret < 0)
3623 		goto out;
3624 
3625 	while (true) {
3626 		struct extent_buffer *leaf = path->nodes[0];
3627 		int slot = path->slots[0];
3628 		u32 cur_offset = 0;
3629 		u32 item_size;
3630 
3631 		if (slot >= btrfs_header_nritems(leaf)) {
3632 			ret = btrfs_next_leaf(root, path);
3633 			if (ret < 0)
3634 				goto out;
3635 			if (ret > 0)
3636 				break;
3637 			continue;
3638 		}
3639 
3640 		btrfs_item_key_to_cpu(leaf, &key, slot);
3641 		if (key.objectid != ino2)
3642 			break;
3643 		if (key.type != BTRFS_INODE_REF_KEY &&
3644 		    key.type != BTRFS_INODE_EXTREF_KEY)
3645 			break;
3646 
3647 		item_size = btrfs_item_size_nr(leaf, slot);
3648 		while (cur_offset < item_size) {
3649 			u64 parent;
3650 			u64 parent_gen;
3651 
3652 			if (key.type == BTRFS_INODE_EXTREF_KEY) {
3653 				unsigned long ptr;
3654 				struct btrfs_inode_extref *extref;
3655 
3656 				ptr = btrfs_item_ptr_offset(leaf, slot);
3657 				extref = (struct btrfs_inode_extref *)
3658 					(ptr + cur_offset);
3659 				parent = btrfs_inode_extref_parent(leaf,
3660 								   extref);
3661 				cur_offset += sizeof(*extref);
3662 				cur_offset += btrfs_inode_extref_name_len(leaf,
3663 								  extref);
3664 			} else {
3665 				parent = key.offset;
3666 				cur_offset = item_size;
3667 			}
3668 
3669 			ret = get_inode_info(root, parent, NULL, &parent_gen,
3670 					     NULL, NULL, NULL, NULL);
3671 			if (ret < 0)
3672 				goto out;
3673 			ret = check_ino_in_path(root, ino1, ino1_gen,
3674 						parent, parent_gen, fs_path);
3675 			if (ret)
3676 				goto out;
3677 		}
3678 		path->slots[0]++;
3679 	}
3680 	ret = 0;
3681  out:
3682 	btrfs_free_path(path);
3683 	if (free_fs_path)
3684 		fs_path_free(fs_path);
3685 	return ret;
3686 }
3687 
wait_for_parent_move(struct send_ctx *sctx, struct recorded_ref *parent_ref, const bool is_orphan)3688 static int wait_for_parent_move(struct send_ctx *sctx,
3689 				struct recorded_ref *parent_ref,
3690 				const bool is_orphan)
3691 {
3692 	int ret = 0;
3693 	u64 ino = parent_ref->dir;
3694 	u64 ino_gen = parent_ref->dir_gen;
3695 	u64 parent_ino_before, parent_ino_after;
3696 	struct fs_path *path_before = NULL;
3697 	struct fs_path *path_after = NULL;
3698 	int len1, len2;
3699 
3700 	path_after = fs_path_alloc();
3701 	path_before = fs_path_alloc();
3702 	if (!path_after || !path_before) {
3703 		ret = -ENOMEM;
3704 		goto out;
3705 	}
3706 
3707 	/*
3708 	 * Our current directory inode may not yet be renamed/moved because some
3709 	 * ancestor (immediate or not) has to be renamed/moved first. So find if
3710 	 * such ancestor exists and make sure our own rename/move happens after
3711 	 * that ancestor is processed to avoid path build infinite loops (done
3712 	 * at get_cur_path()).
3713 	 */
3714 	while (ino > BTRFS_FIRST_FREE_OBJECTID) {
3715 		u64 parent_ino_after_gen;
3716 
3717 		if (is_waiting_for_move(sctx, ino)) {
3718 			/*
3719 			 * If the current inode is an ancestor of ino in the
3720 			 * parent root, we need to delay the rename of the
3721 			 * current inode, otherwise don't delayed the rename
3722 			 * because we can end up with a circular dependency
3723 			 * of renames, resulting in some directories never
3724 			 * getting the respective rename operations issued in
3725 			 * the send stream or getting into infinite path build
3726 			 * loops.
3727 			 */
3728 			ret = is_ancestor(sctx->parent_root,
3729 					  sctx->cur_ino, sctx->cur_inode_gen,
3730 					  ino, path_before);
3731 			if (ret)
3732 				break;
3733 		}
3734 
3735 		fs_path_reset(path_before);
3736 		fs_path_reset(path_after);
3737 
3738 		ret = get_first_ref(sctx->send_root, ino, &parent_ino_after,
3739 				    &parent_ino_after_gen, path_after);
3740 		if (ret < 0)
3741 			goto out;
3742 		ret = get_first_ref(sctx->parent_root, ino, &parent_ino_before,
3743 				    NULL, path_before);
3744 		if (ret < 0 && ret != -ENOENT) {
3745 			goto out;
3746 		} else if (ret == -ENOENT) {
3747 			ret = 0;
3748 			break;
3749 		}
3750 
3751 		len1 = fs_path_len(path_before);
3752 		len2 = fs_path_len(path_after);
3753 		if (ino > sctx->cur_ino &&
3754 		    (parent_ino_before != parent_ino_after || len1 != len2 ||
3755 		     memcmp(path_before->start, path_after->start, len1))) {
3756 			u64 parent_ino_gen;
3757 
3758 			ret = get_inode_info(sctx->parent_root, ino, NULL,
3759 					     &parent_ino_gen, NULL, NULL, NULL,
3760 					     NULL);
3761 			if (ret < 0)
3762 				goto out;
3763 			if (ino_gen == parent_ino_gen) {
3764 				ret = 1;
3765 				break;
3766 			}
3767 		}
3768 		ino = parent_ino_after;
3769 		ino_gen = parent_ino_after_gen;
3770 	}
3771 
3772 out:
3773 	fs_path_free(path_before);
3774 	fs_path_free(path_after);
3775 
3776 	if (ret == 1) {
3777 		ret = add_pending_dir_move(sctx,
3778 					   sctx->cur_ino,
3779 					   sctx->cur_inode_gen,
3780 					   ino,
3781 					   &sctx->new_refs,
3782 					   &sctx->deleted_refs,
3783 					   is_orphan);
3784 		if (!ret)
3785 			ret = 1;
3786 	}
3787 
3788 	return ret;
3789 }
3790 
update_ref_path(struct send_ctx *sctx, struct recorded_ref *ref)3791 static int update_ref_path(struct send_ctx *sctx, struct recorded_ref *ref)
3792 {
3793 	int ret;
3794 	struct fs_path *new_path;
3795 
3796 	/*
3797 	 * Our reference's name member points to its full_path member string, so
3798 	 * we use here a new path.
3799 	 */
3800 	new_path = fs_path_alloc();
3801 	if (!new_path)
3802 		return -ENOMEM;
3803 
3804 	ret = get_cur_path(sctx, ref->dir, ref->dir_gen, new_path);
3805 	if (ret < 0) {
3806 		fs_path_free(new_path);
3807 		return ret;
3808 	}
3809 	ret = fs_path_add(new_path, ref->name, ref->name_len);
3810 	if (ret < 0) {
3811 		fs_path_free(new_path);
3812 		return ret;
3813 	}
3814 
3815 	fs_path_free(ref->full_path);
3816 	set_ref_path(ref, new_path);
3817 
3818 	return 0;
3819 }
3820 
3821 /*
3822  * When processing the new references for an inode we may orphanize an existing
3823  * directory inode because its old name conflicts with one of the new references
3824  * of the current inode. Later, when processing another new reference of our
3825  * inode, we might need to orphanize another inode, but the path we have in the
3826  * reference reflects the pre-orphanization name of the directory we previously
3827  * orphanized. For example:
3828  *
3829  * parent snapshot looks like:
3830  *
3831  * .                                     (ino 256)
3832  * |----- f1                             (ino 257)
3833  * |----- f2                             (ino 258)
3834  * |----- d1/                            (ino 259)
3835  *        |----- d2/                     (ino 260)
3836  *
3837  * send snapshot looks like:
3838  *
3839  * .                                     (ino 256)
3840  * |----- d1                             (ino 258)
3841  * |----- f2/                            (ino 259)
3842  *        |----- f2_link/                (ino 260)
3843  *        |       |----- f1              (ino 257)
3844  *        |
3845  *        |----- d2                      (ino 258)
3846  *
3847  * When processing inode 257 we compute the name for inode 259 as "d1", and we
3848  * cache it in the name cache. Later when we start processing inode 258, when
3849  * collecting all its new references we set a full path of "d1/d2" for its new
3850  * reference with name "d2". When we start processing the new references we
3851  * start by processing the new reference with name "d1", and this results in
3852  * orphanizing inode 259, since its old reference causes a conflict. Then we
3853  * move on the next new reference, with name "d2", and we find out we must
3854  * orphanize inode 260, as its old reference conflicts with ours - but for the
3855  * orphanization we use a source path corresponding to the path we stored in the
3856  * new reference, which is "d1/d2" and not "o259-6-0/d2" - this makes the
3857  * receiver fail since the path component "d1/" no longer exists, it was renamed
3858  * to "o259-6-0/" when processing the previous new reference. So in this case we
3859  * must recompute the path in the new reference and use it for the new
3860  * orphanization operation.
3861  */
refresh_ref_path(struct send_ctx *sctx, struct recorded_ref *ref)3862 static int refresh_ref_path(struct send_ctx *sctx, struct recorded_ref *ref)
3863 {
3864 	char *name;
3865 	int ret;
3866 
3867 	name = kmemdup(ref->name, ref->name_len, GFP_KERNEL);
3868 	if (!name)
3869 		return -ENOMEM;
3870 
3871 	fs_path_reset(ref->full_path);
3872 	ret = get_cur_path(sctx, ref->dir, ref->dir_gen, ref->full_path);
3873 	if (ret < 0)
3874 		goto out;
3875 
3876 	ret = fs_path_add(ref->full_path, name, ref->name_len);
3877 	if (ret < 0)
3878 		goto out;
3879 
3880 	/* Update the reference's base name pointer. */
3881 	set_ref_path(ref, ref->full_path);
3882 out:
3883 	kfree(name);
3884 	return ret;
3885 }
3886 
3887 /*
3888  * This does all the move/link/unlink/rmdir magic.
3889  */
process_recorded_refs(struct send_ctx *sctx, int *pending_move)3890 static int process_recorded_refs(struct send_ctx *sctx, int *pending_move)
3891 {
3892 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
3893 	int ret = 0;
3894 	struct recorded_ref *cur;
3895 	struct recorded_ref *cur2;
3896 	struct list_head check_dirs;
3897 	struct fs_path *valid_path = NULL;
3898 	u64 ow_inode = 0;
3899 	u64 ow_gen;
3900 	u64 ow_mode;
3901 	int did_overwrite = 0;
3902 	int is_orphan = 0;
3903 	u64 last_dir_ino_rm = 0;
3904 	bool can_rename = true;
3905 	bool orphanized_dir = false;
3906 	bool orphanized_ancestor = false;
3907 
3908 	btrfs_debug(fs_info, "process_recorded_refs %llu", sctx->cur_ino);
3909 
3910 	/*
3911 	 * This should never happen as the root dir always has the same ref
3912 	 * which is always '..'
3913 	 */
3914 	BUG_ON(sctx->cur_ino <= BTRFS_FIRST_FREE_OBJECTID);
3915 	INIT_LIST_HEAD(&check_dirs);
3916 
3917 	valid_path = fs_path_alloc();
3918 	if (!valid_path) {
3919 		ret = -ENOMEM;
3920 		goto out;
3921 	}
3922 
3923 	/*
3924 	 * First, check if the first ref of the current inode was overwritten
3925 	 * before. If yes, we know that the current inode was already orphanized
3926 	 * and thus use the orphan name. If not, we can use get_cur_path to
3927 	 * get the path of the first ref as it would like while receiving at
3928 	 * this point in time.
3929 	 * New inodes are always orphan at the beginning, so force to use the
3930 	 * orphan name in this case.
3931 	 * The first ref is stored in valid_path and will be updated if it
3932 	 * gets moved around.
3933 	 */
3934 	if (!sctx->cur_inode_new) {
3935 		ret = did_overwrite_first_ref(sctx, sctx->cur_ino,
3936 				sctx->cur_inode_gen);
3937 		if (ret < 0)
3938 			goto out;
3939 		if (ret)
3940 			did_overwrite = 1;
3941 	}
3942 	if (sctx->cur_inode_new || did_overwrite) {
3943 		ret = gen_unique_name(sctx, sctx->cur_ino,
3944 				sctx->cur_inode_gen, valid_path);
3945 		if (ret < 0)
3946 			goto out;
3947 		is_orphan = 1;
3948 	} else {
3949 		ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen,
3950 				valid_path);
3951 		if (ret < 0)
3952 			goto out;
3953 	}
3954 
3955 	/*
3956 	 * Before doing any rename and link operations, do a first pass on the
3957 	 * new references to orphanize any unprocessed inodes that may have a
3958 	 * reference that conflicts with one of the new references of the current
3959 	 * inode. This needs to happen first because a new reference may conflict
3960 	 * with the old reference of a parent directory, so we must make sure
3961 	 * that the path used for link and rename commands don't use an
3962 	 * orphanized name when an ancestor was not yet orphanized.
3963 	 *
3964 	 * Example:
3965 	 *
3966 	 * Parent snapshot:
3967 	 *
3968 	 * .                                                      (ino 256)
3969 	 * |----- testdir/                                        (ino 259)
3970 	 * |          |----- a                                    (ino 257)
3971 	 * |
3972 	 * |----- b                                               (ino 258)
3973 	 *
3974 	 * Send snapshot:
3975 	 *
3976 	 * .                                                      (ino 256)
3977 	 * |----- testdir_2/                                      (ino 259)
3978 	 * |          |----- a                                    (ino 260)
3979 	 * |
3980 	 * |----- testdir                                         (ino 257)
3981 	 * |----- b                                               (ino 257)
3982 	 * |----- b2                                              (ino 258)
3983 	 *
3984 	 * Processing the new reference for inode 257 with name "b" may happen
3985 	 * before processing the new reference with name "testdir". If so, we
3986 	 * must make sure that by the time we send a link command to create the
3987 	 * hard link "b", inode 259 was already orphanized, since the generated
3988 	 * path in "valid_path" already contains the orphanized name for 259.
3989 	 * We are processing inode 257, so only later when processing 259 we do
3990 	 * the rename operation to change its temporary (orphanized) name to
3991 	 * "testdir_2".
3992 	 */
3993 	list_for_each_entry(cur, &sctx->new_refs, list) {
3994 		ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen);
3995 		if (ret < 0)
3996 			goto out;
3997 		if (ret == inode_state_will_create)
3998 			continue;
3999 
4000 		/*
4001 		 * Check if this new ref would overwrite the first ref of another
4002 		 * unprocessed inode. If yes, orphanize the overwritten inode.
4003 		 * If we find an overwritten ref that is not the first ref,
4004 		 * simply unlink it.
4005 		 */
4006 		ret = will_overwrite_ref(sctx, cur->dir, cur->dir_gen,
4007 				cur->name, cur->name_len,
4008 				&ow_inode, &ow_gen, &ow_mode);
4009 		if (ret < 0)
4010 			goto out;
4011 		if (ret) {
4012 			ret = is_first_ref(sctx->parent_root,
4013 					   ow_inode, cur->dir, cur->name,
4014 					   cur->name_len);
4015 			if (ret < 0)
4016 				goto out;
4017 			if (ret) {
4018 				struct name_cache_entry *nce;
4019 				struct waiting_dir_move *wdm;
4020 
4021 				if (orphanized_dir) {
4022 					ret = refresh_ref_path(sctx, cur);
4023 					if (ret < 0)
4024 						goto out;
4025 				}
4026 
4027 				ret = orphanize_inode(sctx, ow_inode, ow_gen,
4028 						cur->full_path);
4029 				if (ret < 0)
4030 					goto out;
4031 				if (S_ISDIR(ow_mode))
4032 					orphanized_dir = true;
4033 
4034 				/*
4035 				 * If ow_inode has its rename operation delayed
4036 				 * make sure that its orphanized name is used in
4037 				 * the source path when performing its rename
4038 				 * operation.
4039 				 */
4040 				if (is_waiting_for_move(sctx, ow_inode)) {
4041 					wdm = get_waiting_dir_move(sctx,
4042 								   ow_inode);
4043 					ASSERT(wdm);
4044 					wdm->orphanized = true;
4045 				}
4046 
4047 				/*
4048 				 * Make sure we clear our orphanized inode's
4049 				 * name from the name cache. This is because the
4050 				 * inode ow_inode might be an ancestor of some
4051 				 * other inode that will be orphanized as well
4052 				 * later and has an inode number greater than
4053 				 * sctx->send_progress. We need to prevent
4054 				 * future name lookups from using the old name
4055 				 * and get instead the orphan name.
4056 				 */
4057 				nce = name_cache_search(sctx, ow_inode, ow_gen);
4058 				if (nce) {
4059 					name_cache_delete(sctx, nce);
4060 					kfree(nce);
4061 				}
4062 
4063 				/*
4064 				 * ow_inode might currently be an ancestor of
4065 				 * cur_ino, therefore compute valid_path (the
4066 				 * current path of cur_ino) again because it
4067 				 * might contain the pre-orphanization name of
4068 				 * ow_inode, which is no longer valid.
4069 				 */
4070 				ret = is_ancestor(sctx->parent_root,
4071 						  ow_inode, ow_gen,
4072 						  sctx->cur_ino, NULL);
4073 				if (ret > 0) {
4074 					orphanized_ancestor = true;
4075 					fs_path_reset(valid_path);
4076 					ret = get_cur_path(sctx, sctx->cur_ino,
4077 							   sctx->cur_inode_gen,
4078 							   valid_path);
4079 				}
4080 				if (ret < 0)
4081 					goto out;
4082 			} else {
4083 				/*
4084 				 * If we previously orphanized a directory that
4085 				 * collided with a new reference that we already
4086 				 * processed, recompute the current path because
4087 				 * that directory may be part of the path.
4088 				 */
4089 				if (orphanized_dir) {
4090 					ret = refresh_ref_path(sctx, cur);
4091 					if (ret < 0)
4092 						goto out;
4093 				}
4094 				ret = send_unlink(sctx, cur->full_path);
4095 				if (ret < 0)
4096 					goto out;
4097 			}
4098 		}
4099 
4100 	}
4101 
4102 	list_for_each_entry(cur, &sctx->new_refs, list) {
4103 		/*
4104 		 * We may have refs where the parent directory does not exist
4105 		 * yet. This happens if the parent directories inum is higher
4106 		 * than the current inum. To handle this case, we create the
4107 		 * parent directory out of order. But we need to check if this
4108 		 * did already happen before due to other refs in the same dir.
4109 		 */
4110 		ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen);
4111 		if (ret < 0)
4112 			goto out;
4113 		if (ret == inode_state_will_create) {
4114 			ret = 0;
4115 			/*
4116 			 * First check if any of the current inodes refs did
4117 			 * already create the dir.
