1 /*
2  *	An async IO implementation for Linux
3  *	Written by Benjamin LaHaise <bcrl@kvack.org>
4  *
5  *	Implements an efficient asynchronous io interface.
6  *
7  *	Copyright 2000, 2001, 2002 Red Hat, Inc.  All Rights Reserved.
8  *	Copyright 2018 Christoph Hellwig.
9  *
10  *	See ../COPYING for licensing terms.
11  */
12 #define pr_fmt(fmt) "%s: " fmt, __func__
13 
14 #include <linux/kernel.h>
15 #include <linux/init.h>
16 #include <linux/errno.h>
17 #include <linux/time.h>
18 #include <linux/aio_abi.h>
19 #include <linux/export.h>
20 #include <linux/syscalls.h>
21 #include <linux/backing-dev.h>
22 #include <linux/refcount.h>
23 #include <linux/uio.h>
24 
25 #include <linux/sched/signal.h>
26 #include <linux/fs.h>
27 #include <linux/file.h>
28 #include <linux/mm.h>
29 #include <linux/mman.h>
30 #include <linux/percpu.h>
31 #include <linux/slab.h>
32 #include <linux/timer.h>
33 #include <linux/aio.h>
34 #include <linux/highmem.h>
35 #include <linux/workqueue.h>
36 #include <linux/security.h>
37 #include <linux/eventfd.h>
38 #include <linux/blkdev.h>
39 #include <linux/compat.h>
40 #include <linux/migrate.h>
41 #include <linux/ramfs.h>
42 #include <linux/percpu-refcount.h>
43 #include <linux/mount.h>
44 #include <linux/pseudo_fs.h>
45 
46 #include <asm/kmap_types.h>
47 #include <linux/uaccess.h>
48 #include <linux/nospec.h>
49 
50 #include "internal.h"
51 
52 #define KIOCB_KEY		0
53 
54 #define AIO_RING_MAGIC			0xa10a10a1
55 #define AIO_RING_COMPAT_FEATURES	1
56 #define AIO_RING_INCOMPAT_FEATURES	0
57 struct aio_ring {
58 	unsigned	id;	/* kernel internal index number */
59 	unsigned	nr;	/* number of io_events */
60 	unsigned	head;	/* Written to by userland or under ring_lock
61 				 * mutex by aio_read_events_ring(). */
62 	unsigned	tail;
63 
64 	unsigned	magic;
65 	unsigned	compat_features;
66 	unsigned	incompat_features;
67 	unsigned	header_length;	/* size of aio_ring */
68 
69 
70 	struct io_event		io_events[];
71 }; /* 128 bytes + ring size */
72 
73 /*
74  * Plugging is meant to work with larger batches of IOs. If we don't
75  * have more than the below, then don't bother setting up a plug.
76  */
77 #define AIO_PLUG_THRESHOLD	2
78 
79 #define AIO_RING_PAGES	8
80 
81 struct kioctx_table {
82 	struct rcu_head		rcu;
83 	unsigned		nr;
84 	struct kioctx __rcu	*table[];
85 };
86 
87 struct kioctx_cpu {
88 	unsigned		reqs_available;
89 };
90 
91 struct ctx_rq_wait {
92 	struct completion comp;
93 	atomic_t count;
94 };
95 
96 struct kioctx {
97 	struct percpu_ref	users;
98 	atomic_t		dead;
99 
100 	struct percpu_ref	reqs;
101 
102 	unsigned long		user_id;
103 
104 	struct __percpu kioctx_cpu *cpu;
105 
106 	/*
107 	 * For percpu reqs_available, number of slots we move to/from global
108 	 * counter at a time:
109 	 */
110 	unsigned		req_batch;
111 	/*
112 	 * This is what userspace passed to io_setup(), it's not used for
113 	 * anything but counting against the global max_reqs quota.
114 	 *
115 	 * The real limit is nr_events - 1, which will be larger (see
116 	 * aio_setup_ring())
117 	 */
118 	unsigned		max_reqs;
119 
120 	/* Size of ringbuffer, in units of struct io_event */
121 	unsigned		nr_events;
122 
123 	unsigned long		mmap_base;
124 	unsigned long		mmap_size;
125 
126 	struct page		**ring_pages;
127 	long			nr_pages;
128 
129 	struct rcu_work		free_rwork;	/* see free_ioctx() */
130 
131 	/*
132 	 * signals when all in-flight requests are done
133 	 */
134 	struct ctx_rq_wait	*rq_wait;
135 
136 	struct {
137 		/*
138 		 * This counts the number of available slots in the ringbuffer,
139 		 * so we avoid overflowing it: it's decremented (if positive)
140 		 * when allocating a kiocb and incremented when the resulting
141 		 * io_event is pulled off the ringbuffer.
142 		 *
143 		 * We batch accesses to it with a percpu version.
144 		 */
145 		atomic_t	reqs_available;
146 	} ____cacheline_aligned_in_smp;
147 
148 	struct {
149 		spinlock_t	ctx_lock;
150 		struct list_head active_reqs;	/* used for cancellation */
151 	} ____cacheline_aligned_in_smp;
152 
153 	struct {
154 		struct mutex	ring_lock;
155 		wait_queue_head_t wait;
156 	} ____cacheline_aligned_in_smp;
157 
158 	struct {
159 		unsigned	tail;
160 		unsigned	completed_events;
161 		spinlock_t	completion_lock;
162 	} ____cacheline_aligned_in_smp;
163 
164 	struct page		*internal_pages[AIO_RING_PAGES];
165 	struct file		*aio_ring_file;
166 
167 	unsigned		id;
168 };
169 
170 /*
171  * First field must be the file pointer in all the
172  * iocb unions! See also 'struct kiocb' in <linux/fs.h>
173  */
174 struct fsync_iocb {
175 	struct file		*file;
176 	struct work_struct	work;
177 	bool			datasync;
178 	struct cred		*creds;
179 };
180 
181 struct poll_iocb {
182 	struct file		*file;
183 	struct wait_queue_head	*head;
184 	__poll_t		events;
185 	bool			cancelled;
186 	bool			work_scheduled;
187 	bool			work_need_resched;
188 	struct wait_queue_entry	wait;
189 	struct work_struct	work;
190 };
191 
192 /*
193  * NOTE! Each of the iocb union members has the file pointer
194  * as the first entry in their struct definition. So you can
195  * access the file pointer through any of the sub-structs,
196  * or directly as just 'ki_filp' in this struct.
197  */
198 struct aio_kiocb {
199 	union {
200 		struct file		*ki_filp;
201 		struct kiocb		rw;
202 		struct fsync_iocb	fsync;
203 		struct poll_iocb	poll;
204 	};
205 
206 	struct kioctx		*ki_ctx;
207 	kiocb_cancel_fn		*ki_cancel;
208 
209 	struct io_event		ki_res;
210 
211 	struct list_head	ki_list;	/* the aio core uses this
212 						 * for cancellation */
213 	refcount_t		ki_refcnt;
214 
215 	/*
216 	 * If the aio_resfd field of the userspace iocb is not zero,
217 	 * this is the underlying eventfd context to deliver events to.
218 	 */
219 	struct eventfd_ctx	*ki_eventfd;
220 };
221 
222 /*------ sysctl variables----*/
223 static DEFINE_SPINLOCK(aio_nr_lock);
224 unsigned long aio_nr;		/* current system wide number of aio requests */
225 unsigned long aio_max_nr = 0x10000; /* system wide maximum number of aio requests */
226 /*----end sysctl variables---*/
227 
228 static struct kmem_cache	*kiocb_cachep;
229 static struct kmem_cache	*kioctx_cachep;
230 
231 static struct vfsmount *aio_mnt;
232 
233 static const struct file_operations aio_ring_fops;
234 static const struct address_space_operations aio_ctx_aops;
235 
aio_private_file(struct kioctx *ctx, loff_t nr_pages)236 static struct file *aio_private_file(struct kioctx *ctx, loff_t nr_pages)
237 {
238 	struct file *file;
239 	struct inode *inode = alloc_anon_inode(aio_mnt->mnt_sb);
240 	if (IS_ERR(inode))
241 		return ERR_CAST(inode);
242 
243 	inode->i_mapping->a_ops = &aio_ctx_aops;
244 	inode->i_mapping->private_data = ctx;
245 	inode->i_size = PAGE_SIZE * nr_pages;
246 
247 	file = alloc_file_pseudo(inode, aio_mnt, "[aio]",
248 				O_RDWR, &aio_ring_fops);
249 	if (IS_ERR(file))
250 		iput(inode);
251 	return file;
252 }
253 
aio_init_fs_context(struct fs_context *fc)254 static int aio_init_fs_context(struct fs_context *fc)
255 {
256 	if (!init_pseudo(fc, AIO_RING_MAGIC))
257 		return -ENOMEM;
258 	fc->s_iflags |= SB_I_NOEXEC;
259 	return 0;
260 }
261 
262 /* aio_setup
263  *	Creates the slab caches used by the aio routines, panic on
264  *	failure as this is done early during the boot sequence.
265  */
aio_setup(void)266 static int __init aio_setup(void)
267 {
268 	static struct file_system_type aio_fs = {
269 		.name		= "aio",
270 		.init_fs_context = aio_init_fs_context,
271 		.kill_sb	= kill_anon_super,
272 	};
273 	aio_mnt = kern_mount(&aio_fs);
274 	if (IS_ERR(aio_mnt))
275 		panic("Failed to create aio fs mount.");
276 
277 	kiocb_cachep = KMEM_CACHE(aio_kiocb, SLAB_HWCACHE_ALIGN|SLAB_PANIC);
278 	kioctx_cachep = KMEM_CACHE(kioctx,SLAB_HWCACHE_ALIGN|SLAB_PANIC);
279 	return 0;
280 }
281 __initcall(aio_setup);
282 
put_aio_ring_file(struct kioctx *ctx)283 static void put_aio_ring_file(struct kioctx *ctx)
284 {
285 	struct file *aio_ring_file = ctx->aio_ring_file;
286 	struct address_space *i_mapping;
287 
288 	if (aio_ring_file) {
289 		truncate_setsize(file_inode(aio_ring_file), 0);
290 
291 		/* Prevent further access to the kioctx from migratepages */
292 		i_mapping = aio_ring_file->f_mapping;
293 		spin_lock(&i_mapping->private_lock);
294 		i_mapping->private_data = NULL;
295 		ctx->aio_ring_file = NULL;
296 		spin_unlock(&i_mapping->private_lock);
297 
298 		fput(aio_ring_file);
299 	}
300 }
301 
aio_free_ring(struct kioctx *ctx)302 static void aio_free_ring(struct kioctx *ctx)
303 {
304 	int i;
305 
306 	/* Disconnect the kiotx from the ring file.  This prevents future
307 	 * accesses to the kioctx from page migration.