4118 			 */
4119 			list_for_each_entry(cur2, &sctx->new_refs, list) {
4120 				if (cur == cur2)
4121 					break;
4122 				if (cur2->dir == cur->dir) {
4123 					ret = 1;
4124 					break;
4125 				}
4126 			}
4127 
4128 			/*
4129 			 * If that did not happen, check if a previous inode
4130 			 * did already create the dir.
4131 			 */
4132 			if (!ret)
4133 				ret = did_create_dir(sctx, cur->dir);
4134 			if (ret < 0)
4135 				goto out;
4136 			if (!ret) {
4137 				ret = send_create_inode(sctx, cur->dir);
4138 				if (ret < 0)
4139 					goto out;
4140 			}
4141 		}
4142 
4143 		if (S_ISDIR(sctx->cur_inode_mode) && sctx->parent_root) {
4144 			ret = wait_for_dest_dir_move(sctx, cur, is_orphan);
4145 			if (ret < 0)
4146 				goto out;
4147 			if (ret == 1) {
4148 				can_rename = false;
4149 				*pending_move = 1;
4150 			}
4151 		}
4152 
4153 		if (S_ISDIR(sctx->cur_inode_mode) && sctx->parent_root &&
4154 		    can_rename) {
4155 			ret = wait_for_parent_move(sctx, cur, is_orphan);
4156 			if (ret < 0)
4157 				goto out;
4158 			if (ret == 1) {
4159 				can_rename = false;
4160 				*pending_move = 1;
4161 			}
4162 		}
4163 
4164 		/*
4165 		 * link/move the ref to the new place. If we have an orphan
4166 		 * inode, move it and update valid_path. If not, link or move
4167 		 * it depending on the inode mode.
4168 		 */
4169 		if (is_orphan && can_rename) {
4170 			ret = send_rename(sctx, valid_path, cur->full_path);
4171 			if (ret < 0)
4172 				goto out;
4173 			is_orphan = 0;
4174 			ret = fs_path_copy(valid_path, cur->full_path);
4175 			if (ret < 0)
4176 				goto out;
4177 		} else if (can_rename) {
4178 			if (S_ISDIR(sctx->cur_inode_mode)) {
4179 				/*
4180 				 * Dirs can't be linked, so move it. For moved
4181 				 * dirs, we always have one new and one deleted
4182 				 * ref. The deleted ref is ignored later.
4183 				 */
4184 				ret = send_rename(sctx, valid_path,
4185 						  cur->full_path);
4186 				if (!ret)
4187 					ret = fs_path_copy(valid_path,
4188 							   cur->full_path);
4189 				if (ret < 0)
4190 					goto out;
4191 			} else {
4192 				/*
4193 				 * We might have previously orphanized an inode
4194 				 * which is an ancestor of our current inode,
4195 				 * so our reference's full path, which was
4196 				 * computed before any such orphanizations, must
4197 				 * be updated.
4198 				 */
4199 				if (orphanized_dir) {
4200 					ret = update_ref_path(sctx, cur);
4201 					if (ret < 0)
4202 						goto out;
4203 				}
4204 				ret = send_link(sctx, cur->full_path,
4205 						valid_path);
4206 				if (ret < 0)
4207 					goto out;
4208 			}
4209 		}
4210 		ret = dup_ref(cur, &check_dirs);
4211 		if (ret < 0)
4212 			goto out;
4213 	}
4214 
4215 	if (S_ISDIR(sctx->cur_inode_mode) && sctx->cur_inode_deleted) {
4216 		/*
4217 		 * Check if we can already rmdir the directory. If not,
4218 		 * orphanize it. For every dir item inside that gets deleted
4219 		 * later, we do this check again and rmdir it then if possible.
4220 		 * See the use of check_dirs for more details.
4221 		 */
4222 		ret = can_rmdir(sctx, sctx->cur_ino, sctx->cur_inode_gen,
4223 				sctx->cur_ino);
4224 		if (ret < 0)
4225 			goto out;
4226 		if (ret) {
4227 			ret = send_rmdir(sctx, valid_path);
4228 			if (ret < 0)
4229 				goto out;
4230 		} else if (!is_orphan) {
4231 			ret = orphanize_inode(sctx, sctx->cur_ino,
4232 					sctx->cur_inode_gen, valid_path);
4233 			if (ret < 0)
4234 				goto out;
4235 			is_orphan = 1;
4236 		}
4237 
4238 		list_for_each_entry(cur, &sctx->deleted_refs, list) {
4239 			ret = dup_ref(cur, &check_dirs);
4240 			if (ret < 0)
4241 				goto out;
4242 		}
4243 	} else if (S_ISDIR(sctx->cur_inode_mode) &&
4244 		   !list_empty(&sctx->deleted_refs)) {
4245 		/*
4246 		 * We have a moved dir. Add the old parent to check_dirs
4247 		 */
4248 		cur = list_entry(sctx->deleted_refs.next, struct recorded_ref,
4249 				list);
4250 		ret = dup_ref(cur, &check_dirs);
4251 		if (ret < 0)
4252 			goto out;
4253 	} else if (!S_ISDIR(sctx->cur_inode_mode)) {
4254 		/*
4255 		 * We have a non dir inode. Go through all deleted refs and
4256 		 * unlink them if they were not already overwritten by other
4257 		 * inodes.
4258 		 */
4259 		list_for_each_entry(cur, &sctx->deleted_refs, list) {
4260 			ret = did_overwrite_ref(sctx, cur->dir, cur->dir_gen,
4261 					sctx->cur_ino, sctx->cur_inode_gen,
4262 					cur->name, cur->name_len);
4263 			if (ret < 0)
4264 				goto out;
4265 			if (!ret) {
4266 				/*
4267 				 * If we orphanized any ancestor before, we need
4268 				 * to recompute the full path for deleted names,
4269 				 * since any such path was computed before we
4270 				 * processed any references and orphanized any
4271 				 * ancestor inode.
4272 				 */
4273 				if (orphanized_ancestor) {
4274 					ret = update_ref_path(sctx, cur);
4275 					if (ret < 0)
4276 						goto out;
4277 				}
4278 				ret = send_unlink(sctx, cur->full_path);
4279 				if (ret < 0)
4280 					goto out;
4281 			}
4282 			ret = dup_ref(cur, &check_dirs);
4283 			if (ret < 0)
4284 				goto out;
4285 		}
4286 		/*
4287 		 * If the inode is still orphan, unlink the orphan. This may
4288 		 * happen when a previous inode did overwrite the first ref
4289 		 * of this inode and no new refs were added for the current
4290 		 * inode. Unlinking does not mean that the inode is deleted in
4291 		 * all cases. There may still be links to this inode in other
4292 		 * places.
4293 		 */
4294 		if (is_orphan) {
4295 			ret = send_unlink(sctx, valid_path);
4296 			if (ret < 0)
4297 				goto out;
4298 		}
4299 	}
4300 
4301 	/*
4302 	 * We did collect all parent dirs where cur_inode was once located. We
4303 	 * now go through all these dirs and check if they are pending for
4304 	 * deletion and if it's finally possible to perform the rmdir now.
4305 	 * We also update the inode stats of the parent dirs here.
4306 	 */
4307 	list_for_each_entry(cur, &check_dirs, list) {
4308 		/*
4309 		 * In case we had refs into dirs that were not processed yet,
4310 		 * we don't need to do the utime and rmdir logic for these dirs.
4311 		 * The dir will be processed later.
4312 		 */
4313 		if (cur->dir > sctx->cur_ino)
4314 			continue;
4315 
4316 		ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen);
4317 		if (ret < 0)
4318 			goto out;
4319 
4320 		if (ret == inode_state_did_create ||
4321 		    ret == inode_state_no_change) {
4322 			/* TODO delayed utimes */
4323 			ret = send_utimes(sctx, cur->dir, cur->dir_gen);
4324 			if (ret < 0)
4325 				goto out;
4326 		} else if (ret == inode_state_did_delete &&
4327 			   cur->dir != last_dir_ino_rm) {
4328 			ret = can_rmdir(sctx, cur->dir, cur->dir_gen,
4329 					sctx->cur_ino);
4330 			if (ret < 0)
4331 				goto out;
4332 			if (ret) {
4333 				ret = get_cur_path(sctx, cur->dir,
4334 						   cur->dir_gen, valid_path);
4335 				if (ret < 0)
4336 					goto out;
4337 				ret = send_rmdir(sctx, valid_path);
4338 				if (ret < 0)
4339 					goto out;
4340 				last_dir_ino_rm = cur->dir;
4341 			}
4342 		}
4343 	}
4344 
4345 	ret = 0;
4346 
4347 out:
4348 	__free_recorded_refs(&check_dirs);
4349 	free_recorded_refs(sctx);
4350 	fs_path_free(valid_path);
4351 	return ret;
4352 }
4353 
record_ref(struct btrfs_root *root, u64 dir, struct fs_path *name, void *ctx, struct list_head *refs)4354 static int record_ref(struct btrfs_root *root, u64 dir, struct fs_path *name,
4355 		      void *ctx, struct list_head *refs)
4356 {
4357 	int ret = 0;
4358 	struct send_ctx *sctx = ctx;
4359 	struct fs_path *p;
4360 	u64 gen;
4361 
4362 	p = fs_path_alloc();
4363 	if (!p)
4364 		return -ENOMEM;
4365 
4366 	ret = get_inode_info(root, dir, NULL, &gen, NULL, NULL,
4367 			NULL, NULL);
4368 	if (ret < 0)
4369 		goto out;
4370 
4371 	ret = get_cur_path(sctx, dir, gen, p);
4372 	if (ret < 0)
4373 		goto out;
4374 	ret = fs_path_add_path(p, name);
4375 	if (ret < 0)
4376 		goto out;
4377 
4378 	ret = __record_ref(refs, dir, gen, p);
4379 
4380 out:
4381 	if (ret)
4382 		fs_path_free(p);
4383 	return ret;
4384 }
4385 
__record_new_ref(int num, u64 dir, int index, struct fs_path *name, void *ctx)4386 static int __record_new_ref(int num, u64 dir, int index,
4387 			    struct fs_path *name,
4388 			    void *ctx)
4389 {
4390 	struct send_ctx *sctx = ctx;
4391 	return record_ref(sctx->send_root, dir, name, ctx, &sctx->new_refs);
4392 }
4393 
4394 
__record_deleted_ref(int num, u64 dir, int index, struct fs_path *name, void *ctx)4395 static int __record_deleted_ref(int num, u64 dir, int index,
4396 				struct fs_path *name,
4397 				void *ctx)
4398 {
4399 	struct send_ctx *sctx = ctx;
4400 	return record_ref(sctx->parent_root, dir, name, ctx,
4401 			  &sctx->deleted_refs);
4402 }
4403 
record_new_ref(struct send_ctx *sctx)4404 static int record_new_ref(struct send_ctx *sctx)
4405 {
4406 	int ret;
4407 
4408 	ret = iterate_inode_ref(sctx->send_root, sctx->left_path,
4409 				sctx->cmp_key, 0, __record_new_ref, sctx);
4410 	if (ret < 0)
4411 		goto out;
4412 	ret = 0;
4413 
4414 out:
4415 	return ret;
4416 }
4417 
record_deleted_ref(struct send_ctx *sctx)4418 static int record_deleted_ref(struct send_ctx *sctx)
4419 {
4420 	int ret;
4421 
4422 	ret = iterate_inode_ref(sctx->parent_root, sctx->right_path,
4423 				sctx->cmp_key, 0, __record_deleted_ref, sctx);
4424 	if (ret < 0)
4425 		goto out;
4426 	ret = 0;
4427 
4428 out:
4429 	return ret;
4430 }
4431 
4432 struct find_ref_ctx {
4433 	u64 dir;
4434 	u64 dir_gen;
4435 	struct btrfs_root *root;
4436 	struct fs_path *name;
4437 	int found_idx;
4438 };
4439 
__find_iref(int num, u64 dir, int index, struct fs_path *name, void *ctx_)4440 static int __find_iref(int num, u64 dir, int index,
4441 		       struct fs_path *name,
4442 		       void *ctx_)
4443 {
4444 	struct find_ref_ctx *ctx = ctx_;
4445 	u64 dir_gen;
4446 	int ret;
4447 
4448 	if (dir == ctx->dir && fs_path_len(name) == fs_path_len(ctx->name) &&
4449 	    strncmp(name->start, ctx->name->start, fs_path_len(name)) == 0) {
4450 		/*
4451 		 * To avoid doing extra lookups we'll only do this if everything
4452 		 * else matches.
4453 		 */
4454 		ret = get_inode_info(ctx->root, dir, NULL, &dir_gen, NULL,
4455 				     NULL, NULL, NULL);
4456 		if (ret)
4457 			return ret;
4458 		if (dir_gen != ctx->dir_gen)
4459 			return 0;
4460 		ctx->found_idx = num;
4461 		return 1;
4462 	}
4463 	return 0;
4464 }
4465 
find_iref(struct btrfs_root *root, struct btrfs_path *path, struct btrfs_key *key, u64 dir, u64 dir_gen, struct fs_path *name)4466 static int find_iref(struct btrfs_root *root,
4467 		     struct btrfs_path *path,
4468 		     struct btrfs_key *key,
4469 		     u64 dir, u64 dir_gen, struct fs_path *name)
4470 {
4471 	int ret;
4472 	struct find_ref_ctx ctx;
4473 
4474 	ctx.dir = dir;
4475 	ctx.name = name;
4476 	ctx.dir_gen = dir_gen;
4477 	ctx.found_idx = -1;
4478 	ctx.root = root;
4479 
4480 	ret = iterate_inode_ref(root, path, key, 0, __find_iref, &ctx);
4481 	if (ret < 0)
4482 		return ret;
4483 
4484 	if (ctx.found_idx == -1)
4485 		return -ENOENT;
4486 
4487 	return ctx.found_idx;
4488 }
4489 
__record_changed_new_ref(int num, u64 dir, int index, struct fs_path *name, void *ctx)4490 static int __record_changed_new_ref(int num, u64 dir, int index,
4491 				    struct fs_path *name,
4492 				    void *ctx)
4493 {
4494 	u64 dir_gen;
4495 	int ret;
4496 	struct send_ctx *sctx = ctx;
4497 
4498 	ret = get_inode_info(sctx->send_root, dir, NULL, &dir_gen, NULL,
4499 			     NULL, NULL, NULL);
4500 	if (ret)
4501 		return ret;
4502 
4503 	ret = find_iref(sctx->parent_root, sctx->right_path,
4504 			sctx->cmp_key, dir, dir_gen, name);
4505 	if (ret == -ENOENT)
4506 		ret = __record_new_ref(num, dir, index, name, sctx);
4507 	else if (ret > 0)
4508 		ret = 0;
4509 
4510 	return ret;
4511 }
4512 
__record_changed_deleted_ref(int num, u64 dir, int index, struct fs_path *name, void *ctx)4513 static int __record_changed_deleted_ref(int num, u64 dir, int index,
4514 					struct fs_path *name,
4515 					void *ctx)
4516 {
4517 	u64 dir_gen;
4518 	int ret;
4519 	struct send_ctx *sctx = ctx;
4520 
4521 	ret = get_inode_info(sctx->parent_root, dir, NULL, &dir_gen, NULL,
4522 			     NULL, NULL, NULL);
4523 	if (ret)
4524 		return ret;
4525 
4526 	ret = find_iref(sctx->send_root, sctx->left_path, sctx->cmp_key,
4527 			dir, dir_gen, name);
4528 	if (ret == -ENOENT)
4529 		ret = __record_deleted_ref(num, dir, index, name, sctx);
4530 	else if (ret > 0)
4531 		ret = 0;
4532 
4533 	return ret;
4534 }
4535 
record_changed_ref(struct send_ctx *sctx)4536 static int record_changed_ref(struct send_ctx *sctx)
4537 {
4538 	int ret = 0;
4539 
4540 	ret = iterate_inode_ref(sctx->send_root, sctx->left_path,
4541 			sctx->cmp_key, 0, __record_changed_new_ref, sctx);
4542 	if (ret < 0)
4543 		goto out;
4544 	ret = iterate_inode_ref(sctx->parent_root, sctx->right_path,
4545 			sctx->cmp_key, 0, __record_changed_deleted_ref, sctx);
4546 	if (ret < 0)
4547 		goto out;
4548 	ret = 0;
4549 
4550 out:
4551 	return ret;
4552 }
4553 
4554 /*
4555  * Record and process all refs at once. Needed when an inode changes the
4556  * generation number, which means that it was deleted and recreated.
4557  */
process_all_refs(struct send_ctx *sctx, enum btrfs_compare_tree_result cmd)4558 static int process_all_refs(struct send_ctx *sctx,
4559 			    enum btrfs_compare_tree_result cmd)
4560 {
4561 	int ret;
4562 	struct btrfs_root *root;
4563 	struct btrfs_path *path;
4564 	struct btrfs_key key;
4565 	struct btrfs_key found_key;
4566 	struct extent_buffer *eb;
4567 	int slot;
4568 	iterate_inode_ref_t cb;
4569 	int pending_move = 0;
4570 
4571 	path = alloc_path_for_send();
4572 	if (!path)
4573 		return -ENOMEM;
4574 
4575 	if (cmd == BTRFS_COMPARE_TREE_NEW) {
4576 		root = sctx->send_root;
4577 		cb = __record_new_ref;
4578 	} else if (cmd == BTRFS_COMPARE_TREE_DELETED) {
4579 		root = sctx->parent_root;
4580 		cb = __record_deleted_ref;
4581 	} else {
4582 		btrfs_err(sctx->send_root->fs_info,
4583 				"Wrong command %d in process_all_refs", cmd);
4584 		ret = -EINVAL;
4585 		goto out;
4586 	}
4587 
4588 	key.objectid = sctx->cmp_key->objectid;
4589 	key.type = BTRFS_INODE_REF_KEY;
4590 	key.offset = 0;
4591 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4592 	if (ret < 0)
4593 		goto out;
4594 
4595 	while (1) {
4596 		eb = path->nodes[0];
4597 		slot = path->slots[0];
4598 		if (slot >= btrfs_header_nritems(eb)) {
4599 			ret = btrfs_next_leaf(root, path);
4600 			if (ret < 0)
4601 				goto out;
4602 			else if (ret > 0)
4603 				break;
4604 			continue;
4605 		}
4606 
4607 		btrfs_item_key_to_cpu(eb, &found_key, slot);
4608 
4609 		if (found_key.objectid != key.objectid ||
4610 		    (found_key.type != BTRFS_INODE_REF_KEY &&
4611 		     found_key.type != BTRFS_INODE_EXTREF_KEY))
4612 			break;
4613 
4614 		ret = iterate_inode_ref(root, path, &found_key, 0, cb, sctx);
4615 		if (ret < 0)
4616 			goto out;
4617 
4618 		path->slots[0]++;
4619 	}
4620 	btrfs_release_path(path);
4621 
4622 	/*
4623 	 * We don't actually care about pending_move as we are simply
4624 	 * re-creating this inode and will be rename'ing it into place once we
4625 	 * rename the parent directory.
4626 	 */
4627 	ret = process_recorded_refs(sctx, &pending_move);
4628 out:
4629 	btrfs_free_path(path);
4630 	return ret;
4631 }
4632 
send_set_xattr(struct send_ctx *sctx, struct fs_path *path, const char *name, int name_len, const char *data, int data_len)4633 static int send_set_xattr(struct send_ctx *sctx,
4634 			  struct fs_path *path,
4635 			  const char *name, int name_len,
4636 			  const char *data, int data_len)
4637 {
4638 	int ret = 0;
4639 
4640 	ret = begin_cmd(sctx, BTRFS_SEND_C_SET_XATTR);
4641 	if (ret < 0)
4642 		goto out;
4643 
4644 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
4645 	TLV_PUT_STRING(sctx, BTRFS_SEND_A_XATTR_NAME, name, name_len);
4646 	TLV_PUT(sctx, BTRFS_SEND_A_XATTR_DATA, data, data_len);
4647 
4648 	ret = send_cmd(sctx);
4649 
4650 tlv_put_failure:
4651 out:
4652 	return ret;
4653 }
4654 
send_remove_xattr(struct send_ctx *sctx, struct fs_path *path, const char *name, int name_len)4655 static int send_remove_xattr(struct send_ctx *sctx,
4656 			  struct fs_path *path,
4657 			  const char *name, int name_len)
4658 {
4659 	int ret = 0;
4660 
4661 	ret = begin_cmd(sctx, BTRFS_SEND_C_REMOVE_XATTR);
4662 	if (ret < 0)
4663 		goto out;
4664 
4665 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
4666 	TLV_PUT_STRING(sctx, BTRFS_SEND_A_XATTR_NAME, name, name_len);
4667 
4668 	ret = send_cmd(sctx);
4669 
4670 tlv_put_failure:
4671 out:
4672 	return ret;
4673 }
4674 
__process_new_xattr(int num, struct btrfs_key *di_key, const char *name, int name_len, const char *data, int data_len, u8 type, void *ctx)4675 static int __process_new_xattr(int num, struct btrfs_key *di_key,
4676 			       const char *name, int name_len,
4677 			       const char *data, int data_len,
4678 			       u8 type, void *ctx)
4679 {
4680 	int ret;
4681 	struct send_ctx *sctx = ctx;
4682 	struct fs_path *p;
4683 	struct posix_acl_xattr_header dummy_acl;
4684 
4685 	/* Capabilities are emitted by finish_inode_if_needed */
4686 	if (!strncmp(name, XATTR_NAME_CAPS, name_len))
4687 		return 0;
4688 
4689 	p = fs_path_alloc();
4690 	if (!p)
4691 		return -ENOMEM;
4692 
4693 	/*
4694 	 * This hack is needed because empty acls are stored as zero byte
4695 	 * data in xattrs. Problem with that is, that receiving these zero byte
4696 	 * acls will fail later. To fix this, we send a dummy acl list that
4697 	 * only contains the version number and no entries.
4698 	 */
4699 	if (!strncmp(name, XATTR_NAME_POSIX_ACL_ACCESS, name_len) ||
4700 	    !strncmp(name, XATTR_NAME_POSIX_ACL_DEFAULT, name_len)) {
4701 		if (data_len == 0) {
4702 			dummy_acl.a_version =
4703 					cpu_to_le32(POSIX_ACL_XATTR_VERSION);
4704 			data = (char *)&dummy_acl;
4705 			data_len = sizeof(dummy_acl);
4706 		}
4707 	}
4708 
4709 	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4710 	if (ret < 0)
4711 		goto out;
4712 
4713 	ret = send_set_xattr(sctx, p, name, name_len, data, data_len);
4714 
4715 out:
4716 	fs_path_free(p);
4717 	return ret;
4718 }
4719 
__process_deleted_xattr(int num, struct btrfs_key *di_key, const char *name, int name_len, const char *data, int data_len, u8 type, void *ctx)4720 static int __process_deleted_xattr(int num, struct btrfs_key *di_key,
4721 				   const char *name, int name_len,
4722 				   const char *data, int data_len,
4723 				   u8 type, void *ctx)
4724 {
4725 	int ret;
4726 	struct send_ctx *sctx = ctx;
4727 	struct fs_path *p;
4728 
4729 	p = fs_path_alloc();
4730 	if (!p)
4731 		return -ENOMEM;
4732 
4733 	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4734 	if (ret < 0)
4735 		goto out;
4736 
4737 	ret = send_remove_xattr(sctx, p, name, name_len);
4738 
4739 out:
4740 	fs_path_free(p);
4741 	return ret;
4742 }
4743 
process_new_xattr(struct send_ctx *sctx)4744 static int process_new_xattr(struct send_ctx *sctx)
4745 {
4746 	int ret = 0;
4747 
4748 	ret = iterate_dir_item(sctx->send_root, sctx->left_path,
4749 			       __process_new_xattr, sctx);
4750 
4751 	return ret;
4752 }
4753 
process_deleted_xattr(struct send_ctx *sctx)4754 static int process_deleted_xattr(struct send_ctx *sctx)
4755 {
4756 	return iterate_dir_item(sctx->parent_root, sctx->right_path,
4757 				__process_deleted_xattr, sctx);
4758 }
4759 
4760 struct find_xattr_ctx {
4761 	const char *name;
4762 	int name_len;
4763 	int found_idx;
4764 	char *found_data;
4765 	int found_data_len;
4766 };
4767 
__find_xattr(int num, struct btrfs_key *di_key, const char *name, int name_len, const char *data, int data_len, u8 type, void *vctx)4768 static int __find_xattr(int num, struct btrfs_key *di_key,
4769 			const char *name, int name_len,
4770 			const char *data, int data_len,
4771 			u8 type, void *vctx)
4772 {
4773 	struct find_xattr_ctx *ctx = vctx;
4774 
4775 	if (name_len == ctx->name_len &&
4776 	    strncmp(name, ctx->name, name_len) == 0) {
4777 		ctx->found_idx = num;
4778 		ctx->found_data_len = data_len;
4779 		ctx->found_data = kmemdup(data, data_len, GFP_KERNEL);
4780 		if (!ctx->found_data)
4781 			return -ENOMEM;
4782 		return 1;
4783 	}
4784 	return 0;
4785 }
4786 
find_xattr(struct btrfs_root *root, struct btrfs_path *path, struct btrfs_key *key, const char *name, int name_len, char **data, int *data_len)4787 static int find_xattr(struct btrfs_root *root,
4788 		      struct btrfs_path *path,
4789 		      struct btrfs_key *key,
4790 		      const char *name, int name_len,
4791 		      char **data, int *data_len)
4792 {
4793 	int ret;
4794 	struct find_xattr_ctx ctx;
4795 
4796 	ctx.name = name;
4797 	ctx.name_len = name_len;
4798 	ctx.found_idx = -1;
4799 	ctx.found_data = NULL;
4800 	ctx.found_data_len = 0;
4801 
4802 	ret = iterate_dir_item(root, path, __find_xattr, &ctx);
4803 	if (ret < 0)
4804 		return ret;
4805 
4806 	if (ctx.found_idx == -1)
4807 		return -ENOENT;
4808 	if (data) {
4809 		*data = ctx.found_data;
4810 		*data_len = ctx.found_data_len;
4811 	} else {
4812 		kfree(ctx.found_data);
4813 	}
4814 	return ctx.found_idx;
4815 }
4816 
4817 
__process_changed_new_xattr(int num, struct btrfs_key *di_key, const char *name, int name_len, const char *data, int data_len, u8 type, void *ctx)4818 static int __process_changed_new_xattr(int num, struct btrfs_key *di_key,
4819 				       const char *name, int name_len,
4820 				       const char *data, int data_len,
4821 				       u8 type, void *ctx)
4822 {
4823 	int ret;
4824 	struct send_ctx *sctx = ctx;
4825 	char *found_data = NULL;
4826 	int found_data_len  = 0;
4827 
4828 	ret = find_xattr(sctx->parent_root, sctx->right_path,
4829 			 sctx->cmp_key, name, name_len, &found_data,
4830 			 &found_data_len);
4831 	if (ret == -ENOENT) {
4832 		ret = __process_new_xattr(num, di_key, name, name_len, data,
4833 				data_len, type, ctx);
4834 	} else if (ret >= 0) {
4835 		if (data_len != found_data_len ||
4836 		    memcmp(data, found_data, data_len)) {
4837 			ret = __process_new_xattr(num, di_key, name, name_len,
4838 					data, data_len, type, ctx);
4839 		} else {
4840 			ret = 0;
4841 		}
4842 	}
4843 
4844 	kfree(found_data);
4845 	return ret;
4846 }
4847 
__process_changed_deleted_xattr(int num, struct btrfs_key *di_key, const char *name, int name_len, const char *data, int data_len, u8 type, void *ctx)4848 static int __process_changed_deleted_xattr(int num, struct btrfs_key *di_key,
4849 					   const char *name, int name_len,
4850 					   const char *data, int data_len,
4851 					   u8 type, void *ctx)
4852 {
4853 	int ret;
4854 	struct send_ctx *sctx = ctx;
4855 
4856 	ret = find_xattr(sctx->send_root, sctx->left_path, sctx->cmp_key,
4857 			 name, name_len, NULL, NULL);
4858 	if (ret == -ENOENT)
4859 		ret = __process_deleted_xattr(num, di_key, name, name_len, data,
4860 				data_len, type, ctx);
4861 	else if (ret >= 0)
4862 		ret = 0;
4863 
4864 	return ret;
4865 }
4866 
process_changed_xattr(struct send_ctx *sctx)4867 static int process_changed_xattr(struct send_ctx *sctx)
4868 {
4869 	int ret = 0;
4870 
4871 	ret = iterate_dir_item(sctx->send_root, sctx->left_path,
4872 			__process_changed_new_xattr, sctx);
4873 	if (ret < 0)
4874 		goto out;
4875 	ret = iterate_dir_item(sctx->parent_root, sctx->right_path,
4876 			__process_changed_deleted_xattr, sctx);
4877 
4878 out:
4879 	return ret;
4880 }
4881 
process_all_new_xattrs(struct send_ctx *sctx)4882 static int process_all_new_xattrs(struct send_ctx *sctx)
4883 {
4884 	int ret;
4885 	struct btrfs_root *root;
4886 	struct btrfs_path *path;
4887 	struct btrfs_key key;
4888 	struct btrfs_key found_key;
4889 	struct extent_buffer *eb;
4890 	int slot;
4891 
4892 	path = alloc_path_for_send();
4893 	if (!path)
4894 		return -ENOMEM;
4895 
4896 	root = sctx->send_root;
4897 
4898 	key.objectid = sctx->cmp_key->objectid;
4899 	key.type = BTRFS_XATTR_ITEM_KEY;
4900 	key.offset = 0;
4901 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4902 	if (ret < 0)
4903 		goto out;
4904 
4905 	while (1) {
4906 		eb = path->nodes[0];
4907 		slot = path->slots[0];
4908 		if (slot >= btrfs_header_nritems(eb)) {
4909 			ret = btrfs_next_leaf(root, path);
4910 			if (ret < 0) {
4911 				goto out;
4912 			} else if (ret > 0) {
4913 				ret = 0;
4914 				break;
4915 			}
4916 			continue;
4917 		}
4918 
4919 		btrfs_item_key_to_cpu(eb, &found_key, slot);
4920 		if (found_key.objectid != key.objectid ||
4921 		    found_key.type != key.type) {
4922 			ret = 0;
4923 			goto out;
4924 		}
4925 
4926 		ret = iterate_dir_item(root, path, __process_new_xattr, sctx);
4927 		if (ret < 0)
4928 			goto out;
4929 
4930 		path->slots[0]++;
4931 	}
4932 
4933 out:
4934 	btrfs_free_path(path);
4935 	return ret;
4936 }
4937 
max_send_read_size(const struct send_ctx *sctx)4938 static inline u64 max_send_read_size(const struct send_ctx *sctx)
4939 {
4940 	return sctx->send_max_size - SZ_16K;
4941 }
4942 
put_data_header(struct send_ctx *sctx, u32 len)4943 static int put_data_header(struct send_ctx *sctx, u32 len)
4944 {
4945 	struct btrfs_tlv_header *hdr;
4946 
4947 	if (sctx->send_max_size - sctx->send_size < sizeof(*hdr) + len)
4948 		return -EOVERFLOW;
4949 	hdr = (struct btrfs_tlv_header *)(sctx->send_buf + sctx->send_size);
4950 	put_unaligned_le16(BTRFS_SEND_A_DATA, &hdr->tlv_type);
4951 	put_unaligned_le16(len, &hdr->tlv_len);
4952 	sctx->send_size += sizeof(*hdr);
4953 	return 0;
4954 }
4955 
put_file_data(struct send_ctx *sctx, u64 offset, u32 len)4956 static int put_file_data(struct send_ctx *sctx, u64 offset, u32 len)
4957 {
4958 	struct btrfs_root *root = sctx->send_root;
4959 	struct btrfs_fs_info *fs_info = root->fs_info;
4960 	struct inode *inode;
4961 	struct page *page;
4962 	char *addr;
4963 	pgoff_t index = offset >> PAGE_SHIFT;
4964 	pgoff_t last_index;
4965 	unsigned pg_offset = offset_in_page(offset);
4966 	int ret;
4967 
4968 	ret = put_data_header(sctx, len);
4969 	if (ret)
4970 		return ret;
4971 
4972 	inode = btrfs_iget(fs_info->sb, sctx->cur_ino, root);
4973 	if (IS_ERR(inode))
4974 		return PTR_ERR(inode);
4975 
4976 	last_index = (offset + len - 1) >> PAGE_SHIFT;
4977 
4978 	/* initial readahead */
4979 	memset(&sctx->ra, 0, sizeof(struct file_ra_state));
4980 	file_ra_state_init(&sctx->ra, inode->i_mapping);
4981 
4982 	while (index <= last_index) {
4983 		unsigned cur_len = min_t(unsigned, len,
4984 					 PAGE_SIZE - pg_offset);
4985 
4986 		page = find_lock_page(inode->i_mapping, index);
4987 		if (!page) {
4988 			page_cache_sync_readahead(inode->i_mapping, &sctx->ra,
4989 				NULL, index, last_index + 1 - index);
4990 
4991 			page = find_or_create_page(inode->i_mapping, index,
4992 					GFP_KERNEL);
4993 			if (!page) {
4994 				ret = -ENOMEM;
4995 				break;
4996 			}
4997 		}
4998 
4999 		if (PageReadahead(page)) {
5000 			page_cache_async_readahead(inode->i_mapping, &sctx->ra,
5001 				NULL, page, index, last_index + 1 - index);
5002 		}
5003 
5004 		if (!PageUptodate(page)) {
5005 			btrfs_readpage(NULL, page);
5006 			lock_page(page);
5007 			if (!PageUptodate(page)) {
5008 				unlock_page(page);
5009 				btrfs_err(fs_info,
5010 			"send: IO error at offset %llu for inode %llu root %llu",
5011 					page_offset(page), sctx->cur_ino,
5012 					sctx->send_root->root_key.objectid);
5013 				put_page(page);
5014 				ret = -EIO;
5015 				break;
5016 			}
5017 		}
5018 
5019 		addr = kmap(page);
5020 		memcpy(sctx->send_buf + sctx->send_size, addr + pg_offset,
5021 		       cur_len);
5022 		kunmap(page);
5023 		unlock_page(page);
5024 		put_page(page);
5025 		index++;
5026 		pg_offset = 0;
5027 		len -= cur_len;
5028 		sctx->send_size += cur_len;
5029 	}
5030 	iput(inode);
5031 	return ret;
5032 }
5033 
5034 /*
5035  * Read some bytes from the current inode/file and send a write command to
5036  * user space.
5037  */
send_write(struct send_ctx *sctx, u64 offset, u32 len)5038 static int send_write(struct send_ctx *sctx, u64 offset, u32 len)
5039 {
5040 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
5041 	int ret = 0;
5042 	struct fs_path *p;
5043 
5044 	p = fs_path_alloc();
5045 	if (!p)
5046 		return -ENOMEM;
5047 
5048 	btrfs_debug(fs_info, "send_write offset=%llu, len=%d", offset, len);
5049 
5050 	ret = begin_cmd(sctx, BTRFS_SEND_C_WRITE);
5051 	if (ret < 0)
5052 		goto out;
5053 
5054 	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
5055 	if (ret < 0)
5056 		goto out;
5057 
5058 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
5059 	TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
5060 	ret = put_file_data(sctx, offset, len);
5061 	if (ret < 0)
5062 		goto out;
5063 
5064 	ret = send_cmd(sctx);
5065 
5066 tlv_put_failure:
5067 out:
5068 	fs_path_free(p);
5069 	return ret;
5070 }
5071 
5072 /*
5073  * Send a clone command to user space.
5074  */
send_clone(struct send_ctx *sctx, u64 offset, u32 len, struct clone_root *clone_root)5075 static int send_clone(struct send_ctx *sctx,
5076 		      u64 offset, u32 len,
5077 		      struct clone_root *clone_root)
5078 {
5079 	int ret = 0;
5080 	struct fs_path *p;
5081 	u64 gen;
5082 
5083 	btrfs_debug(sctx->send_root->fs_info,
5084 		    "send_clone offset=%llu, len=%d, clone_root=%llu, clone_inode=%llu, clone_offset=%llu",
5085 		    offset, len, clone_root->root->root_key.objectid,
5086 		    clone_root->ino, clone_root->offset);
5087 
5088 	p = fs_path_alloc();
5089 	if (!p)
5090 		return -ENOMEM;
5091 
5092 	ret = begin_cmd(sctx, BTRFS_SEND_C_CLONE);
5093 	if (ret < 0)
5094 		goto out;
5095 
5096 	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
5097 	if (ret < 0)
5098 		goto out;
5099 
5100 	TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
5101 	TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_LEN, len);
5102 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
5103 
5104 	if (clone_root->root == sctx->send_root) {
5105 		ret = get_inode_info(sctx->send_root, clone_root->ino, NULL,
5106 				&gen, NULL, NULL, NULL, NULL);
5107 		if (ret < 0)
5108 			goto out;
5109 		ret = get_cur_path(sctx, clone_root->ino, gen, p);
5110 	} else {
5111 		ret = get_inode_path(clone_root->root, clone_root->ino, p);
5112 	}
5113 	if (ret < 0)
5114 		goto out;
5115 
5116 	/*
5117 	 * If the parent we're using has a received_uuid set then use that as
5118 	 * our clone source as that is what we will look for when doing a
5119 	 * receive.
5120 	 *
5121 	 * This covers the case that we create a snapshot off of a received
5122 	 * subvolume and then use that as the parent and try to receive on a
5123 	 * different host.
5124 	 */
5125 	if (!btrfs_is_empty_uuid(clone_root->root->root_item.received_uuid))
5126 		TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
5127 			     clone_root->root->root_item.received_uuid);
5128 	else
5129 		TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
5130 			     clone_root->root->root_item.uuid);
5131 	TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_CTRANSID,
5132 		    le64_to_cpu(clone_root->root->root_item.ctransid));
5133 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_CLONE_PATH, p);
5134 	TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_OFFSET,
5135 			clone_root->offset);
5136 
5137 	ret = send_cmd(sctx);
5138 
5139 tlv_put_failure:
5140 out:
5141 	fs_path_free(p);
5142 	return ret;
5143 }
5144 
5145 /*
5146  * Send an update extent command to user space.