308 	 */
309 	put_aio_ring_file(ctx);
310 
311 	for (i = 0; i < ctx->nr_pages; i++) {
312 		struct page *page;
313 		pr_debug("pid(%d) [%d] page->count=%d\n", current->pid, i,
314 				page_count(ctx->ring_pages[i]));
315 		page = ctx->ring_pages[i];
316 		if (!page)
317 			continue;
318 		ctx->ring_pages[i] = NULL;
319 		put_page(page);
320 	}
321 
322 	if (ctx->ring_pages && ctx->ring_pages != ctx->internal_pages) {
323 		kfree(ctx->ring_pages);
324 		ctx->ring_pages = NULL;
325 	}
326 }
327 
aio_ring_mremap(struct vm_area_struct *vma)328 static int aio_ring_mremap(struct vm_area_struct *vma)
329 {
330 	struct file *file = vma->vm_file;
331 	struct mm_struct *mm = vma->vm_mm;
332 	struct kioctx_table *table;
333 	int i, res = -EINVAL;
334 
335 	spin_lock(&mm->ioctx_lock);
336 	rcu_read_lock();
337 	table = rcu_dereference(mm->ioctx_table);
338 	if (!table)
339 		goto out_unlock;
340 
341 	for (i = 0; i < table->nr; i++) {
342 		struct kioctx *ctx;
343 
344 		ctx = rcu_dereference(table->table[i]);
345 		if (ctx && ctx->aio_ring_file == file) {
346 			if (!atomic_read(&ctx->dead)) {
347 				ctx->user_id = ctx->mmap_base = vma->vm_start;
348 				res = 0;
349 			}
350 			break;
351 		}
352 	}
353 
354 out_unlock:
355 	rcu_read_unlock();
356 	spin_unlock(&mm->ioctx_lock);
357 	return res;
358 }
359 
360 static const struct vm_operations_struct aio_ring_vm_ops = {
361 	.mremap		= aio_ring_mremap,
362 #if IS_ENABLED(CONFIG_MMU)
363 	.fault		= filemap_fault,
364 	.map_pages	= filemap_map_pages,
365 	.page_mkwrite	= filemap_page_mkwrite,
366 #endif
367 };
368 
aio_ring_mmap(struct file *file, struct vm_area_struct *vma)369 static int aio_ring_mmap(struct file *file, struct vm_area_struct *vma)
370 {
371 	vma->vm_flags |= VM_DONTEXPAND;
372 	vma->vm_ops = &aio_ring_vm_ops;
373 	return 0;
374 }
375 
376 static const struct file_operations aio_ring_fops = {
377 	.mmap = aio_ring_mmap,
378 };
379 
380 #if IS_ENABLED(CONFIG_MIGRATION)
aio_migratepage(struct address_space *mapping, struct page *new, struct page *old, enum migrate_mode mode)381 static int aio_migratepage(struct address_space *mapping, struct page *new,
382 			struct page *old, enum migrate_mode mode)
383 {
384 	struct kioctx *ctx;
385 	unsigned long flags;
386 	pgoff_t idx;
387 	int rc;
388 
389 	/*
390 	 * We cannot support the _NO_COPY case here, because copy needs to
391 	 * happen under the ctx->completion_lock. That does not work with the
392 	 * migration workflow of MIGRATE_SYNC_NO_COPY.
393 	 */
394 	if (mode == MIGRATE_SYNC_NO_COPY)
395 		return -EINVAL;
396 
397 	rc = 0;
398 
399 	/* mapping->private_lock here protects against the kioctx teardown.  */
400 	spin_lock(&mapping->private_lock);
401 	ctx = mapping->private_data;
402 	if (!ctx) {
403 		rc = -EINVAL;
404 		goto out;
405 	}
406 
407 	/* The ring_lock mutex.  The prevents aio_read_events() from writing
408 	 * to the ring's head, and prevents page migration from mucking in
409 	 * a partially initialized kiotx.
410 	 */
411 	if (!mutex_trylock(&ctx->ring_lock)) {
412 		rc = -EAGAIN;
413 		goto out;
414 	}
415 
416 	idx = old->index;
417 	if (idx < (pgoff_t)ctx->nr_pages) {
418 		/* Make sure the old page hasn't already been changed */
419 		if (ctx->ring_pages[idx] != old)
420 			rc = -EAGAIN;
421 	} else
422 		rc = -EINVAL;
423 
424 	if (rc != 0)
425 		goto out_unlock;
426 
427 	/* Writeback must be complete */
428 	BUG_ON(PageWriteback(old));
429 	get_page(new);
430 
431 	rc = migrate_page_move_mapping(mapping, new, old, 1);
432 	if (rc != MIGRATEPAGE_SUCCESS) {
433 		put_page(new);
434 		goto out_unlock;
435 	}
436 
437 	/* Take completion_lock to prevent other writes to the ring buffer
438 	 * while the old page is copied to the new.  This prevents new
439 	 * events from being lost.
440 	 */
441 	spin_lock_irqsave(&ctx->completion_lock, flags);
442 	migrate_page_copy(new, old);
443 	BUG_ON(ctx->ring_pages[idx] != old);
444 	ctx->ring_pages[idx] = new;
445 	spin_unlock_irqrestore(&ctx->completion_lock, flags);
446 
447 	/* The old page is no longer accessible. */
448 	put_page(old);
449 
450 out_unlock:
451 	mutex_unlock(&ctx->ring_lock);
452 out:
453 	spin_unlock(&mapping->private_lock);
454 	return rc;
455 }
456 #endif
457 
458 static const struct address_space_operations aio_ctx_aops = {
459 	.set_page_dirty = __set_page_dirty_no_writeback,
460 #if IS_ENABLED(CONFIG_MIGRATION)
461 	.migratepage	= aio_migratepage,
462 #endif
463 };
464 
aio_setup_ring(struct kioctx *ctx, unsigned int nr_events)465 static int aio_setup_ring(struct kioctx *ctx, unsigned int nr_events)
466 {
467 	struct aio_ring *ring;
468 	struct mm_struct *mm = current->mm;
469 	unsigned long size, unused;
470 	int nr_pages;
471 	int i;
472 	struct file *file;
473 
474 	/* Compensate for the ring buffer's head/tail overlap entry */
475 	nr_events += 2;	/* 1 is required, 2 for good luck */
476 
477 	size = sizeof(struct aio_ring);
478 	size += sizeof(struct io_event) * nr_events;
479 
480 	nr_pages = PFN_UP(size);
481 	if (nr_pages < 0)
482 		return -EINVAL;
483 
484 	file = aio_private_file(ctx, nr_pages);
485 	if (IS_ERR(file)) {
486 		ctx->aio_ring_file = NULL;
487 		return -ENOMEM;
488 	}
489 
490 	ctx->aio_ring_file = file;
491 	nr_events = (PAGE_SIZE * nr_pages - sizeof(struct aio_ring))
492 			/ sizeof(struct io_event);
493 
494 	ctx->ring_pages = ctx->internal_pages;
495 	if (nr_pages > AIO_RING_PAGES) {
496 		ctx->ring_pages = kcalloc(nr_pages, sizeof(struct page *),
497 					  GFP_KERNEL);
498 		if (!ctx->ring_pages) {
499 			put_aio_ring_file(ctx);
500 			return -ENOMEM;
501 		}
502 	}
503 
504 	for (i = 0; i < nr_pages; i++) {
505 		struct page *page;
506 		page = find_or_create_page(file->f_mapping,
507 					   i, GFP_HIGHUSER | __GFP_ZERO);
508 		if (!page)
509 			break;
510 		pr_debug("pid(%d) page[%d]->count=%d\n",
511 			 current->pid, i, page_count(page));
512 		SetPageUptodate(page);
513 		unlock_page(page);
514 
515 		ctx->ring_pages[i] = page;
516 	}
517 	ctx->nr_pages = i;
518 
519 	if (unlikely(i != nr_pages)) {
520 		aio_free_ring(ctx);
521 		return -ENOMEM;
522 	}
523 
524 	ctx->mmap_size = nr_pages * PAGE_SIZE;
525 	pr_debug("attempting mmap of %lu bytes\n", ctx->mmap_size);
526 
527 	if (mmap_write_lock_killable(mm)) {
528 		ctx->mmap_size = 0;
529 		aio_free_ring(ctx);
530 		return -EINTR;
531 	}
532 
533 	ctx->mmap_base = do_mmap(ctx->aio_ring_file, 0, ctx->mmap_size,
534 				 PROT_READ | PROT_WRITE,
535 				 MAP_SHARED, 0, &unused, NULL);
536 	mmap_write_unlock(mm);
537 	if (IS_ERR((void *)ctx->mmap_base)) {
538 		ctx->mmap_size = 0;
539 		aio_free_ring(ctx);
540 		return -ENOMEM;
541 	}
542 
543 	pr_debug("mmap address: 0x%08lx\n", ctx->mmap_base);
544 
545 	ctx->user_id = ctx->mmap_base;
546 	ctx->nr_events = nr_events; /* trusted copy */
547 
548 	ring = kmap_atomic(ctx->ring_pages[0]);
549 	ring->nr = nr_events;	/* user copy */
550 	ring->id = ~0U;
551 	ring->head = ring->tail = 0;
552 	ring->magic = AIO_RING_MAGIC;
553 	ring->compat_features = AIO_RING_COMPAT_FEATURES;
554 	ring->incompat_features = AIO_RING_INCOMPAT_FEATURES;
555 	ring->header_length = sizeof(struct aio_ring);
556 	kunmap_atomic(ring);
557 	flush_dcache_page(ctx->ring_pages[0]);
558 
559 	return 0;
560 }
561 
562 #define AIO_EVENTS_PER_PAGE	(PAGE_SIZE / sizeof(struct io_event))
563 #define AIO_EVENTS_FIRST_PAGE	((PAGE_SIZE - sizeof(struct aio_ring)) / sizeof(struct io_event))
564 #define AIO_EVENTS_OFFSET	(AIO_EVENTS_PER_PAGE - AIO_EVENTS_FIRST_PAGE)
565 
kiocb_set_cancel_fn(struct kiocb *iocb, kiocb_cancel_fn *cancel)566 void kiocb_set_cancel_fn(struct kiocb *iocb, kiocb_cancel_fn *cancel)
567 {
568 	struct aio_kiocb *req;
569 	struct kioctx *ctx;
570 	unsigned long flags;
571 
572 	/*
573 	 * kiocb didn't come from aio or is neither a read nor a write, hence
574 	 * ignore it.
575 	 */
576 	if (!(iocb->ki_flags & IOCB_AIO_RW))
577 		return;
578 
579 	req = container_of(iocb, struct aio_kiocb, rw);
580 
581 	if (WARN_ON_ONCE(!list_empty(&req->ki_list)))
582 		return;
583 
584 	ctx = req->ki_ctx;
585 
586 	spin_lock_irqsave(&ctx->ctx_lock, flags);
587 	list_add_tail(&req->ki_list, &ctx->active_reqs);
588 	req->ki_cancel = cancel;
589 	spin_unlock_irqrestore(&ctx->ctx_lock, flags);
590 }
591 EXPORT_SYMBOL(kiocb_set_cancel_fn);
592 
593 /*
594  * free_ioctx() should be RCU delayed to synchronize against the RCU
595  * protected lookup_ioctx() and also needs process context to call
596  * aio_free_ring().  Use rcu_work.
597  */
free_ioctx(struct work_struct *work)598 static void free_ioctx(struct work_struct *work)
599 {
600 	struct kioctx *ctx = container_of(to_rcu_work(work), struct kioctx,
601 					  free_rwork);
602 	pr_debug("freeing %p\n", ctx);
603 
604 	aio_free_ring(ctx);
605 	free_percpu(ctx->cpu);
606 	percpu_ref_exit(&ctx->reqs);
607 	percpu_ref_exit(&ctx->users);
608 	kmem_cache_free(kioctx_cachep, ctx);
609 }
610 
free_ioctx_reqs(struct percpu_ref *ref)611 static void free_ioctx_reqs(struct percpu_ref *ref)
612 {
613 	struct kioctx *ctx = container_of(ref, struct kioctx, reqs);
614 
615 	/* At this point we know that there are no any in-flight requests */
616 	if (ctx->rq_wait && atomic_dec_and_test(&ctx->rq_wait->count))
617 		complete(&ctx->rq_wait->comp);
618 
619 	/* Synchronize against RCU protected table->table[] dereferences */
620 	INIT_RCU_WORK(&ctx->free_rwork, free_ioctx);
621 	queue_rcu_work(system_wq, &ctx->free_rwork);
622 }
623 
624 /*
625  * When this function runs, the kioctx has been removed from the "hash table"
626  * and ctx->users has dropped to 0, so we know no more kiocbs can be submitted -
627  * now it's safe to cancel any that need to be.
628  */
free_ioctx_users(struct percpu_ref *ref)629 static void free_ioctx_users(struct percpu_ref *ref)
630 {
631 	struct kioctx *ctx = container_of(ref, struct kioctx, users);
632 	struct aio_kiocb *req;
633 
634 	spin_lock_irq(&ctx->ctx_lock);
635 
636 	while (!list_empty(&ctx->active_reqs)) {
637 		req = list_first_entry(&ctx->active_reqs,
638 				       struct aio_kiocb, ki_list);
639 		req->ki_cancel(&req->rw);
640 		list_del_init(&req->ki_list);
641 	}
642 
643 	spin_unlock_irq(&ctx->ctx_lock);
644 
645 	percpu_ref_kill(&ctx->reqs);
646 	percpu_ref_put(&ctx->reqs);
647 }
648 
ioctx_add_table(struct kioctx *ctx, struct mm_struct *mm)649 static int ioctx_add_table(struct kioctx *ctx, struct mm_struct *mm)
650 {
651 	unsigned i, new_nr;
652 	struct kioctx_table *table, *old;
653 	struct aio_ring *ring;
654 
655 	spin_lock(&mm->ioctx_lock);
656 	table = rcu_dereference_raw(mm->ioctx_table);
657 
658 	while (1) {
659 		if (table)
660 			for (i = 0; i < table->nr; i++)
661 				if (!rcu_access_pointer(table->table[i])) {
662 					ctx->id = i;
663 					rcu_assign_pointer(table->table[i], ctx);
664 					spin_unlock(&mm->ioctx_lock);
665 
666 					/* While kioctx setup is in progress,
667 					 * we are protected from page migration
668 					 * changes ring_pages by ->ring_lock.
669 					 */
670 					ring = kmap_atomic(ctx->ring_pages[0]);
671 					ring->id = ctx->id;
672 					kunmap_atomic(ring);
673 					return 0;
674 				}
675 
676 		new_nr = (table ? table->nr : 1) * 4;
677 		spin_unlock(&mm->ioctx_lock);
678 
679 		table = kzalloc(sizeof(*table) + sizeof(struct kioctx *) *
680 				new_nr, GFP_KERNEL);
681 		if (!table)
682 			return -ENOMEM;
683 
684 		table->nr = new_nr;
685 
686 		spin_lock(&mm->ioctx_lock);
687 		old = rcu_dereference_raw(mm->ioctx_table);
688 
689 		if (!old) {
690 			rcu_assign_pointer(mm->ioctx_table, table);
691 		} else if (table->nr > old->nr) {
692 			memcpy(table->table, old->table,
693 			       old->nr * sizeof(struct kioctx *));
694 
695 			rcu_assign_pointer(mm->ioctx_table, table);
696 			kfree_rcu(old, rcu);
697 		} else {
698 			kfree(table);
699 			table = old;
700 		}
701 	}
702 }
703 
aio_nr_sub(unsigned nr)704 static void aio_nr_sub(unsigned nr)
705 {
706 	spin_lock(&aio_nr_lock);
707 	if (WARN_ON(aio_nr - nr > aio_nr))
708 		aio_nr = 0;
709 	else
710 		aio_nr -= nr;
711 	spin_unlock(&aio_nr_lock);
712 }
713 
714 /* ioctx_alloc
715  *	Allocates and initializes an ioctx.  Returns an ERR_PTR if it failed.
716  */
ioctx_alloc(unsigned nr_events)717 static struct kioctx *ioctx_alloc(unsigned nr_events)
718 {
719 	struct mm_struct *mm = current->mm;
720 	struct kioctx *ctx;
721 	int err = -ENOMEM;
722 
723 	/*
724 	 * Store the original nr_events -- what userspace passed to io_setup(),
725 	 * for counting against the global limit -- before it changes.
726 	 */
727 	unsigned int max_reqs = nr_events;
728 
729 	/*
730 	 * We keep track of the number of available ringbuffer slots, to prevent
731 	 * overflow (reqs_available), and we also use percpu counters for this.
732 	 *
733 	 * So since up to half the slots might be on other cpu's percpu counters
734 	 * and unavailable, double nr_events so userspace sees what they
735 	 * expected: additionally, we move req_batch slots to/from percpu
736 	 * counters at a time, so make sure that isn't 0:
737 	 */
738 	nr_events = max(nr_events, num_possible_cpus() * 4);
739 	nr_events *= 2;
740 
741 	/* Prevent overflows */
742 	if (nr_events > (0x10000000U / sizeof(struct io_event))) {
743 		pr_debug("ENOMEM: nr_events too high\n");
744 		return ERR_PTR(-EINVAL);
745 	}
746 
747 	if (!nr_events || (unsigned long)max_reqs > aio_max_nr)
748 		return ERR_PTR(-EAGAIN);
749 
750 	ctx = kmem_cache_zalloc(kioctx_cachep, GFP_KERNEL);
751 	if (!ctx)
752 		return ERR_PTR(-ENOMEM);
753 
754 	ctx->max_reqs = max_reqs;
755 
756 	spin_lock_init(&ctx->ctx_lock);
757 	spin_lock_init(&ctx->completion_lock);
758 	mutex_init(&ctx->ring_lock);
759 	/* Protect against page migration throughout kiotx setup by keeping
760 	 * the ring_lock mutex held until setup is complete. */
761 	mutex_lock(&ctx->ring_lock);
762 	init_waitqueue_head(&ctx->wait);
763 
764 	INIT_LIST_HEAD(&ctx->active_reqs);
765 
766 	if (percpu_ref_init(&ctx->users, free_ioctx_users, 0, GFP_KERNEL))
767 		goto err;
768 
769 	if (percpu_ref_init(&ctx->reqs, free_ioctx_reqs, 0, GFP_KERNEL))
770 		goto err;
771 
772 	ctx->cpu = alloc_percpu(struct kioctx_cpu);
773 	if (!ctx->cpu)
774 		goto err;
775 
776 	err = aio_setup_ring(ctx, nr_events);
777 	if (err < 0)
778 		goto err;
779 
780 	atomic_set(&ctx->reqs_available, ctx->nr_events - 1);
781 	ctx->req_batch = (ctx->nr_events - 1) / (num_possible_cpus() * 4);
782 	if (ctx->req_batch < 1)
783 		ctx->req_batch = 1;
784 
785 	/* limit the number of system wide aios */
786 	spin_lock(&aio_nr_lock);
787 	if (aio_nr + ctx->max_reqs > aio_max_nr ||
788 	    aio_nr + ctx->max_reqs < aio_nr) {
789 		spin_unlock(&aio_nr_lock);
790 		err = -EAGAIN;
791 		goto err_ctx;
792 	}
793 	aio_nr += ctx->max_reqs;
794 	spin_unlock(&aio_nr_lock);
795 
796 	percpu_ref_get(&ctx->users);	/* io_setup() will drop this ref */
797 	percpu_ref_get(&ctx->reqs);	/* free_ioctx_users() will drop this */
798 
799 	err = ioctx_add_table(ctx, mm);
800 	if (err)
801 		goto err_cleanup;
802 
803 	/* Release the ring_lock mutex now that all setup is complete. */
804 	mutex_unlock(&ctx->ring_lock);
805 
806 	pr_debug("allocated ioctx %p[%ld]: mm=%p mask=0x%x\n",
807 		 ctx, ctx->user_id, mm, ctx->nr_events);
808 	return ctx;
809 
810 err_cleanup:
811 	aio_nr_sub(ctx->max_reqs);
812 err_ctx:
813 	atomic_set(&ctx->dead, 1);
814 	if (ctx->mmap_size)
815 		vm_munmap(ctx->mmap_base, ctx->mmap_size);
816 	aio_free_ring(ctx);
817 err:
818 	mutex_unlock(&ctx->ring_lock);
819 	free_percpu(ctx->cpu);
820 	percpu_ref_exit(&ctx->reqs);
821 	percpu_ref_exit(&ctx->users);
822 	kmem_cache_free(kioctx_cachep, ctx);
823 	pr_debug("error allocating ioctx %d\n", err);
824 	return ERR_PTR(err);
825 }
826 
827 /* kill_ioctx
828  *	Cancels all outstanding aio requests on an aio context.  Used
829  *	when the processes owning a context have all exited to encourage
830  *	the rapid destruction of the kioctx.
831  */
kill_ioctx(struct mm_struct *mm, struct kioctx *ctx, struct ctx_rq_wait *wait)832 static int kill_ioctx(struct mm_struct *mm, struct kioctx *ctx,
833 		      struct ctx_rq_wait *wait)
834 {
835 	struct kioctx_table *table;
836 
837 	spin_lock(&mm->ioctx_lock);
838 	if (atomic_xchg(&ctx->dead, 1)) {
839 		spin_unlock(&mm->ioctx_lock);
840 		return -EINVAL;
841 	}
842 
843 	table = rcu_dereference_raw(mm->ioctx_table);
844 	WARN_ON(ctx != rcu_access_pointer(table->table[ctx->id]));
845 	RCU_INIT_POINTER(table->table[ctx->id], NULL);
846 	spin_unlock(&mm->ioctx_lock);
847 
848 	/* free_ioctx_reqs() will do the necessary RCU synchronization */
849 	wake_up_all(&ctx->wait);
850 
851 	/*
852 	 * It'd be more correct to do this in free_ioctx(), after all
853 	 * the outstanding kiocbs have finished - but by then io_destroy
854 	 * has already returned, so io_setup() could potentially return
855 	 * -EAGAIN with no ioctxs actually in use (as far as userspace
856 	 *  could tell).
857 	 */
858 	aio_nr_sub(ctx->max_reqs);
859 
860 	if (ctx->mmap_size)
861 		vm_munmap(ctx->mmap_base, ctx->mmap_size);
862 
863 	ctx->rq_wait = wait;
864 	percpu_ref_kill(&ctx->users);
865 	return 0;
866 }
867 
868 /*
869  * exit_aio: called when the last user of mm goes away.  At this point, there is
870  * no way for any new requests to be submited or any of the io_* syscalls to be
871  * called on the context.
872  *
873  * There may be outstanding kiocbs, but free_ioctx() will explicitly wait on
874  * them.
875  */
exit_aio(struct mm_struct *mm)876 void exit_aio(struct mm_struct *mm)
877 {
878 	struct kioctx_table *table = rcu_dereference_raw(mm->ioctx_table);
879 	struct ctx_rq_wait wait;
880 	int i, skipped;
881 
882 	if (!table)
883 		return;
884 
885 	atomic_set(&wait.count, table->nr);
886 	init_completion(&wait.comp);
887 
888 	skipped = 0;
889 	for (i = 0; i < table->nr; ++i) {
890 		struct kioctx *ctx =
891 			rcu_dereference_protected(table->table[i], true);
892 
893 		if (!ctx) {
894 			skipped++;
895 			continue;
896 		}
897 
898 		/*
899 		 * We don't need to bother with munmap() here - exit_mmap(mm)
900 		 * is coming and it'll unmap everything. And we simply can't,
901 		 * this is not necessarily our ->mm.
902 		 * Since kill_ioctx() uses non-zero ->mmap_size as indicator
903 		 * that it needs to unmap the area, just set it to 0.
904 		 */
905 		ctx->mmap_size = 0;
906 		kill_ioctx(mm, ctx, &wait);
907 	}
908 
909 	if (!atomic_sub_and_test(skipped, &wait.count)) {
910 		/* Wait until all IO for the context are done. */
911 		wait_for_completion(&wait.comp);
912 	}
913 
914 	RCU_INIT_POINTER(mm->ioctx_table, NULL);
915 	kfree(table);
916 }
917 
put_reqs_available(struct kioctx *ctx, unsigned nr)918 static void put_reqs_available(struct kioctx *ctx, unsigned nr)
919 {
920 	struct kioctx_cpu *kcpu;
921 	unsigned long flags;
922 
923 	local_irq_save(flags);
924 	kcpu = this_cpu_ptr(ctx->cpu);
925 	kcpu->reqs_available += nr;
926 
927 	while (kcpu->reqs_available >= ctx->req_batch * 2) {
928 		kcpu->reqs_available -= ctx->req_batch;
929 		atomic_add(ctx->req_batch, &ctx->reqs_available);
930 	}
931 
932 	local_irq_restore(flags);
933 }
934 
__get_reqs_available(struct kioctx *ctx)935 static bool __get_reqs_available(struct kioctx *ctx)
936 {
937 	struct kioctx_cpu *kcpu;
938 	bool ret = false;
939 	unsigned long flags;
940 
941 	local_irq_save(flags);
942 	kcpu = this_cpu_ptr(ctx->cpu);
943 	if (!kcpu->reqs_available) {
944 		int old, avail = atomic_read(&ctx->reqs_available);
945 
946 		do {
947 			if (avail < ctx->req_batch)
948 				goto out;
949 
950 			old = avail;
951 			avail = atomic_cmpxchg(&ctx->reqs_available,
952 					       avail, avail - ctx->req_batch);
953 		} while (avail != old);
954 
955 		kcpu->reqs_available += ctx->req_batch;
956 	}
957 
958 	ret = true;
959 	kcpu->reqs_available--;
960 out:
961 	local_irq_restore(flags);
962 	return ret;
963 }
964 
965 /* refill_reqs_available
966  *	Updates the reqs_available reference counts used for tracking the
967  *	number of free slots in the completion ring.  This can be called
968  *	from aio_complete() (to optimistically update reqs_available) or
969  *	from aio_get_req() (the we're out of events case).  It must be
970  *	called holding ctx->completion_lock.