5147  */
send_update_extent(struct send_ctx *sctx, u64 offset, u32 len)5148 static int send_update_extent(struct send_ctx *sctx,
5149 			      u64 offset, u32 len)
5150 {
5151 	int ret = 0;
5152 	struct fs_path *p;
5153 
5154 	p = fs_path_alloc();
5155 	if (!p)
5156 		return -ENOMEM;
5157 
5158 	ret = begin_cmd(sctx, BTRFS_SEND_C_UPDATE_EXTENT);
5159 	if (ret < 0)
5160 		goto out;
5161 
5162 	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
5163 	if (ret < 0)
5164 		goto out;
5165 
5166 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
5167 	TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
5168 	TLV_PUT_U64(sctx, BTRFS_SEND_A_SIZE, len);
5169 
5170 	ret = send_cmd(sctx);
5171 
5172 tlv_put_failure:
5173 out:
5174 	fs_path_free(p);
5175 	return ret;
5176 }
5177 
send_hole(struct send_ctx *sctx, u64 end)5178 static int send_hole(struct send_ctx *sctx, u64 end)
5179 {
5180 	struct fs_path *p = NULL;
5181 	u64 read_size = max_send_read_size(sctx);
5182 	u64 offset = sctx->cur_inode_last_extent;
5183 	int ret = 0;
5184 
5185 	/*
5186 	 * A hole that starts at EOF or beyond it. Since we do not yet support
5187 	 * fallocate (for extent preallocation and hole punching), sending a
5188 	 * write of zeroes starting at EOF or beyond would later require issuing
5189 	 * a truncate operation which would undo the write and achieve nothing.
5190 	 */
5191 	if (offset >= sctx->cur_inode_size)
5192 		return 0;
5193 
5194 	/*
5195 	 * Don't go beyond the inode's i_size due to prealloc extents that start
5196 	 * after the i_size.
5197 	 */
5198 	end = min_t(u64, end, sctx->cur_inode_size);
5199 
5200 	if (sctx->flags & BTRFS_SEND_FLAG_NO_FILE_DATA)
5201 		return send_update_extent(sctx, offset, end - offset);
5202 
5203 	p = fs_path_alloc();
5204 	if (!p)
5205 		return -ENOMEM;
5206 	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
5207 	if (ret < 0)
5208 		goto tlv_put_failure;
5209 	while (offset < end) {
5210 		u64 len = min(end - offset, read_size);
5211 
5212 		ret = begin_cmd(sctx, BTRFS_SEND_C_WRITE);
5213 		if (ret < 0)
5214 			break;
5215 		TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
5216 		TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
5217 		ret = put_data_header(sctx, len);
5218 		if (ret < 0)
5219 			break;
5220 		memset(sctx->send_buf + sctx->send_size, 0, len);
5221 		sctx->send_size += len;
5222 		ret = send_cmd(sctx);
5223 		if (ret < 0)
5224 			break;
5225 		offset += len;
5226 	}
5227 	sctx->cur_inode_next_write_offset = offset;
5228 tlv_put_failure:
5229 	fs_path_free(p);
5230 	return ret;
5231 }
5232 
send_extent_data(struct send_ctx *sctx, const u64 offset, const u64 len)5233 static int send_extent_data(struct send_ctx *sctx,
5234 			    const u64 offset,
5235 			    const u64 len)
5236 {
5237 	u64 read_size = max_send_read_size(sctx);
5238 	u64 sent = 0;
5239 
5240 	if (sctx->flags & BTRFS_SEND_FLAG_NO_FILE_DATA)
5241 		return send_update_extent(sctx, offset, len);
5242 
5243 	while (sent < len) {
5244 		u64 size = min(len - sent, read_size);
5245 		int ret;
5246 
5247 		ret = send_write(sctx, offset + sent, size);
5248 		if (ret < 0)
5249 			return ret;
5250 		sent += size;
5251 	}
5252 	return 0;
5253 }
5254 
5255 /*
5256  * Search for a capability xattr related to sctx->cur_ino. If the capability is
5257  * found, call send_set_xattr function to emit it.
5258  *
5259  * Return 0 if there isn't a capability, or when the capability was emitted
5260  * successfully, or < 0 if an error occurred.
5261  */
send_capabilities(struct send_ctx *sctx)5262 static int send_capabilities(struct send_ctx *sctx)
5263 {
5264 	struct fs_path *fspath = NULL;
5265 	struct btrfs_path *path;
5266 	struct btrfs_dir_item *di;
5267 	struct extent_buffer *leaf;
5268 	unsigned long data_ptr;
5269 	char *buf = NULL;
5270 	int buf_len;
5271 	int ret = 0;
5272 
5273 	path = alloc_path_for_send();
5274 	if (!path)
5275 		return -ENOMEM;
5276 
5277 	di = btrfs_lookup_xattr(NULL, sctx->send_root, path, sctx->cur_ino,
5278 				XATTR_NAME_CAPS, strlen(XATTR_NAME_CAPS), 0);
5279 	if (!di) {
5280 		/* There is no xattr for this inode */
5281 		goto out;
5282 	} else if (IS_ERR(di)) {
5283 		ret = PTR_ERR(di);
5284 		goto out;
5285 	}
5286 
5287 	leaf = path->nodes[0];
5288 	buf_len = btrfs_dir_data_len(leaf, di);
5289 
5290 	fspath = fs_path_alloc();
5291 	buf = kmalloc(buf_len, GFP_KERNEL);
5292 	if (!fspath || !buf) {
5293 		ret = -ENOMEM;
5294 		goto out;
5295 	}
5296 
5297 	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, fspath);
5298 	if (ret < 0)
5299 		goto out;
5300 
5301 	data_ptr = (unsigned long)(di + 1) + btrfs_dir_name_len(leaf, di);
5302 	read_extent_buffer(leaf, buf, data_ptr, buf_len);
5303 
5304 	ret = send_set_xattr(sctx, fspath, XATTR_NAME_CAPS,
5305 			strlen(XATTR_NAME_CAPS), buf, buf_len);
5306 out:
5307 	kfree(buf);
5308 	fs_path_free(fspath);
5309 	btrfs_free_path(path);
5310 	return ret;
5311 }
5312 
clone_range(struct send_ctx *sctx, struct clone_root *clone_root, const u64 disk_byte, u64 data_offset, u64 offset, u64 len)5313 static int clone_range(struct send_ctx *sctx,
5314 		       struct clone_root *clone_root,
5315 		       const u64 disk_byte,
5316 		       u64 data_offset,
5317 		       u64 offset,
5318 		       u64 len)
5319 {
5320 	struct btrfs_path *path;
5321 	struct btrfs_key key;
5322 	int ret;
5323 	u64 clone_src_i_size = 0;
5324 
5325 	/*
5326 	 * Prevent cloning from a zero offset with a length matching the sector
5327 	 * size because in some scenarios this will make the receiver fail.
5328 	 *
5329 	 * For example, if in the source filesystem the extent at offset 0
5330 	 * has a length of sectorsize and it was written using direct IO, then
5331 	 * it can never be an inline extent (even if compression is enabled).
5332 	 * Then this extent can be cloned in the original filesystem to a non
5333 	 * zero file offset, but it may not be possible to clone in the
5334 	 * destination filesystem because it can be inlined due to compression
5335 	 * on the destination filesystem (as the receiver's write operations are
5336 	 * always done using buffered IO). The same happens when the original
5337 	 * filesystem does not have compression enabled but the destination
5338 	 * filesystem has.
5339 	 */
5340 	if (clone_root->offset == 0 &&
5341 	    len == sctx->send_root->fs_info->sectorsize)
5342 		return send_extent_data(sctx, offset, len);
5343 
5344 	path = alloc_path_for_send();
5345 	if (!path)
5346 		return -ENOMEM;
5347 
5348 	/*
5349 	 * There are inodes that have extents that lie behind its i_size. Don't
5350 	 * accept clones from these extents.
5351 	 */
5352 	ret = __get_inode_info(clone_root->root, path, clone_root->ino,
5353 			       &clone_src_i_size, NULL, NULL, NULL, NULL, NULL);
5354 	btrfs_release_path(path);
5355 	if (ret < 0)
5356 		goto out;
5357 
5358 	/*
5359 	 * We can't send a clone operation for the entire range if we find
5360 	 * extent items in the respective range in the source file that
5361 	 * refer to different extents or if we find holes.
5362 	 * So check for that and do a mix of clone and regular write/copy
5363 	 * operations if needed.
5364 	 *
5365 	 * Example:
5366 	 *
5367 	 * mkfs.btrfs -f /dev/sda
5368 	 * mount /dev/sda /mnt
5369 	 * xfs_io -f -c "pwrite -S 0xaa 0K 100K" /mnt/foo
5370 	 * cp --reflink=always /mnt/foo /mnt/bar
5371 	 * xfs_io -c "pwrite -S 0xbb 50K 50K" /mnt/foo
5372 	 * btrfs subvolume snapshot -r /mnt /mnt/snap
5373 	 *
5374 	 * If when we send the snapshot and we are processing file bar (which
5375 	 * has a higher inode number than foo) we blindly send a clone operation
5376 	 * for the [0, 100K[ range from foo to bar, the receiver ends up getting
5377 	 * a file bar that matches the content of file foo - iow, doesn't match
5378 	 * the content from bar in the original filesystem.
5379 	 */
5380 	key.objectid = clone_root->ino;
5381 	key.type = BTRFS_EXTENT_DATA_KEY;
5382 	key.offset = clone_root->offset;
5383 	ret = btrfs_search_slot(NULL, clone_root->root, &key, path, 0, 0);
5384 	if (ret < 0)
5385 		goto out;
5386 	if (ret > 0 && path->slots[0] > 0) {
5387 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0] - 1);
5388 		if (key.objectid == clone_root->ino &&
5389 		    key.type == BTRFS_EXTENT_DATA_KEY)
5390 			path->slots[0]--;
5391 	}
5392 
5393 	while (true) {
5394 		struct extent_buffer *leaf = path->nodes[0];
5395 		int slot = path->slots[0];
5396 		struct btrfs_file_extent_item *ei;
5397 		u8 type;
5398 		u64 ext_len;
5399 		u64 clone_len;
5400 		u64 clone_data_offset;
5401 		bool crossed_src_i_size = false;
5402 
5403 		if (slot >= btrfs_header_nritems(leaf)) {
5404 			ret = btrfs_next_leaf(clone_root->root, path);
5405 			if (ret < 0)
5406 				goto out;
5407 			else if (ret > 0)
5408 				break;
5409 			continue;
5410 		}
5411 
5412 		btrfs_item_key_to_cpu(leaf, &key, slot);
5413 
5414 		/*
5415 		 * We might have an implicit trailing hole (NO_HOLES feature
5416 		 * enabled). We deal with it after leaving this loop.
5417 		 */
5418 		if (key.objectid != clone_root->ino ||
5419 		    key.type != BTRFS_EXTENT_DATA_KEY)
5420 			break;
5421 
5422 		ei = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
5423 		type = btrfs_file_extent_type(leaf, ei);
5424 		if (type == BTRFS_FILE_EXTENT_INLINE) {
5425 			ext_len = btrfs_file_extent_ram_bytes(leaf, ei);
5426 			ext_len = PAGE_ALIGN(ext_len);
5427 		} else {
5428 			ext_len = btrfs_file_extent_num_bytes(leaf, ei);
5429 		}
5430 
5431 		if (key.offset + ext_len <= clone_root->offset)
5432 			goto next;
5433 
5434 		if (key.offset > clone_root->offset) {
5435 			/* Implicit hole, NO_HOLES feature enabled. */
5436 			u64 hole_len = key.offset - clone_root->offset;
5437 
5438 			if (hole_len > len)
5439 				hole_len = len;
5440 			ret = send_extent_data(sctx, offset, hole_len);
5441 			if (ret < 0)
5442 				goto out;
5443 
5444 			len -= hole_len;
5445 			if (len == 0)
5446 				break;
5447 			offset += hole_len;
5448 			clone_root->offset += hole_len;
5449 			data_offset += hole_len;
5450 		}
5451 
5452 		if (key.offset >= clone_root->offset + len)
5453 			break;
5454 
5455 		if (key.offset >= clone_src_i_size)
5456 			break;
5457 
5458 		if (key.offset + ext_len > clone_src_i_size) {
5459 			ext_len = clone_src_i_size - key.offset;
5460 			crossed_src_i_size = true;
5461 		}
5462 
5463 		clone_data_offset = btrfs_file_extent_offset(leaf, ei);
5464 		if (btrfs_file_extent_disk_bytenr(leaf, ei) == disk_byte) {
5465 			clone_root->offset = key.offset;
5466 			if (clone_data_offset < data_offset &&
5467 				clone_data_offset + ext_len > data_offset) {
5468 				u64 extent_offset;
5469 
5470 				extent_offset = data_offset - clone_data_offset;
5471 				ext_len -= extent_offset;
5472 				clone_data_offset += extent_offset;
5473 				clone_root->offset += extent_offset;
5474 			}
5475 		}
5476 
5477 		clone_len = min_t(u64, ext_len, len);
5478 
5479 		if (btrfs_file_extent_disk_bytenr(leaf, ei) == disk_byte &&
5480 		    clone_data_offset == data_offset) {
5481 			const u64 src_end = clone_root->offset + clone_len;
5482 			const u64 sectorsize = SZ_64K;
5483 
5484 			/*
5485 			 * We can't clone the last block, when its size is not
5486 			 * sector size aligned, into the middle of a file. If we
5487 			 * do so, the receiver will get a failure (-EINVAL) when
5488 			 * trying to clone or will silently corrupt the data in
5489 			 * the destination file if it's on a kernel without the
5490 			 * fix introduced by commit ac765f83f1397646
5491 			 * ("Btrfs: fix data corruption due to cloning of eof
5492 			 * block).
5493 			 *
5494 			 * So issue a clone of the aligned down range plus a
5495 			 * regular write for the eof block, if we hit that case.
5496 			 *
5497 			 * Also, we use the maximum possible sector size, 64K,
5498 			 * because we don't know what's the sector size of the
5499 			 * filesystem that receives the stream, so we have to
5500 			 * assume the largest possible sector size.
5501 			 */
5502 			if (src_end == clone_src_i_size &&
5503 			    !IS_ALIGNED(src_end, sectorsize) &&
5504 			    offset + clone_len < sctx->cur_inode_size) {
5505 				u64 slen;
5506 
5507 				slen = ALIGN_DOWN(src_end - clone_root->offset,
5508 						  sectorsize);
5509 				if (slen > 0) {
5510 					ret = send_clone(sctx, offset, slen,
5511 							 clone_root);
5512 					if (ret < 0)
5513 						goto out;
5514 				}
5515 				ret = send_extent_data(sctx, offset + slen,
5516 						       clone_len - slen);
5517 			} else {
5518 				ret = send_clone(sctx, offset, clone_len,
5519 						 clone_root);
5520 			}
5521 		} else if (crossed_src_i_size && clone_len < len) {
5522 			/*
5523 			 * If we are at i_size of the clone source inode and we
5524 			 * can not clone from it, terminate the loop. This is
5525 			 * to avoid sending two write operations, one with a
5526 			 * length matching clone_len and the final one after
5527 			 * this loop with a length of len - clone_len.
5528 			 *
5529 			 * When using encoded writes (BTRFS_SEND_FLAG_COMPRESSED
5530 			 * was passed to the send ioctl), this helps avoid
5531 			 * sending an encoded write for an offset that is not
5532 			 * sector size aligned, in case the i_size of the source
5533 			 * inode is not sector size aligned. That will make the
5534 			 * receiver fallback to decompression of the data and
5535 			 * writing it using regular buffered IO, therefore while
5536 			 * not incorrect, it's not optimal due decompression and
5537 			 * possible re-compression at the receiver.
5538 			 */
5539 			break;
5540 		} else {
5541 			ret = send_extent_data(sctx, offset, clone_len);
5542 		}
5543 
5544 		if (ret < 0)
5545 			goto out;
5546 
5547 		len -= clone_len;
5548 		if (len == 0)
5549 			break;
5550 		offset += clone_len;
5551 		clone_root->offset += clone_len;
5552 
5553 		/*
5554 		 * If we are cloning from the file we are currently processing,
5555 		 * and using the send root as the clone root, we must stop once
5556 		 * the current clone offset reaches the current eof of the file
5557 		 * at the receiver, otherwise we would issue an invalid clone
5558 		 * operation (source range going beyond eof) and cause the
5559 		 * receiver to fail. So if we reach the current eof, bail out
5560 		 * and fallback to a regular write.
5561 		 */
5562 		if (clone_root->root == sctx->send_root &&
5563 		    clone_root->ino == sctx->cur_ino &&
5564 		    clone_root->offset >= sctx->cur_inode_next_write_offset)
5565 			break;
5566 
5567 		data_offset += clone_len;
5568 next:
5569 		path->slots[0]++;
5570 	}
5571 
5572 	if (len > 0)
5573 		ret = send_extent_data(sctx, offset, len);
5574 	else
5575 		ret = 0;
5576 out:
5577 	btrfs_free_path(path);
5578 	return ret;
5579 }
5580 
send_write_or_clone(struct send_ctx *sctx, struct btrfs_path *path, struct btrfs_key *key, struct clone_root *clone_root)5581 static int send_write_or_clone(struct send_ctx *sctx,
5582 			       struct btrfs_path *path,
5583 			       struct btrfs_key *key,
5584 			       struct clone_root *clone_root)
5585 {
5586 	int ret = 0;
5587 	u64 offset = key->offset;
5588 	u64 end;
5589 	u64 bs = sctx->send_root->fs_info->sb->s_blocksize;
5590 
5591 	end = min_t(u64, btrfs_file_extent_end(path), sctx->cur_inode_size);
5592 	if (offset >= end)
5593 		return 0;
5594 
5595 	if (clone_root && IS_ALIGNED(end, bs)) {
5596 		struct btrfs_file_extent_item *ei;
5597 		u64 disk_byte;
5598 		u64 data_offset;
5599 
5600 		ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
5601 				    struct btrfs_file_extent_item);
5602 		disk_byte = btrfs_file_extent_disk_bytenr(path->nodes[0], ei);
5603 		data_offset = btrfs_file_extent_offset(path->nodes[0], ei);
5604 		ret = clone_range(sctx, clone_root, disk_byte, data_offset,
5605 				  offset, end - offset);
5606 	} else {
5607 		ret = send_extent_data(sctx, offset, end - offset);
5608 	}
5609 	sctx->cur_inode_next_write_offset = end;
5610 	return ret;
5611 }
5612 
is_extent_unchanged(struct send_ctx *sctx, struct btrfs_path *left_path, struct btrfs_key *ekey)5613 static int is_extent_unchanged(struct send_ctx *sctx,
5614 			       struct btrfs_path *left_path,
5615 			       struct btrfs_key *ekey)
5616 {
5617 	int ret = 0;
5618 	struct btrfs_key key;
5619 	struct btrfs_path *path = NULL;
5620 	struct extent_buffer *eb;
5621 	int slot;
5622 	struct btrfs_key found_key;
5623 	struct btrfs_file_extent_item *ei;
5624 	u64 left_disknr;
5625 	u64 right_disknr;
5626 	u64 left_offset;
5627 	u64 right_offset;
5628 	u64 left_offset_fixed;
5629 	u64 left_len;
5630 	u64 right_len;
5631 	u64 left_gen;
5632 	u64 right_gen;
5633 	u8 left_type;
5634 	u8 right_type;
5635 
5636 	path = alloc_path_for_send();
5637 	if (!path)
5638 		return -ENOMEM;
5639 
5640 	eb = left_path->nodes[0];
5641 	slot = left_path->slots[0];
5642 	ei = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
5643 	left_type = btrfs_file_extent_type(eb, ei);
5644 
5645 	if (left_type != BTRFS_FILE_EXTENT_REG) {
5646 		ret = 0;
5647 		goto out;
5648 	}
5649 	left_disknr = btrfs_file_extent_disk_bytenr(eb, ei);
5650 	left_len = btrfs_file_extent_num_bytes(eb, ei);
5651 	left_offset = btrfs_file_extent_offset(eb, ei);
5652 	left_gen = btrfs_file_extent_generation(eb, ei);
5653 
5654 	/*
5655 	 * Following comments will refer to these graphics. L is the left
5656 	 * extents which we are checking at the moment. 1-8 are the right
5657 	 * extents that we iterate.
5658 	 *
5659 	 *       |-----L-----|
5660 	 * |-1-|-2a-|-3-|-4-|-5-|-6-|
5661 	 *
5662 	 *       |-----L-----|
5663 	 * |--1--|-2b-|...(same as above)
5664 	 *
5665 	 * Alternative situation. Happens on files where extents got split.
5666 	 *       |-----L-----|
5667 	 * |-----------7-----------|-6-|
5668 	 *
5669 	 * Alternative situation. Happens on files which got larger.
5670 	 *       |-----L-----|
5671 	 * |-8-|
5672 	 * Nothing follows after 8.
5673 	 */
5674 
5675 	key.objectid = ekey->objectid;
5676 	key.type = BTRFS_EXTENT_DATA_KEY;
5677 	key.offset = ekey->offset;
5678 	ret = btrfs_search_slot_for_read(sctx->parent_root, &key, path, 0, 0);
5679 	if (ret < 0)
5680 		goto out;
5681 	if (ret) {
5682 		ret = 0;
5683 		goto out;
5684 	}
5685 
5686 	/*
5687 	 * Handle special case where the right side has no extents at all.
5688 	 */
5689 	eb = path->nodes[0];
5690 	slot = path->slots[0];
5691 	btrfs_item_key_to_cpu(eb, &found_key, slot);
5692 	if (found_key.objectid != key.objectid ||
5693 	    found_key.type != key.type) {
5694 		/* If we're a hole then just pretend nothing changed */
5695 		ret = (left_disknr) ? 0 : 1;
5696 		goto out;
5697 	}
5698 
5699 	/*
5700 	 * We're now on 2a, 2b or 7.
5701 	 */
5702 	key = found_key;
5703 	while (key.offset < ekey->offset + left_len) {
5704 		ei = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
5705 		right_type = btrfs_file_extent_type(eb, ei);
5706 		if (right_type != BTRFS_FILE_EXTENT_REG &&
5707 		    right_type != BTRFS_FILE_EXTENT_INLINE) {
5708 			ret = 0;
5709 			goto out;
5710 		}
5711 
5712 		if (right_type == BTRFS_FILE_EXTENT_INLINE) {
5713 			right_len = btrfs_file_extent_ram_bytes(eb, ei);
5714 			right_len = PAGE_ALIGN(right_len);
5715 		} else {
5716 			right_len = btrfs_file_extent_num_bytes(eb, ei);
5717 		}
5718 
5719 		/*
5720 		 * Are we at extent 8? If yes, we know the extent is changed.
5721 		 * This may only happen on the first iteration.
5722 		 */
5723 		if (found_key.offset + right_len <= ekey->offset) {
5724 			/* If we're a hole just pretend nothing changed */
5725 			ret = (left_disknr) ? 0 : 1;
5726 			goto out;
5727 		}
5728 
5729 		/*
5730 		 * We just wanted to see if when we have an inline extent, what
5731 		 * follows it is a regular extent (wanted to check the above
5732 		 * condition for inline extents too). This should normally not
5733 		 * happen but it's possible for example when we have an inline
5734 		 * compressed extent representing data with a size matching
5735 		 * the page size (currently the same as sector size).
5736 		 */
5737 		if (right_type == BTRFS_FILE_EXTENT_INLINE) {
5738 			ret = 0;
5739 			goto out;
5740 		}
5741 
5742 		right_disknr = btrfs_file_extent_disk_bytenr(eb, ei);
5743 		right_offset = btrfs_file_extent_offset(eb, ei);
5744 		right_gen = btrfs_file_extent_generation(eb, ei);
5745 
5746 		left_offset_fixed = left_offset;
5747 		if (key.offset < ekey->offset) {
5748 			/* Fix the right offset for 2a and 7. */
5749 			right_offset += ekey->offset - key.offset;
5750 		} else {
5751 			/* Fix the left offset for all behind 2a and 2b */
5752 			left_offset_fixed += key.offset - ekey->offset;
5753 		}
5754 
5755 		/*
5756 		 * Check if we have the same extent.
5757 		 */
5758 		if (left_disknr != right_disknr ||
5759 		    left_offset_fixed != right_offset ||
5760 		    left_gen != right_gen) {
5761 			ret = 0;
5762 			goto out;
5763 		}
5764 
5765 		/*
5766 		 * Go to the next extent.
5767 		 */
5768 		ret = btrfs_next_item(sctx->parent_root, path);
5769 		if (ret < 0)
5770 			goto out;
5771 		if (!ret) {
5772 			eb = path->nodes[0];
5773 			slot = path->slots[0];
5774 			btrfs_item_key_to_cpu(eb, &found_key, slot);
5775 		}
5776 		if (ret || found_key.objectid != key.objectid ||
5777 		    found_key.type != key.type) {
5778 			key.offset += right_len;
5779 			break;
5780 		}
5781 		if (found_key.offset != key.offset + right_len) {
5782 			ret = 0;
5783 			goto out;
5784 		}
5785 		key = found_key;
5786 	}
5787 
5788 	/*
5789 	 * We're now behind the left extent (treat as unchanged) or at the end
5790 	 * of the right side (treat as changed).
5791 	 */
5792 	if (key.offset >= ekey->offset + left_len)
5793 		ret = 1;
5794 	else
5795 		ret = 0;
5796 
5797 
5798 out:
5799 	btrfs_free_path(path);
5800 	return ret;
5801 }
5802 
get_last_extent(struct send_ctx *sctx, u64 offset)5803 static int get_last_extent(struct send_ctx *sctx, u64 offset)
5804 {
5805 	struct btrfs_path *path;
5806 	struct btrfs_root *root = sctx->send_root;
5807 	struct btrfs_key key;
5808 	int ret;
5809 
5810 	path = alloc_path_for_send();
5811 	if (!path)
5812 		return -ENOMEM;
5813 
5814 	sctx->cur_inode_last_extent = 0;
5815 
5816 	key.objectid = sctx->cur_ino;
5817 	key.type = BTRFS_EXTENT_DATA_KEY;
5818 	key.offset = offset;
5819 	ret = btrfs_search_slot_for_read(root, &key, path, 0, 1);
5820 	if (ret < 0)
5821 		goto out;
5822 	ret = 0;
5823 	btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
5824 	if (key.objectid != sctx->cur_ino || key.type != BTRFS_EXTENT_DATA_KEY)
5825 		goto out;
5826 
5827 	sctx->cur_inode_last_extent = btrfs_file_extent_end(path);
5828 out:
5829 	btrfs_free_path(path);
5830 	return ret;
5831 }
5832 
range_is_hole_in_parent(struct send_ctx *sctx, const u64 start, const u64 end)5833 static int range_is_hole_in_parent(struct send_ctx *sctx,
5834 				   const u64 start,
5835 				   const u64 end)
5836 {
5837 	struct btrfs_path *path;
5838 	struct btrfs_key key;
5839 	struct btrfs_root *root = sctx->parent_root;
5840 	u64 search_start = start;
5841 	int ret;
5842 
5843 	path = alloc_path_for_send();
5844 	if (!path)
5845 		return -ENOMEM;
5846 
5847 	key.objectid = sctx->cur_ino;
5848 	key.type = BTRFS_EXTENT_DATA_KEY;
5849 	key.offset = search_start;
5850 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5851 	if (ret < 0)
5852 		goto out;
5853 	if (ret > 0 && path->slots[0] > 0)
5854 		path->slots[0]--;
5855 
5856 	while (search_start < end) {
5857 		struct extent_buffer *leaf = path->nodes[0];
5858 		int slot = path->slots[0];
5859 		struct btrfs_file_extent_item *fi;
5860 		u64 extent_end;
5861 
5862 		if (slot >= btrfs_header_nritems(leaf)) {
5863 			ret = btrfs_next_leaf(root, path);
5864 			if (ret < 0)
5865 				goto out;
5866 			else if (ret > 0)
5867 				break;
5868 			continue;
5869 		}
5870 
5871 		btrfs_item_key_to_cpu(leaf, &key, slot);
5872 		if (key.objectid < sctx->cur_ino ||
5873 		    key.type < BTRFS_EXTENT_DATA_KEY)
5874 			goto next;
5875 		if (key.objectid > sctx->cur_ino ||
5876 		    key.type > BTRFS_EXTENT_DATA_KEY ||
5877 		    key.offset >= end)
5878 			break;
5879 
5880 		fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
5881 		extent_end = btrfs_file_extent_end(path);
5882 		if (extent_end <= start)
5883 			goto next;
5884 		if (btrfs_file_extent_disk_bytenr(leaf, fi) == 0) {
5885 			search_start = extent_end;
5886 			goto next;
5887 		}
5888 		ret = 0;
5889 		goto out;
5890 next:
5891 		path->slots[0]++;
5892 	}
5893 	ret = 1;
5894 out:
5895 	btrfs_free_path(path);
5896 	return ret;
5897 }
5898 
maybe_send_hole(struct send_ctx *sctx, struct btrfs_path *path, struct btrfs_key *key)5899 static int maybe_send_hole(struct send_ctx *sctx, struct btrfs_path *path,
5900 			   struct btrfs_key *key)
5901 {
5902 	int ret = 0;
5903 
5904 	if (sctx->cur_ino != key->objectid || !need_send_hole(sctx))
5905 		return 0;
5906 
5907 	if (sctx->cur_inode_last_extent == (u64)-1) {
5908 		ret = get_last_extent(sctx, key->offset - 1);
5909 		if (ret)
5910 			return ret;
5911 	}
5912 
5913 	if (path->slots[0] == 0 &&
5914 	    sctx->cur_inode_last_extent < key->offset) {
5915 		/*
5916 		 * We might have skipped entire leafs that contained only
5917 		 * file extent items for our current inode. These leafs have
5918 		 * a generation number smaller (older) than the one in the
5919 		 * current leaf and the leaf our last extent came from, and
5920 		 * are located between these 2 leafs.
5921 		 */
5922 		ret = get_last_extent(sctx, key->offset - 1);
5923 		if (ret)
5924 			return ret;
5925 	}
5926 
5927 	if (sctx->cur_inode_last_extent < key->offset) {
5928 		ret = range_is_hole_in_parent(sctx,
5929 					      sctx->cur_inode_last_extent,
5930 					      key->offset);
5931 		if (ret < 0)
5932 			return ret;
5933 		else if (ret == 0)
5934 			ret = send_hole(sctx, key->offset);
5935 		else
5936 			ret = 0;
5937 	}
5938 	sctx->cur_inode_last_extent = btrfs_file_extent_end(path);
5939 	return ret;
5940 }
5941 
process_extent(struct send_ctx *sctx, struct btrfs_path *path, struct btrfs_key *key)5942 static int process_extent(struct send_ctx *sctx,
5943 			  struct btrfs_path *path,
5944 			  struct btrfs_key *key)
5945 {
5946 	struct clone_root *found_clone = NULL;
5947 	int ret = 0;
5948 
5949 	if (S_ISLNK(sctx->cur_inode_mode))
5950 		return 0;
5951 
5952 	if (sctx->parent_root && !sctx->cur_inode_new) {
5953 		ret = is_extent_unchanged(sctx, path, key);
5954 		if (ret < 0)
5955 			goto out;
5956 		if (ret) {
5957 			ret = 0;
5958 			goto out_hole;
5959 		}
5960 	} else {
5961 		struct btrfs_file_extent_item *ei;
5962 		u8 type;
5963 
5964 		ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
5965 				    struct btrfs_file_extent_item);
5966 		type = btrfs_file_extent_type(path->nodes[0], ei);
5967 		if (type == BTRFS_FILE_EXTENT_PREALLOC ||
5968 		    type == BTRFS_FILE_EXTENT_REG) {
5969 			/*
5970 			 * The send spec does not have a prealloc command yet,
5971 			 * so just leave a hole for prealloc'ed extents until
5972 			 * we have enough commands queued up to justify rev'ing
5973 			 * the send spec.
5974 			 */
5975 			if (type == BTRFS_FILE_EXTENT_PREALLOC) {
5976 				ret = 0;
5977 				goto out;
5978 			}
5979 
5980 			/* Have a hole, just skip it. */
5981 			if (btrfs_file_extent_disk_bytenr(path->nodes[0], ei) == 0) {
5982 				ret = 0;
5983 				goto out;
5984 			}
5985 		}
5986 	}
5987 
5988 	ret = find_extent_clone(sctx, path, key->objectid, key->offset,
5989 			sctx->cur_inode_size, &found_clone);
5990 	if (ret != -ENOENT && ret < 0)
5991 		goto out;
5992 
5993 	ret = send_write_or_clone(sctx, path, key, found_clone);
5994 	if (ret)
5995 		goto out;
5996 out_hole:
5997 	ret = maybe_send_hole(sctx, path, key);
5998 out:
5999 	return ret;
6000 }
6001 
process_all_extents(struct send_ctx *sctx)6002 static int process_all_extents(struct send_ctx *sctx)
6003 {
6004 	int ret;
6005 	struct btrfs_root *root;
6006 	struct btrfs_path *path;
6007 	struct btrfs_key key;
6008 	struct btrfs_key found_key;
6009 	struct extent_buffer *eb;
6010 	int slot;
6011 
6012 	root = sctx->send_root;
6013 	path = alloc_path_for_send();
6014 	if (!path)
6015 		return -ENOMEM;
6016 
6017 	key.objectid = sctx->cmp_key->objectid;
6018 	key.type = BTRFS_EXTENT_DATA_KEY;
6019 	key.offset = 0;
6020 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6021 	if (ret < 0)
6022 		goto out;
6023 
6024 	while (1) {
6025 		eb = path->nodes[0];
6026 		slot = path->slots[0];
6027 
6028 		if (slot >= btrfs_header_nritems(eb)) {
6029 			ret = btrfs_next_leaf(root, path);
6030 			if (ret < 0) {
6031 				goto out;
6032 			} else if (ret > 0) {
6033 				ret = 0;
6034 				break;
6035 			}
6036 			continue;
6037 		}
6038 
6039 		btrfs_item_key_to_cpu(eb, &found_key, slot);
6040 
6041 		if (found_key.objectid != key.objectid ||
6042 		    found_key.type != key.type) {
6043 			ret = 0;
6044 			goto out;
6045 		}
6046 
6047 		ret = process_extent(sctx, path, &found_key);
6048 		if (ret < 0)
6049 			goto out;
6050 
6051 		path->slots[0]++;
6052 	}
6053 
6054 out:
6055 	btrfs_free_path(path);
6056 	return ret;
6057 }
6058 
process_recorded_refs_if_needed(struct send_ctx *sctx, int at_end, int *pending_move, int *refs_processed)6059 static int process_recorded_refs_if_needed(struct send_ctx *sctx, int at_end,
6060 					   int *pending_move,
6061 					   int *refs_processed)
6062 {
6063 	int ret = 0;
6064 
6065 	if (sctx->cur_ino == 0)
6066 		goto out;
6067 	if (!at_end && sctx->cur_ino == sctx->cmp_key->objectid &&
6068 	    sctx->cmp_key->type <= BTRFS_INODE_EXTREF_KEY)
6069 		goto out;
6070 	if (list_empty(&sctx->new_refs) && list_empty(&sctx->deleted_refs))
6071 		goto out;
6072 
6073 	ret = process_recorded_refs(sctx, pending_move);
6074 	if (ret < 0)
6075 		goto out;
6076 
6077 	*refs_processed = 1;
6078 out:
6079 	return ret;
6080 }
6081 
finish_inode_if_needed(struct send_ctx *sctx, int at_end)6082 static int finish_inode_if_needed(struct send_ctx *sctx, int at_end)
6083 {
6084 	int ret = 0;
6085 	u64 left_mode;
6086 	u64 left_uid;
6087 	u64 left_gid;
6088 	u64 right_mode;
6089 	u64 right_uid;
6090 	u64 right_gid;
6091 	int need_chmod = 0;
6092 	int need_chown = 0;
6093 	int need_truncate = 1;
6094 	int pending_move = 0;
6095 	int refs_processed = 0;
6096 
6097 	if (sctx->ignore_cur_inode)
6098 		return 0;
6099 
6100 	ret = process_recorded_refs_if_needed(sctx, at_end, &pending_move,
6101 					      &refs_processed);
6102 	if (ret < 0)
6103 		goto out;
6104 
6105 	/*
6106 	 * We have processed the refs and thus need to advance send_progress.
6107 	 * Now, calls to get_cur_xxx will take the updated refs of the current
6108 	 * inode into account.
6109 	 *
6110 	 * On the other hand, if our current inode is a directory and couldn't
6111 	 * be moved/renamed because its parent was renamed/moved too and it has
6112 	 * a higher inode number, we can only move/rename our current inode
6113 	 * after we moved/renamed its parent. Therefore in this case operate on
6114 	 * the old path (pre move/rename) of our current inode, and the
6115 	 * move/rename will be performed later.