971  */
refill_reqs_available(struct kioctx *ctx, unsigned head, unsigned tail)972 static void refill_reqs_available(struct kioctx *ctx, unsigned head,
973                                   unsigned tail)
974 {
975 	unsigned events_in_ring, completed;
976 
977 	/* Clamp head since userland can write to it. */
978 	head %= ctx->nr_events;
979 	if (head <= tail)
980 		events_in_ring = tail - head;
981 	else
982 		events_in_ring = ctx->nr_events - (head - tail);
983 
984 	completed = ctx->completed_events;
985 	if (events_in_ring < completed)
986 		completed -= events_in_ring;
987 	else
988 		completed = 0;
989 
990 	if (!completed)
991 		return;
992 
993 	ctx->completed_events -= completed;
994 	put_reqs_available(ctx, completed);
995 }
996 
997 /* user_refill_reqs_available
998  *	Called to refill reqs_available when aio_get_req() encounters an
999  *	out of space in the completion ring.
1000  */
user_refill_reqs_available(struct kioctx *ctx)1001 static void user_refill_reqs_available(struct kioctx *ctx)
1002 {
1003 	spin_lock_irq(&ctx->completion_lock);
1004 	if (ctx->completed_events) {
1005 		struct aio_ring *ring;
1006 		unsigned head;
1007 
1008 		/* Access of ring->head may race with aio_read_events_ring()
1009 		 * here, but that's okay since whether we read the old version
1010 		 * or the new version, and either will be valid.  The important
1011 		 * part is that head cannot pass tail since we prevent
1012 		 * aio_complete() from updating tail by holding
1013 		 * ctx->completion_lock.  Even if head is invalid, the check
1014 		 * against ctx->completed_events below will make sure we do the
1015 		 * safe/right thing.
1016 		 */
1017 		ring = kmap_atomic(ctx->ring_pages[0]);
1018 		head = ring->head;
1019 		kunmap_atomic(ring);
1020 
1021 		refill_reqs_available(ctx, head, ctx->tail);
1022 	}
1023 
1024 	spin_unlock_irq(&ctx->completion_lock);
1025 }
1026 
get_reqs_available(struct kioctx *ctx)1027 static bool get_reqs_available(struct kioctx *ctx)
1028 {
1029 	if (__get_reqs_available(ctx))
1030 		return true;
1031 	user_refill_reqs_available(ctx);
1032 	return __get_reqs_available(ctx);
1033 }
1034 
1035 /* aio_get_req
1036  *	Allocate a slot for an aio request.
1037  * Returns NULL if no requests are free.
1038  *
1039  * The refcount is initialized to 2 - one for the async op completion,
1040  * one for the synchronous code that does this.
1041  */
aio_get_req(struct kioctx *ctx)1042 static inline struct aio_kiocb *aio_get_req(struct kioctx *ctx)
1043 {
1044 	struct aio_kiocb *req;
1045 
1046 	req = kmem_cache_alloc(kiocb_cachep, GFP_KERNEL);
1047 	if (unlikely(!req))
1048 		return NULL;
1049 
1050 	if (unlikely(!get_reqs_available(ctx))) {
1051 		kmem_cache_free(kiocb_cachep, req);
1052 		return NULL;
1053 	}
1054 
1055 	percpu_ref_get(&ctx->reqs);
1056 	req->ki_ctx = ctx;
1057 	INIT_LIST_HEAD(&req->ki_list);
1058 	refcount_set(&req->ki_refcnt, 2);
1059 	req->ki_eventfd = NULL;
1060 	return req;
1061 }
1062 
lookup_ioctx(unsigned long ctx_id)1063 static struct kioctx *lookup_ioctx(unsigned long ctx_id)
1064 {
1065 	struct aio_ring __user *ring  = (void __user *)ctx_id;
1066 	struct mm_struct *mm = current->mm;
1067 	struct kioctx *ctx, *ret = NULL;
1068 	struct kioctx_table *table;
1069 	unsigned id;
1070 
1071 	if (get_user(id, &ring->id))
1072 		return NULL;
1073 
1074 	rcu_read_lock();
1075 	table = rcu_dereference(mm->ioctx_table);
1076 
1077 	if (!table || id >= table->nr)
1078 		goto out;
1079 
1080 	id = array_index_nospec(id, table->nr);
1081 	ctx = rcu_dereference(table->table[id]);
1082 	if (ctx && ctx->user_id == ctx_id) {
1083 		if (percpu_ref_tryget_live(&ctx->users))
1084 			ret = ctx;
1085 	}
1086 out:
1087 	rcu_read_unlock();
1088 	return ret;
1089 }
1090 
iocb_destroy(struct aio_kiocb *iocb)1091 static inline void iocb_destroy(struct aio_kiocb *iocb)
1092 {
1093 	if (iocb->ki_eventfd)
1094 		eventfd_ctx_put(iocb->ki_eventfd);
1095 	if (iocb->ki_filp)
1096 		fput(iocb->ki_filp);
1097 	percpu_ref_put(&iocb->ki_ctx->reqs);
1098 	kmem_cache_free(kiocb_cachep, iocb);
1099 }
1100 
1101 /* aio_complete
1102  *	Called when the io request on the given iocb is complete.
1103  */
aio_complete(struct aio_kiocb *iocb)1104 static void aio_complete(struct aio_kiocb *iocb)
1105 {
1106 	struct kioctx	*ctx = iocb->ki_ctx;
1107 	struct aio_ring	*ring;
1108 	struct io_event	*ev_page, *event;
1109 	unsigned tail, pos, head;
1110 	unsigned long	flags;
1111 
1112 	/*
1113 	 * Add a completion event to the ring buffer. Must be done holding
1114 	 * ctx->completion_lock to prevent other code from messing with the tail
1115 	 * pointer since we might be called from irq context.
1116 	 */
1117 	spin_lock_irqsave(&ctx->completion_lock, flags);
1118 
1119 	tail = ctx->tail;
1120 	pos = tail + AIO_EVENTS_OFFSET;
1121 
1122 	if (++tail >= ctx->nr_events)
1123 		tail = 0;
1124 
1125 	ev_page = kmap_atomic(ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]);
1126 	event = ev_page + pos % AIO_EVENTS_PER_PAGE;
1127 
1128 	*event = iocb->ki_res;
1129 
1130 	kunmap_atomic(ev_page);
1131 	flush_dcache_page(ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]);
1132 
1133 	pr_debug("%p[%u]: %p: %p %Lx %Lx %Lx\n", ctx, tail, iocb,
1134 		 (void __user *)(unsigned long)iocb->ki_res.obj,
1135 		 iocb->ki_res.data, iocb->ki_res.res, iocb->ki_res.res2);
1136 
1137 	/* after flagging the request as done, we
1138 	 * must never even look at it again
1139 	 */
1140 	smp_wmb();	/* make event visible before updating tail */
1141 
1142 	ctx->tail = tail;
1143 
1144 	ring = kmap_atomic(ctx->ring_pages[0]);
1145 	head = ring->head;
1146 	ring->tail = tail;
1147 	kunmap_atomic(ring);
1148 	flush_dcache_page(ctx->ring_pages[0]);
1149 
1150 	ctx->completed_events++;
1151 	if (ctx->completed_events > 1)
1152 		refill_reqs_available(ctx, head, tail);
1153 	spin_unlock_irqrestore(&ctx->completion_lock, flags);
1154 
1155 	pr_debug("added to ring %p at [%u]\n", iocb, tail);
1156 
1157 	/*
1158 	 * Check if the user asked us to deliver the result through an
1159 	 * eventfd. The eventfd_signal() function is safe to be called
1160 	 * from IRQ context.
1161 	 */
1162 	if (iocb->ki_eventfd)
1163 		eventfd_signal(iocb->ki_eventfd, 1);
1164 
1165 	/*
1166 	 * We have to order our ring_info tail store above and test
1167 	 * of the wait list below outside the wait lock.  This is
1168 	 * like in wake_up_bit() where clearing a bit has to be
1169 	 * ordered with the unlocked test.
1170 	 */
1171 	smp_mb();
1172 
1173 	if (waitqueue_active(&ctx->wait))
1174 		wake_up(&ctx->wait);
1175 }
1176 
iocb_put(struct aio_kiocb *iocb)1177 static inline void iocb_put(struct aio_kiocb *iocb)
1178 {
1179 	if (refcount_dec_and_test(&iocb->ki_refcnt)) {
1180 		aio_complete(iocb);
1181 		iocb_destroy(iocb);
1182 	}
1183 }
1184 
1185 /* aio_read_events_ring
1186  *	Pull an event off of the ioctx's event ring.  Returns the number of
1187  *	events fetched
1188  */
aio_read_events_ring(struct kioctx *ctx, struct io_event __user *event, long nr)1189 static long aio_read_events_ring(struct kioctx *ctx,
1190 				 struct io_event __user *event, long nr)
1191 {
1192 	struct aio_ring *ring;
1193 	unsigned head, tail, pos;
1194 	long ret = 0;
1195 	int copy_ret;
1196 
1197 	/*
1198 	 * The mutex can block and wake us up and that will cause
1199 	 * wait_event_interruptible_hrtimeout() to schedule without sleeping
1200 	 * and repeat. This should be rare enough that it doesn't cause
1201 	 * peformance issues. See the comment in read_events() for more detail.
1202 	 */
1203 	sched_annotate_sleep();
1204 	mutex_lock(&ctx->ring_lock);
1205 
1206 	/* Access to ->ring_pages here is protected by ctx->ring_lock. */
1207 	ring = kmap_atomic(ctx->ring_pages[0]);
1208 	head = ring->head;
1209 	tail = ring->tail;
1210 	kunmap_atomic(ring);
1211 
1212 	/*
1213 	 * Ensure that once we've read the current tail pointer, that
1214 	 * we also see the events that were stored up to the tail.
1215 	 */
1216 	smp_rmb();
1217 
1218 	pr_debug("h%u t%u m%u\n", head, tail, ctx->nr_events);
1219 
1220 	if (head == tail)
1221 		goto out;
1222 
1223 	head %= ctx->nr_events;
1224 	tail %= ctx->nr_events;
1225 
1226 	while (ret < nr) {
1227 		long avail;
1228 		struct io_event *ev;
1229 		struct page *page;
1230 
1231 		avail = (head <= tail ?  tail : ctx->nr_events) - head;
1232 		if (head == tail)
1233 			break;
1234 
1235 		pos = head + AIO_EVENTS_OFFSET;
1236 		page = ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE];
1237 		pos %= AIO_EVENTS_PER_PAGE;
1238 
1239 		avail = min(avail, nr - ret);
1240 		avail = min_t(long, avail, AIO_EVENTS_PER_PAGE - pos);
1241 
1242 		ev = kmap(page);
1243 		copy_ret = copy_to_user(event + ret, ev + pos,
1244 					sizeof(*ev) * avail);
1245 		kunmap(page);
1246 
1247 		if (unlikely(copy_ret)) {
1248 			ret = -EFAULT;
1249 			goto out;
1250 		}
1251 
1252 		ret += avail;
1253 		head += avail;
1254 		head %= ctx->nr_events;
1255 	}
1256 
1257 	ring = kmap_atomic(ctx->ring_pages[0]);
1258 	ring->head = head;
1259 	kunmap_atomic(ring);
1260 	flush_dcache_page(ctx->ring_pages[0]);
1261 
1262 	pr_debug("%li  h%u t%u\n", ret, head, tail);
1263 out:
1264 	mutex_unlock(&ctx->ring_lock);
1265 
1266 	return ret;
1267 }
1268 
aio_read_events(struct kioctx *ctx, long min_nr, long nr, struct io_event __user *event, long *i)1269 static bool aio_read_events(struct kioctx *ctx, long min_nr, long nr,
1270 			    struct io_event __user *event, long *i)
1271 {
1272 	long ret = aio_read_events_ring(ctx, event + *i, nr - *i);
1273 
1274 	if (ret > 0)
1275 		*i += ret;
1276 
1277 	if (unlikely(atomic_read(&ctx->dead)))
1278 		ret = -EINVAL;
1279 
1280 	if (!*i)
1281 		*i = ret;
1282 
1283 	return ret < 0 || *i >= min_nr;
1284 }
1285 
read_events(struct kioctx *ctx, long min_nr, long nr, struct io_event __user *event, ktime_t until)1286 static long read_events(struct kioctx *ctx, long min_nr, long nr,
1287 			struct io_event __user *event,
1288 			ktime_t until)
1289 {
1290 	long ret = 0;
1291 
1292 	/*
1293 	 * Note that aio_read_events() is being called as the conditional - i.e.