6116 	 */
6117 	if (refs_processed && !pending_move)
6118 		sctx->send_progress = sctx->cur_ino + 1;
6119 
6120 	if (sctx->cur_ino == 0 || sctx->cur_inode_deleted)
6121 		goto out;
6122 	if (!at_end && sctx->cmp_key->objectid == sctx->cur_ino)
6123 		goto out;
6124 
6125 	ret = get_inode_info(sctx->send_root, sctx->cur_ino, NULL, NULL,
6126 			&left_mode, &left_uid, &left_gid, NULL);
6127 	if (ret < 0)
6128 		goto out;
6129 
6130 	if (!sctx->parent_root || sctx->cur_inode_new) {
6131 		need_chown = 1;
6132 		if (!S_ISLNK(sctx->cur_inode_mode))
6133 			need_chmod = 1;
6134 		if (sctx->cur_inode_next_write_offset == sctx->cur_inode_size)
6135 			need_truncate = 0;
6136 	} else {
6137 		u64 old_size;
6138 
6139 		ret = get_inode_info(sctx->parent_root, sctx->cur_ino,
6140 				&old_size, NULL, &right_mode, &right_uid,
6141 				&right_gid, NULL);
6142 		if (ret < 0)
6143 			goto out;
6144 
6145 		if (left_uid != right_uid || left_gid != right_gid)
6146 			need_chown = 1;
6147 		if (!S_ISLNK(sctx->cur_inode_mode) && left_mode != right_mode)
6148 			need_chmod = 1;
6149 		if ((old_size == sctx->cur_inode_size) ||
6150 		    (sctx->cur_inode_size > old_size &&
6151 		     sctx->cur_inode_next_write_offset == sctx->cur_inode_size))
6152 			need_truncate = 0;
6153 	}
6154 
6155 	if (S_ISREG(sctx->cur_inode_mode)) {
6156 		if (need_send_hole(sctx)) {
6157 			if (sctx->cur_inode_last_extent == (u64)-1 ||
6158 			    sctx->cur_inode_last_extent <
6159 			    sctx->cur_inode_size) {
6160 				ret = get_last_extent(sctx, (u64)-1);
6161 				if (ret)
6162 					goto out;
6163 			}
6164 			if (sctx->cur_inode_last_extent <
6165 			    sctx->cur_inode_size) {
6166 				ret = send_hole(sctx, sctx->cur_inode_size);
6167 				if (ret)
6168 					goto out;
6169 			}
6170 		}
6171 		if (need_truncate) {
6172 			ret = send_truncate(sctx, sctx->cur_ino,
6173 					    sctx->cur_inode_gen,
6174 					    sctx->cur_inode_size);
6175 			if (ret < 0)
6176 				goto out;
6177 		}
6178 	}
6179 
6180 	if (need_chown) {
6181 		ret = send_chown(sctx, sctx->cur_ino, sctx->cur_inode_gen,
6182 				left_uid, left_gid);
6183 		if (ret < 0)
6184 			goto out;
6185 	}
6186 	if (need_chmod) {
6187 		ret = send_chmod(sctx, sctx->cur_ino, sctx->cur_inode_gen,
6188 				left_mode);
6189 		if (ret < 0)
6190 			goto out;
6191 	}
6192 
6193 	ret = send_capabilities(sctx);
6194 	if (ret < 0)
6195 		goto out;
6196 
6197 	/*
6198 	 * If other directory inodes depended on our current directory
6199 	 * inode's move/rename, now do their move/rename operations.
6200 	 */
6201 	if (!is_waiting_for_move(sctx, sctx->cur_ino)) {
6202 		ret = apply_children_dir_moves(sctx);
6203 		if (ret)
6204 			goto out;
6205 		/*
6206 		 * Need to send that every time, no matter if it actually
6207 		 * changed between the two trees as we have done changes to
6208 		 * the inode before. If our inode is a directory and it's
6209 		 * waiting to be moved/renamed, we will send its utimes when
6210 		 * it's moved/renamed, therefore we don't need to do it here.
6211 		 */
6212 		sctx->send_progress = sctx->cur_ino + 1;
6213 		ret = send_utimes(sctx, sctx->cur_ino, sctx->cur_inode_gen);
6214 		if (ret < 0)
6215 			goto out;
6216 	}
6217 
6218 out:
6219 	return ret;
6220 }
6221 
6222 struct parent_paths_ctx {
6223 	struct list_head *refs;
6224 	struct send_ctx *sctx;
6225 };
6226 
record_parent_ref(int num, u64 dir, int index, struct fs_path *name, void *ctx)6227 static int record_parent_ref(int num, u64 dir, int index, struct fs_path *name,
6228 			     void *ctx)
6229 {
6230 	struct parent_paths_ctx *ppctx = ctx;
6231 
6232 	return record_ref(ppctx->sctx->parent_root, dir, name, ppctx->sctx,
6233 			  ppctx->refs);
6234 }
6235 
6236 /*
6237  * Issue unlink operations for all paths of the current inode found in the
6238  * parent snapshot.
6239  */
btrfs_unlink_all_paths(struct send_ctx *sctx)6240 static int btrfs_unlink_all_paths(struct send_ctx *sctx)
6241 {
6242 	LIST_HEAD(deleted_refs);
6243 	struct btrfs_path *path;
6244 	struct btrfs_key key;
6245 	struct parent_paths_ctx ctx;
6246 	int ret;
6247 
6248 	path = alloc_path_for_send();
6249 	if (!path)
6250 		return -ENOMEM;
6251 
6252 	key.objectid = sctx->cur_ino;
6253 	key.type = BTRFS_INODE_REF_KEY;
6254 	key.offset = 0;
6255 	ret = btrfs_search_slot(NULL, sctx->parent_root, &key, path, 0, 0);
6256 	if (ret < 0)
6257 		goto out;
6258 
6259 	ctx.refs = &deleted_refs;
6260 	ctx.sctx = sctx;
6261 
6262 	while (true) {
6263 		struct extent_buffer *eb = path->nodes[0];
6264 		int slot = path->slots[0];
6265 
6266 		if (slot >= btrfs_header_nritems(eb)) {
6267 			ret = btrfs_next_leaf(sctx->parent_root, path);
6268 			if (ret < 0)
6269 				goto out;
6270 			else if (ret > 0)
6271 				break;
6272 			continue;
6273 		}
6274 
6275 		btrfs_item_key_to_cpu(eb, &key, slot);
6276 		if (key.objectid != sctx->cur_ino)
6277 			break;
6278 		if (key.type != BTRFS_INODE_REF_KEY &&
6279 		    key.type != BTRFS_INODE_EXTREF_KEY)
6280 			break;
6281 
6282 		ret = iterate_inode_ref(sctx->parent_root, path, &key, 1,
6283 					record_parent_ref, &ctx);
6284 		if (ret < 0)
6285 			goto out;
6286 
6287 		path->slots[0]++;
6288 	}
6289 
6290 	while (!list_empty(&deleted_refs)) {
6291 		struct recorded_ref *ref;
6292 
6293 		ref = list_first_entry(&deleted_refs, struct recorded_ref, list);
6294 		ret = send_unlink(sctx, ref->full_path);
6295 		if (ret < 0)
6296 			goto out;
6297 		fs_path_free(ref->full_path);
6298 		list_del(&ref->list);
6299 		kfree(ref);
6300 	}
6301 	ret = 0;
6302 out:
6303 	btrfs_free_path(path);
6304 	if (ret)
6305 		__free_recorded_refs(&deleted_refs);
6306 	return ret;
6307 }
6308 
changed_inode(struct send_ctx *sctx, enum btrfs_compare_tree_result result)6309 static int changed_inode(struct send_ctx *sctx,
6310 			 enum btrfs_compare_tree_result result)
6311 {
6312 	int ret = 0;
6313 	struct btrfs_key *key = sctx->cmp_key;
6314 	struct btrfs_inode_item *left_ii = NULL;
6315 	struct btrfs_inode_item *right_ii = NULL;
6316 	u64 left_gen = 0;
6317 	u64 right_gen = 0;
6318 
6319 	sctx->cur_ino = key->objectid;
6320 	sctx->cur_inode_new_gen = 0;
6321 	sctx->cur_inode_last_extent = (u64)-1;
6322 	sctx->cur_inode_next_write_offset = 0;
6323 	sctx->ignore_cur_inode = false;
6324 
6325 	/*
6326 	 * Set send_progress to current inode. This will tell all get_cur_xxx
6327 	 * functions that the current inode's refs are not updated yet. Later,
6328 	 * when process_recorded_refs is finished, it is set to cur_ino + 1.
6329 	 */
6330 	sctx->send_progress = sctx->cur_ino;
6331 
6332 	if (result == BTRFS_COMPARE_TREE_NEW ||
6333 	    result == BTRFS_COMPARE_TREE_CHANGED) {
6334 		left_ii = btrfs_item_ptr(sctx->left_path->nodes[0],
6335 				sctx->left_path->slots[0],
6336 				struct btrfs_inode_item);
6337 		left_gen = btrfs_inode_generation(sctx->left_path->nodes[0],
6338 				left_ii);
6339 	} else {
6340 		right_ii = btrfs_item_ptr(sctx->right_path->nodes[0],
6341 				sctx->right_path->slots[0],
6342 				struct btrfs_inode_item);
6343 		right_gen = btrfs_inode_generation(sctx->right_path->nodes[0],
6344 				right_ii);
6345 	}
6346 	if (result == BTRFS_COMPARE_TREE_CHANGED) {
6347 		right_ii = btrfs_item_ptr(sctx->right_path->nodes[0],
6348 				sctx->right_path->slots[0],
6349 				struct btrfs_inode_item);
6350 
6351 		right_gen = btrfs_inode_generation(sctx->right_path->nodes[0],
6352 				right_ii);
6353 
6354 		/*
6355 		 * The cur_ino = root dir case is special here. We can't treat
6356 		 * the inode as deleted+reused because it would generate a
6357 		 * stream that tries to delete/mkdir the root dir.
6358 		 */
6359 		if (left_gen != right_gen &&
6360 		    sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID)
6361 			sctx->cur_inode_new_gen = 1;
6362 	}
6363 
6364 	/*
6365 	 * Normally we do not find inodes with a link count of zero (orphans)
6366 	 * because the most common case is to create a snapshot and use it
6367 	 * for a send operation. However other less common use cases involve
6368 	 * using a subvolume and send it after turning it to RO mode just
6369 	 * after deleting all hard links of a file while holding an open
6370 	 * file descriptor against it or turning a RO snapshot into RW mode,
6371 	 * keep an open file descriptor against a file, delete it and then
6372 	 * turn the snapshot back to RO mode before using it for a send
6373 	 * operation. So if we find such cases, ignore the inode and all its
6374 	 * items completely if it's a new inode, or if it's a changed inode
6375 	 * make sure all its previous paths (from the parent snapshot) are all
6376 	 * unlinked and all other the inode items are ignored.
6377 	 */
6378 	if (result == BTRFS_COMPARE_TREE_NEW ||
6379 	    result == BTRFS_COMPARE_TREE_CHANGED) {
6380 		u32 nlinks;
6381 
6382 		nlinks = btrfs_inode_nlink(sctx->left_path->nodes[0], left_ii);
6383 		if (nlinks == 0) {
6384 			sctx->ignore_cur_inode = true;
6385 			if (result == BTRFS_COMPARE_TREE_CHANGED)
6386 				ret = btrfs_unlink_all_paths(sctx);
6387 			goto out;
6388 		}
6389 	}
6390 
6391 	if (result == BTRFS_COMPARE_TREE_NEW) {
6392 		sctx->cur_inode_gen = left_gen;
6393 		sctx->cur_inode_new = 1;
6394 		sctx->cur_inode_deleted = 0;
6395 		sctx->cur_inode_size = btrfs_inode_size(
6396 				sctx->left_path->nodes[0], left_ii);
6397 		sctx->cur_inode_mode = btrfs_inode_mode(
6398 				sctx->left_path->nodes[0], left_ii);
6399 		sctx->cur_inode_rdev = btrfs_inode_rdev(
6400 				sctx->left_path->nodes[0], left_ii);
6401 		if (sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID)
6402 			ret = send_create_inode_if_needed(sctx);
6403 	} else if (result == BTRFS_COMPARE_TREE_DELETED) {
6404 		sctx->cur_inode_gen = right_gen;
6405 		sctx->cur_inode_new = 0;
6406 		sctx->cur_inode_deleted = 1;
6407 		sctx->cur_inode_size = btrfs_inode_size(
6408 				sctx->right_path->nodes[0], right_ii);
6409 		sctx->cur_inode_mode = btrfs_inode_mode(
6410 				sctx->right_path->nodes[0], right_ii);
6411 	} else if (result == BTRFS_COMPARE_TREE_CHANGED) {
6412 		/*
6413 		 * We need to do some special handling in case the inode was
6414 		 * reported as changed with a changed generation number. This
6415 		 * means that the original inode was deleted and new inode
6416 		 * reused the same inum. So we have to treat the old inode as
6417 		 * deleted and the new one as new.
6418 		 */
6419 		if (sctx->cur_inode_new_gen) {
6420 			/*
6421 			 * First, process the inode as if it was deleted.
6422 			 */
6423 			sctx->cur_inode_gen = right_gen;
6424 			sctx->cur_inode_new = 0;
6425 			sctx->cur_inode_deleted = 1;
6426 			sctx->cur_inode_size = btrfs_inode_size(
6427 					sctx->right_path->nodes[0], right_ii);
6428 			sctx->cur_inode_mode = btrfs_inode_mode(
6429 					sctx->right_path->nodes[0], right_ii);
6430 			ret = process_all_refs(sctx,
6431 					BTRFS_COMPARE_TREE_DELETED);
6432 			if (ret < 0)
6433 				goto out;
6434 
6435 			/*
6436 			 * Now process the inode as if it was new.
6437 			 */
6438 			sctx->cur_inode_gen = left_gen;
6439 			sctx->cur_inode_new = 1;
6440 			sctx->cur_inode_deleted = 0;
6441 			sctx->cur_inode_size = btrfs_inode_size(
6442 					sctx->left_path->nodes[0], left_ii);
6443 			sctx->cur_inode_mode = btrfs_inode_mode(
6444 					sctx->left_path->nodes[0], left_ii);
6445 			sctx->cur_inode_rdev = btrfs_inode_rdev(
6446 					sctx->left_path->nodes[0], left_ii);
6447 			ret = send_create_inode_if_needed(sctx);
6448 			if (ret < 0)
6449 				goto out;
6450 
6451 			ret = process_all_refs(sctx, BTRFS_COMPARE_TREE_NEW);
6452 			if (ret < 0)
6453 				goto out;
6454 			/*
6455 			 * Advance send_progress now as we did not get into
6456 			 * process_recorded_refs_if_needed in the new_gen case.
6457 			 */
6458 			sctx->send_progress = sctx->cur_ino + 1;
6459 
6460 			/*
6461 			 * Now process all extents and xattrs of the inode as if
6462 			 * they were all new.
6463 			 */
6464 			ret = process_all_extents(sctx);
6465 			if (ret < 0)
6466 				goto out;
6467 			ret = process_all_new_xattrs(sctx);
6468 			if (ret < 0)
6469 				goto out;
6470 		} else {
6471 			sctx->cur_inode_gen = left_gen;
6472 			sctx->cur_inode_new = 0;
6473 			sctx->cur_inode_new_gen = 0;
6474 			sctx->cur_inode_deleted = 0;
6475 			sctx->cur_inode_size = btrfs_inode_size(
6476 					sctx->left_path->nodes[0], left_ii);
6477 			sctx->cur_inode_mode = btrfs_inode_mode(
6478 					sctx->left_path->nodes[0], left_ii);
6479 		}
6480 	}
6481 
6482 out:
6483 	return ret;
6484 }
6485 
6486 /*
6487  * We have to process new refs before deleted refs, but compare_trees gives us
6488  * the new and deleted refs mixed. To fix this, we record the new/deleted refs
6489  * first and later process them in process_recorded_refs.
6490  * For the cur_inode_new_gen case, we skip recording completely because
6491  * changed_inode did already initiate processing of refs. The reason for this is
6492  * that in this case, compare_tree actually compares the refs of 2 different
6493  * inodes. To fix this, process_all_refs is used in changed_inode to handle all
6494  * refs of the right tree as deleted and all refs of the left tree as new.
6495  */
changed_ref(struct send_ctx *sctx, enum btrfs_compare_tree_result result)6496 static int changed_ref(struct send_ctx *sctx,
6497 		       enum btrfs_compare_tree_result result)
6498 {
6499 	int ret = 0;
6500 
6501 	if (sctx->cur_ino != sctx->cmp_key->objectid) {
6502 		inconsistent_snapshot_error(sctx, result, "reference");
6503 		return -EIO;
6504 	}
6505 
6506 	if (!sctx->cur_inode_new_gen &&
6507 	    sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID) {
6508 		if (result == BTRFS_COMPARE_TREE_NEW)
6509 			ret = record_new_ref(sctx);
6510 		else if (result == BTRFS_COMPARE_TREE_DELETED)
6511 			ret = record_deleted_ref(sctx);
6512 		else if (result == BTRFS_COMPARE_TREE_CHANGED)
6513 			ret = record_changed_ref(sctx);
6514 	}
6515 
6516 	return ret;
6517 }
6518 
6519 /*
6520  * Process new/deleted/changed xattrs. We skip processing in the
6521  * cur_inode_new_gen case because changed_inode did already initiate processing
6522  * of xattrs. The reason is the same as in changed_ref
6523  */
changed_xattr(struct send_ctx *sctx, enum btrfs_compare_tree_result result)6524 static int changed_xattr(struct send_ctx *sctx,
6525 			 enum btrfs_compare_tree_result result)
6526 {
6527 	int ret = 0;
6528 
6529 	if (sctx->cur_ino != sctx->cmp_key->objectid) {
6530 		inconsistent_snapshot_error(sctx, result, "xattr");
6531 		return -EIO;
6532 	}
6533 
6534 	if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) {
6535 		if (result == BTRFS_COMPARE_TREE_NEW)
6536 			ret = process_new_xattr(sctx);
6537 		else if (result == BTRFS_COMPARE_TREE_DELETED)
6538 			ret = process_deleted_xattr(sctx);
6539 		else if (result == BTRFS_COMPARE_TREE_CHANGED)
6540 			ret = process_changed_xattr(sctx);
6541 	}
6542 
6543 	return ret;
6544 }
6545 
6546 /*
6547  * Process new/deleted/changed extents. We skip processing in the
6548  * cur_inode_new_gen case because changed_inode did already initiate processing
6549  * of extents. The reason is the same as in changed_ref
6550  */
changed_extent(struct send_ctx *sctx, enum btrfs_compare_tree_result result)6551 static int changed_extent(struct send_ctx *sctx,
6552 			  enum btrfs_compare_tree_result result)
6553 {
6554 	int ret = 0;
6555 
6556 	/*
6557 	 * We have found an extent item that changed without the inode item
6558 	 * having changed. This can happen either after relocation (where the
6559 	 * disk_bytenr of an extent item is replaced at
6560 	 * relocation.c:replace_file_extents()) or after deduplication into a
6561 	 * file in both the parent and send snapshots (where an extent item can
6562 	 * get modified or replaced with a new one). Note that deduplication
6563 	 * updates the inode item, but it only changes the iversion (sequence
6564 	 * field in the inode item) of the inode, so if a file is deduplicated
6565 	 * the same amount of times in both the parent and send snapshots, its
6566 	 * iversion becames the same in both snapshots, whence the inode item is
6567 	 * the same on both snapshots.