1294 	 * we're calling it after prepare_to_wait() has set task state to
1295 	 * TASK_INTERRUPTIBLE.
1296 	 *
1297 	 * But aio_read_events() can block, and if it blocks it's going to flip
1298 	 * the task state back to TASK_RUNNING.
1299 	 *
1300 	 * This should be ok, provided it doesn't flip the state back to
1301 	 * TASK_RUNNING and return 0 too much - that causes us to spin. That
1302 	 * will only happen if the mutex_lock() call blocks, and we then find
1303 	 * the ringbuffer empty. So in practice we should be ok, but it's
1304 	 * something to be aware of when touching this code.
1305 	 */
1306 	if (until == 0)
1307 		aio_read_events(ctx, min_nr, nr, event, &ret);
1308 	else
1309 		wait_event_interruptible_hrtimeout(ctx->wait,
1310 				aio_read_events(ctx, min_nr, nr, event, &ret),
1311 				until);
1312 	return ret;
1313 }
1314 
1315 /* sys_io_setup:
1316  *	Create an aio_context capable of receiving at least nr_events.
1317  *	ctxp must not point to an aio_context that already exists, and
1318  *	must be initialized to 0 prior to the call.  On successful
1319  *	creation of the aio_context, *ctxp is filled in with the resulting
1320  *	handle.  May fail with -EINVAL if *ctxp is not initialized,
1321  *	if the specified nr_events exceeds internal limits.  May fail
1322  *	with -EAGAIN if the specified nr_events exceeds the user's limit
1323  *	of available events.  May fail with -ENOMEM if insufficient kernel
1324  *	resources are available.  May fail with -EFAULT if an invalid
1325  *	pointer is passed for ctxp.  Will fail with -ENOSYS if not
1326  *	implemented.
1327  */
SYSCALL_DEFINE2(io_setup, unsigned, nr_events, aio_context_t __user *, ctxp)1328 SYSCALL_DEFINE2(io_setup, unsigned, nr_events, aio_context_t __user *, ctxp)
1329 {
1330 	struct kioctx *ioctx = NULL;
1331 	unsigned long ctx;
1332 	long ret;
1333 
1334 	ret = get_user(ctx, ctxp);
1335 	if (unlikely(ret))
1336 		goto out;
1337 
1338 	ret = -EINVAL;
1339 	if (unlikely(ctx || nr_events == 0)) {
1340 		pr_debug("EINVAL: ctx %lu nr_events %u\n",
1341 		         ctx, nr_events);
1342 		goto out;
1343 	}
1344 
1345 	ioctx = ioctx_alloc(nr_events);
1346 	ret = PTR_ERR(ioctx);
1347 	if (!IS_ERR(ioctx)) {
1348 		ret = put_user(ioctx->user_id, ctxp);
1349 		if (ret)
1350 			kill_ioctx(current->mm, ioctx, NULL);
1351 		percpu_ref_put(&ioctx->users);
1352 	}
1353 
1354 out:
1355 	return ret;
1356 }
1357 
1358 #ifdef CONFIG_COMPAT
COMPAT_SYSCALL_DEFINE2(io_setup, unsigned, nr_events, u32 __user *, ctx32p)1359 COMPAT_SYSCALL_DEFINE2(io_setup, unsigned, nr_events, u32 __user *, ctx32p)
1360 {
1361 	struct kioctx *ioctx = NULL;
1362 	unsigned long ctx;
1363 	long ret;
1364 
1365 	ret = get_user(ctx, ctx32p);
1366 	if (unlikely(ret))
1367 		goto out;
1368 
1369 	ret = -EINVAL;
1370 	if (unlikely(ctx || nr_events == 0)) {
1371 		pr_debug("EINVAL: ctx %lu nr_events %u\n",
1372 		         ctx, nr_events);
1373 		goto out;
1374 	}
1375 
1376 	ioctx = ioctx_alloc(nr_events);
1377 	ret = PTR_ERR(ioctx);
1378 	if (!IS_ERR(ioctx)) {
1379 		/* truncating is ok because it's a user address */
1380 		ret = put_user((u32)ioctx->user_id, ctx32p);
1381 		if (ret)
1382 			kill_ioctx(current->mm, ioctx, NULL);
1383 		percpu_ref_put(&ioctx->users);
1384 	}
1385 
1386 out:
1387 	return ret;
1388 }
1389 #endif
1390 
1391 /* sys_io_destroy:
1392  *	Destroy the aio_context specified.  May cancel any outstanding
1393  *	AIOs and block on completion.  Will fail with -ENOSYS if not
1394  *	implemented.  May fail with -EINVAL if the context pointed to
1395  *	is invalid.
1396  */
SYSCALL_DEFINE1null1397 SYSCALL_DEFINE1(io_destroy, aio_context_t, ctx)
1398 {
1399 	struct kioctx *ioctx = lookup_ioctx(ctx);
1400 	if (likely(NULL != ioctx)) {
1401 		struct ctx_rq_wait wait;
1402 		int ret;
1403 
1404 		init_completion(&wait.comp);
1405 		atomic_set(&wait.count, 1);
1406 
1407 		/* Pass requests_done to kill_ioctx() where it can be set
1408 		 * in a thread-safe way. If we try to set it here then we have
1409 		 * a race condition if two io_destroy() called simultaneously.
1410 		 */
1411 		ret = kill_ioctx(current->mm, ioctx, &wait);
1412 		percpu_ref_put(&ioctx->users);
1413 
1414 		/* Wait until all IO for the context are done. Otherwise kernel
1415 		 * keep using user-space buffers even if user thinks the context
1416 		 * is destroyed.
1417 		 */
1418 		if (!ret)
1419 			wait_for_completion(&wait.comp);
1420 
1421 		return ret;
1422 	}
1423 	pr_debug("EINVAL: invalid context id\n");
1424 	return -EINVAL;
1425 }
1426 
aio_remove_iocb(struct aio_kiocb *iocb)1427 static void aio_remove_iocb(struct aio_kiocb *iocb)
1428 {
1429 	struct kioctx *ctx = iocb->ki_ctx;
1430 	unsigned long flags;
1431 
1432 	spin_lock_irqsave(&ctx->ctx_lock, flags);
1433 	list_del(&iocb->ki_list);
1434 	spin_unlock_irqrestore(&ctx->ctx_lock, flags);
1435 }
1436 
aio_complete_rw(struct kiocb *kiocb, long res, long res2)1437 static void aio_complete_rw(struct kiocb *kiocb, long res, long res2)
1438 {
1439 	struct aio_kiocb *iocb = container_of(kiocb, struct aio_kiocb, rw);
1440 
1441 	if (!list_empty_careful(&iocb->ki_list))
1442 		aio_remove_iocb(iocb);
1443 
1444 	if (kiocb->ki_flags & IOCB_WRITE) {
1445 		struct inode *inode = file_inode(kiocb->ki_filp);
1446 
1447 		/*
1448 		 * Tell lockdep we inherited freeze protection from submission
1449 		 * thread.
1450 		 */
1451 		if (S_ISREG(inode->i_mode))
1452 			__sb_writers_acquired(inode->i_sb, SB_FREEZE_WRITE);
1453 		file_end_write(kiocb->ki_filp);
1454 	}
1455 
1456 	iocb->ki_res.res = res;
1457 	iocb->ki_res.res2 = res2;
1458 	iocb_put(iocb);
1459 }
1460 
aio_prep_rw(struct kiocb *req, const struct iocb *iocb)1461 static int aio_prep_rw(struct kiocb *req, const struct iocb *iocb)
1462 {
1463 	int ret;
1464 
1465 	req->ki_complete = aio_complete_rw;
1466 	req->private = NULL;
1467 	req->ki_pos = iocb->aio_offset;
1468 	req->ki_flags = iocb_flags(req->ki_filp) | IOCB_AIO_RW;
1469 	if (iocb->aio_flags & IOCB_FLAG_RESFD)
1470 		req->ki_flags |= IOCB_EVENTFD;
1471 	req->ki_hint = ki_hint_validate(file_write_hint(req->ki_filp));
1472 	if (iocb->aio_flags & IOCB_FLAG_IOPRIO) {
1473 		/*
1474 		 * If the IOCB_FLAG_IOPRIO flag of aio_flags is set, then
1475 		 * aio_reqprio is interpreted as an I/O scheduling
1476 		 * class and priority.
1477 		 */
1478 		ret = ioprio_check_cap(iocb->aio_reqprio);
1479 		if (ret) {
1480 			pr_debug("aio ioprio check cap error: %d\n", ret);
1481 			return ret;
1482 		}
1483 
1484 		req->ki_ioprio = iocb->aio_reqprio;
1485 	} else
1486 		req->ki_ioprio = get_current_ioprio();
1487 
1488 	ret = kiocb_set_rw_flags(req, iocb->aio_rw_flags);
1489 	if (unlikely(ret))
1490 		return ret;
1491 
1492 	req->ki_flags &= ~IOCB_HIPRI; /* no one is going to poll for this I/O */
1493 	return 0;
1494 }
1495 
aio_setup_rw(int rw, const struct iocb *iocb, struct iovec **iovec, bool vectored, bool compat, struct iov_iter *iter)1496 static ssize_t aio_setup_rw(int rw, const struct iocb *iocb,
1497 		struct iovec **iovec, bool vectored, bool compat,
1498 		struct iov_iter *iter)
1499 {
1500 	void __user *buf = (void __user *)(uintptr_t)iocb->aio_buf;
1501 	size_t len = iocb->aio_nbytes;
1502 
1503 	if (!vectored) {
1504 		ssize_t ret = import_single_range(rw, buf, len, *iovec, iter);
1505 		*iovec = NULL;
1506 		return ret;
1507 	}
1508 
1509 	return __import_iovec(rw, buf, len, UIO_FASTIOV, iovec, iter, compat);
1510 }
1511 
aio_rw_done(struct kiocb *req, ssize_t ret)1512 static inline void aio_rw_done(struct kiocb *req, ssize_t ret)
1513 {
1514 	switch (ret) {
1515 	case -EIOCBQUEUED:
1516 		break;
1517 	case -ERESTARTSYS:
1518 	case -ERESTARTNOINTR:
1519 	case -ERESTARTNOHAND:
1520 	case -ERESTART_RESTARTBLOCK:
1521 		/*
1522 		 * There's no easy way to restart the syscall since other AIO's
1523 		 * may be already running. Just fail this IO with EINTR.
1524 		 */
1525 		ret = -EINTR;
1526 		fallthrough;
1527 	default:
1528 		req->ki_complete(req, ret, 0);
1529 	}
1530 }
1531 
aio_read(struct kiocb *req, const struct iocb *iocb, bool vectored, bool compat)1532 static int aio_read(struct kiocb *req, const struct iocb *iocb,
1533 			bool vectored, bool compat)
1534 {
1535 	struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
1536 	struct iov_iter iter;
1537 	struct file *file;
1538 	int ret;
1539 
1540 	ret = aio_prep_rw(req, iocb);
1541 	if (ret)
1542 		return ret;
1543 	file = req->ki_filp;
1544 	if (unlikely(!(file->f_mode & FMODE_READ)))
1545 		return -EBADF;
1546 	ret = -EINVAL;
1547 	if (unlikely(!file->f_op->read_iter))
1548 		return -EINVAL;
1549 
1550 	ret = aio_setup_rw(READ, iocb, &iovec, vectored, compat, &iter);
1551 	if (ret < 0)
1552 		return ret;
1553 	ret = rw_verify_area(READ, file, &req->ki_pos, iov_iter_count(&iter));
1554 	if (!ret)
1555 		aio_rw_done(req, call_read_iter(file, req, &iter));
1556 	kfree(iovec);
1557 	return ret;
1558 }
1559 
aio_write(struct kiocb *req, const struct iocb *iocb, bool vectored, bool compat)1560 static int aio_write(struct kiocb *req, const struct iocb *iocb,
1561 			 bool vectored, bool compat)
1562 {
1563 	struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
1564 	struct iov_iter iter;
1565 	struct file *file;
1566 	int ret;
1567 
1568 	ret = aio_prep_rw(req, iocb);
1569 	if (ret)
1570 		return ret;
1571 	file = req->ki_filp;
1572 
1573 	if (unlikely(!(file->f_mode & FMODE_WRITE)))
1574 		return -EBADF;
1575 	if (unlikely(!file->f_op->write_iter))
1576 		return -EINVAL;
1577 
1578 	ret = aio_setup_rw(WRITE, iocb, &iovec, vectored, compat, &iter);
1579 	if (ret < 0)
1580 		return ret;
1581 	ret = rw_verify_area(WRITE, file, &req->ki_pos, iov_iter_count(&iter));
1582 	if (!ret) {
1583 		/*
1584 		 * Open-code file_start_write here to grab freeze protection,
1585 		 * which will be released by another thread in
1586 		 * aio_complete_rw().  Fool lockdep by telling it the lock got
1587 		 * released so that it doesn't complain about the held lock when
1588 		 * we return to userspace.
1589 		 */
1590 		if (S_ISREG(file_inode(file)->i_mode)) {
1591 			sb_start_write(file_inode(file)->i_sb);
1592 			__sb_writers_release(file_inode(file)->i_sb, SB_FREEZE_WRITE);
1593 		}
1594 		req->ki_flags |= IOCB_WRITE;
1595 		aio_rw_done(req, call_write_iter(file, req, &iter));
1596 	}
1597 	kfree(iovec);
1598 	return ret;
1599 }
1600 
aio_fsync_work(struct work_struct *work)1601 static void aio_fsync_work(struct work_struct *work)
1602 {
1603 	struct aio_kiocb *iocb = container_of(work, struct aio_kiocb, fsync.work);
1604 	const struct cred *old_cred = override_creds(iocb->fsync.creds);
1605 
1606 	iocb->ki_res.res = vfs_fsync(iocb->fsync.file, iocb->fsync.datasync);
1607 	revert_creds(old_cred);
1608 	put_cred(iocb->fsync.creds);
1609 	iocb_put(iocb);
1610 }
1611 
aio_fsync(struct fsync_iocb *req, const struct iocb *iocb, bool datasync)1612 static int aio_fsync(struct fsync_iocb *req, const struct iocb *iocb,
1613 		     bool datasync)
1614 {
1615 	if (unlikely(iocb->aio_buf || iocb->aio_offset || iocb->aio_nbytes ||
1616 			iocb->aio_rw_flags))
1617 		return -EINVAL;
1618 
1619 	if (unlikely(!req->file->f_op->fsync))
1620 		return -EINVAL;
1621 
1622 	req->creds = prepare_creds();
1623 	if (!req->creds)
1624 		return -ENOMEM;
1625 
1626 	req->datasync = datasync;
1627 	INIT_WORK(&req->work, aio_fsync_work);
1628 	schedule_work(&req->work);
1629 	return 0;
1630 }
1631 
aio_poll_put_work(struct work_struct *work)1632 static void aio_poll_put_work(struct work_struct *work)
1633 {
1634 	struct poll_iocb *req = container_of(work, struct poll_iocb, work);
1635 	struct aio_kiocb *iocb = container_of(req, struct aio_kiocb, poll);
1636 
1637 	iocb_put(iocb);
1638 }
1639 
1640 /*
1641  * Safely lock the waitqueue which the request is on, synchronizing with the
1642  * case where the ->poll() provider decides to free its waitqueue early.
1643  *
1644  * Returns true on success, meaning that req->head->lock was locked, req->wait
1645  * is on req->head, and an RCU read lock was taken.  Returns false if the
1646  * request was already removed from its waitqueue (which might no longer exist).
1647  */
poll_iocb_lock_wq(struct poll_iocb *req)1648 static bool poll_iocb_lock_wq(struct poll_iocb *req)
1649 {
1650 	wait_queue_head_t *head;
1651 
1652 	/*
1653 	 * While we hold the waitqueue lock and the waitqueue is nonempty,
1654 	 * wake_up_pollfree() will wait for us.  However, taking the waitqueue
1655 	 * lock in the first place can race with the waitqueue being freed.
1656 	 *
1657 	 * We solve this as eventpoll does: by taking advantage of the fact that
1658 	 * all users of wake_up_pollfree() will RCU-delay the actual free.  If
1659 	 * we enter rcu_read_lock() and see that the pointer to the queue is
1660 	 * non-NULL, we can then lock it without the memory being freed out from
1661 	 * under us, then check whether the request is still on the queue.
1662 	 *
1663 	 * Keep holding rcu_read_lock() as long as we hold the queue lock, in
1664 	 * case the caller deletes the entry from the queue, leaving it empty.
1665 	 * In that case, only RCU prevents the queue memory from being freed.
1666 	 */
1667 	rcu_read_lock();
1668 	head = smp_load_acquire(&req->head);
1669 	if (head) {
1670 		spin_lock(&head->lock);
1671 		if (!list_empty(&req->wait.entry))
1672 			return true;
1673 		spin_unlock(&head->lock);
1674 	}
1675 	rcu_read_unlock();
1676 	return false;
1677 }
1678 
poll_iocb_unlock_wq(struct poll_iocb *req)1679 static void poll_iocb_unlock_wq(struct poll_iocb *req)
1680 {
1681 	spin_unlock(&req->head->lock);
1682 	rcu_read_unlock();
1683 }
1684 
aio_poll_complete_work(struct work_struct *work)1685 static void aio_poll_complete_work(struct work_struct *work)
1686 {
1687 	struct poll_iocb *req = container_of(work, struct poll_iocb, work);
1688 	struct aio_kiocb *iocb = container_of(req, struct aio_kiocb, poll);
1689 	struct poll_table_struct pt = { ._key = req->events };
1690 	struct kioctx *ctx = iocb->ki_ctx;
1691 	__poll_t mask = 0;
1692 
1693 	if (!READ_ONCE(req->cancelled))
1694 		mask = vfs_poll(req->file, &pt) & req->events;
1695 
1696 	/*
1697 	 * Note that ->ki_cancel callers also delete iocb from active_reqs after
1698 	 * calling ->ki_cancel.  We need the ctx_lock roundtrip here to
1699 	 * synchronize with them.  In the cancellation case the list_del_init
1700 	 * itself is not actually needed, but harmless so we keep it in to
1701 	 * avoid further branches in the fast path.
1702 	 */
1703 	spin_lock_irq(&ctx->ctx_lock);
1704 	if (poll_iocb_lock_wq(req)) {
1705 		if (!mask && !READ_ONCE(req->cancelled)) {
1706 			/*
1707 			 * The request isn't actually ready to be completed yet.
1708 			 * Reschedule completion if another wakeup came in.
1709 			 */
1710 			if (req->work_need_resched) {
1711 				schedule_work(&req->work);
1712 				req->work_need_resched = false;
1713 			} else {
1714 				req->work_scheduled = false;
1715 			}
1716 			poll_iocb_unlock_wq(req);
1717 			spin_unlock_irq(&ctx->ctx_lock);
1718 			return;
1719 		}
1720 		list_del_init(&req->wait.entry);
1721 		poll_iocb_unlock_wq(req);
1722 	} /* else, POLLFREE has freed the waitqueue, so we must complete */
1723 	list_del_init(&iocb->ki_list);
1724 	iocb->ki_res.res = mangle_poll(mask);
1725 	spin_unlock_irq(&ctx->ctx_lock);
1726 
1727 	iocb_put(iocb);
1728 }
1729 
1730 /* assumes we are called with irqs disabled */
aio_poll_cancel(struct kiocb *iocb)1731 static int aio_poll_cancel(struct kiocb *iocb)
1732 {
1733 	struct aio_kiocb *aiocb = container_of(iocb, struct aio_kiocb, rw);
1734 	struct poll_iocb *req = &aiocb->poll;
1735 
1736 	if (poll_iocb_lock_wq(req)) {
1737 		WRITE_ONCE(req->cancelled, true);
1738 		if (!req->work_scheduled) {
1739 			schedule_work(&aiocb->poll.work);
1740 			req->work_scheduled = true;
1741 		}
1742 		poll_iocb_unlock_wq(req);
1743 	} /* else, the request was force-cancelled by POLLFREE already */
1744 
1745 	return 0;
1746 }
1747 
aio_poll_wake(struct wait_queue_entry *wait, unsigned mode, int sync, void *key)1748 static int aio_poll_wake(struct wait_queue_entry *wait, unsigned mode, int sync,
1749 		void *key)
1750 {
1751 	struct poll_iocb *req = container_of(wait, struct poll_iocb, wait);
1752 	struct aio_kiocb *iocb = container_of(req, struct aio_kiocb, poll);
1753 	__poll_t mask = key_to_poll(key);
1754 	unsigned long flags;
1755 
1756 	/* for instances that support it check for an event match first: */
1757 	if (mask && !(mask & req->events))
1758 		return 0;
1759 
1760 	/*
1761 	 * Complete the request inline if possible.  This requires that three
1762 	 * conditions be met:
1763 	 *   1. An event mask must have been passed.  If a plain wakeup was done
1764 	 *	instead, then mask == 0 and we have to call vfs_poll() to get
1765 	 *	the events, so inline completion isn't possible.
1766 	 *   2. The completion work must not have already been scheduled.
1767 	 *   3. ctx_lock must not be busy.  We have to use trylock because we
1768 	 *	already hold the waitqueue lock, so this inverts the normal
1769 	 *	locking order.  Use irqsave/irqrestore because not all
1770 	 *	filesystems (e.g. fuse) call this function with IRQs disabled,
1771 	 *	yet IRQs have to be disabled before ctx_lock is obtained.
1772 	 */
1773 	if (mask && !req->work_scheduled &&
1774 	    spin_trylock_irqsave(&iocb->ki_ctx->ctx_lock, flags)) {
1775 		struct kioctx *ctx = iocb->ki_ctx;
1776 
1777 		list_del_init(&req->wait.entry);
1778 		list_del(&iocb->ki_list);
1779 		iocb->ki_res.res = mangle_poll(mask);
1780 		if (iocb->ki_eventfd && eventfd_signal_count()) {
1781 			iocb = NULL;
1782 			INIT_WORK(&req->work, aio_poll_put_work);
1783 			schedule_work(&req->work);
1784 		}
1785 		spin_unlock_irqrestore(&ctx->ctx_lock, flags);
1786 		if (iocb)
1787 			iocb_put(iocb);
1788 	} else {
1789 		/*
1790 		 * Schedule the completion work if needed.  If it was already
1791 		 * scheduled, record that another wakeup came in.
1792 		 *
1793 		 * Don't remove the request from the waitqueue here, as it might
1794 		 * not actually be complete yet (we won't know until vfs_poll()
1795 		 * is called), and we must not miss any wakeups.  POLLFREE is an
1796 		 * exception to this; see below.
1797 		 */
1798 		if (req->work_scheduled) {
1799 			req->work_need_resched = true;
1800 		} else {
1801 			schedule_work(&req->work);
1802 			req->work_scheduled = true;
1803 		}
1804 
1805 		/*
1806 		 * If the waitqueue is being freed early but we can't complete
1807 		 * the request inline, we have to tear down the request as best
1808 		 * we can.  That means immediately removing the request from its
1809 		 * waitqueue and preventing all further accesses to the
1810 		 * waitqueue via the request.  We also need to schedule the
1811 		 * completion work (done above).  Also mark the request as
1812 		 * cancelled, to potentially skip an unneeded call to ->poll().
1813 		 */
1814 		if (mask & POLLFREE) {
1815 			WRITE_ONCE(req->cancelled, true);
1816 			list_del_init(&req->wait.entry);
1817 
1818 			/*
1819 			 * Careful: this *must* be the last step, since as soon
1820 			 * as req->head is NULL'ed out, the request can be
1821 			 * completed and freed, since aio_poll_complete_work()
1822 			 * will no longer need to take the waitqueue lock.