6568 	 */
6569 	if (sctx->cur_ino != sctx->cmp_key->objectid)
6570 		return 0;
6571 
6572 	if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) {
6573 		if (result != BTRFS_COMPARE_TREE_DELETED)
6574 			ret = process_extent(sctx, sctx->left_path,
6575 					sctx->cmp_key);
6576 	}
6577 
6578 	return ret;
6579 }
6580 
dir_changed(struct send_ctx *sctx, u64 dir)6581 static int dir_changed(struct send_ctx *sctx, u64 dir)
6582 {
6583 	u64 orig_gen, new_gen;
6584 	int ret;
6585 
6586 	ret = get_inode_info(sctx->send_root, dir, NULL, &new_gen, NULL, NULL,
6587 			     NULL, NULL);
6588 	if (ret)
6589 		return ret;
6590 
6591 	ret = get_inode_info(sctx->parent_root, dir, NULL, &orig_gen, NULL,
6592 			     NULL, NULL, NULL);
6593 	if (ret)
6594 		return ret;
6595 
6596 	return (orig_gen != new_gen) ? 1 : 0;
6597 }
6598 
compare_refs(struct send_ctx *sctx, struct btrfs_path *path, struct btrfs_key *key)6599 static int compare_refs(struct send_ctx *sctx, struct btrfs_path *path,
6600 			struct btrfs_key *key)
6601 {
6602 	struct btrfs_inode_extref *extref;
6603 	struct extent_buffer *leaf;
6604 	u64 dirid = 0, last_dirid = 0;
6605 	unsigned long ptr;
6606 	u32 item_size;
6607 	u32 cur_offset = 0;
6608 	int ref_name_len;
6609 	int ret = 0;
6610 
6611 	/* Easy case, just check this one dirid */
6612 	if (key->type == BTRFS_INODE_REF_KEY) {
6613 		dirid = key->offset;
6614 
6615 		ret = dir_changed(sctx, dirid);
6616 		goto out;
6617 	}
6618 
6619 	leaf = path->nodes[0];
6620 	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
6621 	ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
6622 	while (cur_offset < item_size) {
6623 		extref = (struct btrfs_inode_extref *)(ptr +
6624 						       cur_offset);
6625 		dirid = btrfs_inode_extref_parent(leaf, extref);
6626 		ref_name_len = btrfs_inode_extref_name_len(leaf, extref);
6627 		cur_offset += ref_name_len + sizeof(*extref);
6628 		if (dirid == last_dirid)
6629 			continue;
6630 		ret = dir_changed(sctx, dirid);
6631 		if (ret)
6632 			break;
6633 		last_dirid = dirid;
6634 	}
6635 out:
6636 	return ret;
6637 }
6638 
6639 /*
6640  * Updates compare related fields in sctx and simply forwards to the actual
6641  * changed_xxx functions.
6642  */
changed_cb(struct btrfs_path *left_path, struct btrfs_path *right_path, struct btrfs_key *key, enum btrfs_compare_tree_result result, void *ctx)6643 static int changed_cb(struct btrfs_path *left_path,
6644 		      struct btrfs_path *right_path,
6645 		      struct btrfs_key *key,
6646 		      enum btrfs_compare_tree_result result,
6647 		      void *ctx)
6648 {
6649 	int ret = 0;
6650 	struct send_ctx *sctx = ctx;
6651 
6652 	if (result == BTRFS_COMPARE_TREE_SAME) {
6653 		if (key->type == BTRFS_INODE_REF_KEY ||
6654 		    key->type == BTRFS_INODE_EXTREF_KEY) {
6655 			ret = compare_refs(sctx, left_path, key);
6656 			if (!ret)
6657 				return 0;
6658 			if (ret < 0)
6659 				return ret;
6660 		} else if (key->type == BTRFS_EXTENT_DATA_KEY) {
6661 			return maybe_send_hole(sctx, left_path, key);
6662 		} else {
6663 			return 0;
6664 		}
6665 		result = BTRFS_COMPARE_TREE_CHANGED;
6666 		ret = 0;
6667 	}
6668 
6669 	sctx->left_path = left_path;
6670 	sctx->right_path = right_path;
6671 	sctx->cmp_key = key;
6672 
6673 	ret = finish_inode_if_needed(sctx, 0);
6674 	if (ret < 0)
6675 		goto out;
6676 
6677 	/* Ignore non-FS objects */
6678 	if (key->objectid == BTRFS_FREE_INO_OBJECTID ||
6679 	    key->objectid == BTRFS_FREE_SPACE_OBJECTID)
6680 		goto out;
6681 
6682 	if (key->type == BTRFS_INODE_ITEM_KEY) {
6683 		ret = changed_inode(sctx, result);
6684 	} else if (!sctx->ignore_cur_inode) {
6685 		if (key->type == BTRFS_INODE_REF_KEY ||
6686 		    key->type == BTRFS_INODE_EXTREF_KEY)
6687 			ret = changed_ref(sctx, result);
6688 		else if (key->type == BTRFS_XATTR_ITEM_KEY)
6689 			ret = changed_xattr(sctx, result);
6690 		else if (key->type == BTRFS_EXTENT_DATA_KEY)
6691 			ret = changed_extent(sctx, result);
6692 	}
6693 
6694 out:
6695 	return ret;
6696 }
6697 
full_send_tree(struct send_ctx *sctx)6698 static int full_send_tree(struct send_ctx *sctx)
6699 {
6700 	int ret;
6701 	struct btrfs_root *send_root = sctx->send_root;
6702 	struct btrfs_key key;
6703 	struct btrfs_path *path;
6704 	struct extent_buffer *eb;
6705 	int slot;
6706 
6707 	path = alloc_path_for_send();
6708 	if (!path)
6709 		return -ENOMEM;
6710 
6711 	key.objectid = BTRFS_FIRST_FREE_OBJECTID;
6712 	key.type = BTRFS_INODE_ITEM_KEY;
6713 	key.offset = 0;
6714 
6715 	ret = btrfs_search_slot_for_read(send_root, &key, path, 1, 0);
6716 	if (ret < 0)
6717 		goto out;
6718 	if (ret)
6719 		goto out_finish;
6720 
6721 	while (1) {
6722 		eb = path->nodes[0];
6723 		slot = path->slots[0];
6724 		btrfs_item_key_to_cpu(eb, &key, slot);
6725 
6726 		ret = changed_cb(path, NULL, &key,
6727 				 BTRFS_COMPARE_TREE_NEW, sctx);
6728 		if (ret < 0)
6729 			goto out;
6730 
6731 		ret = btrfs_next_item(send_root, path);
6732 		if (ret < 0)
6733 			goto out;
6734 		if (ret) {
6735 			ret  = 0;
6736 			break;
6737 		}
6738 	}
6739 
6740 out_finish:
6741 	ret = finish_inode_if_needed(sctx, 1);
6742 
6743 out:
6744 	btrfs_free_path(path);
6745 	return ret;
6746 }
6747 
tree_move_down(struct btrfs_path *path, int *level)6748 static int tree_move_down(struct btrfs_path *path, int *level)
6749 {
6750 	struct extent_buffer *eb;
6751 
6752 	BUG_ON(*level == 0);
6753 	eb = btrfs_read_node_slot(path->nodes[*level], path->slots[*level]);
6754 	if (IS_ERR(eb))
6755 		return PTR_ERR(eb);
6756 
6757 	path->nodes[*level - 1] = eb;
6758 	path->slots[*level - 1] = 0;
6759 	(*level)--;
6760 	return 0;
6761 }
6762 
tree_move_next_or_upnext(struct btrfs_path *path, int *level, int root_level)6763 static int tree_move_next_or_upnext(struct btrfs_path *path,
6764 				    int *level, int root_level)
6765 {
6766 	int ret = 0;
6767 	int nritems;
6768 	nritems = btrfs_header_nritems(path->nodes[*level]);
6769 
6770 	path->slots[*level]++;
6771 
6772 	while (path->slots[*level] >= nritems) {
6773 		if (*level == root_level)
6774 			return -1;
6775 
6776 		/* move upnext */
6777 		path->slots[*level] = 0;
6778 		free_extent_buffer(path->nodes[*level]);
6779 		path->nodes[*level] = NULL;
6780 		(*level)++;
6781 		path->slots[*level]++;
6782 
6783 		nritems = btrfs_header_nritems(path->nodes[*level]);
6784 		ret = 1;
6785 	}
6786 	return ret;
6787 }
6788 
6789 /*
6790  * Returns 1 if it had to move up and next. 0 is returned if it moved only next
6791  * or down.
6792  */
tree_advance(struct btrfs_path *path, int *level, int root_level, int allow_down, struct btrfs_key *key)6793 static int tree_advance(struct btrfs_path *path,
6794 			int *level, int root_level,
6795 			int allow_down,
6796 			struct btrfs_key *key)
6797 {
6798 	int ret;
6799 
6800 	if (*level == 0 || !allow_down) {
6801 		ret = tree_move_next_or_upnext(path, level, root_level);
6802 	} else {
6803 		ret = tree_move_down(path, level);
6804 	}
6805 	if (ret >= 0) {
6806 		if (*level == 0)
6807 			btrfs_item_key_to_cpu(path->nodes[*level], key,
6808 					path->slots[*level]);
6809 		else
6810 			btrfs_node_key_to_cpu(path->nodes[*level], key,
6811 					path->slots[*level]);
6812 	}
6813 	return ret;
6814 }
6815 
tree_compare_item(struct btrfs_path *left_path, struct btrfs_path *right_path, char *tmp_buf)6816 static int tree_compare_item(struct btrfs_path *left_path,
6817 			     struct btrfs_path *right_path,
6818 			     char *tmp_buf)
6819 {
6820 	int cmp;
6821 	int len1, len2;
6822 	unsigned long off1, off2;
6823 
6824 	len1 = btrfs_item_size_nr(left_path->nodes[0], left_path->slots[0]);
6825 	len2 = btrfs_item_size_nr(right_path->nodes[0], right_path->slots[0]);
6826 	if (len1 != len2)
6827 		return 1;
6828 
6829 	off1 = btrfs_item_ptr_offset(left_path->nodes[0], left_path->slots[0]);
6830 	off2 = btrfs_item_ptr_offset(right_path->nodes[0],
6831 				right_path->slots[0]);
6832 
6833 	read_extent_buffer(left_path->nodes[0], tmp_buf, off1, len1);
6834 
6835 	cmp = memcmp_extent_buffer(right_path->nodes[0], tmp_buf, off2, len1);
6836 	if (cmp)
6837 		return 1;
6838 	return 0;
6839 }
6840 
6841 /*
6842  * This function compares two trees and calls the provided callback for
6843  * every changed/new/deleted item it finds.
6844  * If shared tree blocks are encountered, whole subtrees are skipped, making
6845  * the compare pretty fast on snapshotted subvolumes.
6846  *
6847  * This currently works on commit roots only. As commit roots are read only,
6848  * we don't do any locking. The commit roots are protected with transactions.
6849  * Transactions are ended and rejoined when a commit is tried in between.
6850  *
6851  * This function checks for modifications done to the trees while comparing.
6852  * If it detects a change, it aborts immediately.
6853  */
btrfs_compare_trees(struct btrfs_root *left_root, struct btrfs_root *right_root, void *ctx)6854 static int btrfs_compare_trees(struct btrfs_root *left_root,
6855 			struct btrfs_root *right_root, void *ctx)
6856 {
6857 	struct btrfs_fs_info *fs_info = left_root->fs_info;
6858 	int ret;
6859 	int cmp;
6860 	struct btrfs_path *left_path = NULL;
6861 	struct btrfs_path *right_path = NULL;
6862 	struct btrfs_key left_key;
6863 	struct btrfs_key right_key;
6864 	char *tmp_buf = NULL;
6865 	int left_root_level;
6866 	int right_root_level;
6867 	int left_level;
6868 	int right_level;
6869 	int left_end_reached;
6870 	int right_end_reached;
6871 	int advance_left;
6872 	int advance_right;
6873 	u64 left_blockptr;
6874 	u64 right_blockptr;
6875 	u64 left_gen;
6876 	u64 right_gen;
6877 
6878 	left_path = btrfs_alloc_path();
6879 	if (!left_path) {
6880 		ret = -ENOMEM;
6881 		goto out;
6882 	}
6883 	right_path = btrfs_alloc_path();
6884 	if (!right_path) {
6885 		ret = -ENOMEM;
6886 		goto out;
6887 	}
6888 
6889 	tmp_buf = kvmalloc(fs_info->nodesize, GFP_KERNEL);
6890 	if (!tmp_buf) {
6891 		ret = -ENOMEM;
6892 		goto out;
6893 	}
6894 
6895 	left_path->search_commit_root = 1;
6896 	left_path->skip_locking = 1;
6897 	right_path->search_commit_root = 1;
6898 	right_path->skip_locking = 1;
6899 
6900 	/*
6901 	 * Strategy: Go to the first items of both trees. Then do
6902 	 *
6903 	 * If both trees are at level 0
6904 	 *   Compare keys of current items
6905 	 *     If left < right treat left item as new, advance left tree
6906 	 *       and repeat
6907 	 *     If left > right treat right item as deleted, advance right tree
6908 	 *       and repeat
6909 	 *     If left == right do deep compare of items, treat as changed if
6910 	 *       needed, advance both trees and repeat
6911 	 * If both trees are at the same level but not at level 0
6912 	 *   Compare keys of current nodes/leafs
6913 	 *     If left < right advance left tree and repeat
6914 	 *     If left > right advance right tree and repeat
6915 	 *     If left == right compare blockptrs of the next nodes/leafs
6916 	 *       If they match advance both trees but stay at the same level
6917 	 *         and repeat
6918 	 *       If they don't match advance both trees while allowing to go
6919 	 *         deeper and repeat
6920 	 * If tree levels are different
6921 	 *   Advance the tree that needs it and repeat
6922 	 *
6923 	 * Advancing a tree means:
6924 	 *   If we are at level 0, try to go to the next slot. If that's not
6925 	 *   possible, go one level up and repeat. Stop when we found a level
6926 	 *   where we could go to the next slot. We may at this point be on a
6927 	 *   node or a leaf.
6928 	 *
6929 	 *   If we are not at level 0 and not on shared tree blocks, go one
6930 	 *   level deeper.
6931 	 *
6932 	 *   If we are not at level 0 and on shared tree blocks, go one slot to
6933 	 *   the right if possible or go up and right.
6934 	 */
6935 
6936 	down_read(&fs_info->commit_root_sem);
6937 	left_level = btrfs_header_level(left_root->commit_root);
6938 	left_root_level = left_level;
6939 	left_path->nodes[left_level] =
6940 			btrfs_clone_extent_buffer(left_root->commit_root);
6941 	if (!left_path->nodes[left_level]) {
6942 		up_read(&fs_info->commit_root_sem);
6943 		ret = -ENOMEM;
6944 		goto out;
6945 	}
6946 
6947 	right_level = btrfs_header_level(right_root->commit_root);
6948 	right_root_level = right_level;
6949 	right_path->nodes[right_level] =
6950 			btrfs_clone_extent_buffer(right_root->commit_root);
6951 	if (!right_path->nodes[right_level]) {
6952 		up_read(&fs_info->commit_root_sem);
6953 		ret = -ENOMEM;
6954 		goto out;
6955 	}
6956 	up_read(&fs_info->commit_root_sem);
6957 
6958 	if (left_level == 0)
6959 		btrfs_item_key_to_cpu(left_path->nodes[left_level],
6960 				&left_key, left_path->slots[left_level]);
6961 	else
6962 		btrfs_node_key_to_cpu(left_path->nodes[left_level],
6963 				&left_key, left_path->slots[left_level]);
6964 	if (right_level == 0)
6965 		btrfs_item_key_to_cpu(right_path->nodes[right_level],
6966 				&right_key, right_path->slots[right_level]);
6967 	else
6968 		btrfs_node_key_to_cpu(right_path->nodes[right_level],
6969 				&right_key, right_path->slots[right_level]);
6970 
6971 	left_end_reached = right_end_reached = 0;
6972 	advance_left = advance_right = 0;
6973 
6974 	while (1) {
6975 		cond_resched();
6976 		if (advance_left && !left_end_reached) {
6977 			ret = tree_advance(left_path, &left_level,
6978 					left_root_level,
6979 					advance_left != ADVANCE_ONLY_NEXT,
6980 					&left_key);
6981 			if (ret == -1)
6982 				left_end_reached = ADVANCE;
6983 			else if (ret < 0)
6984 				goto out;
6985 			advance_left = 0;
6986 		}
6987 		if (advance_right && !right_end_reached) {
6988 			ret = tree_advance(right_path, &right_level,
6989 					right_root_level,
6990 					advance_right != ADVANCE_ONLY_NEXT,
6991 					&right_key);
6992 			if (ret == -1)
6993 				right_end_reached = ADVANCE;
6994 			else if (ret < 0)
6995 				goto out;
6996 			advance_right = 0;
6997 		}
6998 
6999 		if (left_end_reached && right_end_reached) {
7000 			ret = 0;
7001 			goto out;
7002 		} else if (left_end_reached) {
7003 			if (right_level == 0) {
7004 				ret = changed_cb(left_path, right_path,
7005 						&right_key,
7006 						BTRFS_COMPARE_TREE_DELETED,
7007 						ctx);
7008 				if (ret < 0)
7009 					goto out;
7010 			}
7011 			advance_right = ADVANCE;
7012 			continue;
7013 		} else if (right_end_reached) {
7014 			if (left_level == 0) {
7015 				ret = changed_cb(left_path, right_path,
7016 						&left_key,
7017 						BTRFS_COMPARE_TREE_NEW,
7018 						ctx);
7019 				if (ret < 0)
7020 					goto out;
7021 			}
7022 			advance_left = ADVANCE;
7023 			continue;
7024 		}
7025 
7026 		if (left_level == 0 && right_level == 0) {
7027 			cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
7028 			if (cmp < 0) {
7029 				ret = changed_cb(left_path, right_path,
7030 						&left_key,
7031 						BTRFS_COMPARE_TREE_NEW,
7032 						ctx);
7033 				if (ret < 0)
7034 					goto out;
7035 				advance_left = ADVANCE;
7036 			} else if (cmp > 0) {
7037 				ret = changed_cb(left_path, right_path,
7038 						&right_key,
7039 						BTRFS_COMPARE_TREE_DELETED,
7040 						ctx);
7041 				if (ret < 0)
7042 					goto out;
7043 				advance_right = ADVANCE;
7044 			} else {
7045 				enum btrfs_compare_tree_result result;
7046 
7047 				WARN_ON(!extent_buffer_uptodate(left_path->nodes[0]));
7048 				ret = tree_compare_item(left_path, right_path,
7049 							tmp_buf);
7050 				if (ret)
7051 					result = BTRFS_COMPARE_TREE_CHANGED;
7052 				else
7053 					result = BTRFS_COMPARE_TREE_SAME;
7054 				ret = changed_cb(left_path, right_path,
7055 						 &left_key, result, ctx);
7056 				if (ret < 0)
7057 					goto out;
7058 				advance_left = ADVANCE;
7059 				advance_right = ADVANCE;
7060 			}
7061 		} else if (left_level == right_level) {
7062 			cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
7063 			if (cmp < 0) {
7064 				advance_left = ADVANCE;
7065 			} else if (cmp > 0) {
7066 				advance_right = ADVANCE;
7067 			} else {
7068 				left_blockptr = btrfs_node_blockptr(
7069 						left_path->nodes[left_level],
7070 						left_path->slots[left_level]);
7071 				right_blockptr = btrfs_node_blockptr(
7072 						right_path->nodes[right_level],
7073 						right_path->slots[right_level]);
7074 				left_gen = btrfs_node_ptr_generation(
7075 						left_path->nodes[left_level],
7076 						left_path->slots[left_level]);
7077 				right_gen = btrfs_node_ptr_generation(
7078 						right_path->nodes[right_level],
7079 						right_path->slots[right_level]);
7080 				if (left_blockptr == right_blockptr &&
7081 				    left_gen == right_gen) {
7082 					/*
7083 					 * As we're on a shared block, don't
7084 					 * allow to go deeper.