1823 			 */
1824 			smp_store_release(&req->head, NULL);
1825 		}
1826 	}
1827 	return 1;
1828 }
1829 
1830 struct aio_poll_table {
1831 	struct poll_table_struct	pt;
1832 	struct aio_kiocb		*iocb;
1833 	bool				queued;
1834 	int				error;
1835 };
1836 
1837 static void
aio_poll_queue_proc(struct file *file, struct wait_queue_head *head, struct poll_table_struct *p)1838 aio_poll_queue_proc(struct file *file, struct wait_queue_head *head,
1839 		struct poll_table_struct *p)
1840 {
1841 	struct aio_poll_table *pt = container_of(p, struct aio_poll_table, pt);
1842 
1843 	/* multiple wait queues per file are not supported */
1844 	if (unlikely(pt->queued)) {
1845 		pt->error = -EINVAL;
1846 		return;
1847 	}
1848 
1849 	pt->queued = true;
1850 	pt->error = 0;
1851 	pt->iocb->poll.head = head;
1852 	add_wait_queue(head, &pt->iocb->poll.wait);
1853 }
1854 
aio_poll(struct aio_kiocb *aiocb, const struct iocb *iocb)1855 static int aio_poll(struct aio_kiocb *aiocb, const struct iocb *iocb)
1856 {
1857 	struct kioctx *ctx = aiocb->ki_ctx;
1858 	struct poll_iocb *req = &aiocb->poll;
1859 	struct aio_poll_table apt;
1860 	bool cancel = false;
1861 	__poll_t mask;
1862 
1863 	/* reject any unknown events outside the normal event mask. */
1864 	if ((u16)iocb->aio_buf != iocb->aio_buf)
1865 		return -EINVAL;
1866 	/* reject fields that are not defined for poll */
1867 	if (iocb->aio_offset || iocb->aio_nbytes || iocb->aio_rw_flags)
1868 		return -EINVAL;
1869 
1870 	INIT_WORK(&req->work, aio_poll_complete_work);
1871 	req->events = demangle_poll(iocb->aio_buf) | EPOLLERR | EPOLLHUP;
1872 
1873 	req->head = NULL;
1874 	req->cancelled = false;
1875 	req->work_scheduled = false;
1876 	req->work_need_resched = false;
1877 
1878 	apt.pt._qproc = aio_poll_queue_proc;
1879 	apt.pt._key = req->events;
1880 	apt.iocb = aiocb;
1881 	apt.queued = false;
1882 	apt.error = -EINVAL; /* same as no support for IOCB_CMD_POLL */
1883 
1884 	/* initialized the list so that we can do list_empty checks */
1885 	INIT_LIST_HEAD(&req->wait.entry);
1886 	init_waitqueue_func_entry(&req->wait, aio_poll_wake);
1887 
1888 	mask = vfs_poll(req->file, &apt.pt) & req->events;
1889 	spin_lock_irq(&ctx->ctx_lock);
1890 	if (likely(apt.queued)) {
1891 		bool on_queue = poll_iocb_lock_wq(req);
1892 
1893 		if (!on_queue || req->work_scheduled) {
1894 			/*
1895 			 * aio_poll_wake() already either scheduled the async
1896 			 * completion work, or completed the request inline.
1897 			 */
1898 			if (apt.error) /* unsupported case: multiple queues */
1899 				cancel = true;
1900 			apt.error = 0;
1901 			mask = 0;
1902 		}
1903 		if (mask || apt.error) {
1904 			/* Steal to complete synchronously. */
1905 			list_del_init(&req->wait.entry);
1906 		} else if (cancel) {
1907 			/* Cancel if possible (may be too late though). */
1908 			WRITE_ONCE(req->cancelled, true);
1909 		} else if (on_queue) {
1910 			/*
1911 			 * Actually waiting for an event, so add the request to
1912 			 * active_reqs so that it can be cancelled if needed.
1913 			 */
1914 			list_add_tail(&aiocb->ki_list, &ctx->active_reqs);
1915 			aiocb->ki_cancel = aio_poll_cancel;
1916 		}
1917 		if (on_queue)
1918 			poll_iocb_unlock_wq(req);
1919 	}
1920 	if (mask) { /* no async, we'd stolen it */
1921 		aiocb->ki_res.res = mangle_poll(mask);
1922 		apt.error = 0;
1923 	}
1924 	spin_unlock_irq(&ctx->ctx_lock);
1925 	if (mask)
1926 		iocb_put(aiocb);
1927 	return apt.error;
1928 }
1929 
__io_submit_one(struct kioctx *ctx, const struct iocb *iocb, struct iocb __user *user_iocb, struct aio_kiocb *req, bool compat)1930 static int __io_submit_one(struct kioctx *ctx, const struct iocb *iocb,
1931 			   struct iocb __user *user_iocb, struct aio_kiocb *req,
1932 			   bool compat)
1933 {
1934 	req->ki_filp = fget(iocb->aio_fildes);
1935 	if (unlikely(!req->ki_filp))
1936 		return -EBADF;
1937 
1938 	if (iocb->aio_flags & IOCB_FLAG_RESFD) {
1939 		struct eventfd_ctx *eventfd;
1940 		/*
1941 		 * If the IOCB_FLAG_RESFD flag of aio_flags is set, get an
1942 		 * instance of the file* now. The file descriptor must be
1943 		 * an eventfd() fd, and will be signaled for each completed
1944 		 * event using the eventfd_signal() function.
1945 		 */
1946 		eventfd = eventfd_ctx_fdget(iocb->aio_resfd);
1947 		if (IS_ERR(eventfd))
1948 			return PTR_ERR(eventfd);
1949 
1950 		req->ki_eventfd = eventfd;
1951 	}
1952 
1953 	if (unlikely(put_user(KIOCB_KEY, &user_iocb->aio_key))) {
1954 		pr_debug("EFAULT: aio_key\n");
1955 		return -EFAULT;
1956 	}
1957 
1958 	req->ki_res.obj = (u64)(unsigned long)user_iocb;
1959 	req->ki_res.data = iocb->aio_data;
1960 	req->ki_res.res = 0;
1961 	req->ki_res.res2 = 0;
1962 
1963 	switch (iocb->aio_lio_opcode) {
1964 	case IOCB_CMD_PREAD:
1965 		return aio_read(&req->rw, iocb, false, compat);
1966 	case IOCB_CMD_PWRITE:
1967 		return aio_write(&req->rw, iocb, false, compat);
1968 	case IOCB_CMD_PREADV:
1969 		return aio_read(&req->rw, iocb, true, compat);
1970 	case IOCB_CMD_PWRITEV:
1971 		return aio_write(&req->rw, iocb, true, compat);
1972 	case IOCB_CMD_FSYNC:
1973 		return aio_fsync(&req->fsync, iocb, false);
1974 	case IOCB_CMD_FDSYNC:
1975 		return aio_fsync(&req->fsync, iocb, true);
1976 	case IOCB_CMD_POLL:
1977 		return aio_poll(req, iocb);
1978 	default:
1979 		pr_debug("invalid aio operation %d\n", iocb->aio_lio_opcode);
1980 		return -EINVAL;
1981 	}
1982 }
1983 
io_submit_one(struct kioctx *ctx, struct iocb __user *user_iocb, bool compat)1984 static int io_submit_one(struct kioctx *ctx, struct iocb __user *user_iocb,
1985 			 bool compat)
1986 {
1987 	struct aio_kiocb *req;
1988 	struct iocb iocb;
1989 	int err;
1990 
1991 	if (unlikely(copy_from_user(&iocb, user_iocb, sizeof(iocb))))
1992 		return -EFAULT;
1993 
1994 	/* enforce forwards compatibility on users */
1995 	if (unlikely(iocb.aio_reserved2)) {
1996 		pr_debug("EINVAL: reserve field set\n");
1997 		return -EINVAL;
1998 	}
1999 
2000 	/* prevent overflows */
2001 	if (unlikely(
2002 	    (iocb.aio_buf != (unsigned long)iocb.aio_buf) ||
2003 	    (iocb.aio_nbytes != (size_t)iocb.aio_nbytes) ||
2004 	    ((ssize_t)iocb.aio_nbytes < 0)
2005 	   )) {
2006 		pr_debug("EINVAL: overflow check\n");
2007 		return -EINVAL;
2008 	}
2009 
2010 	req = aio_get_req(ctx);
2011 	if (unlikely(!req))
2012 		return -EAGAIN;
2013 
2014 	err = __io_submit_one(ctx, &iocb, user_iocb, req, compat);
2015 
2016 	/* Done with the synchronous reference */
2017 	iocb_put(req);
2018 
2019 	/*
2020 	 * If err is 0, we'd either done aio_complete() ourselves or have
2021 	 * arranged for that to be done asynchronously.  Anything non-zero
2022 	 * means that we need to destroy req ourselves.
2023 	 */
2024 	if (unlikely(err)) {
2025 		iocb_destroy(req);
2026 		put_reqs_available(ctx, 1);
2027 	}
2028 	return err;
2029 }
2030 
2031 /* sys_io_submit:
2032  *	Queue the nr iocbs pointed to by iocbpp for processing.  Returns
2033  *	the number of iocbs queued.  May return -EINVAL if the aio_context
2034  *	specified by ctx_id is invalid, if nr is < 0, if the iocb at
2035  *	*iocbpp[0] is not properly initialized, if the operation specified
2036  *	is invalid for the file descriptor in the iocb.  May fail with
2037  *	-EFAULT if any of the data structures point to invalid data.  May
2038  *	fail with -EBADF if the file descriptor specified in the first
2039  *	iocb is invalid.  May fail with -EAGAIN if insufficient resources
2040  *	are available to queue any iocbs.  Will return 0 if nr is 0.  Will
2041  *	fail with -ENOSYS if not implemented.
2042  */
SYSCALL_DEFINE3(io_submit, aio_context_t, ctx_id, long, nr, struct iocb __user * __user *, iocbpp)2043 SYSCALL_DEFINE3(io_submit, aio_context_t, ctx_id, long, nr,
2044 		struct iocb __user * __user *, iocbpp)
2045 {
2046 	struct kioctx *ctx;
2047 	long ret = 0;
2048 	int i = 0;
2049 	struct blk_plug plug;
2050 
2051 	if (unlikely(nr < 0))
2052 		return -EINVAL;
2053 
2054 	ctx = lookup_ioctx(ctx_id);
2055 	if (unlikely(!ctx)) {
2056 		pr_debug("EINVAL: invalid context id\n");
2057 		return -EINVAL;
2058 	}
2059 
2060 	if (nr > ctx->nr_events)
2061 		nr = ctx->nr_events;
2062 
2063 	if (nr > AIO_PLUG_THRESHOLD)
2064 		blk_start_plug(&plug);
2065 	for (i = 0; i < nr; i++) {
2066 		struct iocb __user *user_iocb;
2067 
2068 		if (unlikely(get_user(user_iocb, iocbpp + i))) {
2069 			ret = -EFAULT;
2070 			break;
2071 		}
2072 
2073 		ret = io_submit_one(ctx, user_iocb, false);
2074 		if (ret)
2075 			break;
2076 	}
2077 	if (nr > AIO_PLUG_THRESHOLD)
2078 		blk_finish_plug(&plug);
2079 
2080 	percpu_ref_put(&ctx->users);
2081 	return i ? i : ret;
2082 }
2083 
2084 #ifdef CONFIG_COMPAT
COMPAT_SYSCALL_DEFINE3(io_submit, compat_aio_context_t, ctx_id, int, nr, compat_uptr_t __user *, iocbpp)2085 COMPAT_SYSCALL_DEFINE3(io_submit, compat_aio_context_t, ctx_id,
2086 		       int, nr, compat_uptr_t __user *, iocbpp)
2087 {
2088 	struct kioctx *ctx;
2089 	long ret = 0;
2090 	int i = 0;
2091 	struct blk_plug plug;
2092 
2093 	if (unlikely(nr < 0))
2094 		return -EINVAL;
2095 
2096 	ctx = lookup_ioctx(ctx_id);
2097 	if (unlikely(!ctx)) {
2098 		pr_debug("EINVAL: invalid context id\n");
2099 		return -EINVAL;
2100 	}
2101 
2102 	if (nr > ctx->nr_events)
2103 		nr = ctx->nr_events;
2104 
2105 	if (nr > AIO_PLUG_THRESHOLD)
2106 		blk_start_plug(&plug);
2107 	for (i = 0; i < nr; i++) {
2108 		compat_uptr_t user_iocb;
2109 
2110 		if (unlikely(get_user(user_iocb, iocbpp + i))) {
2111 			ret = -EFAULT;
2112 			break;
2113 		}
2114 
2115 		ret = io_submit_one(ctx, compat_ptr(user_iocb), true);
2116 		if (ret)
2117 			break;
2118 	}
2119 	if (nr > AIO_PLUG_THRESHOLD)
2120 		blk_finish_plug(&plug);
2121 
2122 	percpu_ref_put(&ctx->users);
2123 	return i ? i : ret;
2124 }
2125 #endif
2126 
2127 /* sys_io_cancel:
2128  *	Attempts to cancel an iocb previously passed to io_submit.  If
2129  *	the operation is successfully cancelled, the resulting event is
2130  *	copied into the memory pointed to by result without being placed
2131  *	into the completion queue and 0 is returned.  May fail with
2132  *	-EFAULT if any of the data structures pointed to are invalid.
2133  *	May fail with -EINVAL if aio_context specified by ctx_id is
2134  *	invalid.  May fail with -EAGAIN if the iocb specified was not
2135  *	cancelled.  Will fail with -ENOSYS if not implemented.
2136  */
SYSCALL_DEFINE3(io_cancel, aio_context_t, ctx_id, struct iocb __user *, iocb, struct io_event __user *, result)2137 SYSCALL_DEFINE3(io_cancel, aio_context_t, ctx_id, struct iocb __user *, iocb,
2138 		struct io_event __user *, result)
2139 {
2140 	struct kioctx *ctx;
2141 	struct aio_kiocb *kiocb;
2142 	int ret = -EINVAL;
2143 	u32 key;
2144 	u64 obj = (u64)(unsigned long)iocb;
2145 
2146 	if (unlikely(get_user(key, &iocb->aio_key)))
2147 		return -EFAULT;
2148 	if (unlikely(key != KIOCB_KEY))
2149 		return -EINVAL;
2150 
2151 	ctx = lookup_ioctx(ctx_id);
2152 	if (unlikely(!ctx))
2153 		return -EINVAL;
2154 
2155 	spin_lock_irq(&ctx->ctx_lock);
2156 	/* TODO: use a hash or array, this sucks. */
2157 	list_for_each_entry(kiocb, &ctx->active_reqs, ki_list) {
2158 		if (kiocb->ki_res.obj == obj) {
2159 			ret = kiocb->ki_cancel(&kiocb->rw);
2160 			list_del_init(&kiocb->ki_list);
2161 			break;
2162 		}
2163 	}
2164 	spin_unlock_irq(&ctx->ctx_lock);
2165 
2166 	if (!ret) {
2167 		/*
2168 		 * The result argument is no longer used - the io_event is
2169 		 * always delivered via the ring buffer. -EINPROGRESS indicates
2170 		 * cancellation is progress:
2171 		 */
2172 		ret = -EINPROGRESS;
2173 	}
2174 
2175 	percpu_ref_put(&ctx->users);
2176 
2177 	return ret;
2178 }
2179 
do_io_getevents(aio_context_t ctx_id, long min_nr, long nr, struct io_event __user *events, struct timespec64 *ts)2180 static long do_io_getevents(aio_context_t ctx_id,
2181 		long min_nr,
2182 		long nr,
2183 		struct io_event __user *events,
2184 		struct timespec64 *ts)
2185 {
2186 	ktime_t until = KTIME_MAX;
2187 	struct kioctx *ioctx = NULL;
2188 	long ret = -EINVAL;
2189 
2190 	if (ts) {
2191 		if (!timespec64_valid(ts))
2192 			return ret;
2193 		until = timespec64_to_ktime(*ts);
2194 	}
2195 
2196 	ioctx = lookup_ioctx(ctx_id);
2197 	if (likely(ioctx)) {
2198 		if (likely(min_nr <= nr && min_nr >= 0))
2199 			ret = read_events(ioctx, min_nr, nr, events, until);
2200 		percpu_ref_put(&ioctx->users);
2201 	}
2202 
2203 	return ret;
2204 }
2205 
2206 /* io_getevents:
2207  *	Attempts to read at least min_nr events and up to nr events from
2208  *	the completion queue for the aio_context specified by ctx_id. If
2209  *	it succeeds, the number of read events is returned. May fail with
2210  *	-EINVAL if ctx_id is invalid, if min_nr is out of range, if nr is
2211  *	out of range, if timeout is out of range.  May fail with -EFAULT
2212  *	if any of the memory specified is invalid.  May return 0 or
2213  *	< min_nr if the timeout specified by timeout has elapsed
2214  *	before sufficient events are available, where timeout == NULL
2215  *	specifies an infinite timeout. Note that the timeout pointed to by
2216  *	timeout is relative.  Will fail with -ENOSYS if not implemented.
2217  */
2218 #ifdef CONFIG_64BIT
2219 
SYSCALL_DEFINE5(io_getevents, aio_context_t, ctx_id, long, min_nr, long, nr, struct io_event __user *, events, struct __kernel_timespec __user *, timeout)2220 SYSCALL_DEFINE5(io_getevents, aio_context_t, ctx_id,
2221 		long, min_nr,
2222 		long, nr,
2223 		struct io_event __user *, events,
2224 		struct __kernel_timespec __user *, timeout)
2225 {
2226 	struct timespec64	ts;
2227 	int			ret;
2228 
2229 	if (timeout && unlikely(get_timespec64(&ts, timeout)))
2230 		return -EFAULT;
2231 
2232 	ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &ts : NULL);
2233 	if (!ret && signal_pending(current))
2234 		ret = -EINTR;
2235 	return ret;
2236 }
2237 
2238 #endif
2239 
2240 struct __aio_sigset {
2241 	const sigset_t __user	*sigmask;
2242 	size_t		sigsetsize;
2243 };
2244 
SYSCALL_DEFINE6(io_pgetevents, aio_context_t, ctx_id, long, min_nr, long, nr, struct io_event __user *, events, struct __kernel_timespec __user *, timeout, const struct __aio_sigset __user *, usig)2245 SYSCALL_DEFINE6(io_pgetevents,
2246 		aio_context_t, ctx_id,
2247 		long, min_nr,
2248 		long, nr,
2249 		struct io_event __user *, events,
2250 		struct __kernel_timespec __user *, timeout,
2251 		const struct __aio_sigset __user *, usig)
2252 {
2253 	struct __aio_sigset	ksig = { NULL, };
2254 	struct timespec64	ts;
2255 	bool interrupted;
2256 	int ret;
2257 
2258 	if (timeout && unlikely(get_timespec64(&ts, timeout)))
2259 		return -EFAULT;
2260 
2261 	if (usig && copy_from_user(&ksig, usig, sizeof(ksig)))
2262 		return -EFAULT;
2263 
2264 	ret = set_user_sigmask(ksig.sigmask, ksig.sigsetsize);
2265 	if (ret)
2266 		return ret;
2267 
2268 	ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &ts : NULL);
2269 
2270 	interrupted = signal_pending(current);
2271 	restore_saved_sigmask_unless(interrupted);
2272 	if (interrupted && !ret)
2273 		ret = -ERESTARTNOHAND;
2274 
2275 	return ret;
2276 }
2277 
2278 #if defined(CONFIG_COMPAT_32BIT_TIME) && !defined(CONFIG_64BIT)
2279 
SYSCALL_DEFINE6(io_pgetevents_time32, aio_context_t, ctx_id, long, min_nr, long, nr, struct io_event __user *, events, struct old_timespec32 __user *, timeout, const struct __aio_sigset __user *, usig)2280 SYSCALL_DEFINE6(io_pgetevents_time32,
2281 		aio_context_t, ctx_id,
2282 		long, min_nr,
2283 		long, nr,
2284 		struct io_event __user *, events,
2285 		struct old_timespec32 __user *, timeout,
2286 		const struct __aio_sigset __user *, usig)
2287 {
2288 	struct __aio_sigset	ksig = { NULL, };
2289 	struct timespec64	ts;
2290 	bool interrupted;
2291 	int ret;
2292 
2293 	if (timeout && unlikely(get_old_timespec32(&ts, timeout)))
2294 		return -EFAULT;
2295 
2296 	if (usig && copy_from_user(&ksig, usig, sizeof(ksig)))
2297 		return -EFAULT;
2298 
2299 
2300 	ret = set_user_sigmask(ksig.sigmask, ksig.sigsetsize);
2301 	if (ret)
2302 		return ret;
2303 
2304 	ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &ts : NULL);
2305 
2306 	interrupted = signal_pending(current);
2307 	restore_saved_sigmask_unless(interrupted);
2308 	if (interrupted && !ret)
2309 		ret = -ERESTARTNOHAND;
2310 
2311 	return ret;
2312 }
2313 
2314 #endif
2315 
2316 #if defined(CONFIG_COMPAT_32BIT_TIME)
2317 
SYSCALL_DEFINE5(io_getevents_time32, __u32, ctx_id, __s32, min_nr, __s32, nr, struct io_event __user *, events, struct old_timespec32 __user *, timeout)2318 SYSCALL_DEFINE5(io_getevents_time32, __u32, ctx_id,
2319 		__s32, min_nr,
2320 		__s32, nr,
2321 		struct io_event __user *, events,
2322 		struct old_timespec32 __user *, timeout)
2323 {
2324 	struct timespec64 t;
2325 	int ret;
2326 
2327 	if (timeout && get_old_timespec32(&t, timeout))
2328 		return -EFAULT;
2329 
2330 	ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &t : NULL);
2331 	if (!ret && signal_pending(current))
2332 		ret = -EINTR;
2333 	return ret;
2334 }
2335 
2336 #endif
2337 
2338 #ifdef CONFIG_COMPAT
2339 
2340 struct __compat_aio_sigset {
2341 	compat_uptr_t		sigmask;
2342 	compat_size_t		sigsetsize;
2343 };
2344 
2345 #if defined(CONFIG_COMPAT_32BIT_TIME)
2346 
COMPAT_SYSCALL_DEFINE6(io_pgetevents, compat_aio_context_t, ctx_id, compat_long_t, min_nr, compat_long_t, nr, struct io_event __user *, events, struct old_timespec32 __user *, timeout, const struct __compat_aio_sigset __user *, usig)2347 COMPAT_SYSCALL_DEFINE6(io_pgetevents,
2348 		compat_aio_context_t, ctx_id,
2349 		compat_long_t, min_nr,
2350 		compat_long_t, nr,
2351 		struct io_event __user *, events,
2352 		struct old_timespec32 __user *, timeout,
2353 		const struct __compat_aio_sigset __user *, usig)
2354 {
2355 	struct __compat_aio_sigset ksig = { 0, };
2356 	struct timespec64 t;
2357 	bool interrupted;
2358 	int ret;
2359 
2360 	if (timeout && get_old_timespec32(&t, timeout))
2361 		return -EFAULT;
2362 
2363 	if (usig && copy_from_user(&ksig, usig, sizeof(ksig)))
2364 		return -EFAULT;
2365 
2366 	ret = set_compat_user_sigmask(compat_ptr(ksig.sigmask), ksig.sigsetsize);
2367 	if (ret)
2368 		return ret;
2369 
2370 	ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &t : NULL);
2371 
2372 	interrupted = signal_pending(current);
2373 	restore_saved_sigmask_unless(interrupted);
2374 	if (interrupted && !ret)
2375 		ret = -ERESTARTNOHAND;
2376 
2377 	return ret;
2378 }
2379 
2380 #endif
2381 
COMPAT_SYSCALL_DEFINE6(io_pgetevents_time64, compat_aio_context_t, ctx_id, compat_long_t, min_nr, compat_long_t, nr, struct io_event __user *, events, struct __kernel_timespec __user *, timeout, const struct __compat_aio_sigset __user *, usig)2382 COMPAT_SYSCALL_DEFINE6(io_pgetevents_time64,
2383 		compat_aio_context_t, ctx_id,
2384 		compat_long_t, min_nr,
2385 		compat_long_t, nr,
2386 		struct io_event __user *, events,
2387 		struct __kernel_timespec __user *, timeout,
2388 		const struct __compat_aio_sigset __user *, usig)
2389 {
2390 	struct __compat_aio_sigset ksig = { 0, };
2391 	struct timespec64 t;
2392 	bool interrupted;
2393 	int ret;
2394 
2395 	if (timeout && get_timespec64(&t, timeout))
2396 		return -EFAULT;
2397 
2398 	if (usig && copy_from_user(&ksig, usig, sizeof(ksig)))
2399 		return -EFAULT;
2400 
2401 	ret = set_compat_user_sigmask(compat_ptr(ksig.sigmask), ksig.sigsetsize);
2402 	if (ret)
2403 		return ret;
2404 
2405 	ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &t : NULL);
2406 
2407 	interrupted = signal_pending(current);
2408 	restore_saved_sigmask_unless(interrupted);
2409 	if (interrupted && !ret)
2410 		ret = -ERESTARTNOHAND;
2411 
2412 	return ret;
2413 }
2414 #endif
2415