7085 					 */
7086 					advance_left = ADVANCE_ONLY_NEXT;
7087 					advance_right = ADVANCE_ONLY_NEXT;
7088 				} else {
7089 					advance_left = ADVANCE;
7090 					advance_right = ADVANCE;
7091 				}
7092 			}
7093 		} else if (left_level < right_level) {
7094 			advance_right = ADVANCE;
7095 		} else {
7096 			advance_left = ADVANCE;
7097 		}
7098 	}
7099 
7100 out:
7101 	btrfs_free_path(left_path);
7102 	btrfs_free_path(right_path);
7103 	kvfree(tmp_buf);
7104 	return ret;
7105 }
7106 
send_subvol(struct send_ctx *sctx)7107 static int send_subvol(struct send_ctx *sctx)
7108 {
7109 	int ret;
7110 
7111 	if (!(sctx->flags & BTRFS_SEND_FLAG_OMIT_STREAM_HEADER)) {
7112 		ret = send_header(sctx);
7113 		if (ret < 0)
7114 			goto out;
7115 	}
7116 
7117 	ret = send_subvol_begin(sctx);
7118 	if (ret < 0)
7119 		goto out;
7120 
7121 	if (sctx->parent_root) {
7122 		ret = btrfs_compare_trees(sctx->send_root, sctx->parent_root, sctx);
7123 		if (ret < 0)
7124 			goto out;
7125 		ret = finish_inode_if_needed(sctx, 1);
7126 		if (ret < 0)
7127 			goto out;
7128 	} else {
7129 		ret = full_send_tree(sctx);
7130 		if (ret < 0)
7131 			goto out;
7132 	}
7133 
7134 out:
7135 	free_recorded_refs(sctx);
7136 	return ret;
7137 }
7138 
7139 /*
7140  * If orphan cleanup did remove any orphans from a root, it means the tree
7141  * was modified and therefore the commit root is not the same as the current
7142  * root anymore. This is a problem, because send uses the commit root and
7143  * therefore can see inode items that don't exist in the current root anymore,
7144  * and for example make calls to btrfs_iget, which will do tree lookups based
7145  * on the current root and not on the commit root. Those lookups will fail,
7146  * returning a -ESTALE error, and making send fail with that error. So make
7147  * sure a send does not see any orphans we have just removed, and that it will
7148  * see the same inodes regardless of whether a transaction commit happened
7149  * before it started (meaning that the commit root will be the same as the
7150  * current root) or not.
7151  */
ensure_commit_roots_uptodate(struct send_ctx *sctx)7152 static int ensure_commit_roots_uptodate(struct send_ctx *sctx)
7153 {
7154 	int i;
7155 	struct btrfs_trans_handle *trans = NULL;
7156 
7157 again:
7158 	if (sctx->parent_root &&
7159 	    sctx->parent_root->node != sctx->parent_root->commit_root)
7160 		goto commit_trans;
7161 
7162 	for (i = 0; i < sctx->clone_roots_cnt; i++)
7163 		if (sctx->clone_roots[i].root->node !=
7164 		    sctx->clone_roots[i].root->commit_root)
7165 			goto commit_trans;
7166 
7167 	if (trans)
7168 		return btrfs_end_transaction(trans);
7169 
7170 	return 0;
7171 
7172 commit_trans:
7173 	/* Use any root, all fs roots will get their commit roots updated. */
7174 	if (!trans) {
7175 		trans = btrfs_join_transaction(sctx->send_root);
7176 		if (IS_ERR(trans))
7177 			return PTR_ERR(trans);
7178 		goto again;
7179 	}
7180 
7181 	return btrfs_commit_transaction(trans);
7182 }
7183 
7184 /*
7185  * Make sure any existing dellaloc is flushed for any root used by a send
7186  * operation so that we do not miss any data and we do not race with writeback
7187  * finishing and changing a tree while send is using the tree. This could
7188  * happen if a subvolume is in RW mode, has delalloc, is turned to RO mode and
7189  * a send operation then uses the subvolume.
7190  * After flushing delalloc ensure_commit_roots_uptodate() must be called.
7191  */
flush_delalloc_roots(struct send_ctx *sctx)7192 static int flush_delalloc_roots(struct send_ctx *sctx)
7193 {
7194 	struct btrfs_root *root = sctx->parent_root;
7195 	int ret;
7196 	int i;
7197 
7198 	if (root) {
7199 		ret = btrfs_start_delalloc_snapshot(root);
7200 		if (ret)
7201 			return ret;
7202 		btrfs_wait_ordered_extents(root, U64_MAX, 0, U64_MAX);
7203 	}
7204 
7205 	for (i = 0; i < sctx->clone_roots_cnt; i++) {
7206 		root = sctx->clone_roots[i].root;
7207 		ret = btrfs_start_delalloc_snapshot(root);
7208 		if (ret)
7209 			return ret;
7210 		btrfs_wait_ordered_extents(root, U64_MAX, 0, U64_MAX);
7211 	}
7212 
7213 	return 0;
7214 }
7215 
btrfs_root_dec_send_in_progress(struct btrfs_root* root)7216 static void btrfs_root_dec_send_in_progress(struct btrfs_root* root)
7217 {
7218 	spin_lock(&root->root_item_lock);
7219 	root->send_in_progress--;
7220 	/*
7221 	 * Not much left to do, we don't know why it's unbalanced and
7222 	 * can't blindly reset it to 0.
7223 	 */
7224 	if (root->send_in_progress < 0)
7225 		btrfs_err(root->fs_info,
7226 			  "send_in_progress unbalanced %d root %llu",
7227 			  root->send_in_progress, root->root_key.objectid);
7228 	spin_unlock(&root->root_item_lock);
7229 }
7230 
dedupe_in_progress_warn(const struct btrfs_root *root)7231 static void dedupe_in_progress_warn(const struct btrfs_root *root)
7232 {
7233 	btrfs_warn_rl(root->fs_info,
7234 "cannot use root %llu for send while deduplications on it are in progress (%d in progress)",
7235 		      root->root_key.objectid, root->dedupe_in_progress);
7236 }
7237 
btrfs_ioctl_send(struct file *mnt_file, struct btrfs_ioctl_send_args *arg)7238 long btrfs_ioctl_send(struct file *mnt_file, struct btrfs_ioctl_send_args *arg)
7239 {
7240 	int ret = 0;
7241 	struct btrfs_root *send_root = BTRFS_I(file_inode(mnt_file))->root;
7242 	struct btrfs_fs_info *fs_info = send_root->fs_info;
7243 	struct btrfs_root *clone_root;
7244 	struct send_ctx *sctx = NULL;
7245 	u32 i;
7246 	u64 *clone_sources_tmp = NULL;
7247 	int clone_sources_to_rollback = 0;
7248 	size_t alloc_size;
7249 	int sort_clone_roots = 0;
7250 
7251 	if (!capable(CAP_SYS_ADMIN))
7252 		return -EPERM;
7253 
7254 	/*
7255 	 * The subvolume must remain read-only during send, protect against
7256 	 * making it RW. This also protects against deletion.
7257 	 */
7258 	spin_lock(&send_root->root_item_lock);
7259 	if (btrfs_root_readonly(send_root) && send_root->dedupe_in_progress) {
7260 		dedupe_in_progress_warn(send_root);
7261 		spin_unlock(&send_root->root_item_lock);
7262 		return -EAGAIN;
7263 	}
7264 	send_root->send_in_progress++;
7265 	spin_unlock(&send_root->root_item_lock);
7266 
7267 	/*
7268 	 * Userspace tools do the checks and warn the user if it's
7269 	 * not RO.
7270 	 */
7271 	if (!btrfs_root_readonly(send_root)) {
7272 		ret = -EPERM;
7273 		goto out;
7274 	}
7275 
7276 	/*
7277 	 * Check that we don't overflow at later allocations, we request
7278 	 * clone_sources_count + 1 items, and compare to unsigned long inside
7279 	 * access_ok. Also set an upper limit for allocation size so this can't
7280 	 * easily exhaust memory. Max number of clone sources is about 200K.
7281 	 */
7282 	if (arg->clone_sources_count > SZ_8M / sizeof(struct clone_root)) {
7283 		ret = -EINVAL;
7284 		goto out;
7285 	}
7286 
7287 	if (arg->flags & ~BTRFS_SEND_FLAG_MASK) {
7288 		ret = -EOPNOTSUPP;
7289 		goto out;
7290 	}
7291 
7292 	sctx = kzalloc(sizeof(struct send_ctx), GFP_KERNEL);
7293 	if (!sctx) {
7294 		ret = -ENOMEM;
7295 		goto out;
7296 	}
7297 
7298 	INIT_LIST_HEAD(&sctx->new_refs);
7299 	INIT_LIST_HEAD(&sctx->deleted_refs);
7300 	INIT_RADIX_TREE(&sctx->name_cache, GFP_KERNEL);
7301 	INIT_LIST_HEAD(&sctx->name_cache_list);
7302 
7303 	sctx->flags = arg->flags;
7304 
7305 	sctx->send_filp = fget(arg->send_fd);
7306 	if (!sctx->send_filp || !(sctx->send_filp->f_mode & FMODE_WRITE)) {
7307 		ret = -EBADF;
7308 		goto out;
7309 	}
7310 
7311 	sctx->send_root = send_root;
7312 	/*
7313 	 * Unlikely but possible, if the subvolume is marked for deletion but
7314 	 * is slow to remove the directory entry, send can still be started
7315 	 */
7316 	if (btrfs_root_dead(sctx->send_root)) {
7317 		ret = -EPERM;
7318 		goto out;
7319 	}
7320 
7321 	sctx->clone_roots_cnt = arg->clone_sources_count;
7322 
7323 	sctx->send_max_size = BTRFS_SEND_BUF_SIZE;
7324 	sctx->send_buf = kvmalloc(sctx->send_max_size, GFP_KERNEL);
7325 	if (!sctx->send_buf) {
7326 		ret = -ENOMEM;
7327 		goto out;
7328 	}
7329 
7330 	sctx->pending_dir_moves = RB_ROOT;
7331 	sctx->waiting_dir_moves = RB_ROOT;
7332 	sctx->orphan_dirs = RB_ROOT;
7333 
7334 	sctx->clone_roots = kvcalloc(sizeof(*sctx->clone_roots),
7335 				     arg->clone_sources_count + 1,
7336 				     GFP_KERNEL);
7337 	if (!sctx->clone_roots) {
7338 		ret = -ENOMEM;
7339 		goto out;
7340 	}
7341 
7342 	alloc_size = array_size(sizeof(*arg->clone_sources),
7343 				arg->clone_sources_count);
7344 
7345 	if (arg->clone_sources_count) {
7346 		clone_sources_tmp = kvmalloc(alloc_size, GFP_KERNEL);
7347 		if (!clone_sources_tmp) {
7348 			ret = -ENOMEM;
7349 			goto out;
7350 		}
7351 
7352 		ret = copy_from_user(clone_sources_tmp, arg->clone_sources,
7353 				alloc_size);
7354 		if (ret) {
7355 			ret = -EFAULT;
7356 			goto out;
7357 		}
7358 
7359 		for (i = 0; i < arg->clone_sources_count; i++) {
7360 			clone_root = btrfs_get_fs_root(fs_info,
7361 						clone_sources_tmp[i], true);
7362 			if (IS_ERR(clone_root)) {
7363 				ret = PTR_ERR(clone_root);
7364 				goto out;
7365 			}
7366 			spin_lock(&clone_root->root_item_lock);
7367 			if (!btrfs_root_readonly(clone_root) ||
7368 			    btrfs_root_dead(clone_root)) {
7369 				spin_unlock(&clone_root->root_item_lock);
7370 				btrfs_put_root(clone_root);
7371 				ret = -EPERM;
7372 				goto out;
7373 			}
7374 			if (clone_root->dedupe_in_progress) {
7375 				dedupe_in_progress_warn(clone_root);
7376 				spin_unlock(&clone_root->root_item_lock);
7377 				btrfs_put_root(clone_root);
7378 				ret = -EAGAIN;
7379 				goto out;
7380 			}
7381 			clone_root->send_in_progress++;
7382 			spin_unlock(&clone_root->root_item_lock);
7383 
7384 			sctx->clone_roots[i].root = clone_root;
7385 			clone_sources_to_rollback = i + 1;
7386 		}
7387 		kvfree(clone_sources_tmp);
7388 		clone_sources_tmp = NULL;
7389 	}
7390 
7391 	if (arg->parent_root) {
7392 		sctx->parent_root = btrfs_get_fs_root(fs_info, arg->parent_root,
7393 						      true);
7394 		if (IS_ERR(sctx->parent_root)) {
7395 			ret = PTR_ERR(sctx->parent_root);
7396 			goto out;
7397 		}
7398 
7399 		spin_lock(&sctx->parent_root->root_item_lock);
7400 		sctx->parent_root->send_in_progress++;
7401 		if (!btrfs_root_readonly(sctx->parent_root) ||
7402 				btrfs_root_dead(sctx->parent_root)) {
7403 			spin_unlock(&sctx->parent_root->root_item_lock);
7404 			ret = -EPERM;
7405 			goto out;
7406 		}
7407 		if (sctx->parent_root->dedupe_in_progress) {
7408 			dedupe_in_progress_warn(sctx->parent_root);
7409 			spin_unlock(&sctx->parent_root->root_item_lock);
7410 			ret = -EAGAIN;
7411 			goto out;
7412 		}
7413 		spin_unlock(&sctx->parent_root->root_item_lock);
7414 	}
7415 
7416 	/*
7417 	 * Clones from send_root are allowed, but only if the clone source
7418 	 * is behind the current send position. This is checked while searching
7419 	 * for possible clone sources.
7420 	 */
7421 	sctx->clone_roots[sctx->clone_roots_cnt++].root =
7422 		btrfs_grab_root(sctx->send_root);
7423 
7424 	/* We do a bsearch later */
7425 	sort(sctx->clone_roots, sctx->clone_roots_cnt,
7426 			sizeof(*sctx->clone_roots), __clone_root_cmp_sort,
7427 			NULL);
7428 	sort_clone_roots = 1;
7429 
7430 	ret = flush_delalloc_roots(sctx);
7431 	if (ret)
7432 		goto out;
7433 
7434 	ret = ensure_commit_roots_uptodate(sctx);
7435 	if (ret)
7436 		goto out;
7437 
7438 	mutex_lock(&fs_info->balance_mutex);
7439 	if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
7440 		mutex_unlock(&fs_info->balance_mutex);
7441 		btrfs_warn_rl(fs_info,
7442 		"cannot run send because a balance operation is in progress");
7443 		ret = -EAGAIN;
7444 		goto out;
7445 	}
7446 	fs_info->send_in_progress++;
7447 	mutex_unlock(&fs_info->balance_mutex);
7448 
7449 	current->journal_info = BTRFS_SEND_TRANS_STUB;
7450 	ret = send_subvol(sctx);
7451 	current->journal_info = NULL;
7452 	mutex_lock(&fs_info->balance_mutex);
7453 	fs_info->send_in_progress--;
7454 	mutex_unlock(&fs_info->balance_mutex);
7455 	if (ret < 0)
7456 		goto out;
7457 
7458 	if (!(sctx->flags & BTRFS_SEND_FLAG_OMIT_END_CMD)) {
7459 		ret = begin_cmd(sctx, BTRFS_SEND_C_END);
7460 		if (ret < 0)
7461 			goto out;
7462 		ret = send_cmd(sctx);
7463 		if (ret < 0)
7464 			goto out;
7465 	}
7466 
7467 out:
7468 	WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->pending_dir_moves));
7469 	while (sctx && !RB_EMPTY_ROOT(&sctx->pending_dir_moves)) {
7470 		struct rb_node *n;
7471 		struct pending_dir_move *pm;
7472 
7473 		n = rb_first(&sctx->pending_dir_moves);
7474 		pm = rb_entry(n, struct pending_dir_move, node);
7475 		while (!list_empty(&pm->list)) {
7476 			struct pending_dir_move *pm2;
7477 
7478 			pm2 = list_first_entry(&pm->list,
7479 					       struct pending_dir_move, list);
7480 			free_pending_move(sctx, pm2);
7481 		}
7482 		free_pending_move(sctx, pm);
7483 	}
7484 
7485 	WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->waiting_dir_moves));
7486 	while (sctx && !RB_EMPTY_ROOT(&sctx->waiting_dir_moves)) {
7487 		struct rb_node *n;
7488 		struct waiting_dir_move *dm;
7489 
7490 		n = rb_first(&sctx->waiting_dir_moves);
7491 		dm = rb_entry(n, struct waiting_dir_move, node);
7492 		rb_erase(&dm->node, &sctx->waiting_dir_moves);
7493 		kfree(dm);
7494 	}
7495 
7496 	WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->orphan_dirs));
7497 	while (sctx && !RB_EMPTY_ROOT(&sctx->orphan_dirs)) {
7498 		struct rb_node *n;
7499 		struct orphan_dir_info *odi;
7500 
7501 		n = rb_first(&sctx->orphan_dirs);
7502 		odi = rb_entry(n, struct orphan_dir_info, node);
7503 		free_orphan_dir_info(sctx, odi);
7504 	}
7505 
7506 	if (sort_clone_roots) {
7507 		for (i = 0; i < sctx->clone_roots_cnt; i++) {
7508 			btrfs_root_dec_send_in_progress(
7509 					sctx->clone_roots[i].root);
7510 			btrfs_put_root(sctx->clone_roots[i].root);
7511 		}
7512 	} else {
7513 		for (i = 0; sctx && i < clone_sources_to_rollback; i++) {
7514 			btrfs_root_dec_send_in_progress(
7515 					sctx->clone_roots[i].root);
7516 			btrfs_put_root(sctx->clone_roots[i].root);
7517 		}
7518 
7519 		btrfs_root_dec_send_in_progress(send_root);
7520 	}
7521 	if (sctx && !IS_ERR_OR_NULL(sctx->parent_root)) {
7522 		btrfs_root_dec_send_in_progress(sctx->parent_root);
7523 		btrfs_put_root(sctx->parent_root);
7524 	}
7525 
7526 	kvfree(clone_sources_tmp);
7527 
7528 	if (sctx) {
7529 		if (sctx->send_filp)
7530 			fput(sctx->send_filp);
7531 
7532 		kvfree(sctx->clone_roots);
7533 		kvfree(sctx->send_buf);
7534 
7535 		name_cache_free(sctx);
7536 
7537 		kfree(sctx);
7538 	}
7539 
7540 	return ret;
7541 }
7542